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Introduction 
 
The networks science approach for financial and economic systems has potential to go 
further on the frontiers of research. In recent years, a part of the main focus of research has 
tilted towards the discovery and understanding of the underlying financial, social and 
economic systems’ structures through the use of the tools of complex networks science.  
In this context, the network approach has two sources of origin: one source originates from 
economics, finance and sociology while the second source originates from computer science, 
physics, complexity and mathematics. The convergence point of both sources of origin 
attempts to combine economy and complex systems studies and this approach can be 
translated into a graph representation of economic systems in order to study how 
interactions among the components of the graph occur whatsoever the nature of the 
relations between the components is. 

Nowadays, complex networks are a central concept where an intuitive path that fuses 
economy with complex systems studies emerges. Complex networks can be biological, 
technological, economic, social, and cultural, among other types. The physical approach has 
become increasingly important during recent years regarding complex networks structures 
studies. 

The field of complex networks is developing at a fast pace and has already made significant 
progress towards the design of its own framework with the purpose of unravelling the 
organizing principles that govern complex networks and their evolution. Particularly, the 
structures and dynamics of complex networks have attracted considerable attention from 
the research community in recent years. 

 
 



9 

Motivation and contribution 
 

During the last decade, important efforts have been made towards two things:  
1) the improvement of our understanding of the topological structures underlying complex 
networks and 2) the unveiling of large-scale characteristics which belong to such systems. 
Particularly those efforts have been focused towards theoretic properties of networks and 
generic models that are able to represent systems statistically. However, with the help of the 
latest technological advances, increasing data sets of unstudied systems are emerging and 
there is a generic need to study newer and real complex networks which will nurture new 
model developments in the future and help in the construction of the theoretical framework 
of complex networks theory. 

The neologism econophysics was first coined by H. Eugene Stanley in a Statphys 
conference in 1995 held in Kolkata, India. Mantegna and Stanley (2000) defined econophysics 
as a multidisciplinary field that denotes the activities of physicists who work on economic 
problems in order to test a variety of new conceptual approaches derived from physical 
sciences. Much has been studied and developed in econophysical studies since then. Mainly, 
those studies originated from models of statistical mechanics. Similarly, problems related 
with distribution of income, wealth and economic returns in financial markets have been 
addressed in research papers, and mostly these topics are related with the insufficiency to 
explain non-Gaussian distributions and scaling properties which are empirically detected by 
traditional economic theoretic approaches. Some of the most relevant outcomes of the 
research accomplished in the area of econophysics are related to: 1) The detection and 
explanation of power-law tails observed in the distributions of different types of financial 
data, 2) the existence of certain underlying universalities in the behaviour of individual 
market agents and 3) the detection of similarities between financial time series and natural 
phenomena. 

Network science is an active interdisciplinary field of research that originates from branch 
mathematics: graph theory, extended into different directions including towards economics, 
statistical mechanics, computer science, neuroscience, sociology, transportation, ecological 
systems and biology. With complex networks it is possible to describe the structure of any 
system, when the system is suitable to be represented as a graph.  

“Complexity”, may refer to the quality of a system or to a quantitative characterization of 
a system. As a quality of a system, it refers to what makes a system complex and it has 
something to do with the ability to understand a system; it refers to the existence of 
emergent properties which appear as a consequence of the interactions of the components 
of the system (Standish, 2008). An example of a property that emerges as a consequence of 
global organizational structure of a network is the “small world” property, which is 
characterized by small average path length and a high number of triangles in the network.  
As a quantitative characterization of a system, “complexity” is used as a quantity when 
referring to something that is more complicated than another thing; it refers to the quantity 
of information needed to specify the system. For real-world networks a huge amount of 
information is needed to describe a system, such as the number of nodes, links, degree 
correlations, degree distributions, clustering coefficients, diameter, betweenness, 
centralities, community structure, average or shortest paths, communication patterns and 
other quantities. In random networks the only information needed to describe their structure 
is the number of nodes and the probabilities for linking pairs of nodes.  
The network representation of real networks is called “complex networks” because of two 
reasons. Firstly, because there are characteristics that arise as a consequence of the global 
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topological organization of the system and secondly because these structures cannot be 
trivially described like in the cases of random or regular graphs (Estrada, 2011). 

The theoretical framework behind complex networks is continuously developing, 
advancing at a fast pace, and has already made significant progress towards unravelling the 
organizing principles that govern complex networks structures and their dynamics. Studies 
related with: topological features, dynamical aspects, community detection, network 
phenomena and particular properties of networks have been the focus of attention of 
extensive research in the last couple of decades (Reka and Barabási, 2002; Dorogovtsev and 
Mendes, 2003; Furuya and Yakubo, 2011, Newman 2010; Palla, Barabási and Vicsek, 2007; 
Watts and Strogatz, 1998). 

Networks play an important role in a wide range of economic and social phenomena.  
The use of techniques and methods from graph theory has permitted economic networks 
studies to expand the knowledge and give insights into economic and social phenomena in 
which the embeddedness of individuals or agents in their social or economic interrelations 
cannot be neglected (König and Battiston, 2009). For example, Souma et al., (2006) studied 
a shareholder network of Japanese companies where the authors analysed the companies’ 
growth through economic networks. Other examples of interesting applications of complex 
networks in economics are provided by the regional investment or ownership networks 
where European company-to-company investment stocks show power-law distributions that 
allow predicting the investments that will be received or made in specific regions, based on 
the connectivity and transactional activity of the companies (Battiston et al., 2007; 
Glattfelder et al., 2009). Nakano and White (2007) have shown that analytic concepts and 
methods related with complex networks can help to uncover structural factors that may 
influence the price formation for empirical market-link formations of economic agents.  
Reyes et al., (2008) used a weighted network analysis focused on using random walk 
betweenness centrality to study why high-performing Asian economies have higher 
economic growth than Latin-American economies. Complex network-based approaches are 
very useful and provide means by which to monitor complex economic systems and may help 
in providing better control in managing and governing these systems. Another interesting 
line of research is related to network topology as a basis for investigating money flows of 
customer driven banking transactions. A few recent papers describe the actual topologies 
observed in different financial systems (Lublóy, 2006; Inaoka et al., 2004; Soramäki et al., 
2007; Boss et al., 2004) Some other works have focused on economic shocks and robustness 
in economic complex networks (Iory and Jafarey, 2001; Iori et al., 2007). 
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Objectives and outline of the thesis 
 
The main focus of my doctoral studies has been to study general and particular properties of 
complex networks through analysis that consists of different experiments on a unique, 
interesting and new economic network: the large-scale Estonian network of payments. 

Networks can be studied from different points of view, for example: from a local, global 
or mesoscale perspective. The contribution of my doctoral studies is to explore such 
approaches by using different methodologies and experiments while studying the economic 
development of Estonia. 

This thesis presents an extensive study that contributes to the field of complex networks 
(particularly to economic complex networks studies) by adding empirical evidence in favour 
of economic networks with a new study case. The study is done thanks to the application of 
known network methods. In this work I investigate the structure of the large-scale network 
of payments of Estonia: 

1. Global and local topology 
2. Community structures 
3. Fractal and multifractal properties 
The data set was obtained from Swedbank’s databases. Swedbank is one of the leading 

banks in the Nordic and Baltic regions of Europe. The bank operates actively in Estonia, Latvia, 
Lithuania and Sweden. All the information related to the identities of the nodes is very 
sensitive and thus will remain confidential and unfortunately cannot be disclosed.  
The data set is unique in its kind and very interesting since ~80% of Estonia's bank 
transactions are executed through Swedbank’s system of payments; hence, this data set 
reasonably reproduces the structure of the Estonian economy and can be used as a proxy of 
it. The data set utilized, contains the best possible information available and describes fairly 
accurately the tendencies of money transactions. This data set comprises domestic payments 
(company-to company electronic transactions) of the year 2014. The network consists of 
16,613 nodes, 2,617,478 payment transactions, and 43,375 links. In this economic network, 
the nodes represent Estonian companies and the links represent payments done between 
the companies.  

The main objectives of this thesis are as follows: 
 To study the structure (topology) of the network of payments of Estonia.  
 To study the structure and functionality of this large network and to expand the 

knowledge of the local organization of its components by detecting community 
structures in this network. 

 To study the fractality and multifractality of the network. 
To achieve these objectives, Chapter 1 mainly follows the results of Paper I, III and V. 

Chapter 1 presents a topological analysis of the structure of the large-scale Estonian network 
of payments. To achieve this, I study scale-free properties, network components and 
patterns, statistical properties and robustness of the network.  

In Chapter 2 I discuss about the community structure of the Estonian network of payments 
and scale-free properties at a mesoscale level. This Chapter mainly follows Paper III and Paper 
IV. Chapter 2 also addresses the analysis of the global structure of the network through the 
distribution functions of four basic quantities.  

Next, I study the fractal and multifractal structure of the network in Chapter 3 by following 
the results of Paper II. I present a fractal scaling analysis by calculating the fractal dimension 
of the network and its skeleton. Then I use a sandbox algorithm to calculate the spectrum of 
the generalized fractal dimensions and mass exponents in order to study the multifractal 
behaviour. 
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Paper III mainly consists of a review of the results obtained in Papers I, II and IV which was 
published as a chapter of a book. This Paper consists of a review on the structures and 
characteristics of the large-scale Estonian network of payments. 
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Approbation of the results 
 

The basic results described in this thesis have been presented by the author at the following 
international conferences: 
 
Rendón de la Torre S., Kalda J., Kitt R., Engelbrecht, J. Estonian network of payments. Poster 
presentation at the 5th Ph.D. School-Conference on Mathematical Modeling of Complex 
Systems (20-30 July, 2015, Patras, Greece)  
 
Rendón de la Torre S., Kalda J., Kitt R., Engelbrecht, J. On the topologic analysis of economic 
complex networks: Swedbank's network of payments in Estonia. Oral presentation at Data 
Science Challenges (14-17 October, 2015, Torino, Italy). 
 
Rendón de la Torre S., Kalda J., Kitt R., Engelbrecht, J. Communities’ detection and evolution: 
Estonian economic network of payments. Poster presentation at the 26th STATPHYS IUPAP 
International Conference on Statistical Physics (18-22 July, 2016, Lyon, France). 
 
Rendón de la Torre S., Kalda J., Kitt R., Engelbrecht, J. Communities detection and dynamics: 
Estonian economic network of payments. Poster presentation at International Conference 
Statistical Physics SIGMAPHI 2017 (and School of Statistical Physics) (6-14 July, 2017, Corfu, 
Greece). 
 
Rendón de la Torre S., Kalda J., Kitt R., Engelbrecht, J. Fractal and multifractal analysis of 
complex networks: Estonian network of payments. Poster presentation at NetSci-X 2018 
International School and Conference on Network Science (5-8 January, 2018 
Hangzhou, China) 
 
Rendón de la Torre S., Kalda J., Kitt, R. Specific statistical properties of the strength of links 
and nodes: Estonian network of payments. Poster presentation at Statphys 27 (8-12 July, 
2019, Buenos Aires, Argentina)  
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1. Topologic structure of economic complex networks: 
Payments network of Estonia 
 
The focus of this Chapter and the underlying Paper I is to present the first topological analysis 
of the economic structure of an entire country based on payments data: Estonia’s network 
of payments. I focus on analysing interesting structural properties of such network, with a 
particular emphasis on topologic components. I study the scaling-free and structural 
properties of the network. Also, I examine statistical characteristics, components and 
patterns. I identify the hubs of the network and perform a simulation of resiliency against a 
random and a targeted attack of the nodes. I found that by identifying and studying the links 
between nodes it is possible to perform vulnerability analysis of the Estonian economy with 
respect to economic shocks. 

A random network is the most basic model of all network formations and it is based on 
the assumption that a fully random process is responsible for the structure of the links in a 
network. The properties of random network models (Erdös and Rényi, 1959) provide rich 
insight into the characteristics of complex networks. Firstly, I focus on analysing some 
interesting structural properties of the network, with special interest on topologic 
components. Graph theory definitions not introduced in this Chapter can be found in 
(Dorogovtsev and Mendes, 2003; West, 2003).  

Random network models are useful benchmarks for comparing empirical networks and 
have the ability to identify the elements that are a result of randomness and the ones that 
can be rooted to other factors. Some properties of random networks that are useful for 
studying generic networks are, for example: the distribution of links across nodes, 
connectivity in terms of paths, distances within networks, shortest-average paths, diameter, 
etc. 

A graph is a mathematical and symbolic representation of a network and of its 
connectivity. A simple undirected graph G is a set of vertices V connected with edges E, 
therefore G = (V, E). A graph is defined by the structural information contained in its 
adjacency matrix. A network may have a large arbitrary amount of additional information on 
top of it: for example, edges can have attributes such as capacity or weight, or it may be a 
function of other variables. Also, in a network the vertices are called nodes and the edges are 
called links. Network terminology is generally used when the links transport or send 
something meaningful between the nodes (like in social, computer, biological, transport, or 
economic networks). 

There are many ways to define the network of payments. In this study I consider more 
than one definition. In the first definition, an undirected graph is mapped, a symmetric 
payment adjacency matrix A  where N is the total number of nodes in the network, and 
considering that two companies are connected if they have at least one payment,  
then =   and = 1 if there is a transaction between company i and j, otherwise, = 0 if there is no transaction between companies  and . Diagonal elements are equal to 
0 and non-diagonal elements are either 0 or 1. 

The links can also represent direction: where the links follow the flow of money.  
The second definition is a directed graph where the links follow the flow of money, such that 
a link is incoming to the receiver and is outgoing for the sender of the payment. There are 
two more matrices, one for the in-degree case and another for the out-degree case.  

The weighted connectivity matrix B contains the number of transactions between 
companies i and j. The elements  of the weighted connectivity matrix C denote the overall 
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volume exchanged between companies i and j. The choice of the definition of the matrix 
representation depends on the focus of the analysis. 

1.1 Structure and components: Analytics metrics 
1.1.1 Activity patterns 

 
I perform an analysis on the structure of the network and its time evolution to be able to 
identify any structural changes and compare the emerging patterns. Figure 1(a) shows the 
monthly volume of transactions during 2014 while Figure 1(b) displays the monthly number 
of transactions. Figure 1(c) shows the monthly average number of active links as a function 
of time. Figures 1(b) and 1(c) show that the number of transactions decreases dramatically 
in the third quarter of the year while the number of active links decreases already in the 
second quarter.  

The plots show that the number of transactions and the active links increase in the last 
quarter of the year, suggesting that liquidity in the Estonian network of payments increases 
by the end of the year through increased transaction volumes and payments, and higher than 
usual number of active counterparties. It is interesting that from August until the end of the 
year there is a high concentration in the volume of payments while the number of payments 
diminishes dramatically in the same period of time. These observations indicate that the 
average number of active companies has decreased 20%, while the volume of transactions 
has increased 14% and the number of transactions has decreased 66% by the end of the year 
(compared with the beginning of the year). This indicates that in Estonia companies manage 
higher volumes of money at the end of the year than at the beginning of the year, while not 
all the companies remain active by the end of the year. It is observed that there are some 
seasonal effects characterizing the trends of payments. For example, the fact that there is an 
impact in summer: transaction-volumes are visibly increased, perhaps linked to the fact that 
consumer expenses rise (such as traveling or vacation related expenses). 

It is not possible to obtain a full explanation of this financial liquidity pattern due to the 
lack of complete information about the overall financial and commercial activities of the 
companies in this network. Nonetheless, there are some possible explanations for such 
patterns. For example, these patterns could be highly affected by business cycles of 
payments, or by seasonal effects on the liquidity of companies, or by macroeconomic 
variations such as the changes in monetary policy of the Euro area and Estonia. Another 
explanation for the increased volume of transactions and increased liquidity at the end of the 
year is that there might be a generalized release of delayed payments, like when companies 
try to spend the remaining balances of their annual budgets. 
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  (a) 

   (b) 

          (c)  
Figure 1. Time evolution activity of patterns (payments and volumes). (a) Monthly trading volumes of 
payments V. (b) Monthly number of transactions T. (c) Average degree d  versus time t. X-axis 
represents the number of the month of year 2014. 
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1.1.2 Statistical properties and common metrics 

In order to characterize the statistical properties and the underlying structure of the network, 
I use some common metrics (Standish, 2008; Estrada, 2011; Rendón de la Torre et al., 2016) 
that combine topological and weighted observables. The most basic properties of a network 
are the number of nodes N and the overall number of links . The number of nodes defines 
the size of the network, while the number of links relative to the number of possible links 
defines the connectivity of a network. Connectivity ( ) is the unconditional probability that 
two nodes are connected by a direct link. For a directed network, connectivity is defined as 
follows 

 ( )  = ( ) .  ( )
The connectivity of the network is 0.13, meaning that the network is sparse and 87% of 

the potential connections are disabled. Diameter  is the maximum distance between two 
nodes (measured by the number of links) and this distance is equal to 29. Random networks 
usually have small diameter values. The differences between the low diameter in similar 
random networks and real networks like this one could be explained by the preferred money 
paths that nodes have in the network. Having preferred money paths means that some 
companies have specific preferences when considering the counterparties they transact with. 
Intuitively, this makes sense because for a company it is important to choose carefully which 
counterparties become trading partners, clients, service providers or suppliers and which 
ones do not. Usually, this decision is based upon determined factors such as geographical 
location, goals affinity, cost policies, future joint ventures, legal agreements, nature of the 
business or various other reasons, and it is interesting to notice how this particular feature 
can be observed through the comparison of the connectivity of the network and a random 
network. 

A path is a sequence of nodes such that each node is linked to the next node along the 
path by a link. A path consists of + 1 nodes and  links. A path between nodes  and  is an 
ordered list of  links. The length of this path is . The path length of all node pairs could be 
represented in the form of a distance matrix. The average path length is the average of the 
shortest path lengths across all node pairs in the network. 

Other simple quantity that can be observed in a network is the number of nodes of a given 
degree. The degree of a node is the number of neighbours of that node and is defined as 

= ( ) ,  ( ) 

the sum runs over the set ( ) of neighbours of . For example: ( ) =  | = 1}. 
In a directed network there are two important characteristics of a node, the number of 

links that end at a node and the number of links that start from the node. These quantities 
are known as the out-degree  and the in-degree  of a node, and are defined as 

= ( )  ,   = ( ) .  ( ) 

It is possible to categorize networks by the degree distributions of their tails. In general, 
real-world networks are very different compared with random networks when referring to 
their degree distributions. Random networks commonly show Poisson distributions, while 
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real networks might have long tails in the right part of the distribution with values that are 
far above the mean. Measuring the tail of the distribution of the degree data could be 
achieved by building a plot of the cumulative distribution function. In real-world networks, 
it is common to find distributions that follow power laws in their tails: 

(  )~  ~  ( )´ ,  ( ) 

where  is the scaling exponent of the distribution and the degree distribution ( ) is the 
probability that the degree of a node is equal to . This type of distribution is called 
scale-free and networks with such degree distributions are referred to as scale-free networks. 
Such distributions have no natural scale and the functional form of the distribution remains 
unchanged within a multiplicative factor under a rescaling of the random variables. Previous 
studies (Mandelbrot, 1983; Jeong et al., 2000) have shown that in large scale-free networks, 
independently of the system and the origin of the components, the probability ( ) that a 
node of the network interacts with , then other links decays as a power-law, suggesting that 
there is a tendency for large networks to self-organize into a scale-free state. A degree 
distribution with power laws is a characteristic commonly seen in complex networks such as 
in the World Wide Web network, protein-interaction networks, phone calls networks, food 
webs networks, citation networks, actors-movies networks and it also appears in systems of 
payments from different banks around the world (Inaoka et al., 2004; Söramaki et al., 2007; 
Boss et al., 2004). 

The average degree of a node in a network is the number of links divided by the number 
of nodes and is defined as: 

= 1  =  1  =  .  ( ) 
The average degree of the Estonian network of payments is 20. Most of the nodes have 

only 5 or less links, and 45% have only 1 link. Like other real networks, the degree 
distributions (undirected and directed) of the network of payments follow power laws. 

Complex networks can be classified as homogeneous or heterogeneous depending on 
their degree distributions. Homogeneous networks are identified by degree distributions that 
follow an exponential decay. In these networks, the distribution peaks at an average  and 
then decays exponentially for large values of , such as the distributions formed in the 
random graph model (Erdös and Rényi, 1959) and the small-world model (Watts and Strogatz, 
1998) where each node has approximately the same number of links . These have a normal 
distribution and the majority of the nodes have an average number of connections and only 
few or none of the nodes have either some or lots of connections. In heterogeneous large 
networks or scale-free networks, the degree distribution decays as a power law with a 
characteristic scale. The degree distribution follows a Pareto form distribution where many 
nodes have few links and few nodes have many links, therefore, highly connected nodes are 
statistically significant in scale-free networks. 

Figure 2(a) shows the cumulative degree distribution of the Estonian network of payments 
(undirected). A straight line was added as an eye guideline. The distribution in Figure 2(a) 
follows a power law with the following scaling exponent: ( ) . .  (6) 
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(a)    (b) 

         (c) 
Figure 2. Degree distributions (a) Empirical degree distribution for the connectivity network of the 
Estonian network of payments. X axis is the number of  degrees and Y axis is ( ). (b) out-degree 
distribution of the network,  (  )    . . c) Empirical in-degree distribution  (  )   .  . 

Figure 2(b) shows the out-degree distribution and Figure 2(c) shows the in-degree 
distribution of this network. In all the distributions, I found regions that can be explained by 
power laws, and this implies that the network has a scale-free structure. 

Weights  of the links  and  in a network show the importance of each link. 
The strength of the nodes is the sum of the weights of all the links. In this network the 
strength measures the overall transaction volume for any given node. The node-weighted 
strength is defined as 

= ( ) ,  ( ) 

where  is the weight of the link between nodes  and  and the sum runs over the set ( ) 
of neighbours of . The average strength can be calculated as a function of the  number of 
links of a node to examine the bond between the strength and the degree. 

I calculated the probability P(s) that a company has k outgoing or incoming links. As per 
Figure (3), the distribution of the out-degree volume (strength) follows a power-law decay ( )~  .    ( ) 



20 

where the scaling exponent is 2.32. There are some deviations from the power law behaviour 
but they are sufficiently small. A similar distribution was found in the in-degree volume 
(strength) distribution (Rendón de la Torre et al., 2016). The power-law tail signals that the 
probability of finding companies paying out very large quantities of money is small. 
Moreover, while the companies have an absolute freedom in choosing how much money to 
pay or the counterparties to whom they interact with, the overall system obeys a scaling law, 
which is a particular property observed in critical phenomena and in highly interactive  
self-organized systems. Figure (3) displays the distribution of link weights weighed by the 
number of payments transacted.  
 

 
Figure 3. Node out-degree distribution by strength.  
 

1.2 Scale degree distributions in other known networks 
 
It is common to find scale-free degree distributions in different networks, such as in the 
World Wide Web, the proteins and interactions network, phone calls, food webs, 
transportation and in payments systems of different banks. Table 1 shows a list of the  
power-law exponents obtained from different types of real networks. 
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Table 1. Scaling exponents and clustering coefficients for different types of reported networks 

Type Network Exponent 

Clustering 
coefficient

* References 

Economical 

Bank of Japan payments  = 2.1 -  (Inaoka et al.,, 2004) 

US Federal Reserve Bank  

 = 2.11 

0.53 (Soramäki et al.,, 2007)  = 2.15 

Austrian Interbank Market 
payments  

 = 1.7 
0.12 (Boss et al.,, 2004) = 3.1 

Technological 

WWW 

 = 2.4 

- (Albert and Barabási, 1999)  =2.1 

Peer-to-peer network  = 2.1 0.012 (Ripeanu et al.,, 2002) 

Digital electronic circuits  = 3 0.03 (Ferrer et al.,, 2003) 

Social 

Film actors = 2.3 0.78 (Watts and Strogatz, 1998) 

Email messages 

= 1.5 

0.16 (Ebel et al.,, 2002)  = 2.0 
Telephone calls  = 2.1 - (Aiello et al.,, 2000) 

Biological 

Protein interactions (yeast)  = 2.4 
0.022 (Jeong et al.,, 2001) 

Metabolism reactions 

 = 2.2 

 = 2.2 0.32 (Jeong et al.,, 2000) 
Energy landscape for a 14-atom 

cluster  = 2.78 0.073 (Doye, 2002) 
 = scaling exponent for in-degree distribution. = scaling exponent for the out-degree distribution. 

 = scaling exponent for the connectivity distribution. *Refers to average clustering coefficient. 

1.3 Components of networks 

Nodes can be partitioned into components, according to how the nodes connect with each 
other. A path is an ordered collection of nodes, each one connected to the next node. 
A component is a group of nodes such that any two nodes can be connected by a direct or 
indirect path. A component of an undirected network is a set of nodes such that for any pair 
of nodes  and  there is a path from  to , meaning that two nodes share the same 
component if there is a path connecting them. 

In a directed network the largest component is known as the Giant Weakly Connected 
Component (GWCC) in which all nodes connect to each other via undirected paths. The core 
is the Giant Strongly Connected Component in which the nodes can reach each other through 
a directed path. The Giant Out-Component (GOUT) comprises the nodes that have a path 
from the GSCC and the Giant In-Component (GIN) comprises the nodes that have a path to 
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the GSCC. The set of disconnected components (DC) are smaller components. Tendrils are 
nodes that have no directed path to or from the GSCC, but to the GOUT and or to the GIN 
(Dorogovtsev and Mendes, 2003). These concepts are shown in Figure 4. 

Figure 4. Components of a directed network. 

All the components in this undirected network show that the GCC is composed of 15,434 
nodes which means that 92.8% of the nodes are reachable from one another by following 
either forward or backward links. This suggests that it is a very well connected network. 
The remaining 7.2% nodes correspond to 508 DC. If we consider a direct approach, the GSCC 
contains 24% of the nodes in the system. 

Another interesting and fundamental metric is the clustering coefficient of a node. 
It represents the probability that any two neighbours of a node are connected; it is the 
density around a node. In this study it indicates whether or not there is a link between two 
companies that have a common third business party.  

( ) = 1( 1) .   ( ) 

The average clustering coefficient is the mean of the clustering coefficients C  of each and 
all the nodes. In this network, the average clustering coefficient is 0.18, and this number 
suggests there is cliquishness in the network. This means that two companies that are trading 
partners with a third one, have an average probability of 18% to be trading partners. 
For visualization purposes, Figure 5 displays the distribution of the clustering coefficient of 
the network. As seen in the plot, there is high number of unlinked neighbour nodes (45% of 
the nodes) that might be explained by the large number of nodes with degrees equal to 1 
which frequently appear in scale-free networks. 
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Figure 5. Distribution of the clustering coefficient of the Estonian network of payments. 
 

In other words, the clustering coefficient indicates whether there is a link between two 
companies which have a common trading partner and it gives a way to measure the extent 
of the reach of intermediary trading. Compared with other real networks this average 
clustering coefficient is relatively small (see Table 1 for comparison). Compared to other real 
networks, such as the U.S. Federal Reserve Bank network of payments, the film-actor 
network, or the metabolism reactions network, the average clustering coefficient is low.  
A small coefficient is reasonable because it can be interpreted as how companies could see 
diversification as costly when it means to change or add their trading partners, suppliers or 
service providers. Business relationships between companies are commonly settled through 
medium or long term contracts. A company would like to remain doing business with the 
same parties because it's easier and cheaper than continuously changing them. 

As mentioned earlier, the most basic model of networks is the random network model ( , ) developed by Erdös and Rényi (1959). This model has two parameters:  and  
(where  is the number of nodes of the graph and  is the probability to link). The model 
works under the assumption that there could be a link  between two nodes  and  and 
this assumption holds no matter if the nodes had a common neighbour node before the link 
was formed. The outcome of the model is the generation of random network graphs with a 
low clustering coefficient and a low variation in the degrees of the nodes. A random network 
cannot capture the decreasing nature of the clustering coefficient of the nodes with increase 
in the node degree because the clustering coefficient of the nodes in this type of network is 
totally independent of the node degree and is equal to the probability of a link between any 
two nodes (Barrat et al., 2008). 

The betweenness centrality ( ) of a node  is the total number of shortest paths which 
pass through a given node. It is a measure of the number of paths between other nodes that 
run through the node ; the more paths this node has, the more central is the node  in the 
network. It indicates whether or not a node is important in the traffic of the network. It was 
originally introduced as a measure for quantifying the control of a determined human on the 
communication between other humans in a social network. The nodes with high 
betweenness control the network. 
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( ) ( , , )( , )  ,  ( ) 

where ( , ) is the total number of shortest paths between nodes i and j and the sum goes 
over all the pairs of nodes for which at least one path exists, with ( , ) > 0.  

The general characteristics and statistics of the Estonian network of payments are listed 
in Tables 2 and 3. According to Table 2, the average betweenness for the links is 40 and for 
the nodes is 110, meaning that each company handles on average 110 shortest paths, and 
the higher is the number of shortest path the more central the company is for the network. 

Regarding other statistical measures of the Estonian network of payments, as per Table 2, 
the average shortest path length    is equal to 7.1 (calculated with Dijkstra’s algorithm). 
This network is a “small world” with 7.1 degrees of separation, meaning that on average any 
company can be reached by another company in just a few links. 93% of the nodes are within 
7 links of distance from each other and this suggests that the network of payments is 
comprised of a core of nodes with whom the other companies interact with. There is a smaller 
group of 1,081 nodes (6.5% of the total number of nodes in the network) connected by high 
value links. This group contains weighted links that comprise 75% of the overall value of the 
funds transferred. A k-core in an undirected graph is a connected maximal induced sub-graph 
which has a minimum degree greater than or equal to k. Alternatively, the k-core is the 
(unique) result of iteratively deleting nodes that have degree less than k, in any order. 

 This network showed low connectivity (C = 0.13) but at the same time the network is 
densely connected (see Table 3). This characteristic is in line with the fact that there are 
companies that act as hubs and lead to short distances between the other companies. 
The clustering coefficient is higher than the connectivity, therefore, the network is not 
random (in a random network the clustering coefficient is equal to the connectivity; a random 
network is built by adding links randomly to a given set of nodes, thus is an unreal type of 
network). A random network of a comparable size has a clustering coefficient around 60 
times lower than the one in the Estonian network of payments. 

Table 2 Network's characteristics 
Total companies analysed (N) 16,613 
Total number of payments analysed 2,617,478 
Total value of transactions 3,803,462,026 * 
Average value of transaction per customer 87,600 * 
Maximum value of a transaction 121,533 * 
Minimum value of a transaction (aggregated) 1,000 * 
Average volume of transaction per company  60 
Maximum volume of transaction per company 24,859 
Minimum volume of transaction per company   20 

*All money quantities are expressed in monetary units and not in real currencies in order to protect the
confidentiality of the data set. The purpose of showing monetary units is to provide a notion of the 
proportions of quantities and not to show exact amounts of money. 
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Table 3 Summary of Statistics 

N = number of nodes. < k > = average degree.  = scaling exponent of the out-degree empirical 
distribution. = scaling exponent of the in-degree empirical distribution. = scaling exponent of the 
connectivity degree distribution. <C> = average clustering coefficient. < l > = average shortest path 
length. T = connectivity %. D = Diameter. <  > = average betweenness. GCC = Giant Connected 
Component. DC = Disconnected Component. GSCC = Giant Strongly Connected Component.  
GOUT = Giant Out-Component. GIN = Giant In-Component. 

1.3.1 Importance of nodes: strength 

Zemp et al., (2014) developed new versions of measures for directed and/or weighted 
networks which take into account the importance of nodes. In their work these authors 
showed that by using their measures one can avoid systematic biases created by a higher 
node density and larger weights of the links. Newman (2004) showed that weighted networks 
could be analysed by using simple mapping that goes from a weighted network to an 
unweighted multigraph and that this approach allows using standard techniques for studying 
unweighted and weighted networks. 

In this subsection of the chapter, I make a characterization of the links by investigating the 
strength of the interactions of the elements of the network: the link weight of payments and 
volume of payments. I analyse specific statistical measures of the weighted Estonian network 
of payments that combine the topology of the relations of the strength of links and nodes 
and their specific weights with the purpose of investigating beyond the topological 
architecture of the network and reveal aspects of its complex structure.   

I analysed the bond between strength and degree of a node. Figures 6(a) and 6(b) depict 
the volume and value (in and out strengths) as functions of degree for both outgoing and 
incoming links (in-degree and out-degree). The strength   is normalized by dividing it over 
the average link weight . There is a power-law relationship between the strength and 
the degree, as follows: ( )~  ( ) 

where  is the coefficient of the scaling distribution. The power-law fit of Figure 6(a) has an 
exponent = 1.5, when volume is used as the weight, and = 2.4 when the value is 
used instead. These values imply that the out-strength of nodes   and in-strength of nodes   grow faster than the degree k of a node, as seen in Figure 6(a), meaning that the most 

Statistic Value Components   # of nodes 
N 16,613 GCC 15,434 
Nbr. of payments 2,617,478 DC 1,179 
Undirected Links 43,375 GSCC 3,987 
< k > 20 GOUT 6,054 

 2.39 GIN 6,172 
 2.49 Tendrils 400 

2.45 Cutpoints 1,401 
< C > 0.183 Bi-component 4,404 
< l > 7.1 k-core 1,081 
T 0.13 
D 29 

 (nodes) 110 
 (links) 40 
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connected companies execute a higher number of payments with higher values of money 
than suggested only by their degree. This indicates that if a company has twice as many 
payments (out links) as another company, it could be expected that such company sends 
three times the number of payments, and almost five times the total value of payments. 
Figure 6(b) indicates that the relationships between the in-degree and the in-strength show 
similar trends like the out-degree and out-strength cases seen in Figure 6(a). 

Also, the strength of a node scales with the degree  indicating that highly connected 
companies have payments of high weights. The strength of a company grows generally faster 
than its degree. In other words, highly connected companies not only have many payments, 
but their payments also have a higher than average weight. This observation agrees with the 
fact that big companies are better equipped for handling large quantities of payments with 
large amounts of money. Comparable results were found in the cargo ship movements 
network (Kaluza et al., 2010) and in the airport network (Barrat et al., 2004), and such results 
may hint or point to the existence of a generic pattern in large-scale networks. 

 
  
                                                         (a) 

   
                                                         (b) 

Figure 6. Distributions of strength. (a) Node out-strength as a function of degree. (b) Node in-strength 
as a function of degree. Empty squares represent values of payments and black squares represent the 
number of payments. 
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For a given node  with connectivity  and strength , the weights of its links might be of 
the same order of magnitude / , or they can be distributed heterogeneously with some 
links predominating over others. Then, the participation ratio is defined as follows: 

( ) =   ( ) , ,  ( ) 

or equivalently 

( ) =   ( ) , .  ( ) 

Now I define the participation rates to separate outgoing and incoming links. Then, the 
average participation ratio is calculated as 

= 1 ( ),  ( ) 

and 

= 1 ( ).  ( ) 

I calculate the participation ratio as a function of a company’s inverse degree, where the 
objective is to identify the links that are used more often than the others. If a low number of 
weights are dominant then  is close to 1 but if all the weights are of the same order of 
magnitude then ~1 . When  is close to 1, it indicates the existence of preferential 
interactions between the nodes, meaning that companies prefer to transact with certain 
companies. 

Figure 7(b) shows a plot of the participation ratio H  as a function of the inverse degree of 
the nodes. The plot shows the links that are used more often than others. For example, for a 
degree up to 10 H (i)~1 k  and for higher degrees the participation ratio is higher than the 
inverse degree suggesting there is a disposition in the direction of preferential trading with 
specific counterparties. Figure 7(b) shows the average participation ratio during the whole 
year for out-going payments and in-coming payments. By the end of the year the 
participation ratio for all the payments decreases. Particularly, the participation ratio of the 
outgoing payments decreases dramatically. This reveals that the preferential linking is 
limited. By the end of the year, the preference for trading with only certain counterparties 
became less important. This could be caused by an increased payments/liquidity tendency 
that could potentially be driven by generalized unspent company annual budgets or delayed 
payments that were done before the year ended.   
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(a) 

 
          (b) 

Figure 7. Participation ratio plots. (a) Participation ratio as a function of the inverse degree for out-going 
payments and in-coming payments. Black squares represent out-going payments; white squares 
represent in-coming payments. (b) Participation ratio as a function of the distance of the end of the year 
expressed in months for incoming (black circles) and outgoing (white circles) payments. 

1.4 Robustness of the network 
 

Previous studies of the structure of the World Wide Web network components (Albert et al., 
1999) have focused on analysing the robustness of the GCC against attacks, and it has been 
found that it is very difficult to destroy the World Wide Web network by using random 
elimination of links. (Table 3 displays the component sizes of the network of payments, 
among other statistics). 

In complex networks some nodes are essential while others are not, and identifying these 
essential nodes is a critical task in determined situations. The most essential nodes are those 
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which if removed from the network would cause the whole system to collapse. In order to 
have a deeper understanding on how the network is likely to behave as a whole in the 
presence of perturbations, I will address the next question: if a portion of nodes were 
removed, would the structure of the network become divided into disconnected clusters? 
How will the network respond to an actual removal of nodes? There are many approaches 
on how to tackle this problem and locate the “key nodes” in the network, or on how to 
calculate the optimal percolation threshold of nodes that would break the network into 
disconnected clusters. Some logical approaches are: high degree node, k-core, closeness or 
eigenvector centralities, however, a common characteristic in these approaches is that they 
do not necessarily optimize a measure that reflects the collective influence arising from 
considering the entire influential nodes at once. Under a collective approach, nodes’ inherent 
strength and weakness arise collectively from the configuration of interactions they have 
with the other components. 

Currently, there are many heuristic methods for calculating the optimal percolation 
threshold of nodes at which the network breaks into disconnected clusters, such as the high 
degree node, k-core, closeness and eigenvector centralities. However, a common 
characteristic in these approaches is that they do not necessarily optimize a measure that 
reflects the collective influence arising from considering the entire influential nodes at once. 
Under a collective influence approach, the inherent strength and weaknesses of the nodes 
arise collectively from the configuration of interactions that they have with the other 
components. 

Morone and Makse (2015) designed an approach that has proven to perform better than 
other heuristic methods (such as the high degree node, core, closeness and eigenvector 
centralities). Morone and Makse’s algorithm optimizes a measure that can reflect the 
collective influence effect that arises when taking into account the entire influential set of 
nodes at once. This algorithm predicts a smaller set of optimal influencer nodes (the group 
of nodes that destroy the network if they are removed). 

The collective influence of a node CI is defined as the product of the node’s reduced 
degree (the number of its nearest connections 1), and the total reduced degree of all 
nodes  at a distance  from it, and is represented as follows: 

 ( ) = ( 1) (( , ) 1),  ( ) 

where  is defined as the shortest path. Ball( , ) is the set of nodes inside a ball of radius  
around node i. Ball(i, ) is the frontier of the ball and comprises the nodes  that are at a 
distance  from . By computing CI for each node it is possible to locate the nodes with the 
highest collective influence. The collective influence algorithm addresses the problem of 
optimal influence in the computation of the minimum structural total number of nodes that 
reduces the largest eigenvalue of the non-backtracking matrix of the network.  

I performed a simulation using the CI, where I calculate the collective influence of a group 
of nodes as the fall in the size of the Giant Connected Component (GCC) which would occur 
if the nodes of the GCC were eliminated. The GCC contains 15,434 nodes and this quantity 
represents 92.8% of the nodes of the whole network. 

These results are displayed in Figure 8. The plot shows the GCC when a fraction of the 
nodes has been removed. The optimal percolation threshold occurs when 6.0% of the nodes 
are removed and that is the point where GCC( ) = 0. This means that there are many 
companies that execute a large number of payments which in fact have a weak influence in 
the economic network as a whole. The most influential companies in the network are not 
necessarily the most connected ones, neither are those which have more intense economic 
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activity. A weak but smart node attack in the Estonian network of payments where only 6.0% 
of the nodes are removed destroys the whole network of payments, meaning that a few 
nodes maintain the unity of the whole network. 

Figure 8. GCC of the network of payments as a function of the percolation threshold Pc. 

I ran a simulation that shows a random removal of a fraction of the nodes and another 
simulation considering strategically chosen nodes. I found 1,401 cut-point nodes (Hanneman 
and Riddle, 2005). In this simulation I have established that 8% of the nodes are necessary to 
maintain the structure of the network connected. If these nodes are removed from the 
network, the quantity of the components and the average path lengths between the nodes 
would increase, leaving the network vulnerable. 

I measure the average shortest path length < > and the relative size of the GCC as 
functions of the percentage  of deleted nodes (Dorogovtsev and Mendes, 2003; Albert et 
al., 1999; Cohen et al., 2000). The results are displayed in Figures 9(a) and 9(b). The effect of 
the targeted removal of nodes causes a quick growth in the average shortest path length until 
the GCC disappears, GCC( ) = 0 at a very low level of targeted damage (less than 10%). 
I will call this level the percolation threshold . It is noticeable that a weak but smart attack 
destroys the network. In the random removal of nodes simulation the damage is less than in 
the targeted damage. In the previous chapters I have established that my network of 
payments has shown scale-free properties. Scale-free networks are resilient to random 
damage, so it is almost impossible to destroy such network of payments by a random removal 
of nodes, but if  the exact portion of particularly selected nodes, the network breaks 
completely. This effect has been seen in financial systems in economic crisis before: 
companies or banks may declare themselves in bankruptcy and the whole system stays 
healthy, but if certain organizations declare themselves in bankruptcy then the whole system 
collapses. 
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   (a) 
 
(a) 
 

  (b) 
Figure 9. Plots of the effect of the targeted and random removal of nodes from the network of payments. 
(a) The average shortest-path length < > in the GCC plotted against the percentage of removed nodes. 
(b) The GCC plotted against the percentage of removed nodes. Continuous lines display the effect of the 
targeted removal of nodes and the dashed lines display the effect of the random removal of nodes. 
Pc are the percolation thresholds, for each case. 

It is not rare that the GCC in heavy-tailed networks is resilient against random removal of 
nodes. If the degree distribution of the network is fat-tailed, then this fact determines the 
topology of the system. However, it might be possible that when removing nodes in a random 
way, the tail of the degree distribution changes and then the GCC structure would be 
damaged. 

Scale-free networks are commonly observed in a wide array of different contexts such as 
nature and society. Scale-free networks are resilient to random removal of nodes, but are 
vulnerable to smart attacks. The Estonian network of payments is a scale-free network (with 
power laws in the degree distribution) and its own scale-free nature makes it almost 
impossible to destroy the network by a random removal of nodes, but if the exact portion of 
particularly selected nodes are removed then the network collapses completely. 
This “collapsing” effect has been already observed in financial systems when severe 
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economic crisis occur and specific companies or banks crash leading the whole system to 
break down. An example of this, is the global financial crisis of 2008 that started with the 
collapse of the famous investment bank Lehman Brothers, followed by Bear Sterns, UBS and 
other financial entities that dragged the whole global financial system into severe liquidity 
problems. 
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2. Detecting overlapping community structure   
 
In this Chapter I comment on the overlapping community structure of the Estonian network 
of payments and the scale-free properties at a mesoscale level. This Chapter also contains 
the analysis of the global structure of the network through the distribution functions of four 
basic quantities. This Chapter mainly follows Paper III and IV. 

Networks play an important role in a wide range of economic and social phenomena and 
the use of techniques and methods from graph theory has permitted economic network 
theory to expand the knowledge and understanding of economic phenomena in which the 
embeddedness of individuals or agents in their social or economic interrelations cannot be 
ignored.  

Studying the community structure exhibited by real networks is a fundamental step 
towards a comprehensive understanding of complex systems beyond the local organization 
of their components. Community detection analysis is essential for understanding the 
structure and functionality of large networks and it also helps to expand the knowledge on 
complex networks.  

Community detection is a graph partitioning process that provides valuable insight into 
the organizational principles of networks and is essential for exploring, and among other 
things, for predicting connections that are not yet observed. Thus far, recent advances of the 
underlying mechanisms that rule dynamics of communities in networks are limited, and this 
is why the achievement of an extensive and wider understanding of communities is 
important. Locating the underlying community structure in a network makes it easier to study 
the network, and could provide insights into the function of the system represented by the 
network, as communities often correspond to functional units of systems. The study of 
communities and their properties also helps in revealing relevant groups of nodes, creating 
meaningful classifications, discovering similarities or revealing unknown linkages between 
nodes.   

The usefulness of identifying the communities within networks lies in how this information 
could be used in a practical scenario. In the context of the bank industry the output of the 
community analysis (based on payments between companies who are customers of a bank) 
could be used for targeted marketing activities. For example, it could be used at the moment 
of integrating criteria for creating target groups of customers to whom certain products or 
lines of products would be offered. Customers in the same community would be included in 
the same target group and later on after one offer is made to them it would be possible and 
interesting to assess the contagion effects of the product acquisition among customers of the 
same communities who received the same offer. 

Another useful application is for helping to create customer-level segmentations or 
marketing profiles. To know the community (or communities) a customer belongs to, could 
be one of the drivers for creating customer profiles or clustering levels. An alternative usage 
of the output of community analysis is in predictive analytics, for example when building 
churn models. Churn models usually define a measure of the potential risk of a customer 
cancelling a product or service and provide awareness and metrics to execute retention 
efforts against churning. The communities to which the companies/customers belong could 
be used as variables or features when using logistic regression, random forests or neural 
network models. Additionally, community detection analysis could be used as input for 
product affinity and recommender systems. Affinity analysis is a data mining technique that 
helps to group customers based on historical data of purchased products and is used for 
cross-selling product recommendations. Another useful and immediate application is in 
product acquisition propensity models. These models calculate customers’ likelihood to 
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acquire a product after an offer is made based on a myriad of variables and with this evidence 
the sales process can become more efficient. 

The majority of previous studies on communities have essentially been devoted to the 
description of structures inside the communities and their applications: communities 
representing real social groupings (Traud et al., 2000; González et al., 2007; Palla et al., 2007) 
communities in a co-authorship network representing related publications of particular 
topics (Pollner et al., 2006), protein-protein interaction networks (Lewis et al., 2010), 
communities in a metabolic network representing cycles and functional units in biology 
(Guimera and Amaral 2005; Ravasz et al., 2002) and communities in the World Wide Web 
representing web pages with related contents (Dourisboure et al., 2007).  

Regarding community studies on economic networks and their applications, Vitali and 
Battiston (2014) studied the community structure of a global corporate network and found 
that geography is the major driver of organization within that network. Fenn et al., (2009) 
studied the evolution of communities of a foreign exchange market network in which each 
node represents an exchange rate and each link represents a time-dependent correlation 
between the rates. By using community detection, they were able to uncover major trading 
changes that occurred in the market during the credit crunch of 2008. Other related 
economic studies have focused on the overlapping feature of communities, such as in 
(Piccardi et al., 2010; Bóta and Kresz, 2013). 

Most of the algorithms for community detection can be classified as divisive, 
agglomerative or optimization-based methods, and each method has specific strengths and 
weaknesses. Previous studies on communities based on divisive and agglomerative methods 
consider that structures of communities can be expressed in terms of separated groups of 
clusters (Newman, 2004; Yang et al., 2016; Hopcroft et al., 2004; Scott, 2000) but most of the 
real networks are characterized by well-defined statistics of overlapping communities.  
An important limitation of the popular node partitioning methods is that a node must be in 
one single community whereas it is often more appropriate to attribute a node to several 
different communities, particularly in real-world networks.  

An example where community overlapping is commonly observed is in social networks 
where individuals typically belong to many communities such as: work teams, religious 
groups, friendship groups, hobby clubs, families or other similar social communities. 
Moreover, members of social communities have their own sub-communities resulting in a 
very complex web of communities (Derényi et al., 2005). The phenomenon of community 
overlapping has been already noticed by sociologists but has barely been studied 
systematically for large-scale networks (Gavin et al., 2002; Devi and Poovammal, 2016;  
Xie et al., 2013; Ding et al., 2016).  

Networks have sections in which the nodes are more densely connected to each other 
than to the rest of the nodes in the network, and such sub-sections are called communities. 
Communities might exist in different networked systems, such as economics, sociology, 
biology, engineering, politics and computer science. There is no unique definition of 
community in the existing literature. Definitions change depending on the author and the 
type of study, and precisely one of the core issues in community detection is the lack of a 
unified definition of what is a community.  

I use the Clique Percolation Method (CPM) definition because such algorithm allows 
overlapping nodes among communities, a condition that arises when a node is a member of 
more than one community. In economic systems, the nodes could frequently belong to 
multiple communities; therefore, forcing each node to belong to a single community could 
result in a misleading characterization of the underlying community structure.   

An overlapping community graph is a network that has links between communities. 
Moreover, it is a representation of a network that denotes links between communities, 
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where the nodes represent the communities and the links are represented by the shared 
nodes between communities. In my study the nodes represent communities and the links 
represent shared nodes between communities. CPM is based on the density of links and the 
definition of community for this algorithm is local and it is not too restrictive. Overlapping 
communities arise when a node is a member of more than one community. CPM is based on 
the assumption that a community comprises overlapping sets of fully connected sub-graphs 
and detects communities by searching for adjacent cliques. A clique is a complete (fully 
connected) subgraph. A k-clique is a complete sub-graph of size  (the number of nodes in 
the sub-graph). Two nodes are connected if the  -cliques that represent them share 1 
members.  

The method begins by identifying all cliques of size  in a network. When all the cliques 
are identified, then a    clique-clique overlapping symmetric matrix  can be built, 
where   is the number of cliques and  is the number of nodes shared by cliques  and  
(Everett and Borgatti, 1998). This overlapping matrix  encodes all the important information 
needed to extract the k-clique communities for any value of . In the overlapping matrix  
rows and columns represent cliques and the elements are the number of shared nodes 
between the corresponding two cliques. Diagonal elements represent the size of the clique 
and when two cliques intersect they form a community. For certain  values, the k-clique 
communities form such connected clique components in which the nearby cliques are linked 
to each other by at least 1 adjacent nodes. In order to find these components in the 
overlapping matrix , one should keep the entries of the overlapping matrix which are larger 
than or equal to 1, set the others to zero and finally locate the connected components 
of the overlapping matrix . The formed communities are the identified separated 
components (more details on the Clique Percolation Method can be found in Palla et al., 
2005). 
  

2.1 Structures of communities  
An overlapping community graph is a representation of a network that denotes links between 
communities, where the nodes represent the communities and the links are represented by 
the shared nodes between communities. For visualization purposes and in order to draw a 
readable map of the network, Figure 10 shows a graphic view of a representative section of 
the overlapping network of communities where big and small communities can easily be 
distinguished. This image depicts 25 overlapping communities and each circle represents a 
node which in turn represents an overlapping community. The links represent the shared 
nodes between the communities. The size of the nodes characterizes the size of each 
community. For example, the big node in the middle represents a community with 61 
companies. 
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Figure 10. Visual representation of a section of the overlapping network of communities (Estonian 
network of payments). The circles (nodes) represent communities and the black lines between them 
represent shared nodes between communities.   

A parameter  needs to be chosen and the optimal choice is a problem in any cluster 
analysis. The parameter  affects the constituents of the overlapping regions between 
communities. The larger the parameter  is, the less the number of nodes which can arise in 
the overlapping regions. When   the maximal clique network is identical to the original 
network and no overlap is identified. The choice of  will depend on the network. It is 
observed from many real-world networks, that the typical value of  is often between 3 and 
6 (Shen, 2013). Figure 11 shows a plot of the number of communities and the average size of 
the communities at different  values. When  increases the number of communities 
decreases while the size of the communities increases rapidly. When  decreases the number 
of communities increases rapidly while the size of the communities remains low.  

I tested different values of  ranging from 3 to 10 and a posteriori chose =5 because 
when <5 a high number of communities arises and the partitions become very low and giant 
communities appear (with sizes of more than 3200); at the level =5 a rich partition with the 
most widely distributed cluster sizes set for which no giant communities appear is obtained. 

Figure. 11 Plot of the average size of community (s) and number of communities (c) as k increases. 
Squares represent the number of communities and triangles represent the size of the communities. 
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In order to study and characterize the global community structure of my network, 
I investigated the distribution functions of the following four elementary quantities: 
community size ( ), overlap size ( ), community degree ( ) and membership number ( ).  In general, the nodes in a network can be characterized by a membership number 
which is the number of communities a node belongs to. This means that for example, any 
two communities may share some of their nodes which correspond to the overlap size 
between those communities. There is also a network of communities where the overlaps are 
represented by the links and the communities are represented by the nodes, and the number 
of such links is called: community degree. The size of any of those communities is defined by 
the number of nodes it has. 

2.2 Distribution functions 

The community size distribution is an important statistic that describes partially the system 
of communities. Figure 12 displays the cumulative distribution function of the community 
size ( ) and it shows the probability of a community to have a size higher or equal to  
calculated over different points in time, where  is the time in months. The overall 
distribution of community size resembles a power-law ( ) , where  is the scaling 
exponent, and a power-law is valid nearly over all times . The scaling exponent (calculated 
by maximum likelihood estimators) when t=3 is -2.8 (included for eye guideline) and 
Equation 17 is: ( ) .   (17) 

Figure 12. Cumulative community size distribution at different times t. 

The sizes of the communities at t=1 are smaller than in the rest of the months; as time 
increases the size increases, particularly the size of the largest communities. The shapes of 
the power-laws observed in the community size distributions of Figure 12 suggest there is no 
characteristic community size in the network. The distribution at different moments in time 
follows similar decaying patterns, but in general, the scaling tail is higher as t increases. A fat 
tail distribution implies that there are numerous small communities coexisting with some 
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large communities (Newman, 2004; Clauset et al., 2004). Figure 13 shows statistics of the 
community sizes across time and according to the plot, both the standard deviation of 
community sizes and the average size of communities increased with time.  
  

 
 Figure.13 Statistics of community size. <s> is the average communi
of the size of communities at different times t. 
 

In a network of overlapping communities, the overlaps are represented by the links and 
the number of those links is represented by the community degree . Then, the degree  is 
the number of communities another community overlaps with. Figure 14 shows the 
cumulative distribution of the community degrees in the network. There are some 
outstanding community degrees in the end of the tail and these include communities that 
cluster the majority of the biggest customers from the network. The central part of the 
distribution decays faster than the rest of it. There is an observable curvature in the log-log 
plot, however no approximation method fitted the distribution. Figure 14 shows that the 
maximum number of degrees  is 63 and corresponds to a relatively small quantity of nodes. 

 

 
Figure 14. Cumulative distribution of community degrees d.   
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A node  of a network can be characterized by a membership number , which is the 
number of communities to where the node  belongs to. Figure 15 shows the cumulative 
distribution of the membership number . The distribution follows a power-law where no 
characteristic scale exists. The largest membership number found in the network was 10, 
meaning that a company can belong to maximum of 10 different communities 
simultaneously. Figure 15 shows that the fraction of nodes that belong to many different 
communities is quite small, while the fraction of nodes belonging to at least one community 
is high. For example, when  = 1 the percentage of nodes that belong to at least one 
community is 50%, while the percentage of nodes that belong simultaneously to 10 
communities ( =10) is extremely small. The rest of the communities belong to two or more 
communities. The companies that overlap with 10 communities belong to the energy and 
water services industries. The majority of the nodes that have  1 have a degree that is less 
than 1, meaning they are weakly connected.   

Figure 15. Cumulative distribution function of the membership number .  

The range in which the communities overlap with each other is also an important property 
of the Estonian network of payments. The overlap size is defined as the number of nodes that 
two communities share. ( ) is the proportion of overlaps larger than .  

Figure 16. Cumulative distribution function of the overlap size .  
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Figure 16 shows the cumulative distribution function of the overlap size. In general, 
although the extent of overlap sizes is limited, the data is close to a power-law dependence, 
meaning that there is no characteristic overlap size. The largest overlap size is 22, however 
at  9 the number of overlapping nodes becomes small.  

In Chapter 1 I discussed the scale-free properties of the degree distributions of the 
Estonian network of payments. It is interesting to observe that the scale-free property is also 
preserved at a higher level of organization where overlapping communities are present.  
In this Chapter I have analysed the community structure of my network by using the Clique 
Percolation Method. I found that there are scale-free properties in the statistical distributions 
of the community structures. Size, overlap and membership distributions follow shapes that 
are compatible with power-laws. Power-law distributions have already appeared in this 
network at a global scale at the level of nodes (Rendón de la Torre et al., 2014), and in this 
community structure study I have shown that power-laws are present at the level of 
overlapping communities as well. This study adds to the existing literature on complex 
networks by presenting the first overlapping community analysis of a country’s network of 
payments. 

An immediate application and utility of the community detection results of this study is 
that they could be used in targeted marketing activities. The output is a list of nodes and the 
community classification where the nodes belong to. This could be used as input for 
predictive analytical models such as product acquisition propensities, churn propensities, 
product affinity analyses, for creating marketing profiles or customer segmentations and for 
creating customer target lists for product offering (in an effort to propagate consumer buzz 
effects). Further applications for community detection in similar economic networks could 
involve strengthening relationships between companies of the same community for 
improving performance of the whole network, or for identification of patterns between 
companies and tracking suspicious business activities.   

A question that remains open for future research is to investigate if the similarities in 
communities’ features amongst different complex networks arise randomly or if there are 
any unknown properties shared by all of them. Another line of research that remains open 
for the future is to study the plausibility of predicting changes in a payment network through 
communities’ detection analysis. 
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3. Multifractal networks 
 
In the late 60’s Benoit Mandelbrot was the first to coin the term “fractal” and he also was the 
first one in describing the fractal geometry of nature (Mandelbrot, 1983).  Since then the 
fractal approach has been widely spread and used in extensive research studies related with 
the underlying scaling of different complex structures, including networks.  

Whether a single fractal scaling spans, or not, all the constituents or areas of a system,  
is a fundamental issue that helps in distinguishing when a system is multifractal or just fractal. 
One scaling exponent is enough to characterize completely a monofractal process. 
Monofractals are considered homogeneous objects because they have the same scaling 
properties branded by one singularity exponent. Instead, a multifractal object requires 
several exponents to characterize its scaling properties. Multifractals are inherently more 
complex and inhomogeneous than monofractals and portray systems with high variations or 
fluctuations that originate from specific characteristics.  

Fractal and multifractal analysis helps to reveal the structure of all kinds of systems in 
order to have a better understanding of them. In particular, both the fractal and the 
multifractal approaches have many different interesting applications in economy.  
An interesting line of research is related with the relevance and applicability of fractal and 
multifractal analysis in social and economic topics. Regarding social studies, Lu et al., 2004 
showed the importance of road patterns for urban transportation capacity based on fractal 
analysis of such network. In this study, the authors were able to link the fractal measurement 
with city mass measurements. A few recent studies have focused on the analysis of the 
changes of multifractal spectra across time to assess changes in economy during crisis periods 
(Fotios and Siokis, 2014). Some other studies have focused on gathering empirical evidence 
of the common multifractal signature in economic, biological and physical systems  
(Pont et al., 2009). 

Fractal analysis helps to distinguish global features of complex networks, such as the 
fractal dimension. However, the fractal formalism is insufficient to characterize the 
complexity of many real networks which cannot be described by a single fractal dimension. 
Furuya and Yakubo (2011) demonstrated analytically and numerically that fractal scale-free 
networks may have multifractal structures in which the fractal dimension is not sufficient to 
describe the multiple fractal patterns of such networks, therefore, multifractal analysis rises 
as a natural step after fractal analysis. 

Multifractal structures are abundant in social systems and in a variety of physical 
phenomena. Inhomogeneous systems which do not follow a self-similar scaling law with a 
sole exponent could be multifractal if they are characterized by many interweaved fractal 
sets with a spectrum of various fractal dimensions. Multifractal analysis is a systematic 
approach and a generalization of fractal analysis that is useful when describing spatial 
heterogeneity of fractal patterns (Song et al., 2015). Multifractal network analysis requires 
taking into account a physical measure, like the number of nodes within a box of specific size 
in order to analyse how the distribution of such number of nodes scales in a network as the 
size of the box grows or reduces. In the last years, numerous algorithms for calculating the 
fractal dimension and studying self-similar properties of complex networks have been 
developed and tested extensively (Palla et al., 2005; Zhou et al., 2007; Gallos et al., 2007; 
Schneider et al., 2012; Eguiluz et al., 2003). Song et al., (2007) developed a method for 
calculating the fractal dimension of a complex network by using a box-covering algorithm and 
identified self-similarity as a property of complex networks (Song et al., 2005). Additionally, 
several algorithms and studies on multifractal analysis of networks have been proposed and 
developed recently (Li et al., 2014; Liu et al., 2015; Wei et al., 2013; Wang et al., 2012). 
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In this sub-section of the Chapter I analyse fractal and multifractal properties of the large 
scale economic network of payments of Estonia. I perform a fractal scaling analysis by 
estimating the fractal dimension of the network of Estonian payments and its skeleton. 
Then, I study the multifractal behaviour of the network by using a sandbox algorithm for 
complex networks to calculate the spectrum of the generalized fractal dimensions ( ) and 
mass exponents ( ). 
3.1 Fractal network analysis 

According to Song et al., (2005), the box-counting algorithm is an appropriate method for 
studying global properties of complex networks. The fundamental relation of fractal scaling 
is based on the box-covering method which counts the total number of boxes that are needed 
to cover a network with boxes of a certain size. The box-covering method is equivalent to the 
box-counting method widely used in fractal geometry and is a basic tool for measuring the 
fractal dimension of fractal objects embedded in Euclidean space (Feder, 1998). However, 
an Euclidean metric is not well defined for networks, thus I use the networks’ adaptation 
(Wang et al.,, 2012) of the random sequential box-covering algorithm (Kim et al., 2007) in 
order to calculate the fractal dimension of the network and its skeleton. This method involves 
a random process for selecting the position of the centre of each box. ( ) is the minimum 
number of boxes needed to tile the whole network, where the lateral size of the boxes is the 
measure of radius  as follows: ( )~  ,  (18) 

where  is the fractal dimension. If I measure the number of  for different box sizes, 
then it is possible to obtain the fractal dimension  by obtaining the power law fitting of the 
distribution. The algorithm selects a random node at each step, and this node is the seed that 
will be the centre of a box. Then I search the network by distance  from the seed node and 
cover all the nodes that are located within that distance, but only if they have not been 
covered yet. Later, I assign the newly covered nodes to the new box; if there are no more 
newly covered nodes then the box is removed. This process is repeated until all the nodes of 
the network belong to boxes. Before using the algorithm I calculate the skeleton of the 
Estonian network of payments. 

One of the main challenges of complex network studies is the identification of critical 
structural features that are underneath the network’s complexity. This is related with the 
basic concept of: the distinctive character of a whole is inside just a few of its parts, 
for example in specific colours and shapes of a painting, particular notes or tunes in a song 
or certain keywords in a text or speech. This basic concept is also true for complex networks, 
where only a few parts of the whole network reflect the most important properties of it. 
For example, in large-scale networks only a small number of links are critical for the network 
to exist as a whole. A skeleton network is generally smaller than the original and it reproduces 
all the fundamental properties of the whole because it contains the essence of the network. 
Grady et al., (2012) analysed the network of international flight connections and discovered 
that the skeleton network consists of just 6.76% of the original network. The skeleton 
network concept can be used to detect epidemic propagations of disease when indicating 
which individuals are key participants in a social network or it can be useful when describing 
ecosystems to identify the species that should not be damaged at all to avoid jeopardizing 
the whole network. 
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The concept of skeleton was first introduced by Kim et al., (2004). The skeleton is a 
particular type of spanning tree based on the link betweenness centrality (a simplified 
quantity to measure the traffic of networks) that is entrenched beneath the original network. 
The skeleton provides a shell for the fractality of the network and is formed by links with the 
highest betweenness centralities. Only the links that do not form loops are included. 
The remaining links from the original network which are not included in the skeleton are local 
shortcuts that contribute to loop formation, meaning that the distance between any two 
nodes in the original network may increase in the skeleton. A fractal network has a fractal 
skeleton beneath which is distressed by these local shortcuts but it preserves fractality. 
For a scale-free network the skeleton also follows a power-law degree distribution where the 
degree exponent might differ slightly from that of the original network. When studying the 
origin of fractality in networks, actually the skeleton is more useful than the original network 
itself due to its unsophisticated and simplistic tree structure (Goh et al.,, 2006). In general, 
the skeleton preferentially collects the sections of the network where betweenness is high 
and this preserves the structure and simplifies its complexity. Therefore, by looking at the 
properties of the skeleton it is easier to appreciate the topological organization of the original 
network. 

In order to calculate the skeleton structure of a complex network, the link betweenness of 
all the links in the network has to be calculated. The betweenness centrality of a network 
(of a link or a node), is defined as follows: 

 = ( ) ,  ( ) , ,
where N is the total number of nodes,   is the total number of shortest-paths between 
nodes  and . ( ) is the total number of shortest-paths linking nodes  and  that passes 
through the node . In order to perform the fractal scaling analysis, I used Dijkstra’s algorithm 
(Gibbons, 1985); then I used the box-covering algorithm to calculate the fractal dimension of 
the network and the skeleton to compare both values. 

I present a fractal scaling analysis by using the box-counting algorithm expressed in 
Equation 20 and I calculated the fractal dimension of the network and its skeleton. Figure 17 
shows a visualization of the graph representation of the skeleton of the network. 
The box-covering method yields a fractal dimension = 2.32 ± 0.07 for the skeleton network 
and for the original network the fractal dimension is = 2.39 ± 0.05. 

Figure 17. Graph representation of the skeleton of the Estonian network of payments. 



44 

The comparison of the fractal scaling in the network and its skeleton structure revealed its 
own patterns according to the fractality of the network. Figure 18 shows a fractal scaling 
representation of the network and its skeleton, where the fractal dimension is the absolute 
value of the slope of the linear fit.    

Figure 18. Fractal scaling representation of the network. The original network (o) and the skeleton 

the giant connected cluster of the network. 

As seen in the plot of Figure 18, the respective number of boxes needed to cover both 
networks is very similar but not identical, actually more boxes were needed for covering the 
skeleton. The largest distance between any two nodes in the network of payments is 29, 
while the largest distance between any two nodes in the skeleton network is 34.  

3.2 Multifractal network analysis 

Scale-free networks are commonly observed in a wide array of different contexts of nature 
and society. In the first sub-section of this Chapter I have shown that the Estonian network 
of payments has scale-free properties characterized by power-law degree distributions 

In general, multifractality is expected to appear in scale-free networks due to the 
fluctuations that occur in the density of local nodes. Tél et al., (1989) introduced a sandbox 
algorithm based on the fixed-size box-counting algorithm (Halsey et al.,, 1986) which was 
used and adapted for multifractal analysis of complex networks by Liu et al., (2015). In order 
to determine the multifractal dimensions of the Estonian network of payments, I chose this 
adapted sandbox algorithm because it is precise, efficient and practical. Moreover, a study 
by Song et al., (2015) has shown that this algorithm gives better results when it is used in 
unweighted networks. 

The fixed-size box-counting algorithm is one of the most known and efficient algorithms 
for multifractal analysis. For a given probability measure 0 1 
a support set E, I consider the following partition sum: 

( ) = [ ( )]( ) ,  ( ) 

where the parameter R, and describes the moment of the measure. The sum runs over 
all the different non-overlapping (or non-empty) boxes B of a given size  that covers the 
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support set  E. From this definition, it is easy to obtain ( ) 0 and (0) = 1. 
The function of the mass exponents ( ) of the measure  is defined by: 

( ) =  ( ) .  ( )  
Then, the generalized fractal dimensions ( ) of the measure  are defined as follows: 

( ) = ( )1 , 1,  ( ) 

and 

(1) = ( , )  , = 1,  ( ) 

where 

, = ( ) ( ). ( )  ( ) 

The generalized fractal dimensions ( ) can be estimated with linear regression of [ ( )]/[ 1] against ln  for 1, and similarly a linear regression of ,  against ln  
for q = 1. (0) is the fractal dimension or the box-counting dimension of the support set E 
of the measure . (1) is the information dimension and (2) is the correlation dimension. 

For a complex network, a box of size B can be defined in terms of the distance , which 
corresponds to the number of links in the shortest-path between two nodes. This means that 
every node is less than  links away from another node in the same box. The measure  of 
each box is defined as the ratio of the number of nodes that are covered by the box and the 
total number of nodes in the whole network. 

Multifractality of a complex network can be determined by the shape of ( ) or ( ) 
curves. If ( ) is a straight line or ( ) is a constant, then the network is monofractal; 
similarly if ( ) or ( ) have convex shapes, then the network is multifractal. A multifractal 
structure can be identified by the following signs (Grassberger and Procaccia, 1983): multiple 
slopes of ( ) vs , non-constant ( ) vs  values and ( ) vs  value covers a broad range 
(not accumulated at nearby non-integer values of ).  

Firstly, I calculate the shortest-path distance between any two nodes in the network and 
map the shortest-path adjacency matrix  using the payments adjacency matrix . 
Then I use the shortest-path adjacency matrix  as input for multifractal analysis. 
The central idea of the sandbox algorithm is simply to select a node of the network in a 
random fashion as the centre of a sandbox and then count the number of nodes that are 
inside the sandbox. Initially, none of the nodes has been chosen as a centre of a box or as a 
seed. I set the radius  of the sandbox which will be used to cover the nodes in the range 

 [1, ], where  (diameter) is the longest distance between nodes in the network and radii 
 are integer numbers. I ensure that the nodes are chosen randomly as centre nodes by 

reordering the nodes randomly in the whole network. Depending on the size N of the 
network, I choose  nodes in random order as centres of  sandboxes; then I find all the 
neighbouring nodes within radius  from the centre of each box. I count the number of nodes 
contained in each sandbox of radius  , and denote that quantity by ( ). I calculate the 
statistical averages [ ( ) ]  of  [ ( ) ] over all the sandboxes  of radius . 
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The previous steps are repeated for each of the different values of radius  in order to obtain 
the statistical average [ ( ) ]  and use it for calculating linear regression. The generalized 
fractal dimensions ( ) of the measure  are defined by 

( ) = [ ( )/ (0)] ( / ) 1 1 , ,  ( ) 

or rewritten as ( [ ( )] ) ( )( 1) ( / ) + ( 1)  ( ),   ( ) 

where (0) is the size of the network and the brackets mean taking statistical average over 
the random selection of the sandbox centres. I run the linear regression of ln( [ ( )] ) 
against ( 1)ln ( / ) to obtain the generalized fractal dimensions and similarly, calculate 
the linear regression of ln( [ ( )] ) against ln( / ) to obtain the mass exponents ( ). 
From the shapes of the generalized fractal dimension curves, I can conclude if multifractality 
exists or not in this network. 

Linear regression is an important step to obtain the correct range of radius [  , ] 
that is needed to calculate the generalized fractal dimensions (defined by Equations 25 and 
26) and the mass exponents (defined by Equation 21). I found an appropriate range of radii within the range of the interval located between 2 and 29 of the linear regression, thus 
selected this linear fit scaling range to perform multifractal analysis (I set the range of  values 
from -7 to 12). 

I calculated ( ) and the ( ) curves using the sandbox algorithm by Liu et al., (2015) and 
based upon the shapes obtained from the spectrum in Figures 19(a) and 19(b), it can be seen 
that the curves are non-linear, suggesting that the network is multifractal.  

(a) 

         (b)
Figure 19. (a) Plot of mass exponents ( ) as function of q. (b) Plot of generalized fractal dimensions ( ) as function of q. Curves indicated by circles represent numerical estimations of the mass exponents 
and generalized fractal dimensions, respectively. 
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In Figure 19(b), the ( ) function decreases sharply after the peak reaches its end when = 4. This could be interpreted as the high densities around the hubs in the network. 
The hubs have a high number of links connected to them; therefore the density of links 
around the sections near the hubs is higher than in other parts of the network. These hub 
nodes or important companies have a noticeable larger amount of business partners (for 
example: customers, suppliers or any other business parties that interact financially) than the 
rest of the companies in the network have, and it is interesting to observe that this 
characteristic can be explored and identified by looking at the values of  ( ) spectra. 
The multifractality seen in this network reveals that the system cannot be described by a 
single fractal dimension suggesting that the multifractal approach provides a better 
characterization; hence, this means that the Estonian economy is multifractal. 

Table 4 Comparison of the maximum values of D(q) in different networks 

Network 

Number 
of 

nodes 
Highest 

D(q) Reference 
Pure fractal network 6222 2.8 (Li et al., 2014) 
Small world network 6222 6.6 (Li et al., 2014) 
Semi fractal network 6222 3.1 (Li et al., 2014) 
Sierpinski weighted fractal network 9841 2.0 (Song et al., 2015) 
Cantor dust weighted fractal network 9841 3.2 (Song et al., 2015) 
High-energy theory collaboration weighted 
network 8361 6.0 (Song et al., 2015) 
Astrophysics collaboration weighted network 16706 6.2 (Song et al., 2015) 
Computational geometry collaboration weighted 
network 7343 5.1 (Song et al., 2015) 
Barabási & Albert model scale-free network 10000 3.6 (Liu et al., 2015) 
Newman and Watts model small-world network 10000 4.8 (Liu et al., 2015) 
Erdös-Rényi random graph model  10000 3.9 (Liu et al., 2015) 
Barabási & Albert model scale-free network 7000 3.4 (Wang et al., 2012) 
Random network 5620 3.5 (Wang et al., 2012) 
Random network 449 2.4 (Wang et al., 2012) 
Protein-Protein interaction network: Human 8934 4.9 (Wang et al., 2012) 
Protein-Protein interaction network: Arabidopsis 
thaliana 1298 2.5 (Wang et al., 2012) 
Protein-Protein interaction network: C. elegans 3343 4.5 (Wang et al., 2012) 
Protein-Protein interaction network: E. coli 2516 4.1 (Wang et al., 2012) 
Small world network 5000 3.0 (Wang et al., 2012) 

Estonian network of payments 16613 7.8 
(Rendón de la Torre 

et al., 2016) 

The quantity ( ) describes the changes in link density in this network. I use ( ) = ( )  ( ) to observe how the values of ( ) change across the 
spectrum. From Figure 19(b) it was found that lim ( ) = 0.37 and ( ) = 7.8 and this 
means that ( ) = 7.43. A large ( ) value means that the link distribution is very 
irregular, suggesting there are areas near the hubs where the links are densely grouped 
contrasting with areas where the nodes are connected with only a few links. In this network 
this means that just a few companies have the role of hubs, while the rest are just small 
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participants of the payments network. Table 4 shows a comparison of the maximum values 
of ( ) in different networks.  

In this Chapter I presented the first multifractal analysis of a complex network of 
payments. I studied specific fractal and multifractal properties of a novel and unique network: 
the Estonian network of payments. In this study, I presented a fractal scaling analysis where 
I identified the underlying skeleton structure of the network. I calculated its fractal dimension 
and compared it with the fractal dimension of the original network. I found that the skeleton 
network had a slightly smaller fractal dimension than the original network. This comparison, 
between the fractal scaling in the original network and the corresponding skeleton network 
reveals that there are only slightly distinct patterns according to the fractality in the network. 
This means that the skeleton network preserves the structure very well while simplifying the 
complexity of the network. Then, the skeleton network captures the general structure of the 
network and by observing the properties of the skeleton, an easier visualization of the 
topological organization of the network can be achieved. 

Fractal analysis helps to calculate and understand the fractal dimension of complex 
networks. However, it is necessary to describe and characterize the multiple fractal patterns 
which cannot be described by a single fractal dimension, thus I also performed a multifractal 
analysis on the Estonian network of payments. Multifractal analysis allows the calculation of 
a set of fractal dimensions, particularly the generalized fractal dimensions. I examined the 
general multifractal structure and explored some statistical features of this network. In order 
to study the multifractal structure, I calculated the spectrum of the mass exponents  and 
the generalized fractal dimensions ( )  curves, using a sandbox algorithm for multifractal 
analysis of complex networks adapted by Liu et al., (2015). This algorithm is based on the 
fixed-size box-counting algorithm developed by Tél et al., (1989). The sandbox algorithm 
utilized in this study could also be used to explore and characterize other economic networks. 

My results indicated that multifractality exists in the Estonian network of payments, and 
this suggests that the Estonian economy is multifractal (from the point of view of networks). 
I found large values of ( ) spectra and this means that the distribution of links is quite 
irregular in the network, suggesting there are specific nodes which hold densely connected 
links, meanwhile other nodes hold just a few links. This type of structure could be relevant 
when specific critical events occur in the economy that could threaten the whole network.  

It is important to continue observing, describing and analysing the structures and 
characteristics of economic complex networks in order to be able to understand their 
underlying processes or to be able to detect patterns that could be useful for predicting or 
forecasting events and trends. The addition of evidence through empirical studies of 
economic networks represents a step forward towards the knowledge on the universality 
and the unravelling of the complexity of economic systems.  

Further applications and studies could extend this topic by examining the potential factors 
that drive the strength of the multifractal spectrum. Some applications could involve studying 
the origin of such factors. Another interesting line of research would be to study the patterns 
and the changes of the multifractal spectrum across different periods of time. Particularly,  
it would be interesting to analyse such patterns during determined financial crisis periods for 
risk pattern recognition purposes. Also, it would be interesting to take into account different 
probability measures for such kind of multifractal analysis. Another direction of the studies 
could be to focus on building network models that attempt to forecast country money flows 
or potential industry growth trends based on transactions data. 
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Conclusions 
 
Summary of the results  

 
The presented studies address global properties and statistics related to the topological 
structure of the large-scale payments network of an entire country (Estonia) by using 
payments data. Additionally, I have reviewed some topics related with its community 
structure and moreover, I have analysed some aspects related to multifractal and fractal 
properties of complex networks. 

Complex networks can be considered as the skeleton of complex systems and they are 
present in many kinds of social, economic, biological, chemical, physical and technological 
systems. In the network of Estonian payments I found scale-free degree distributions, small 
world property, low clustering coefficient, disassortative degrees and heterogeneity 
properties. Its scale-free structure indicates that a low number of companies in Estonia trade 
with a high number of companies, while the majority of the companies trade with only few. 
The clustering coefficient distribution suggests the existence of a hierarchic structure in the 
network. This network is a small world with just 7 degrees of separation. The connectivity is 
smaller than the overall clustering coefficient, therefore the Estonian network of payments 
is not random. The diameter value suggests there is a preference among companies for 
particular paths of money.  

I explored the relations between weighted quantities and their network underlying 
structures. I investigated the strength of interactions (number of payments and the volumes 
of payments) and the interconnectivities among these interactions. To achieve this, I did 
particular experiments, calculated specific metrics, and thus revealed interesting  
micro-structural features. 

I tested the robustness of the network with an approach that focuses on the collective 
influencer nodes.  First, I located the key nodes that prevent the network from breaking into 
disconnected components. The simulation assumed a targeted removal of key nodes which 
caused a quick growth in the average shortest path length until the network was destroyed 
at an optimal percolation threshold of 6%, while in a random removal of nodes the damage 
was extremely small. This revealed the robustness of this economic network against random 
attacks but also revealed its vulnerability to smart attacks. The low percentage of the optimal 
percolation threshold reveals that the most influential companies in the network are not 
necessarily the most connected ones or those having more economic activity and that a small 
quantity of companies maintains the unity of the whole network. 

Later, I analysed the community structure of the network by using the Clique Percolation 
Method. I found that there are also scale-free properties in the statistical distributions of the 
community structure. Size, overlap and membership distributions follow shapes that are 
compatible with power-laws. Power-law distributions have already appeared in this network 
at a global scale in the level of nodes, and in this community study I have shown that  
power-laws are also present at the level of overlapping communities.   

An immediate application for the community detection output is that it can be used in 
targeted marketing activities, as input for predictive analytical models such as in product 
acquisition propensities, churn, product affinity analyses, for creating marketing profiles or 
customer segmentations and for creating customer target lists for product offering (in an 
effort to propagate consumer buzz effects). Further applications for community detection in 
similar economic networks could involve the identification of patterns between companies, 
tracking suspicious business activities and strengthening relationships between companies 
of the same community for improving performance of the whole network.     
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In the last Chapter, I presented a fractal and multifractal analysis of the network.  
I identified the underlying structure of the network (its skeleton) and measured the fractal 
dimension of the skeleton to compare it with the fractal dimension of the original network. 
Both fractal dimensions were similar but the fractal dimension of the skeleton was slightly 
smaller. I also analysed the general multifractal structure by calculating the spectrum of the 
mass exponents ( ) and the generalized fractal dimension ( ) curves, through a sandbox 
algorithm for multifractal analysis of complex networks. My results indicated that 
multifractality exists in the Estonian network of payments, and this suggests that the Estonian 
economy is multifractal (from the point of view of networks). I found large values of ( ) 
spectra, which means that the distribution of links is quite irregular in the network, 
suggesting there are specific nodes which hold densely connected links while other nodes 
hold just a few links. This type of structure could be relevant when critical events occur in the 
economy that could threaten the whole network.  

It is important to continue studying the structures and characteristics of economic 
complex networks in order to be able to understand their underlying processes and to be 
able to detect patterns that could be useful for predicting or forecasting events and trends. 
The addition of evidence through empirical studies of fractality, multifractality, communities’ 
detection and structural properties of economic networks represents a step forward towards 
unravelling of the complexity of economic systems. 
 
Main conclusions proposed to defend 

 
1. I studied the structure of the economic network of an entire country, after extracting 

the network’s topology, characteristics and statistics I conclude that this economic 
network has scale-free properties (in its degree distributions and statistical 
distributions of the community structure such as: size, overlap and membership 
distributions). The network also shows small world characteristics and low clustering 
coefficient. 
 

2. The network is disassortative in terms of degree. The system shows topological 
heterogeneity due to its scale-free structure in the degree distributions (few 
companies in Estonia trade with many parties while the majority trade with only a 
few). 
 

3. I performed robustness tests on the network: One based on centralities and another 
test based on collective influencer nodes. In the first analysis the percolation 
threshold is 8% and in the second is 6%. I found the nodes that prevent the network 
from breaking into disconnected components. The analysis revealed the robustness 
of the network against random attacks but it also revealed its vulnerability to 
targeted attacks. This analysis concludes that the most influential companies in the 
network are not necessarily the most connected ones or those which have more 
economic activity. Only a small number of companies maintain the unity of the 
network. 
 

4. I presented the first multifractal analysis of a complex network of payments where I 
studied specific fractal and multifractal properties. 

 
5. I identified the skeleton structure of the network (as part of a fractal scaling analysis) 

where I calculated the fractal dimension. The analysis showed that the both the 
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fractal dimensions of the skeleton network and the original network are very similar, 
which means that the skeleton network preserves the structure very well while it 
simplifies the complexity of the network. This means that one can study a simplified 
version of the network (skeleton networks) and still capture the general structure of 
the original network itself. 
 

6. I calculated the spectrum of the mass exponents and the generalized fractal 
dimensions curves. The results indicated that there is multifractality in the network, 
suggesting that the Estonian economic system is multifractal. 

 
7. I found large values of ( ) spectra and this means that the distribution of links is 

quite irregular in the network, suggesting there are specific nodes which hold 
densely connected links, meanwhile other nodes hold just few links. This type of 
structure could be relevant when specific critical events occur in the economy that 
could threaten the whole network. 
 

8. I studied the community structures of the Estonian network of payments by using 
the Clique Percolation Method. The output of the community detection analysis 
could be used by the bank for targeted marketing activities or as features for 
predictive analytical models (propensity models for acquisition of products, or for 
creating marketing profiles or segmentation). 

 
 

Recommendations for further work 
 

It is important to continue observing, describing and studying the structures and 
characteristics of economic complex networks in order to be able to understand their 
underlying processes and to detect patterns that could be useful for predicting or forecasting 
events and trends. 

Regarding community structure in economic networks, a question that remains open for 
future research is to investigate if the similarities in communities’ features amongst different 
complex networks arise randomly or if there are any unknown properties shared by all of 
them. Another interesting open line of research is to study the plausibility of predicting 
changes in a payment network through community detection analysis. Further applications 
in economic networks could involve strengthening relationships between companies of the 
same community to improve the performance of the whole network, targeted marketing, 
identification of patterns between companies and tracking of suspicious business activities. 

Further applications of multifractal studies in economic networks might involve examining 
the potential factors that drive the strength of the multifractal spectrum. Some applications 
could involve studying the origin of such factors. Another interesting line of research would 
be to study the patterns and the changes of the multifractal spectrum across different periods 
of time. Particularly, it would be interesting to analyse such patterns during financial crisis 
periods for risk pattern recognition purposes. Also, it would be interesting to take into 
account different probability measures for such kind of multifractal analysis. A further 
direction of the studies could focus on building network models that attempt to forecast 
country money flows or potential industry growth trends based on data of transactions. 



52 

List of Figures 
Figure 1. Time evolution activity of patterns (payments and volumes). (a) Monthly trading 
volumes of payments V. (b) Monthly number of transactions T. (c) Average degree < >> 
versus time t. X-axis represents the number of the month of year 2014. 
 
Figure 2. (a) Empirical degree distribution for the connectivity network of the Estonian 
network of payments. X axis is the number of  degrees and Y axis is ( ). (b) out-degree 
distribution of the network,  (  )   . .  (c) Empirical in-degree distribution  (  )  .  . 
 
Figure 3. Node out-degree distribution by strength. 
 
Figure 4. Components of a directed network. 
 
Figure 5. Distribution of the clustering coefficient of the Estonian network of payments. 
 
Figure 6. Distributions of strength. (a) Node out-strength as a function of degree. (b) Node 
in-strength as a function of degree. Empty squares represent value of payments and full 
squares represent the number of payments. 
 
Figure 7. Participation ratio plots. (a) Participation ratio as a function of the inverse degree 
for out-going payments and in-coming payments. Black squares represent out-going 
payments, white squares in-coming. (b) Participation ratio as a function of the distance from 
the end of the year expressed in months for incoming (black circles) and outgoing (white 
circles) payments. 
 
Figure 8. GCC of the network of payments as a function of the percolation threshold . 
 
Figure 9. Plots on the effect of the targeted and random damage on the network of payments. 
(a) The average shortest-path length < > in the GCC plotted against the percentage of 
removed nodes. (b) The GCC plotted against the percentage of removed nodes. Continuous 
lines display the effect of the targeted removal and the dashed lines display the effect of the 
random removal of nodes.  is the percolation threshold, for each case. 
 
Figure 10. Visual representation of a section of the overlapping network of communities 
(Estonian network of payments). The circles (nodes) represent communities and the black 
lines between them represent shared nodes between communities.   
 
Figure 11. Plot of the average size of community (s) and number of communities (c) as k 
increases. Squares represent the number of communities and triangles represent the size of 
the communities. 
 
Figure 12. Cumulative community size distribution at different times t. 
 
Figure 13. Statistics of community size. < > is the average community size.  is the 
standard deviation of the size of communities at different times t. 
 
Figure 14. Cumulative distribution of community degrees d.   
 



53 

Figure 15. Cumulative distribution function of the membership number . 
 
Figure 16. Cumulative distribution function of the overlap size . 
 
Figure 17. Graph representation of the skeleton of the Estonian network of payments. 
 
Figure 18. Fractal scaling representation of the Estonian network of payments. The original 
network (o) and the skeleton raight line is included for guidance and has 
a slope of 2.3. The analysis includes only the giant connected cluster of the network. 
 
Figure 19. (a) Plot of mass exponents ( ) as function of q. (b) Plot of generalized fractal 
dimensions ( ) as as function of . Curves indicated by circles represent numerical 
estimations of the mass exponents and generalized fractal dimensions, respectively. 
 
 
  



54 

List of Tables 
Table 1. Scaling exponents and clustering coefficients for different types of reported 
networks.  = scaling exponent for in-degree distribution.  = scaling exponent for the  
out-degree distribution. = scaling exponent for the connectivity distribution. *Refers to 
average clustering coefficient. 
 
Table 2. Network's characteristics.* All money quantities are expressed in monetary units 
and not in real currencies in order to protect the confidentiality of the data set. The purpose 
of showing monetary units is to provide an idea of the proportions of quantities and not to 
show exact amounts of money. 
 
Table 3. Summary of Statistics N = number of nodes. < k > = average degree.  = scaling 
exponent of the out-degree empirical distribution.  = scaling exponent of the in-degree 
empirical distribution.  = scaling exponent of the connectivity degree distribution. <C> = 
average clustering coefficient. < l > = average shortest path length. T = connectivity %. D = 
Diameter.  = average betweenness. GCC = Giant Connected Component. DC = 
Disconnected Component. GSCC = Giant Strongly Connected Component. GOUT = Giant Out-
Component. 
 
Table 4. Comparison of the maximum values of D(q) in different networks. 
 



55 

References 
Aiello W., Chung F., Lu L. (2000). A random graph model for massive graphs. In: Proceedings 

of the thirty-second annual ACM symposium on theory of computing, 171–180.   
Albert R., Jeong H., Barabási A.L. (1999). Error and attack tolerance of complex networks. 

Nature, 406, 378–382.  
Albert R., Jeong H., Barabási A.L. (1999). Diameter of the World Wide Web. Nature, 401,  

130–131.  
Barrat A., Barthelemy M., Pastor-Satorras R. Vespignani A. (2004). The architecture of 

complex weighted networks. Proceedings of the National Academy of Sciences of 
USA, 101, 3747–3752. 

Barrat A., Barthélemy M., Vespigniani A. (2008). Dynamical processes on complex networks. 
Cambridge University Press, Cambridge. 

Battiston S., Rodrigues J.F., Zeytinoglu H. (2007). The network of inter-regional direct 
investment stocks across. Advances in Complex Systems, 10, 29–51. 

Boss M., Helsinger H., Summer M., Thurner S. 2004. The network topology of the interbank 
market. Quantitative Finance, 4, 677–684. 

Bóta A., Kresz M. (2013). A high resolution clique-based overlapping community detection 
algorithm for small-world networks. Informatica, 37, 177–187. 

Clauset A., Newman M.E.J., Moore C. (2004). Finding community structure in very large 
networks. Physical Review E, 70. 

Cohen K., Erez D., Avraham D., Havlin S. (2000). Resilience of the internet to random 
breakdowns. Physics Review Letters, 85, 4625–4630.  

Derényi I., Palla G., Vicsek T. (2005). Clique percolation in random networks. Physical Review 
Letters, 94. 

Devi J.C., Poovammal E. (2016). An analysis of overlapping community detection algorithms 
in social networks. Procedia Computer Science, 89, 349–358. 

Ding Z., Zhang X., Sun D., Luo B. (2016). Overlapping community detection based on network 
decomposition. Scientific Reports, 6. 

Dorogovtsev S.N., Mendes J.F.F. (2003). Evolution of networks. Oxford University Press,  
New York. 

Dourisboure Y., Geraci F., Pellegrini M (2007) Extraction and classification of dense 
communities in the web. Proceeding of the 16th International Conference on the 
World Wide Web, 1, 461-470. 

Doye J.P.K. (2002). The network topology of a potential energy landscape: A static scale-free 
network. Physics Review Letters, 88. 

Ebel H., Mielsch L.I., Bornholdt S. (2002). Scale-free topology of e-mail networks. Physics 
Review E, 66. 

Eguiluz V.M., Hernández-García E., Piro O., Klemm K. (2003). Effective dimensions and 
percolation in hierarchically structured scale-free networks. Physical Review E , 68. 

Erdös P., Rényi A. (1959). On random graphs. Publicationes Mathematicae Debrecen, 6,  
290–297. 

Estrada E. (2011). The structure of complex networks. Oxford University Press, New York. 
Everett M.G., Borgatti S.P. (1998) Analyzing clique overlap. Connections, 21, 49–61.  
Feder J. (1988). Fractals. Plenum, New York. 
Fenn D., Porter M., McDonald M., Williams S. Johnson N., et al., (2009). Dynamic communities 

in multichannel data: an application to the foreign exchange market during the 
2007–2008 credit crisis. Chaos, 19. 

Ferrer R., Cancho R.V., Solé R.V. (2003). Optimization in complex networks. Statistical 
mechanics of complex networks. Lecture Notes in Physics, 625, 114–125. 



56 

Fotios M., Siokis M. (2014). European economies in crisis: A multifractal analysis of disruptive 
economic events and the effects of financial assistance. Physica A, 395, 283–292. 

Furuya, S., Yakubo, K. (2011). Multifractality of complex networks. Physical Review E, 84.  
Gallos L.K., Song C., Havlin S., Makse H.A. (2007). A review of fractality and self-similarity in 

complex networks. Physica A, 386, 686–691. 
Gavin A.C. et al., (2002). Functional organization of the yeast proteome by systematic analysis 

of protein complexes. Nature, 6868, 141–147. 
Gibbons A. (1985) Algorithmic graph theory. Oxford University Press, Cambridge. 
Glattfelder, J.B., Battiston, S. (2009). Backbone of complex networks of corporations: The 

flow of control. Physical Review E, 80. 
Goh K.I., Salvi G., Kahng B., Kim D. (2006). Skeleton and fractal scaling in complex networks. 

Physics Review Letters, 96. 
González M.C., Herrmann H.J., Kertész J., Vicsek T. (2007). Community structure and ethnic 

preferences in school friendship networks. Physica A, 379, 307–316.  
Grady D., Thiemann C., Brockmann D. (2012). Robust classification of salient links in complex 

networks. Nature Communication, 3. 
Grassberger P., Procaccia I. (1983). Characterization of strange attractors. Physics Review 

Letters, 50, 346–349. 
Guimerá R., Amaral N. (2005). Functional cartography of complex metabolic networks 

Nature, 433, 895–900. 
Halsey T.C., Jensen M.H., Kadanoff L.P., Procaccia I., Shraiman B.I. (1986). Fractal measures 

and their singularities: The characterization of strange sets., 33, 1141–1151.  
Hanneman R.A., Riddle M. (2005). Introduction to social network methods. University of 

California Riverside, California. 
Hopcroft J., Khan O., Kulis B., Selman B. (2004). Tracking evolving communities in large linked 

networks. Proceedings of the National Academy of Sciences USA, 110, 5249–5253.   
Inaoka H., Nimoniya T., Taniguchi K., Shimizu T., Takayasu H. (2004). Fractal network derived 

from banking transactions – an analysis of network structures formed by financial 
institutions. Bank of Japan Working papers. 

Iori G., Jafarey S. (2001) Criticality in a model of banking crisis. Physica A, 299, 205–212.     
Iori G., De Masi G., Precup O.V., Gabbi G., Caldarelli G. (2007). A network analysis of the Italian 

overnight money market. Journal of Economic Dynamics and Control, 32, 259–278.   
Jeong H., Mason S.P., Barabási A.L., Oltvai Z.N. (2001) Lethality and centrality in protein 

networks. Nature, 411 41–42.  
Jeong H., Tombor B., Reka A., Zoltan N.O., Barabási A.L. (2000). The large-scale organization 

of metabolic networks. Nature, 407, 651–654. 
Kaluza, P., Kölzsch, A., Gastner, M.T., Blasius, B. (2010). The complex network of global cargo 

ship movements. Journal of the royal society interface, 7, 1093–1103. 
Kim D.H., Noh J.D., Jeong H. (2004). Scale-free trees: The skeletons of complex networks. 

Physics Review E, 70. 
Kim J.S., Goh K.I., Salvi G., Oh E., Kahng B., Kim D. (2007). Fractality in complex networks: 

Critical and supercritical skeletons. Physical Review E, 75. 
König M.D., Battiston S. (2009). From graph theory to models of economic networks, a 

tutorial in: Naimzada A.K., Stefani S. & Torriero A. (eds). Networks, topology and 
dynamics. Lecture Notes in Economics and Mathematical Systems. Springer, 613,  
23–63.   

Lewis A.C.F., Jones N.S., Porter M.A., Deane C.M. (2010) The function of communities in 
protein interaction networks at multiple scales. BMC Systems Biology, 4. 

Li B.G., Yu Z.G., Zhou Y. (2014). Fractal and multifractal properties of a family of fractal 
networks. Journal of Statistical Mechanics: Theory and Experiment, 2. 



57 

Liu J.L., Yu Z.G., Anh V. (2015). Determination of multifractal dimensions of complex networks 
by means of the sandbox algorithm. Chaos, 25. 

Lu Y., Tang J. (2004). Fractal dimension of a transportation network and its relationship with 
urban growth: A study of the Dallas-Fort Worth area. Environmental and Planning 
B, 31, 895–911. 

Lublóy A. (2006). Topology of the Hungarian large-value transfer system. Magyar Nemzeti 
Bank (Central Bank of Hungary). MNB Occasional Papers, 57. 

Mandelbrot B. (1983). The fractal geometry of nature, NY Academic Press, New York. 
Mantegna R. N., Stanley, H.E. (2000). An Introduction to Econophysics: Correlations and 

complexity in finance. Cambridge University Press, Cambridge. 
Morone F., Makse H.A. (2015). Influence maximization in complex networks through optimal 

percolation. Nature, 524, 65–68. 
Nakano T., White D. (2007). Network structures in industrial pricing: The effect of emergent 

roles in Tokyo supplier-chain hierarchies. Structures and Dynamics, 2, 130–154. 
Newman M.E.J. (2004). Detecting community structure in networks. European Physical. 

Journal B, 38, 321–330. 
Newman M.E.J. (2004). Fast algorithm for detecting community structure in networks. 

Physical  Review E, 69. 
Newman M.E.J. (2004) Analysis of weighted networks. Physics Review E, 70. 
Newman M.E.J. (2010). Networks: An introduction. Oxford University Press, New York. 
Palla G., Barabási A.L., Vicsek, T. (2007). Quantifying social group evolution. Nature, 446,  

664–667. 
Palla G., Derényi I., Farkas I., Vicsek T. (2005). Uncovering the overlapping community 

structure of complex networks in nature and society. Nature, 435, 814–818. 
Piccardi C., Calatroni L., Bertoni F. (2010). Communities in Italian corporate networks.  

Physica A, 389, 5247–5258. 
Pollner P., Palla G., Vicsek T. (2006). Preferential attachment of communities: The same 

principle, but a higher level. Europhysics Letters, 73, 478–484. 
Pont O., Turiel A., Pérez-Vicente C.J. (2009). Empirical evidences of a common multifractal 

signature in economic, biological and physical systems. Physica A, 388, 2025–2035. 
Ravasz E., Somera A.L., Mongru D.A., Oltvai Z.N., Barabási A.L. (2002) Hierarchical 

organization of modularity in metabolic networks. Science, 297, 1551–1555. 
Reka A., Barabási, A.L. (2002). Statistical mechanics of complex networks. Reviews of Modern 

Physics, 74, 47–97. 
Rendón de la T.S., Kalda J., Kitt R., Engelbrecht J. (2016). On the topologic structure of 

economic complex networks: Empirical evidence from large scale payment network 
of Estonia. Chaos Solitons and Fractals, 90, 18–27.  

Reyes J., Schiavo S., Fagiolo G. (2008). Assessing the evolution of international economic 
integration using random-walk betweenness centrality: The cases of East Asia and 
Latin America. Advances in Complex Systems,11, 685–702. 

Ripeanu M., Foster I., Iamnitchi I. (2002). Mapping the Gnutella network: properties of large-
scale peer-to-peer systems and implications for system design. IEEE Internet 
Computing, 6, 50–57. 

Schneider C.M, Kesselring T.A., Andrade J.S., Herrmann H.J. (2012). Box-covering algorithm 
for fractal dimension of complex networks. Physical Review E, 86. 

Scott J. (2000). Social network analysis: A handbook. Sage Publications, UK. 
Shen H.W. (2013). Community structure of complex networks. Springer Science & Business 

Media. 
Song C., Havlin S., Makse H.A. (2005). Self-similarity of complex networks. Nature, 433,  

392–395. 



58 

Song C., Gallos L.K., Havlin S., Makse H.A. (2007). How to calculate the fractal dimension of a 
complex network: the box covering algorithm. Journal of Statistical Mechanics: 
Theory and Experiment, 3. 

Song Y.Q., Liu J.L., Yu Z.G., Li B.G. (2015). Multifractal analysis of weighted networks by a 
modified sandbox algorithm. Scientific Reports, 5. 

Soramäki K., Bech M.L., Arnold J., Glass R.J., Beyeler W.E. (2007). The topology of interbank 
payment flows. Physica A, 379, 317–333.   

Souma W., Fujiwara Y., Aoyama H. (2006). Heterogeneous economic networks in: Namatame 
A., Kaizouji T., Aruka Y. (eds). The complex networks of economic interactions. 
Lecture Notes in Economics and Mathematical Systems. Springer, 567, 79–92.   

Standish R. K. (2008). Intelligent complex adaptive systems. Australia: IGI Global, 105–124. 
Tél T., Fülöp A., Vicsek T. (1989). Determination of fractal dimensions for geometrical 

multifractals. Physica A, 159, 155–166.   
Traud A.L., Mucha J.P., Porter M.A. (2012). Social structure of Facebook networks. Physica A, 

391, 4165–4180. 
Vitali S., Battiston B. (2014). The community structure of the global corporate network.  

Plos, 9. 
Wang D.L., Yu Z.G., Anh V. (2012). Multifractal analysis of complex networks. Chinese Physics 

B, 21. 
Watts D.J., Strogatz S.H. (1998). Collective dynamics of small-world networks. Nature, 393, 

440–442. 
Wei D.J. et al., (2013). Box-covering algorithm for fractal dimension of weighted networks. 

Scientific Reports, 3. 
West D.B. (2003). Introduction to graph theory. Prentice Hall, Upper Saddle River, New Jersey. 
Xie J., Kelley S., Boleslaw K.S. (2013). Overlapping community detection in networks: the state 

of the art and comparative study. ACM Computing Surveys, 45. 
Yang Z., Algesheimer R., Tessone C.J. (2016) A comparative analysis of community detection 

algorithms on artificial networks. Scienticif Reports, 6.  
Zemp D.C., Wiedermann M., Kurths J., Rammig A., J.F. Donges. (2014). Node-weighted 

measures for complex networks with directed and weighted edges for studying 
continental moisture recycling. Europhysics Letters 107. 

Zhou W.X., Yiang Z.Q., Sornette D. (2007). Exploring self-similarity of complex cellular 
networks: The edge-covering method with simulated annealing and log-periodic 
sampling. Physica A, 375, 741–752.  

 
 
 
 
 
 
 
 
  
 



59 

Acknowledgements 

To stay focussed and work throughout these years of Doctoral Studies would have not been 
easy without the support of great friends and colleagues. Hoping that I do not forget anyone, 
this page is dedicated to all of them. I want to thank Prof. Jaan Kalda, my supervisor, thanks 
to whom I was able to move to Estonia for my Doctoral studies. The support he gave me 
during these years has been very valuable to me and conditio sine qua non for the success of 
my whole research project. 

To Robert Kitt for his support in the bank, because I wouldn´t even be living and working 
in Estonia if it wasn’t because of him and his initiatives and very important support through 
the projects in Swedbank. I thank Swedbank and him for allowing me to use their data for 
research purposes and providing me with very good job opportunities. 

A grateful and due special thanks goes to Prof. Jüri Engelbrecht for his advice, directions 
and support since the very beginning of my studies in Estonia. Another, no lesser, goes to my 
parents, my sister and my grandmother. 

To all my friends who have supported me in many different ways, with their kind words of 
encouragement and strength or with the perfect dinners and even through continental 
distances: Bibiana Garmendia, Pamela Moro, Sandra A. Olivera, Paola Rodriguez, 
Anette Väljamats and all my other national and international friends. 

Big thanks go to Veronika Plotnikova, my direct boss in the bank. For her true 
understanding of what it means to do a Ph.D. while having a full-time job, and for her 
patience and support. 

The financial support of the Dora Programme sponsored by the Archimedes Foundation, 
to the Institute of Cybernetics (CENS), to the School of Science and to the Tallinn University 
of Technology for my grant I would also like to acknowledge. 



60 

Abstract 
 
From Econophysics to Networks: Structure of the Large-Scale 
Estonian Network of Payments  
 
The thesis addresses the study of the structures and dynamics of economic complex networks 
through the exploration of different experiments on a unique, interesting and particular 
economic network: the large-scale Estonian network of payments. Mainly I focus on the 
analysis of global/local topology, community detection and fractal/multifractal properties. 

This is the first study that analyses the economic development of a country during one 
year, from a complex network approach, through payments data. My data set is exclusive in 
its kind because around 80% of Estonia’s bank transactions are done through only one bank 
and I obtained the payments data from that bank (Swedbank), hence, the economic structure 
of the whole country can be reconstructed and this data set reproduces fairly well the trends 
of money of the whole Estonian economy. In this network, the nodes represent Estonian 
companies and the links are established by payments between these nodes.  

I explored the topology of this network by extracting the scaling-free and structural 
properties of this network. I show that this network has scale-free properties in its degree 
distributions. I also found that this network has small world characteristics, low clustering 
coefficient and is disassortative (degree). I performed simulations to reveal the resiliency of 
the network against random and targeted attacks of the nodes with two different 
approaches. In the first analysis, I used an approach based on centralities and the second 
analysis was based on a collective influencer method. The results of such analysis revealed 
the robustness of this economic network against random attacks but they also revealed its 
vulnerability towards smart attacks. 

Revealing the community structure exhibited by real networks is a fundamental phase 
towards a comprehensive understanding of complex systems beyond the local organization 
of their components. I also studied the mesoscale structure of this network. I have analysed 
the community structure of the Estonian network of payments by using the Clique 
Percolation Method. I found that there are scale-free properties in the statistical distributions 
of the community structure. Size, overlap and membership distributions follow shapes that 
are compatible with power-laws. 

I also presented the first multifractal analysis of a complex network of payments. In here, 
I studied specific fractal and multifractal properties. I found that the skeleton network had a 
slightly smaller fractal dimension than the original network. My results indicated that 
multifractality exists in the Estonian network of payments, and this suggests that the Estonian 
economy is multifractal (from the point of view of networks).  



61 

Kokkuvõte 
 
Majandusfüüsikast võrgustikeni: Eesti suuremahulise 
maksevõrgustiku struktuur 
 
Selles väitekirjas uuritakse majanduse kompleksvõrgustike struktuuri ja dünaamikat, viies 
selleks läbi mitmesuguseid eksperimente ühe ainulaadse, huvitava ja erilise majandusliku 
võrgustiku peal, milleks on Eesti suuremahuline maksete võrgustik. Analüüsis keskendume 
peamiselt globaalsele ja lokaalsele topoloogiale, kogukondade tuvastamisele ning 
fraktaalsete ja multifraktaalsete struktuuride tuvastamisele. 

See on esimene teadustöö, milles analüüsitakse maksete andmestiku põhjal ühe riigi 
majanduse arengut tervikuna, kasutades selleks kompleksvõrgustiku meetodit. Meie 
andmestik on ainus omataoline, kuna umbes 80% pangatehingutest Eestis tehakse läbi ühe 
panga (Swedbanki) ja me saime kasutada nende maksete andmestikku. Seetõttu on võimalik 
rekonstrueerida terve riigi majanduse struktuur, sest meie andmestik kajastab üsna hästi 
terve Eesti majanduse rahatrende. Sõlmed selles võrgustikus tähistavad Eesti ettevõtteid ja 
ühendused on moodustunud nende sõlmede vahel toimuvatest maksetest. 

Me uurisime saadud võrgustiku topoloogiat, võttes võrgustikust välja mitteskaleeritavad 
ja strukturaalsed tunnused. Näitasime, et võrgustiku valentside jaotusel on skaalata omadusi. 
Samuti leidsime, et meie võrgustikul on väikese maailma tunnuseid ja väike 
klasterdumiskoefitsient ning et see oli teatud määral mitteassortatiivne. Viisime kahte eri 
meetodit kasutades läbi simulatsioonid, mis paljastasid võrgustiku hea vastupidavuse 
juhuslike ja sihitud rünnakute korral sõlmedele. Esimeses analüüsis kasutasime tsentraalsusel 
põhinevat meetodit, teise analüüsi aluseks oli kollektiivsete mõjutajate meetod. Need tõid 
välja meie majandusvõrgustike tugevuse juhuslike rünnakute korral, kuid samuti võrgustike 
haavatavuse tarkade rünnakute korral ja läbiimbumise lävendi. 

Kogukonna struktuuri esiletoomine reaalse võrgustiku näitel on oluline etapp teel 
komplekssüsteemide parema mõistmise poole, viies meid edasi komponentide lokaalsest 
struktuurist. Me uurisime oma võrgustikus ka keskmise mõõtkava struktuure. Oleme 
analüüsinud Eesti maksevõrgustike kogukondlikku struktuuri, kasutades selleks 
kogukonnatuvastuse meetodeid. Leidsime, et kogukonnastruktuuri jaotustel on skaalata 
tunnuseid. Suurus, kattuvus ja liikmete jaotus vastab kujunditele, mis on vastavuses võimsuse 
reeglitega. 

Samuti teostasime maksete võrgustiku esimese multifraktaalanalüüsi. Uurisime selle 
võrgustiku konkreetseid fraktaalseid ja multifraktaalseid omadusi. Arvutasime välja tema 
fraktali mõõtmed ja võrdlesime neid algse võrgustiku fraktali mõõtmetega. Leidsime, et 
raamvõrgustiku fraktali mõõtmed olid veidi väiksemad kui algsel võrgustikul. Meie tulemused 
viitavad sellele, et Eesti maksete võrgustikus esineb multifraktaalsust, mis omakorda lubab 
oletada, et Eesti majandus on multifraktaalne (võrgustike seisukohalt). Empiiriliste uuringute 
kaudu lisanduvad tõendid, mis viitavad majandusvõrgustike fraktaalsusele ja 
multifraktaalsusele, on samm universaalsuse mõistmise poole ja avab meie ees 
majandussüsteemide keerukuse. 
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Paper I 
Rendón de la Torre S., Kalda J., Kitt R., Engelbrecht J. (2016). On the topologic structure of 
economic complex networks: Empirical evidence from large scale payment network of 
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Paper II 
Rendón de la Torre S., Kalda J., Kitt R., Engelbrecht J. (2017). Fractal and multifractal analysis 
of complex networks: Estonian network of payments. The European Physical Journal B, 90. 
DOI: 10.1140/epjb/e2017-80214-5. 
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complex networks: Large scale payment network of Estonia. In: Zengqjang C., Dehmer M., 
Emmert-Streib F., Shi Y. (eds.), Modern and interdisciplinary problems in network science. 
Taylor & Francis CRC Group, USA, 193–226. https://www.crcpress.com/Modern-and-
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Paper IV 
Rendón de la Torre S., Kalda J., Kitt R., Engelbrecht J. (2019) Detecting overlapping 
community structure: Estonian network of payments. Proceedings of the Estonian Academy 
of Sciences, 68(1) 79-88. DOI:10.3176/proc.2019.1.08. 
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Paper V 
Rendón de la Torre S., Kalda J., Kitt R. (2019) Specific statistical properties of the strength of 
links and nodes of the Estonian network of payments. Proceedings of the Estonian Academy 
of Sciences, 68(3). Manuscript (in press). DOI:10.3176/proc.2019.3.02. 
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2005–2007, Ernst & Young, Taxes Staff 

 
Special courses and further training 
May 2017: Python Coursera certifications: 

Python for everybody 
Python Data Structures 
Using databases with Python 
Using Python to Access Web Data 
Capstone: Retrieving, Processing, and Visualizing Data with Python 

July, 2015, 5th Ph.D. School-Conference on Mathematical Modeling of Complex Systems 
(Patras, Greece) 

July, 2017  SIGMAPHI 2017 School of Statistical Physics) (Corfu, Greece). 

October, 2017, Predict, Europe’e Leading Data Conference / Data Modelling Workshop 
(Dublin, Ireland) 
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October 2018, PyCon and PyData Conference / Karlsruhe, Germany 

October 2018, Data and Machine Learning Conference / Stockholm, Sweden 

October 2018, Spark Programming certificate - by Instructor Ali Benamara, insite, Tallinn 
 
Research activity: Publications 

Articles indexed by the Web of Science and Scopus database (1.1): 
Rendón de la Torre S., Kalda J., Kitt R., Engelbrecht J. (2016). On the topologic structure of 
economic complex networks: Empirical evidence from large scale payment network of 
Estonia. Chaos, Solitons & Fractals  
Rendón de la Torre S., Kalda J., Kitt R., Engelbrecht J. (2017). Fractal and multifractal analysis 
of complex networks: Estonian network of payments. The European Physical Journal B, 90. 
DOI: 10.1140/epjb/e2017-80214-5. 
Rendón de la Torre S., Kalda J., Kitt R., Engelbrecht J. (2019) Detecting overlapping 
community structure: Estonian network of payments. Proceedings of the Estonian Academy 
of Sciences, 68(1) 79-88. DOI:10.3176/proc.2019.1.08  
Rendón de la Torre S., Kalda J., Kitt R. (2019) Specific statistical properties of the strength of 
links and nodes of the Estonian network of payments. Proceedings of the Estonian Academy 
of Sciences, 68(3). Manuscript (in press). DOI:10.3176/proc.2019.3.02 

Peer-reviewed articles in other international journals (1.2) and collections (3.1): 
Rendón de la Torre S., Kalda J. (2018) Review of structures and dynamics of economic 
complex networks: Large scale payment network of Estonia. In: Zengqjang C., Dehmer M., 
Emmert-Streib F., Shi Y. (eds.), Modern and interdisciplinary problems in network science. 
Taylor & Francis CRC Group, USA, 193-226 https://www.crcpress.com/Modern-and-
Interdisciplinary-Problems-in-Network-Science-A-Translational/Chen-Dehmer-Emmert-
Streib-Shi/p/book/9780815376583. 
 
International conferences presentations: 
Rendón de la Torre S., Kalda J., Kitt R., Engelbrecht, J. Estonian network of payments. Poster 
presentation at the 5th Ph.D. School-Conference on Mathematical Modeling of Complex 
Systems (20-30 July, 2015, Patras, Greece). 
Rendón de la Torre S., Kalda J., Kitt R., Engelbrecht, J. On the topologic analysis of economic 
complex networks: Swedbank's network of payments in Estonia. Oral presentation at Data 
Science Challenges (14-17 October, 2015, Torino, Italy). 
Rendón de la Torre S., Kalda J., Kitt R., Engelbrecht, J. Communities’ detection and evolution: 
Estonian economic network of payments. Poster presentation at the 26th STATPHYS IUPAP 
International Conference on Statistical Physics (18-22 July, 2016, Lyon, France). 
Rendón de la Torre S., Kalda J., Kitt R., Engelbrecht, J. Communities detection and dynamics: 
Estonian economic network of payments. Poster presentation at International Conference 
Statistical Physics SIGMAPHI 2017 (and School of Statistical Physics) (6-14 July , 2017, Corfu, 
Greece). 
Rendón de la Torre S., Kalda J., Kitt R., Engelbrecht, J. Fractal and multifractal analysis of 
complex networks: Estonian network of payments. Poster presentation at NetSci-X 2018 
International School and Conference on Network Science (5-8 January, 2018 
Hangzhou, China). 
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Elulookirjeldus 
 
Isikuandmed 
Nimi: Stephanie Rendón de la Torre 
Sünniaeg: 09/03/1985 
Sünnikoht: México, Mehhiko 
Kodakondsus: Mehhiko 
 
Kontaktandmed 
E-post: stretomx@gmail.com 
 
Hariduskäik 
2012–2013 National Autonomous University (UNAM México City), Mehhiko, MSc 
2004–2008 Monterrey Kõrgem Tehnoloogiainstituut, Mehhiko, BSc rahanduses 

 
Keelteoskus 
Hispaania keel – emakeel 
Inglise keel – kõrgtase 
Prantsuse keel – algtase 
Eesti keel – algtase 

 
Teenistuskäik 
 
2015–praeguseni Tallinna Tehnikaülikooli küberneetika osakond (School of Science, 
Department of Cybernetics), insener 
2016–praeguseni Swedbank AS, klienditeabe osakond, vanemanalüütik 
2015–2016 Swedbank AS, varahalduse osakond, teadur-analüütik 
2014–2015 Swedbank AS, äriklientide haldus ja strateegiad, analüütik 
2009–2014 AM Advisors (AM Capital Hedge Fund), finantsjuht 
2008–2009 Rabobank, tootmisjuht 
2007–2008 GBM (börsimaaklerite firma), keskkontori rahvusvahelise vara analüütik 
2005–2007 Ernst & Young, maksupersonal 

 
Täiendõpe 

oktoober 2018: andmeteaduse ja masinõppe konverents (Stockholm, Rootsi) 

oktober 2018 Spark Programming (õpetaja Ali Benamara, Tallinn, Eesti) 

PyCon ja PyData konverents (Karlsruhe, Saksamaa) 

oktoober 2017: Predict, Euroopa juhtiv andmeteaduse konverents, modelleerimise töötuba 
(Dublin, Iirimaa) 

juuli 2017: SIGMAPHI 2017, statistilise füüsika kursus (Korfu, Kreeka) 

mai 2017: Python Coursera kursused: 

Python kõigile 
Pythoni andmestruktuurid 
andmebaaside kasutamine Pythoniga 
Pythoni veebiandmestiku kasutamine 
lõpukursus: andmete hankimine, töötlemine ja visualiseerimine Pythoniga 
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juuli 2015: 5. doktorikool/konverents komplekssüsteemide matemaatilisest modelleerimisest 
(Patras, Kreeka) 

 
Teadustegevus 
Avaldatud teadusartiklite ja konverentsiteeside ning peetud konverentsiettekannete loetelu 
on toodud ingliskeelse CV juures. 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 


