
TALLINN UNIVERSITY OF TECHNOLOGY 

School of Information Technology 

Department of Software Science

IT70LT 

Uku-Rasmus Lind 121874IAPM 

AGENT-BASED MODELLING AND
SIMULATION OF PERSONALITIES BASED

ON THE FIVE FACTOR PERSONALITY
MODEL

Master's thesis

Supervisor: Professor Kuldar Taveter

Consultant: Nico Zimmer,
Jeppesen GmbH

Tallinn 2017



TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Tarkvarateaduse instituut

IT70LT

Uku-Rasmus Lind 121874IAPM

AGENDIPÕHINE ISIKSUSTE
MODELLEERIMINE JA SIMULATSIOON

KASUTADES VIIE FAKTORI
ISIKSUSEMUDELIT

magistritöö

Juhendaja: Professor Kuldar Taveter

Konsultant: Nico Zimmer,
Jeppesen GmbH

Tallinn 2017



Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else. 

Author: Uku-Rasmus Lind

10.05.2017

3



Abstract

This  thesis  has  been  written  as  part  of  a  university  collaboration  project  between

Jeppesen GmbH and Tallinn University of Technology. Jeppesen's interest in this work

was  to  find  new and innovative  ways  how to  improve the  performance  of  airline's

operations  control.  Similar  work has  been done previously by Balašova [1] and her

work was also taken as a starting point for this work.

This work is focused on modelling control organization of integrated operations of a

generic European airline of the hub and spoke type with detailed attention given on the

problem domain of disruption handling. 

The problem domain analysis and modelling was performed using the method of Agent

Oriented Modelling (AOM) [8]. 

Four different agent-based design architectures were compared to find the most suitable

one for this work. After the architecture had been chosen and the problem domain had

been modelled, an agent-based simulation system corresponding to the models of the

problem  domain  was  designed  that  considered  the  Five  Factor  Personality

Model (FFM). The simulation system was designed by means of the renewed ODD

protocol [10][11].

The  resulting  simulations  provided  means  to  evaluate  the  impact  of  the  trait  of

Agreeableness  on  teamwork  performance.  Finally,  a  quantitative  assessment  was

performed based on the simulation runs. 

This thesis is written in English and is 62 pages long, including 6 chapters, 21 figures

and 10 tables. 

4



Sisukokkuvõte

Agendipõhine isiksuste modelleerimine ja simulatsioon kasutades viie

faktori isiksusemudelit

Käesolev  lõputöö  on  valminud  osana  Tallinna  Tehnikaülikooli  ja  Jeppesen  GmbH

vahelisest koostööprojektist. Jeppesen on Boeingu tütarfirma, mis tegeleb navigatsiooni,

logistika ja monitooringu toodete arendusega erinevatele lennundusalastele- ja muudele

transpordiettevõtetele.  Jeppeseni  huvi  käesoleva  töö  puhul  oli  leida  uusi  ja

innovatiivseid  suundi  lennundusetevõtete  juhtimiskeskuste  töö  optimeerimiseks  ja

parendamiseks.  Sarnasel  teemal  on varem lõputöö kirjutanud Balašova [1],  kelle  töö

oligi lähtepunktiks käesolevale tööle.

Käesolev töö keskendud Euroopa geneerilise  hub and spoke tüüpi lennundusettevõtte

juhtimiskeskusele.  Kõrgendatud  tähelepanu  all  on  lennuplaani  häirete  haldamise

probleemvaldkond. 

Probleemvaldkonna  analüüsi  ja  modelleerimise  metoodikaks  on  agentorienteeritud

modelleerimise (AOM) metoodika [8].

Töö käigus uuriti ja võrreldi nelja erinevat agendipõhist arhitektuuri ning valiti nende

seast  antud  töö  jaoks  sobivaim.  Seejärel  kavandati  lähtuvalt  valitud  arhitektuurist,

probleemvaldkonna mudelitest ning viie faktori (FFM) isiksusemudelist agendipõhine

simulatsioonisüsteem.  Simulatsioonisüsteem  kavandati  uuendatud  ODD

protokolli [10][11] metoodika kohaselt ja teostati agendiplatvormil NetLogo.

Simulatsioonide  tulemuste  põhjal  anti  kvantitatiivne  hinnang  isikuomadusele

koostöövalmidus. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 62 leheküljel, 6 peatükki, 21

joonist, 10 tabelit. 
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List of abbreviations
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BOID Belief-Obligation-Intention-Desire

FFM Five Factor Personality Model

MBTI Myers-Briggs Type Indicator

OCC Operations Control Center

FFM
Openness, Conscientiousness, Extraversion, Agreeableness and 
Neuroticism

ODD Overview, Design concepts, Details

SRA Simple Reactive Agents

QDT Qualitative Decision Theory

6



Table of Contents

1 Introduction...................................................................................................................11

1.1 Background and problem definition.....................................................................11

1.2 Methodology.........................................................................................................12

1.3 Main goals of the thesis........................................................................................12

1.4 Overview of the thesis..........................................................................................13

2 Overview of previous work and potential alternatives.................................................14

2.1 Existing solutions and previous work based on BDI............................................14

2.2 Strengths and shortcomings of BDI......................................................................15

2.3 Analysis of alternative architectures.....................................................................16

2.3.1 Simple Reactive Agents................................................................................16

2.3.2 BOID – a derivative of BDI.........................................................................18

2.3.3 Qualitative Decision Theory.........................................................................19

2.3.4 Comparison summary...................................................................................19

2.4 Architecture choice...............................................................................................20

3 Problem domain analysis – Handling disruptions in airline operations control centres

.........................................................................................................................................22

3.1 Conceptual domain modelling layer.....................................................................23

3.1.1 Role models and organization model...........................................................23

3.1.2 Domain model..............................................................................................24

3.1.3 Goal models..................................................................................................25

3.2 Platform-independent computational design........................................................27

3.3 Analysis summary and conclusions......................................................................30

4 Implementation of the Simulation................................................................................32

4.1 Design considerations originating in the problem domain...................................32

4.2 Requirements coming from the Five Factor Personality Model...........................33

4.3 Design overview...................................................................................................36

4.3.1 Purpose.........................................................................................................36

4.3.2 Entities, state variables and scales................................................................36

7



4.3.3 Process overview and scheduling.................................................................38

4.3.4 Design concepts............................................................................................40

4.3.5 Initialization..................................................................................................41

4.3.6 Input data......................................................................................................42

4.3.7 Sub-models...................................................................................................42

4.4 Simulation quality goals.......................................................................................44

5 Simulation results.........................................................................................................45

5.1 Results...................................................................................................................45

5.2 Evaluation of the implementation.........................................................................46

5.3 Findings and Interpretation of the results.............................................................47

6 Conclusions..................................................................................................................50

 References......................................................................................................................52

 Appendix 1 – AOC Organization Sub-models...............................................................55

 Appendix 2 – AOC Goal models....................................................................................57

 Appendix 3 – Interaction diagrams................................................................................60

 Appendix 4 – Simulation results....................................................................................62

8



List of Figures

Figure 1. BDI execution loop in pseudocode..................................................................15

Figure 2. AOC Organization model.................................................................................24

Figure 3. AOC Domain model.........................................................................................25

Figure 4. AOC Goal model - Maintain Operational Control...........................................26

Figure 5. Airline Goal model – Provide air transportation services................................27

Figure 6. AOC Agent acquaintance model......................................................................28

Figure 7. Interaction diagram - En-route medical emergency disruption........................29

Figure 8. Abstract BDI agent architecture with personality traits incorporated..............35

Figure 9. Simulation map after 50 ticks..........................................................................38

Figure 10. AOC Ground Operations Organization sub-model........................................55

Figure 11. AOC Passenger & Revenue Organization sub-model....................................55

Figure 12. AOC Maintenance Organization sub-model..................................................56

Figure 13. AOC Goal model: Handle schedule...............................................................57

Figure 14. AOC Goal model: Apply decision..................................................................57

Figure 15. AOC Goal model: Accomodate fleet changes................................................57

Figure 16. AOC Goal model: Accomodate PAX changes...............................................58

Figure 17. AOC Goal model: Adjust crew schedule.......................................................58

Figure 18. AOC Goal model: Adjust MX schedule.........................................................58

Figure 19. AOC Goal model: Change flight plan............................................................59

Figure 20. Interaction diagram - Pre-flight engine malfunction disruption....................60

Figure 21. Interaction diagram - No own fleet solutions available.................................61

9



List of Tables

Table 1. BDI vs Simple Reactive Agents test results.......................................................18

Table 2. Architectures comparison..................................................................................20

Table 3. Viewpoint framework........................................................................................22

Table 4. Correlation between problem domain and simulation.......................................33

Table 5. Overview of simulation variables and default values........................................37

Table 6. Objectives priorities by ant agent type..............................................................40

Table 7. Initial profiles from [29] and the profiles with manipulated agreeableness......45

Table 8. Simulation results extract...................................................................................46

Table 9. The impact of the trait of agreeableness on the OCC personality profile..........48

Table 10. Simulation results full table.............................................................................62

10



1 Introduction

In Chapter 1 will be given a brief introduction to the previous work in the field and an

understanding of how this thesis defines the research problem by formalising the main

research questions.  In sub-chapter 1.2 will  be described the chosen methodology, in

sub-chapter 1.3 the main goals of this work are presented, and finally in sub-chapter 1.4

an overview of the structure of the thesis is presented

1.1 Background and problem definition

In  the  recent  years,  the  agent-research  community  has  found  more  interest  in  the

incorporation of human personality  traits  into agent reasoning algorithms.  The Five-

Factor Personality Model (FFM for short) is widely accepted in psychology researchers

and has, therefore, found its way to the agent-research too. FFM as its name suggests

consists of five orthogonal personality traits which describe the human personality in

whole. 

Previous work in the field has created conceptual models of the problem domain of

airlines and has studied in general what kind of impact the FFM personality trait  of

agreeableness can have on decision-making in airlines [1]. Some previous research has

also been reported on agent-based simulation of FFM personality traits [2]. One rather

noteworthy implementation of the personality traits is crowd simulation proposed by

Durupinar et al  [3]. However, further modelling and simulation work is required for

studying  the  impact  of  FFM  personality  traits  and  particularly  the  impact  of

agreeableness and its subordinate trait of helpfulness on decision-making in airlines. 

This thesis is written as a part of a university collaboration project between Jeppesen

GmbH  and  Tallinn  University  of  Technology.  Jeppesen  is  a  company  providing

innovative products that integrate navigation, operations, and logistics information into

one end-to-end solution [4].
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Three main research questions have been formalised to study the problem area:

1. How to best represent the FFM in agent-based simulations?

2. How to adequately reflect an organisation by an agent-based simulation system

where humans with different personalities perform various roles?

3. How big is the impact of the personality trait of agreeableness and its sub-trait of

helpfulness on the performance of individual employees and teams of an airline?

1.2 Methodology

The  chosen  research  methodology  for  the  M.Sc.  work  is  a  combination  of  design

science  [5] and agent-based modelling  [6][7],  which  is  the newest  and increasingly

popular  method  for  studying  complex  socio-technical  systems.  For  modelling  the

problem domain the methodology of Agent-Oriented Modelling (AOM) proposed by

Sterling and Taveter in [8] will be used.

To answer the research questions, it is necessary to complement the modelling aspect

with designing and implementing an agent-based simulation as described in  [9]. The

simulation will be described according to the refined ODD protocol [10][11].

1.3 Main goals of the thesis

Three  main  research  questions  were  formalised  in  Chapter  1.1.  To  answer  those

questions the thesis aims to achieve the following goals:

1. Obtain  an overview of different  agent-based representations  of the  FFM and

choose one as the foundation for achieving the remaining goals 2-4.

2. Model the problem domain of airlines resulting from the previous work [1] by

means of the Agent-Oriented Modelling (AOM) methodology [8]. 

3. Based on the  problem domain  analysis  elaborated  under  goal  2  and using  a

combination of the AOM [8][12] and ODD [10][11] methodologies, design an
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agent-based simulation system of an organisation with roles performed by agents

having different personality traits.

4. Implement on the agent-based simulation environment NetLogo [13] a prototype

of  an  agent-based  simulation  system  of  personality  traits  that  was  designed

under  goal  3  and  analyse  the  impact  of  agreeableness  and  helpfulness  on

problem-solving activities from a teamwork perspective.

1.4 Overview of the thesis

The second chapter gives a brief overview of previous attempts to model personality

traits  by  agent-based  simulations.  Thereafter,  four  different  agent-architectures  are

presented  and  compared,  and  finally,  the  chapter  concludes  with  the  choice  of

architecture to be used for the simulation system design and implementation.

Chapter three gives the reader an overview of the industry partner's problem domain by

presenting the AOM diagrams that were modelled based on the state of the art literature

and industry partner's expertise. 

Chapter  four  presents  the  design  of  the  proof-of-concept  simulation  system derived

from previous work and the requirements coming from problem domain specific needs.

First, the connection between the simulation system and problem domain is explained,

then the incorporation of the FFM is explained, and finally, a comprehensive simulation

design description is presented according to the ODD protocol.

Chapter five shows the results of the simulation runs done on the implemented system,

evaluates  different  quality  aspects of the simulation  system and finally, presents the

findings from the analysis of the simulation results.
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2 Overview of previous work and potential alternatives

In this chapter, we will give an overview of previous work done in the field of  agent-

based simulation incorporating the Belief-Desire-Intention(BDI) agent architecture and

the Big Five Personality Traits model also known as OCEAN personality traits model or

Five Factor Personality traits Model(FFM). We will also analyse the suitability of BDI

as  the  base  architecture  for  such  simulation  systems  and  highlight  some  possible

alternatives to BDI.

2.1 Existing solutions and previous work based on BDI

The BDI architecture for intelligent agents was formalised in the beginning of 1990's by

Anand S. Rao and Michael P. Georgeff. According to their foundation-laying work [14]

the decision-making in BDI depends equally on three agent-specific concepts:

1) Beliefs – representing the knowledge state of the agent, such as signals from

other agents, changes in environment and so on; 

2) Desires – representing the motivational state of the agent or simply put what the

agent would like to accomplish and

3) Intentions  –  representing  the  deliberative  state  of  the  agent.  Intentions  are  a

subset of desires to which the agent has chosen to commit to.

BDI agents have a repetitive life-cycle which consists of four phases [15], namely the

Belief  Revision,  the  Option  Generation,  the  Filter  Process,  and the  Actuation  or

Execution phase.

In  Belief  Revision, the agent reviews all  new environment perceptions and messages

from other agents to update its beliefs. Once beliefs are revisited, the agent generates

options  based  on  its  beliefs,  desires  and  previous  intentions.  Options  are  potential

intentions that the agent can commit to. In the filtering phase, the agent considers all
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generated options and selects the ones most suitable with current beliefs and agent's

desires as its intentions. In the actuation phase, all selected intentions are translated into

actions and are executed. The four phases incorporation into the BDI execution loop is

best described by pseudocode presented in Figure 1:

BDI as an agent architecture has been widely accepted by the research community and,

hence, is found also in several implementations trying to incorporate personality traits

into agents' decision-making algorithms. For instance, BDI agents have been used in the

AntMe! simulation by Ahrndt et. al described in  [2] and in the emergency evacuation

simulation framework by Zoumpoulaki et. al [16].

2.2 Strengths and shortcomings of BDI

As  every  other  architectural  framework,  also  BDI  comes  with  its  strengths  and

weaknesses. Let us first examine some of the more important positive aspects of BDI.

Since BDI derives from Bratman's theory of human practical reasoning [17], it provides

the designer with a very human-like decision-making framework making it easy to both

model and implement agent based simulations. 

BDI provides the designer with a good separation between the activity of choosing a

plan to execute and the activity of executing the currently chosen plans. This in turn

makes BDI highly scalable and usable in complex multi-agent systems as shown in [14].

Although widely used, BDI is often criticised for its limitations in learning, forward

planning and agent interactions. Since the simulations presented in this paper require no

15

while true

  set percepts = percept(Env, Msg)

  set bels = beliefRevision(bels, percepts)

  set opts = options(bels, intents, desires)

  set intents = filter(opts, bels, desires, intents)

  foreach intent in intents:

    actuate(intent)

end

Figure 1. BDI execution loop in pseudocode



forward  planning,  we  will  only  have  a  quick  look  at  learning  or  adaptability  to

environmental changes and agent interactions.

Phung et. al showed in [18] that learning proves crucial in situations where environment

can change and render the pre-defined behaviour to no longer be optimal. Unfortunately

for BDI, to incorporate the learning aspect, rather drastic additions to the architecture

are needed.

BDI defines no formalism for agent interactions but, unlike learning, it is achievable

with reasonable extension of the BDI framework. As described by Kinny et. al in [19],

at the time when BDI was formalised there was no clear view on how agents should

interact, thus, all efforts were made to make implementing any kind of communication

protocol in BDI as simple as possible.

2.3 Analysis of alternative architectures

Although BDI is clearly among the most popular architectural frameworks used in the

agent  research  community,  we  will  also  consider  some  other  alternatives.  For  the

purposes of this thesis, we will do a comparison of the alternatives using BDI as a base

benchmark.

2.3.1 Simple Reactive Agents

Reactive agents are simple entities that involve relatively simple algorithms for decision

making.  They  make  decisions  based  on  current  situation  with  no  regard  to  past

experiences. One good example of a reactive agent is a car thermostat: it opens or closes

depending on whether the coolant temperature has reached the thermostat's threshold.

Simple reactive agents can prove useful in solving different map exploration and object

collecting  tasks  as  presented  by  Scheutz  and  Schermerhorn  in  [20].  With  simple

knowledge of where all other agents currently reside on the map, the simple reactive

agent  population  proved  to  be  almost  as  efficient  as  the  more  advanced  deliberate

population. 
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Our own experimentations with the architecture of a simple reactive agent confirmed

the findings of Scheutz et. al  [20], but also revealed that compared to BDI the simple

architecture of reactive agents comes with significantly lower overhead in designing and

programming agent-based simulations. 

On the  other  hand,  we also  found that  the  complexity  of  the simple  reactive  agent

architecture  keeps  growing  with  the  growth  of  the  simulation  complexity,  thus,

demonstrating that  this  kind of simple architecture does not scale  up well  for more

extensive and complex simulation environments. 

It is hard to provide a precise evaluation on what is reasonable and what is not to be

implemented using only simple reactive agents, but the initial  results of our original

tests of trying this approach on NetLogo showed that having many instances of up to 2

different types of agents, this architecture still performed well in both resource usage

and  code  efficiency.  Significant  increase  was  evident  in  the  number  of  code  lines

necessary  to  implement  more  than  3  different  kinds  of  agents,  but  no  significant

performance issues occurred. 

In the tests were implemented the following scenarios in both the BDI architecture and

Simple Reactive Agents approach:

1) Ant colony with all ants belonging to the same agent type and having the same

tasks (“explore” and “gather food”);

2) The same ant colony as in the first scenario (added tasks “fight bug” and “run

away”) and bug colony with its own agent type and execution cycle;

3) The same bug colony as in the second scenario, but the ant colony consisting of

agents of two types with different tasks (agents of one type being “explorers”

and  agents  of  the  other  type  being  “food  gatherers”,  sharing  fighting  and

running);

4) The same ant colony as in the third scenario but two different bug colonies (the

first fighting ants on way, the others around food sources);
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5) The same bug colonies as in the fourth scenario but the ant colony consisting of

three different types of ants (“explorers”, “food gatherers” and “fighters”).

For those five scenarios following the characteristics were measured:

1) average running time to complete 5000 simulation ticks;

2) amount of code in the implementation (number of lines);

3) average CPU consumption;

4) average memory consumption.

The running time was measured in milliseconds, but for the sake of readability time

values are presented as rounded values to 0.1 second precision. The results of the tests

are presented in Table 1.

Table 1. BDI vs Simple Reactive Agents test results.

Scenario 1 2 3 4 5

Architecture BDI SRA BDI SRA BDI SRA BDI SRA BDI SRA

Runtime(s) 19.3 18.6 35.4 34.9 52.6 51.7 69.5 69.0 86.1 85.8

Lines of Code 557 382 635 486 692 591 759 687 812 794

Avg. RAM(MB) 487.3 481.2 488.8 482.5 490.1 483.9 491.4 485.6 493.2 487.1

2.3.2 BOID – a derivative of BDI

Rao and Georgeff explained in  [14] that there are tendencies to question whether the

three concepts of BDI are perhaps too many or too few; whether intentions are covered

by beliefs  and desires or if  there should be something more emphasizing the social

aspects of agents. One attempt to bring the social aspect into the BDI architecture is the

Belief Obligation Intention Desire architecture [21] or, BOID for short. 

As the name suggests, BOID expands on BDI and adds the concept of social obligation

to the decision-making algorithms. The addition of a social concept makes it possible to

define four types of agents with different behaviours:  the realistic agent, the simple-

minded agent, the selfish agent and the social agent. From the perspective of this thesis,

this is of low significance as the types explained refer to specific personality profiles,
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which are much better defined by the Five Factor Personality model. Thus, combining

BOID with the FFM would most likely result in either losing clear separation between

the reasoning algorithms and personality traits' model or colliding social aspects in the

two. For example, let us consider that we have set up a BOID selfish agent. If we now

complement  this  agent  with FFM and from the personality  traits  model  perspective

make it agreeable and open, then the agent no longer can be selfish. Similarly, the same

agent  could  be  made  selfish  by  both  the  BOID  architecture  and  FFM  traits.  Also

noteworthy is the fact that BOID has extra steps in its reasoning algorithm which, in

turn, according to [21] at least on paper, should make it slower than BDI.

2.3.3 Qualitative Decision Theory

Qualitative  Decision  Theory  (QDT)  [22] is  a  qualitative  extension  to  the  classical

decision  theory.  It  criticizes  the  classical  decision  theory  and  proposes  a  non-

quantitative reasoning logic that could be applied in uncertain conditions.

We have not repeated the work of Dastani et. al [23] to compare QDT and BDI. Their

results were more than conclusive for our needs – QDT is as comprehensive in logical

reasoning  as  BDI,  but  lacks  the  layer  of  abstraction  to  make  the  decision-making

algorithms  at  least  seem  more  intuitive  and  understandable  for  humans.  Since  the

decision-making  algorithms  are  very  mechanical,  it  is  also  significantly  harder  to

incorporate any personality traits'  models. Additionally, QDT does not have anything

like intentions to make the agent behaviour stable over time. For the purposes of this

thesis, QDT does not present any added value, but complicates the implementation of

uniform and driven by personality traits reasoning architecture for simulation agents.

2.3.4 Comparison summary

This final sub-chapter will present the results of comparing the alternatives as an easy to

review table  which  uses  BDI  as  baseline.  The  table  is  based  on  the  BDI  to  QDT

comparison table presented by Dastani et. al in  [23]. Here, the table is complemented

with  simple  reactive  agents  and  BOID.  Also,  three  new  evaluation  categories  are

proposed:

19



1) Effort  for  FFM –  effort  needed  to  incorporate  the  personality  traits  into  an

agent's execution cycle;

2) Code efficiency – the amount of code needed for similar implementations, less

being better and more being worse and

3) Value add – what kind of added value the architecture brings compared to BDI,

or what it lacks.

The comparison table is shown as Table 2.

Table 2. Architectures comparison.

BDI SRA BOID QDT

Area Software engineering Simulation environments Software engineering Artificial intelligence

Focus Application-oriented Application-oriented Application-oriented Theory-oriented

Criticism Resource bounded Reactive to perceptions Resource bounded No quantitative 
evaluation

Intentions yes no yes no

Rules based no yes no yes

Knowledge yes no yes yes

Desires yes no yes yes

Norms Possible extension no yes yes

Effort for FFM baseline Easier for small scale /
harder for big scale

Equal or potentially 
worse

Not evaluated

Code efficiency baseline Better for small scale /
worse for big scale

Not evaluated Not evaluated

Value add baseline Less, no human-like 
reasoning incorporated

Social norms and person-
alities by means of 
obligations

Not evaluated

2.4 Architecture choice

This chapter provided a quick overview of the most popular agent architecture used in

agent-based simulations  –  the  Belief  Desire  Intention  architecture  framework – and

some of the more important previous attempts to combine it with the personality traits

of FFM. 

Then the focus shifted towards briefly considering possible alternatives that are also

used in agent-based simulations, but have little to no literature on attempts to combine

them with FFM. The brief analysis revealed that none of the considered alternatives

outperformed BDI in the categories most important  for this  work. Perhaps the most
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noteworthy is the finding that Simple Reactive Agents could be a feasible option when

working with a small number of unique agent types. Regardless of that, BDI is still a

very  clear  first  choice  for  combining  a  reasoning  architecture  with  the  models  of

personality traits.
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3 Problem domain analysis – Handling disruptions in airline 

operations control centres

On a high level this work is a continuation of the work by Balašova [1] but focusing on

one sub-domain  and trying  to  elaborate  it  in  a  more  detailed  manner. This  chapter

presents the changes and additions that were necessary to be introduced into the original

models  [1] due  to  both  new  findings  from  the  literature  and   new  insight  and

contributions  by the industry partner. The work by Balašova [1] was in  many ways

found  exceptionally  good  as  a  starting  point  and  much  of  it  could  be  re-used.

Regardless, this paper introduces further improvements which allow to better align with

both the industry partner Jeppesen's descriptions of the problem domain and previous

work describing the AOC workflows [24] and disruption handling scenarios [25]. 

The  viewpoint  framework  originating  in  the  AOM  methodology [8] was  used  for

modelling the problem domain. Table  3 illustrates the different horizontal abstraction

layers and vertical perspectives of the viewpoint framework. 

Table 3. Viewpoint framework.

Viewpoint models Viewpoint aspect

Abstraction layer Interaction Information Behaviour

Conceptual domain 
modelling

Role models and 
organization model

Domain model Goal models

Platform-independent 
computational design

Agent, acquaintance and 
interaction models

Knowledge model Behaviour models

Platform specific design
and implementation

Agent interaction spe-
cifications

UML class 
diagrams

Agent messaging 
diagram

In this thesis are presented all the models of the conceptual domain modelling layer.

From  the  layer  of  platform-independent  computational  design,  only  agent  and

interaction  models  are  presented.  No  models  of  the  platform-specific  design  and

implementation  layer  are  presented.  This  is  because  the  aim is  to  only  analyse  the

problem domain and not to go any further.
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3.1 Conceptual domain modelling layer

3.1.1 Role models and organization model

The  role  models  proposed  by  Balašova [1] were  considered  mostly  satisfying  for

describing the disruption handling sub-domain. One new role was added and another

one was expanded after discussions with industry partner Jeppesen:

1) new role: Duty Manager – as a central governing role of the Operations Control

Centre,  it  is  the  main  airline  stakeholder  in  the  Airline  Operations  Control

Centre;

2) expanded  role:  Operations  Controller  –  Previously  the  role  of  Operations

Controller had the responsibility of monitoring flights and stepping into action in

case  of  disruptions.  Now  the  same  role  is  is  complemented  also  with  the

responsibility of fleet management.

The new responsibility of fleet management by the modelled Operations Controller role

incorporates the scheduling of airline's own aircrafts and making sure that there is an

aircraft available on time for every flight. This is even more important when regular

operations are disrupted and schedule breaking changes are needed.  Sometimes it  is

possible that the disruption at hand cannot be solved by using airline's own fleet. For

instance, if an aircraft needs to be replaced but there are no other aircrafts of the same

airline  available  in  the  airport  affected  by  the  disruption,  the  Operations  Controller

would be the one responsible for finding an external aircraft and initiating ACMI1 wet-

lease negotiations. One could argue that fleet management should be modelled as an

entirely new role, but for the sake of not overly complicating the models in this work, it

was decided to model the roles corresponding to a generic mid-sized airline's integrated

Operations Control Centre of the hub-and-spoke type.

Since the organization model proposed by Balašova [1] was not done  by means of the

AOM methodology, a new organization model was prepared. A sub-organization of the

Operations  Control  Centre  comprising  the  new  and  changed  roles  is  presented  in

Figure 2. The roles in the Operations Control Centre have further relations with their

1 ACMI wet-lease stands for Aircraft Crew Maintenance and Insurance leasing option where the whole
package would come from an external supplier.
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respective  sub-organization  counterparts,  such  as  the  connection  between  MX

Controller  and  Line  Foreman  from the  Maintenance  team.  All  these  organizational

relations are depicted in other models of the Operations Control Centre organization that

can be found in Appendix 1.

3.1.2 Domain model 

The domain model proposed by Balašova [1] did not include the modular knowledge

units necessary to support disruption handling. Therefore, all the necessary roles and

entities were added to the original model to make it compliant with the needs of the

sub-domain.  Additionally, some discouraged and obsolete modelling techniques were

replaced with more standardized notations. The resulting final domain model depicting
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domain entities,  their  connections  to  different  roles and relations  with each other  is

presented in Figure 3.

3.1.3 Goal models

Since the motivational models of an airline by Balašova [1] had a different focus, it was

decided to identify a good point in her models from where to branch out and go in-depth

with describing the sub-domain of disruption handling. In goal models, such a point was

found to be the  Maintain Operational Control goal. From there downwards new goal

models were created. Figure 4 depicts the new and improved version of the  Maintain

Operational  Control  goal  model that  is  more  accurate  in  terms  of  both  disruption

handling and sharing responsibilities within the AOC. The goal  Maintain Operational

Control is on a high level the responsibility of Duty Manager, but the responsibility for
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its sub-goals is delegated to either the Operations Controller or the whole AOC team in

case of disruptions.

In addition, it was identified that the Maintain Operational Control goal as a whole had

to be brought up to a higher level. In Balašova's work [1], the same goal was presented

as a sub-goal of Prepare flight, which, based on both the insight by the industry partner

and literature, is not entirely correct due to the fact that AOC is responsible for the flight

also en-route until the flight has been completed.

Therefore, we also present the modified airline goal model as Figure Error: Reference

source not found depicting the AOC goal of Maintain Operational Control as a direct

sub-goal to Provide air transportation services.

From these two goal models we can observe two quality goals –  Optimize cost and

Minimal impact on operations – which in the disruption scenarios presented later in the

text have a tendency to conflict with eachother.
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The rest of the modified or newly created goal models are presented in Appendix 2.

3.2 Platform-independent computational design

The abstraction layer of platform-independent computational design takes the models of

the conceptual domain modelling layer and proposes based on them a potential design

for the planned socio-technical system, which in the given case is a simulation system.

This sub-chapter is not crucial in terms of problem domain modelling for the purposes

of the current thesis but provides a starting point for the future work planned by the

industry partner Jeppesen. In addition, the interaction diagrams give the reader a better

understanding of the complexity of disruption handling scenarios.

Sterling and Taveter have proposed in their book [8] a merged agent and acquaintance

model to depict different agent types and the interaction pathways between them. The

agent types depicted in Figure 6 were defined based on the roles defined at the stage of

conceptual domain modelling and how the industry partner wanted to group them into

specific agent types that are to be implemented in their future simulations. 
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In addition, the interaction diagrams were drawn for two different disruption scenarios

to further improve the conceptual understanding of the problem domain and prepare for

implementing future simulations by the industry partner. Since the main purpose of the

interaction diagrams drawn was to contribute to the conceptual domain modelling layer,

the lifelines represent roles rather than agents. Interactions for an en-route emergency

disruption are depicted in Figure 7. In this scenario, first the need for immediate landing

needs to be identified. Once the aircraft has been landed and emergency been taken care

of, crew legality needs to be confirmed or a replacement crew assigned if needed before

a new flight plan can be filed and flight can be continued.
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The disruption handling scenario depicted in Figure 7 is not entirely complete. Handling

such diversion situations in many cases means that even if the same crew can continue,

the flight would still be delayed and the next leg scheduled for that aircraft would face a
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disruption of the “aircraft not ready” type. A solution for that disruption could in turn

cause yet another disruption elsewhere. The disruption handling in real life, therefore,

weighs also the impact of the potential  solution on the entire schedule and in many

cases, the only option is to cancel the disrupted flight and/or consider ACMI wet-lease

for some other  flight  so that  the day's  schedule would remain as intact  as possible.

Another, more comprehensive interaction diagram was created that accommodates more

of  the  different  solution  options  and  describes  more  accurately  real-life  disruption

handling. However, because of being more comprehensive, it  is also in a format not

suitable  to  be  presented  in  between  text.  Therefore,  the  reader  can  find  this  more

comprehensive interaction diagram modelling disruption handling in Appendix 3.

3.3 Analysis summary and conclusions

The work by Balašova [1] was thoroughly analysed together with the industry partner

and found to be not entirely correct but also not entirely incorrect. Therefore, it was

decided  to  choose  one  sub-domain  –  the  disruption  handling  –  and  re-model  it  by

incorporating  both  modern  literature  on  AOC workflows  and  the  industry  partner's

renewed expertise in the field. 

The problem domain analysis conducted in Chapter 3 of this thesis results in a more

comprehensive and accurate conceptual representation of the disruption handling sub-

domain.  The  conceptual  understanding  is  complemented  by  the  AOC  agent

acquaintance model and interaction diagrams, which further illustrate the complexity of

AOC workflows. 

To conclude Chapter 3, the problem domain is rather diverse and to be able to provide

qualitative  assessments  on  AOC  workflows,  factors  such  as  the  complexity  of  the

workflows, personalities  of the people involved, and accurate  teamwork descriptions

need to be considered in a  potential  simulation environment.  Although many of the

previous agent-based simulations address either the aspect of personalities, complexity

of workflows, or specialization in teamwork, none of them addresses two or more of

these  aspects  together.  Therefore,  this  thesis  aims  to  propose  a  proof-of-concept

simulation system that could be used to evaluate the impact of personality traits in a
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teamwork situation, where handling disruptions and coping with conflicting goals is of

high significance. Such simulation is described in the next chapter – Chapter 4.
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4 Implementation of the Simulation

This  chapter  describes  the  design  and  implementation  of  the  proof-of-concept

simulation  created  to  study the  impact  of  FFM trait  Agreeableness  in  a  team-work

environment corresponding to the chosen problem domain of airline operations control.

The simulation system is in many ways an elaboration of the work described in [2] with

some additional teamwork aspects considered.

Sub-chapter  4.1  explains  the  connection  between  the  problem domain  described  in

Chapter 3 and the proof-of-concept simulation environment proposed in Chapter 4. A

description of the exact incorporation of the personality traits into the BDI execution

cycle  algorithm  is  presented  in  sub-chapter  4.2.  In  sub-chapter  4.3  the  final

proof-of-concept  simulation  system  is  described  according  to  the  refined  ODD

protocol [10][11]. Finally, in sub-chapter 4.4 the quality goals of the simulation system

are discussed.

4.1 Design considerations originating in the problem domain

From the results  of the problem domain analysis  conducted in Chapter 3, it  became

clear that in most disruption handling scenarios at least three specialized AOC members

play the key roles in the handling of disruptions. The exact members can vary to some

extent depending on the nature of the disruption. The simulation proposed in [2] clearly

fails  to  satisfy the  needs of  the problem domain  described in  Chapter  3  due to  the

specialized teamwork nature of the problem domain. This work intends to propose a

solution that would correspond better to the problem domain by setting a clear division

between the tasks performed by different  agents in the simulation and by providing

means  to  define  how  different  kinds  of  agents  can  specialize  on  specific  tasks.

Additionally,  new  tasks  are  proposed  to  better  evaluate  the  impact  of  the  trait  of

Agreeableness in collaborative teamwork. The following list of new features and tasks

compared to [2] need to be incorporated:
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1) New  ant  agent  types  to  make  the  specialization  possible:  Explorer  ants,

Gatherer ants and Fighter ants;

2) New tasks related to fighting with bugs: Call for help and Help with fight.

3) Specialization  parameter.  A new  parameter  that  determines  how  specialized

different agents are to their type-specific tasks. The lowest value represents no

specialization at all and high values represent higher levels of specialization.

With the above additions to the simulation proposed in [2], the correlation between the

AOC  problem  domain  modelled  in  Chapter  3  and  the  ants'  simulation  has  been

improved. The correlation is illustrated in Table 4.

Table 4. Correlation between problem domain and simulation.

AOC Description Simulation

1) Operations Controller, 
2) Dispatcher and
3) Crew Tracker

Three specialized roles 
participating in achieving of 
both the main goal and its sub-
goal

1) Explorer ant,
2) Food gatherer ant and
3) Fighter ant

Goal: Provide air 
transportaion services

Main goal of the team Gather food

Goal: Handle disruptions Sub-goal under the main goal Fight off aggressive bugs

Quality goal: Minimal 
impact on operations

First quality goal attached to the
sub-goal

Minimal amount of food 
gathered less

Quality goal: Optimize 
cost

A conflicting quality goal 
attached to the main goal 

Minimal number of ants 
deceased

4.2 Requirements coming from the Five Factor Personality Model

Since 1980's there have been numerous attempts to incorporate personality traits into

both artificial intelligence and agent based systems. For that purpose, researchers have

cooperated with scientists studying human behaviour and personalities. The two most

significant models adopted for that purpose by researchers in multi-agent systems and

artificial intelligence are the Five Factor Personality model or FFM for short, and the

Myers-Briggs  Type  Indicator [26] (MBTI)  model.  A  comprehensive  comparison

between the two has already been accomplished with a conclusion that the FFM is more
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suitable  for  agent-based simulations [27].  Therefore,  this  thesis  only  focuses  on  the

FFM.

The  FFM  consists  of  five  high-level  personality  traits  which  according  to [28] are

described as follows: 

1) Openness to experience.  Openness reflects  the person's  intellectual  curiosity,

creativity  and a  preference  for  novelty  and variety. A person with  very low

openness is considered dogmatic and close-minded;

2) Conscientiousness  shows  the  person's  tendency  towards  being  organized,

having  high  self-discipline,  acting  dutifully,  aiming  for  achievement,  and

preference  for  planned  behaviour.  Low conscientiousness  is  associated  with

spontaneity, but can also reflect the lack of reliability;

3) Extraversion reflects how outgoing and assertive the person is when it comes to

social activities. Low extraversion is a feature descibing more self-absorbed and

closed persons;

4) Agreeableness  shows  the  person's  tendency  to  be  cooperative  and

compassionate. Low agreeableness will often lead to a very analytic personality

that likes to argue and often ends up in disagreement with others;

5) Neuroticism describes the tendency to experience unpleasant emotions. Persons

with  high  neuroticism  are  more  likely  to  experience  anger,  anxiety  and

depression,  whereas  low  neuroticism  provides  more  emotional  stability  and

impulse control.

Since this work in many ways continues the work by Ahrndt et. al [2], but with more

focus at reflecting team-work and introducing conflicting goals, the personality traits

have  been incorporated  into  the  BDI execution  cycle  described in  chapter  2  in  the

following manner similar to [2]:

1) Perception is not influenced by personality traits;
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2) Belief revision is influenced by Openness and Agreeableness – the more open

and agreeable the agent is, the more likely it is to allow for different perceptions

to influence its beliefs;

3) Option  generation  is  influenced  by  Conscientiousness,  Agreeableness  and

Neuroticism. The more conscientious the agent is, the more likely it is to include

its previous intentions  as options. The more agreeable the agent is,  the more

likely it is to accept intentions from other agents. The more neurotic the agent is,

the more likely it is to generate irrational options;

4) Filtering  process  is  influenced  by  all  five  personality  traits.  The  agent  will

decide between otherwise equal options depending on the personality profile;

5) Actuation or execution phase is influenced by Openness, Conscientiousness and

Extraversion traits.

Figure 8 represents  the  abstract  architecture  of  the  designed  BDI  agent.  The  figure

depicts  the  classical  components  of  the  BDI  architecture,  communications  between

them and the incorporation of personality traits into the components.
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4.3 Design overview

The detailed  design of  the  implemented  agent-based simulation  system is  presented

using the  ODD protocol.  The different  parts  of  the  ODD protocol  are  presented  as

sub-chapters 4.3.1 to 4.3.7.

4.3.1 Purpose

The  purpose  of  the  implemented  agent-based  simulation  of  personality  traits  is  to

understand how personality traits influence the performance of a multi-agent team of

specialized  individuals  with  varying levels  of  task distribution.  In  the  centre  of  the

simulation map resides an ant nest with food sources and hostile bugs. There are three

different types of ants specialized for different tasks. The main goal of the ants is to

gather  as much food as possible  within a given time,  at  the same time keeping the

mortality rate of the population as low as possible.

4.3.2 Entities, state variables and scales

The simulation model comprises of the following four types of entities: 1) ant nest; 2)

food source;  3) ant  agent;  4) bug agent.  There is  one instance of the ant  nest,  four

instances of the food source, configurable number of instances of ants and configurable

number of instances of bugs. 

The simulation model has four hierarchical levels:  environment, map, ant population

and individual. At the environment level are defined the values for food source refill rate

and age to die for all agents. The map level is characterised by the size and location of

food sources, the ant nest, and the number of bug spawns. At the level of ant population

are determined the population size, levels of specialization, locations for known food

sources, amount of food gathered, values of personality traits for all three types of ant

agents,  and initial  energy level  for ant  agents.  At  the level  of  individual  agents are

determined variables for agent state, current amount of energy, amount of food carried,

damage inflicted to opponent in one attack action, and location of the agent. All the

variables  and  their  default  values  are  presented  in  Table 5. The  table  includes  an

additional column to show which variables are configurable from the user interface of

the simulation and which variables are hard-coded into the simulation.
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Note  that  in  Table 5 the  default  values  of  personality  traits  and  the  levels  of

specialization are presented as probabilities. Other default values presented in Table 5

are either scalar values or lists of scalar values.

Table 5. Overview of simulation variables and default values.

Variable Default value Configurable

Environment level

Food-refill-rate(ticks) 1000 yes

Age-to-die(ticks) 1000 yes

Map level

Map-size-x(pixels) 700 no

Map-size-y(pixels) 700 no

Food*-x {-(0.8*Map-size-x); 
0.8*Map-size-x}

no

Food*-y {-(0.8*Map-size-y); 
0.8*Map-size-y}

no

Nest-x 0 no

Nest-y 0 no

Number-bug-spawns 3 yes

Ant population level

Ant-population-size 99 yes

Level-specialization 0.0 yes

Known-food-sources {} no

Amount-food-gathered 0 no

Personality-explorer {0.5; 0.5; 0.5; 0.5; 0.5} yes

Personality-gatherer {0.5; 0.5; 0.5; 0.5; 0.5} yes

Personality-fighter {0.5; 0.5; 0.5; 0.5; 0.5} yes

Initial-ant-energy 1000 yes

Individual level

Agent-state null no

Amount-energy 500 yes

Amount-food 0 no

Attack-damage-inflicted 100 yes

Location-x 0 no

Location-y 0 no

The screenshot in Figure 9 shows the layout of the map with default parameters being

used.  The nest is  situated  in the centre  of the map at  coordinates  {0;  0}.  The food

sources  are  located  at  the  corners  of  the  map  and three  bugs  are  chasing  the  ants

between the nest and food sources. All the ants started their exploration journeys from

the centre of the map. All the ants visually look the same, but in fact one third of them

belong to the explorer type, which can travel at double speed, another third belong to
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the gatherer type, which can carry double amount of food, and the last third belong to

fighter type which can inflict double damage when fighting bugs.

4.3.3 Process overview and scheduling

The model proceeds in discreet time which is measured in ticks. On every tick the ant

agents run the BDI execution cycle that is an improved implementation of algorithm 1

described in [2]. 

The belief revision depends on previous beliefs, new perceptions, and on the personality

traits  of  Agreeableness  and  Openness.  The  personality  traits  are  implemented  as

probabilities. Agreeableness is important for signals obtained from other agents, such as

a cry for help or reporting the location of a food source. The higher agreeableness is, the

more likely the agent is to accept perception as a belief. Openness plays an important

role for perceptions that conflict with the agent's previous beliefs. For instance, if the
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agent believed the food source to exist at some location and then it senses from the

environment that the food source is no longer at that location, the less open the agent is,

the more likely it is too keep looking for the food source around the location it used to

exist.  At  the  same  time,  an  agent  with  the  1.0  probability  for  openness  would

immediately accept this new perception as a belief. 

Once  the  beliefs  have  been  revised,  options  to  accomplish  different  desires  are

generated based on the new beliefs, previous intentions, and personality traits. Here the

traits  of  Conscientiousness,  Agreeableness  and  Neuroticism  are  considered.  For

instance, the more conscientious the agent is, the more likely it is to keep its previous

intention as one of the options. Agreeableness is an important factor for options that

involve helping other agents. For example, if another ant is under attack and has asked

for help, – the more agreeable the responding agent is, the more likely it is to generate

an option to go and help the ant in trouble. Neuroticism plays a key role in stressful

situations. For instance, if the agent is under attack, the more neurotic ant will generate

an option to run away to avoid bad emotions arising from the fight, whereas a less

neurotic ant will generate different options for fighting.

Once the options have been generated, one of them is chosen by means of the filtering

process. This is achieved by calculating the scores of all possible options by aggregating

the impacts of positive and negative personality traits. Additionally, the priorities of the

desires for the particular agent type are used as a component in the scoring of options.

The highest-scored option will be chosen as an intention for the agent.

Once the intention has been selected, the action to fulfil it will be scheduled for the

current  execution  cycle.  For  instance,  if  an  ant  under  attack  decides  to  fight  then

depending on the level of its extraversion, it might also consider not just fight on the

current execution cycle alone against the bug, but also call for help from other ants. To

do that, it will add two actions to its plan – Cry-for-help and Fight-bug. We note here

that all  the agents in the simulation can plan for an unlimited number of messaging

actions for one execution cycle, but only for one movement action or fighting action.

After the planning has been done, the agent enters into execution phase and carries out

all the actions it had planned for that execution cycle.
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Bug agents, on the other hand, are much more simple and run around the map randomly,

but once an ant is close to them, they will start chasing it, and will try to engage in a

fight with the ant. 

4.3.4 Design concepts

Although the ODD protocol defines 11 concepts, here we will present only the ones

relevant for this simulation system. For instance, the concepts of learning and prediction

are neglected as the agents in this simulation do not learn or predict future events.

Basic  principles: The  main  observable  in  this  simulation  is  the  ant  population

representing a team of specialized individuals,  which belong to three different agent

types, each representing a team member of a specific type. All ant agents have been

implemented using the BDI architecture,  into which the Five Factor Personality traits'

model was incorporated as is described in Chapter 4.1.

Emergence: The dynamics of the ant population emerge from the behaviours of agents

belonging to the three sub-types that behave as three different swarm, but where the

execution cycle and behaviour of each individual agent is entirely defined by its desires,

personality, and perception of the environment.

Objectives:  Agents of all three different types have different hierarchies of objectives,

which in the BDI architecture are termed as differently prioritised desires.

Table 6 lists  objectives  for  all  ant  types  and  attaches  priorities  to  each  objective.

Priorities are provided as values ranging from 1 to 4; 1 being the highest and 4 being the

lowest.

Table 6. Objectives priorities by ant agent type.

Explorer type Gatherer type Fighter type

Find food sources 1 3 4

Gather food 3 1 3

Stay alive 2 2 2

Fight bugs 4 4 1

40



Sensing: Agents can sense their location on the map, possible threats or victims in the

near proximity, which is hard-coded as the radius of 10 pixels. In addition to sensing the

environment,  the ant agents can sense whether there is an ongoing fight in the near

proximity.

Interaction:  Three interactions occur during the simulation:  1) fighting between ants

and bugs; 2) distress call from one ant to another; 3) sharing of food source locations

between all the ants.

Collectives:  The  ant  population  in  general  acts  like  a  swarm  with  no  collective

objectives. But at the same time, they show up clear signs of teamwork efforts and, as

has been indicated in Table 4, they “unconsciously” strive towards the same common

high-level goals – collect as much food as possible and keep the mortality rate low.

Therefore, ants should be considered as one collective.  Bug population, on the other

hand,  does  not  strive  towards  achieving  any higher-level  goals  other  than  what  the

individual  bugs  do  and,  therefore,  the  bugs  should  not  be  considered  as  forming  a

collective.

Observation: Throughout the simulation the following metrics are monitored: 

1) First food – time required to gather food from the first food source;

2) Energy – total amount of food gathered;

3) Starved – number of ants deceased because of starvation;

4) Killed – number of ants died in fights;

5) No bugs – time span over which all bugs on the map have been killed.

4.3.5 Initialization

Before the simulation starts,  the user can change the values for all  the configurable

variables listed in Table 5. Once all the variables have been set, the environment will be

generated  by pressing the  Setup button.  After  the  initial  setup a  rectangular  map is

generated with an ant nest in the middle and four food sources near the corners. All the

ants will be placed in the centre of the nest and bugs evenly around the ant nest. All the
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values of the observation metrics will be set to initial values and a simulation can be

started by pressing the Go button.

4.3.6 Input data

Although  it  is  possible  to  read  input  data  from  external  sources  into  NetLogo

simulations,  this simulation does not include the feature of reading in external input

data.  Instead,  all  the  significant  input  values  should  be  set  up  manually  before

initializing the simulation.

4.3.7 Sub-models

The  algorithmic  sub-models  of  this  simulation  have  been  elaborated  from the  ones

defined in  [2].

In the belief revision phase, perceptions are categorised into the following two types:

1) conflicting with previous beliefs and 2) non-conflicting. 

The decision to accept a conflicting perception as belief is made according to following

logic:

if randomNumber(between 0 and 1) greaterThan Openness 

then discard(perception) else acceptBelief(perception)

Similarly, a non-conflicting perception will be discarded or accepted according to the

following logic:

if randomNumber(between 0 and 1) greaterThan Agreeableness

then discard(perception) else acceptBelief(perception)

Personality  traits  are  incorporated  into  the  phase of  options  generation  in  the  same

manner. 

Slight differences are observable in the filtering phase where the scoring is performed

according to following scheme:

1) Generate random values from 0.0 to 1.0 for all personality traits;
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2) Calculate positive scores for all personality traits by subtracting the personality

trait value from the corresponding random value generated in 1);

3) For every option, add up the calculated positive scores of significant personality

traits  and  divide  the  result  with  the  number  of  participating  significant

personality  traits.  The  result  is  the  scoring  component  based  on  personality

traits;

4) For every option, transpose the corresponding objective priority to 0.0-1.0 scale

by  subtracting  the  objective  priority  from  the  maximum  priority  value  and

dividing the result with the number of all unique priority values;

5) For every transposed objective priority factor in the level of specialisation by

multiplying the transposed objective priority with the level of specialisation.

For example, the scoring of the option to run from a fight is described by the following

pseudo code:

set devOpenness = Openness - randomNumber(between 0 and 1)

…

set devNeuroticism = Neuroticism - randomNumber(between 0 and 1)

set score-run-from-fight = (- devOpenness + devConsicentiousness 

    + devExtraversion + devNeuroticism) / 4 

    + ((4 – prio-fight-bug) / 4) * level-specialization 

Note  that  in  the  pseudo  code  above,  the  divisions  by  4  could  be  mathematically

grouped,  but  are  kept  for  the  sake  of  uniformity.  Personality  trait  Openness  has  a

negative  impact  on the option to  run,  therefore,  its  positive  score is  negated.  Other

significant  personality  traits  for  this  option  are  Conscientiousness,  Extraversion  and

Neuroticism, which all have a positive impact on the option, thus, positive personality

trait scores are used in the aggregation. The trait of Agreeableness has no impact on the

option to run from fight, hence, it does not participate in the scoring. The division by the

number  of  participating  significant  personality  traits  is  necessary  to  ensure  that  the

scoring component value for all options is in same scale regardless of the number of

personality traits contributing to the result.  The transposing of agent desire priorities

from 1 to 4 scale to 0 to 1 scale is necessary to ensure that neither the desire component

or the personality traits component fully overrides the other component value.
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After all options are scored in a similar manner, the option with highest score is chosen. 

4.4 Simulation quality goals

The  quality  aspects  of  the  simulation  are  as  follows  presented  in  the  order  of

importance: 1) accuracy of the personality traits implementation and 2) accuracy of the

implementation of specialization level. 

To evaluate the accuracy of the personality traits' implementation, the experiments put

forward  in [2] will  be  repeated.  However,  due  to  new  features  with  respect  to

engagement of ants in fighting, differences are to be expected in concerning the traits of

extroversion and agreeableness.

To evaluate the accuracy of the implementation of specialization level, the following

three metrics  are  being monitored:  1) First  food,  2) Ants  killed  and  3) Time without

bugs.

By increasing the level of specialization, it is expected that: a) the ants will find food

sources faster and b) ants of the fighter type will be more engaged in fighting.
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5 Simulation results

This chapter presents the results from the simulation experiments, evaluates how well

the simulation quality goals were achieved and, highlights the findings with respect to

the personality trait of Agreeableness.

5.1 Results

The  simulation  was  executed  for  15  different  personality  profiles  at  three  different

specialization levels, resulting in 45 different configurations. For each configuration, 10

repeated simulation runs were executed. Based on the results of all those 450 simulation

runs averages were calculated along with standard deviations.

The following personality profiles were chosen:

1) the 9 significant profiles identified in [2];

2) Operations  Control  Centre  (OCC  for  short)  and  norm  population  average

profiles from [29] and

3) four OCC profiles with the value of the trait of Agreeableness manipulated.

Table 7 presents the exact personality traits values for OCC, norm and the manipulated

OCC profiles.

Table 7. Initial profiles from [29] and the profiles with manipulated agreeableness

Profile O C E A N

Norm 0.5 0.5 0.5 0.6 0.4

OCC 0.5 0.6 0.5 0.5 0.3

OCC+A 0.5 0.6 0.5 0.6 0.3

OCC++A 0.5 0.6 0.5 1.0 0.3

OCC-A 0.5 0.6 0.5 0.4 0.3

OCC--A 0.5 0.6 0.5 0.0 0.3
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For specialization  parameter  were chosen three  values  –  0,  0.5  and 1 – zero  value

causing the ants to have no effective specialization and behave as if they all were of the

same type; one causing the ants to have maximum specialization possible as described

in  chapter  4.3.2.  This  allows  the  later  assessment  of  the  quality  goal  defined  in

chapter 4.4 regarding the implementation of the specialization level.

Table 8 presents  the  average  values  for  all  the  used  metrics  over  all  simulation

executions. The full summary table with standard deviations is available in Appendix 4.

Table 8. Simulation results extract.

5.2 Evaluation of the implementation

In sub-chapter 4.4 were defined two quality goals for the simulation. For the first goal –

accuracy of personality traits – the results shown in upper part of Table 8, in rows with

OCEAN values from (0, 0, 0, 0, 0) to (1, 1, 1, 1, 1), and with Specialization value equal

to zero were compared to the results achieved in [2]. Please note that in [2] the number

of  ants  killed  in  fights  was not  measured  separately  but  was rather  included in the

number of ants starved. On the other hand, in this work different food sources were not

measured separately as they were in [2]. Therefore, the number of ants starved in [2]

should be compared with the numbers in the column Total died of Table 8. Similarly, the

column  Energy  of Table 8 needs to  be compared with the sum of all  different  food

sources measured in [2]. Taking these considerations into account, the results obtained

by us match well with the ones reported in [2], with only minor differences which can
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OCEAN Energy First food Starved Killed Total died No bugs
Specialization 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
(0, 0, 0, 0, 0) 748266 617511 424501 85 56 47 65 70 92 541 552 560 606 623 652 899 1217 1389
(0, 0, 0, 1, 0) 612070 583508 395053 107 89 55 41 52 79 32 34 38 73 87 117 4502 4604 4635
(0, 1, 0, 0, 1) 867167 720375 509583 90 57 47 35 40 55 256 377 507 290 418 561 2 2 2
(0, 1, 1, 0, 1) 839667 656625 450500 90 57 46 31 43 68 281 379 443 312 422 510 370 434 199

(0, 1, 1, 1, 0) 601500 600875 419417 105 72 60 50 60 89 158 161 160 209 221 249 3978 3843 3845
(1, 0, 0, 0, 0) 672901 586269 399855 107 60 50 18 20 40 326 298 298 344 318 338 2614 1810 2180
(1, 0, 1, 0, 0) 692116 594649 397396 95 61 49 18 32 41 217 221 217 235 253 258 2909 2810 2778
(.5, .5, .5, .5, .5) 669659 596442 476277 91 73 50 35 44 50 49 45 49 84 89 99 4148 4289 4140
(1, 1, 1, 1, 1) 651654 603263 388436 95 68 70 42 41 77 23 27 32 65 68 109 4575 4540 4594
OCC 632413 619262 466309 99 79 51 46 44 67 51 53 51 97 97 118 4361 4270 4291
Norm 585771 604101 457851 104 66 60 49 37 55 37 48 44 86 84 100 4002 4491 4389
OCC++A 567828 544456 359441 103 74 59 38 50 81 41 40 43 79 90 124 4531 4495 4549
OCC—A 782681 714458 434507 90 55 48 43 42 53 304 307 307 346 350 360 2033 1763 2388
OCC+A 616054 634878 475711 99 66 50 47 41 73 49 49 45 96 91 118 4351 4419 4490
OCC-A 679930 626033 475897 96 64 52 39 46 56 69 73 67 108 119 123 3712 3497 4045

Average 681312 620180 435382 97 67 53 40 44 65 162 178 191 202 222 256 3132 3099 3194



be explained by deviation in simulation executions. Therefore, it is fair to conclude, that

the first quality goal defined in sub-chapter 4.4 was achieved successfully.

For evaluating the specialization aspect, the whole of Table 8 needs to be considered

and comparisons should be made between the same personality profiles in simulations

with  different  specialization  levels.  It  is  easy  to  see  from  Table 8 that  as  the

specialization value was increased, the First food value has decreased regardless of the

personality profile, and the Killed value varies depending on the personality profile but

has increased on average. The changes observed in First food and Killed values confirm

that also the second quality goal defined in sub-chapter 4.4 was achieved.

Considering all the above, the evaluation can be concluded as successful and proving

that the simulation has achieved all the quality goals defined in sub-chapter 4.4.

5.3 Findings and Interpretation of the results

According to the fourth goal of this thesis described in sub-chapter 1.3, this research

explores the impact of the traits of agreeableness and helpfulness on problem-solving

activities from a teamwork perspective. The impact of the agreeableness trait and its

sub-trait of helpfulness were measured in the simulation configurations shown in the

lower part of Table 8, in the rows starting with OCC. The exact personality traits values

for all those profiles were given in Table 7. 

From the data recorded for those five profiles at three different specialization levels,

clear indications about the impact of the trait of agreeableness on the quality indicators

defined in Table 4 were observed. The impact is illustrated in Table 9, where the OCC

profile  was  considered  as  a  comparison  baseline  with  the  other  four  profiles.  The

Energy  and  Total  died  values  in  Table 9 are  presented  as  differences  from baseline

values in percentages. In addition, another calculated column has been added to Table 9

to show the ratio between the increase in the Energy gain and the increase in the Total

died.  This  ratio  expresses  how well  the  team  managed  to  handle  conflicting  goals

compared to the baseline OCC profile team.

47



Table 9. The impact of the trait of agreeableness on the OCC personality profile.

There is only one personality profile for which decisive conclusions can be made based

on  the  simulation  results  obtained  until  now:  the  OCC+A  (minimally  increased

Agreeableness  trait)  profile.  Although the  OCC+A profile  was  outperformed by the

OCC base profile where there was no specialization among the ant agents (section with

Specialization 0 in Table 9), we can observe a significant performance increase for the

same profile in a more specialized setup where different types of ants behave more

according  to  their  type-specific  expectations.  For  instance,  in  the  runs  with  the

maximum specialization (section with Specialization 1 in Table 9), we can witness a

32.3% increase compared to the OCC base profile in the total energy gained and a 4.9%

decrease in the number of ants deceased. This in total  means a 39% increase in the

overall performance of the team.

In the context of the AOC problem domain modelled in Chapter 3, we saw a very clear

distinction between different roles, their responsibilities and conflicting quality goals.

This  corresponds  to  the  scenario  with  maximum  specialization  in  the  simulation.

Therefore,  we  can  conclude  that  also  for  the  AOC,  similar  small  changes  in  the
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Personality Energy Total died Gain/cost ratio

Specialization 0

OCC baseline baseline

OCC++A -10.2% -18.6% 1.10

OCC+A 8.5% 22.0% 0.89

OCC-A 10.4% 12.8% 0.98

OCC—A 15.1% 219.7% 0.36

Specialization 0.5

OCC baseline baseline

OCC++A -12.1% -7.2% 0.95

OCC+A 16.6% 0.7% 1.16

OCC-A -1.4% 30.9% 0.75

OCC—A 14.1% 194.7% 0.39

Specialization 1

OCC baseline baseline

OCC++A -22.9% 4.8% 0.74

OCC+A 32.3% -4.9% 1.39

OCC-A 0.0% 4.2% 0.96

OCC—A -8.7% 193.2% 0.31



Agreeableness trait of the personality profile can improve the overall performance of the

team and should be considered when hiring new staff. 
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6 Conclusions

The  first  goal  of  this  thesis  was  to  obtain  an  overview  of  different  agent-based

representations of the FFM personality model and to choose one as the foundation for

the rest of this work. First, the widely adopted architecture in the agent-community –

BDI – was investigated. Thereafter, three alternatives were considered to make sure that

nothing  more  suitable  has  emerged.  Altogether,  four  alternative  architectures  were

compared  and  it  was  concluded  that  none  of  the  three  alternatives  had  significant

benefits compared to the well-adopted BDI architecture.

The second goal of this work was to further elaborate the problem domain of airlines

modelled in the previous work [1] by means of the Agent-Oriented Modelling (AOM)

methodology [8]. For that purpose, the models created by Balašova [1] were first further

validated and enhanced. Following, the sub-domain of disruption handling in AOC was

chosen for a more comprehensive analysis and modelling. The problem domain analysis

provided the work with further details on what kind of requirements and quality goals

the  new  simulation  had  to  satisfy.  The  first  finding  was  that  the  simulation  of

personality  traits  had  to  be  consistent  with  that  described  in [2].  Secondly,  the

simulation proposed in [2] had to be complemented with the features that were better

aligned with the AOC problem domain.

Based on the previous work [1][2] and on the problem domain analysis carried out in

the context of this thesis, an agent-based simulation system of an organisation with roles

performed  by agents  having different  personality  traits  was  designed  and  described

according to the ODD protocol.

The final goal was to create a proof-of-concept implementation of the newly designed

simulation system on the agent-based simulation environment NetLogo [13] to analyse

the impact  of the psychological  traits  of agreeableness and helpfulness on problem-

solving  activities  from  a  teamwork  perspective.  The  simulation  system  was
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implemented, evaluated and applied for studying the impact of the trait of agreeableness

using the average personality profile of the airline Operations Control Centre [29].

Simulation executions carried out with the created simulation system revealed that the

trait  of  agreeableness  has  noticeable  impact  on  the  performance  of  the  agents  in  a

teamwork environment. This outcome was illustrated by calculating a gain-cost ratio for

all the profiles in simulations with different levels of specialization. The ratio showed

that the more specialized the team members were, the more benefit a small increase in

Agreeableness provided. In the specialized to the highest degree environment, which

best corresponds to the modelled AOC problem domain, we witnessed a 39% increase

in the overall team performance.

The most important directions of the future work are as follows:

1. Using  the  created  simulation  system  for  a  greater  number  of  simulation

executions  with  more  variations  in  the  values  of  configurable  parameters

resulting in a much bigger dataset to analyse;

2. Creating a problem-domain specific simulation that would precisely model and

simulate  the  roles  and  workflows  of  airline  Operations  Control  Centres  and

verify if the improvement possibilities identified in this work also remain valid

in that simulation environment.

The first direction for future work would involve more theoretical research work with

the  aim to  study  the  trait  of  agreeableness  more  deeply, attempting  to  find  all  the

correlations  and  patterns  on  how  the  trait  of  agreeableness  impacts  the  team

performance.

The second direction for future work would involve more of socio-technical  system

analysis with the attention mostly focused on creating a simulation system that would

accurately reflect the exact working environment of an actual airline Operations Control

Centre.

51



References

[1] Balašova, J. (2015). Agent Oriented Modelling and Simulation of Airline 
Workflows. Master’s Thesis. Tallinn, Estonia: Tallinn University of Technology.

[2] Ahrndt, S., Fähndrich, J., Albayrak, S. (2015). Modelling of Personality in Agents:
From Psychology to Implementation. In: E. Bordini & Y. Weiss (Eds.), 
Proceedings of the Fourth International Workshop on Human-Agent Interaction 
Design and Models (HAIDM 2015), Istanbul, Turkey, 4 May, http://www.smart-
society-project.eu/publications/proceedings/haidm15/, last accessed on 16 January
2017, 1-16. 

[3] Durupinar, F., Allbeck, J., Pelechano, N., Badler, N. (2008). Creating Crowd 
Variation with FFM Personality Model (Short Paper). In: Padgham, Parkes, 
Müller and Parsons (Eds.), Proceedings of 7th International Conference on 
Autonomous Agents and Multiagent Systems (AAMAS 2008), Estoril, Portugal, 
12-16 May, last accessed on 14 January 2017, 1217-1220.

[4] About Jeppesen. [WWW] http://ww1.jeppesen.com/company/about/what-we-
do.jsp (10.01.2016). 

[5] Von Alan, R. H., March, S. T., Park, J., & Ram, S. (2004). Design science in 
information systems research. MIS quarterly, 28(1), 75-105.

[6] Axelrod, R. (2006). Agent-based modeling as a bridge between disciplines. In: L. 
Tesfatsion and K. L. Judd (Eds.), Handbook of Computational Economics 2. 
Amsterdam, The Netherlands: North Holland, 1565–1584.

[7] Borrill, P. L. & Tesfatsion, L. (2011). Agent-based Modeling: The Right 
Mathematics for the Social Sciences? In: J. B. Davis and D. W. Hands (Eds.), The 
Elgar Companion to Recent Economic Methodology. Cheltenham Glos, UK, and 
Northampton, MA: Edward Elgar Publishing, 228-258.

[8] Sterling, L., Taveter, K. (2009). The Art of Agent-Oriented Modeling. Cambridge, 
MA, and London, England: MIT Press. 

[9] Gilbert, N. & Troitzsch, K. G. (2005). Simulation for the Social Scientist. 2nd Ed. 
Berkshire, UK: McGraw-Hill International, Open University Press. 

[10] Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., ... & 
DeAngelis, D. L.(2006). A standard protocol for describing individual-based and 
agent-based models. Ecologi-cal modelling, 198(1), 115-126.

52

http://ww1.jeppesen.com/company/about/what-we-do.jsp
http://ww1.jeppesen.com/company/about/what-we-do.jsp
http://www.smart-society-project.eu/publications/proceedings/haidm15/
http://www.smart-society-project.eu/publications/proceedings/haidm15/


[11] Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J. & Railsback, S. 
F. (2010). The ODD protocol: a review and first update. Ecological modelling, 
221(23), 2760-2768.

[12] Taveter, K., Du, H., & Huhns, M. N. (2012). Engineering societal information 
systems by agent-oriented modeling. Journal of Ambient Intelligence and Smart 
Environments, 4(3), 227-252.

[13] Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/, last accessed 
on 22 November 2016. Evanston, IL: Center for Connected Learning and 
Computer-Based Modeling, Northwestern University.

[14] Rao, A. S., Georgeff, M., P. (1991). Modeling Rational Agents within a BDI-
Architecture. In: Proceedings of the 2nd International Conference on Principles of
Knowledge Representation and Reasoning (KR&R-91), San Mateo, USA, April 
1991, 473-484

[15] Wooldridge, M. (2000). Reasoning about Rational Agents. Intelligent Robotics 
and Autonomous Agents, The MIT Press.

[16] Zoumpoulaki A, Avradinis N, Vosinakis S. (2010). Multi-agent simulation 
framework for emergency evacuations incorporating personality and emotions. In 
Artificial Intelligence: Theories, Models and Applications, Lecture Notes in 
Computer Science, vol. 6040. Springer: Berlin Heidelberg; 423–428.

[17] Bratman, M. E. (1987). Intentions, Plans, and Practical Reason. Harvard 
University Press, Cambridge, MA

[18] Phung, T., Winkoff, M., Padgham, L. (2005). Learning Within the BDI 
Framework: An Empirical Analysis. In: Proceedings of the 9th international 
conference on knowledge-based intelligent information and engineering systems 
(KES 2005), Melbourne, Australia, September 14-16. Springer: Berlin Heidelberg,
282–288

[19] Kinny D, Georgeff M, Rao A (1996) A methodology and modelling technique for 
systems of bdi agents. In: Agents breaking away, Springer, pp 56–71

[20] Matthias Scheutz and Paul Schermerhorn. Many is more: The utility of simple 
reactive agents with predictive mechanisms in multiagent object collection tasks. 
In: Web Intelligence and Agent Systems, 3(2), 2005.

[21] Jan Broersen, Mehdi Dastani, Joris Hulstijn, Zisheng Huang, Leendert van der 
Torre (2001). The BOID Architecture - Conflicts Between Beliefs, Obligations, 
Intentions and Desires. In: AGENTS’01, Montreal, Canada, May 28-June 1. ACM

[22] Pearl, J. (1993). From conditional ought to qualitative decision theory. In 
Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence 
(UAI’93), John Wiley and Sons, 12-20

53

http://ccl.northwestern.edu/netlogo/


[23] Dastani, M., Hulstijn, J. & van der Torre, L. (2001). BDI and QDT: a comparison 
based on classical decision theory. In: Game Theoretic and Decision Theoretic 
Agents: Papers from the AAAI Spring Symposium (GTDT'01). 16-26, AAAI 
Press.

[24] Machado, N. G. (2014). Impact of the organizational structure on operations 
management: the airline operations control centre case study. Master's thesis. 
Porto, Portugal: University of Porto.

[25] Castro, A. M. (2013). A Distributed Approach to Integrated and Dynamic 
Disruption Management in Airline Operations Control. PhD Thesis. Porto, 
Portugal: University of Porto.

[26] Myers, I.B., Byers, P.B. (1995). Gifts Differing: Understanding Personality Type. 
Nicholas Brealey Publishing, 2 edn.

[27] Ahrndt, S., Aria, A., Fahndrich, J., Albayrak, S. (2014). Ants in the FFM: 
Modulating agents with personality for planning with humans. In: Bulling, N. 
(ed.) Multi-Agent Systems (EUMAS 2014), pp. 1–16. Lecture Notes in Artificial 
Intelligence, Springer (December 2014)

[28] McCrea, R.R., John, O.P. (1992). An introduction to the five-factor model and its 
applications. Journal of Personality 60(2), pp 175–215

[29] Peters, T. E. (2015). Personality Traits Modeling of Operations Control Center 
(OCC) Personnel and Vocational Implications. Master’s Thesis. Berlin, Germany: 
Technische Universität Berlin.

54



Appendix 1 – AOC Organization Sub-models
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Figure 10. AOC Ground Operations Organization sub-model.

Figure 11. AOC Passenger & Revenue Organization sub-model.
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Figure 12. AOC Maintenance Organization sub-model.



Appendix 2 – AOC Goal models
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Figure 13. AOC Goal model: Handle schedule.

Figure 14. AOC Goal model: Apply decision.

Figure 15. AOC Goal model: Accomodate fleet changes.
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Figure 16. AOC Goal model: Accomodate PAX changes.

Figure 17. AOC Goal model: Adjust crew schedule.

Figure 18. AOC Goal model: Adjust MX schedule.
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Figure 19. AOC Goal model: Change flight plan.



Appendix 3 – Interaction diagrams 
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Figure 20. Interaction diagram - Pre-flight engine malfunction disruption.
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Figure 21. Interaction diagram - No own fleet solutions available.



Appendix 4 – Simulation results
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Table 10. Simulation results full table.


