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Introduction

The networks science approach for financial and economic systems has potential to go
further on the frontiers of research. In recent years, a part of the main focus of research has
tilted towards the discovery and understanding of the underlying financial, social and
economic systems’ structures through the use of the tools of complex networks science.
In this context, the network approach has two sources of origin: one source originates from
economics, finance and sociology while the second source originates from computer science,
physics, complexity and mathematics. The convergence point of both sources of origin
attempts to combine economy and complex systems studies and this approach can be
translated into a graph representation of economic systems in order to study how
interactions among the components of the graph occur whatsoever the nature of the
relations between the components is.

Nowadays, complex networks are a central concept where an intuitive path that fuses
economy with complex systems studies emerges. Complex networks can be biological,
technological, economic, social, and cultural, among other types. The physical approach has
become increasingly important during recent years regarding complex networks structures
studies.

The field of complex networks is developing at a fast pace and has already made significant
progress towards the design of its own framework with the purpose of unravelling the
organizing principles that govern complex networks and their evolution. Particularly, the
structures and dynamics of complex networks have attracted considerable attention from
the research community in recent years.



Motivation and contribution

During the last decade, important efforts have been made towards two things:
1) the improvement of our understanding of the topological structures underlying complex
networks and 2) the unveiling of large-scale characteristics which belong to such systems.
Particularly those efforts have been focused towards theoretic properties of networks and
generic models that are able to represent systems statistically. However, with the help of the
latest technological advances, increasing data sets of unstudied systems are emerging and
there is a generic need to study newer and real complex networks which will nurture new
model developments in the future and help in the construction of the theoretical framework
of complex networks theory.

The neologism econophysics was first coined by H. Eugene Stanley in a Statphys
conference in 1995 held in Kolkata, India. Mantegna and Stanley (2000) defined econophysics
as a multidisciplinary field that denotes the activities of physicists who work on economic
problems in order to test a variety of new conceptual approaches derived from physical
sciences. Much has been studied and developed in econophysical studies since then. Mainly,
those studies originated from models of statistical mechanics. Similarly, problems related
with distribution of income, wealth and economic returns in financial markets have been
addressed in research papers, and mostly these topics are related with the insufficiency to
explain non-Gaussian distributions and scaling properties which are empirically detected by
traditional economic theoretic approaches. Some of the most relevant outcomes of the
research accomplished in the area of econophysics are related to: 1) The detection and
explanation of power-law tails observed in the distributions of different types of financial
data, 2) the existence of certain underlying universalities in the behaviour of individual
market agents and 3) the detection of similarities between financial time series and natural
phenomena.

Network science is an active interdisciplinary field of research that originates from branch
mathematics: graph theory, extended into different directions including towards economics,
statistical mechanics, computer science, neuroscience, sociology, transportation, ecological
systems and biology. With complex networks it is possible to describe the structure of any
system, when the system is suitable to be represented as a graph.

“Complexity”, may refer to the quality of a system or to a quantitative characterization of
a system. As a quality of a system, it refers to what makes a system complex and it has
something to do with the ability to understand a system; it refers to the existence of
emergent properties which appear as a consequence of the interactions of the components
of the system (Standish, 2008). An example of a property that emerges as a consequence of
global organizational structure of a network is the “small world” property, which is
characterized by small average path length and a high number of triangles in the network.
As a quantitative characterization of a system, “complexity” is used as a quantity when
referring to something that is more complicated than another thing; it refers to the quantity
of information needed to specify the system. For real-world networks a huge amount of
information is needed to describe a system, such as the number of nodes, links, degree
correlations, degree distributions, clustering coefficients, diameter, betweenness,
centralities, community structure, average or shortest paths, communication patterns and
other quantities. In random networks the only information needed to describe their structure
is the number of nodes and the probabilities for linking pairs of nodes.
The network representation of real networks is called “complex networks” because of two
reasons. Firstly, because there are characteristics that arise as a consequence of the global



topological organization of the system and secondly because these structures cannot be
trivially described like in the cases of random or regular graphs (Estrada, 2011).

The theoretical framework behind complex networks is continuously developing,
advancing at a fast pace, and has already made significant progress towards unravelling the
organizing principles that govern complex networks structures and their dynamics. Studies
related with: topological features, dynamical aspects, community detection, network
phenomena and particular properties of networks have been the focus of attention of
extensive research in the last couple of decades (Reka and Barabasi, 2002; Dorogovtsev and
Mendes, 2003; Furuya and Yakubo, 2011, Newman 2010; Palla, Barabasi and Vicsek, 2007;
Watts and Strogatz, 1998).

Networks play an important role in a wide range of economic and social phenomena.
The use of techniques and methods from graph theory has permitted economic networks
studies to expand the knowledge and give insights into economic and social phenomena in
which the embeddedness of individuals or agents in their social or economic interrelations
cannot be neglected (Kénig and Battiston, 2009). For example, Souma et al., (2006) studied
a shareholder network of Japanese companies where the authors analysed the companies’
growth through economic networks. Other examples of interesting applications of complex
networks in economics are provided by the regional investment or ownership networks
where European company-to-company investment stocks show power-law distributions that
allow predicting the investments that will be received or made in specific regions, based on
the connectivity and transactional activity of the companies (Battiston et al., 2007;
Glattfelder et al., 2009). Nakano and White (2007) have shown that analytic concepts and
methods related with complex networks can help to uncover structural factors that may
influence the price formation for empirical market-link formations of economic agents.
Reyes et al., (2008) used a weighted network analysis focused on using random walk
betweenness centrality to study why high-performing Asian economies have higher
economic growth than Latin-American economies. Complex network-based approaches are
very useful and provide means by which to monitor complex economic systems and may help
in providing better control in managing and governing these systems. Another interesting
line of research is related to network topology as a basis for investigating money flows of
customer driven banking transactions. A few recent papers describe the actual topologies
observed in different financial systems (Lubldy, 2006; Inaoka et al., 2004; Soramaki et al.,
2007; Boss et al., 2004) Some other works have focused on economic shocks and robustness
in economic complex networks (lory and Jafarey, 2001; lori et al., 2007).
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Objectives and outline of the thesis

The main focus of my doctoral studies has been to study general and particular properties of
complex networks through analysis that consists of different experiments on a unique,
interesting and new economic network: the large-scale Estonian network of payments.

Networks can be studied from different points of view, for example: from a local, global
or mesoscale perspective. The contribution of my doctoral studies is to explore such
approaches by using different methodologies and experiments while studying the economic
development of Estonia.

This thesis presents an extensive study that contributes to the field of complex networks
(particularly to economic complex networks studies) by adding empirical evidence in favour
of economic networks with a new study case. The study is done thanks to the application of
known network methods. In this work | investigate the structure of the large-scale network
of payments of Estonia:

1. Global and local topology

2.  Community structures

3. Fractal and multifractal properties

The data set was obtained from Swedbank’s databases. Swedbank is one of the leading
banks in the Nordic and Baltic regions of Europe. The bank operates actively in Estonia, Latvia,
Lithuania and Sweden. All the information related to the identities of the nodes is very
sensitive and thus will remain confidential and unfortunately cannot be disclosed.
The data set is unique in its kind and very interesting since ~80% of Estonia's bank
transactions are executed through Swedbank’s system of payments; hence, this data set
reasonably reproduces the structure of the Estonian economy and can be used as a proxy of
it. The data set utilized, contains the best possible information available and describes fairly
accurately the tendencies of money transactions. This data set comprises domestic payments
(company-to company electronic transactions) of the year 2014. The network consists of
16,613 nodes, 2,617,478 payment transactions, and 43,375 links. In this economic network,
the nodes represent Estonian companies and the links represent payments done between
the companies.

The main objectives of this thesis are as follows:

e To study the structure (topology) of the network of payments of Estonia.

e To study the structure and functionality of this large network and to expand the
knowledge of the local organization of its components by detecting community
structures in this network.

e To study the fractality and multifractality of the network.

To achieve these objectives, Chapter 1 mainly follows the results of Paper I, Ill and V.
Chapter 1 presents a topological analysis of the structure of the large-scale Estonian network
of payments. To achieve this, | study scale-free properties, network components and
patterns, statistical properties and robustness of the network.

In Chapter 2 | discuss about the community structure of the Estonian network of payments
and scale-free properties at a mesoscale level. This Chapter mainly follows Paper Il and Paper
IV. Chapter 2 also addresses the analysis of the global structure of the network through the
distribution functions of four basic quantities.

Next, | study the fractal and multifractal structure of the network in Chapter 3 by following
the results of Paper Il. | present a fractal scaling analysis by calculating the fractal dimension
of the network and its skeleton. Then | use a sandbox algorithm to calculate the spectrum of
the generalized fractal dimensions and mass exponents in order to study the multifractal
behaviour.

11



Paper Il mainly consists of a review of the results obtained in Papers |, Il and IV which was
published as a chapter of a book. This Paper consists of a review on the structures and
characteristics of the large-scale Estonian network of payments.
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Approbation of the results

The basic results described in this thesis have been presented by the author at the following
international conferences:

Renddn de la Torre S., Kalda J., Kitt R., Engelbrecht, J. Estonian network of payments. Poster
presentation at the 5th Ph.D. School-Conference on Mathematical Modeling of Complex
Systems (20-30 July, 2015, Patras, Greece)

Rendén de la Torre S., Kalda J., Kitt R., Engelbrecht, J. On the topologic analysis of economic
complex networks: Swedbank's network of payments in Estonia. Oral presentation at Data
Science Challenges (14-17 October, 2015, Torino, Italy).

Rendén de la Torre S., Kalda J., Kitt R., Engelbrecht, J. Communities’ detection and evolution:
Estonian economic network of payments. Poster presentation at the 26" STATPHYS IUPAP
International Conference on Statistical Physics (18-22 July, 2016, Lyon, France).

Renddn de la Torre S., Kalda J., Kitt R., Engelbrecht, J. Communities detection and dynamics:
Estonian economic network of payments. Poster presentation at International Conference
Statistical Physics SIGMAPHI 2017 (and School of Statistical Physics) (6-14 July, 2017, Corfu,
Greece).

Rendon de la Torre S., Kalda J., Kitt R., Engelbrecht, J. Fractal and multifractal analysis of
complex networks: Estonian network of payments. Poster presentation at NetSci-X 2018
International School and Conference on Network Science (5-8 January, 2018

Hangzhou, China)

Renddn de la Torre S., Kalda J., Kitt, R. Specific statistical properties of the strength of links

and nodes: Estonian network of payments. Poster presentation at Statphys 27 (8-12 July,
2019, Buenos Aires, Argentina)
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1. Topologic structure of economic complex networks:
Payments network of Estonia

The focus of this Chapter and the underlying Paper | is to present the first topological analysis
of the economic structure of an entire country based on payments data: Estonia’s network
of payments. | focus on analysing interesting structural properties of such network, with a
particular emphasis on topologic components. | study the scaling-free and structural
properties of the network. Also, | examine statistical characteristics, components and
patterns. | identify the hubs of the network and perform a simulation of resiliency against a
random and a targeted attack of the nodes. | found that by identifying and studying the links
between nodes it is possible to perform vulnerability analysis of the Estonian economy with
respect to economic shocks.

A random network is the most basic model of all network formations and it is based on
the assumption that a fully random process is responsible for the structure of the links in a
network. The properties of random network models (Erdés and Rényi, 1959) provide rich
insight into the characteristics of complex networks. Firstly, | focus on analysing some
interesting structural properties of the network, with special interest on topologic
components. Graph theory definitions not introduced in this Chapter can be found in
(Dorogovtsev and Mendes, 2003; West, 2003).

Random network models are useful benchmarks for comparing empirical networks and
have the ability to identify the elements that are a result of randomness and the ones that
can be rooted to other factors. Some properties of random networks that are useful for
studying generic networks are, for example: the distribution of links across nodes,
connectivity in terms of paths, distances within networks, shortest-average paths, diameter,
etc.

A graph is a mathematical and symbolic representation of a network and of its
connectivity. A simple undirected graph G is a set of vertices V connected with edgesE,
therefore G = (V,E). A graph is defined by the structural information contained in its
adjacency matrix. A network may have a large arbitrary amount of additional information on
top of it: for example, edges can have attributes such as capacity or weight, or it may be a
function of other variables. Also, in a network the vertices are called nodes and the edges are
called links. Network terminology is generally used when the links transport or send
something meaningful between the nodes (like in social, computer, biological, transport, or
economic networks).

There are many ways to define the network of payments. In this study | consider more
than one definition. In the first definition, an undirected graph is mapped, a symmetric
payment adjacency matrix Ayxn Where N is the total number of nodes in the network, and
considering that two companies are connected if they have at least one payment,
then ajj = aj; and aj; = 1 if there is a transaction between company / and j, otherwise,
a}‘j = ( if there is no transaction between companies i and j. Diagonal elements are equal to
0 and non-diagonal elements are either 0 or 1.

The links can also represent direction: where the links follow the flow of money.
The second definition is a directed graph where the links follow the flow of money, such that
a link is incoming to the receiver and is outgoing for the sender of the payment. There are
two more matrices, one for the in-degree case and another for the out-degree case.

The weighted connectivity matrix B contains the number of transactions between
companies j and j. The elements w;; of the weighted connectivity matrix C denote the overall
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volume exchanged between companies i and j. The choice of the definition of the matrix
representation depends on the focus of the analysis.

1.1 Structure and components: Analytics metrics

1.1.1 Activity patterns

| perform an analysis on the structure of the network and its time evolution to be able to
identify any structural changes and compare the emerging patterns. Figure 1(a) shows the
monthly volume of transactions during 2014 while Figure 1(b) displays the monthly number
of transactions. Figure 1(c) shows the monthly average number of active links as a function
of time. Figures 1(b) and 1(c) show that the number of transactions decreases dramatically
in the third quarter of the year while the number of active links decreases already in the
second quarter.

The plots show that the number of transactions and the active links increase in the last
quarter of the year, suggesting that liquidity in the Estonian network of payments increases
by the end of the year through increased transaction volumes and payments, and higher than
usual number of active counterparties. It is interesting that from August until the end of the
year there is a high concentration in the volume of payments while the number of payments
diminishes dramatically in the same period of time. These observations indicate that the
average number of active companies has decreased 20%, while the volume of transactions
has increased 14% and the number of transactions has decreased 66% by the end of the year
(compared with the beginning of the year). This indicates that in Estonia companies manage
higher volumes of money at the end of the year than at the beginning of the year, while not
all the companies remain active by the end of the year. It is observed that there are some
seasonal effects characterizing the trends of payments. For example, the fact that there is an
impact in summer: transaction-volumes are visibly increased, perhaps linked to the fact that
consumer expenses rise (such as traveling or vacation related expenses).

It is not possible to obtain a full explanation of this financial liquidity pattern due to the
lack of complete information about the overall financial and commercial activities of the
companies in this network. Nonetheless, there are some possible explanations for such
patterns. For example, these patterns could be highly affected by business cycles of
payments, or by seasonal effects on the liquidity of companies, or by macroeconomic
variations such as the changes in monetary policy of the Euro area and Estonia. Another
explanation for the increased volume of transactions and increased liquidity at the end of the
year is that there might be a generalized release of delayed payments, like when companies
try to spend the remaining balances of their annual budgets.

15
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1.1.2 Statistical properties and common metrics

In order to characterize the statistical properties and the underlying structure of the network,
| use some common metrics (Standish, 2008; Estrada, 2011; Renddn de la Torre et al., 2016)
that combine topological and weighted observables. The most basic properties of a network
are the number of nodes N and the overall number of links k. The number of nodes defines
the size of the network, while the number of links relative to the number of possible links
defines the connectivity of a network. Connectivity (p) is the unconditional probability that
two nodes are connected by a direct link. For a directed network, connectivity is defined as
follows

€]

The connectivity of the network is 0.13, meaning that the network is sparse and 87% of
the potential connections are disabled. Diameter d is the maximum distance between two
nodes (measured by the number of links) and this distance is equal to 29. Random networks
usually have small diameter values. The differences between the low diameter in similar
random networks and real networks like this one could be explained by the preferred money
paths that nodes have in the network. Having preferred money paths means that some
companies have specific preferences when considering the counterparties they transact with.
Intuitively, this makes sense because for a company it is important to choose carefully which
counterparties become trading partners, clients, service providers or suppliers and which
ones do not. Usually, this decision is based upon determined factors such as geographical
location, goals affinity, cost policies, future joint ventures, legal agreements, nature of the
business or various other reasons, and it is interesting to notice how this particular feature
can be observed through the comparison of the connectivity of the network and a random
network.

A path is a sequence of nodes such that each node is linked to the next node along the
path by a link. A path consists of n + 1 nodes and n links. A path between nodes i and j is an
ordered list of n links. The length of this path is n. The path length of all node pairs could be
represented in the form of a distance matrix. The average path length is the average of the
shortest path lengths across all node pairs in the network.

Other simple quantity that can be observed in a network is the number of nodes of a given
degree. The degree of a node is the number of neighbours of that node and is defined as

ki = Z aij, @

jed®

the sum runs over the set {(i) of neighbours of i. For example: {(i) = {j|aij =1}

In a directed network there are two important characteristics of a node, the number of
links that end at a node and the number of links that start from the node. These quantities
are known as the out-degree k° and the in-degree k< of a node, and are defined as

K= ah, ko= af. 3)

jEg jEg(

It is possible to categorize networks by the degree distributions of their tails. In general,
real-world networks are very different compared with random networks when referring to
their degree distributions. Random networks commonly show Poisson distributions, while
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real networks might have long tails in the right part of the distribution with values that are
far above the mean. Measuring the tail of the distribution of the degree data could be
achieved by building a plot of the cumulative distribution function. In real-world networks,
it is common to find distributions that follow power laws in their tails:

P(k)~ Z k'Y kD) )
k'=k

where y is the scaling exponent of the distribution and the degree distribution P(k) is the
probability that the degree of a node is equal to k. This type of distribution is called
scale-free and networks with such degree distributions are referred to as scale-free networks.
Such distributions have no natural scale and the functional form of the distribution remains
unchanged within a multiplicative factor under a rescaling of the random variables. Previous
studies (Mandelbrot, 1983; Jeong et al., 2000) have shown that in large scale-free networks,
independently of the system and the origin of the components, the probability P(k) that a
node of the network interacts with k, then other links decays as a power-law, suggesting that
there is a tendency for large networks to self-organize into a scale-free state. A degree
distribution with power laws is a characteristic commonly seen in complex networks such as
in the World Wide Web network, protein-interaction networks, phone calls networks, food
webs networks, citation networks, actors-movies networks and it also appears in systems of
payments from different banks around the world (Inaoka et al., 2004; Séramaki et al., 2007;
Boss et al., 2004).

The average degree of a node in a network is the number of links divided by the number
of nodes and is defined as:

W= ko= > k= ®

The average degree of the Estonian network of payments is 20. Most of the nodes have
only 5 or less links, and 45% have only 1 link. Like other real networks, the degree
distributions (undirected and directed) of the network of payments follow power laws.

Complex networks can be classified as homogeneous or heterogeneous depending on
their degree distributions. Homogeneous networks are identified by degree distributions that
follow an exponential decay. In these networks, the distribution peaks at an average k and
then decays exponentially for large values of k, such as the distributions formed in the
random graph model (Erdds and Rényi, 1959) and the small-world model (Watts and Strogatz,
1998) where each node has approximately the same number of links k. These have a normal
distribution and the majority of the nodes have an average number of connections and only
few or none of the nodes have either some or lots of connections. In heterogeneous large
networks or scale-free networks, the degree distribution decays as a power law with a
characteristic scale. The degree distribution follows a Pareto form distribution where many
nodes have few links and few nodes have many links, therefore, highly connected nodes are
statistically significant in scale-free networks.

Figure 2(a) shows the cumulative degree distribution of the Estonian network of payments
(undirected). A straight line was added as an eye guideline. The distribution in Figure 2(a)
follows a power law with the following scaling exponent:

P(= k) o« k=24, (6)
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(c)
Figure 2. Degree distributions (a) Empirical degree distribution for the connectivity network of the
Estonian network of payments. X axis is the number of k degrees and Y axis is P(k). (b) out-degree
distribution of the network, P (k) ~ k=2-3°. c) Empirical in-degree distribution P (k) ~ k=249,

Figure 2(b) shows the out-degree distribution and Figure 2(c) shows the in-degree
distribution of this network. In all the distributions, | found regions that can be explained by
power laws, and this implies that the network has a scale-free structure.

Weights w;; of the links iand j in a network show the importance of each link.
The strength of the nodes is the sum of the weights of all the links. In this network the
strength measures the overall transaction volume for any given node. The node-weighted
strength is defined as

5i = Z Wij, @)
JEC()

where w;; is the weight of the link between nodes i and j and the sum runs over the set { (i)
of neighbours of i. The average strength can be calculated as a function of the k number of
links of a node to examine the bond between the strength and the degree.

I calculated the probability P(s) that a company has k outgoing or incoming links. As per
Figure (3), the distribution of the out-degree volume (strength) follows a power-law decay

P(s)~s7232 ®
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where the scaling exponent is 2.32. There are some deviations from the power law behaviour
but they are sufficiently small. A similar distribution was found in the in-degree volume
(strength) distribution (Renddn de la Torre et al., 2016). The power-law tail signals that the
probability of finding companies paying out very large quantities of money is small.
Moreover, while the companies have an absolute freedom in choosing how much money to
pay or the counterparties to whom they interact with, the overall system obeys a scaling law,
which is a particular property observed in critical phenomena and in highly interactive
self-organized systems. Figure (3) displays the distribution of link weights weighed by the
number of payments transacted.

10" 10° 10 10 10"

Figure 3. Node out-degree distribution by strength.

1.2 Scale degree distributions in other known networks

It is common to find scale-free degree distributions in different networks, such as in the
World Wide Web, the proteins and interactions network, phone calls, food webs,
transportation and in payments systems of different banks. Table 1 shows a list of the
power-law exponents obtained from different types of real networks.
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Table 1. Scaling exponents and clustering coefficients for different types of reported networks

Clustering
coefficient
Type Network Exponent * References
Bank of Japan payments y=21 - (Inaoka et al.,, 2004)
yi=2.11
US Federal Reserve Bank yo =2.15 0.53 (Soramdki et al.,, 2007)

Austrian Interbank Market vi=1.7

Economical payments yo=3.1 0.12 (Boss et al.,, 2004)
yo=2.4

WwWwW yi=2.1 - (Albert and Barabasi, 1999)
Peer-to-peer network y=21 0.012 (Ripeanu et al.,, 2002)
Technological Digital electronic circuits y=3 0.03 (Ferrer et al.,, 2003)
Film actors y=23 0.78 (Watts and Strogatz, 1998)

yi=1.5

Email messages yo=2.0 0.16 (Ebel et al.,, 2002)

Social Telephone calls y=2.1 - (Aiello et al.,, 2000)
Protein interactions (yeast) y=24

yi=2.2 0.022 (Jeong et al.,, 2001)

Metabolism reactions yo=2.2 0.32 (Jeong et al.,, 2000)

Energy landscape for a 14-atom
Biological cluster y=2.78 0.073 (Doye, 2002)

yi = scaling exponent for in-degree distribution. yo = scaling exponent for the out-degree distribution.
y = scaling exponent for the connectivity distribution. *Refers to average clustering coefficient.

1.3 Components of networks

Nodes can be partitioned into components, according to how the nodes connect with each
other. A path is an ordered collection of nodes, each one connected to the next node.
A component is a group of nodes such that any two nodes can be connected by a direct or
indirect path. A component of an undirected network is a set of nodes such that for any pair
of nodes i and j there is a path from j toi, meaning that two nodes share the same
component if there is a path connecting them.

In a directed network the largest component is known as the Giant Weakly Connected
Component (GWCC) in which all nodes connect to each other via undirected paths. The core
is the Giant Strongly Connected Component in which the nodes can reach each other through
a directed path. The Giant Out-Component (GOUT) comprises the nodes that have a path
from the GSCC and the Giant In-Component (GIN) comprises the nodes that have a path to
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the GSCC. The set of disconnected components (DC) are smaller components. Tendrils are
nodes that have no directed path to or from the GSCC, but to the GOUT and or to the GIN
(Dorogovtsev and Mendes, 2003). These concepts are shown in Figure 4.

Figure 4. Components of a directed network.

All the components in this undirected network show that the GCC is composed of 15,434
nodes which means that 92.8% of the nodes are reachable from one another by following
either forward or backward links. This suggests that it is a very well connected network.
The remaining 7.2% nodes correspond to 508 DC. If we consider a direct approach, the GSCC
contains 24% of the nodes in the system.

Another interesting and fundamental metric is the clustering coefficient of a node.
It represents the probability that any two neighbours of a node are connected; it is the
density around a node. In this study it indicates whether or not there is a link between two
companies that have a common third business party.

. 1
c@) = m; a;j Qg Q.- 9
j

The average clustering coefficient is the mean of the clustering coefficients (C) of each and
all the nodes. In this network, the average clustering coefficient is 0.18, and this number
suggests there is cliquishness in the network. This means that two companies that are trading
partners with a third one, have an average probability of 18% to be trading partners.
For visualization purposes, Figure 5 displays the distribution of the clustering coefficient of
the network. As seen in the plot, there is high number of unlinked neighbour nodes (45% of
the nodes) that might be explained by the large number of nodes with degrees equal to 1
which frequently appear in scale-free networks.
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Figure 5. Distribution of the clustering coefficient of the Estonian network of payments.

In other words, the clustering coefficient indicates whether there is a link between two
companies which have a common trading partner and it gives a way to measure the extent
of the reach of intermediary trading. Compared with other real networks this average
clustering coefficient is relatively small (see Table 1 for comparison). Compared to other real
networks, such as the U.S. Federal Reserve Bank network of payments, the film-actor
network, or the metabolism reactions network, the average clustering coefficient is low.
A small coefficient is reasonable because it can be interpreted as how companies could see
diversification as costly when it means to change or add their trading partners, suppliers or
service providers. Business relationships between companies are commonly settled through
medium or long term contracts. A company would like to remain doing business with the
same parties because it's easier and cheaper than continuously changing them.

As mentioned earlier, the most basic model of networks is the random network model
G(n,p) developed by Erdds and Rényi (1959). This model has two parameters: nand p
(where n is the number of nodes of the graph and p is the probability to link). The model
works under the assumption that there could be a link i — j between two nodes i and j and
this assumption holds no matter if the nodes had a common neighbour node before the link
was formed. The outcome of the model is the generation of random network graphs with a
low clustering coefficient and a low variation in the degrees of the nodes. A random network
cannot capture the decreasing nature of the clustering coefficient of the nodes with increase
in the node degree because the clustering coefficient of the nodes in this type of network is
totally independent of the node degree and is equal to the probability of a link between any
two nodes (Barrat et al., 2008).

The betweenness centrality o(m) of a node m is the total number of shortest paths which
pass through a given node. It is a measure of the number of paths between other nodes that
run through the node i; the more paths this node has, the more central is the node i in the
network. It indicates whether or not a node is important in the traffic of the network. It was
originally introduced as a measure for quantifying the control of a determined human on the
communication between other humans in a social network. The nodes with high
betweenness control the network.
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B(i,m,j)

a(m)E $JT,]')'

(10)

where B(i, ) is the total number of shortest paths between nodes i and j and the sum goes
over all the pairs of nodes for which at least one path exists, with B(i,j) > 0.

The general characteristics and statistics of the Estonian network of payments are listed
in Tables 2 and 3. According to Table 2, the average betweenness for the links is 40 and for
the nodes is 110, meaning that each company handles on average 110 shortest paths, and
the higher is the number of shortest path the more central the company is for the network.

Regarding other statistical measures of the Estonian network of payments, as per Table 2,
the average shortest path length (1) is equal to 7.1 (calculated with Dijkstra’s algorithm).
This network is a “small world” with 7.1 degrees of separation, meaning that on average any
company can be reached by another company in just a few links. 93% of the nodes are within
7 links of distance from each other and this suggests that the network of payments is
comprised of a core of nodes with whom the other companies interact with. There is a smaller
group of 1,081 nodes (6.5% of the total number of nodes in the network) connected by high
value links. This group contains weighted links that comprise 75% of the overall value of the
funds transferred. A k-core in an undirected graph is a connected maximal induced sub-graph
which has a minimum degree greater than or equal to k. Alternatively, the k-core is the
(unique) result of iteratively deleting nodes that have degree less than k, in any order.

This network showed low connectivity (C = 0.13) but at the same time the network is
densely connected (see Table 3). This characteristic is in line with the fact that there are
companies that act as hubs and lead to short distances between the other companies.
The clustering coefficient is higher than the connectivity, therefore, the network is not
random (in a random network the clustering coefficient is equal to the connectivity; a random
network is built by adding links randomly to a given set of nodes, thus is an unreal type of
network). A random network of a comparable size has a clustering coefficient around 60
times lower than the one in the Estonian network of payments.

Table 2 Network's characteristics

Total companies analysed (N) 16,613

Total number of payments analysed 2,617,478

Total value of transactions 3,803,462,026 *
Average value of transaction per customer 87,600 *
Maximum value of a transaction 121,533 *

Minimum value of a transaction (aggregated) | 1,000 *

Average volume of transaction per company 60
Maximum volume of transaction per company | 24,859
Minimum volume of transaction per company |20
*All money quantities are expressed in monetary units and not in real currencies in order to protect the
confidentiality of the data set. The purpose of showing monetary units is to provide a notion of the
proportions of quantities and not to show exact amounts of money.
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Table 3 Summary of Statistics

Statistic Value Components # of nodes
N 16,613 GCC 15,434
Nbr. of payments | 2,617,478 | DC 1,179
Undirected Links | 43,375 GSCC 3,987
<k> 20 GOUT 6,054
Yo 2.39 GIN 6,172
Vi 2.49 Tendrils 400

1% 2.45 Cutpoints 1,401
<C> 0.183 Bi-component | 4,404
<[> 7.1 k-core 1,081
T 0.13

D 29

< 0> (nodes) 110

< 0> (links) 40

N = number of nodes. < k > = average degree. yo = scaling exponent of the out-degree empirical
distribution. yi = scaling exponent of the in-degree empirical distribution. y = scaling exponent of the
connectivity degree distribution. <C> = average clustering coefficient. < / > = average shortest path
length. T = connectivity %. D = Diameter. < 0 > = average betweenness. GCC = Giant Connected
Component. DC = Disconnected Component. GSCC = Giant Strongly Connected Component.
GOUT = Giant Out-Component. GIN = Giant In-Component.

1.3.1 Importance of nodes: strength

Zemp et al., (2014) developed new versions of measures for directed and/or weighted
networks which take into account the importance of nodes. In their work these authors
showed that by using their measures one can avoid systematic biases created by a higher
node density and larger weights of the links. Newman (2004) showed that weighted networks
could be analysed by using simple mapping that goes from a weighted network to an
unweighted multigraph and that this approach allows using standard techniques for studying
unweighted and weighted networks.

In this subsection of the chapter, | make a characterization of the links by investigating the
strength of the interactions of the elements of the network: the link weight of payments and
volume of payments. | analyse specific statistical measures of the weighted Estonian network
of payments that combine the topology of the relations of the strength of links and nodes
and their specific weights with the purpose of investigating beyond the topological
architecture of the network and reveal aspects of its complex structure.

I analysed the bond between strength and degree of a node. Figures 6(a) and 6(b) depict
the volume and value (in and out strengths) as functions of degree for both outgoing and
incoming links (in-degree and out-degree). The strength s is normalized by dividing it over
the average link weight (w;;). There is a power-law relationship between the strength and
the degree, as follows:

s(k)~k® (1D

where « is the coefficient of the scaling distribution. The power-law fit of Figure 6(a) has an
exponent a,,; = 1.5, when volume is used as the weight, and a,,,; = 2.4 when the value is
used instead. These values imply that the out-strength of nodes S,,, and in-strength of nodes
Sni grow faster than the degree k of a node, as seen in Figure 6(a), meaning that the most
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connected companies execute a higher number of payments with higher values of money
than suggested only by their degree. This indicates that if a company has twice as many
payments (out links) as another company, it could be expected that such company sends
three times the number of payments, and almost five times the total value of payments.
Figure 6(b) indicates that the relationships between the in-degree and the in-strength show
similar trends like the out-degree and out-strength cases seen in Figure 6(a).

Also, the strength of a node scales with the degree k indicating that highly connected
companies have payments of high weights. The strength of a company grows generally faster
than its degree. In other words, highly connected companies not only have many payments,
but their payments also have a higher than average weight. This observation agrees with the
fact that big companies are better equipped for handling large quantities of payments with
large amounts of money. Comparable results were found in the cargo ship movements
network (Kaluza et al., 2010) and in the airport network (Barrat et al., 2004), and such results
may hint or point to the existence of a generic pattern in large-scale networks.
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Figure 6. Distributions of strength. (a) Node out-strength as a function of degree. (b) Node in-strength
as a function of degree. Empty squares represent values of payments and black squares represent the
number of payments.
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For a given node i with connectivity k; and strength s;, the weights of its links might be of
the same order of magnitude s;/k;, or they can be distributed heterogeneously with some
links predominating over others. Then, the participation ratio is defined as follows:

2
HY (i) = z [V:LJ] , (12)
jeqw Lt

or equivalently
HO =) [S—’] . (13)
jegn

Now | define the participation rates to separate outgoing and incoming links. Then, the
average participation ratio is calculated as

1
H = 5 ) HSD), a9
and

1
HY = Nz HY (D). (15)

| calculate the participation ratio as a function of a company’s inverse degree, where the
objective is to identify the links that are used more often than the others. If a low number of
weights are dominant then H, is close to 1 but if all the weights are of the same order of
magnitude then H,~1/k;. When HY is close to 1, it indicates the existence of preferential
interactions between the nodes, meaning that companies prefer to transact with certain
companies.

Figure 7(b) shows a plot of the participation ratio HS as a function of the inverse degree of
the nodes. The plot shows the links that are used more often than others. For example, for a
degree up to 10 H5(i)~1/k; and for higher degrees the participation ratio is higher than the
inverse degree suggesting there is a disposition in the direction of preferential trading with
specific counterparties. Figure 7(b) shows the average participation ratio during the whole
year for out-going payments and in-coming payments. By the end of the year the
participation ratio for all the payments decreases. Particularly, the participation ratio of the
outgoing payments decreases dramatically. This reveals that the preferential linking is
limited. By the end of the year, the preference for trading with only certain counterparties
became less important. This could be caused by an increased payments/liquidity tendency
that could potentially be driven by generalized unspent company annual budgets or delayed
payments that were done before the year ended.
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Figure 7. Participation ratio plots. (a) Participation ratio as a function of the inverse degree for out-going
payments and in-coming payments. Black squares represent out-going payments; white squares
represent in-coming payments. (b) Participation ratio as a function of the distance of the end of the year
expressed in months for incoming (black circles) and outgoing (white circles) payments.

1.4 Robustness of the network

Previous studies of the structure of the World Wide Web network components (Albert et al.,
1999) have focused on analysing the robustness of the GCC against attacks, and it has been
found that it is very difficult to destroy the World Wide Web network by using random
elimination of links. (Table 3 displays the component sizes of the network of payments,
among other statistics).

In complex networks some nodes are essential while others are not, and identifying these
essential nodes is a critical task in determined situations. The most essential nodes are those
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which if removed from the network would cause the whole system to collapse. In order to
have a deeper understanding on how the network is likely to behave as a whole in the
presence of perturbations, | will address the next question: if a portion of nodes were
removed, would the structure of the network become divided into disconnected clusters?
How will the network respond to an actual removal of nodes? There are many approaches
on how to tackle this problem and locate the “key nodes” in the network, or on how to
calculate the optimal percolation threshold of nodes that would break the network into
disconnected clusters. Some logical approaches are: high degree node, k-core, closeness or
eigenvector centralities, however, a common characteristic in these approaches is that they
do not necessarily optimize a measure that reflects the collective influence arising from
considering the entire influential nodes at once. Under a collective approach, nodes’ inherent
strength and weakness arise collectively from the configuration of interactions they have
with the other components.

Currently, there are many heuristic methods for calculating the optimal percolation
threshold of nodes at which the network breaks into disconnected clusters, such as the high
degree node, k-core, closeness and eigenvector centralities. However, a common
characteristic in these approaches is that they do not necessarily optimize a measure that
reflects the collective influence arising from considering the entire influential nodes at once.
Under a collective influence approach, the inherent strength and weaknesses of the nodes
arise collectively from the configuration of interactions that they have with the other
components.

Morone and Makse (2015) designed an approach that has proven to perform better than
other heuristic methods (such as the high degree node, k —core, closeness and eigenvector
centralities). Morone and Makse’s algorithm optimizes a measure that can reflect the
collective influence effect that arises when taking into account the entire influential set of
nodes at once. This algorithm predicts a smaller set of optimal influencer nodes (the group
of nodes that destroy the network if they are removed).

The collective influence of a node CI is defined as the product of the node’s reduced
degree (the number of its nearest connections k; — 1), and the total reduced degree of all
nodes kj at a distance € from it, and is represented as follows:

CL®=U=1 Y (g1, 16)
jedBall(ie)

where £ is defined as the shortest path. Ball( i, ?) is the set of nodes inside a ball of radius £
around node i. dBall(i, £) is the frontier of the ball and comprises the nodes j that are at a
distance ¢ from i. By computing CI for each node it is possible to locate the nodes with the
highest collective influence. The collective influence algorithm addresses the problem of
optimal influence in the computation of the minimum structural total number of nodes that
reduces the largest eigenvalue of the non-backtracking matrix of the network.

| performed a simulation using the CI, where | calculate the collective influence of a group
of nodes as the fall in the size of the Giant Connected Component (GCC) which would occur
if the nodes of the GCC were eliminated. The GCC contains 15,434 nodes and this quantity
represents 92.8% of the nodes of the whole network.

These results are displayed in Figure 8. The plot shows the GCC when a fraction of the
nodes has been removed. The optimal percolation threshold occurs when 6.0% of the nodes
are removed and that is the point where GCC(Pc) = 0. This means that there are many
companies that execute a large number of payments which in fact have a weak influence in
the economic network as a whole. The most influential companies in the network are not
necessarily the most connected ones, neither are those which have more intense economic
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activity. A weak but smart node attack in the Estonian network of payments where only 6.0%
of the nodes are removed destroys the whole network of payments, meaning that a few
nodes maintain the unity of the whole network.
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Figure 8. GCC of the network of payments as a function of the percolation threshold Pc.

| ran a simulation that shows a random removal of a fraction of the nodes and another
simulation considering strategically chosen nodes. | found 1,401 cut-point nodes (Hanneman
and Riddle, 2005). In this simulation | have established that 8% of the nodes are necessary to
maintain the structure of the network connected. If these nodes are removed from the
network, the quantity of the components and the average path lengths between the nodes
would increase, leaving the network vulnerable.

| measure the average shortest path length < [ > and the relative size of the GCC as
functions of the percentage d of deleted nodes (Dorogovtsev and Mendes, 2003; Albert et
al., 1999; Cohen et al., 2000). The results are displayed in Figures 9(a) and 9(b). The effect of
the targeted removal of nodes causes a quick growth in the average shortest path length until
the GCC disappears, GCC(Pc) = 0 at a very low level of targeted damage (less than 10%).
| will call this level the percolation threshold Pc. It is noticeable that a weak but smart attack
destroys the network. In the random removal of nodes simulation the damage is less than in
the targeted damage. In the previous chapters | have established that my network of
payments has shown scale-free properties. Scale-free networks are resilient to random
damage, so it is almost impossible to destroy such network of payments by a random removal
of nodes, but if the exact portion of particularly selected nodes, the network breaks
completely. This effect has been seen in financial systems in economic crisis before:
companies or banks may declare themselves in bankruptcy and the whole system stays
healthy, but if certain organizations declare themselves in bankruptcy then the whole system
collapses.
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Figure 9. Plots of the effect of the targeted and random removal of nodes from the network of payments.
(a) The average shortest-path length < | > in the GCC plotted against the percentage of removed nodes.
(b) The GCC plotted against the percentage of removed nodes. Continuous lines display the effect of the
targeted removal of nodes and the dashed lines display the effect of the random removal of nodes.
Pc are the percolation thresholds, for each case.

It is not rare that the GCC in heavy-tailed networks is resilient against random removal of
nodes. If the degree distribution of the network is fat-tailed, then this fact determines the
topology of the system. However, it might be possible that when removing nodes in a random
way, the tail of the degree distribution changes and then the GCC structure would be
damaged.

Scale-free networks are commonly observed in a wide array of different contexts such as
nature and society. Scale-free networks are resilient to random removal of nodes, but are
vulnerable to smart attacks. The Estonian network of payments is a scale-free network (with
power laws in the degree distribution) and its own scale-free nature makes it almost
impossible to destroy the network by a random removal of nodes, but if the exact portion of
particularly selected nodes are removed then the network collapses completely.
This “collapsing” effect has been already observed in financial systems when severe
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economic crisis occur and specific companies or banks crash leading the whole system to
break down. An example of this, is the global financial crisis of 2008 that started with the
collapse of the famous investment bank Lehman Brothers, followed by Bear Sterns, UBS and
other financial entities that dragged the whole global financial system into severe liquidity
problems.
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2. Detecting overlapping community structure

In this Chapter | comment on the overlapping community structure of the Estonian network
of payments and the scale-free properties at a mesoscale level. This Chapter also contains
the analysis of the global structure of the network through the distribution functions of four
basic quantities. This Chapter mainly follows Paper lll and IV.

Networks play an important role in a wide range of economic and social phenomena and
the use of techniques and methods from graph theory has permitted economic network
theory to expand the knowledge and understanding of economic phenomena in which the
embeddedness of individuals or agents in their social or economic interrelations cannot be
ignored.

Studying the community structure exhibited by real networks is a fundamental step
towards a comprehensive understanding of complex systems beyond the local organization
of their components. Community detection analysis is essential for understanding the
structure and functionality of large networks and it also helps to expand the knowledge on
complex networks.

Community detection is a graph partitioning process that provides valuable insight into
the organizational principles of networks and is essential for exploring, and among other
things, for predicting connections that are not yet observed. Thus far, recent advances of the
underlying mechanisms that rule dynamics of communities in networks are limited, and this
is why the achievement of an extensive and wider understanding of communities is
important. Locating the underlying community structure in a network makes it easier to study
the network, and could provide insights into the function of the system represented by the
network, as communities often correspond to functional units of systems. The study of
communities and their properties also helps in revealing relevant groups of nodes, creating
meaningful classifications, discovering similarities or revealing unknown linkages between
nodes.

The usefulness of identifying the communities within networks lies in how this information
could be used in a practical scenario. In the context of the bank industry the output of the
community analysis (based on payments between companies who are customers of a bank)
could be used for targeted marketing activities. For example, it could be used at the moment
of integrating criteria for creating target groups of customers to whom certain products or
lines of products would be offered. Customers in the same community would be included in
the same target group and later on after one offer is made to them it would be possible and
interesting to assess the contagion effects of the product acquisition among customers of the
same communities who received the same offer.

Another useful application is for helping to create customer-level segmentations or
marketing profiles. To know the community (or communities) a customer belongs to, could
be one of the drivers for creating customer profiles or clustering levels. An alternative usage
of the output of community analysis is in predictive analytics, for example when building
churn models. Churn models usually define a measure of the potential risk of a customer
cancelling a product or service and provide awareness and metrics to execute retention
efforts against churning. The communities to which the companies/customers belong could
be used as variables or features when using logistic regression, random forests or neural
network models. Additionally, community detection analysis could be used as input for
product affinity and recommender systems. Affinity analysis is a data mining technique that
helps to group customers based on historical data of purchased products and is used for
cross-selling product recommendations. Another useful and immediate application is in
product acquisition propensity models. These models calculate customers’ likelihood to
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acquire a product after an offer is made based on a myriad of variables and with this evidence
the sales process can become more efficient.

The majority of previous studies on communities have essentially been devoted to the
description of structures inside the communities and their applications: communities
representing real social groupings (Traud et al., 2000; Gonzalez et al., 2007; Palla et al., 2007)
communities in a co-authorship network representing related publications of particular
topics (Pollner et al., 2006), protein-protein interaction networks (Lewis et al., 2010),
communities in a metabolic network representing cycles and functional units in biology
(Guimera and Amaral 2005; Ravasz et al., 2002) and communities in the World Wide Web
representing web pages with related contents (Dourisboure et al., 2007).

Regarding community studies on economic networks and their applications, Vitali and
Battiston (2014) studied the community structure of a global corporate network and found
that geography is the major driver of organization within that network. Fenn et al., (2009)
studied the evolution of communities of a foreign exchange market network in which each
node represents an exchange rate and each link represents a time-dependent correlation
between the rates. By using community detection, they were able to uncover major trading
changes that occurred in the market during the credit crunch of 2008. Other related
economic studies have focused on the overlapping feature of communities, such as in
(Piccardi et al., 2010; Bota and Kresz, 2013).

Most of the algorithms for community detection can be classified as divisive,
agglomerative or optimization-based methods, and each method has specific strengths and
weaknesses. Previous studies on communities based on divisive and agglomerative methods
consider that structures of communities can be expressed in terms of separated groups of
clusters (Newman, 2004; Yang et al., 2016; Hopcroft et al., 2004; Scott, 2000) but most of the
real networks are characterized by well-defined statistics of overlapping communities.
An important limitation of the popular node partitioning methods is that a node must be in
one single community whereas it is often more appropriate to attribute a node to several
different communities, particularly in real-world networks.

An example where community overlapping is commonly observed is in social networks
where individuals typically belong to many communities such as: work teams, religious
groups, friendship groups, hobby clubs, families or other similar social communities.
Moreover, members of social communities have their own sub-communities resulting in a
very complex web of communities (Derényi et al., 2005). The phenomenon of community
overlapping has been already noticed by sociologists but has barely been studied
systematically for large-scale networks (Gavin et al., 2002; Devi and Poovammal, 2016;
Xie et al., 2013; Ding et al., 2016).

Networks have sections in which the nodes are more densely connected to each other
than to the rest of the nodes in the network, and such sub-sections are called communities.
Communities might exist in different networked systems, such as economics, sociology,
biology, engineering, politics and computer science. There is no unique definition of
community in the existing literature. Definitions change depending on the author and the
type of study, and precisely one of the core issues in community detection is the lack of a
unified definition of what is a community.

| use the Clique Percolation Method (CPM) definition because such algorithm allows
overlapping nodes among communities, a condition that arises when a node is a member of
more than one community. In economic systems, the nodes could frequently belong to
multiple communities; therefore, forcing each node to belong to a single community could
result in a misleading characterization of the underlying community structure.

An overlapping community graph is a network that has links between communities.
Moreover, it is a representation of a network that denotes links between communities,
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where the nodes represent the communities and the links are represented by the shared
nodes between communities. In my study the nodes represent communities and the links
represent shared nodes between communities. CPM is based on the density of links and the
definition of community for this algorithm is local and it is not too restrictive. Overlapping
communities arise when a node is a member of more than one community. CPM is based on
the assumption that a community comprises overlapping sets of fully connected sub-graphs
and detects communities by searching for adjacent cliques. A clique is a complete (fully
connected) subgraph. A k-clique is a complete sub-graph of size k (the number of nodes in
the sub-graph). Two nodes are connected if the k -cliques that represent them share k — 1
members.

The method begins by identifying all cliques of size k in a network. When all the cliques
are identified, then a N, x N, clique-clique overlapping symmetric matrix O can be built,
where N is the number of cliques and 0;; is the number of nodes shared by cliques i and j
(Everett and Borgatti, 1998). This overlapping matrix O encodes all the important information
needed to extract the k-clique communities for any value of k. In the overlapping matrix O
rows and columns represent cliques and the elements are the number of shared nodes
between the corresponding two cliques. Diagonal elements represent the size of the clique
and when two cliques intersect they form a community. For certain k values, the k-clique
communities form such connected clique components in which the nearby cliques are linked
to each other by at least k — 1 adjacent nodes. In order to find these components in the
overlapping matrix 0, one should keep the entries of the overlapping matrix which are larger
than or equal to k — 1, set the others to zero and finally locate the connected components
of the overlapping matrix 0. The formed communities are the identified separated
components (more details on the Clique Percolation Method can be found in Palla et al.,
2005).

2.1 Structures of communities

An overlapping community graph is a representation of a network that denotes links between
communities, where the nodes represent the communities and the links are represented by
the shared nodes between communities. For visualization purposes and in order to draw a
readable map of the network, Figure 10 shows a graphic view of a representative section of
the overlapping network of communities where big and small communities can easily be
distinguished. This image depicts 25 overlapping communities and each circle represents a
node which in turn represents an overlapping community. The links represent the shared
nodes between the communities. The size of the nodes characterizes the size of each
community. For example, the big node in the middle represents a community with 61
companies.
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Figure 10. Visual representation of a section of the overlapping network of communities (Estonian
network of payments). The circles (nodes) represent communities and the black lines between them
represent shared nodes between communities.

A parameter k needs to be chosen and the optimal choice is a problem in any cluster
analysis. The parameter k affects the constituents of the overlapping regions between
communities. The larger the parameter k is, the less the number of nodes which can arise in
the overlapping regions. When k - oo, the maximal clique network is identical to the original
network and no overlap is identified. The choice of k will depend on the network. It is
observed from many real-world networks, that the typical value of k is often between 3 and
6 (Shen, 2013). Figure 11 shows a plot of the number of communities and the average size of
the communities at different k values. When k increases the number of communities
decreases while the size of the communities increases rapidly. When k decreases the number
of communities increases rapidly while the size of the communities remains low.

| tested different values of k ranging from 3 to 10 and a posteriori chose k=5 because
when k<5 a high number of communities arises and the partitions become very low and giant
communities appear (with sizes of more than 3200); at the level k=5 a rich partition with the
most widely distributed cluster sizes set for which no giant communities appear is obtained.
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Figure. 11 Plot of the average size of community (s) and number of communities (c) as k increases.
Squares represent the number of communities and triangles represent the size of the communities.
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In order to study and characterize the global community structure of my network,
| investigated the distribution functions of the following four elementary quantities:
community size P(s), overlap size P(s,), community degree P(d) and membership number
P(m). In general, the nodes in a network can be characterized by a membership number
which is the number of communities a node belongs to. This means that for example, any
two communities may share some of their nodes which correspond to the overlap size
between those communities. There is also a network of communities where the overlaps are
represented by the links and the communities are represented by the nodes, and the number
of such links is called: community degree. The size of any of those communities is defined by
the number of nodes it has.

2.2 Distribution functions

The community size distribution is an important statistic that describes partially the system
of communities. Figure 12 displays the cumulative distribution function of the community
size P(s) and it shows the probability of a community to have a size higher or equal to s
calculated over different points in time, where t is the time in months. The overall
distribution of community size resembles a power-law P(s) o s%, where «a is the scaling
exponent, and a power-law is valid nearly over all times t. The scaling exponent (calculated
by maximum likelihood estimators) when t=3 is -2.8 (included for eye guideline) and
Equation 17 is:

P(s) o s7%8 (17)
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Figure 12. Cumulative community size distribution at different times t.

The sizes of the communities at t=1 are smaller than in the rest of the months; as time
increases the size increases, particularly the size of the largest communities. The shapes of
the power-laws observed in the community size distributions of Figure 12 suggest there is no
characteristic community size in the network. The distribution at different moments in time
follows similar decaying patterns, but in general, the scaling tail is higher as t increases. A fat
tail distribution implies that there are numerous small communities coexisting with some
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large communities (Newman, 2004; Clauset et al., 2004). Figure 13 shows statistics of the
community sizes across time and according to the plot, both the standard deviation of
community sizes and the average size of communities increased with time.
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Figure.13 Statistics of community size. <s> is the average community size. o is the standard deviation
of the size of communities at different times t.

In a network of overlapping communities, the overlaps are represented by the links and
the number of those links is represented by the community degree d. Then, the degree d is
the number of communities another community overlaps with. Figure 14 shows the
cumulative distribution of the community degrees in the network. There are some
outstanding community degrees in the end of the tail and these include communities that
cluster the majority of the biggest customers from the network. The central part of the
distribution decays faster than the rest of it. There is an observable curvature in the log-log
plot, however no approximation method fitted the distribution. Figure 14 shows that the
maximum number of degrees d is 63 and corresponds to a relatively small quantity of nodes.
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Figure 14. Cumulative distribution of community degrees d.
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A node i of a network can be characterized by a membership number m;, which is the
number of communities to where the node i belongs to. Figure 15 shows the cumulative
distribution of the membership number m;. The distribution follows a power-law where no
characteristic scale exists. The largest membership number found in the network was 10,
meaning that a company can belong to maximum of 10 different communities
simultaneously. Figure 15 shows that the fraction of nodes that belong to many different
communities is quite small, while the fraction of nodes belonging to at least one community
is high. For example, when m = 1 the percentage of nodes that belong to at least one
community is 50%, while the percentage of nodes that belong simultaneously to 10
communities (m=10) is extremely small. The rest of the communities belong to two or more
communities. The companies that overlap with 10 communities belong to the energy and
water services industries. The majority of the nodes that have m #1 have a degree that is less
than k — 1, meaning they are weakly connected.
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Figure 15. Cumulative distribution function of the membership number m;.

The range in which the communities overlap with each other is also an important property
of the Estonian network of payments. The overlap size is defined as the number of nodes that
two communities share. P(s,) is the proportion of overlaps larger than s,,.
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Figure 16. Cumulative distribution function of the overlap size s,,.
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Figure 16 shows the cumulative distribution function of the overlap size. In general,
although the extent of overlap sizes is limited, the data is close to a power-law dependence,
meaning that there is no characteristic overlap size. The largest overlap size is 22, however
at s, = 9 the number of overlapping nodes becomes small.

In Chapter 1 | discussed the scale-free properties of the degree distributions of the
Estonian network of payments. It is interesting to observe that the scale-free property is also
preserved at a higher level of organization where overlapping communities are present.
In this Chapter | have analysed the community structure of my network by using the Clique
Percolation Method. | found that there are scale-free properties in the statistical distributions
of the community structures. Size, overlap and membership distributions follow shapes that
are compatible with power-laws. Power-law distributions have already appeared in this
network at a global scale at the level of nodes (Renddn de la Torre et al., 2014), and in this
community structure study | have shown that power-laws are present at the level of
overlapping communities as well. This study adds to the existing literature on complex
networks by presenting the first overlapping community analysis of a country’s network of
payments.

An immediate application and utility of the community detection results of this study is
that they could be used in targeted marketing activities. The output is a list of nodes and the
community classification where the nodes belong to. This could be used as input for
predictive analytical models such as product acquisition propensities, churn propensities,
product affinity analyses, for creating marketing profiles or customer segmentations and for
creating customer target lists for product offering (in an effort to propagate consumer buzz
effects). Further applications for community detection in similar economic networks could
involve strengthening relationships between companies of the same community for
improving performance of the whole network, or for identification of patterns between
companies and tracking suspicious business activities.

A question that remains open for future research is to investigate if the similarities in
communities’ features amongst different complex networks arise randomly or if there are
any unknown properties shared by all of them. Another line of research that remains open
for the future is to study the plausibility of predicting changes in a payment network through
communities’ detection analysis.
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3. Multifractal networks

In the late 60’s Benoit Mandelbrot was the first to coin the term “fractal” and he also was the
first one in describing the fractal geometry of nature (Mandelbrot, 1983). Since then the
fractal approach has been widely spread and used in extensive research studies related with
the underlying scaling of different complex structures, including networks.

Whether a single fractal scaling spans, or not, all the constituents or areas of a system,
is a fundamental issue that helps in distinguishing when a system is multifractal or just fractal.
One scaling exponent is enough to characterize completely a monofractal process.
Monofractals are considered homogeneous objects because they have the same scaling
properties branded by one singularity exponent. Instead, a multifractal object requires
several exponents to characterize its scaling properties. Multifractals are inherently more
complex and inhomogeneous than monofractals and portray systems with high variations or
fluctuations that originate from specific characteristics.

Fractal and multifractal analysis helps to reveal the structure of all kinds of systems in
order to have a better understanding of them. In particular, both the fractal and the
multifractal approaches have many different interesting applications in economy.
An interesting line of research is related with the relevance and applicability of fractal and
multifractal analysis in social and economic topics. Regarding social studies, Lu et al., 2004
showed the importance of road patterns for urban transportation capacity based on fractal
analysis of such network. In this study, the authors were able to link the fractal measurement
with city mass measurements. A few recent studies have focused on the analysis of the
changes of multifractal spectra across time to assess changes in economy during crisis periods
(Fotios and Siokis, 2014). Some other studies have focused on gathering empirical evidence
of the common multifractal signature in economic, biological and physical systems
(Pont et al., 2009).

Fractal analysis helps to distinguish global features of complex networks, such as the
fractal dimension. However, the fractal formalism is insufficient to characterize the
complexity of many real networks which cannot be described by a single fractal dimension.
Furuya and Yakubo (2011) demonstrated analytically and numerically that fractal scale-free
networks may have multifractal structures in which the fractal dimension is not sufficient to
describe the multiple fractal patterns of such networks, therefore, multifractal analysis rises
as a natural step after fractal analysis.

Multifractal structures are abundant in social systems and in a variety of physical
phenomena. Inhomogeneous systems which do not follow a self-similar scaling law with a
sole exponent could be multifractal if they are characterized by many interweaved fractal
sets with a spectrum of various fractal dimensions. Multifractal analysis is a systematic
approach and a generalization of fractal analysis that is useful when describing spatial
heterogeneity of fractal patterns (Song et al., 2015). Multifractal network analysis requires
taking into account a physical measure, like the number of nodes within a box of specific size
in order to analyse how the distribution of such number of nodes scales in a network as the
size of the box grows or reduces. In the last years, numerous algorithms for calculating the
fractal dimension and studying self-similar properties of complex networks have been
developed and tested extensively (Palla et al., 2005; Zhou et al., 2007; Gallos et al., 2007;
Schneider et al., 2012; Eguiluz et al., 2003). Song et al., (2007) developed a method for
calculating the fractal dimension of a complex network by using a box-covering algorithm and
identified self-similarity as a property of complex networks (Song et al., 2005). Additionally,
several algorithms and studies on multifractal analysis of networks have been proposed and
developed recently (Li et al., 2014; Liu et al., 2015; Wei et al., 2013; Wang et al., 2012).
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In this sub-section of the Chapter | analyse fractal and multifractal properties of the large
scale economic network of payments of Estonia. | perform a fractal scaling analysis by
estimating the fractal dimension of the network of Estonian payments and its skeleton.
Then, | study the multifractal behaviour of the network by using a sandbox algorithm for
complex networks to calculate the spectrum of the generalized fractal dimensions D(g) and
mass exponents 7(q).

3.1 Fractal network analysis

According to Song et al., (2005), the box-counting algorithm is an appropriate method for
studying global properties of complex networks. The fundamental relation of fractal scaling
is based on the box-covering method which counts the total number of boxes that are needed
to cover a network with boxes of a certain size. The box-covering method is equivalent to the
box-counting method widely used in fractal geometry and is a basic tool for measuring the
fractal dimension of fractal objects embedded in Euclidean space (Feder, 1998). However,
an Euclidean metric is not well defined for networks, thus | use the networks’ adaptation
(Wang et al.,, 2012) of the random sequential box-covering algorithm (Kim et al., 2007) in
order to calculate the fractal dimension of the network and its skeleton. This method involves
arandom process for selecting the position of the centre of each box. Ng(73) is the minimum
number of boxes needed to tile the whole network, where the lateral size of the boxes is the
measure of radius 1 as follows:

Np(rg)~15"2, (18)

where dp is the fractal dimension. If | measure the number of Ny for different box sizes,
then it is possible to obtain the fractal dimension dz by obtaining the power law fitting of the
distribution. The algorithm selects a random node at each step, and this node is the seed that
will be the centre of a box. Then | search the network by distance 7z from the seed node and
cover all the nodes that are located within that distance, but only if they have not been
covered yet. Later, | assign the newly covered nodes to the new box; if there are no more
newly covered nodes then the box is removed. This process is repeated until all the nodes of
the network belong to boxes. Before using the algorithm | calculate the skeleton of the
Estonian network of payments.

One of the main challenges of complex network studies is the identification of critical
structural features that are underneath the network’s complexity. This is related with the
basic concept of: the distinctive character of a whole is inside just a few of its parts,
for example in specific colours and shapes of a painting, particular notes or tunes in a song
or certain keywords in a text or speech. This basic concept is also true for complex networks,
where only a few parts of the whole network reflect the most important properties of it.
For example, in large-scale networks only a small number of links are critical for the network
to exist as a whole. A skeleton network is generally smaller than the original and it reproduces
all the fundamental properties of the whole because it contains the essence of the network.
Grady et al., (2012) analysed the network of international flight connections and discovered
that the skeleton network consists of just 6.76% of the original network. The skeleton
network concept can be used to detect epidemic propagations of disease when indicating
which individuals are key participants in a social network or it can be useful when describing
ecosystems to identify the species that should not be damaged at all to avoid jeopardizing
the whole network.
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The concept of skeleton was first introduced by Kim et al., (2004). The skeleton is a
particular type of spanning tree based on the link betweenness centrality (a simplified
quantity to measure the traffic of networks) that is entrenched beneath the original network.
The skeleton provides a shell for the fractality of the network and is formed by links with the
highest betweenness centralities. Only the links that do not form loops are included.
The remaining links from the original network which are not included in the skeleton are local
shortcuts that contribute to loop formation, meaning that the distance between any two
nodes in the original network may increase in the skeleton. A fractal network has a fractal
skeleton beneath which is distressed by these local shortcuts but it preserves fractality.
For a scale-free network the skeleton also follows a power-law degree distribution where the
degree exponent might differ slightly from that of the original network. When studying the
origin of fractality in networks, actually the skeleton is more useful than the original network
itself due to its unsophisticated and simplistic tree structure (Goh et al.,, 2006). In general,
the skeleton preferentially collects the sections of the network where betweenness is high
and this preserves the structure and simplifies its complexity. Therefore, by looking at the
properties of the skeleton it is easier to appreciate the topological organization of the original
network.

In order to calculate the skeleton structure of a complex network, the link betweenness of
all the links in the network has to be calculated. The betweenness centrality of a network
(of a link or a node), is defined as follows:

z N (i
bi — ]k( ) ) (19)
jkeNj=k Tk

where N is the total number of nodes, n;; is the total number of shortest-paths between
nodes j and k. n;, (i) is the total number of shortest-paths linking nodes j and k that passes
through the node i. In order to perform the fractal scaling analysis, | used Dijkstra’s algorithm
(Gibbons, 1985); then | used the box-covering algorithm to calculate the fractal dimension of
the network and the skeleton to compare both values.

| present a fractal scaling analysis by using the box-counting algorithm expressed in
Equation 20 and | calculated the fractal dimension of the network and its skeleton. Figure 17
shows a visualization of the graph representation of the skeleton of the network.
The box-covering method yields a fractal dimension dgs=2.32 £ 0.07 for the skeleton network
and for the original network the fractal dimension is dg,= 2.39 £+ 0.05.

Figure 17. Graph representation of the skeleton of the Estonian network of payments.
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The comparison of the fractal scaling in the network and its skeleton structure revealed its
own patterns according to the fractality of the network. Figure 18 shows a fractal scaling
representation of the network and its skeleton, where the fractal dimension is the absolute
value of the slope of the linear fit.
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Figure 18. Fractal scaling representation of the network. The original network (o) and the skeleton
network (e). The straight line is included for guidance and has a slope of 2.3. The analysis includes only

the giant connected cluster of the network.

As seen in the plot of Figure 18, the respective number of boxes needed to cover both
networks is very similar but not identical, actually more boxes were needed for covering the
skeleton. The largest distance between any two nodes in the network of payments is 29,
while the largest distance between any two nodes in the skeleton network is 34.

3.2 Multifractal network analysis

Scale-free networks are commonly observed in a wide array of different contexts of nature
and society. In the first sub-section of this Chapter | have shown that the Estonian network
of payments has scale-free properties characterized by power-law degree distributions

In general, multifractality is expected to appear in scale-free networks due to the
fluctuations that occur in the density of local nodes. Tél et al., (1989) introduced a sandbox
algorithm based on the fixed-size box-counting algorithm (Halsey et al.,, 1986) which was
used and adapted for multifractal analysis of complex networks by Liu et al., (2015). In order
to determine the multifractal dimensions of the Estonian network of payments, | chose this
adapted sandbox algorithm because it is precise, efficient and practical. Moreover, a study
by Song et al., (2015) has shown that this algorithm gives better results when it is used in
unweighted networks.

The fixed-size box-counting algorithm is one of the most known and efficient algorithms
for multifractal analysis. For a given probability measure 0 < u < 1 in a metric space Q with
a support set E, | consider the following partition sum:

Z@= ) W@, (20)

u(B)#0

where the parameter g € R, and describes the moment of the measure. The sum runs over
all the different non-overlapping (or non-empty) boxes B of a given size € that covers the
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support set E. From this definition, it is easy to obtain Z.(q) =0 andZ.(0) = 1.
The function of the mass exponents 7(q) of the measure p is defined by:

(nte@)

w(q) = lim e

&£-0

(21)

Then, the generalized fractal dimensions D(q) of the measure u are defined as follows:

_7(q)
and
Z
Y (1) —
D(l) - él_";g lns ;q 1! (23)
where
Ze= Y uB)nuB). (24)
u(B)#0

The generalized fractal dimensions D(q) can be estimated with linear regression of
[InZ.(q)]/lg — 1] against In € for g # 1, and similarly a linear regression of Z; . againstIn e
for g = 1. D(0) is the fractal dimension or the box-counting dimension of the support set E
of the measure u. D(1) is the information dimension and D (2) is the correlation dimension.

For a complex network, a box of size B can be defined in terms of the distance Iz, which
corresponds to the number of links in the shortest-path between two nodes. This means that
every node is less than [y links away from another node in the same box. The measure u of
each box is defined as the ratio of the number of nodes that are covered by the box and the
total number of nodes in the whole network.

Multifractality of a complex network can be determined by the shape of 7(q) or D(q)
curves. If T(q) is a straight line or D(q) is a constant, then the network is monofractal;
similarly if D(q) or t(q) have convex shapes, then the network is multifractal. A multifractal
structure can be identified by the following signs (Grassberger and Procaccia, 1983): multiple
slopes of T(q) vs q, non-constant D(q) vs q values and f(a) vs a value covers a broad range
(not accumulated at nearby non-integer values of a).

Firstly, | calculate the shortest-path distance between any two nodes in the network and
map the shortest-path adjacency matrix By,y using the payments adjacency matrix Ay.y-
Then | use the shortest-path adjacency matrix By,y as input for multifractal analysis.
The central idea of the sandbox algorithm is simply to select a node of the network in a
random fashion as the centre of a sandbox and then count the number of nodes that are
inside the sandbox. Initially, none of the nodes has been chosen as a centre of a box or as a
seed. | set the radius r of the sandbox which will be used to cover the nodes in the range
r €[1,d], where d (diameter) is the longest distance between nodes in the network and radii
r are integer numbers. | ensure that the nodes are chosen randomly as centre nodes by
reordering the nodes randomly in the whole network. Depending on the size N of the
network, | choose T nodes in random order as centres of T sandboxes; then | find all the
neighbouring nodes within radius r from the centre of each box. | count the number of nodes
contained in each sandbox of radius r, and denote that quantity by S(r). | calculate the
statistical averages ([S(7)?71]) of [S(r)?97!] over all the sandboxesT of radius 7.
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The previous steps are repeated for each of the different values of radius r in order to obtain
the statistical average ([S(7)?71]) and use it for calculating linear regression. The generalized
fractal dimensions D(q) of the measure u are defined by

In([S(r)/SO]*") 1

b@=lm—— s 19k (25)
or rewritten as
m([S(M]971) « D(q)(q — 1) In(r/d) + (g — DIn(S,), (26)

where S(0) is the size of the network and the brackets mean taking statistical average over
the random selection of the sandbox centres. | run the linear regression of In({[S()]2~*))
against (¢ — 1)In(r/d) to obtain the generalized fractal dimensions and similarly, calculate
the linear regression of In({[S(r)]971)) against In(r/d) to obtain the mass exponents 7(q).
From the shapes of the generalized fractal dimension curves, | can conclude if multifractality
exists or not in this network.

Linear regression is an important step to obtain the correct range of radius r € [T1in Tmax]
that is needed to calculate the generalized fractal dimensions (defined by Equations 25 and
26) and the mass exponents (defined by Equation 21). | found an appropriate range of radii
r within the range of the interval located between 2 and 29 of the linear regression, thus
selected this linear fit scaling range to perform multifractal analysis (I set the range of g values
from -7 to 12).

I calculated 7(q) and the D(q) curves using the sandbox algorithm by Liu et al., (2015) and
based upon the shapes obtained from the spectrum in Figures 19(a) and 19(b), it can be seen
that the curves are non-linear, suggesting that the network is multifractal.
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Figure 19. (a) Plot of mass exponents t(q) as function of q. (b) Plot of generalized fractal dimensions
D(q) as function of q. Curves indicated by circles represent numerical estimations of the mass exponents
and generalized fractal dimensions, respectively.
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In Figure 19(b), the D(q) function decreases sharply after the peak reaches its end when
q = —4. This could be interpreted as the high densities around the hubs in the network.
The hubs have a high number of links connected to them; therefore the density of links
around the sections near the hubs is higher than in other parts of the network. These hub
nodes or important companies have a noticeable larger amount of business partners (for
example: customers, suppliers or any other business parties that interact financially) than the
rest of the companies in the network have, and it is interesting to observe that this
characteristic can be explored and identified by looking at the values of D(q) spectra.
The multifractality seen in this network reveals that the system cannot be described by a
single fractal dimension suggesting that the multifractal approach provides a better
characterization; hence, this means that the Estonian economy is multifractal.

Table 4 Comparison of the maximum values of D(q) in different networks

Number
of Highest

Network nodes D(q) Reference
Pure fractal network 6222 2.8 (Li etal., 2014)
Small world network 6222 6.6 (Li etal., 2014)
Semi fractal network 6222 3.1 (Li et al., 2014)
Sierpinski weighted fractal network 9841 2.0 (Song et al., 2015)
Cantor dust weighted fractal network 9841 3.2 (Song et al., 2015)
High-energy theory collaboration weighted
network 8361 6.0 (Song et al., 2015)
Astrophysics collaboration weighted network 16706 6.2 (Song et al., 2015)
Computational geometry collaboration weighted
network 7343 5.1 (Song et al., 2015)
Barabasi & Albert model scale-free network 10000 3.6 (Liu et al., 2015)
Newman and Watts model small-world network 10000 4.8 (Liu et al., 2015)
Erd6s-Rényi random graph model 10000 3.9 (Liu et al., 2015)
Barabdsi & Albert model scale-free network 7000 3.4 (Wang et al., 2012)
Random network 5620 3.5 (Wang et al., 2012)
Random network 449 2.4 (Wang et al., 2012)
Protein-Protein interaction network: Human 8934 4.9 (Wang et al., 2012)
Protein-Protein interaction network: Arabidopsis
thaliana 1298 2.5 (Wang et al., 2012)
Protein-Protein interaction network: C. elegans 3343 4.5 (Wang et al., 2012)
Protein-Protein interaction network: E. coli 2516 4.1 (Wang et al., 2012)
Small world network 5000 3.0 (Wang et al., 2012)

(Renddn de la Torre
Estonian network of payments 16613 7.8 etal., 2016)

The quantity AD(q) describes the changes in link density in this network. | use
AD(q) = D(q)max — limD(q) to observe how the values of D(q) change across the
spectrum. From Figure 19(b) it was found that lim D(q) = 0.37 and D(q) max = 7.8 and this
means that AD(q) = 7.43. A large D(q) value means that the link distribution is very
irregular, suggesting there are areas near the hubs where the links are densely grouped
contrasting with areas where the nodes are connected with only a few links. In this network
this means that just a few companies have the role of hubs, while the rest are just small

47



participants of the payments network. Table 4 shows a comparison of the maximum values
of D(q) in different networks.

In this Chapter | presented the first multifractal analysis of a complex network of
payments. | studied specific fractal and multifractal properties of a novel and unique network:
the Estonian network of payments. In this study, | presented a fractal scaling analysis where
| identified the underlying skeleton structure of the network. | calculated its fractal dimension
and compared it with the fractal dimension of the original network. | found that the skeleton
network had a slightly smaller fractal dimension than the original network. This comparison,
between the fractal scaling in the original network and the corresponding skeleton network
reveals that there are only slightly distinct patterns according to the fractality in the network.
This means that the skeleton network preserves the structure very well while simplifying the
complexity of the network. Then, the skeleton network captures the general structure of the
network and by observing the properties of the skeleton, an easier visualization of the
topological organization of the network can be achieved.

Fractal analysis helps to calculate and understand the fractal dimension of complex
networks. However, it is necessary to describe and characterize the multiple fractal patterns
which cannot be described by a single fractal dimension, thus | also performed a multifractal
analysis on the Estonian network of payments. Multifractal analysis allows the calculation of
a set of fractal dimensions, particularly the generalized fractal dimensions. | examined the
general multifractal structure and explored some statistical features of this network. In order
to study the multifractal structure, | calculated the spectrum of the mass exponents t(g) and
the generalized fractal dimensions D(q) curves, using a sandbox algorithm for multifractal
analysis of complex networks adapted by Liu et al., (2015). This algorithm is based on the
fixed-size box-counting algorithm developed by Tél et al., (1989). The sandbox algorithm
utilized in this study could also be used to explore and characterize other economic networks.

My results indicated that multifractality exists in the Estonian network of payments, and
this suggests that the Estonian economy is multifractal (from the point of view of networks).
| found large values of D(q) spectra and this means that the distribution of links is quite
irregular in the network, suggesting there are specific nodes which hold densely connected
links, meanwhile other nodes hold just a few links. This type of structure could be relevant
when specific critical events occur in the economy that could threaten the whole network.

It is important to continue observing, describing and analysing the structures and
characteristics of economic complex networks in order to be able to understand their
underlying processes or to be able to detect patterns that could be useful for predicting or
forecasting events and trends. The addition of evidence through empirical studies of
economic networks represents a step forward towards the knowledge on the universality
and the unravelling of the complexity of economic systems.

Further applications and studies could extend this topic by examining the potential factors
that drive the strength of the multifractal spectrum. Some applications could involve studying
the origin of such factors. Another interesting line of research would be to study the patterns
and the changes of the multifractal spectrum across different periods of time. Particularly,
it would be interesting to analyse such patterns during determined financial crisis periods for
risk pattern recognition purposes. Also, it would be interesting to take into account different
probability measures for such kind of multifractal analysis. Another direction of the studies
could be to focus on building network models that attempt to forecast country money flows
or potential industry growth trends based on transactions data.
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Conclusions

Summary of the results

The presented studies address global properties and statistics related to the topological
structure of the large-scale payments network of an entire country (Estonia) by using
payments data. Additionally, | have reviewed some topics related with its community
structure and moreover, | have analysed some aspects related to multifractal and fractal
properties of complex networks.

Complex networks can be considered as the skeleton of complex systems and they are
present in many kinds of social, economic, biological, chemical, physical and technological
systems. In the network of Estonian payments | found scale-free degree distributions, small
world property, low clustering coefficient, disassortative degrees and heterogeneity
properties. Its scale-free structure indicates that a low number of companies in Estonia trade
with a high number of companies, while the majority of the companies trade with only few.
The clustering coefficient distribution suggests the existence of a hierarchic structure in the
network. This network is a small world with just 7 degrees of separation. The connectivity is
smaller than the overall clustering coefficient, therefore the Estonian network of payments
is not random. The diameter value suggests there is a preference among companies for
particular paths of money.

| explored the relations between weighted quantities and their network underlying
structures. | investigated the strength of interactions (number of payments and the volumes
of payments) and the interconnectivities among these interactions. To achieve this, | did
particular experiments, calculated specific metrics, and thus revealed interesting
micro-structural features.

| tested the robustness of the network with an approach that focuses on the collective
influencer nodes. First, | located the key nodes that prevent the network from breaking into
disconnected components. The simulation assumed a targeted removal of key nodes which
caused a quick growth in the average shortest path length until the network was destroyed
at an optimal percolation threshold of 6%, while in a random removal of nodes the damage
was extremely small. This revealed the robustness of this economic network against random
attacks but also revealed its vulnerability to smart attacks. The low percentage of the optimal
percolation threshold reveals that the most influential companies in the network are not
necessarily the most connected ones or those having more economic activity and that a small
quantity of companies maintains the unity of the whole network.

Later, | analysed the community structure of the network by using the Clique Percolation
Method. | found that there are also scale-free properties in the statistical distributions of the
community structure. Size, overlap and membership distributions follow shapes that are
compatible with power-laws. Power-law distributions have already appeared in this network
at a global scale in the level of nodes, and in this community study | have shown that
power-laws are also present at the level of overlapping communities.

An immediate application for the community detection output is that it can be used in
targeted marketing activities, as input for predictive analytical models such as in product
acquisition propensities, churn, product affinity analyses, for creating marketing profiles or
customer segmentations and for creating customer target lists for product offering (in an
effort to propagate consumer buzz effects). Further applications for community detection in
similar economic networks could involve the identification of patterns between companies,
tracking suspicious business activities and strengthening relationships between companies
of the same community for improving performance of the whole network.
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In the last Chapter, | presented a fractal and multifractal analysis of the network.
| identified the underlying structure of the network (its skeleton) and measured the fractal
dimension of the skeleton to compare it with the fractal dimension of the original network.
Both fractal dimensions were similar but the fractal dimension of the skeleton was slightly
smaller. | also analysed the general multifractal structure by calculating the spectrum of the
mass exponents (q) and the generalized fractal dimension D(q) curves, through a sandbox
algorithm for multifractal analysis of complex networks. My results indicated that
multifractality exists in the Estonian network of payments, and this suggests that the Estonian
economy is multifractal (from the point of view of networks). | found large values of D(q)
spectra, which means that the distribution of links is quite irregular in the network,
suggesting there are specific nodes which hold densely connected links while other nodes
hold just a few links. This type of structure could be relevant when critical events occur in the
economy that could threaten the whole network.

It is important to continue studying the structures and characteristics of economic
complex networks in order to be able to understand their underlying processes and to be
able to detect patterns that could be useful for predicting or forecasting events and trends.
The addition of evidence through empirical studies of fractality, multifractality, communities’
detection and structural properties of economic networks represents a step forward towards
unravelling of the complexity of economic systems.

Main conclusions proposed to defend

1. Istudied the structure of the economic network of an entire country, after extracting
the network’s topology, characteristics and statistics | conclude that this economic
network has scale-free properties (in its degree distributions and statistical
distributions of the community structure such as: size, overlap and membership
distributions). The network also shows small world characteristics and low clustering
coefficient.

2.  The network is disassortative in terms of degree. The system shows topological
heterogeneity due to its scale-free structure in the degree distributions (few
companies in Estonia trade with many parties while the majority trade with only a
few).

3. I performed robustness tests on the network: One based on centralities and another
test based on collective influencer nodes. In the first analysis the percolation
threshold is 8% and in the second is 6%. | found the nodes that prevent the network
from breaking into disconnected components. The analysis revealed the robustness
of the network against random attacks but it also revealed its vulnerability to
targeted attacks. This analysis concludes that the most influential companies in the
network are not necessarily the most connected ones or those which have more
economic activity. Only a small number of companies maintain the unity of the
network.

4. | presented the first multifractal analysis of a complex network of payments where |
studied specific fractal and multifractal properties.

5. lidentified the skeleton structure of the network (as part of a fractal scaling analysis)
where | calculated the fractal dimension. The analysis showed that the both the
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fractal dimensions of the skeleton network and the original network are very similar,
which means that the skeleton network preserves the structure very well while it
simplifies the complexity of the network. This means that one can study a simplified
version of the network (skeleton networks) and still capture the general structure of
the original network itself.

6. | calculated the spectrum of the mass exponents and the generalized fractal
dimensions curves. The results indicated that there is multifractality in the network,
suggesting that the Estonian economic system is multifractal.

7. | found large values of D(q) spectra and this means that the distribution of links is
quite irregular in the network, suggesting there are specific nodes which hold
densely connected links, meanwhile other nodes hold just few links. This type of
structure could be relevant when specific critical events occur in the economy that
could threaten the whole network.

8. | studied the community structures of the Estonian network of payments by using
the Clique Percolation Method. The output of the community detection analysis
could be used by the bank for targeted marketing activities or as features for
predictive analytical models (propensity models for acquisition of products, or for
creating marketing profiles or segmentation).

Recommendations for further work

It is important to continue observing, describing and studying the structures and
characteristics of economic complex networks in order to be able to understand their
underlying processes and to detect patterns that could be useful for predicting or forecasting
events and trends.

Regarding community structure in economic networks, a question that remains open for
future research is to investigate if the similarities in communities’ features amongst different
complex networks arise randomly or if there are any unknown properties shared by all of
them. Another interesting open line of research is to study the plausibility of predicting
changes in a payment network through community detection analysis. Further applications
in economic networks could involve strengthening relationships between companies of the
same community to improve the performance of the whole network, targeted marketing,
identification of patterns between companies and tracking of suspicious business activities.

Further applications of multifractal studies in economic networks might involve examining
the potential factors that drive the strength of the multifractal spectrum. Some applications
could involve studying the origin of such factors. Another interesting line of research would
be to study the patterns and the changes of the multifractal spectrum across different periods
of time. Particularly, it would be interesting to analyse such patterns during financial crisis
periods for risk pattern recognition purposes. Also, it would be interesting to take into
account different probability measures for such kind of multifractal analysis. A further
direction of the studies could focus on building network models that attempt to forecast
country money flows or potential industry growth trends based on data of transactions.
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List of Figures

Figure 1. Time evolution activity of patterns (payments and volumes). (a) Monthly trading
volumes of payments V. (b) Monthly number of transactions T. (c) Average degree < d >>
versus time t. X-axis represents the number of the month of year 2014.

Figure 2. (a) Empirical degree distribution for the connectivity network of the Estonian

network of payments. X axis is the number of k degrees and Y axis is P(k). (b) out-degree

distribution of the network, P (k) ~ k=23°, (c) Empirical in-degree distribution P (k) ~
k249

Figure 3. Node out-degree distribution by strength.
Figure 4. Components of a directed network.
Figure 5. Distribution of the clustering coefficient of the Estonian network of payments.

Figure 6. Distributions of strength. (a) Node out-strength as a function of degree. (b) Node
in-strength as a function of degree. Empty squares represent value of payments and full
squares represent the number of payments.

Figure 7. Participation ratio plots. (a) Participation ratio as a function of the inverse degree
for out-going payments and in-coming payments. Black squares represent out-going
payments, white squares in-coming. (b) Participation ratio as a function of the distance from
the end of the year expressed in months for incoming (black circles) and outgoing (white
circles) payments.

Figure 8. GCC of the network of payments as a function of the percolation threshold Pc.

Figure 9. Plots on the effect of the targeted and random damage on the network of payments.
(a) The average shortest-path length < [ > in the GCC plotted against the percentage of
removed nodes. (b) The GCC plotted against the percentage of removed nodes. Continuous
lines display the effect of the targeted removal and the dashed lines display the effect of the
random removal of nodes. Pc is the percolation threshold, for each case.

Figure 10. Visual representation of a section of the overlapping network of communities
(Estonian network of payments). The circles (nodes) represent communities and the black
lines between them represent shared nodes between communities.

Figure 11. Plot of the average size of community (s) and number of communities (c) as k
increases. Squares represent the number of communities and triangles represent the size of
the communities.

Figure 12. Cumulative community size distribution at different times t.

Figure 13. Statistics of community size. < s > is the average community size. o is the
standard deviation of the size of communities at different times t.

Figure 14. Cumulative distribution of community degrees d.
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Figure 15. Cumulative distribution function of the membership number m;.

Figure 16. Cumulative distribution function of the overlap size s,,.

Figure 17. Graph representation of the skeleton of the Estonian network of payments.
Figure 18. Fractal scaling representation of the Estonian network of payments. The original
network (o) and the skeleton network (®). The straight line is included for guidance and has
a slope of 2.3. The analysis includes only the giant connected cluster of the network.

Figure 19. (a) Plot of mass exponents 7(q) as function of g. (b) Plot of generalized fractal

dimensions D(g) as as function of q. Curves indicated by circles represent numerical
estimations of the mass exponents and generalized fractal dimensions, respectively.
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List of Tables

Table 1. Scaling exponents and clustering coefficients for different types of reported
networks. yi = scaling exponent for in-degree distribution. yo = scaling exponent for the
out-degree distribution. y = scaling exponent for the connectivity distribution. *Refers to
average clustering coefficient.

Table 2. Network's characteristics.* All money quantities are expressed in monetary units
and not in real currencies in order to protect the confidentiality of the data set. The purpose
of showing monetary units is to provide an idea of the proportions of quantities and not to
show exact amounts of money.

Table 3. Summary of Statistics N = number of nodes. < k > = average degree. yo = scaling
exponent of the out-degree empirical distribution. yi = scaling exponent of the in-degree
empirical distribution. y = scaling exponent of the connectivity degree distribution. <C>
average clustering coefficient. </ > = average shortest path length. T = connectivity %. D
Diameter. < o > = average betweenness. GCC = Giant Connected Component. DC =
Disconnected Component. GSCC = Giant Strongly Connected Component. GOUT = Giant Out-
Component.

Table 4. Comparison of the maximum values of D(g) in different networks.
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Abstract

From Econophysics to Networks: Structure of the Large-Scale
Estonian Network of Payments

The thesis addresses the study of the structures and dynamics of economic complex networks
through the exploration of different experiments on a unique, interesting and particular
economic network: the large-scale Estonian network of payments. Mainly | focus on the
analysis of global/local topology, community detection and fractal/multifractal properties.

This is the first study that analyses the economic development of a country during one
year, from a complex network approach, through payments data. My data set is exclusive in
its kind because around 80% of Estonia’s bank transactions are done through only one bank
and | obtained the payments data from that bank (Swedbank), hence, the economic structure
of the whole country can be reconstructed and this data set reproduces fairly well the trends
of money of the whole Estonian economy. In this network, the nodes represent Estonian
companies and the links are established by payments between these nodes.

| explored the topology of this network by extracting the scaling-free and structural
properties of this network. | show that this network has scale-free properties in its degree
distributions. | also found that this network has small world characteristics, low clustering
coefficient and is disassortative (degree). | performed simulations to reveal the resiliency of
the network against random and targeted attacks of the nodes with two different
approaches. In the first analysis, | used an approach based on centralities and the second
analysis was based on a collective influencer method. The results of such analysis revealed
the robustness of this economic network against random attacks but they also revealed its
vulnerability towards smart attacks.

Revealing the community structure exhibited by real networks is a fundamental phase
towards a comprehensive understanding of complex systems beyond the local organization
of their components. | also studied the mesoscale structure of this network. | have analysed
the community structure of the Estonian network of payments by using the Clique
Percolation Method. | found that there are scale-free properties in the statistical distributions
of the community structure. Size, overlap and membership distributions follow shapes that
are compatible with power-laws.

| also presented the first multifractal analysis of a complex network of payments. In here,
| studied specific fractal and multifractal properties. | found that the skeleton network had a
slightly smaller fractal dimension than the original network. My results indicated that
multifractality exists in the Estonian network of payments, and this suggests that the Estonian
economy is multifractal (from the point of view of networks).
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Kokkuvote

Majandusfiilisikast vorgustikeni: Eesti suuremahulise
maksevorgustiku struktuur

Selles vaitekirjas uuritakse majanduse kompleksvorgustike struktuuri ja diinaamikat, viies
selleks labi mitmesuguseid eksperimente Uhe ainulaadse, huvitava ja erilise majandusliku
vorgustiku peal, milleks on Eesti suuremahuline maksete vdrgustik. Anallitsis keskendume
peamiselt globaalsele ja lokaalsele topoloogiale, kogukondade tuvastamisele ning
fraktaalsete ja multifraktaalsete struktuuride tuvastamisele.

See on esimene teadust6o, milles anallilisitakse maksete andmestiku pohjal ihe riigi
majanduse arengut tervikuna, kasutades selleks kompleksvGrgustiku meetodit. Meie
andmestik on ainus omataoline, kuna umbes 80% pangatehingutest Eestis tehakse labi Gihe
panga (Swedbanki) ja me saime kasutada nende maksete andmestikku. Seet6ttu on v&imalik
rekonstrueerida terve riigi majanduse struktuur, sest meie andmestik kajastab (sna hasti
terve Eesti majanduse rahatrende. S6lmed selles vorgustikus tahistavad Eesti ettevotteid ja
Uhendused on moodustunud nende sGlmede vahel toimuvatest maksetest.

Me uurisime saadud vorgustiku topoloogiat, vottes vorgustikust vélja mitteskaleeritavad
ja strukturaalsed tunnused. Naitasime, et vérgustiku valentside jaotusel on skaalata omadusi.
Samuti leidsime, et meie voérgustikul on vdikese maailma tunnuseid ja vaike
klasterdumiskoefitsient ning et see oli teatud maaral mitteassortatiivne. Viisime kahte eri
meetodit kasutades labi simulatsioonid, mis paljastasid vorgustiku hea vastupidavuse
juhuslike ja sihitud riinnakute korral s6lmedele. Esimeses analiilsis kasutasime tsentraalsusel
pdhinevat meetodit, teise anallilsi aluseks oli kollektiivsete mdjutajate meetod. Need tdid
védlja meie majandusvérgustike tugevuse juhuslike riinnakute korral, kuid samuti vorgustike
haavatavuse tarkade riinnakute korral ja Iabiimbumise lavendi.

Kogukonna struktuuri esiletoomine reaalse vorgustiku nditel on oluline etapp teel
komplekssiisteemide parema mdistmise poole, viies meid edasi komponentide lokaalsest
struktuurist. Me uurisime oma vorgustikus ka keskmise md&d&tkava struktuure. Oleme
analtUsinud Eesti maksevérgustike kogukondlikku  struktuuri, kasutades selleks
kogukonnatuvastuse meetodeid. Leidsime, et kogukonnastruktuuri jaotustel on skaalata
tunnuseid. Suurus, kattuvus ja lilkkmete jaotus vastab kujunditele, mis on vastavuses voimsuse
reeglitega.

Samuti teostasime maksete vorgustiku esimese multifraktaalanalliiisi. Uurisime selle
vorgustiku konkreetseid fraktaalseid ja multifraktaalseid omadusi. Arvutasime vilja tema
fraktali mé6tmed ja vordlesime neid algse vorgustiku fraktali méGtmetega. Leidsime, et
raamvorgustiku fraktali mé6tmed olid veidi vdiksemad kui algsel vérgustikul. Meie tulemused
viitavad sellele, et Eesti maksete vorgustikus esineb multifraktaalsust, mis omakorda lubab
oletada, et Eesti majandus on multifraktaalne (vérgustike seisukohalt). Empiiriliste uuringute
kaudu lisanduvad t&endid, mis viitavad majandusvorgustike fraktaalsusele ja
multifraktaalsusele, on samm universaalsuse mdistmise poole ja avab meie ees
majandussiisteemide keerukuse.
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This paper presents the first topological analysis of the economic structure of an entire
country based on payments data obtained from Swedbank. This data set is exclusive in
its kind because around 80% of Estonia’s bank transactions are done through Swedbank;
hence, the economic structure of the country can be reconstructed. Scale-free networks
are commonly observed in a wide array of different contexts such as nature and society.
In this paper, the nodes are comprised by customers of the bank (legal entities) and the
links are established by payments between these nodes. We study the scaling-free and
structural properties of this network. We also describe its topology, components and be-
haviors. We show that this network shares typical structural characteristics known in other
complex networks: degree distributions follow a power law, low clustering coefficient and
low average shortest path length. We identify the key nodes of the network and perform
simulations of resiliency against random and targeted attacks of the nodes with two differ-
ent approaches. With this, we find that by identifying and studying the links between the
nodes is possible to perform vulnerability analysis of the Estonian economy with respect
to economic shocks.
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are. This is an intuitive path that starts to follow the
approach that fusions economy and complex systems

1. Introduction

The network approach applied to financial and eco-
nomic systems has potential to go further on the fron-
tiers of research; there are two currents of origin: one
comes from finances, economics and sociology, and the
second one comes from computer science, big data chal-
lenges, physics, and complex evolving network stud-
ies [1]. Both converge in how node representation is
done and how the relationships and interactions across
the nodes form, whatsoever the nature of these links

* Corresponding author. Tel.: +372 59062059.
E-mail address: stretomx@gmail.com (S. Rendon de la Torre).

http://dx.doi.org/10.1016/j.chaos.2016.01.018
0960-0779/© 2016 Elsevier Ltd. All rights reserved.

studies.

Nowadays, networks are a central concept and they
can be: biological, technological, economic, social, cultural,
among other types. The physical approach has made sig-
nificant effort during the recent years around the study
of evolution and structure of networks [2-9] while some
other works have been dedicated to certain network phe-
nomena and specific properties [10,11].

Since the structure of a network has direct influence on
the vulnerability and dynamic behavior of the underlying
system, important network properties such as stability and
robustness can be understood by analyzing the clustering
coefficient, the degree distribution and by determining the



S. Renddn de la Torre et al./Chaos, Solitons and Fractals 90 (2016) 18-27 19

average shortest path length between nodes in the net-
work [12,13].

In networks, the degree distribution P(k) is the prob-
ability that a node links to k number of nodes. Complex
networks can be separated into two classes based on their
degree distributions:

(1) Homogeneous networks are identified by degree dis-
tributions that follow an exponential decay. The dis-
tribution spikes at an average k and then decays ex-
ponentially for large values of k, such as the random
graph model [14,15] and the small-world model [4],
both leading to an homogeneous network: in which
each node has approximately the same number of links
k and a normal distribution where the majority of the
nodes has an average number of connections, and only
some or none of the nodes have only some or lots of
connections.

Heterogeneous large networks or scale-free networks,
are those for which P(k) decays as a power law with
a characteristic scale. The degree distribution follows
a Pareto form of distribution where many nodes have
few links and few nodes have many links, therefore,
highly connected nodes are statistically significant in
scale-free networks.

—
N
—

Network topology gives a fair basis for investigating
money flows of customer driven banking transactions. A
few recent papers describe the actual topologies observed
in different financial systems [13,16-19]. Other works have
focused on shocks and robustness in economic complex
networks [20,21-24].

Scale-free networks display a strong tolerance against
random removal of nodes [14] whereas exponential net-
works not (this means an exponential network can break
easily into isolated clusters). Scale-free networks are more
resistant to random disconnection of nodes because one
can eliminate a considerable number of nodes randomly
and the network’s structure is preserved and will not break
into disconnected clusters. However, the error tolerance
is acquired at the expense of survival attack capability.
When the most connected nodes are targeted, the diam-
eter of a scale-free network increases and the network
breaks into isolated clusters. This occurs because when re-
moving these nodes, the damage disturbs the heart of the
system, whereas a random attack is most likely not. One
way to entangle the interaction of the nodes is by taking
a look to the heavy tail effects they produce and see the
implications on their robustness. Heavy-tailed distributions
are strong against random perturbations but are extremely
sensitive to targeted attacks.

Unlike previous studies, we illustrate the topology of
an unstudied complex system that can be analyzed as a
particular case of a complex network: Estonia’s network
of payments. We study the full country economic devel-
opment, found on Swedbank’s data as a proxy. The main
goal of our analysis is to study the structure of this eco-
nomic network. Additionally, this data set is unique given
the fact that around 80% of Estonia’s bank transactions are
done through Swedbank, hence it is expected to reproduce
fairly well the structure of the Estonian economy.

This paper is organized as follows. In Section 2 we pro-
vide the description of the selected data and the methods
utilized; Section 3 is devoted to the discussion of the re-
sults and Section 4 concludes the study.

2. Materials and methods

2.1. Data

Payment events data from Swedbank AS were used to
create the network. Data and information related to iden-
tities of the nodes will remain confidential and cannot be
disclosed. We believe the utilized data describes fairly well
the tendencies of money transactions and is the best pos-
sible information available.

The considered dataset corresponds to year 2014. We
analyze the network of the payment flows of Swedbank
(Estonia), specifically: domestic payments transferred elec-
tronically from customer to customer (legal entities). There
are 16,613 nodes and 2,617,478 payment transactions in the
network. There are 43,375 links if we count them as undi-
rected.

A network (or a graph) is a set of nodes connected by
links. The links are the connections between the nodes. In
our network, the nodes are the companies and a link is
established from one node to another if at least 20 pay-
ments were executed, or more than 1000 money units
were paid/received per year. When there is a link from a
node to itself, it is called a loop. We eliminated loops re-
sulting from parties making money transfers across their
own bank accounts.

There are several ways to define the network of pay-
ments; in this study we consider three definitions. The first
definition is to look at the structure as a weighted graph
where the links have certain weights associated to them
representing less or higher important relationships with
the nodes. Transactions between any two parties add to
the associated link weights in terms of value of payments
settled. In this representation we built a payment adja-
cency matrix that represents the whole image of the net-
work and each element represents the overall money flow
traded between companies i and j. This non-symmetric
matrix represents the weights of the volumes of money ex-
changed between the companies.

The second definition is to consider an undirected
graph, ignoring directions and weights of the payments
and considering that two parties are connected if they
share at least one payment, then alP}. =a]'4,. and alP}. =1 if
there is a transaction between company i and j or all.’j =
0 if there is no transaction between them. Diagonal ele-
ments are equal to 0 and non-diagonal elements are either
Oor 1

The links can also represent directions on the flow of
the relationship. They could be directed or undirected. The
third definition is a un-weighted-directed graph where the
links follow the flow of money, such that a link is incom-
ing to the receiver and outgoing from the sender of the
payment. For this case we have two more matrices, one
for the in-degree case and another one for the out-degree
case. The choice of the definition of the matrix representa-
tion depends on the focus of the analysis.
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Receiver

Fig. 1. Components of a directed network.

2.2. Components

Depending on how the nodes connect with each other,
they can be partitioned into components. A component is a
group of nodes such that any two nodes can be connected
by a direct or indirect path. A path is a sequence of differ-
ent nodes, each one connected to the next node. A compo-
nent of an undirected network is a set of nodes such that
for any pair of nodes i and j there is a path from j to i; this
means that two nodes share the same component if there
is a path connecting them. Our analysis treats the network
as both undirected and directed, and finds the components
and their sizes.

In a directed network the largest component is known
as the Giant Weakly Connected Component (GWCC) in
which all nodes connect to each other via undirected
paths. The core is the Giant Strongly Connected Compo-
nent in which the nodes can reach each other through
a directed path. The Giant Out-Component (GOUT) com-
prises the nodes that have a path from the GSCC and the
Giant In-Component (GIN) comprises the nodes that have
a path to the GSCC. The set of disconnected components
(DC) are smaller components. Tendrils are nodes that have
no directed path to or from the GSCC, but to GOUT and or
the GIN [2]. These concepts are shown in Fig. 1.

In order to study the statistical properties and charac-
terize the underlying structure of our network, we use spe-
cific useful network metrics [2,3,25].

3. Results

Fig. 2(b) displays a picture of the network as a weighted
directed graph where each link is shaded by the corre-

sponding weight: with darker shades indicating higher val-
ues on the cash flows. The bigger nodes represent those
nodes with higher amount of values transferred. Fig. 2(a)
shows the network as an undirected representation. This
image includes 16,613 nodes and 43,374 links.

The high number of nodes and links makes difficult
to have a detailed visualization of the graph’s structure;
therefore, we calculate topological and statistical measures
that provide a clearer structure of the network.

3.1. Topology structure

We find all the components in the undirected graph.
We obtained that the GCC is composed by 15,434 nodes
which means that 92.8% of the nodes are reachable from
one another by following either forward or backward links,
suggesting it is a very well connected network. The re-
maining 7.2% nodes correspond to 508 DC. If we take a
directed approach, the GSCC contains 24% of the nodes in
the system.

A previous study of the structure of the WWW network
components [25] focused on analyzing the robustness of
the GCC against removal of nodes, and it was concluded
that it is very difficult to destroy the structure of the
WWW network by random elimination of links. (Table 3
displays the component sizes of the network of payments,
among other statistics).

The degree of a node is defined as

ki= > ;. (1)
Jjeg (i)

the sum goes over the set ¢(i) of neighbors of i. For exam-

ple: ¢(i) = {jla;j =1}

In a directed network there are two relevant character-
istics of a node: the number of links that end at a node
and the number of links that start from the node. These
quantities are known as the out-degree k° and the in-
degree k? of a node, and we define them as

d d

k=" al, k=" aj. 2)
Jjet (@) Jjet (@)

The average degree of a node in a network is the

number of links divided by the number of nodes and is

R R W S i, =

(a) Connectivity network of payments.

s ¥ = 2

(b) Weighted-directed representation of the network.

Fig. 2. (a) Connectivity network of payments. (b) Weighted-directed representation of the network.
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Fig. 3. X-axis corresponds to the number k of degrees and the Y-axis is P(k). (a) Empirical degree distribution for the connectivity network. (b) Empirical
in-degree distribution. (c) Empirical out-degree distribution. All the plots are log-log representations of histograms.

defined as

(k):%Zk”:%de:%. 3)

One can categorize networks by the degree distribu-
tions shown in the tails. In random networks it is very
common to find Poisson distributed links, but in complex
system networks it is common to find a distribution that
follows a power law

P(k) ~ k7. k+#0 (4)

where y is the scaling exponent of the distribution. This
distribution is called scale-free and networks with such a
degree distribution are referred to as scale-free networks
because have no natural scale and the distribution remains
unchanged within a multiplicative factor under a rescaling
of the random variables [26].

The average degree of our network is (k) =20. Most of
the nodes have only 5 or less links, and 45% have only
1 link. Like other real networks, the degree distributions
(undirected and directed) of the network of payments fol-
low power laws. Fig. 3 displays the degree distributions. In
all the distributions, we found regions that can be fitted
by power laws, and this implies that the network has a
scale-free structure. (We used the maximum likelihood es-
timation for obtaining the power law exponents [11]). The
degree distribution in Fig. 3(a) follows a power law with a
scaling exponent:

P(= k) oc k=24, (5)

The in-degree distribution in Fig. 3(b) follows a power
law defined as

P(k) ~ k=249, (6)

The out-degree distribution Fig. 3(c) follows a power
law defined as

P(k) ~ k239, (7)

In all the cases there is an area at the end of the tail
that looks like a cut-off which can be explained by the fact
that the system is finite and there is a maximum number
of connections that a company could hold.

In a random network, the degree distributions follow
a Poisson distribution. A degree distribution following a

Table 1

Network’s characteristics.
Companies analyzed 16,613
Total number of payments analyzed 2,617,478
Value of transactions 3,803,462,026"
Average value of transaction per customer 87,600
Max value of a transaction 121,533
Min value of a transaction (aggregated in 1000
whole year)
Average volume of transaction per company 60
Max volume of transaction per company 24,859
Min volume of transaction per company 20

(aggregated in whole year)

“ All money amounts are expressed in monetary units.

power law distribution appears to be a common feature in
complex networks such as the World Wide Web, proteins
interactions, phone calls and food webs, among others,
but also shown in systems of payments of different banks
[16-18]. The degree distributions obtained here are com-
parable to those obtained in the aforementioned studies.
Table 2 includes a limited list of the power-law exponents
obtained in different types of real networks.

3.2. Weight, strength, size and diameter

The basic properties of a network are the number of
nodes N and the overall number of links k (Table 1 shows
the general characteristics of our network). The number of
nodes defines the size of the network while the number of
links relative to the number of possible links defines the
connectivity of a network.

Connectivity (p) is the unconditional probability that
two nodes are connected by a direct link. For a directed
network, connectivity is defined as

B k
T nn-1)°

In our case, the connectivity is 0.13 and this means the
network is sparse because 87% of the potential connections
are not used during the year.

The diameter is the maximum distance between two
companies (measured by the number of links) and in
our network this distance is equal to 29. This number is
substantially higher when compared to the diameter of

(p) (8)
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Fig. 4. (a) Link weight distribution by volume. (b) Node in-degree distribution by strength. (c) Node out-degree distribution by strength.

a random network of comparable characteristics (19) and
this big difference in the diameter points to the existence
of certain companies that send or receive money to other
specific companies, and this contours specific and pre-
ferred paths for transactions. Intuitively this makes sense,
because for companies in general, it is important to choose
carefully their trading partners, clients, service providers
or suppliers based on geographical location, affinity in the
goals of the companies, cost policies, future joint ventures,
agreements or any other reasons.

The strength of the nodes is the sum of the weights of
all the links. In this case, the strength measures the overall
transaction volume for any given node. The node-weighted
strength is defined as

si= ) wij, (9)
Jjeg (@)

where wy; is the weight of the link between nodes i and j

and the sum runs over the set ¢(i) of neighbors of i. The

average strength can be calculated as a function of the k

number of links of a node to examine the bond between

the strength and the degree.

Fig. 4(a) displays the distribution of link weights
weighted by the number of payments transacted. This dis-
tribution follows a power law. The same power law rela-
tionship occurs between the strength and the degree of a
node Fig. 4(b) and Fig. 4(c). These results were fitted by
power laws with the following scaling exponents:

The volume link weight distribution

P(w) ~ w198, (10)
where the scaling exponent is 1.98.
The volume out-degree strength distribution
P(s) ~s7221, (11)
where the scaling exponent is 2.21.
The volume out-degree strength distribution
P(s) ~ 5232, (12)
where the scaling exponent is 2.32. There are some de-

viations from the power law behavior but they are suffi-
ciently small.

3.3. Clustering, betweenness and average shortest path length

The clustering coefficient of a node is the tendency to
cluster; is the density around node i. It represents the pro-
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Fig. 5. Distribution of the clustering coefficient.

portion of the closest nodes of a node which are linked to
each other.

. 1
C@) = mgaiﬂjkaik (13)

The overall clustering coefficient is the mean of the
clustering coefficients (C) of all the nodes. It indicates if
there is a link between two companies who have a com-
mon trading partner. In our case, the average clustering co-
efficient is 0.183, suggestive of cliquishness in our network.
This means that two companies that are trading partners
with a third one, have an average probability of 18.3% to
be trading partners with one another, than will any two
other companies randomly chosen. The clustering coeffi-
cient across nodes is highly spread, as seen in Fig. 5.

Fig. 5 shows that more than 52% of the nodes have a
clustering coefficient of 0 or 1; therefore, the network is
dispersed. There is ~9% probability that two neighbors of
a node are linked whereas around 45% are not linked at all.
This high level percentage of unlinked neighbor nodes can
be explained by the high number of nodes with degrees
equal to 1 which are very frequent in scale-free networks.

Compared with other real networks this average clus-
tering coefficient is low (See Table 2 for comparison). In
this study, such a coefficient is fair. Business relation-
ships between companies are commonly settled through
medium or long term contracts. A company would like
to remain doing business with the same parties (sup-
pliers, clients, service providers, institutions, etcetera)
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Table 2
Scaling exponents and clustering coefficients for different types of reported networks.
Type Network Exponent  Clustering coefficient References
Economical Bank of Japan payments y=21 - [16]
US Federal Reserve Bank yi=21 0.53 [17]
y°=215
Austrian Interbank Market payments yi=17 012 [18]
y°=31
Technological ~WWW y°=24 - [36]
yi=21
Peer-to-peer network y=21 0.012 [37]
Digital electronic circuits y=3 0.03 [38]
Social Film actors y=23 0.78 [4]
Email messages yi=15 0.16 [39]
y°=2.0
Telephone call y=21 - [40]
Biological Protein interactions (yeast) y=24 0.022 [41]
Metabolism reactions yi=22
y0=22 0.32 [42]
Energy lancscape for a 14-atom cluster y =278 0.073 [43]

y'=scaling exponent for in-degree distribution. y° =scaling exponent for the out-degree distribution. y = scaling

exponent for the connectivity distribution.
* Refers to average clustering coefficient.

Table 3

Summary of statistics.
Statistic Value Components # of nodes
N 16,613 GCC 15,434
# Payment 2,617,478 DC 1179
Undirected Links 43,375 GSCC 3987
<k > 20 GOuT 6054
yo 2.39 GIN 6172
yi 2.49 Tendrils 400
14 245 Cutpoints 1401
<C> 0.183 Bi-component 4404
<> 71 k-core 1081
C 0.13
D 29
< o > (nodes) 110
< o > (links) 40

N=number of nodes. <k>=average degree. y° =scaling exponent
for the out-degree empirical distribution. y!=scaling exponent for
the in-degree empirical distribution. y =scaling exponent for the
connectivity degree distribution. <C> = average clustering coeffi-
cient. < | > = average shortest path length. C=connectivity per
cent. D = Diameter. < o >=average betweenness.

because in general, it is easier and cheaper than changing
them time after time. A change on a trading party could
mean a decrease on profits or an increase on costs. A low
clustering coefficient in our payment network reflects this
perspective.

In our case, the clustering coefficient is higher than
the connectivity, therefore, the network is not random (in
a random network the clustering coefficient is equal to
the connectivity; a random network is built by randomly
adding links to a given set of nodes). A random network
of a comparable size has a clustering coefficient around 70
times lower than our network.

Betweenness o(m) of a node m is the total number
of shortest paths between all possible pairs of nodes that
pass through this node; it is a measure of the number of
paths between other nodes that run through the node i;

the more paths this node has, the more central is the node
i in the network. It indicates whether or not a node is im-
portant in the traffic of the network.

Bim. i
o (m) EZ% (14)
i#]

where B(i, j) is the total number of shortest paths between
nodes i and j and the sum goes over all the pairs of nodes
for which at least one path exists, with B(i, j) > 0. The
nodes with high betweenness control the network.

The results in Table 2 show that the average between-
ness for the links is 40 and for the nodes is 110, meaning
that each company handles in average 110 shortest paths,
and the higher is the number of shortest paths the more
central the company is for the network.

The average shortest path length < [ > was calculated
with Dijkstra’s algorithm [27]. In the connectivity network
this value is equal to 7.1. The network is a small world with
7.1 degrees of separation, so in average any company can
be reached by other one only in a few steps. Our network
has low connectivity but it is densely connected. This char-
acteristic is in line with the fact that there are companies
that act as hubs or key nodes and lead to short distances
between the other companies.

93% of the nodes are within 7 links of distance from
each other and this suggests that the network of pay-
ments is comprised of a core of nodes with whom the
other companies interact with. There is a smaller group
of 1081 nodes (6.5% of the total number of nodes in the
network) connected by high value links. This group con-
tains weighted links that comprise 75% of the overall value
of the funds transferred. Fig. 6 shows the graph of the k-
core. A k-core in an undirected graph is a connected maxi-
mal induced sub-graph which has minimum degree greater
than or equal to k. Alternatively, the k-core is the (unique)
result of iteratively deleting nodes that have degree less
than k, in any order.
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Fig. 6. Graph representation of the k-core.

3.4. Robustness simulation and degree correlations

One of the characteristics that makes a hub or a key
node an important node is its high betweenness not just
its high degree. Hubs often connect groups of clusters of
sub-areas of the graph that are not connected to one an-
other directly. These nodes are important because they
shorten path lengths making for high reachability and fast
movement of information. But they may also be important
as brokers and key-players that connect the graph because
of their betweenness [28].

In order to gain more understanding on how the net-
work is likely to behave as a whole, let us address the
question: if a node were removed, would the structure of
the network become divided into disconnected clusters?
One can consider several approaches to find the key nodes
in the network which may act as enablers among oth-
erwise disconnected groups and we find the nodes that
connect the network by locating the vulnerable parts (see
Hanneman and Riddle [29]).

A total of 1401 cut-points or key nodes were found, this
means that around 8% of the nodes are relevant to keep
the structure connected as it is, or in other terms, if we re-
move these nodes then the number of components and the

25

Average shortest path length

80

0 20

100

GCC

S. Renddn de la Torre et al./Chaos, Solitons and Fractals 90 (2016) 18-27

average path lengths between the nodes would increase,
leaving the network vulnerable to break.

We run a simulation for the GCC that shows random
removal of a fraction of nodes and another simulation con-
sidering strategically chosen nodes. Then we measure the
average shortest path length < [ > and the relative size of
the GCC as functions of the percentage d of deleted nodes
[2,30,31]. The results are displayed in Fig. 7. The effect of
the targeted removal of nodes causes a quick growth in
the average shortest path length until the GCC disappears,
GCC(pc)=0 at a very low level of targeted damage (less
than 10%). We will call this level the percolation threshold
pe. It is noticeable that a weak but smart attack destroys
the network. In the random removal of nodes the damage
is less than in the targeted damage. We established that
our network of payments has shown scale-free properties,
and this kind of networks are resilient to random damage,
so it is barely possible to destroy the network of payments
by random removal, but if we remove the exact portion of
particularly selected nodes, it breaks completely. This ef-
fect has been seen in financial systems in economic crisis
before: companies or banks may declare in bankruptcy and
the whole system stays healthy, but if certain organizations
declare in bankruptcy then the whole system collapses.

It is not rare that the GCC in heavy-tailed networks is
resilient against random removal of nodes. If the degree
distribution of the network is fat-tailed, then this fact de-
termines the topology of the system. However, it might be
possible that when removing nodes in a random way, the
tail of the degree distribution changes and then the GCC
structure would be damaged [2].

There are other heuristic methods available in literature
to calculate the optimal percolation threshold of nodes
that breaks the network into disconnected clusters (such
as high degree node, k-core, closeness and eigenvector
centralities). However, a common characteristic in these
approaches is that they do not necessarily optimize a
measure that reflects the collective influence arising from
considering the entire influential nodes at once. Under
a collective influence approach, nodes’ inherent strength
and weakness arises collectively from the configuration
of interactions they have with the other components.
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Fig. 7. Plots of the targeted and random damage over the network of payments. (a) The average shortest-path length < I > in the GCC plotted against the
percentage of removed nodes. (b) The GCC plotted against the percentage of removed nodes. Continuous lines display the effect of the targeted removal
and the dashed lines display the effect of the random removal of nodes. p. are the percolation thresholds, for each case.
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Fig. 8. GCC of the network of payments as a function of the percolation
threshold p. by using the collective influence algorithm.

Morone and Makse [32] designed an algorithm suitable
for large networks that has proven to perform better than
other empirical methods because it predicts a smaller set
of optimal influencer nodes (the nodes that destroy the
network if removed).

The collective influence of a node is defined as the
product of the node’s reduced degree (the number of its
nearest connections, k;, minus one), and the total reduced
degree of all nodes k; at a distance ¢ from it (¢ is defined
as the shortest path)

> k-1, (15)

jedBall(i.0)

Cly(i) = (ki— 1)

where Ball(i, ¢) is the set of nodes inside a ball of ra-
dius ¢ around node i. dBall(i, ¢) is the frontier of the ball
and comprises the nodes j that are at a distance ¢ from i.
By computing the CI for each node, it is possible to find
the ones with the highest collective influence and remove
them.

The collective influence algorithm maps the problem
of optimal influence on the computation of the minimum
structural amount of nodes that reduces the largest eigen-
value of the non-backtracking matrix of the network (see
Morone and Makse [32]).

We performed a simulation using the CI approach, and
the results are shown in Fig. 8. We measure the collec-
tive influence of a group of nodes as the fall in the size of
the GCC which would occur if the nodes in question were
eliminated. The figure shows the GCC when a fraction of its
nodes is eliminated. The optimal percolation threshold oc-
curs when removing around 6% of the nodes because that
is the point where GCC(p.) = 0. This result also implies that
there are a huge number of companies with a large num-
ber of payments which in fact have a minor influence in
the whole economic network.

Fig. 8 shows a better performance than previous strat-
egy used on Fig. 7 (which is based on a betweenness
centrality and where the optimal percolation threshold is
higher than in collective influence method).

A practical measure of correlations is the average near-
est neighbor degree function. A network is called assor-
tative if its nodes with a certain degree are more likely
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Fig. 9. Affinity of the connectivity network.

to have links with nodes of similar degree, and it is
called disassortative when the contrary occurs. For exam-
ple, when low degree nodes are more likely connected
with nodes of higher degrees, or when high degree nodes
are more likely connected with low degree nodes.

A method that calculates these aforementioned correla-
tion measures is the average nearest neighbor degree func-
tion (see Serrano et al. [33,10]). The conditional probability
of a node with degreek to be connected to a node of de-
gree k' is defined as

P(K'. k)
P(k)

P(K'|k) = (16)
where P(k’,k) is the probability of two nodes, with degree
k" and k to be connected by a link. P(k) is the degree dis-
tribution. The average nearest neighbor degree function is
defined as

(knn) (k) = Zk/P(k,“C) (17)

k'

Previous studies [2] have shown that social networks
usually have significant assortative mixing; biological,
technological and other financial networks have shown
disassortative mixing [17,24]. Fig. 9 shows the affinity of
the connectivity network. The correlation is -0.18, which
means there is a negative dependence between the degree
of a node and the degrees of its neighbors; therefore the
system exhibits disassortative mixing. The function (knn)(k)
decreases with k suggesting that the high degree nodes,
which are represented by companies who have many busi-
ness partners such as service providers, clients or suppli-
ers, usually have a large number of links to companies
which have only one link (or just few), then the high de-
gree nodes tend to connect with the low degree ones.

Disassortative mixing has implications for network re-
silience. For example, when this type of mixing is found,
the attacks to the highest degree nodes are effective when
trying to destroy the network quickly because these nodes
are being approximately distributed over the network and
forming links on different paths between other nodes,
hence, this characteristic makes our network particularly
vulnerable to targeted attacks.
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4. Conclusion

We studied the structure of the economic network of an
entire country using Swedbank’s payments database. Af-
ter extracting the network’s topology, characteristics and
statistics we conclude that this economic network shares
many of the features found in empirical complex networks,
such as scale-free degree distributions, small world charac-
teristic and low clustering coefficient.

Our results show that this economic network is disas-
sortative in terms of degree. The system shows topological
heterogeneity due to its heavy tails and scale-free struc-
ture in the degree distributions. This scale-free structure
indicates that few companies in Estonia trade with many
parties while the majority trade with only few.

In our network, the clustering coefficient is low and dis-
perse (more than 52% of the nodes have either a clustering
coefficient of 0 or 1). A low coefficient is a fair result be-
cause it shows how companies perceive business partners
change as an avoidable expense. A company might prefer
to keep working with regular trading partners (for exam-
ple: service providers, clients or suppliers) for a medium
or long term instead of changing them often, in order to
save money and time.

The network is a small world with just 7 degrees of
separation: in average any company can be reached by
other only in a few steps. The connectivity is smaller than
the overall clustering coefficient; therefore, the network
cannot be classified as random.

Regarding the diameter size of our network: it is high
when compared with that of a random network (1.5 times
higher). The diameter in our results suggests a preference
for specific paths of money flows between companies. This
preference refers to companies that trade more with spe-
cific parties over others based on decisions relative to costs
saving, geographical location, convenience, or any other
type of decision.

We performed two separate analyses to reveal the ro-
bustness of our economic network. The first one is based
on centralities and the second one is based on an approach
focused on collective influencer nodes. First, we found the
key nodes that prevent the network to break into discon-
nected components. The simulation for the GCC assuming
a targeted removal of key nodes causes a quick growth in
the average shortest path length until the GCC disappears
at a percolation threshold of 8%, while in the random re-
moval the damage is extremely small. This revealed the ro-
bustness of our economic network against random attacks
but also revealed its vulnerability to smart attacks.

In the second analysis we followed the collective in-
fluence strategy. The percolation threshold is close to
6%; therefore, the performance of the optimal percolation
threshold is better when following this method because
it reduces the percentage substantially. The interpretation
for this low level of optimal percolation threshold is that
there are a lot of companies with enormous amounts of
payments that have a weak influence in the economic net-
work as a whole, and this also reveals that the most in-
fluential companies in the network are not necessarily the
most connected ones or those having more economic ac-

tivity. Both results agree on the fact that a small portion of
economic entities maintains the whole network unified.
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Abstract. Complex networks have gained much attention from different areas of knowledge in recent years.
Particularly, the structures and dynamics of such systems have attracted considerable interest. Complex
networks may have characteristics of multifractality. In this study, we analyze fractal and multifractal
properties of a novel network: the large scale economic network of payments of Estonia, where companies
are represented by nodes and the payments done between companies are represented by links. We present a
fractal scaling analysis and examine the multifractal behavior of this network by using a sandbox algorithm.
Our results indicate the existence of multifractality in this network and consequently, the existence of
multifractality in the Estonian economy. To the best of our knowledge, this is the first study that analyzes

multifractality of a complex network of payments.

1 Introduction

In recent years, complex networks have been studied
extensively and have attracted much attention from
researchers belonging to different fields of knowledge and
science. Complex networks theory is developing at a fast
pace and has already made significant progress toward
designing the framework for unraveling the organizing
principles that govern complex networks and their evo-
lution. In fact, several topological characteristics and a
variety of dynamical aspects of complex networks have
been the center of extensive research and studies in the
last years.

A fractal is a quantity or a fragmented geometric
object which can be split into parts, each of which is a
reduced-size copy of the whole and has the same statistical
character as the whole. A fractal displays self-similarity on
all scales. Fractals have infinitely complex patterns that
are self-similar across different scales; these objects do not
need to display exactly the same structures at all scales,
but the same “type” of structures must appear on all
scales. Fractals can be created by repeating simple recur-
sive processes. Another definition of a fractal states that
is a set whose Hausdorfl-Besicovitch dimension strictly
exceeds its topological dimension. The “fractal geometry”
of nature was first labeled as a term by Benoit Mandelbrot
in the late 60s, and after that, the fractal approach has
been widely used to gain insight into the fundamental scal-
ing of numerous complex structures. Fractal analysis helps
to distinguish global features of complex networks, such
as the fractal dimension. However, the fractal formalism

# e-mail: stretomx@gmail.com

is insufficient to characterize the complexity of many
real networks which cannot simply be described by a
single fractal dimension. Furuya and Yakubo [1] demon-
strated analytically and numerically that fractal scale-free
networks may have multifractal structures in which the
fractal dimension is not sufficient to describe the multiple
fractal patterns of such networks, therefore, multifractal
analysis rises as a natural step after fractal analysis.

Multifractal structures are abundant in social systems
and are plentiful in a variety of physical phenomena.
Multifractal analysis is a systematic approach and a gener-
alization of fractal analysis that is useful when describing
spatial heterogeneity of fractal patterns [2]. It has proven
to be a useful tool for studying turbulence phenomena
[3,4], time series analysis [5,6], economic and financial
modeling [7], medical pattern recognition [8], biological
and geophysical systems [9-18].

Fractal and multifractal analysis can help to uncover
the structure of all kinds of systems in order to have
a better understanding of such systems. In particular,
both approaches have many different interesting applica-
tions in economy. An interesting line of research is related
with the relevance and applicability of fractal and mul-
tifractal analysis in social and economic topics. Inaoka
et al. [19] showed that the study of the structure of a
banking network provides useful insight from practical
points of view. By knowing and understanding the net-
work structure and characteristics of banking networks (in
terms of transactions and their patterns), a systemic con-
tagion could potentially be prevented. In their study, these
authors showed that the network of financial transactions
of Japanese financial institutions has a fractal struc-
ture. Regarding social studies, Lu and Tang [20] showed
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the importance of road patterns for urban transporta-
tion capacity based on fractal analysis of such network.
In this study, the authors were able to link the fractal
measurement with city mass measurements.

Another direction of these studies has tilted toward the
development of multifractal models for financial networks
[21]. A few recent studies have focused on the analysis of
the changes of multifractal spectra across time to assess
changes in economy during crisis periods [22,23]. Some
other studies have focused on gathering empirical evi-
dence of the common multifractal signature in economic,
biological and physical systems [24].

In the last years, numerous algorithms for calculating
the fractal dimension and studying self-similar proper-
ties of complex networks have been developed and tested
extensively [25-29]. Song et al. [30] developed a method
for calculating the fractal dimension of a complex net-
work by using a box-covering algorithm and identified
self-similarity as a property of complex networks [31].
Moreover, a myriad of algorithms and studies on networks’
multifractal analysis have been proposed and developed
lately [32-37].

The main objective of this study is to analyze the
fractality and multifractality of a novel and unstudied
network: the large scale Estonian network of payments.
We present a study that contributes to the field of com-
plex networks (particularly to economic complex networks
studies) by adding empirical evidence in favor of fractal-
ism and multifractalism with a new case of study. The
study is done thanks to the application of known net-
work methods. Also, the goal is to expand the knowledge
of the structure of this network of payments by ana-
lyzing its fractal and multifractal structures anticipating
that this analysis could be useful in the future for fur-
ther studies. Multifractal analysis of a payment network
could be the starting point for developing economical and
financial future studies related with: opportune detec-
tion of key factors driving the multifractal spectrum
changes across time, money-flows forecasting and risk-
pattern recognition (during turbulent financial times, for
example). To the extent of our knowledge, this is the first
study that examines multifractality of a complex network
of payments.

We present a fractal scaling analysis by calculating the
fractal dimension of our network and its skeleton. Then,
we use a sandbox algorithm for complex networks [33] to
calculate the spectrum of the generalized fractal dimen-
sions D(q) and mass exponents 7(q) in order to study the
multifractal behavior of the network. Section 1 presents
an introduction and an overview of literature related
with fractal and multifractal network studies. Section 2
is devoted to a detailed description of the data set and
the methods used. Section 3 presents our main results and
Section 4 concludes with a discussion of the results.

2 Data and methodology

In this section we describe the nature and the scope of our
data set. Then, we introduce the box-covering algorithm
used to calculate the fractal dimension of our network
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and its skeleton. To conclude, we introduce the sandbox
algorithm used for multifractal analysis in this study.

2.1 Data

To create the network of payments we used payment trans-
actions data from Swedbank. At present, Swedbank is one
of the leading banks in the Nordic and Baltic regions of
Europe and operates in the following countries: Latvia,
Lithuania, Estonia and Sweden. The data and all the
information related with the identities of the nodes are
very sensitive and will remain confidential. Our data set
is unique and very interesting because ~80% of Esto-
nia’s electronic bank transactions are executed through
Swedbank’s system of payments, hence, this data set
reproduces fairly well the trends of money of the whole
Estonian economy. Our Estonian network of payments
focuses exclusively on domestic payments transferred
clectronically from customer to customer (company-to-
company) during the year 2014. There are 16613 nodes,
2617478 payments and 43375 undirected links in the
selected data set.

A network is a set of nodes connected by links. In this
study, the nodes represent companies and the links repre-
sent the payments between the companies. We mapped a
symmetric payments adjacency matrix Ayyy where N is
the total number of nodes in the network. The payments
adjacency matrix Ay n represents the whole image of
the network. For simplicity, we considered an undirected
graph approach where two nodes have a link if they share
one or more payments, then each element represents a link
if there is a transaction between companies i and j as fol-
lows: aj; = a}; and @y = 1: otherwise, af; = 0 if there is
no transaction between companies i and j.

2.2 Fractal scaling analysis

Fractal analysis assists on the calculation and the under-
standing of the fractal dimension of complex networks.
In general, fractal analysis consists of several methods
to measure complexity by using the fractal dimension
and other fractal characteristics. According to Song et al.
[31] complex networks may have self-similar structures.
According to these authors, the box-counting algorithm
is an appropriate method to examine global properties
of complex networks. The fundamental relation of fractal
scaling is based on the box-covering method which counts
the total number of boxes that are needed to cover a net-
work with boxes of certain size. The box-covering method
is analogous to the box-counting method widely used in
fractal geometry and is a basic tool to measure the fractal
dimension of fractal objects embedded in Euclidean space
[38]. However, the Euclidean metric is not well defined
for networks, thus we use the adaptation for networks
developed by Wang et al. [35] of the random sequen-
tial box-covering algorithm created by Kim et al. [39],
to determine the fractal dimension of our network and its
skeleton. The aforementioned method contains a random
process for selecting the position of the center of each box.
We let Np(rp) be the minimum number of boxes needed
to tile the whole network, where the lateral size of the
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boxes is the measure of radius rp as follows:
Np(rg) ~ ", 1)

where dp is the fractal dimension. If we measure the num-
ber Np for different box sizes, then it is possible to obtain
the fractal dimension dp by obtaining the power law fit-
ting of the distribution. The algorithm selects a random
node at each step, and this node is the seed that will be
the center of a box. Then, we search the network by dis-
tance 7 from the seed node and cover all the nodes that
are located within that distance, but only if they have
not been covered yet. Then, we assign the newly covered
nodes to the new box; if there are no more newly covered
nodes then the box is removed. This process is repeated
until all the nodes of the network belong to boxes.

Before using the algorithm, we calculate the skeleton of
the network. The concept of skeleton was first introduced
by Kim et al. [40]. The skeleton is a particular type of
spanning tree based on the link betweenness centrality (a
simplified quantity to measure the traffic of networks) that
is entrenched beneath the original network. The skeleton
delivers a shell for the fractality of the network and is
formed by links with the highest betweenness centralities.
Only the links that do not form loops are included. The
remaining links from the original network which are not
included in the skeleton are local shortcuts that contribute
to loop formation, meaning that the distance between any
two nodes in the original network may increase in the
skeleton. A fractal network has a fractal skeleton beneath
it which is distressed by these local shortcuts, but preserv-
ing its fractality. For a scale-free network, its skeleton also
follows a power-law degree distribution where its degree
exponent might differ slightly from that of the original net-
work. When studying the origin of fractality in networks,
actually the skeleton is more useful than the original net-
work itself due to its unsophisticated tree structure [41]. In
general, the skeleton preferentially collects the sections of
the network where betweenness is high, and this preserves
the structure and simplifies its complexity. Consequently,
by looking at the properties of the skeleton it is easier
to appreciate the topological organization of the original
network.

To calculate the skeleton of a complex network, the link
betweenness of all the links in the network has to be cal-
culated. The betweenness centrality of a network (for a
link or a node), is defined as follows:

>

J.kEN.j#k

n]k(l) , (2)

Nk

b; =

where N is the total number of nodes, nj; is the total
number of shortest-paths between nodes j and k, n,(¢)
is the total number of shortest-paths linking nodes j and
k that passes through the node 7.

In order to perform the fractal scaling analysis, we used
Dijkstra’s algorithm [42]; then we used the box-covering
algorithm to calculate the fractal dimension of the network
and the skeleton to compare both values.
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2.3 Sandbox algorithm for multifractal analysis of
complex networks

Scale-free networks are commonly observed in a wide
array of different contexts of nature and society. Previ-
ous studies [43,44] have shown that in scale-free networks,
independently of the system and the identity of their com-
ponents, the probability P(k) that a node in the network
interacts with k other links decays as a power-law, fol-
lowing that P(k) ~ k=7, k # 0; this points to a tendency
for large networks to self-organize into a scale-free state.
We found scale-free properties characterized by power-law
degree distributions in our previous study on the Estonian
network of payments [45] (see Tabs. 1 and 2 for details of
the main features and statistics of this network).

In general, multifractality is expected to appear in scale-
free networks due to the fluctuations that occur in the
density of local nodes. Multifractal analysis requires tak-
ing into account a physical measure, like the number of
nodes within a box of specific size in order to analyze how
the distribution of such number of nodes scales in a net-
work as the size of the box grows. Tél et al. [46] introduced
a sandbox algorithm based on the fixed-size box-counting
algorithm [47] which was used and adapted for multifrac-
tal analysis of complex networks by Liu et al. [33]. In
order to determine the multifractal dimensions of our com-
plex network, we chose this adapted sandbox algorithm
because it is precise, efficient and practical. Moreover, a
study by Song et al. [2] has shown that this algorithm gives
better results when it is used in unweighted networks, and
this is our case.

The fixed-size box-counting algorithm is one of the most
known and efficient algorithms for multifractal analysis.
For a given probability measure 0 < g < 1 in a metric
space {2 with a support set F, we consider the following
partition sum:

Z(a)= Y (B, ®3)

wu(B)#0

where the parameter ¢ € R, and it describes the moment
of the measure. The sum runs over all different non-
overlapping (or non-empty) boxes B of a given size € that
covers the support set E. From this definition, it is easy
to obtain Z.(¢) > 0 and Z.(0) = 1. The function of the
mass exponents 7(g) of the measure y is defined by:

7(g) = lim (%) . (4)

0 Ine

Then, the generalized fractal dimensions D(gq) of the
measure u are defined as follows:

D@ = T8 gz, (5)
and
D(1) = lim a 5)7 =1, (6)
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Table 1. Network’s characteristics.
Companies analyzed 16613
Total number of payments analyzed 2617478
Value of transactions 3803462 026"
Average value of transaction per customer 87600"
Max value of transaction 121533"
Min value of transaction (aggregated in whole year) 1000"
Average volume of transaction per company 60
Max volume of transaction per company 24 859
Min volume of transaction per company (aggregated in whole year) 20
“All money amounts are expressed in monetary units and not in currencies in order to
protect the confidentiality of the data set. The purpose of showing monetary units is
to provide a notion of the proportion of quantities and not to show exact amounts of
money.
Table 2. Summary of statistics. Multifractality of a complex network can be determined
Statistic Value  Components No. of nodes })_y the Ekzal)je of T(q)t OrtDt }(1Q) (;l}irves.t If Tk(q) is a s;craif;hlt
- - ine or D(q) is a constant, then the network is monofractal;
g;;dlreded links 33 375 ggc }??54 similarly if D(q) or 7(¢) have convex shapes, then the
¥ 2.39 el tele 3987 petwgrk is multifractal.' A n_lultifractal structure can be
i .49 GOUT 6054 identified by the following signs [48]: (a) multiple slopes
N 245 GIN 6172 of 7(q) vs ¢; (b) non-constant D(q) vs (¢) values and (c)
() 0183 Tendrils 400 f(a) vs a value covers a broad range (not accumulated at
{0 71 Cutpoints 1401 nearby non-integer values of ).
T 0.13 Bi-component 4404 First, we calculate the shortest-path distance between
D 29 k-core 1081 any two nodes in the network and map the shortest-path
(o) (nodes) 110 adjacency matrix Byxy using the payments adjacency
(o) (links) 40 matrix Ay n. We use the shortest-path adjacency matrix

N, number of nodes; (k), average degree; v, scaling expo-

nent of the out-degree empirical distribution; ~*, scaling
exponent of the in-degree empirical distribution; -, scaling
exponent of the connectivity degree distribution; (C), aver-
age clustering coefficient; (l), average shortest path length:
T, connectivity %; D, diameter; (o), average betweenness;
GCC, giant connected component; DC, disconnected com-
ponent; GSCC, giant strong connected component; GOUT,
giant out component; GIN, giant in component.

where

Zi.= 3 w(B)nu(B).

w(B)#0

(7)

The generalized fractal dimensions D(q) can be estimated
with linear regression of [In Z.(q)]/[¢ — 1] against Ine for
q # 1, and similarly a linear regression of Z; . against
Ine for ¢ = 1. D(0) is the fractal dimension or the box-
counting dimension of the support set E of the measure
w, D(1) is the information dimension and D(2) is the
correlation dimension.

For a complex network, a box of size B can be defined
in terms of the distance [z, which corresponds to the num-
ber of links in the shortest-path between two nodes. This
means that every node is less than [ links away from
another node in the same box. The measure p of each box
is defined as the ratio of the number of nodes that are
covered by the box and the total number of nodes in the
whole network.

By« as input for multifractal analysis. The central idea
of the sandbox algorithm is simply to select a node of
the network in a random fashion as the center of a sand-
box and then count the number of nodes that are inside
the sandbox. Initially, none of the nodes has been chosen
as a center of a box or as a seed. We set the radius r
of the sandbox which will be used to cover the nodes in
the range r € [1,d], where d (diameter) is the longest dis-
tance between nodes in the network and radii r are integer
numbers. We ensure that the nodes are chosen randomly
as center nodes by reordering the nodes randomly in the
whole network. Depending on the size N of the network,
we choose T nodes in random order as centers of 7" sand-
boxes; then we find all the neighboring nodes within radius
r from the center of ecach box. We count the number of
nodes contained in each sandbox of radius r, and denote it
by S(r). We calculate the statistical averages ([S(r)?~1])
of [S(r)?71] over all the sandboxes T of radius r. The pre-
vious steps will be repeated for each of the different values
of radius 7 to obtain the statistical average ([S(r)9~1]) and
then use it for calculating linear regression.

The generalized fractal dimensions D(q) of the measure
w are defined by

In([S(r)/S(0))71) 1
In(r/d) qg—1

D(q) = lim

r—0

geR, (8

or rewritten as

In({([$(r)]"~")) < D(g)(¢—1) In(r/d) +(g—1)In(S), (9)



Eur. Phys. J. B (2017) 90: 234

°
2 °
°
:.’:..“.. .:.;‘:0.. .
’ ESXK :

Fig. 1. Visual graph representation of the skeleton of the
Estonian network of payments.

where S(0) is the size of the network and the brackets
mean taking statistical average over the random selection
of the sandbox centers.

We run the linear regression of In({[S(r)]?"1)) against
(¢ — DIn(r/d) to obtain the generalized fractal dimen-
sions and similarly, calculate the linear regression of
In(([S(r)]?~1)) against In(r/d) to obtain the mass expo-
nents 7(g). From the shapes of the generalized fractal
dimensions curves, we can conclude if multifractality
exists or not in our network.

3 Results

3.1 Fractal scaling analysis

The general characteristics and statistics of the Estonian
network of payments are listed in Tables 1 and 2.

We present a fractal scaling analysis by using the
box-counting algorithm expressed in equation (1). We
calculated the fractal dimension of our network and its
skeleton (see Figs. 1 and 2), where the fractal dimension
is the absolute value of the slope of the linear fit. Figure 1
depicts a visualization of the graph representation of the
skeleton of our network. The box-covering method yields
a fractal dimension dgs= 2.32 + 0.07 for the skeleton net-
work and for the original network the fractal dimension is
dp, = 2.39 + 0.05.

The comparison of the fractal scaling in our network and
its skeleton structure revealed its own patterns according
to the fractality of the network. Figure 2 depicts the fractal
scaling representation of our network. As seen in Figure 2,
the respective number of boxes needed to cover both net-
works is similar but not identical: more boxes were needed
for covering the skeleton. The largest distance between
any two nodes in the network of payments is 29, while the
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Ns(rs)/N
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Fig. 2. Fractal scaling representation of our network. The orig-
inal network (o) and the skeleton network (e). The straight line
is included for guidance and has a slope of 2.3. The analysis
includes only the giant connected cluster of the network.

largest distance between any two nodes in the skeleton
network is 34.

3.2 Multifractal characterization

Linear regression is an important step for obtaining the
correct range of radius r € [Fmin, "max| that is needed to
calculate the generalized fractal dimensions (defined by
Egs. (8) and (9)) and the mass exponents (defined by
Eq. (4)). We found an appropriate range of radii r within
the range of the interval located between 2 and 29 for
linear regression. Thus, we selected this linear fit scaling
range to perform multifractal analysis. We set the range
of ¢ values from —7 to 12.

We calculated 7(¢) and the D(g) curves using the sand-
box algorithm by Liu et al. [33] and based upon the shapes
obtained from the spectrum in Figure 3, it can be seen that
the curves are non-linear, suggesting that the network is
multifractal.

In Figure 3b, the D(q) function decreases sharply after
the peak reaches its end when g is close to —4.5. This trait
could be interpreted as high densities around the hubs
in the network. The hubs have a high number of links
connected to them; therefore the density of links around
the sections near the hubs is higher than in other parts
of the network. These hub nodes or important compa-
nies have a noticeable larger amount of business partners
(for example: their own customers, or their suppliers or
any other business parties that interact financially with
them) than the rest of the companies in the network
have, and it is interesting to observe that this charac-
teristic can be explored and identified by looking at the
values of D(q) spectra. The multifractality seen in our
network reveals that the system cannot be described by
a single fractal dimension, suggesting that the multifrac-
tal approach provides a better characterization than the
fractal approach; hence, this means that the Estonian
economy is multifractal.
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Fig. 3. (a) Plot of mass exponents 7(q) as function of ¢. (b) Plot of generalized fractal dimensions D(q) as function of ¢. Curves
indicated by circles represent numerical estimations of the mass exponents and generalized fractal dimensions, respectively.

The quantity AD(g) describes density changes of links
in our network. We use AD(q) = D(q)max — limD(q) to
observe how the values of D(q) change along the spec-
trum. From Figure 3b, we found that limD(q) = 0.37 and
D(q)max = 7.8 and this means that AD(q) = 7.43. A large
value of D(g) means that the distribution of links is very
irregular in our network, suggesting that there are areas of
hubs where the links are very densely grouped contrasting
with areas where the nodes are connected with only just
few links. For the economy of a country, this makes sense
because not all the companies have the role of hubs in
the network of payments; many companies are just small
participants. For a comparison of the maximum values of
D(q) of different networks, please see Table 3.

4 Conclusions

We presented the first multifractal analysis of a com-
plex network of payments. We studied specific fractal
and multifractal properties of a novel and unique net-
work: the Estonian network of payments. In this study,
we presented a fractal scaling analysis where we iden-
tified the underlying skeleton structure of the network.

We calculated its fractal dimension and compared it with
the fractal dimension of the original network. We found
that the skeleton network had a slightly smaller fractal
dimension than the original network. This comparison,
between the fractal scaling in our original network and
the corresponding skeleton network reveals that there are
only slightly distinct patterns according to the fractal-
ity in the network. This means that the skeleton network
preserves the structure very well while simplifying the
complexity of the network. Then, the skeleton network
captures the general structure of the network and by
observing the properties of the skeleton, an casier visu-
alization of the topological organization of the network
can be achieved.

Fractal analysis helps to calculate and understand the
fractal dimension of complex networks. However, it is nec-
essary to describe and characterize the multiple fractal
patterns which cannot be described by a single fractal
dimension, thus we also performed a multifractal analysis
to our network. Multifractal analysis allows the calcu-
lation of a set of fractal dimensions, particularly the
generalized fractal dimensions. We examined the general
multifractal structure and explored some statistical fea-
tures of our network. In order to study the multifractal
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Table 3. Comparison of the maximum values of D(q) in different networks.

Network Number of nodes  Highest D(q) Reference
Pure fractal network 6222 2.8 [32]
Small world network 6222 6.6 [32]
Semi fractal network 6222 3.1 [32]
Sierpinski weighted fractal network 9841 2.0 2]
Cantor dust weighted fractal network 9841 3.2 2]
High-energy theory collaboration weighted network 8361 6.0 2]
Astrophysics collaboration weighted network 16 706 6.2 2]
Computational geometry collaboration weighted network 7343 5.1 2]
Barabasi & Albert model scale-free network 10000 3.6 [33]
Newman and Watts model small-world network 10000 4.8 [33]
Erdés-Rényi random graph model 10000 3.9 [33]
Barabasi & Albert model scale-free network 7000 3.4 [35]
Random network 5620 3.5 [35]
Random network 449 2.4 [35]
Protein—protein interaction network: Human 8934 4.9 [35]
Protein—protein interaction network: Arabidopsis thaliana 1298 2.5 [35]
Protein—protein interaction network: C. elegans 3343 4.5 [35]
Protein—protein interaction network: E. coli 2516 4.1 [35]
Small world network 5000 3.0 [35]
Estonian network of payments 16613 7.8 [45]

structure, we calculated the spectrum of the mass expo-
nents 7(g) and the generalized fractal dimensions D(q)
curves, using a sandbox algorithm for multifractal analy-
sis of complex networks adapted by Liu et al. [33]. This
algorithm is based on the fixed-size box-counting algo-
rithm developed by Tél et al. [46]. The sandbox algorithm
utilized in this study could also be used to explore and
characterize other similar kinds of economic networks.
Our results indicated that multifractality exists in the
Estonian network of payments, and this suggests that the
Estonian economy is multifractal (from the point of view
of networks). We found large values of D(g)spectra and
this means that the distribution of links is quite irregular
in the network, suggesting there are specific nodes which
hold densely connected links, meanwhile other nodes hold
just few links. This type of structure could be relevant
when specific critical events occur in the economy that
could threaten the whole network. It is important to con-
tinue observing, describing and analyzing the structures
and characteristics of economic complex networks in order
to be able to understand their underlying processes or to
be able to detect patterns that could be useful for pre-
dicting or forecasting events and trends. The addition of
evidence through empirical studies in favor of fractality
and multifractality of economic networks represents a step
forward toward the knowledge on the universality and the
unraveling of the complexity of economic systems.
Further applications and studies could extend this topic
by examining the potential factors that drive the strength
of the multifractal spectrum. Some applications could
involve studying the origin of such factors. Another inter-
esting line of research would be to study the patterns and
the changes of the multifractal spectrum across different
periods of time. Particularly, it would be interesting to
analyze such patterns during financial crisis periods for
risk pattern recognition purposes. Also, it would be inter-
esting to take into account different probability measures

for such kind of multifractal analysis. Other direction
of the studies could focus on building network models
that attempt to forecast country money flows or potential
industry growth trends based on transactions data.
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European Union through the European Regional Development
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8.1 Introduction

The neologism econophysics was first coined by H. Eugene Stanley in a
Statphys conference in 1995 held in Kolkata, India. Mantegna and Stanley [1]
defined econophysics as a multidisciplinary field that denotes the activities of
physicists who work on economic problems in order to test a variety of new con-
ceptual approaches derived from physical sciences. Much has been studied and
developed in this area since then and even before then, mainly originated from
models of statistical mechanics. Similarly, problems related with distributions
of income, wealth, and economic returns in financial markets have been already
addressed in research papers, and mostly these topics are related with the
insufficiency to explain non-Gaussian distributions and scaling properties
empirically detected by means of traditional economic theoretic approaches.
Some of the most relevant outcomes of the research accomplished in topics of
econophysics are related with detection and explanation of power-law tails in
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the distribution of different types of financial data, the existence of certain
underlying universalities in the behavior of individual market agents, and the
detection of similarities between financial time series and natural phenomena.

In recent years, a part of the main focus of research has tilted towards the dis-
covery and understanding of the underlying financial, social, and economic sys-
tems’ structures through the use of the tools of complex networks science. In
this context, the network approach has two sources of origin: one source originates
from economics, finance, and sociology, while the second source originates from
computer science, physics, complexity, and mathematics. The convergence point
of both sources of origin attempts to combine economy and complex systems stud-
ies, and this approach can be translated into a graph representation of economic
systems in order to study how interactions among the components of the graph
occur whatsoever the nature of the relations between the components is.

Network science is an interdisciplinary active field of research that originates
from the mathematics branch of graph theory, and it has been extended into
different directions including towards economics, statistical mechanics, com-
puter science, neuroscience, sociology, transportation, ecological systems, and
biology. With complex networks, it is possible to describe the structure of any
system, when the system is suitable to be represented as a graph.

“Complexity” may refer to the quality of a system or to a quantitative char-
acterization of a system. As a quality of the system, it refers to what makes the
system complex and it has something to do with the ability to understand a sys-
tem; it refers to the existence of emergent /properties, which ‘appear as a conse-
quence of the interactions of the components of the system [2]. An example of a
property that emerges as a consequence of global organizational structure of a
network is the “small-world” property, which is characterized by small average
path length and a high number of triangles in the network. In the second defini-
tion of complexity, this term is used as a quantity when referring to something
that is more complicated than other thing; it refers to the quantity of informa-
tion needed to specify the system. For real-world networks, a huge amount of
information is needed to describe a system, such as the number of nodes, links,
degree correlations, degree distributions, clustering coefficients, diameter,
betweenness, centralities, community structure, average or shortest paths, com-
munication patterns, and other quantities. In the case of random networks, the
only information needed to describe their structure is the number of nodes and
the probabilities for linking pairs of nodes. The network representation of real
networks is called “complex networks” because of two reasons. Firstly, because
there are characteristics that arise as a consequence of the global topological
organization of the system, and secondly because these structures cannot be
trivially described like in the cases of random or regular graphs [3].

The theoretical framework behind complex networks is continuously develop-
ing, advancing at a fast pace and has already made significant progress towards
unraveling the organizing principles governing complex networks structures
and their dynamics. Studies related with: topological features, dynamical aspects,
community detection, network phenomena, and particular properties of
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networks have been the focus of attention of extensive research in the last couple
of decades [4-9].

Networks play an important role in a wide range of economic and social phe-
nomena, and the use of techniques and methods from graph theory has permit-
ted economic network theory to expand the knowledge and insights into such
phenomena in which the embeddedness of individuals or agents in their social
or economic interrelations cannot be neglected [10]. For example, Souma et al.
[11] studied a sharcholder network of Japanese companies where the authors
analyzed the companies’ growth through economic networks. Other examples
of interesting applications of complex networks in economics are provided by
the regional investment or ownership networks where European company-to-
company investment stocks show power-law distributions that allow predicting
the investments that will be received or made in specific regions, based on the
connectivity and transactional activity of the companies [12,13]. Nakano and
White [14] have shown that analytic concepts and methods related with com-
plex networks can help to uncover structural factors that may influence the price
formation for empirical market-link formations of economic agents. Reyes et al.
[15] used a weighted network analysis focused on using random walk between-
ness centrality to study why high-performing Asian economies have higher eco-
nomic growth than Latin-American economies in the last years. Network-based
approaches are very useful and provide a means by which to monitor complex
economic systems and may help on providing better control in managing and
governing these systems. Other interesting line'of research is'related with net-
work topology as a basis for investigating money flows of customer-driven bank-
ing transactions. A few recent papers describe the actual topologies observed in
different financial systems [16-19]. Some other works have focused on economic
shocks and robustness in economic complex networks [20,21].

8.2 Summary

Networks can be studied from different points of view, for example, from a
local, global, or mesoscale perspective. The contribution of this chapter is to
explore these approaches using different methodologies with the goal of studying
general and particular properties of networks through the analysis that consists
of different experiments on a unique, interesting, and particular economic net-
work. This is a review of our research on the structures and characteristics of
the large-scale Estonian network of payments [22-24]. In this novel and unique
economic network, the nodes represent Estonian companies and the links repre-
sent payments done between the companies. Mainly, we focus on the analysis of:

a. Global and local topology
b. Community detection and structure

c. Fractal and multifractal properties
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Our data set was obtained from Swedbank’s databases. Swedbank is one of
the leading banks in the Nordic and Baltic regions of Europe. The bank operates
actively in Estonia, Latvia, Lithuania, and Sweden. All the information related
to the identities of the nodes is very sensitive and thus will remain confidential
and unfortunately cannot be disclosed. The data set is unique in its kind
and very interesting since ~80% of Estonia’s bank transactions are executed
through Swedbank’s system of payments, therefore, this data set reproduces
fairly well the transactional trends of the whole Estonian economy, and hence
we use this data set as a proxy of the economy of Estonia. Such data set com-
prises domestic payments (company-to-company electronic transactions) of
year 2014. The network consists of 16,613 nodes, 2,617,478 payment transac-
tions, and 43,375 links.

8.3 Topologic Structure and Components:
Analytic Metrics

In this sub-section of the chapter, we focus on analyzing some interesting struc-
tural properties of our network, with a special focus on topologic components.
Graph theory definitions not introduced in this chapter can be found in [25,5].

A random network is the most basic model of all network formations, and it
is based on the assumption that a fully random process is responsible for the
structure of the links in-ametwork. The properties of random' network models
[26] provide rich insight of the characteristics and features that many economic
and social networks share. Such models are useful benchmarks to compare
empirical networks in order to be able to identify the elements that are a result
of randomness and the ones that can be rooted to other factors. Some properties
of random networks that are useful for studying general networks are, for
example, the distribution of links across nodes, connectivity in terms of paths,
distances within networks, shortest-average paths, diameter, and etcetera.

A graph is a mathematical and symbolic representation of a network and of
its connectivity. A simple undirected graph G is a set of vertices V connected
with edges E, therefore, G= (V, E). A graph is defined by the structural infor-
mation contained in its adjacency matrix. A network may have an arbitrary
large amount of additional information on top of it: for example, edges can
have attributes such as capacity or weight, or it may be a function of other
variables. Also, in a network, the vertices are called nodes and the edges are
called links. Network terminology is generally used when the links transport
or send something between the nodes (like in social, computer, biological, trans-
port, or economic networks).

There are several ways to define our network of payments and in this
study we consider more than one definition. In the first definition, we mapped
an undirected graph, a symmetric payment adjacency matrix A pyy, where N
is the total number of nodes in the network, then a; = aj and a; = 1. Other-
wise, a}‘j = 0 if there is no transaction between companies i and j.
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The links can also represent directions, where the links follow the flow of
money. The second definition is a directed graph where the links follow the
flow of money, such that a link is incoming to the receiver and outgoing from
the sender of the payment. For this case, we have two more matrices, one for
the in-degree case and another one for the out-degree case. The choice of the
definition of the matrix representation depends on the focus of the analysis.

The most basic properties of a network are the number of nodes N and the
overall number of links £ The number of nodes defines the size of the network,
while the number of links relative to the number of possible links defines the con-
nectivity of a network. Connectivity (p) is the unconditional probability that
two nodes are connected by a direct link. For a directed network, connectivity
is defined as follows:

k

=T (8.1)

(p) =

The connectivity of our network is 0.13, meaning that the network is sparse
and 87% of the potential connections are disabled. Diameter d is the maximum
distance between two nodes (measured by the number of links), and this distance
is equal to 29; this number is substantially higher when compared to the diameter
of a random network of comparable characteristics (d~19). The difference
between the diameter number of our network and a comparable random network
is substantially high, and. it.could be explained by the preferred money paths that
nodes have in our network. Preferred money paths means that some companies
have specific preferences when considering the counterparties they transact
with. Intuitively, this makes sense because for a company it is important to choose
carefully which counterparties become trading partners, clients, service provid-
ers, or suppliers and which ones not. Usually, this decision is based upon deter-
mined factors such as geographical location, goals affinity, cost policies, future
joint ventures, legal agreements, nature of the business, or any other reasons,
and it is interesting to notice how this particular feature can be observed through
the comparison of the connectivity of our network and a random network.

A path is a sequence of nodes such that each node is linked to the next one
along the path by a link. A path consists of n+ 1 nodes and n links. A path
between nodes ¢ and j is an ordered list of n links. The length of this path is n.
The path length of all node pairs could be represented in the form of a distance
matrix. The average path length is the average of the shortest path lengths
across all node pairs in the network.

Other simple quantity that can be observed in a network is the number of
nodes of a given degree. The degree of a node is the number of neighbors of
that node and is defined as

k’i = Z aij, (82)
)

jel(e

the sum runs over the set {(4) of neighbors of i. For example: {(¢) = {j|a;=1}.
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The average degree of a network is the number of links divided by the num-
ber of nodes and is defined as

(k):%Zkoz%de:%, (8.3)

where m is the number of links and n is the number of nodes. The average degree
of our network is 20.

In a directed network, there are two important characteristics of a node: the
number of links that end at a node and the number of links that start from the
node. These quantities are known as the out-degree k, and the in-degree £, of a
node, and we define them as

ko= Y aj, ko= Y af. (8.4)

jedi et

Also, it is possible to categorize networks by the degree distributions shown
in their tails. In general, real-world networks are very different compared with
random networks, when referring to their degree distributions. Random net-
works commonly show Poisson distributions, while real-world networks might
have long tails in the right part of the distribution with values that are far
above the mean. Measuring the tail of the distribution of the degree data could
be achieved by building a plot of the cumulative distribution function. In real-
world networks, it 'is common to find distributions that-follow power laws in
their tails:

P(k) ~ Y KT~ k0D, (8.5)

K=k

where y is the scaling exponent of the distribution and the degree distribution
P(k) is the probability that the degree of a node is equal to k. This type of
distribution is called scale-free and networks with such degree distributions
are referred to as scale-free networks. Such distributions have no natural scale
and the functional form of the distribution remains unchanged within a multi-
plicative factor under a rescaling of the random variables. Previous studies
[27,28] have shown that in large-scale-free networks, independently of the
system and the origin of the components, the probability P(k) that a node in
the network interacts with £ other links decays as a power law, suggesting
that there is a tendency for large networks to self-organize into a scale-free state.
A degree distribution with power laws is a characteristic commonly seen in
complex networks such as in the World Wide Web network, protein interaction
networks, phone calls networks, food webs networks, citation networks, actors-
movies networks, and it also appears in systems of payments from different
banks around the world [17-19].

Complex networks can be classified as homogeneous or heterogeneous
depending on their degree distributions. Homogeneous networks are identified
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by degree distributions that follow an exponential decay. In these networks, the
distribution peaks at an average kand then decays exponentially for large values
of k, such as the distributions formed in the random graph model [26] and the
small-world model [9] where each node has approximately the same number
of links k, a normal distribution and the majority of the nodes has an average
number of connections and only few or none of the nodes have either some or
lots of connections. In heterogeneous large networks or scale-free networks,
the degree distribution decays as a power law with a characteristic scale. The
degree distribution follows a Pareto form of distribution where many nodes
have few links and few nodes have many links, therefore, highly connected nodes
are statistically significant in scale-free networks.

Figure 8.1a shows the cumulative degree distribution of the Estonian net-
work of payments (undirected). A straight line was added as eye guideline.
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FIGURE 8.1: (a) Empirical degree distribution for the connectivity network
of the Estonian network of payments. X-axis is the number of k degrees
and Y-axis is P(k). (b) out-degree distribution of the network, P(k)~ k>,
(c) Empirical in-degree distribution P(k) ~ k>



200 Modern and Interdisciplinary Problems in Network Science

The distribution in Figure 8.1a follows a power law with the following scaling
exponent:

P(>k) oc k=24, (8.6)

Figure 8.1b shows the out-degree distribution and Figure 8.1c shows the in-
degree distribution of our network. In all the distributions, we found regions
that can be fitted by power laws, and this implies that the network has a
scale-free structure.

Another interesting and fundamental metric of complex networks is the clus-
tering coefficient of a node. It represents the probability that any two neighbors
of anode are connected; it is the density around a node. In our study, it indicates
whether or not there is a link between two companies that have a common third
business party.

. 1
C(Z) = m; az-]-a]-kaz-k. (87)

The average clustering coefficient is the mean of the clustering coefficients
(C) of all the nodes. In our network, the average clustering coefficient is 0.18,
and this suggests there is cliquishness in the network. This means that two com-
panies that are trading partners with a third one, have an average probability of
18% of being trading partners with another than the probability than any two
other companies randomly chosen have. For visualization purposes, Figure 8.2
displays the distribution of the clustering coefficient of our network. As seen in
the plot, there are a high number of unlinked neighbor nodes (45% of the nodes)
that might be explained by the large number of nodes with degrees equal to 1
which appear frequently in scale-free networks.
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FIGURE 8.2: Distribution of the clustering coefficient of the Estonian net-
work of payments.
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FIGURE 8.3: Probability distribution of the clustering coefficient of the Esto-
nian network of payments.

We use the set of clustering coefficients of node i to construct a probability
distribution. Figure 8.3 shows the probability distribution of clustering coeffi-
cients of our network.' As observed in the plot, the irregularity of the clustering
coefficients is noticeable.

Compared to other real-world networks, such as the U.S. Federal Reserve
Bank network of payments [18], the film-actor network [9], or the metabolism
reactions network [28,29], the average clustering coefficient in our network
is low.

As it was mentioned earlier, the most basic model of networks is the random
network model G(n, p) developed by Erdés and Rényi [26] and this model
has two parameters: n and p (n is the number of nodes of the graph and p is
the probability to link). The model works under the assumption that there
could be a link 7 — j between two nodes ¢ and j, and this assumption holds no
matter if the nodes had a common neighbor node before the link was formed.
The outcome of the model is the generation of random network graphs with a
low clustering coefficient and a low variation in the degrees of the nodes. A ran-
dom network cannot capture the decreasing nature of the clustering coefficient
of the nodes with increase in the node degree, because the clustering coefficient
of the nodes in this type of network is totally independent of the node degree and
is equal to the probability of a link between any two nodes [7].

The general characteristics and statistics of the Estonian network of pay-
ments are listed in Tables 8.1 and 8.2. Regarding other statistical measures
of the Estonian network of payments, as per Table 8.2, the average shortest
path length /is equal to 7.1 (calculated with Dijkstra’s algorithm). Our network
is a “small world” with 7.1° of separation, meaning that in average any company
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TABLE 8.1: Network’s characteristics

Companies analyzed 16,613
Total number of payments analyzed 2,617,478
Value of transactions 3,803,462,026"
Average value of transaction per customer 87,600"
Max value of a transaction 121,533
Min value of a transaction (aggregated in whole year) 1000*
Average volume of transaction per company 60
Max volume of transaction per company 24,859
Min volume of transaction per company
(aggregated in whole year) 20

“All money quantities are expressed in monetary units and not in real currencies in order to protect
the confidentiality of the data set. The purpose of showing monetary units is to provide a notion of
the proportions of quantities and not to show exact amounts of money.

TABLE 8.2: Summary of statistics

Statistic Value Components # Nodes
N 16,613 GCC 15,434
Number of payments 2,617,478 DC 1179
Undirected Links 43,375 GSCC 3987
(k) 20 GouT 6054
> 2.39 GIN 6172
Y 2149 Tendrils 400

Y 2.45 Cutpoints 1401
(C) 0.183 Bi-component 4404
(I 7.1 k-core 1081
T 0.13

D 29

(o) (nodes) 110

(o) (links) 40

Abbreviations: N=number of nodes. (k) = average degree. y° = scaling exponent of the out-degree
empirical distribution. yi:scaling exponent of the in-degree empirical distribution. y=scaling
exponent of the connectivity degree distribution. (C)=average clustering coefficient. (l)=
average shortest path length. 7= connectivity %. D= Diameter. (o) = average betweenness.
GCC = Giant Connected Component. DC = Disconnected Component. GSCC = Giant Strongly
Connected Component. GOUT = Giant Out-Component. GIN = Giant In-Component.

can be reached by other company in just a few links. Also, our network showed
low connectivity (C'=0.13) but at the same time the network is densely con-
nected. This characteristic is in line with the fact that there are companies
that act as hubs and lead to short distances between the other companies.

8.3.1 Robustness of the network

In complex networks, some nodes are essential while others are not, and iden-
tifying them is a critical task for many situations. The most essential nodes are



Review of Structures and Dynamics of Economic Complexr Networks 203

those which if removed from the network, would cause the whole system to col-
lapse. In order to have a deeper understanding on how the network is likely to
behave as a whole in the presence of perturbations, we will address the next
question: if a portion of nodes were removed, would the structure of the network
become divided into disconnected clusters? How will the network respond to an
actual removal of nodes? There are many approaches on how to tackle this prob-
lem and locate the “key nodes” in the network, or on how to calculate the optimal
percolation threshold of nodes that would break the network into disconnected
clusters. Morone and Makse [30] designed an approach that has proven to per-
form better than other heuristic methods (such as high degree node, k-core,
closeness, and eigenvector centralities). Morone and Makse’s algorithm opti-
mizes a measure that can reflect the collective influence effect that arises
when taking into account the entire influential set of nodes at once. This algo-
rithm predicts a smaller set of optimal influencer nodes (the group of nodes
that destroy the network if they are removed).

The collective influence of a node CT is defined as the product of the node’s
reduced degree (the number of its nearest connections k; — 1), and the total
reduced degree of all nodes k; at a distance # from it, and is represented as follows:

CL(i)=(ki—1) > (k—1), (88)

jedBall(i0)

where ¢ is defined as the shortest path: Ball(i, #) is'the'set of nodes inside a ball
of radius ¢ around node i. dBall(i, £) is the frontier of the ball and comprises the
nodes jthat are at a distance ¢ from . By computing CI for each node, it is pos-
sible to locate the nodes with the highest collective influence. The collective
influence algorithm addresses the problem of optimal influence on the computa-
tion of the minimum structural total number of nodes that reduces the largest
eigenvalue of the nonbacktracking matrix of the network.

We performed a simulation using the CI, where we calculate the collective
influence of a group of nodes as the fall in the size of the Giant Connected Com-
ponent (GCC) which would occur if the nodes of the GCC were eliminated. The
GCC contains 15,434 nodes, and this quantity represents 92.8% of the nodes of
the whole network. These results are displayed in Figure 8.4. The plot shows the
GCC when a fraction of its nodes has been removed. The optimal percolation
threshold occurs when 6.0% of the nodes are removed and that is the point where
GCC(Pc) =0. This result implies that there are many companies that execute a
large number of payments which, in fact, have a weak influence in the economic
network as a whole. The most influential companies in the network are not nec-
essarily the most connected ones, neither those having more economic activity.
A weak but smart node attack where only 6.0% of the nodes are removed
destroys the whole network of payments, meaning that a few nodes maintain
unified the whole network.

Scale-free networks are resilient to random removal of nodes, but are vulner-
able to smart attacks. Our network is a scale-free network (with power laws in
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FIGURE 8.4: GCC of the network of payments as a function of the percola-
tion threshold P..

the degree distribution) and its own scale-free nature makes hardly possible to
destroy the network by a random removal of nodes, but if the exact portion of
particularly selected nodes are removed, then the network collapses completely.
This “collapse” effect has been already observed in financial systems when severe
economic crisis occur and specific companies or banks declare themselves in
bankruptcy and the whole system breaks down. An example is the global finan-
cial crisis of 2008 that started with the collapse of the famous investment bank
Lehman Brothers, followed by Bear Sterns, UBS, and other financial entities
that dragged the whole global financial system into severe liquidity problems.

8.4 Community Detection

Community detection analysis is essential for understanding the structure
and functionality of large networks, and it also helps to expand the knowledge
of the local organization of their components. Networks have sub-sections in
which the nodes are more densely connected to each other than to the rest of
the nodes in the network, and such sub-sections are called communities. Com-
munity detection is a graph partitioning process that provides valuable insight
of the organizational principles of networks and is essential for exploring
and predicting connections that are not yet observed. Thus far, recent advances
of the underlying mechanisms that rule dynamics of communities in networks
are limited, and this is why the achievement of an extensive and wider under-
standing on communities is important. Locating the underlying community
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structure in a network allows studying the network more easily and could pro-
vide insights into the function of the system represented by the network, as
communities often correspond to functional units of systems. The study of
communities and their properties also helps on revealing relevant groups of
nodes, creating meaningful classifications, discovering similarities, or revealing
unknown linkages between nodes. Communities have a strong impact in the
behavior of a network as a whole and studying them is fundamental in order
to expand the knowledge of the community structure beyond the local organi-
zation of the components of networks.

In this sub-section of the chapter, we study the overlapping community
structure of our network by examining its characteristics and scale-free proper-
ties through the Clique Percolation Method (CPM) [31,32]. First, we detect
communities and then we analyze the global structure of the whole network
through the distribution functions of four basic quantities. In this analysis,
our data set included ~3.4 million payments from the period of October 2013
to December 2014.

The majority of previous studies on communities have essentially been
devoted to the description of structures inside the communities and their appli-
cations: communities representing real social groupings [33—35] communities in
a co-authorship network representing related publications of specific topics [36],
protein—protein interaction networks [37], communities in a metabolic network
representing cycles and functional units in biology [38], and communities in the
World Wide Web representing web pages with related contents/ [39]. Regarding
community studies on economic networks and their applications, Vitali and
Battiston [40] studied the community structure of a global corporate network
and found that geography is the major driver of organization within that net-
work. Fenn et al. [41] studied the evolution of communities of a foreign exchange
market network in which each node represents an exchange rate and each link
represents a time-dependent correlation between the rates. By using community
detection, they were able to uncover major trading changes that occurred in the
market during the credit crisis of 2008. Other related economic studies have
focused on the overlapping feature of communities, such as in [42,43].

Most of the algorithms for community detection can be classified as divisive,
agglomerative, or optimization-based methods, and each method has specific
strengths and weaknesses. Previous studies on communities based on divisive
and agglomerative methods consider that structures of communities can be
expressed in terms of separated groups of clusters [44], but most of the real net-
works are characterized by well-defined statistics of overlapping communities.
An important limitation of the popular node partitioning methods is that a
node must be in one single community, whereas it is often more appropriate
to attribute a node to several different communities, particularly in real-world
networks. An example where community overlapping is commonly observed is
in social networks where individuals typically belong to many communities
such as: work teams, religious groups, friendship groups, hobby clubs, family,
or other similar social communities. Moreover, members of social communities
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have their own communities and this, in turn, results in a very complex web of
communities [32]. The phenomenon of community overlapping has been already
noticed by sociologists but has barely been studied systematically for large-scale
networks [31,45].

Networks have sections in which the nodes are more densely connected to
each other than to the rest of the nodes in the network, and such sub-sections
are called communities. Communities might exist in networked systems of
different nature, such as economics, sociology, biology, engineering, politics,
and computer science. There is no unique definition of community in the existing
literature. Definitions change depending on the author and the type of study,
and precisely one of the core issues in community detection is the lack of a uni-
fied definition of what is a community. We use the CPM definition because such
algorithm allows overlapping nodes among communities, a condition that arises
when a node is a member of more than one community. In economic systems, the
nodes could frequently belong to multiple communities; therefore, forcing each
node to belong to a single community could result into a misleading character-
ization of the underlying community structure.

An overlapping community graph is a network that represents links between
communities. In our study, the nodes represent communities and the links rep-
resent shared nodes between communities. CPM is based on the density of links
and the definition of community for this algorithm is local and it is not too
restrictive. Overlapping communities arise when a node is a member of more
than one community. (CPM is based onthe assumption that a'community com-
prises overlapping sets of fully connected sub-graphs and detects communities
by searching for adjacent cliques. A clique is a complete (fully connected)
sub-graph. A k-clique is a complete subgraph of size k (the number of nodes in
the sub-graph). Two nodes are connected if the A-cliques that represent them
share £ — 1 members. The method begins by identifying all cliques of size k
in a network. When all the cliques are identified, then a N, x N, clique—clique
overlapping symmetric matrix O can be built, where N, is the number of cliques
and Oy; is the number of nodes shared by cliques ¢ and j [46]. This overlapping
matrix O encodes all the important information needed to extract the k-clique
communities for any value of k. In the overlapping matrix O, rows and columns
represent cliques and the elements are the number of shared nodes between the
corresponding two cliques. Diagonal elements represent the size of the clique and
when two cliques intersect they form a community. For certain k-values, the
k~clique communities form such connected clique components in which the
nearby cliques are linked to each other by at least k£ — 1 adjacent nodes. In order
to find these components in the overlapping matrix O, one should keep the entries
of the overlapping matrix which are larger than or equal to £ — 1, set the others to
zero and finally locate the connected components of the overlapping matrix O.
The formed communities are the identified separated components.

For our method, it is important to select a proper parameter k. This param-
eter affects the constituents of the overlapping regions between communities.
The larger the parameter k is, the less the number of nodes which can arise in
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the overlapping regions. When k — oo, the maximal clique network is identical
to the original network and no overlap is identified. The choice of k depends on
the network. It is observed from many real-world networks that the typical
value of k is often between 3 and 6 [47].

Figure 8.5 shows a plot of the number of communities and the average size of
the communities at different k&values. As kincreases the number of communities
decreases while the size of communities increases fast. When £ decreases the
number of communities increases fast and the size of the communities remains
low. In order to obtain the optimal value & for our network, we tested different
values ranging from 3 to 10 and a posterioriwe found that the optimal number is
k=5. When k<5 a high number of communities arises and the partitions
become very low; when k> 5 a lower number of communities arises and the par-
titions become unreal. At the level of k=5, we obtain the richest partition with
the most widely distributed cluster sizes set for which no giant community
appears.

For visualization purposes and in order to draw a readable map of the
network, Figure 8.6 shows a graphic view of a representative section of the over-
lapping network of communities where big and small communities can easily be
distinguished. This image depicts 25 overlapping communities and each colored
circle represents a node which, in turn, represents an overlapping community.
The links represent the shared nodes between the communities. The size of
the nodes characterizes the size of each community. For example, the big
node in the middle represents a_community with 61 companies!

The usefulness of identifying the communities within this network lies in
how this information could be used in a practical scenario. The output of the
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FIGURE 8.5: Plot of average community sizes “s” and number of communi-
ties “c” as k increases. Squares represent the number of communities and trian-
gles represent the size of the communities.
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FIGURE 8.6: Visual representation of a section of the overlapping network of
communities (Estonian network of payments). Nodes represent communities
and the links represent shared nodes between communities.

community analysis could-be used for targeted marketing. For example, it could
be useful when integrating criteria for creating target groups of companies
or customers to whom certain products or lines of products would be offered.
Companies included in the same community would be located in the same target
group and later on after a product offer is made it would be possible and inter-
esting to assess the contagion effect of the product acquisition among companies
of the same communities who received the offer. Another useful application is
that the output of the analysis could help on creating customer-level segmenta-
tions or marketing profiles. Knowing the community (or communities) where
a company or customer belongs to could be one of the drivers for creating a
customer profile or grouping level. An alternative usage of the results of the
community detection analysis is in predictive analytics for building churn mod-
els. Churn models usually define a measure of the potential risk of a customer
cancelling a product or service and provide awareness and metrics to execute
retention efforts against churning. Additionally, community detection analysis
could be used as input for product affinity analysis and recommender systems.
Affinity analysis is a data mining technique that helps to group customers based
on historical data of purchased products and is used for cross-selling product
recommendations. Another useful and immediate application is in product
acquisition propensity models. These models calculate customers’ likelihood
to acquire a product based on a myriad of variables and the output of the over-
lapping community analysis could be input for such propensity models and sup-
port efficiency in sales processes.
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8.4.1 Structure of communities

We studied the global community structure of our network by inspecting
the distribution functions of four elemental quantities: community size P(s),
overlap size P(s,) community degree P(d), and membership number P(m).
The distributions of such quantities are shown in Figure 8.7a—d which show
important statistics that describe the community structure of our network. In
general, nodes in a network can be characterized by a membership number
which represents the number of communities a node belongs to. This means
that, for example, any two communities may share some of their nodes which
correspond to the overlap size between those communities. There is also a net-
work of communities where the overlaps are the links and the communities are
the nodes, and the number of such links is called community degree. The size of
any of those communities is defined by the number of its nodes.

Figure 8.7a displays the cumulative distribution function of the community
size P(s). This is the probability for a community of having a community size
higher or equal to s, calculated over different points in time ¢ (where ¢ is the
time expressed in months, ¢ =1 is October, ¢t = 2 is November, etc.). The overall
distribution of community sizes resembles a power law P(s) oc s, where a is the
scaling exponent, and a power law is valid nearly over all times ¢, suggesting
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FIGURE 8.7: (a) Cumulative community size distribution at different times
t. (b) Cumulative distribution of community degrees d. (¢) Cumulative distribu-
tion function of the membership number m;. (d) Cumulative distribution func-
tion of the overlap size s,,.
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there is no characteristic community size in the network. The sizes of the com-
munities on ¢ = 1 are smaller than in the rest of the months; as time increases the
size increases, particularly the size of the largest communities. The distribution
at different moments in time follows similar decaying patterns, but in general,
the scaling tail is higher as ¢ increases. The shapes of the power laws observed
in the community size distributions of Figure 8.7a suggest there is no character-
istic community size in the network. A fat tail distribution implies that there
are numerous small communities coexisting with few large communities
[48,49]. The scaling exponent when t=3 is —2.8 (included for eye guideline)
and Equation 8.9 is

P(s) oc 5725, (8.9)

In a network of overlapping communities, the overlaps are represented by
the links and the number of those links is represented by the community degree
d. Then, the degree dis the number of communities another community overlaps
with. Figure 8.7b shows the cumulative distribution of the community degrees
in the network. There are some outstanding community degrees by the end of
the tail and these include communities that cluster the majority of the biggest
customers in the network. The central part of the distribution decays faster
than the rest of the distribution. There is an observable curvature in the log—
log plot, however no approximation- method fitted the distribution. This plot
shows that the maximum number of degrees d is 63 and corresponds to a
relatively small quantity of nodes.

The membership number m; represents the number of communities a node 4
belongs to while the overlap size s, is the number of nodes that two communities
share. Figure 8.7c and d show the distributions of both measures, respectively.
Both distributions seem to have a power-law behavior and indicate that there is
no characteristic scale in the overlapping size or in the membership sizes.
Regarding the overlap size, the range to which the communities overlap with
each other is also an important property of our network.

As shown in Figure 8.7¢, the largest membership number found in the
network was 10, meaning that a company can belong to maximum 10 different
communities simultaneously. This plot shows that the fraction of nodes that
belong to many different communities is quite small, while the fraction of nodes
belonging to at least 1 community is high. For example, when m = 1 the percent-
age of nodes that belong to at least one community is 50%, while the percentage
of nodes that belong simultaneously to 10 communities (m = 10) is extremely
small. However the rest of the communities belong to at least 2 or more
communities.

In our previous study [22], we found scale-free properties in the degree distri-
butions of the Estonian network of payments and it is very interesting to observe
that the scale-free property is also preserved at a higher level of organization
where overlapping communities are present.
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8.5 Multifractal Networks

In the late 1960s Benoit Mandelbrot was the first to coin the term “fractal”
and he also was the first one in describing the fractal geometry of nature [27],
and since then the fractal approach has been widely spread and used in extensive
research studies related with the underlying scaling of different complex struc-
tures, including networks.

Whether if a single fractal scaling spans or not all the constituents or areas of
a system, is a fundamental issue that helps on distinguishing when a system is
multifractal or just fractal. One scaling exponent is enough to characterize
completely a monofractal process. Monofractals are considered as homogeneous
objects because they have the same scaling properties branded by one singular-
ity exponent. Instead, a multifractal object requires several exponents to char-
acterize its scaling properties. Multifractals are inherently more complex and
inhomogeneous than monofractals and portray systems with high variations
or fluctuations that originate from specific characteristics.

Fractal and multifractal analysis can help to reveal the structure of all kinds
of systems in order to have a better understanding of them. In particular, both
approaches have many different interesting applications in economy. An inter-
esting line of research is related with the relevance and applicability of fractal
and multifractal analysis in social and economic topics. Inaoka et al. [17] showed
that the study of the structure of a banking network provides useful insight from
practical points of view. By knowing and understanding the structure and char-
acteristics of banking networks (in terms of transactions and their patterns), a
systemic contagion could potentially be prevented. In their study, these authors
showed that the network of financial transactions of Japanese financial institu-
tions has a fractal structure. Regarding social studies, Lu et al. [50] showed the
importance of road patterns for urban transportation capacity based on fractal
analysis of such network. In this study, the authors were able to link the fractal
measurement with city mass measurements. A few recent studies have focused
on the analysis of the changes of multifractal spectra across time to assess
changes in economy during crisis periods [51]. Some other studies have focused
on gathering empirical evidence of the common multifractal signature in eco-
nomic, biological, and physical systems [52].

Fractal analysis helps to distinguish global features of complex networks,
such as the fractal dimension. However, the fractal formalism is insufficient to
characterize the complexity of many real networks which cannot be described
by a single fractal dimension. Furuya and Yakubo [6] demonstrated analytically
and numerically that fractal scale-free networks may have multifractal struc-
tures in which the fractal dimension is not sufficient to describe the multiple
fractal patterns of such networks, therefore, multifractal analysis rises as a
natural step after fractal analysis.

Multifractal structures are abundant in social systems and in a variety of
physical phenomena. Inhomogeneous systems which do not follow a self-similar
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scaling law with a sole exponent could be multifractal if they are characterized
by many interweaved fractal sets with a spectrum of various fractal dimensions.
Multifractal analysis is a systematic approach and a generalization of fractal
analysis that is useful when describing spatial heterogeneity of fractal patterns
[53]. Multifractal network analysis requires taking into account a physical
measure, like the number of nodes within a box of specific size in order to
analyze how the distribution of such number of nodes scales in a network as
the size of the box grows or reduces. In the last years, numerous algorithms
for calculating the fractal dimension and studying self-similar properties of
complex networks have been developed and tested extensively [31,54-57].
Song et al. [58] developed a method for calculating the fractal dimension of a
complex network by using a box-covering algorithm and identified self-similar-
ity as a property of complex networks [59]. Additionally, several algorithms and
studies on multifractal analysis of networks have been proposed and developed
recently [60—63].

In this sub-section of the chapter, we analyze fractal and multifractal prop-
erties of the large-scale economic network of payments of Estonia. We perform a
fractal scaling analysis by estimating the fractal dimension of our network and
its skeleton. Then, we study the multifractal behavior of the network by using a
sandbox algorithm for complex networks to calculate the spectrum of the gen-
eralized fractal dimensions D(¢) and mass exponents 7(g).

8.5.1 Fractal network analysis

According to Song et al. [59], the box-counting algorithm is an appropriate
method to study global properties of complex networks. The fundamental
relation of fractal scaling is based on the box-covering method which counts
the total number of boxes that are needed to cover a network with boxes of cer-
tain size. The box-covering method is equivalent to the box-counting method
widely used in fractal geometry and is a basic tool for measuring the fractal
dimension of fractal objects embedded in Euclidean space [64]. However, the
Euclidean metric is not well defined for networks, thus we use the networks’
adaptation [63] of the random sequential box-covering algorithm [65] in
order to calculate the fractal dimension of our network and its skeleton. This
method involves a random process for selecting the position of the center of
each box. We let Np(rp) be the minimum number of boxes needed to tile the
whole network, where the lateral size of the boxes is the measure of radius rp
as follows:

Np(rg) ~ r5™, (8.10)

where dpis the fractal dimension. If we measure the number of Np for different
box sizes, then it is possible to obtain the fractal dimension dg by obtaining the
power-law fitting of the distribution. The algorithm selects a random node at
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each step, and this node is the seed that will be the center of a box. Then we
search the network by distance rp from the seed node and cover all the nodes
that are located within that distance, but only if they have not been covered
yet. Later we assign the newly covered nodes to the new box; if there are no
more newly covered nodes then the box is removed. This process is repeated
until all the nodes of the network belong to boxes. Before using the algorithm
we calculate the skeleton of our network.

One of the main challenges of complex network studies is the identification of
critical structural features that are underneath the network’s complexity. This
is related with the basic concept of: the distinctive character of a whole is inside
just a few of its parts, for example, in specific colors and shapes of a painting,
particular notes or tunes in a song or certain keywords in a text or speech.
This basic concept is also true for complex networks, where only a few parts
of the whole network reflect the most important properties of it. For example,
in large-scale networks, only a small number of links are critical for the network
to exist as a whole. A skeleton network is generally smaller than the original and
it reproduces all the fundamental properties of the whole because it contains the
essence of the network. Grady et al. [66] analyzed the network of international
flight connections and discovered that the skeleton network consists of just
6.76% of the original network. The skeleton network concept can be used to
detect epidemic propagations of disease when indicating which individuals are
key participants in a social network or it can be useful when describing ecosys-
tems to identify the species that should not-be damaged 'at’all to avoid jeopar-
dizing the whole network.

The concept of skeleton was first introduced by Kim et al. [67]. The skeleton
is a particular type of spanning tree based on the link betweenness centrality (a
simplified quantity to measure the traffic of networks) that is entrenched
beneath the original network. The skeleton provides a shell for the fractality
of the network and is formed by links with the highest betweenness centralities.
Only the links that do not form loops are included. The remaining links from the
original network which are not included in the skeleton are local shortcuts that
contribute to loop formation, meaning that the distance between any two nodes
in the original network may increase in the skeleton. A fractal network has a
fractal skeleton beneath which is distressed by these local shortcuts but it pre-
serves fractality. For a scale-free network the skeleton also follows a power-law
degree distribution where the degree exponent might differ slightly from that
of the original network. When studying the origin of fractality in networks,
actually the skeleton is more useful than the original network itself due to its
unsophisticated and simplistic tree structure [68]. In general, the skeleton pref-
erentially collects the sections of the network where betweenness is high and this
preserves the structure and simplifies its complexity. Therefore, by looking at
the properties of the skeleton it is easier to appreciate the topological organiza-
tion of the original network.

In order to calculate the skeleton of a complex network, the link betweenness
of all the links in the network has to be calculated. The betweenness centrality of
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FIGURE 8.8: Graph representation of the skeleton of the Estonian network
of payments.

a network (for a link or a node), is defined as follows:

b= > )| (8.11)

jkeNjzk Uk

where N is the total number of nodes, nj, is the total number of shortest paths
between nodes jand k, nj(%) is the total number of shortest-paths linking nodes
jand k that passes through the node . In order to perform the fractal scaling
analysis, we used Dijkstra’s algorithm [69]; then we used the box-covering
algorithm to calculate the fractal dimension of the network and the skeleton
to compare both values.

We present a fractal scaling analysis by using the box-counting algorithm
expressed in Equation 8.10 and we calculated the fractal dimension of our
network and its skeleton. Figure 8.8 shows a visualization of the graph represen-
tation of the skeleton of our network. The box-covering method yields a fractal
dimension dg,=2.32 + 0.07 for the skeleton network and for the original net-
work the fractal dimension is dg, = 2.39 + 0.05.

The comparison of the fractal scaling in our network and its skeleton struc-
ture revealed its own patterns according to the fractality of the network.
Figure 8.9 shows a fractal scaling representation of our network and its skeleton,
where the fractal dimension is the absolute value of the slope of the linear fit.

As seen in the plot of Figure 8.9, the respective number of boxes needed to
cover both networks is very similar but not identical, actually more boxes
were needed for covering the skeleton. The largest distance between any two
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FIGURE 8.9: Fractal scaling representation of our network. The original net-
work (O) and the skeleton network (@). The straight line is included for guid-
ance and has a slope of 2.3. The analysis includes only the giant connected
cluster of the network.

nodes in the network of payments is 29, while the largest distance between any
two nodes in the skeleton network is 34.

8.5.2 Multifractal network analysis

Scale-free networks are commonly observed in a wide array of different
contexts of nature and society. In the first sub-section of this chapter, we
have shown that the Estonian network of payments has scale-free properties
characterized by power-law degree distributions.

In general, multifractality is expected to appear in scale-free networks due to
the fluctuations that occur in the density of local nodes. Tél et al. [70] introduced
a sandbox algorithm based on the fixed-size box-counting algorithm [71] which
was used and adapted for multifractal analysis of complex networks by Liu et al.
[61]. In order to determine the multifractal dimensions of our complex network,
we chose this adapted sandbox algorithm because it is precise, efficient, and
practical. Moreover, a study by Song et al. [53] has shown that this algorithm
gives better results when it is used in unweighted networks, and this is our case.

The fixed-size box-counting algorithm is one of the most known and efficient
algorithms for multifractal analysis. For a given probability measure 0 <pu <1
in a metric space Q with a support set E, we consider the following partition
sum:

Z()) =Y WB, (8.12)
(B) #0
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where the parameter ¢ € R, and describes the moment of the measure. The sum
runs over all different non-overlapping (or non-empty) boxes B of a given size &
that covers the support set E. From this definition, it is easy to obtain Z.(q) >0
and Z.(0) =1. The function of the mass exponents z(¢) of the measure y is
defined by

o(q) = Pncnzxw)' (8.13)

Ine

Then, the generalized fractal dimensions D(q) of the measure p are defined as
follows:

D(q) = —~% 1 .14
() pen U RGRS (8.14)
and
Z1e)
D(1) = lim —— =1 1
( ) SI—I;% 11’18, 1 ’ (8 5)
where
Ze=Y w(B)nu(B). (8.16)
u(B)#0

The generalized fractal dimensions D(g) can be estimated with linear regres-
sion of [In Z.(¢)]/[q — 1] against In & for ¢ # 1, and similarly a linear regression of
Z, . against In € for ¢=1. D(0) is the fractal dimension or the box-counting
dimension of the support set E of the measure u, D(1) is the information dimen-
sion and D(2) is the correlation dimension.

For a complex network, a box of size B can be defined in terms of the distance
I3, which corresponds to the number of links in the shortest path between two
nodes. This means that every node is less than Iz links away from another
node in the same box. The measure u of each box is defined as the ratio of the
number of nodes that are covered by the box and the total number of nodes
in the whole network.

Multifractality of a complex network can be determined by the shape of z(¢) or
D(q) curves. If 7(g) is a straight line or D(g) is a constant, then the network is
monofractal; similarly if D(q) or t(q) have convex shapes, then the network is
multifractal. A multifractal structure can be identified by the following signs
[72]: multiple slopes of 7(g) versus ¢, non-constant D(q) versus (¢) values and f
(a) versus a value covers a broad range (not accumulated at nearby non-integer
values of a).

Firstly, we calculate the shortest-path distance between any two nodes in
the network and map the shortest-path adjacency matrix By, y using the pay-
ments adjacency matrix Ay, . Then we use the shortest-path adjacency matrix
By« as input for multifractal analysis. The central idea of the sandbox
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algorithm is simply to select a node of the network in a random fashion as the
center of a sandbox and then count the number of nodes that are inside the sand-
box. Initially, none of the nodes has been chosen as a center of a box or as a seed.
We set the radius r of the sandbox which will be used to cover the nodes in the
range € [1,D|, where D(diameter) is the longest distance between nodes in the
network and radii r are integer numbers. We ensure that the nodes are chosen
randomly as center nodes by reordering the nodes randomly in the whole net-
work. Depending on the size N of the network, we choose T nodes in random
order as centers of T sandboxes; then we find all the neighboring nodes within
radius 7 from the center of each box. We count the number of nodes contained
in each sandbox of radius r, and denote that quantity by S(r). We calculate the
statistical averages [S(r)?" ] of [S(r)?~!] over all the sandboxes T of radius 7. The
previous steps are repeated for each of the different values of radius rin order to
obtain the statistical average [S(r)"'] and use it for calculating linear
regression.
The generalized fractal dimensions D(¢) of the measure p are defined by

In[S(r)/S(O0)]"" 1
In (r/d) g—1

D(q) = lim . q€R (8.17)

or rewritten as

In ([S(n]"") o< Dlg) (g = DIn(5) + (g = Din(sh), (8.18)

where S(0) is the size of the network and the brackets mean taking statistical
average over the random selection of the sandbox centers. We run the linear
regression of In([S(7)]¢"") against (¢ — 1)In(r/d) to obtain the generalized frac-
tal dimensions and similarly, calculate the linear regression of In([S(7)]?"")
against In(r/d) to obtain the mass exponents 7(g). From the shapes of the gen-
eralized fractal dimension curves, we can conclude if multifractality exists or not
in our network.

Linear regression is an important step to obtain the correct range of radius
7€ [Tymins Tmas] that is needed to calculate the generalized fractal dimensions
(defined by Equations 8.17 and 8.18) and the mass exponents (defined by
Equation 8.13). We found an appropriate range of radii  within the range of
the interval located between 2 and 29 for linear regression, thus we selected
this linear fit scaling range to perform multifractal analysis (we set the range
of ¢-values from —7 to 12).

We calculated 7(¢) and the D(q) curves using the sandbox algorithm by Liu
et al. [61] and based upon the shapes obtained from the spectrum in Figure 8.10a
and b, it can be seen that the curves are non-linear, suggesting that the network
is multifractal.

In Figure 8.10b, the D(q) function decreases sharply after the peak reaches
its end when ¢ is —4. This could be interpreted as the high densities around
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FIGURE 8.10: (a) Plot of mass exponents (¢g) as function of ¢. (b) Plot of
generalized fractal dimensions D(q) as function of ¢. Curves indicated by circles
represent numerical estimations of the mass exponents and generalized fractal
dimensions, respectively.

the hubs in the network. The hubs have a high number of links connected to
them; therefore, the density of links around the sections near the hubs is higher
than in other parts of the network. These hub nodes or important companies
have a noticeable larger amount of business partners (for example: customers,
suppliers, or any other business parties that interact financially) than the rest
of the companies in the network have, and it is interesting to observe that
this characteristic can be explored and identified by looking at the values of
D(q) spectra. The multifractality seen in our network reveals that the system
cannot be described by a single fractal dimension suggesting that the multifrac-
tal approach provides a better characterization; hence, this means that the Esto-
nian economy is multifractal.

The quantity AD(q) describes the changes on link density in our network.
We use AD(q) = D(q)mar— lim D(q) to observe how the values of D(¢q) change
along the spectrum. From Figure 8.10b, we found that lim D(q) =0.37 and D
(@) maz = 7.8 and this means that AD(q) = 7.43. A large D(q) value means that
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the link distribution is very irregular, suggesting that there are areas of hubs
where the links are densely grouped contrasting with areas where the nodes
are connected with only just few links. In our network, this means that just a
few companies have the role of hubs, while the rest are just small participants
of the payments network. Table 8.3 shows a comparison of the maximum values
of D(q) in different networks.

TABLE 8.3: Comparison of the maximum values of D(g) in different

networks
Number of Highest

Network nodes D(q) Reference
Pure fractal network 6222 2.8 [60]
Small-world network 6222 6.6 [60]
Semi fractal network 6222 3.1 [60]
Sierpinski weighted fractal

network 9841 2.0 [53]
Cantor dust weighted fractal

network 9841 3.2 [53]
High-energy theory collaboration

weighted network 8361 6:0 [53]
Astrophysics collaboration

weighted network 16,706 6.2 [53]
Computational geometry

collaboration weighted network 7343 5.1 [53]
Barabési and Albert model scale-

free network 10,000 3.6 [61]
Newman and Watts model small-

world network 10,000 4.8 [61]
Erd6és—Rényi random graph model 10,000 3.9 [61]
Barabasi and Albert model scale-

free network 7000 3.4 [63]
Random network 5620 3.5 [63]
Random network 449 2.4 [63]
Protein—Protein interaction

network: Human 8934 4.9 [63]
Protein—Protein interaction

network: Arabidopsis thaliana 1298 2.5 [63]
Protein—Protein interaction

network: C. elegans 3343 4.5 [63]
Protein—Protein interaction

network: E. coli 2516 4.1 [63]
Small-world network 5000 3.0 [63]

Estonian network of payments 16,613 7.8 [22]
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8.6 Conclusions

Complex networks can be considered as the skeleton of complex systems
and they are present in many kinds of social, economic, biological, chemical,
physical, and technological systems. In this chapter, we have reviewed global
properties and statistics related with the topological structure of the large-scale
payments network of an entire country (Estonia) by using payments data.
Additionally, we have reviewed some topics related with its community struc-
ture and moreover, we have analyzed some aspects related with multifractal
and fractal properties.

In the network of Estonian payments, we found scale-free degree distribu-
tions, small-world property, low clustering coefficient, disassortative degree,
and heterogeneity. Its scale-free structure indicates that a low number of com-
panies in Estonia trade with a high number of companies, while the majority
of the companies trade with only few. The clustering coefficient distribution
suggests the existence of a hierarchic structure in the network. Our network is
a small world with just 7° of separation. The connectivity is smaller than the
overall clustering coefficient therefore, our network is not random. The diameter
value suggests there is a preference among companies for particular paths
of money.

We tested the robustness of the network with an approach that focuses on
the collective influencer.nodes, First, we located. the key nodes that prevent
the network of breaking into disconnected components. The simulation
assumed a targeted removal of key nodes which cause a quick growth in the aver-
age shortest path length until the network was destroyed at an optimal perco-
lation threshold of 6%, while in the random removal the damage was
extremely small. This revealed the robustness of our economic network against
random attacks but also revealed its vulnerability to smart attacks. The low per-
centage of the optimal percolation threshold reveals that the most influential
companies in the network are not necessarily the most connected ones or those
having more economic activity and that a small quantity of companies main-
tains the whole network unified.

Later, we analyzed the community structure of our network by using the
CPM. We found that there are scale-free properties in the statistical distri-
butions of the community structure, too. Size, overlap, and membership dis-
tributions follow shapes that are compatible with power laws. Power-law
distributions have already appeared in this network at a global scale in the level
of nodes, and in this community study we have shown that power laws are pre-
sent at the level of overlapping communities, too.

An immediate application for the community detection output is that it can
be used in targeted marketing activities, as input for predictive analytical mod-
els such as in product acquisition propensities, churn, product affinity analyses,
for creating marketing profiles or customer segmentations and for creating cus-
tomer target lists for product offering (in an effort to propagate consumer buzz
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effects). Further applications for community detection in similar economic
networks could involve identification of patterns between companies, tracking
suspicious business activities, and strengthening relationships between compa-
nies of the same community for improving performance of the whole network.

In the last part of the chapter, we presented a fractal and multifractal
analysis of the network. We identified the underlying structure of the network
(its skeleton) and measured the fractal dimension of the skeleton to compare
it with the fractal dimension of the original network. Both fractal dimensions
were similar but the fractal dimension of the skeleton was slightly smaller.
We also analyzed the general multifractal structure by calculating the spec-
trum of the mass exponents (¢) and the generalized fractal dimension D(q)
curves, through a sandbox algorithm for multifractal analysis of complex
networks. Our results indicated that multifractality exists in the Estonian
network of payments, and this suggests that the Estonian economy is multi-
fractal (from the point of view of networks). We found large values of D(q)
spectra, which mean that the distribution of links is quite irregular in the
network, suggesting there are specific nodes which hold densely connected
links while other nodes hold just a few links. This type of structure could be
relevant when critical events occur in the economy that could threaten the
whole network.

It is important to continue studying the structures and characteristics of
economic complex networks in order to be able to understand their underlying
processes and'to be ‘able to-detect patterns that could be useful for predicting or
forecasting events and trends. The addition of evidence through empirical stud-
ies in favor of fractality, multifractality, communities’ detection, and structural
properties of economic networks represents a step forward towards the knowl-
edge on the unraveling of the complexity of economic systems.

8.6.1 Further applications

Regarding community structure in economic networks, a question that
remains open for future research is to investigate if the similarities in communi-
ties’ features amongst different complex networks arise randomly or if there
are any unknown properties shared by all of them. Another interesting open
line of research is to study the plausibility of predicting changes in a payment
network through community detection analysis. Further applications in eco-
nomic networks could involve strengthening relationships between companies
of the same community to improve the performance of the whole network, tar-
geted marketing, identification of patterns between companies, and tracking of
suspicious business activities.

Further applications of multifractal studies in economic networks might
involve examining the potential factors that drive the strength of the multifrac-
tal spectrum. Some applications could involve studying the origin of such
factors. Another interesting line of research would be to study the patterns
and the changes of the multifractal spectrum across different periods of time.
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Particularly, it would be interesting to analyze such patterns during financial
crisis periods for risk pattern recognition purposes. Also, it would be interesting
to take into account different probability measures for such kind of multifractal
analysis. Other direction of the studies could focus on building network models
that attempt to forecast country money flows or potential industry growth
trends based on data of transactions.
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Abstract. Revealing the community structure exhibited by real networks is a fundamental phase towards a comprehensive
understanding of complex systems beyond the local organization of their components. Community detection techniques help in
providing insights into understanding the local organization of the components of networks. We identified and investigated the
overlapping community structure of an interesting and unique case of study: the Estonian network of payments. In order to
perform the study, we used the Clique Percolation Method and explored statistical distribution functions of the communities,
where in most cases we found scale-free properties. In this network the nodes represent Estonian companies and the links
represent payments made between the companies. Our study adds to the literature of complex networks by presenting the first

overlapping community detection analysis of a country’s network of payments.

Key words: complex networks, economic networks, overlapping communities, scale-free networks.

1. INTRODUCTION

A network is a set of nodes connected by links. A
complex network has nontrivial topological features and
most of the real-world networks are complex. Complex
networks can be described by a combination of local,
global, and mesoscale approaches. The exploration of
intermediate-sized structures that are responsible for
“coupling” local properties demands partitioning net-
works into useful groups of nodes [1]. Networks have
sections in which the nodes are more densely connected to
each other than to the rest of the nodes in the network, and
such sub-sections are called communities. Communities
may exist in networked systems of different nature,
such as economics, sociology, biology, engineering,
politics, and computer science.

: Corresponding author, stretomx@gmail.com

Community detection is a graph partitioning process
that provides valuable insight into the organizational
principles of networks and is essential for exploring and
predicting connections that are not yet observed. Thus
far, recent advances in the underlying mechanisms that
rule the dynamics of communities in networks are limited,
and this is why the achievement of an extensive and wider
understanding of communities is important. Locating
the underlying community structure in a network allows
studying the network more easily and can provide
insights into the function of the system represented by the
network, as communities often correspond to functional
units of systems. The study of communities and their
properties also helps in revealing relevant groups of
nodes, creating meaningful classifications, discovering
similarities, or revealing unknown linkages between
nodes. Communities have a strong impact on the
behaviour of a network as a whole and studying them is
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fundamental in order to expand the knowledge of the
community structure beyond the local organization of
the components of networks.

The usefulness of identifying the communities within
networks lies in how this information could be used in
a practical scenario. Particularly, in the context of the
bank industry the output of our community analysis
(based on payments between companies which are
customers of a bank) could be used for targeted
marketing. For example, it could be used at the moment
of integrating criteria for creating target groups of
customers to whom certain products or lines of products
would be offered. Customers in the same community
would be included in the same target group and later on,
after one offer is made to them, it would be possible and
interesting to assess the contagion effects of the product
acquisition among customers of the same communities
who received the same offer. Another useful application
is when helping to create customer-level segmentations
or marketing profiles. To know the community (or
communities) where a customer belongs to could be one
of the main features for creating customer profiles or
clustering levels. An alternative usage of the output
of community analysis is in predictive analytics, for
example, when building churn models. Churn models
usually define a measure of the potential risk of a
customer cancelling a product or service and provide
awareness and metrics to execute retention efforts against
churning. The communities to which the companies/
customers belong to could be used as variables or
features when using logistic regression, random forest,
or neural network models. Additionally, community
detection analysis could be used as input for product
affinity and recommender systems. Affinity analysis is a
data mining technique that helps group customers based
on historical data of purchased products and is used for
cross-selling product recommendations. Another useful
and immediate application is in product acquisition
propensity models. These models calculate customers’
likelihood to acquire a product after an offer is made
based on a myriad of variables and with this evidence
the sales process can become more efficient.

The objective of this study is to detect the over-
lapping community structure of the large-scale payments
network of Estonia by examining its characteristics and
scale-free properties through the Clique Percolation
Method [2,3]. First, we detect communities and then we
analyse the global structure of the network through the
distribution functions of four basic quantities.

The research questions for this study are the following:
Which is the community structure of the Estonian
network of payments? Are there scale-free properties in
the community structure?

Section 1 provides a general introduction and an
overview of the objectives. In Section 2 we deliver a
description of the data set used in this study. Section 3
provides a literature review of studies related to similar
networks and their applications. In Section 4 we present
the method used to develop this study, while Section 5
presents our main results and findings. Finally, Section 6
concludes with a discussion of our results.

2. ANALYSED DATA

Our data set was obtained from Swedbank’s databases.
Swedbank is one of the leading banks in the Nordic and
Baltic regions of Europe. The bank operates actively
in Estonia, Latvia, Lithuania, and Sweden. All the
information related to the identities of the nodes is very
sensitive and thus will remain confidential and un-
fortunately cannot be disclosed. The data set is unique
in its kind and very interesting since ~80% of Estonia’s
bank transactions are executed through Swedbank’s
system of payments. Hence, this data set reproduces well
the transactional trends of the whole Estonian economy,
S0 we use it as a proxy of the Estonian economy.

The data set consists of electronic company-to-
company domestic payments, including data of 16 613
companies and 3.4 million payment transactions (October
2013-December 2014). In this study, the nodes re-
present companies and the links represent the payments
between the companies. For simplicity, we focus on the
basic case where the network of payments is defined by
a symmetric payment adjacency matrix that represents
the whole image of the network. We consider an un-
directed graph approach where two nodes have a link if
they share one or more payments. Then each element
represents a link as follows: aj =aj;, where a; =1 if
there is a transaction between companies i and j,
and ajj =0 if there is no transaction between i and ;.

Tables 1 and 2 show main measures and statistics
of our network of payments. The average degree of
our network is <k> =21 while the diameter is 29. The
average betweenness of links is 41, while it is 112 for
nodes. The average shortest path length <l> =7.3 Our
network is a “small world” with 7 degrees of separation,
so on average any company can be reached by another
within seven steps. An average degree of separation of 7
is a very small value for a network of size N =16613.
The network displays scale-free properties in the degree
distribution. The degree distribution follows a power-law
where the scaling exponent is P(> k) oc k" (=2.46). The
network has a low average clustering coefficient of 0.19
and displays disassortative mixing behaviour, where
high-degree nodes, represented by companies who have
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Table 1. Network characteristics

Number of companies analysed 16 613

Total number of payments analysed 3406 651

Total value of transactions 4342 109 265*

Average value of transaction per 99 904*
customer

Maximum value of a transaction 135 736*

Minimum value of a transaction 1000*
(aggregated)

Average volume of transaction per 76
company

Maximum volume of transaction per 34 665
company

Minimum volume of transaction per 20
company (aggregated)

* All monetary quantities are expressed in monetary units and
not in real currencies in order to protect the confidentiality
of the data set. The purpose of showing monetary units is to
provide a notion of the proportions of quantities and not to
show exact amounts of money.

Table 2. Summary of statistics

Statistic Value
(k) 21
e 2.41
) 2.50
y 2.46
(c) 0.19
(1) 73
T 0.13
D 29
o’i (nodes) 112
o) (links) 41

<k> = average degree, y° = scaling exponent of the out-degree
distribution, 3 = scaling exponent of the in-degree distribution,
y = scaling exponent of the connectivity degree distribution,
<C> = average clustering coefficient, <l> = average shortest
path length, 7' = connectivity %, D = diameter, <o-> = average
betweenness.

many counterparties such as business partners, service
providers, clients, or suppliers, have a large number of
links to companies which have only one link, or just
few links.

3. LITERATURE DISCUSSION

Networks play an important role in a wide range of
economic and social phenomena. The use of techniques
and methods from graph theory has permitted eco-

nomic network theory to expand the knowledge and
understanding of economic phenomena in which the
embeddedness of individuals or agents in their social
or economic interrelations cannot be ignored [4]. For
example, Souma et al. [5] studied a sharcholder network
of Japanese companies by analysing the companies’
growth through economic networks dynamics. Other
examples of interesting applications of complex networks
in economics are provided by the regional investment
or ownership networks where European company-to-
company investment stocks show power-law distributions
that allow predicting the investments that will be received
or made in specific regions, based on the connectivity
and transactional activity of the companies [6,7]. Nakano
and White [8] showed that analytic concepts and
methods related to complex networks can help to uncover
structural factors that may influence the price formation
for empirical market-link formations of economic
agents. Reyes et al. [9] used a weighted network analysis
focused on using random walk betweenness centrality
to study why high-performing Asian economies had
higher economic growth than Latin American economies
between 1980 and 2005. Network-based approaches are
very useful serving as a means for monitoring complex
economic systems and may help in providing better
control in managing and governing these systems.
Another interesting line of research is related to network
topology as a basis for investigating money flows of
customer-driven banking transactions. A few recent
papers describe the actual topologies observed in differ-
ent financial systems [10—13]. Other works have focused
on economic shocks and robustness in economic complex
networks [14,15].

Regarding community studies on economic networks
and their applications, Vitali and Battiston [16] studied
the community structure of a global corporate network
and found that geography is the major driver of organ-
ization within that network. In this study they also
assessed the role of the financial sector in the architecture
of the global corporate network by analysing centralities
of communities. Fenn et al. [17] studied the evolution of
communities of a foreign exchange market network in
which each node represents an exchange rate and each
link represents a time-dependent correlation between
the rates. By using community detection, they were able
to uncover major trading changes that occurred in the
market during the credit crisis of 2008. Other economic
communities’ studies have focused on the overlapping
feature of communities (e.g. [18,19]).

General community detection studies on other types
of networks deal with communities representing real
social groupings [20-22], communities in a co-authorship
network representing related publications of specific
topics [23], protein—protein interaction networks [24],
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communities in a metabolic network representing cycles
and functional units in biology [25,26], and communities
in the World Wide Web representing web pages with
related contents [27].

Most algorithms for community detection can be dis-
tinguished in divisive, agglomerative, and optimization-
based methods and each one has specific strengths and
weaknesses. Previous studies on network communities
based on divisive and agglomerative methods consider
that structures of communities can be expressed in terms
of separated groups of clusters [28-31], but most of
the real networks are characterized by well-defined
statistics of overlapping communities. An important
limitation of the popular node partitioning methods is
that a node must be in one single community, whereas it
is often more appropriate to attribute a node to several
different communities, particularly in real-world net-
works. An example where community overlapping
is commonly observed is in social networks where
individuals typically belong to many communities such
as work teams, religious groups, friendship groups, hobby
clubs, family, or other similar social communities.
Moreover, members of social communities have their
own communities and this in turn results in a very
complex web of communities [3]. The phenomenon of
community overlapping has already been noticed by
sociologists but has been barely studied systematically
for large-scale networks [2,32-35].

4. METHOD

Overlapping communities arise when a node is a member
of more than one community. In economic systems the
nodes can frequently belong to multiple communities,
therefore, forcing each node to belong into a single
community might result in a misleading characterization
of the underlying community structure. The Clique
Percolation Method [2,3] is based on the assumption
that a community comprises overlapping sets of fully
connected subgraphs and detects communities by
searching for adjacent cliques. A clique is a complete
(fully connected) subgraph. A k-clique is a complete
subgraph of size & (the number of nodes in the sub-
graph). Two nodes are connected if the k-cliques that
represent them share k£ —1 members. The method begins
by identifying all cliques of size & in a network. When
all the cliques are identified, then an N, x N clique—
clique overlapping symmetric matrix @ can be con-
structed, where N is the number of cliques and Oy is
the number of nodes shared by cliques 7 and j [36].
This overlapping matrix O encodes all the important
information needed to extract the k-clique communities
for any value of k. In the overlapping matrix O, rows

and columns represent cliques and the elements are
the number of shared nodes between the corresponding
two cliques. Diagonal elements represent the size of
the clique and when two cliques intersect, they form
a community.

For certain k£ values, the k-clique communities
form such connected clique components in which their
nearby cliques are linked to each other by at least k£ —1
adjacent nodes. In order to find these components in the
overlapping matrix @, one should keep the entries of
the overlapping matrix which are larger than or equal
to k—1, set the others to zero, and finally locate the
connected components of the overlapping matrix O.
Communities correspond to each one of the identified
separated components [2].

5. RESULTS

5.1. Parameter &

For the Clique Percolation Method it is important to
choose a parameter k. The parameter k affects the
constituents of the overlapping regions between com-
munities. The larger the parameter k, the smaller the
number of nodes which can arise in the overlapping
regions. When k& — oo, the maximal clique network is
identical to the original network and no overlap
is identified. The choice of &k will depend on the
network. It is observed from many real-world net-
works that the typical value of & is often between 3
and 6 [37].

Figure 1 shows a plot of the number of communities
and the average size of the communities at different &
values. As k increases, the number of communities
decreases, while the size of the communities increases
rapidly. When £ decreases, the number of communities
increases rapidly, while the size of the communities
remains low. In order to obtain the optimal value of £,
we tested different values ranging from 3 to 10 and a
posteriori we chose k=5 because when k <5, a large
number of communities arise and the partitions become
very low and giant communities appear (with sizes of
more than 3200); at the level £ =5 we obtain a rich
partition with the most widely distributed cluster sizes
set for which no giant community appears.

An overlapping community graph is a representation
of a network that denotes links between communities,
where the nodes represent the communities and the links
are represented by the shared nodes between communities.
For visualization purposes and in order to draw a readable
map of the network, Fig. 2 shows a graphic view of
a representative section of the overlapping network
of communities where big and small communities can
easily be distinguished. Figure 2 depicts 25 overlapping
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Fig. 1. Plot of the average size of community (s) and number of communities (c) as k increases. Squares represent the number of
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Fig. 2. Visual representation of a section of
the overlapping network of communities
(Estonian network of payments). The circles
(nodes) represent communities and the black
lines between them represent shared nodes
between communities.

communities and each coloured circle represents a node  5.2. Structure of communities

which in turn represents an overlapping community.

The links represent the shared nodes between the  In order to study and characterize the global community
communities. The size of the nodes characterizes the  structure of our network, we investigated the distribution
size of each community. For example, the big node in  functions of the following four elementary quantities:
the middle represents a community with 61 companies. community size P(s), overlap size P (so), community
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degree P(d), and membership number P(m). The
aforementioned distributions are shown in Figs 3-7. In
general, nodes in a network can be characterized by a
membership number which is the number of communities
a node belongs to. This means that, for example, any
two communities may share some of their nodes which
correspond to the overlap size between those com-
munities. There is also a network of communities where
the overlaps are represented by the links and the
communities are represented by the nodes, and the
number of such links is called community degree. The
size of any of those communities is defined by the
number of nodes it has.

The community size distribution is an important
statistic that describes partially the system of com-
munities. Figure 3 displays the cumulative distribution
function of the community size P(s) and shows the
probability of a community to have a size higher than or
equal to s calculated over different points in time,
where ¢ is the time in months. The overall distribution
of community sizes resembles a power-law P(s)oc 5%,
where o is the scaling exponent, and a power-law is
valid nearly over all times 7. The scaling exponent
(calculated by maximum likelihood estimators) when
t =3 is —2.8 (included for eye guideline) and its corres-
ponding equation is as follows:

The sizes of the communities at =1 are smaller
than in the rest of the months; as time increases, the size
increases, particularly the size of the largest communities.
The shapes of the power-laws observed in the community
size distributions of Fig. 3 suggest there is no charac-
teristic community size in the network. The distribution
at different moments in time follows similar decaying
patterns, but in general, the scaling tail is higher as
t increases. A fat tail distribution implies that there
are numerous small communities coexisting with few
large communities [38,39]. Figure 4 shows statistics
of the community sizes across time and according
to the plot, both the standard deviation of community
sizes and the average size of communities increased
with time.

In a network of overlapping communities, the overlaps
are represented by the links and the number of those
links is represented by the community degree d. Then,
the degree d is the number of communities another
community overlaps. Figure 5 shows the cumulative
distribution of the community degrees in the network.
Some outstanding community degrees occur by the end
of the tail and these include communities that cluster the
majority of the biggest customers in the network. The
central part of the distribution decays faster than the rest
of the distribution. There is an observable curvature in
the log-log plot, however, no approximation method

2.8
P (S ) ocs . fitted the distribution. Figure 5 shows that the maximum
10°
t=14
t=3 ¥
t=8 =
t=15 ¢
107 £ E
@ 402 |
T 10
.
10° F ", E
n
10* L
10° 10’ 10°
S

Fig. 3. Cumulative community size distribution at different times ¢ (log—log scale).
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number of degrees d is 63 and corresponds to a relatively
small quantity of nodes.

A node 7 of a network can be characterized by a
membership number m;, which is the number of
communities where the node i belongs to. Figure 6 shows
the cumulative distribution of the membership number
m;. The distribution follows a power-law where no
characteristic scale exists. The largest membership
number found in the network was 10, meaning that a

company can belong to a maximum of 10 different
communities simultaneously. Figure 6 shows that the
fraction of nodes that belong to many different com-
munities is quite small, while the fraction of nodes
belonging to at least one community is high. For example,
when m=1, the percentage of nodes that belong to
at least one community is 50%, while the percentage of
nodes that belong simultaneously to 10 communities
(m=10) is extremely small. However, the rest of the
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communities belong to at least two or more communities. The range to which the communities overlap each
The companies that overlap 10 communities belong to  other is also an important property of our network. The
the energy and water services. The majority of the nodes  overlap size is defined as the number of nodes that two

that have m#1 have a degree that is less than k—1,  communities share. P(s,) is the proportion of overlaps
meaning they are weakly connected. larger than s,. Figure 7 shows the cumulative distribution
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Fig. 7. Cumulative distribution function of the overlap size so (log—log scale).
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function of the overlap size. In general, although the
extent of overlap sizes is limited, the data is close to
power-law dependence, meaning there is no charac-
teristic overlap size. The largest overlap size is 22,
however, at s, 29 the number of overlapping nodes
becomes small.

In our previous study [40] we found scale-free
properties in the degree distributions of the Estonian
network of payments and it is interesting to observe that
the scale-free property is also preserved at a higher level
of organization where overlapping communities are
present. Scale-free networks are resilient against random
removal of nodes. This means that it is difficult to destroy
a complex network by random mechanisms, but if the
exact portion of particularly selected nodes is removed,
the network breaks easily. When the degree distributions
of networks present scale-free structure, then this fact
determines the topology of the system. Scale-free net-
works are robust against random damages but vulnerable
against targeted attacks of nodes.

6. CONCLUSIONS

In this study we analysed the community structure of
the Estonian network of payments by using the Clique
Percolation Method. We found that there were scale-free
properties in the statistical distributions of the community
structure. The size, overlap, and membership distributions
follow shapes that are compatible with power-laws.
Power-law distributions have already appeared in this
network at a global scale in the level of nodes [40], and
in this community structure study we have shown that
power-laws are present at the level of overlapping
communities as well. This study adds to the existing
literature on complex networks by presenting the first
overlapping community analysis of a country’s network
of payments.

An immediate application and usefulness of the
community detection output is that it can be used in
targeted marketing activities, as input for predictive
analytical models such as product acquisition propensities,
churn propensities, product affinity analyses, for creating
marketing profiles or customer segmentations, and for
creating customer target lists for product offering (in
an effort to propagate consumer buzz effects). Further
applications of community detection in similar economic
networks could involve strengthening relationships
between companies of the same community for improving
the performance of the whole network, identification of
patterns between companies, and tracking suspicious
business activities.

A question that remains open for future research is
to investigate if the similarities in communities’ features

amongst different complex networks arise randomly
or if there are any unknown properties shared by all
of them. Another line of research that remains open is
the plausibility of forecasting changes in a payment
network through communities’ detection analysis.
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Kattuvate kommuunide tuvastamine Eesti maksevorgustikus

Stephanie Rendoén de la Torre, Jaan Kalda, Robert Kitt ja Jiiri Engelbrecht

Reaalselt eksisteerivates vorgustikes sisalduvate kommuunide tuvastamine on tiheks pdhietapiks teel kompleks-
stisteemide selliste seaduspérasuste mdistmise poole, mis lahevad tiksikelementide lokaalsete interaktsioonide kisit-
lemisest siigavamale. Kommuunide tuvastamise meetodid aitavad vdrgustike komponentide lokaalstruktuuridele
valgust heita. Kdesolevas uurimuses identifitseerime ja uurime kattuvate kommuunide struktuure olulises unikaalses
vorgustikus: Eesti maksevorgustikus. Selleks otstarbeks kasutame nn klikk-perkolatsiooni meetodit ja uurime kom-
muunide jaotusfunktsioone ning kommuunide mastaabi-invariantseid omadusi. Antud vorgustikus on sdlmpunktideks
Eesti ettevotted ja sidemeteks maksed erinevate ettevdtete vahel. Tegemist on esmakordse uurimusega, kus tuvas-
tatakse kattuvad kommuunid iihe riigi ettevotete vaheliste maksete vorgustikus.
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Abstract. We investigated the strength of the interactions of the elements of the Estonian network of payments (link weight of
payments and volume of payments) by the realization of particular experiments. Specific statistical measures of this network,
which combine the topology of the relations of the strength of links and nodes and their specific weights, were studied with
the purpose of discovering beyond the topological architecture of our network and revealing aspects of its complex structure.
Moreover, scale-free properties between the strengths and the degree values were found. We also identified clear patterns of

structural changes in such a network over the analysed period.

Key words: economic networks, complex systems, scale-free networks, weighted networks, strength of nodes.

1. INTRODUCTION

Complex network systems have been studied across
many fields of science [1-4]. Undoubtedly, many ystems
in nature can be modelled as networks where the
elements of the nodes are the elements of the system
and the links represent the interactions between these
elements. Some examples of such systems are tech-
nological networks such as the internet [5] (a network of
routers or domains connected via cables), the World
Wide Web [6] (where nodes are HTML documents
connected by links pointing from one page to another),
power grids [7] (electricity networks), social networks
[8,9] (such as acquaintance networks and collaboration
networks), biological and metabolic networks [10,11],
transport networks [12] (worldwide airport network),
and economic networks [13] (Japanese bank transaction

: Corresponding author, stretomx@gmail.com

network). In the last decades, networks have received
a great deal of attention and a great portion of recent
research has focused on statistical and topological
properties, for example, the small-world property [14]
and scale-free behaviours [15].

Most of the real networks, alongside with their
complex topological structure, display a gradation of
interaction regarding connections and their intensities;
this is commonly quantified by the link weight. The link
weight reveals significant functional properties such as
the concentration of friendships between people in social
networks, the quantities of flows of money between
banks, and the capacity to pass information in a network
of communication or transport.

The research questions of this study are the following:
Which is the characterization of the strength of the links
of the nodes of the Estonian network of payments? Is
there any relevant relationship between the weighted
quantities and the underlying network structure?



In this study, we characterize the links by investigating
the strength of the interactions of the elements of our
network (link weight of payments and volume of pay-
ments). We analyse specific statistical measures of the
weighted Estonian network of payments that combine
the topology of the relations of the strength of links and
nodes and their specific weights with the purpose of
discovering beyond the topological architecture of the
network and revealing aspects of its complex structure.

Section 1 provides a general introduction and an
overview of the objectives. In Section 2, we deliver a
description of the data set used in this study. Section 3
provides a literature review of related studies. Section 4
presents the methods used to develop this study, while
Section 5 gives our main results. Section 6 concludes
with a discussion of our results.

2. DATA

Our data set was obtained from the databases of
Swedbank, one of the leading banks in the Nordic and
Baltic regions of Europe operating actively in Estonia,
Latvia, Lithuania, and Sweden. As all the information
related to the identities of the nodes is very sensitive, it
will remain confidential and cannot be disclosed. Since
~80% of Estonia’s bank transactions are executed
through the Swedbank’s system of payments, the data
set is unique in its kind and very interesting. Hence it
reproduces fairly well the trends of flows of money of
the whole Estonian economy, and we use this dataset as
a proxy of the economy of Estonia.

A network is a set of nodes connected by links. In
this study, the nodes represent companies and the links
represent the payments between the companies. The
network of payments is defined by three matrices that
map the whole image of the network: 4 is an undirected
connectivity symmetric adjacency matrix A, ,, where
N is the total number of nodes in the network and two
nodes have a link if they share one or more payments;
then each element represents a link as follows:
4j =dj;,, where Aj=1 if there is a transaction
between companies i and j or A;; =0 if there is no
transaction between companies / and ;. The weighted
connectivity matrix B contains the number of transactions
between companies i and ;. This definition allows
looking at the structure of the network as a weighted
graph where the links have certain weights associated
with them, representing less or more important relation-
ships. Transactions between any two parties add to the
associated link weights in terms of volume. The
elements w; of the weighted connectivity matrix B
denote the overall number of transactions between
companies i and j.
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Additionally, our data set allows us to construct
directed graphs where the links follow the flow of the
money, such that a link is incoming to the receiver 7
and outgoing from the payer ;. The matrix C is a
weighted-directed graph where the links follow the flow
of the money, such that a link is incoming to the receiver
and outgoing from the sender of the payment. For this
case we have two more matrices: in-degree and out-
degree. The choice of usage of the matrix representation
depends on the focus of the analysis.

The data set contains 3.4 million electronic company-
to-company domestic payments of the full calendar year
2014, including data of 16 613 companies. This network
shares typical structural characteristics known in other
complex networks: degree distributions follow a power
law, low clustering coefficient, and low average shortest
path length. The average degree of the Estonian network
of payments is (k)=20, the maximal degree is 345,
and the diameter is 29. The average betweenness of the
links is 40 while it is 110 for the nodes. The average
shortest path length (Z) =7.1. The network is a small
world with 7.1 degrees of separation, which means that
on average any company can be reached by another
only in a few steps. Our network has low connectivity
but is densely connected. The network also displays
scale-free properties in its degree distributions. This
scale-free structure indicates that few companies in
Estonia trade with many parties while the majority trade
with only few.

The network has a low average clustering coefficient
of 0.18 and shows disassortative mixing. The detailed
information of our network’s full topologic structure
and its basic characteristics can be found in our previous
paper [16]. In that study, we performed an analysis to
reveal the robustness of our network derived from its
scale-free structure. We found that the network is resilient
to random removal of the nodes but is vulnerable to
targeted removal of nodes. The percolation threshold is
6%, and this means that a small portion of economic
entities maintains the whole network unified. We found
that most of the influential companies in the network
are not necessarily the most connected ones and that
a considerable number of companies who have high
transactional activities have weak influence on the
economic network as a whole.

3. LITERATURE DISCUSSION

Real networks, which are organized in a complex
topological structure, show a large heterogeneity in the
capacity and intensity of the connections (the weight of
the links) [17]. Recently, many features of weighted net-
works have been studied, for example, the relationship
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between the node degree and node strength [18], degree
correlations and perturbations [19], node correlations
[20], and dynamical properties of nodes and degrees
[21]. The study of highly interconnected systems became
an important area of multidisciplinary research in net-
work science involving physics, mathematics, biology,
and social sciences, but recently the interest has shifted
towards weighted networks. In the last 20 years, a large
set of measures and metrics which combine topological
and weighted observables has been proposed to charac-
terize the statistical properties of nodes and links and
to investigate the relationships between the weighted
quantities and underlying network structures. Barrat et
al. [17] presented a quantitative and general approach
to understanding the complex architecture of weighted
networks. They studied representative examples of social
and large infrastructure systems, and defined specific
metrics considering the weights of nodes and links in
order to investigate the correlations among the weighted
quantities and the underlying topological structure of
these networks. They showed that a more complete
view of complex networks is provided by the study of
the interactions defining the links of these systems.

Zemp et al. [22] developed new versions of some
measures for directed and/or weighted networks in order
to take the importance of nodes into account. They
showed that the use of their measures avoids systematic
biases created by a higher node density and larger weights
of the links. Newman [23] showed that weighted net-
works could be analysed by using a simple mapping
from a weighted network to an unweighted multigraph,
which allows using standard techniques for unweighted
and weighted networks.

Network-based approaches are very useful and
provide means for monitoring complex economic
systems. They may also help in ensuring better control
in managing and governing these systems. Regarding
applications of economic networks and other recent
studies, Souma et al. [24] studied a shareholder network
of Japanese companies. In this study, the authors analysed
the growth of companies through the analysis of the
network’s dynamics. A similar work by Rotundo and
D’Arcangelis [25] dealt with the relationships of share-
holders in the Italian stock market. Reyes et al. [26]
made a weighted network analysis focused on using
random walk betweenness centrality to study why high-
performing Asian economies had higher economic growth
than Latin American economies in 1980-2005. Other
relevant studies on economic networks concentrate
on the regional investment and ownership networks
[27,28]. In these networks, European company-to-
company foreign direct investment stocks show a power-
law distribution with the number of employees in the
investing company and in the company invested in, and

with the volume of in- and outgoing investments of both
companies. This power-law feature allows predicting
the investments that will be received or made in specific
regions, based on the connectivity and transactional
activity of the companies. Nakano and White [29] showed
that analytic concepts and methods related to complex
networks can help to uncover structural factors that may
influence the price formation for empirical market-link
formations of economic agents.

Another interesting line of research is related to
network topology as a basis for investigating money
flows of customer-driven banking transactions. A few
papers describe the actual topologies observed in different
financial systems [30-32]. Other similar studies focus
on economic shocks, robustness, and growth in economic
or social complex networks [33-35]. Interesting reviews
of complex network models and methods present the
applications to socioeconomic issues [36,37].

4. METHODS

The degree of a node is defined as

Z a; O]
Jje¢(i)
where the sum goes over the set {(i) of neighbours
of i. For example, ¢ (i)= {j a; =1}.The degree of a
node (company) refers to the number of payments
linked to it.
Two relevant characteristics of a node occur in a

directed network: the number of links that end at a node
and the number of links that start from a node. These

quantities are known as the in-degree k? and out-
degree k° of a node, and we define them as
d
Zau K=Y g @

jesi) Jjec(i)

Weights w; of the links i and ; in a network show
the importance of each link. The strength s; of the
nodes is the sum of the weights of all the links. In our
network, the strength measures the overall transaction
value/volume for any given node, and is defined by the
formula

Z Wy (3)

jed(i)

where the sum runs over the set ¢(i) of neighbours of i .

For a given node i with connectivity k; and
strength s;, the weights of the links might be of the
same order of magnitude s;/k;, or they can be dis-
tributed heterogeneously with some links predominating



over others. Then, the participation ratio is defined as
follows:
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or, equivalently,
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We define the participation rates to separate outgoing
and incoming links. Then, the average participation ratio
is calculated as

Hy :%ZH;‘U), (6)

and
C 1 c .
H; :NZI-"HZ (1), 7)

respectively.

We calculate the participation ratio as a function of
a company’s inverse degree, where the objective is to
identify the links that are used more often. If a low
number of weights are dominant, then H)" is close to 1,
but if all the weights are of the same order of magnitude,
then H3' ~1/k;. The value of H," close to 1 indicates
the existence of preferential interactions between the
nodes, meaning that companies prefer to transact with
certain companies.

5. RESULTS
5.1. Patterns of payments

The general characteristics and statistics of the Estonian
network of payments are listed in Tables 1 and 2.
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In this section, we will focus on the structure of our
network and its time evolution. The objective of this
effort is to identify structural changes and compare the
emerging patterns. Figure 1a shows the monthly volume
of transactions during 2014 while Fig. 1b displays the
total number of transactions. Figure 1¢ shows the monthly
average number of active links as a function of time.
Figure 1b,c show that the number of transactions de-
creases dramatically in the third quarter of the year,
while the number of active links decreases already in
the second quarter. Also, these plots show that the number
of transactions and the active links increase in the last
quarter of the year, suggesting that liquidity in the
Estonian network of payments increases by the end of
the year through increased transaction volumes and
payments, and higher than the usual number of active
counterparties. It is interesting that the concentration
in the volume of payments is high from August till
the end of the year, while the number of payments
diminishes dramatically in the same period of time. These
observations indicate that the average number of active
companies has decreased 20%, while the volume of
transactions has increased 14% and the number of
transactions has decreased 66% by the end of the year
(compared with the beginning of the year). This indicates
that companies in Estonia manage higher volumes of
money at the end of the year than at the beginning of
the year, while not all the companies remain active by
the end of the year. A full explanation of this pattern
of financial liquidity is not possible due to the lack of
complete information about the overall financial and
commercial activities of the companies in this network.
Nonetheless, there are some possible explanations for
these patterns. For example, these patterns could be
highly affected by business cycles of payments, or by
seasonal effects on the liquidity of companies, or by
macroeconomic variations such as changes in the
monetary policy of the Euro area and Estonia. Another
explanation for the increased volume of transactions and

Table 1. Network characteristics

Companies analysed 16 613

Total number of payments analysed 2617478
Value of transactions 3803 462 026*
Average value of transaction per customer 87 600*
Maximum value of transaction 121 533*
Minimum value of transaction (aggregated in the whole year) 1000*

Average volume of transaction per company 60

Maximum volume of transaction per company 24 859
Minimum volume of transaction per company (aggregated in the whole year) 20

* All the money amounts are expressed in monetary units and not in currencies in order to protect the confidentiality of
the data set. The purpose of showing monetary units is to provide a notion of the proportion of quantities and not to

show exact amounts of money.
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Table 2. Summary of statistics

Statistic | Value | Components | Number of nodes
Undirected links 43 375 GCC 15434
(k) 20 DC 1179
y° 239 GSCC 3987
14 249 GOUT 6054
¥ 245 GIN 6172
(c) 0.183  Tendrils 400
(1) 7.1 Cutpoints 1401
T 0.13  Bi-component 4404
D 29 k-core 1081
() (nodes) 110
(o) (links) 40

(k)= average degree, y° = scaling exponent of the out-
degree empirical distribution, y' = scaling exponent of
the in-degree empirical distribution, y = scaling exponent
of the connectivity degree distribution, <C> = average
clustering coefficient, (l) = average shortest path length,
T = connectivity %, D = diameter, (o )= average be-
tweenness, GCC = Giant Connected Component, DC = Dis-
connected Component, GSCC = Giant Strong Connected
Component, GOUT = Giant Out Component, GIN = Giant
In Component.
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increased liquidity at the end of the year is that there
might be a generalized release of delayed payments, like
when companies try to spend the remaining balances of
their annual budgets.

5.2. Strength and degree of nodes

We calculated the probability P(s) that a company has
k outgoing and incoming links. As per Fig. 2, the
distribution of the out-degree volume (strength) follows
a power-law decay

P(s)~s7?, ®)

where the scaling exponent is 2.32. There are some
deviations from the power-law behaviour but they are
sufficiently small. A similar distribution was also found
in the in-degree volume (strength) distribution [16]. The
power-law tail signals that the probability of finding
companies paying out very large quantities of money is
small. Moreover, while the companies have an absolute
freedom in choosing how much money to pay or the
counterparties who they interact with, the overall system
obeys a scaling law, which is a particular property
observed in critical phenomena and in highly interactive
self-organized systems.

(b)

65.000 -

60.000 | ———N,

55000 \
50.000 1

A1

40.000 *
35.000 T \J
30.000 T

25.000

/

Fig. 1. Time evolution activity of patterns (payments and
volumes). (a) Monthly trading volumes of payments V.
(b) Monthly number of transactions 7. (c) Average
degree (d) versus time 7. The x-axis represents the
number of the month of the year 2014.
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Fig. 2. Volume out-strength distribution.

We also analyse the bond between the strength and
degree of a node. Figure 3a,b depict the volume and
value (in and out) strengths as functions of degree of
both outgoing and incoming links (in-degree and out-
degree). The strength s is normalized by dividing it
over the average link weight <wﬁ>. The following
power-law relationship exists between the strength and
the degree:

s (k)~k*, )
where ¢ is the coefficient of this scaling distribution.
The power-law fit of Fig. 3a has an exponent ¢, =1.5,
when volume is used as the weight, and «,,; = 2.4 when
the value is used instead. These values imply that the
out-strength of nodes s,, and in-strength of nodes s,;
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Fig. 3. Distributions of strength. (a) Node out-strength as a function of degree. (b) Node in-strength as a function
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grow faster than the degree £ of a node, as seen in
Fig 3a. It means that the most connected companies
execute a higher number of payments with higher values
of money than would be suggested only by their degree.
This indicates that if a company has twice as many
payments (out links) as another company, it could be
expected that this company sends three times the number
of payments, and almost five times the total value of
payments. Figure 3b indicates that the relationships
between in-degree and in-strength show similar trends
to the out-degree and out-strength cases seen in Fig. 3a.

The strength of a node scales with its degree £,
indicating that highly connected companies have pay-
ments of higher weight. The strength of a company
grows generally faster than its degree. In other words,
highly connected companies not only have many pay-
ments, but their payments also have a higher than average
weight. This observation agrees with the fact that big
companies are better equipped to handle large amounts
of payments with higher amounts of money. Comparable
results were found in the cargo ship movements network
[38] and in the airport network [17], which may hint at a
generic pattern in such large-scale networks.

5.3. Participation ratio

Figure 4b shows a plot of the participation ratio H; as
a function of the inverse degree of the nodes. The plot
shows the links that are used more often than others.
For example, for a degree up to 10 H5 (i)~ 1/k; and for
higher degrees the participation ratio is higher than the
inverse degree, suggesting there is a disposition in the
direction of preferential trading with specific counter-
parties. Figure 4b shows the average participation ratio
during the whole year for outgoing payments and in-

(b)
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of degree.

Empty squares represent the value of payments and full squares represent the number of payments.
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coming payments. By the end of the year the participation
ratio for all the payments decreases. Particularly, the
participation ratio of the outgoing payments decreases
dramatically. This reveals that the preferential linking
is limited. By the end of the year, the preference for
trading with only certain counterparties becomes less
important. This could be caused by an increased
payments/liquidity tendency that could potentially be
driven by generalized unspent company annual budgets
or delayed payments that were completed before the
year ended.

6. CONCLUSIONS

In this study, we explored the relations between
weighted quantities and their network underlying
structures. We investigated the strength of interactions
(number of payments and the volumes of payments)
and the interconnectivities among these interactions in
the Estonian network of payments by the realization of
particular experiments, calculating specific metrics, and
revealed interesting microstructural features.

We detected a clear pattern of structural changes
over the analysed period in the network degree and
number of payments decreasing by the end of the year,
while the volume of payments increased. This indicates
that Estonian companies handle higher volumes of cash

payments.

flows at the end of the year than at the beginning of the
year, while not all the companies remained active by the
end of the year.

Scale-free properties were determined between the
strengths and the degree values. We found that the most
connected companies executed a higher number of
payments with higher values of money than what would
be suggested only by their degree (the out-strength of
nodes and in-strength of nodes grow faster than the
degree of a node).

It is important to continue observing, describing, and
studying the structures and characteristics of economic
complex networks in order to be able to understand their
underlying processes and to detect patterns that could be
useful for predicting or forecasting events and trends.
The addition of evidence through empirical studies in
favour of economic networks represents an important
step towards the knowledge on the universality and the
understanding of the complexity of economic systems.
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Eesti maksete vorgustiku sidemete ja solmpunktide statistilised eriomadused

Stephanie Rendoén de la Torre, Jaan Kalda ja Robert Kitt

Selles t60s uurisime elementidevaheliste seoste tugevust (maksete seoste kaalu ja maksete mahtu) Eesti maksete
vorgustikus, viies selleks ldbi spetsiaalseid eksperimente. Uurisime vorgustiku konkreetseid statistilisi nditajaid, mis
ithendavad seoste tugevuse suhete topoloogia sdlmede ja nende erikaaluga, eesmérgiga minna stigavamale vorgus-
tiku topoloogilisest arhitektuurist ning vélja tuua selle kompleksstruktuuri aspekte. Lisaks leidsime skaalata omadusi
tugevuse ja jarkude vairtuste vahel. Samuti tdheldasime analiiiisitud perioodi jooksul strukturaalsete muutuste selget
mustrit vorgustikus.
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September 2016-to date, Swedbank AS, Customer Intelligence, Data Scientist Sr.
September 2015-September 2016, Swedbank AS, Asset Management, Research analyst
September 2014—-September 2015, Swedbank AS, Corporate Offering & Strategies, Data
Analyst

2009-August 2014, AM Advisors (AM Capital Hedge Fund), CFO

2008-2009, Rabobank, Operations Officer

2007-2008, GBM (stockbrokerage house), Back Office International Treasury analyst
2005-2007, Ernst & Young, Taxes Staff

Special courses and further training
May 2017: Python Coursera certifications:

Python for everybody

Python Data Structures

Using databases with Python

Using Python to Access Web Data

Capstone: Retrieving, Processing, and Visualizing Data with Python

July, 2015, 5th Ph.D. School-Conference on Mathematical Modeling of Complex Systems
(Patras, Greece)

July, 2017 SIGMAPHI 2017 School of Statistical Physics) (Corfu, Greece).

October, 2017, Predict, Europe’e Leading Data Conference / Data Modelling Workshop
(Dublin, Ireland)
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October 2018, PyCon and PyData Conference / Karlsruhe, Germany
October 2018, Data and Machine Learning Conference / Stockholm, Sweden

October 2018, Spark Programming certificate - by Instructor Ali Benamara, insite, Tallinn

Research activity: Publications

Articles indexed by the Web of Science and Scopus database (1.1):

Renddn de la Torre S., Kalda J., Kitt R., Engelbrecht J. (2016). On the topologic structure of
economic complex networks: Empirical evidence from large scale payment network of
Estonia. Chaos, Solitons & Fractals, 90, 18-27 DOI:10.1016/j.chaos.2016.01.018.

Renddn de la Torre S., Kalda J., Kitt R., Engelbrecht J. (2017). Fractal and multifractal analysis
of complex networks: Estonian network of payments. The European Physical Journal B, 90.
DOI: 10.1140/epjb/e2017-80214-5.

Rendoén de la Torre S., Kalda J., Kitt R., Engelbrecht J. (2019) Detecting overlapping
community structure: Estonian network of payments. Proceedings of the Estonian Academy
of Sciences, 68(1) 79-88. DOI:10.3176/proc.2019.1.08

Renddn de la Torre S., Kalda J., Kitt R. (2019) Specific statistical properties of the strength of
links and nodes of the Estonian network of payments. Proceedings of the Estonian Academy
of Sciences, 68(3). Manuscript (in press). DOI:10.3176/proc.2019.3.02

Peer-reviewed articles in other international journals (1.2) and collections (3.1):

Renddn de la Torre S., Kalda J. (2018) Review of structures and dynamics of economic
complex networks: Large scale payment network of Estonia. In: Zenggjang C., Dehmer M.,
Emmert-Streib F., Shi Y. (eds.), Modern and interdisciplinary problems in network science.
Taylor & Francis CRC Group, USA, 193-226 https://www.crcpress.com/Modern-and-
Interdisciplinary-Problems-in-Network-Science-A-Translational/Chen-Dehmer-Emmert-
Streib-Shi/p/book/9780815376583.

International conferences presentations:

Renddn de la Torre S., Kalda J., Kitt R., Engelbrecht, J. Estonian network of payments. Poster
presentation at the 5th Ph.D. School-Conference on Mathematical Modeling of Complex
Systems (20-30 July, 2015, Patras, Greece).

Renddn de la Torre S., Kalda J., Kitt R., Engelbrecht, J. On the topologic analysis of economic
complex networks: Swedbank's network of payments in Estonia. Oral presentation at Data
Science Challenges (14-17 October, 2015, Torino, Italy).

Renddn de la Torre S., Kalda J., Kitt R., Engelbrecht, J. Communities’ detection and evolution:
Estonian economic network of payments. Poster presentation at the 26" STATPHYS IUPAP
International Conference on Statistical Physics (18-22 July, 2016, Lyon, France).

Rendoén de la Torre S., Kalda J., Kitt R., Engelbrecht, J. Communities detection and dynamics:
Estonian economic network of payments. Poster presentation at International Conference
Statistical Physics SIGMAPHI 2017 (and School of Statistical Physics) (6-14 July , 2017, Corfu,
Greece).

Rendén de la Torre S., Kalda J., Kitt R., Engelbrecht, J. Fractal and multifractal analysis of
complex networks: Estonian network of payments. Poster presentation at NetSci-X 2018
International School and Conference on Network Science (5-8 January, 2018

Hangzhou, China).
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Elulookirjeldus

Isikuandmed

Nimi: Stephanie Renddn de la Torre
Stinniaeg: 09/03/1985

Siinnikoht: México, Mehhiko
Kodakondsus: Mehhiko

Kontaktandmed
E-post: stretomx@gmail.com

Hariduskaik
2012-2013 National Autonomous University (UNAM Meéxico City), Mehhiko, MSc
2004-2008 Monterrey Kérgem Tehnoloogiainstituut, Mehhiko, BSc rahanduses

Keelteoskus

Hispaania keel — emakeel
Inglise keel — kérgtase
Prantsuse keel — algtase
Eesti keel — algtase

Teenistuskaik

2015-praeguseni Tallinna Tehnikadllikooli kiiberneetika osakond (School of Science,
Department of Cybernetics), insener

2016—praeguseni Swedbank AS, klienditeabe osakond, vanemanalttik

2015-2016 Swedbank AS, varahalduse osakond, teadur-analtitik

2014-2015 Swedbank AS, ariklientide haldus ja strateegiad, anallilitik

2009-2014 AM Advisors (AM Capital Hedge Fund), finantsjuht

2008-2009 Rabobank, tootmisjuht

2007-2008 GBM (boérsimaaklerite firma), keskkontori rahvusvahelise vara analtitik
2005-2007 Ernst & Young, maksupersonal

Taienddpe
oktoober 2018: andmeteaduse ja masindppe konverents (Stockholm, Rootsi)
oktober 2018 Spark Programming (Gpetaja Ali Benamara, Tallinn, Eesti)

PyCon ja PyData konverents (Karlsruhe, Saksamaa)

oktoober 2017: Predict, Euroopa juhtiv andmeteaduse konverents, modelleerimise t66tuba
(Dublin, lirimaa)

juuli 2017: SIGMAPHI 2017, statistilise flitsika kursus (Korfu, Kreeka)
mai 2017: Python Coursera kursused:

Python koigile

Pythoni andmestruktuurid

andmebaaside kasutamine Pythoniga

Pythoni veebiandmestiku kasutamine

|6pukursus: andmete hankimine, tootlemine ja visualiseerimine Pythoniga
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juuli 2015: 5. doktorikool/konverents komplekssiisteemide matemaatilisest modelleerimisest
(Patras, Kreeka)

Teadustegevus

Avaldatud teadusartiklite ja konverentsiteeside ning peetud konverentsiettekannete loetelu
on toodud ingliskeelse CV juures.
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