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Terms

Clinical study “A type of research study that tests how well new
medical approaches work in people. These studies
test new methods of screening, prevention,
diagnosis, or treatment of a disease.”1

Confounder “something that affects the result of a scientific
experiment in a way that makes it less clear that
one thing causes another, because it has an effect
on one of the things that is being measured [...]"2

Exposure variable that has been intentionally included in a
study as influencing factors

Extraneous variable any variable other than those intentionally
included in a study as influencing factor

“[...] an extraneous variable whose presence
affects the variables being studied so that the
results do not reflect the actual relationship
between the variables under study."3

Latent variable unobserved extraneous variable; or (used in a
more narrow sense): unobserved confounder

1https://www.cancer.gov/publications/dictionaries/cancer-terms/def/clini
cal-study

2https://dictionary.cambridge.org/dictionary/english/confounder
3M. A. Pourhoseingholi, A. R. Baghestani, and M. Vahedi. How to control confounding ef-

fects by statistical analysis. Gastroenterology and Hepatology from Bed to Bench, 5(2):79–
83, 2012. doi:10.22037/ghfbb.v5i2.246
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Symbols

E(Y ) expectation of a random variable Y

EX(Y ) conditional expectation of a random variable Y ,
conditional on an event X

E(Y |X) conditional expectation of a random variable Y ,
conditional on an event X

ι(X⇒ Y ) C-IA measure, Def. 15, coupled impact assessment
of a categorical random variable X onto a
categorical random variable Y

P(X) probability of an event X

ρXY Pearson correlation coefficient between random
variables X and Y

σX Standard deviation of random variable X
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1 Introduction

1.1 Motivation

Understanding the relationships between exposures and outcomes is a corner-
stone of data analysis. Unfortunately, these relationships may be misleading
whenever there are further latent factors that influence the result. In such cases,
these may introduce a form of distortion, which is occasioned by the presence
of a third variable known as a confounder [175, 12]. A confounding variable
influences both the exposure and the outcome [13]. This dual influence can
complicate the observed correlation as it leads to imprecise, biased estimations,
which then could be critically misleading regarding causality. For instance, a con-
founder may produce the appearance of a causal relationship that does actually
not exist, or on the other hand, obscure the existence of a real causal link.

Essentially, confounding is about the issue that the direct effect of exposures
is mixed with the potential effect of confounders. The issue of confounding makes
it necessary to systematically assess both the exposure effects and the potential
effects of confounders. Neglecting confounding may affect the conclusions and
weaken the reliability of inferences made on the basis of data.

This thesis explores and evaluates established measures and a novel mea-
sure of impact and confounding. Through a combination of theoretical analysis
and experimental comparisons, we aim to assess the strengths, limitations, and
practical applications of these measures. The findings contribute to a deeper
understanding of the methodological frameworks available for causal inference
and guide researchers in selecting appropriate tools for their studies.

1.2 Study Relevance and Design

See Figure 1 for an overview on how this study evolved. In Publication IV, we
have examined how organizations can facilitate sensemaking, i.e., the process
by which individuals interpret and make sense of complex information and build
trust within communities. The study in Publication IV explores the roles of busi-
ness intelligence [43, 30, 23], collective intelligence (CI) [212, 64, 139, 131], and
crowdsourcing [34, 33, 11, 38, 31] in enhancing these processes. We imple-
mented a minimal CI platform for basic problem solving enabling a novel rep-
utation model. The tool was evaluated by 50 users, who used the tool over a
period of two weeks and answered questionnaires on its usefulness and usability
[51]. During the course of this study, we have identified a significant gap in the
availability of a comprehensive reporting platform that is equipped with data min-
ing capabilities to support decision-makers effectively. To address this need, we
envisioned the development of a platform that integrates multiple data analysis
methods [65, 62, 193, 197]. As an initial step, we focused on implementing asso-
ciation rule mining (ARM) [4, 204, 5, 117] as a foundational analytical technique
leading to a tool for so so-called grand reports4[65, 62], see also Publication V.

Standard ARM techniques often necessitate discretizing numeric target vari-
ables [116, 120, 80, 152, 74], a process that can result in information loss and
yield less precise insights. To overcome this limitation, we introduced a novel tool

4called grand pivot reports in [65]
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CI tool enabling a novel 
reputation system

GrandReports tool towards 
unifying ARM and OLAP 

Systematic investigation of 
the behavior of Pearson 
correlation during drill-down

GrandReports tool with 
linear-regression-based 
confounder adjustment

• Systematic investigation of
measures of confounding

• Identification of patterns 
of confounding 

need for integration of multiple 
data analysis methods

observed patterns of variation 
during drill-down

need for means to detect 
confounders

need for more systematic 
understanding of 
confounding measures 
and confounding patterns

CMDC
meteorological 

dataset

CMDC
meteorological 

dataset

Harvard Dataverse
(657 datasets)

NZ Government Repository
(37 datasets)

Publication IV

Publication V

Publication III

Publication II

Figure 1: Evolvement of this study.

named GrandReport5,6, see Publication V, which enhances ARM by calculating
and reporting the mean values of a selected numeric target column across all
possible combinations of influencing factors, see Publication V. This tool enables
decision-makers to interpret associations based on aggregate values as in on-
line analytical processing (OLAP) [47, 49, 3], however, automatically as in ARM
instead of interactively as in OLAP and at the scale of ARM, providing results that
align more closely with real-world analytical practices.

While conducting numerous analyses using the GrandReport platform, see
Publication V, we observed significant patterns of variation in results between
marginal values and drill-down analyses. Drill-down analyses enables users to
transition from high-level summary data to more detailed levels, thereby facili-
tating a deeper understanding of data patterns [151, 186]. In Publication III, we
have specifically investigated the behaviour of Pearson correlation coefficients
between variables across different levels of data granularity during drill-down
analysis. For our experiments, we used the well-known meteorological CMDC
(China Meteorological Data Service Center) data set7 [45] from China. The find-
ings revealed that correlations observed at the marginal level do not always per-
sist during drill-down, highlighting the risk in high-level analyses to overlook nu-
anced relationships that emerge at more detailed levels. This result underscores
the importance of conducting drill-down analyses to capture the full spectrum of
data relationships, ultimately enhancing decision-making processes.

The observed behavioural differences in correlation patterns between marginal
and drill-down analyses suggest the presence of statistical paradoxes [192, 194,

5http://grandreport.me
6https://github.com/istaltech/grandreport
7http://data.cma.cn/en

13



196, 195] and other data-related fallacies [221] such as selecting suboptimal
measures [198, 84, 106], and, last but not least, confounding effects [109, 170,
182, 183, 150]. To address these challenges, we have expanded the capabilities
of the GrandReport platform5,6 by incorporating additional data analytical meth-
ods, see Publication II. This enhancement aims to generate diverse perspectives
and identify potential confounding effects within datasets. Specifically, we in-
tegrated multiple linear regression adjustment into the platform to mitigate con-
founding effects in mixed multidimensional data, see Publication II. This enhance-
ment allows for more accurate analyses by adjusting for confounders without re-
quiring the segregation of numerical and categorical data. In order to provide
evidence for the usefulness and usability of the suggested approach, we have
utilized the extended features of the GrandReport tool to investigate the corre-
lation between standardized air quality indices8,9 [54] and CO2 levels10 before
and after confounder adjustment in regard of additional city data with the CMDC
(China Meteorological Data Service Center) data set7 [45].

Given the results and the experience of the previous research stages, we aimed
at contributing to a more systematic understanding of confounding measures
and confounding patterns. We decided to compare various methods of confound-
ing adjustments using the same datasets on a large scale, in order to gain deeper
insights into the confounding effect. For this comparison, we have selected three
established approaches, i.e., the familiar Ad-Hoc method, the Oaxaca-Blinder de-
composition method, and the linear-regression-based method for confounding
adjustment. Additionally, we introduce a novel approach for confounding adjust-
ment for categorical factors in their entirety. This comparative analysis aims to
evaluate the effectiveness and scalability of these methods in addressing con-
founding effects within multidimensional data.

For the purpose of our investigation, we have conducted experiments at a
large scale (combinatorial along all possible drill-downs, i.e., in the style of grand
reports, see Publication V and [65]) with 657 datasets from the Harvard Data-
verse11 repository, plus, 37 datasets from the New Zealand (NZ) government
repository12. During the course of the study, we have been able to detect four
interesting patterns of multiple confounder behaviour, that we report in a series
of dataset case studies.

In mature scientific disciplines, studies are well aware of potential confound-
ing effects; and their treatment and adjustment is standard in the vast literature
of, e.g., clinical and epidemiological studies. In these studies, factors are inten-
tionally selected to be included in the study to provide evidence for or against a
hypothesis in terms of these factors. All other variables than the selected factors
are considered as extraneous variables, may they be observed or not. The situa-
tion changes when it comes to the field of data mining. The data mining paradigm
is more exploratory, rather serving the discovery of hypotheses in regards of po-
tentially interesting influencing factors. Now, although confounding effects are
ubiquitous in data with many factors, confounding is rather neglected in data
mining tools, i.e., no systematic support for confounders (for detecting them, for

8https://www.transportpolicy.net/topic/air-quality-standards/
9https://www.legislation.gov.au/Details/F2016C00215

10http://www.cityghg.com/toArticleDetail?id=203#
11https://dataverse.harvard.edu/
12https://data.govt.nz/
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taking them into account or even for adjusting them) is offered in the common
data mining tools, be it from Association rule mining (ARM) or Online analytical
processing (OLAP). Here is, where this study aims at envisioning a paradigm shift,
i.e., to design an integrate systematic support for treatment of confounding in
data mining tools.

1.3 Contributions

The thesis contributes to the state of art as follows:

(i.) We introduce a novel measure for the impact of a categorical variable as
a whole, i.e., in its entirety, called Coupled Impact Assessment (C-IA). Fur-
thermore, we introduce a novel method to detect confounders utilizing the
C-IA measure.

(ii.) We have conducted combinatorially designed experiments with 694 datasets
from the Harvard Dataverse and the NZ Government Repository to investi-
gate three well-established methods for detecting confounders (the Ad-Hoc
method, Oaxaca-Blinder decomposition, linear-regression-based) and our
own novel C-IA-based method.

(iii.) Based on our experiment results, we have discovered, that the four investi-
gated methods for detecting confounders do not show any relevant agree-
ment or disagreement beyond chance (in terms of both Cohen’s κ and Yule’s
φ). We argue, that this fact is surprising and highly relevant.

(iv.) Based on our experiments results, we have identified four patterns of con-
founding effects during drill-down into potential confounders, that we show-
case in eight data case studies – two data case studies for each of the in-
vestigated method.

(v.) Furthermore, we elaborate a systematic interpretation of the linear regres-
sion model utilizing so-called multiplicative edges diagrams. We utilize this
interpretation to reflect on linear-regression-based confounding, including
a critical discussion off cutoff rules for confounding adjustments.

1.4 Thesis Outline

We proceed as follows. In Chapter 2, we detail out some of the notation that we
use throughout the thesis. In Chapter 3, we provide detailed background mate-
rial and discussion relevant to the study. We explain the concept of confounding
and discuss its relevance from various perspectives. Furthermore, we explain the
straightforward approach of confounder adjustment based on the stratification
of data and coercion of probabilities to outer margins. Furthermore, we explain
the theoretical foundations of Oaxaca-Blinder decomposition and its limitations
as known from the literature. In Chapter 4, we provide a systematic discussion
of the utilization of multiple linear regression for detecting and adjusting con-
founders. In Chapter 5, we introduce C-IA (Coupled Impact Assessment), a novel
measure to assess the impact of a categorical factor in its entirety. In Chapter 6,
we explain, how the C-IA measure of Chapter 5 can be utilized to detect and ad-
just confounders. In Chapter 7, we provide a detailed explanation of the datasets
used in our study and the design of our experiments. In Chapter 8, we present
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and discuss the results of our conducted experiments. In Chapter 9, we discuss
limitations of our approach and potential future research directions. We finish the
thesis with a conclusion in Chapter 10, providing a summary of the main insights
and a future outlook of the work.
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2 Basic Notation and Terminology

2.1 Modeling of Factors of a Data Set

Throughout the thesis, we use random variables to present the factors of a dataset.
In computer science, various terminological and notational frameworks have been
elaborated to present and analyze data sets, each with its specific intentions and
flavors, among which are, most importantly, relational algebra [46] for the field
of relational databases and OLAP [47], and the itemset apparatus [4] of asso-
ciation rule mining (ARM) [4, 204, 5, 117]. As important as fields such as OLAP
and ARM are for the topic of this thesis, we stay with notation and terminology
of statistics [75, 154, 155, 110] and probability theory [126, 154] in this thesis,
as it is the widespread notation in medical research, biometrics and other data-
intensive fields. Specific concepts from the computer science literature, such as
drill-down or roll-up from OLAP, or confidence and lift from ARM show natural in
our notation. For a more formal account on translating between the various for-
mal frameworks, see [193, 197].

In this chapter we detail out some of the notation and terminology that we use
throughout the thesis.

Definition 1 (Tuple Projection). Given a tuple ⟨x1, . . . ,xn⟩ ∈ V1 × · · · ×Vn we define
the i-th tuple projection πi : V1×· · ·×Vn −→ Vi for any 1 ⩽ i ⩽ n as usual as follows:

πi

(
⟨x1, . . . ,xi , . . . ,xn⟩

)
= xi (1)

Definition 2 (Dataset, Factors, Data points). We model a finite dataset (data ta-
ble) Ω of n = |Ω| data points (rows) as an indexed set

Ω : {1, . . . ,n}︸   ︷︷   ︸
data point

indices

−→ V1 × · · · ×Vm︸         ︷︷         ︸
data points

as belonging to a probability space (Ω,Σ,P) together with m random variables
called factors (also called variables, also called columns)

X1 : Ω −→ V1

...
...

Xm : Ω −→ Vm

so that
Xj (⟨i,v1, . . . , vj , . . .vm⟩) = vj

for all factor indices 1 ⩽ j ⩽m, all data point indices i ∈ {1, . . . ,n} and all factor
values v1 ∈ V1, . . . ,vn ∈ Vn, and, furthermore,

P(A ⊆Ω) =
|A|
|Ω|

for all events A ⊆Ω. Given a row index i ∈ {1, . . . ,n}, we use the notation

Xi1 , . . . ,Xim (2)
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as well as
X1i , . . . ,Xmi

(3)

to denote the data point
Ω(i),

i.e., 〈
π1

(
Ω(i)

)
, . . .πm

(
Ω(i)

)〉
.

Please note, that according to Def. 2:

• We use factor, variable and column as synonyms throughout the thesis.

• We use data point and row as synonyms throughout the thesis.

Let us demonstrate, how Def. 2 works in practice by considering the example
in Table 1. Table 1 shows a dataset consisting of citizen records [62], for each
citizen recording their salary, the city in which they live, their profession, their ed-
ucational level, their age group, and whether they are a freelancer or not. The
data set is heterogeneous in terms of the statistical scale of the columns, i.e., the
factor Salary is a numerical factor, whereas the factors Profession, Education,
AgeGroup are categorical variables, each taking values from a finite set of dis-
tinct categories, and Freelance is a binary variable, as follows:

City : Ω −→ {Boston,LA,NY,Seattle, . . .} (4)

Profession : Ω −→ {Chef,Builder, IT,Lawyer, . . .} (5)

Education : Ω −→ {High School,Bachelor,Master,PhD} (6)

AgeGroup : Ω −→ {18− 25,25− 30,30− 40,40− 50,50− 58,59− 65,> 65} (7)

Freelancer : Ω −→B (8)

Salary : Ω −→R
+
0 (9)

Next, let us have a look, how some of the OLAP and ARM terminology would
show in our notation. As an example from OLAP terminology, a drill-down of the
salary into a particular value of the dimension city, e.g., Boston, would show as
stepping from the expectation of the salary

E(Salary) (10)

to the conditional expectation

E(Salary |City=Boston). (11)

Further drill-down into the dimension Profession with value Lawyer would show
as stepping further to the conditional expectation

E(Salary |City=Boston,Profession=Lawyer). (12)

Next, in terminology of ARM, an example of an association rule in terms of
Table 1 could be

{Profession=IT,AgeGroup=40-50} =⇒ {City=Seattle} (13)
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Table 1: Example table in regards of Def. 2.

City Profession Education Age Group Freelancer Salary

NY Lawyer Master 25–30 0 3.800

Seattle IT Bachelor 18–25 1 4.200

Boston Lawyer PhD 40–50 1 12.700

LA Chef High School 30–40 0 3.700

. . . . . . . . . . . . . . . . . .

Now, according to ARM terminology, the confidence of the association rule
(13) corresponds to the conditional probability

P(City=Seattle | Profession=IT,AgeGroup=40-50), (14)

whereas the lift of the association rule (13) would show as the following change
factor:

P(City=Seattle | Profession=IT,AgeGroup=40-50)
P(City=Seattle)

(15)

Having random variables for representing factors instead of choosing a more
specific notation such as relational algebra or the itemset apparatus is a good
choice, as it gives us the most flexibility in argumentation, independent from
any more specific terminology, and, even more important, directly unlocks all the
whole apparatus of statistics and probability theory for our argumentation. For
example, the concept of lift presented in terms of conditional probabilities in (15),
can be easily adopted to numerical target values by stepping from probabilities
to expectations, e.g., for salaries as follows:

E(Salary | Profession=IT,AgeGroup=40-50)
E(Salary)

, (16)

whereas, there exist no “lift" as presented by (16) in standard ARM. This is so,
because standard ARM is merely about bit tables and an association rule such as

{Profession=IT,AgeGroup=40-50} =⇒ {Salary} (17)

is simply not available in standard ARM. Many generalization of ARM exist,
among those a variety of so-called numerical association rule mining (NARM)
approaches13, however, in this thesis, we usually prefer to treat concepts directly
in the terminology of probability theory as outlined above.

2.2 Bilateral Impact Measure Graphs

On various occasions, we make use of so-called bilateral impact measure graphs,
or just impact graphs for short. The nodes of an impact graph are the factors of

13For an exhaustive discussion of numerical generalizations of association rule mining,
see [118, 117, 116, 119].
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a given data set. An edge between nodes A and B of the impact graph visualizes
some measured impact of A onto B in terms of some directed impact measure,
see Def. 3. Impact graphs can be used for different impact measures; further
details of what information is shown by an impact graph (such as used thresholds
or additional labels) is always explained in the context where they appear. Indeed,
we will use impact graphs for ad-hoc measure from Section 3.2, linear regression
slopes, see Chapter 4, Oaxaca-Blinder decomposition, see Section 3.3, and our
novel C-IA measure from Chapter 5.

In Section 4.2, we use a form of impact graph called multiplicative edges dia-
gram to systematically elaborate an interpretation of the liner regression model.

Throughout the presentation of the data case studies in Sections 8.3, 8.4, 8.5,
and 8.6, the purpose of an impact graph is to give a first impression and overview
of the dataset and the existing associations between factors in it. It is not meant
as a analytical result (although it can be used, to a certain extent, as an analyti-
cal tool), rather, it is meant to accompany the presentation of our combinatorial
experiments as described in Sect. 7.2 to ease its understanding. For the same rea-
son, the information of an impact graph is not necessarily complete, i.e., it might
be used to highlight some dependencies in a data set and omit some others.

Definition 3 (Bilateral Impact Measure Graph). The bilateral impact measure
graph, or just impact graph for short, of a data set D and an impact measure
M is a directed graph as follows. The nodes of the graph are the columns of the
data set D. An arrow between two nodes c1 and c2 represents some measured
impact of c1 onto c2 in terms of M.

It is important to grasp that impacts graph are bilateral, i.e., they visualize
impact measure only at the outermost level of analysis. For example given an
impact graph of three nodes A, B, and C, together with edges A −→ C and B −→ C,
it visualizes only some measured impact of A onto C as well as another measured
impact of B onto C, but never some joint impact A and B onto C.

Furthermore, it is important to grasp that the edges in an impact graph do not
necessarily visualize causal impact, where the long name of impact graph, i.e.,
bilateral impact measure graph is actually less misleading. In the same vain, our
impacts graphs must not be confused with Bayesian Networks [159, 160, 161,
165]. A Bayesian Network is a DAG (directed acyclic graph), where an arrow from
node n1 to n2 indicates that n1 belongs to the Markovian parents of n2 in the
context of a fixed sequence of the nodes of the Bayesian network. In contrast to
Bayesian network, the following holds for impact graphs:

• We use impact graphs for visualizing and analyzing any kind of impact mea-
sure, i.e., not only for indicating Markovian parents as in Bayesian Networks.
Actually, we use impact graphs for such impact measures that are about
the impact of a primary influencing factor in the context of potential con-
founders.

• An impact graph is not necessarily a DAG, i.e., it can have cycles. Impact is
understood as potential impact and is not drawn from domain knowledge.
Both directions of potential impact are analyzed between any two nodes,
which might lead to cycles. Actually, the all instances of impacts graphs
that we will present in the sequel are indeed DAGs, but this is only due to
their more specific definitions, not to due the general definition of impact
graph in Def. 3.
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• For an impact graph, the set of nodes is not ordered, i.e., there is no se-
quence of nodes that would matter. Again, this is do to the fact that we do
not pre-assume causalities from domain knowledge during our analyses.

2.3 Basic Measures

In the course of the thesis we need to compare values in regard of notions of de-
gree of change. And these degree of changes can become again subject of com-
parison. For example, the impact of an event onto X onto a target random vari-
able Y can be made formal by comparing the conditional probability E(Y |X) with
either the marginal value E(Y ) or with the “dual" conditional probability E(Y |¬X).
For the comparison itself, various basic measures could be used, see Table 2.
Probably, the most common one from everyday world is the relative difference,
which is about adding or subtracting a percentage of the base value to resp. from
the base value, e.g., 3% inflation or 20% discount. However, in defining impact
measures, studies usually use other basic measures. For an extensive account
of various basic measures see, e.g., [148]. Unfortunately, terminology of basic
measures is not standardized, see again Table 2, and studies might use different
names for the same concept or even the same name for different concepts.

In this thesis, we use the change factor as defined in Def. 4 and the percentage
difference as defined in Def. 5. The percentage difference is similar to the relative
difference, just, it uses the mean of the two compared values as a base instead
of one of the two compared values. The percentage difference is a basic measure
that is particularly often used scientific studies, in particular, when it comes to
comparing confounding effects.

Definition 4 (Change Factor). Given real numbers me a ∈ R and b ∈ R such that
b ≤ a, we define their change factor as follows:

b
a

(18)

Definition 5 (Percentage Difference). Given real numbers a ∈ R and b ∈ R such
that b ≤ a, we define their percentage difference as follows:

b − a
a+ b
2

(19)
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Table 2: Concepts of degree of changes.

absolute difference |b − a|

relative difference, relative change, percentage
change, increase ratio, percentage difference

b − a
a

change factor, change multiplier, change
coefficient, lift (in ARM [4])

b
a

percentage difference
b − a
a+ b
2

= 2
b − a
b+ a

relative change (w.r.t. the arithmetic mean)
b − a+ b

2
a+ b
2

=
b − a
b+ a

2.4 Inter-Rater Reliability, Cohen’s κ and Yule’s φ

2.4.1 Proportionate Agreement and Cohen’s κ Defined

In brief, a measure of inter-rater reliability is a measure of the degree of agree-
ment between instances of two categorical factors. Here, rater is another name
for factor, as are variable and column. We need measures of inter-rater reliability
for our comparison of confounding measures in Section 8.1.

The most basic and obvious measure of inter-rater reliability is proportionate
agreement . In our study, we will use Cohen’s κ coefficient [48, 142], because
Cohen’s κ is widely used14 and has been widely discussed [97] throughout the
literature. We define both proportionate agreement (Def. 6) and Cohen’s κ (Def. 7)
for the special case of 2 × 2 contingency tables only, i.e., two binary categorical
variables, as this is for what we use the coefficient in our study. We further discuss
Cohen’s κ in Sections 2.4.2 and 2.4.3. We discuss significance tests for Cohen’s κ
in Sect. 2.4.4.

Definition 6 (Proportionate Agreement (Binary Case) ). Given two events A ⊆ Ω

and B ⊆Ω, called rater, we define their proportionate agreement pAB as follows:

pAB = P(AB) + P(¬A¬B) (20)

Definition 7 (Cohen’s κ (Binary Case) ). Given two events A ⊆Ω and B ⊆Ω, called
rater, we define their observed proportionate agreement pAB, hypothetical ran-
dom agreement (agreement by chance) p̃AB and Cohen’s κAB as follows:

κAB =

pAB︷                  ︸︸                  ︷(
P(AB) + P(¬A¬B)

)
−

p̃AB︷                          ︸︸                          ︷(
P(A)P(B) + P(¬A)P(¬B)

)
1−

(
P(A)P(B) + P(¬A)P(¬B)

)
︸                          ︷︷                          ︸

p̃AB

(21)

14The Scopus query TITLE-ABS-KEY("Cohen’s kappa") on www.scopus.com yields 13,092
documents as of 22 January 2005.
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For the sake of completeness and comparison, we also provide the definition
of the measure of accuracy as widely used in epidemiology and machine learning
in Def. 8.

Definition 8 (Accuracy). Given two events A ⊆Ω called actual condition (testee,
disease etc.) and B ⊆ Ω, called prediction (test, diagnosis etc.), furthermore, a
with n individuals, true positives TP = nP(AB), and true negatives TN = nP(¬A¬B)
as usual, the measure of accuracy aAB is defined as follows:

aAB =
TP+TN

n
(22)

Let us compare proportional agreement in Def. 6 and accuracy in Def. 8. Math-
ematically, i.e., merely in terms of data, both measures are simply the same. The
difference is only in their application. When A is considered as a ground truth
and B is a prediction, the measure is usually called accuracy. When both A and B
are predictions of a third ground truth, the measure it usually called proportional
agreement.

2.4.2 Intuition Behind Cohen’s κ
The idea of Cohen’s κ is as follows. Given any two independent events A ⊆ Ω

and B ⊆ Ω, i.e., such that P(AB) = P(A)P(B), they would show some proportion-
ate agreement pAB = P(A)P(B) + P(¬A)P(¬B). However, intuitively, a measure of
agreement should assess two independent factors as having neutral agreement,
i.e., no agreement. Otherwise, for example, if we have two independent factors A
and B with P(A) = P(B) = 0.9 and, furthermore, two independent factors A′ and B′

with P(A) = P(B) = 0.5, we have that their proportionate agreements significantly
differ with pAB = 0.82 and pA′B′ = 0.5, although they are both just independent
variables and the proportionate agreements result just from chance in this case.
What we would like to have is a measure of inter-rater reliability that amounts for
the agreement beyond the agreement that is given by chance anyhow, i.e., we
would like have a measure that filters out the agreement that is given by chance
to achieve robust comparability of dependent variables. This is exactly what Co-
hen’s κ aims at as follows.

Intuitively, the hypothetical random agreement p̃AB can be interpreted as the
agreement that is achieved by chance anyhow. Now, 1− p̃AB is the room (or play-
ground) for any potential agreement beyond chance and pAB − p̃AB is the actual
(or observed) agreement beyond chance. Now, Cohen’s κ is the relative change
of actual and potential agreement beyond chance, see (21), yielding a robust
measure of factor agreement.

2.4.3 Interpretation of Cohen’s κ
In this study, we deal only with κ-values that are close to zero. We interpret
κ-values that are zero as no agreement, and κ-values that are close to zero as
almost no agreement, see Def. 9.

Definition 9 (Study’s Interpretation of Cohen’s κ). We interpret values of κ=0
as no agreement (also: no agreement/disagreement) and values of κ ≈ 0 close
to zero, i.e., −0.1 ≤ κ ≤ 0.1, as almost no agreement (also: any relevant agree-
ment/disagreement beyond chance), where the thresholds of −0.1 and 0.1 are
our arbitrary choice.
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Several classification schemes for the interpretation of κ have been suggested.
In Table 3, we have summarized the classification of Fleiss et al. [77]. Fleiss’ clas-
sification should be taken as authoritative source, as Fleiss co-authored a sem-
inal paper on the standard error of Cohen’s κ [76]. See Table 4, for two other
widely used classification schemes for κ , i.e., those of Landis and Koch [128] (the
paper [128] has 60,129 citations on Scopus15) as well as McHugh [142] (the pa-
per [142] has 12,796 citations on Scopus15). Note that such classifications of κ
are mere heuristics. For example, Landis and Koch [128] state: “Although these
divisions are clearly arbitrary, they do provide useful »benchmarks «[...]” ([128],
p. 165). In the same vein, Fleiss et al. [76] state: “For most purposes, values
greater than 0.75 or so may be taken to represent excellent agreement beyond
chance, values below 0.40 or so may be taken to represent poor agreement be-
yond chance, and values between 0.40 and 0.75 may be taken to represent fair
to good agreement beyond chance." ([77], p. 604).

Table 3: Interpretation of Cohen’s κ (rounded) according to Fleiss et al. ([77], p. 604).

Range Interpretation

0.00–0.40 Poor

0.40-0.75 Fair/Good

0.75-1.00 Excellent

Table 4: Interpretation of κ according to Landis and Koch, and Mary McHugh.

Range Landis and Koch [128] McHugh [142]

< 0.00 Poor –

0.00–0.20 Slight None

0.21–0.40 Fair Minimal

0.41–0.60 Moderate Weak

0.61–0.80 Substantial Strong

0.81–1.00 Almost perfect Almost Perfect

Both Fleiss et al. [76] (Table 3) and Landis and Koch [128] (Table 4) classify
κ = 0 as poor agreement, whereas McHuge classifies κ = 0 as none, i.e., no agree-
ment (actually, McHuge classifies κ ≤ 0.2 as none). We follow McHuge in this re-
gard. We argue that understanding κ = 0 as no agreement is the key assumption
of the intuition behind the κ statistics, see the discussion in Section 2.4.3, there-
fore, the interpretation of κ = 0 should be no agreement. And indeed, in [76], p.
325, Fleiss, Cohen and Everitt talk about κ = 0 as “the case of no association",
which confirms our classification of κ = 0 as no agreement.

In the same vein, we argue that κ-values that are close to zero can be inter-
preted as almost no agreement, and that this is a valid interpretation for both

15as of 25 Feb 2025
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positive and negative values of κ. We have set arbitrary thresholds of −0.1 and
0.1 for κ-values to be considered as almost zero and, therefore, as showing no
agreement (note, that McHuge has choosen a weaker threshold of 0.2, see Ta-
ble 4), , see Def. 9. In light of the interpretation of κ, see Section 2.4.3, we argue
that negative κ-values should be interpreted as disagreement rather than poor
agreement as suggested by Landis and Koch, see Table 3. Therefore, in Def. 9,
we say that the case κ = 0 shows no agreement and equally can be said to show
no agreement/disagreement (and for −0.1 ≤ κ ≤ 0.1 alike).

2.4.4 Significance Tests for Cohen’s κ
In Def. 10, we define the standard error of Cohen’s κ under the null hypothesis that
κ = 0 (H0 : κ = 0), for 2 × 2 contingency tables as a special case of the definition
provided by Fleiss et al. [76, 77], in the version of [77], page 605, Equation (18.13).

Definition 10 (Standard Error of Cohen’s κ for H0 : κ = 0 (Binary Case) ([76],
Eqn. (18.13)). Given N observations with contingency table of two events A ∈Ω
and B ∈ Ω, the standard error of κAB under the assumption of no association
H0 : κ = 0, denoted as SE0, is defined as follows ([76], Eqn. [14], p. 325):

SE0 =
1

(1−p̃AB)
√
N

√
p̃AB + p̃2AB + P(A)P(B)

(
P(A)+P(B)

)
+ P(¬A)P(¬B)

(
P(¬A)+P(¬B)

)
(23)

Now, the z-statistic for κ under the null hypothesis that κ = 0 (H0 : κ = 0) is
defined as follows, see [77], page 605, Equation (18.14):

z =
κ

SE0
(24)

In our study we will use the z-statitic in (24) to obtain the p-value for κ under
the null hypothesis that κ = 0 (H0 : κ = 0).

2.4.5 The φ Coefficient

The φ-coefficient, introduced by Udny Yule in 1912 [234], and commonly known
as Matthews correlation coefficient (MCC) [140], is a widely used correlation co-
efficient. The φ-coefficient is a correlation measure for 2 × 2 contingency tables
that ranges between −1 and +1, see Def. 11. We will use the φ-coefficient in our
study in addition to Cohen’s κ, to reconfirm our observations through the lens of
an additional measure.

Definition 11 (φ-Coefficient). Given two events A ⊆Ω and B ⊆Ω, we define their
φ-coefficient φAB as follows:

φAB =
P(AB)P(¬A¬B)− P(A¬B)P(¬AB)√

P(A)P(¬A)P(B)P(¬B)
(25)

The interpretation of the φ-coefficient is similar to the interpretation of the
Pearson coefficient ρ [166], with +1 and −1 indicating perfect correlation, and 0
indicating no correlation. Indeed, in case of independence of events A and B, we
have that their φ-coefficient equals 0, as, in this case:

φAB =
P(A)P(B)P(¬A)P(¬B)− P(A)P(¬B)P(¬A)P(B)√

P(A)P(¬A)P(B)P(¬B)
= 0 (26)
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3 Background

3.1 Confounding Effects
Science is the inexhaustible process of mankind aiming at systematically gaining
knowledge. Scientific activities have been unfolding as they reveal facts about
phenomena to humans over the course of their existence. The discussion that
occurs among scientists when learning about each others’ results and assess the
precision and interpretation of those results is, to my mind, a fascinating process.
Data integrity and accuracy of data analytics are still among the most critical
issues among the scientific research community.

As far as data analysis is concerned, the issues of data accuracy and ade-
quacy of used tools determine the quality of the investigation’s outcome. At the
same time, in the field of data analysis, utilizing experimental methods is promis-
ing and might become relevant, however, in order to implement them using obser-
vational data, some existing methods need to be modified or entirely new meth-
ods might have to be introduced. In any case, genuine empirical information must
be assigned with specific properties so that the appropriate research tools can be
used to discover the essence of the data and enable their understanding.

Let us consider the distinction between experimental and observational data.
Experimental data collection involves carefully arranging and maintaining the
conditions under which the experiment is conducted. so that the experimental
results are, ideally, uninfluenced by external factors. The ambition is to allow re-
searchers to control the variables and trace the relationships with highest possi-
ble precision. With observational data, information is generated from pure obser-
vations only, which are rather not deliberately created and controlled. Likewise,
unobserved relevant factors that naturally exist might not be observed, i.e., over-
looked. Over the time, statistical methods have been advanced and improved,
in regard of allowing for the adjustment for confounding effects occurring in the
data.

3.1.1 Today’s Data Landscape

Statistical hypothesis testing and regression analysis have been indispensable in
the context of experimental data analysis in scientific studies. These tools allow
you to present not only the result of the experiment, but also the relations be-
tween variables. However, the limits of the existing methods are often hindered
by the problem of non-randomized sampling, measurement errors, and uncon-
trollable variables among other factors.

Alongside this, we have the pathway of observational data analysis, which
nowadays utilizes big data analysis [43, 188] to handle and process large amounts
of data that could be handled by human hands. A current trend is the applica-
tion of modern distributed computation tools [189, 190, 191, 27] such as Apache
Hadoop16 and Apache Spark17 to enable parallel execution of jobs on clusters of
machines or nodes located across a distributed system that would be impractical
with traditional resources to solve analytical challenges.

In the landscape of modern data analysis, there is an immense volume of data
that researchers want to investigate, comprehend, and that can occur in both
structured and unstructured forms. Regardless of whether these data are well

16https://hadoop.apache.org/
17https://spark.apache.org/
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ordered in a database or are unstructured and distribute over different sources,
they still lead to paramount discoveries and insights. However, to fulfill this
potential and make these data calculable and prepared for subsequent analy-
sis, they should go through extensive data pre-processing [98, 223]. Moreover,
sparse data form an important element of many of today’s research studies; and
the inquiry into sparse data creates additional challenges.

Structured data follow predefined schemas and is organized in strict data
structures, e.g., in tables with rows and columns [46]. Therefore, structured data
are easy to store and retrieve with the help of database management systems.
Typical structured data are master data (staff data, customer data, financial data
etc.) and transaction data (orders, sales etc.) of today’s enterprise resource
planning (ERP) systems, furthermore, sensor data in today’s Internet of Things
(IoT) [187]. On the other hand, unstructured data do not come with an entirely
fixed format. Examples of unstructured data are text documents, images, audio
recordings, social media posts, and Web pages. Both structured and unstruc-
tured data require pre-processing and transformations, in order to make data
manageable and to utilize its information.

Text processing is a sequence of operations aimed at standardization, purifi-
cation and structuring text data so as to enable more advanced analysis. Text
processing is an important facilitator that allows for computing both structured
and unstructured data for subsequent analysis. By systematic pre-processing,
transformation, and structuring of text data, researchers can uncover the latent
value that these data carry, from which they derive useful knowledge to drive
scientific discovery, support decision-making, and foster innovation. As the vol-
ume and diversity of textual information steadily grows, the development of text
processing techniques becomes a must.

3.1.2 Relevance of Confounding

Biased data and confounding variables pose a great challenge determining the
most appropriate data analyses procedures and the sensitivity analyses since the
quality of the outcome of a study will be primarily determined by the quality of
the study design. Sensitivity analysis [181] is concerned with the relationship be-
tween uncertainty in assumptions and parameters and uncertainty of outcomes.
Consequently, sensitivity analysis represents the entirety of judgments of the ac-
curacy of results drawn by utilizing observational data as foundation of analysis.

In today’s studies, we see increasingly more joint efforts of statisticians, data
scientists, domain specialists, and subject matter experts illustrating a multi-
disciplinary mode of reasoning which passes beyond disciplinary boundaries. The
multiplicity of perspectives and interdisciplinary sensibilities can lead to the cre-
ation of composite solutions to problems, and they can utilize the richness of
observational data as a powerful source underlying scientific knowledge. Flexing
creativity, joining multiple disciplines, and incorporating scientific data meticu-
lously will surely help researchers overcome the challenge of observational data
and find solutions to previously unresolved scientific issues.

A guiding principle of this thesis is to understand that confounding variables
act as a main barrier for validity and reliability of multidisciplinary research. Con-
founding factors play a disturbing role in various disciplines such as epidemiol-
ogy, psychology, sociology, and economics. Therefore, causal inferences in re-
search [162, 164] should be made methodologically strict [177]. Ethical and
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practical problems of confounding in research practice are an important concern,
because the implications of uncontrolled confounding for public policies, clinic
practices, and decision-making are often severe. Therefore, this thesis aims at
helping researchers to deal with their ethical responsibility by providing tools to
identify potential sources of bias and control confounding.

Confounding is the main theme of this thesis, in particular, it focuses on the
importance of variables that can produce bias if not properly controlled [92, 36].
Confounding variables are extraneous factors that can obfuscate the relation-
ship between independent and dependent variables of a research study and can
lead to wrong conclusions and interpretations of the results. Through a care-
ful analysis of existing measures of confounding, the thesis aims to increase the
awareness of confounding problems and to show ways on how to deal with them.

Confounding effects and ways on how to take them into account during statis-
tical analyses have always been crucial topics in research studies and statistical
research, and have evolved continuously over time. With time, confounding ef-
fects have been recognized as a source of confusion of research results and it
became clear that more precise methods of data analysis are needed to identify
them. For example, this has been accentuated by Greenland and Morgenstern
[92] who have called for the control of confounding variables to ensure the valid-
ity and reliability of research.

Despite the numerous complicated issues related to the misleading factors,
many can be done to cope with them. For example, the identification and inclu-
sion of covariates in the analyses should be done with care as to aim at getting
realistic relations that are more than mere statistical artefacts.

Fundamentally, confounding factors, which are not known, are among the
most challenging problems that affect the validity of study results. However,
careful scrutiny, critical thinking, and contemplation of any possible confounders
are essential to combat analytical complexity and to extract truthful associa-
tions. Incorporating control variables into the analytical model, improves the
strength of research results and, in addition, also facilitates the development of a
comprehensive presentation of existing problems. The systematic incorporation
of control variables is one to way to characterize our subject of investigation.

3.1.3 Examples of Confounding

As a first example, take the case of the drug rosiglitazone [111], which is used
more frequently for the treatment of type 2 diabetes, but surprisingly shows a sig-
nificant connection with acute heart attack 18 [55]. Although, on the first sight,
it looks as if the correlation between rosiglitazone and acute heart attache is
dominating, when scrutinising closer, we would find that in addition to this cor-
relation, there exist confounding factors. Type 2 diabetes itself is one such con-
founder [100]. The inclusion of type 2 diabetes as a covariate in the analysis will
weaken the strength of the association between rosiglitazone and acute heart
attache stressing the fact that there is a confounding effect due to this morbid-
ity. This phenomenon shows how important it is to include the outside context for
understanding relationships between factors and for studying the interconnect-
edness of variables which, in turn, can mask and obscure the research outcomes.

Another well-known example of the confounding effect encountered in epi-
demiological studies is in studies that focus on understanding the link between

18myocardial infarction
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coffee consumption and health. As a case in point, researchers should note
the positive relationship between coffee intake and the possibility of heart dis-
ease [94, 144]. In spite of it, when a more detailed analysis is carried out, the
relationship between heavy coffee drinkers and non-coffee drinkers reveal that
the heavy coffee drinkers always tend to smoke cigarettes at higher frequen-
cies [96, 28, 224]. In this case, the smoking status is a confounding variable [85]
because it is connected both with coffee consumption and the risk of cardiovas-
cular disease. Not considering the smoking status can cause bias, leading to the
perception that coffee consumption increases the risk of heart disease, whereas
smoking is actually the more severe risk factor.

Another classic example of confounding stems from educational research, in
studies that examine the impact of small class sizes on academic performance of
students [167, 199]. Suppose a research which shows that the students who at-
tend a class with 20 or fewer students achieve better grades than students who
attend a class with more than 20 students. However, when this situation is ex-
amined in more detail, this fact is more closely connected to the small classes
present in more affluent schools that have well-equipped laboratories, libraries,
and experienced teachers [167, 219, 103]. Confounding variables reflecting the
socioeconomic status of students affect both class sizes and student achieve-
ments. If socioeconomic status is not taken into account, people might assume
that the size of the class itself is the reason for the positive correlation between
class size and academic achievement, whereas, in fact, socioeconomic inequali-
ties are the most relevant factor.

3.1.4 Definition of Confounding

Confounding occurs when the true effect of an exposure on an outcome is ob-
scured or distorted by one or more extraneous factors, known as confounders.
Traditionally, a confounder is treated as a proxy for confounding. To address this
issue, researchers seek to identify and adjust for confounders.

A confounder must satisfy three criteria19:

1. It must be a risk factor for the outcome.

2. It must be associated with the exposure within the study population,i.e., it
must effect the exposure (directly or indirectly via further variables).

3. It must not be effected by the exposure (directly or indirectly via further
variables), i.e., it must not be an intermediary step in the causal pathway
from the exposure to the outcome.

Confounders can play two roles in scientific studies: they can be seen as trou-
blemakers as well as troubleshooters. As troublemakers, confounders are seen
as the underlying causes of confounding. This perspective stems from the be-
lief that identifying confounders pinpoints the causes of confounding. As trou-
bleshooters, they are viewed as variables that can help mitigate confounding.

19For example, Jager et al. [109] have stated it as follows: “[...] to be a potential con-
founder, a variable needs to satisfy all three of the following criteria: (1) it must have an
association with the disease, that is, it should be a risk factor for the disease; (2) it must be
associated with the exposure, that is, it must be unequally distributed between exposure
groups; and (3) it must not be an effect of the exposure; this also means that it may not be
part of the causal pathway.” [109]
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This dual role is based on the idea that by controlling confounders, which are
thought to induce confounding, one can effectively manage confounding itself.
Unfortunately, research has indicated that merely meeting the above three crite-
ria does not necessarily qualify a variable as a confounder, nor does controlling
such variables guarantee the control of confounding. This suggests that these
criteria should be considered characteristic properties rather than a definitive
identification of confounders.

Confounding significantly increases the difficulty of causal inference [159,
162, 163, 165, 164]. The name confounding comes from the Latin verb ’con-
foundere,’ which means mixing [150], and it is indeed often described as mixing
of effects [93, 226]. According to [231], p. 110, the “earliest published account
of an experiment in which certain interactions were confounded" [231] appears
in a paper on an experiment with confounded interactions by Eden & Fisher [68]
in 1929.

Confounding is one of the main concepts used in statistics to represent the as-
sociation between multiple variables. The association between two variables are
confused or corrupted by the presence of a third variable, which is then called
confounding. In other words, a confounder (the third variable) influences both
dependent (target) and independent (influencing) variables to generate mislead-
ing associations or correlations between them. The presence of a confounder
can make it seem as if there is a correlation between the influencing and target
variables, or it may hide or obscure the true correlation between them.

3.1.5 Causality vs. Correlation

Causality and correlation are fundamental concepts in research, but they rep-
resent distinct phenomena with crucial implications for understanding relation-
ships between variables. While correlation describes the statistical association
[102] between two variables, causality implies a direct cause-and-effect relation-
ship, where changes in one variable directly influence changes in another. How-
ever, distinguishing between causality and correlation can be challenging, espe-
cially in observational studies where confounding factors may obscure the true
nature of the relationship. Sections 3.1.5.1 and 3.1.5.2 aim to explore the differ-
ences between causality and correlation, whereas Section 3.1.5.3 aims at high-
lighting how confounding can blur these lines and offering insights into methods
for disentangling causal relationships from mere associations.

3.1.5.1 Correlation

Correlation refers to the degree to which two variables are related or move to-
gether in a systematic manner. It quantifies the strength and direction of the
relationship between variables but does not imply causality. Concrete correlation
coefficients, such as the Pearson correlation coefficent ρ [166] or Spearman’s
rank correlation coefficient [203], measure the extent to which changes in one
variable correspond to changes in another. A correlation coefficient close to +1
indicates a strong positive correlation, while a coefficient close to -1 indicates a
strong negative correlation. A coefficient near zero suggests little to no correla-
tion between the variables.

For example, consider a study examining the relationship between hours of
study and exam scores among students. A positive correlation between these
variables would indicate that students who study more hours tend to achieve
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higher exam scores, while a negative correlation would suggest the opposite.
However, correlation alone cannot determine whether studying more hours causes
higher exam scores or whether other factors, such as intelligence or motivation,
influence both variables.

3.1.5.2 Causality

Causality goes beyond mere association by asserting that changes in one vari-
able directly give rise to changes in another. As such, pure causality can only
be observed in experiments with highly accurately designed experiments condi-
tions, i.e., under laboratory conditions. A concept that is usually associated with
causality is temporal precedence. Temporal precedence refers to the notion that
the cause must precede the effect in time [174].

In experimental research, e.g., in the field of epidemiology, a standard way
to control causality is through randomized controlled trials (RCTs), where partici-
pants are randomly assigned to different treatment groups. Randomization helps
minimizing confounding variables and allows researchers to draw causal infer-
ences about the effect of the treatment on the outcome. However, in observa-
tional studies, establishing causality is more challenging due to the presence of
confounding variables that may distort the observed associations between vari-
ables. Lastly, ruling out confounding variables involves controlling for alternative
explanations and ensuring that the observed relationship is not due to extrane-
ous factors.

3.1.5.3 How Confounding Distorts Causal Inference

Confounding can distort causal inference in several ways. First, confounding can
create the illusion of a causal relationship where none exists. This occurs when
the observed association between the exposure and the outcome is actually due
to the confounding variable. For example, suppose a study that finds a positive
correlation between the consumption of sugary beverages and the risk of obesity.
Without controlling for factors such as overall diet quality or physical activity
levels, the study may erroneously conclude that sugary beverage consumption
directly causes obesity whereas, in reality, dietary habits and lifestyle factors are
confounding the association.

Second, confounding can mask a true causal relationship by obscuring the ob-
served association between the exposure and the outcome. This occurs when the
confounding variable is associated with both the exposure and the outcome but
is not accounted for in the analysis. For instance, suppose a study investigates
the relationship between socioeconomic status and cardiovascular disease risk.
If the study fails to control for lifestyle factors such as smoking, diet, and physi-
cal activity, which are more prevalent among individuals of lower socioeconomic
status and also independently contribute to cardiovascular disease risk, it may
underestimate the true impact of socioeconomic status on cardiovascular health.

Third, confounding can lead to biased estimates of the strength or direction
of the observed association between the exposure and the outcome. This occurs
when the confounding variable distorts the relationship between the exposure
and the outcome, making it appear stronger or weaker than it actually is. For ex-
ample, suppose a study examines the association between alcohol consumption
and liver disease risk. If the study includes individuals with pre-existing liver con-
ditions or who are heavy drinkers, it may overestimate the true impact of alcohol

31



consumption on liver disease risk, as these individuals are more likely to develop
liver disease regardless of their alcohol intake.

Confounding presents a significant challenge in research, as it can distort the
observed relationship between an exposure and an outcome, leading to inaccu-
rate conclusions about causality. By understanding how confounding operates
and employing appropriate methods for controlling it, researchers can improve
the validity and reliability of their study findings.

3.1.6 A Historical Example

Smoking and lung cancer are among the most famous historical examples of the
confounding effect. At the middle of the 20th century, a pronounced relationship
between cigarette smoking and lung cancer prevalence started being noted by
the researchers. Most of the early studies on this association were complicated
by a number of issues, which include the tar content in cigarettes and the preva-
lence of smoking in some demographic groups.

During the 50s, a series of epidemiological studies conducted by Richard Doll
and Bradford Hill [56] in the UK, as well as Ernest Wynder and Evarts Graham [228]
in the US, amongst many others, proved beyond doubt how deeply cigarette smok-
ing is linked to lung cancer. These studies discovered that smokers were at much
higher risk of getting lung cancer when compared to non-smokers and, therefore,
triggered widespread public health worries and campaigns against smoking.

Yet, early results were obscured by the chemical composition of cigarettes
and the complexity of smoking habits. A single cigarette consists of thousands
of chemical compounds, including tar, nicotine, and various carcinogens, that
can be present in different amounts depending on the brand and manufacturing
process. The tar content was the initial confounding factor that researchers fo-
cused on, suggesting that it might be the most significant carcinogenic element
of cigarettes.

Furthermore, the occurrence of smoking differed between various demographic
groups, where men, people with lower socioeconomic status, and certain occupa-
tional groups had more tobacco users. The demographic diversity of smokers
is as an external factor that complicates the interpretation of study results as it
brings in various confounding variables such as occupation and lifestyle factors.

Therefore, in early studies, epidemiological evidence was not yet settled due
to these confounding factors, and further research was needed to provide more
evidence for the hypotheses of a cause-and-effect relationship. Exactly in that
vain, Richard Doll et al. [57, 58, 59, 61, 60] initiated a longitudinal cohort study,
which provided strong evidence of the dose-response relationship between smok-
ing intensity and lung cancer risk. These studies were conducted on large cohorts
of smokers who were observed over time for their smoking behaviour and health
outcomes; and all of the studies concluded that heavy smokers had a significantly
higher risk of developing lung cancer than non-smokers and lighter smokers. The
later studies in the longitudinal research of Richard Doll et al. were focused on
separating the particular ways through which smoking contributes to lung can-
cer development. Experimental studies with laboratory animals and cell cultures
have proved that certain tobacco smoke ingredients such as polycyclic aromatic
hydrocarbons (PAHs) [237] and nitrosamines [105] are carcinogenic.

As the empirical evidence for the relation between smoking and lung cancer
became stronger and more widespread, public health interventions and tobacco
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control policies were introduced to minimize the prevalence of smoking and alle-
viate the burden of smoking-related diseases. Such initiatives included warning
signs on the packets of cigarettes, smoking bans, taxation of tobacco and pro-
grams for smokers who were willing to quit.

Smoking and lung cancer are a cornerstone example of how confounding vari-
ables can mess up the interpretation of research results, which is especially true
for observational studies. Although some early confounders included tar content
and demographic distribution of smoking behaviour, epidemiological research,
along with mechanistic studies [6, 20], resolved the actual causes in the relation-
ship between smoking and lung cancer.

3.1.7 Confounding Across Disciplines

The identification and mitigation of confounding effects are crucial in various dis-
ciplines, each offering unique insights and methods to address these challenges.
Confounding can significantly skew results and mislead researchers if not prop-
erly identified and managed. To fully appreciate the lessons learned across dif-
ferent fields, it is essential to explore how various disciplines approach the issue
of confounding, what methodologies they employ, and how these can be synthe-
sized to enhance overall research quality.

3.1.7.1 Epidemiology

In epidemiology, confounding is a well-recognized problem [129, 220, 73, 210,
202] because of the complexity of human health and disease processes. Re-
searchers in this field are highly aware of the need to control for confounders to
ascertain true causal relationships between exposures and outcomes. One com-
mon method is stratification, where data is divided into subgroups that are homo-
geneous concerning the confounder. By analyzing these subgroups separately,
epidemiologists can more accurately assess the exposure-outcome relationship.
Another technique is multivariable regression analysis, which adjusts for multiple
confounding variables simultaneously, see Section 4. Advanced methods, such
as propensity score matching [178], also play a significant role. This technique
involves creating a statistical twin for each subject based on their probability of
receiving a particular treatment or exposure, thereby isolating the effect of the
treatment from confounding variables. The rigorous use of these techniques has
demonstrated the importance of meticulous planning and the adoption of robust
statistical methods to mitigate confounding.

3.1.7.2 Economics

In economics, confounding is often encountered in observational studies where
controlled experiments are impractical. Economists frequently use the instru-
mental variables (IV) approach [208, 141] to address this issue. An instrumental
variable is a variable that is correlated with the potentially confounding indepen-
dent variable but is not correlated with the errors in the dependent variable equa-
tion [141]. This approach helps to isolate the causal impact of the independent
variable on the dependent variable. Another method employed is the difference-
in-differences (DiD) approach [1, 133], which compares the changes in outcomes
over time between a treatment group and a control group. This method can help
account for confounding factors that vary over time but are constant between
groups [213]. The lessons from economics highlight the necessity of innovative
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statistical tools and the creative use of naturally occurring experiments to dis-
cern causal relationships amid potential confounders.

3.1.7.3 Psychology

In psychology, the issue of confounding is addressed through both experimental
design and statistical control. Randomized controlled trials (RCTs) are consid-
ered the gold standard for eliminating confounding by randomly assigning par-
ticipants to different conditions, thus ensuring that confounders are equally dis-
tributed across groups. However, when RCTs are not feasible, psychologists often
rely on techniques like analysis of covariance (ANCOVA) [147], which adjusts the
dependent variable for the effects of confounders. Structural equation modeling
(SEM) [207] is a sophisticated approach that allows for the examination of com-
plex relationships among variables, including the control of multiple confounders
simultaneously. Psychology’s emphasis on rigorous experimental control and ad-
vanced modeling techniques provides valuable insights into maintaining internal
validity in the face of potential confounders.

3.1.7.4 Social Sciences

In social sciences, particularly sociology and political science, the identification
and mitigation of confounding are addressed through careful study design and
sophisticated analytical techniques. Social scientists often use panel data [14,
32], which follows the same subjects over multiple time points, to control for
unobserved confounders that are constant over time. They also employ fixed-
effects models [168], which control for all time-invariant characteristics of the
individuals, thus reducing the risk of confounding. Additionally, natural experi-
ments [67], where external events or policies create conditions similar to ran-
domized experiments, are utilized to infer causality [52]. The social sciences
underscore the value of leveraging natural variations and longitudinal data to
control for confounding factors.

3.1.7.5 Environmental Science

In environmental science, researchers frequently encounter confounding factors
when studying the impacts of pollutants or climate change on ecosystems. One
common approach to mitigate confounding in this field is the use of longitudi-
nal studies [42], which track changes over time and can help differentiate be-
tween correlation and causality [121]. Additionally, geographic information sys-
tems (GIS) [232] are often employed to control for spatial confounding by allowing
researchers to analyze data in relation to specific locations and account for ge-
ographic variability. The use of ecological models that incorporate multiple vari-
ables and simulate different scenarios also aids in understanding the complex
interplay of factors influencing environmental outcomes. Environmental science
thus teaches the importance of long-term data collection and spatial analysis in
managing confounders.

3.1.7.6 Biostatistics

Biostatistics offers a wealth of methods for dealing with confounding in medical
research and beyond. Techniques such as logistic regression, Cox proportional
hazards models [114], and generalized estimating equations (GEEs) [101] are
commonly used to adjust for confounders in complex datasets. Biostatisticians
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also advocate for the use of sensitivity analysis to assess the robustness of re-
sults to potential unmeasured confounding. The field of biostatistics highlights
the importance of advanced statistical methods and rigorous sensitivity checks
to ensure the validity of research findings.

3.1.7.7 Education

In education, confounding can arise from a myriad of student, teacher, and school-
related factors. To address this, researchers often employ hierarchical linear
modeling (HLM) [171], which accounts for the nested structure of educational
data (students within classes within schools). Randomized field trials are also
used to evaluate educational interventions while controlling for confounding vari-
ables. Moreover, the use of propensity score analysis [178] helps to create com-
parable groups in observational studies. Education research illustrates the sig-
nificance of considering the hierarchical nature of data and employing robust
statistical techniques to mitigate confounding.

3.1.7.8 Public Health

From the domain of public health, the concept of the social determinants of health
emphasizes the need to account for a wide range of confounding factors, such
as socioeconomic status, education, and access to healthcare. Public health re-
searchers often use community-based participatory research (CBPR) [107, 108,
205] methods, which involve the community in the research process to better un-
derstand and control for confounding factors relevant to the population being
studied [184]. Additionally, the use of big data analytics in public health [122]
enables the integration and control of vast amounts of potential confounders.
Public health teaches the importance of comprehensive data collection and com-
munity involvement in identifying and mitigating confounders.

3.1.7.9 Marketing

In marketing, researchers frequently deal with confounding variables related to
consumer behaviour and market trends. Techniques such as experimental de-
signs, including A/B testing [125, 172] and randomized controlled trials [206,
173], are used to control for confounders in marketing campaigns. Economet-
ric models, such as multivariate regression [79] and structural models, help to
isolate the effects of marketing variables on consumer outcomes. A method in
widespread use in marketing research is conjoint analysis [90]. Again, conjoint
analysis studies can be severely affected by confounding effects [215, 214]. Mar-
keting research demonstrates the value of controlled experimentation and so-
phisticated econometric techniques in addressing confounding.

3.1.7.10 Computer Science

In the field of computer science, especially in artificial intelligence (AI) [123] and
machine learning , confounding can lead to biased models and inaccurate pre-
dictions [236]. Techniques such as cross-validation [209], regularization, and the
use of balanced datasets are employed to mitigate confounding effects. Feature
selection and engineering also play crucial roles in ensuring that models are not
unduly influenced by confounders. Moreover, causal inference methods, such as
causal trees and causal forests [211], are increasingly used to better understand
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and control for confounding variables. Computer science highlights the impor-
tance of methodological rigor and the integration of causal inference techniques
in dealing with confounding.

3.1.7.11 Conclusion on Confounders Across Disciplines

Synthesizing lessons from these diverse fields, several overarching themes emerge
regarding the identification and mitigation of confounding effects.

First, the importance of study design cannot be overstated. Randomization,
when feasible, remains one of the most effective ways to control for confounders.
In the absence of randomization, techniques such as stratification, matching, and
the use of control groups are essential. These methods ensure that confounders
are evenly distributed across comparison groups, allowing for more accurate es-
timates of causal relationships.

Second, the use of advanced statistical techniques is crucial in adjusting for
confounders. Methods such as multivariable regression, instrumental variables,
fixed-effects models, and propensity score matching provide powerful tools for re-
searchers to account for multiple confounding variables simultaneously. These
techniques, when properly applied, can significantly enhance the validity of re-
search findings.

Third, longitudinal data and repeated measures offer valuable opportunities
to control for confounders that vary over time. By tracking the same subjects
over multiple time points, researchers can differentiate between correlation and
causality more effectively. This approach is particularly useful in fields like envi-
ronmental science, public health, and social sciences, where confounding factors
may change over time.

Fourth, the incorporation of spatial analysis and hierarchical models helps to
account for confounding related to geographic and nested data structures. Geo-
graphic information systems and hierarchical linear modeling allow researchers
to control for spatial and hierarchical confounders, respectively, providing a more
nuanced understanding of the relationships under study.

Fifth, the involvement of the community and stakeholders in the research pro-
cess, as seen in public health and education research, can enhance the iden-
tification and control of confounders. Community-based participatory research
ensures that the perspectives and knowledge of those affected by the research
are incorporated, leading to a more comprehensive understanding of potential
confounding factors.

Finally, the integration of causal inference methods into traditional statisti-
cal and machine learning techniques offers a promising avenue for addressing
confounding.

3.2 The Familiar Ad-Hoc Method for Confounding Adjustment

This section is about a well-known technique for adjusting confounding effects,
which is in widespread in the statistics community and has been used in a plethora
of studies of in various domains. According to Judea Pearl: “If we do have mea-
surements of the third variable, then it is very easy to deconfound the true and
spurious effects. For instance, if the confounding variable Z is age, we compare
the treatment and control groups in every age group separately. We can then
take an average of the effects, weighting each age group according to its per-
centage in the target population. This method of compensation is familiar to all
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statisticians; it is called »adjusting for Z« or »controlling for Z.«” [165].
We call this technique familiar ad-hoc method for confounding adjustment, or

just ad-hoc method for short. We also call it standard categorical adjustment or
categorical adjustment for short, as the influencing factors are always categori-
cal.

Usually, this adjustment technique is presented for categorical target factors,
actually for the impact on a single instance of a categorical factor, i.e., for the im-
pact on an event, in terms of conditional probabilities. However, we introduce the
technique in a generalized form, i.e., for the impact on numerical target factors
utilizing conditional expectations.

We proceed as follows. First, we explain categorical adjustment in Section 3.2.1.
Then, we briefly discuss Judea Pearl’s do-calculus as important background liter-
ature in Section 3.2.2.

3.2.1 Standard Categorical Adjustment

Given a random variable z :Ω −→R
+
0 and a partition20 p1, . . . ,pn of Ω, we have the

following:

E(z) =
∑
i

P(pi)E(z|pi) (27)

(27) is called law of total expectations . Given a random categorical variable
y : Ω −→ {v1, . . . , vn}, we have that (y = v1), . . . , (y = vn) forms a partition of Ω. In
terms of y, the law of total expectation therefore shows as:

E(z) =
∑
i

P(y = vi)E(z|y = vi) (28)

Together with a further event x, we have that

Ex(z) =
∑
i

Px(y = vi)Ex(z|y = vi) (29)

Due to the fact that Px(a|b) = P(a|x,b) for any events a and b, we can rewrite
(29) as

E(z|x) =
∑
i

P(y = vi |x)E(z|x,y = vi) (30)

Given a numerical random variable z : Ω −→ R, called target variable (or de-
pendent variable), an event x, called impacting variable (or impact factor), and a
categorical random variable y : Ω −→ {v1, . . . , vn}, called the confounder (or con-
founding variable, or confounding factor), we define the adjustment of the condi-
tional expectation E(z|x) to the (impact of the) confounder y, denoted by Êy(z|x),
as follows:

Êy(z|x) =
∑
i≤n

P(y=vi)E(z|x,y=vi) (31)

Note that the adjustment of the expectation E(z|x) is achieved by the coercion
of P(y = vi |x) in (30) to the value P(y = vi) in (31). This coercion is the only (but

20As usual a partition of a set A is a collection of subsets A1 ⊆ A, . . . ,An ⊆ A of A such
that A = A1 ∪ · · · ∪An and Ai ∩Aj = ∅ for any two distinct Ai , Aj .
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crucial) difference between the expectation E(z|x) and the adjusted expectation
Êy(z|x).

Accordingly, given a numerical random variable z :Ω −→R, an event x, and a
series y⃗ of confounding categorical random variables y1 :Ω −→ I1 to ym :Ω −→ Im,
we first define the multivariate random variable y :Ω −→ I1 × . . .× Im as usual, i.e.,

P(y = ⟨v1, . . . , vm⟩) = P(y1 = v1, . . . , ym = vm); then, we define the adjustment Êy⃗(z|x)
as follows:

Êy⃗(z|x) = Êy(z|x) (32)

In [65, 62], partial conditionalization [63] has been generalized from partial
conditional probabilities [63] to partial conditional expectations. Then, the ad-
justed expectation has been explained as a partial conditional expectation. In
[65, 62], the quotient of the adjusted expectation Êy(z|x) and the marginal expec-
tation E(z) has been called the genuine impact of x (onto z). In terms of associa-
tion rule mining (ARM) [4], the genuine impact could be also called adjusted lift ,
as the quotient P(z|x)/P(x) is known as lift in ARM (for the specialized cases that
z and x are events).

3.2.2 Judea Pearl’s Do-Calculus

Judea Pearl, a pioneer in the field of artificial intelligence and statistics, has sig-
nificantly advanced our understanding of causal inference, in particular, also in
regards to confounding and confounding adjustment. Pearl’s methods for ad-
dressing confounding have contributed to how researchers approach causal ques-
tions, offering a robust framework to disentangle complex relationships in data.

A key concept in Pearl’s framework is the do-operator, denoted as do(X = x).
This operator allows to simulate interventions by setting a variable X to a specific
value x, effectively breaking the usual causal pathways and isolating the direct
effect of X on other variables. The do-operator distinguishes between observa-
tional and interventional distributions, which is crucial for causal inference.

For instance, in an observational study, we observe the distribution P(Y |X),
which might be confounded by other variables. By applying the do-operator, we
aim to estimate P(Y |do(X = x)), the distribution of Y when X is set to x through an
intervention, thus eliminating the influence of confounders.

The primary goal of causal inference is to identify causal effects from ob-
servational data. Using do-calculus, Pearl developed algorithms that determine
whether a causal effect is identifiable and, if so, provide a method to compute it.
One of the key algorithms is the ID algorithm, which systematically applies the
rules of do-calculus to derive expressions for causal effects in terms of observa-
tional quantities.

Eventually, to estimate the causal effect using observational data, we can use
the Judea Pearl’s adjustment formula21:

P(z| do(x)) =
∑
i

P(yi)P(z|x,yi) (33)

See, how the r.h.s. of (33) meets the r.h.s. of (31) by generalizing the probabil-
ities P(z|x,yi) to expectations E(z|x,yi) (with the only (notational) difference, that

21In [160], Eqn. (14), Judea Pearl uses Px(z) to denote P(z|do(x)). In this study, we use, as
usual, both Px(z) as an alternative notation for the conditional probability P(z|x).
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we use an instance of a random variable y = vi in (31) to denote an instance of
the partition yi in (33)). In that sense, (31) is a generalization of (33) from a target
event z to a numerical target random variable.

3.3 Oaxaca-Blinder Decomposition for Confounding Adjustment

This section provides an overview of several papers available within the last 40
years beginning with Oaxaca (1973) [156] and Blinder (1973) [29]22. Since these
first efforts, the technique has been increasingly used as decomposition approach
in service of finding impacts in studies, in particular in the field of labour eco-
nomics [78, 72].

For example, health disparities refer to differences in the quality of health care
provided to individuals of different status in society. Such disparities should not
exist and are unfair [35]. Unfortunately, despite the number of federal and state-
directed campaigns that have been implemented in recent decades to eliminate
the disparity, these disparities have been known to persist [22, 201].The Oaxaca-
Blinder decomposition approach is used to identify such disparities. It helps re-
searchers disaggregate these differences with respect to various variables.

In confounding analysis, sources of inference moderate target variables and
adjust for confounding. The analysis aims to examine the impact of an exposure
on an outcome by teasing out direct and indirect effects of the influencing vari-
ables on the exposure.

The described disparities issues, therefore, emphasize a severe complexity
that continues to hinder improvements in the society. Finally, it would be perti-
nent to note that broad and structured approaches are needed to analyse the
fundamental reasons for inequalities.

3.3.1 Theoretical Foundations

The Oaxaca-Blinder decomposition which is frequently applied in labor economics
enables to explain how various characteristics of groups influence the differences
in results, including wages, between various demographic groups. Wage discrim-
ination is understood as the act of paying employees with similar skills and expe-
riences different wages depending on factors such as gender and race, instead
of their performance. This is important because it defines the need to know and
bring change in the wage inequalities.

Oaxaca–Blinder decomposition approaches the problem by decomposing the
existing average wage differentials between groups into two components. The
first component (the so-called ‘explained part’, also called ‘endowment effect’)
deals with the differences in qualifications, which the model explains [157]. These
include personal characteristics such as education, experience, and skills that
can explain the difference in wages. The second component (the so-called ’un-
explained part’, also called the ’coefficient effect’) shows variation in the model
structure that is not attributed to the qualifications [157]. Consequentially, the
second component is commonly blamed on discrimination in the labour market,
as it captures inequalities in earnings that cannot be explained by observable
characteristics.

22Oaxaca-Blinder decomposition and Blinder-Oaxaca decomposition are used synony-
mously throughout the literature, and seemingly equally often – e.g., with 785 hits
(Oaxaca-Blinder) and 729 hits (Blinder-Oaxaca) respectively on Scopus, as of 18th Feb.
2024.
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In general, it is universally accepted that wage discrimination exists when men
receive higher wages than women, regardless of their skills and performance.
Oaxaca (1973) [156] developed the notion of wage discrimination formally and
described the discrimination coefficient (D) as a measure of this wage discrimi-
nation as follows:

D =
Xh
Xl
−
(
Xh
Xl

)∗(
Xh
Xl

)∗ (34)

where:

• D is the discrimination coefficient.

• Xh and Xl are the average characteristics of the higher and lower cate-
gories, respectively.

• Xh
Xl

is the observed relationship between the wages of the higher and lower
categories.

•
(
Xh
Xl

)∗
it is the wage ratio between the higher and lower categories when

there is no discrimination.

Oaxaca explains that in the absence of discrimination, the structure of wage
factors would impact womens’ wages in the same way as mens’ wages [156].
However, Blinder also discussed that it is common knowledge that Whites were
paid more than Blacks as men are paid better than women. So, the presumption
that wages reflected marginal productivity did not apply well.

Therefore, Blinder suggests that for calculating the decomposition, it makes
sense to conduct certain estimations as follows. In the first step, a regression
analysis is conducted to estimate the earnings equations separately for the higher
(h) and lower (l) categories:

Y h
i = βh0 +

∑
1≤j≤n

Xh
jiβ

h
j + ϵhi (35)

Y l
i = βl0 +

∑
1≤j≤n

Xl
jiβ

l
j + ϵli (36)

where:

• Yi is the earned salary for each observations (Target variable).

• Xh
jiandX

l
ji are the explanatory variables of the higher and lower categories,

respectively (influencing variable).

• βj is the slope of the regression line, β0 is a constant.

• ϵ is the error term.

One of the most straightforward ways to determine discrimination is by calcu-
lating the difference between the equation of the low-wage group and the high-
wage group. However, Blinder (1973) noted that the unexplained portion of the
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income difference arises not only from the coefficient difference but also from the
variations in the average characteristics of the minority group. Blinder (1973) re-
vised his equation to reflect this consideration as follows:

∆ = Y
h −Y l

(37)

Y
h
= β̂h0 +

∑
1≤j≤n

X
h
j β̂

h
j (38)

Y
l
= β̂l0 +

∑
1≤j≤n

X
l
j β̂

l
j (39)

Equations (37), (38) and (39) provide information about the profiles of higher
and lower categories by explaining the distribution in between mean wage and
numerous observed average traits between the two categories.

To work with the decomposition method, we need to identify a non-discrimina-
tory benchmark [26]. Here, we consider the higher category (h) as the bench-
mark, and the β values of the equation (39) of the lower category are replaced
with the higher category as follows:

Y
l ′
= β̂h0 +

∑
1≤j≤n

X
l
j β̂

h
j (40)

Now, the decomposition of the difference between the higher and the lower
category is as follows:

∆ = (Y
h
i −Y

l ′
) + (Y

l ′ −Y l
) (41)

∆ =

 ∑
1≤j≤n

β̂hj (X
h
j −X

l
j )

︸                  ︷︷                  ︸
explained part

+

β̂h0 − β̂l0 + ∑
1≤j≤n

X
l
j (β̂

h
j − β̂

l
j )

︸                              ︷︷                              ︸
unexplained part

(42)

In (42), the first part represents the explained part (endowment effect), and
the second part represents the unexplained part (coefficient effect).

3.3.2 Limitations and Criticisms

The econometric regression analysis technique proposed by Blinder and Oaxaca
to deduce the causes of the gender wage gap has been subject to considerable
criticism that revolves around the model specification and the choice of the inde-
pendent variables [176].

According to Rosenzweig and Morgan [179], the use of age and age squared
instead of work experience and squared experience in the structural equation
developed by Blinder creates a differential bias in estimated returns to education
for men; and, therefore, it is likely that the Blinder results reflect an exaggeration
of the size of the component of education that explains the difference in income
between men and women attributable to discrimination.
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In [157], Oaxaca and Ransom report, that Blinder’s decomposition method [29]
to separate the contribution of the discrimination was defective in the presence
of a set of fictional variables, since the magnitude of the estimated constant term
depends on the reference out-of-sample group.

In [113], Jones brings examples, in which Oaxaca-Blinder decomposition shows
highly arbitrary results for the explained and unexplained part. He identifies “ar-
bitrary decisions about how to impose a metric on the variables” [113] as the
reason for this arbitrariness.

According to David Madden [137], the Oaxaca-Blinder standard approach tends
to underestimate the discrimination degree if there are differences in access to
endowments that are rewarded in the labor market, e.g., if men have better ac-
cess to higher education than women, or even if, ceteris paribus, men are more
likely to work than women.

3.3.3 Conclusion on Oaxaca-Blinder Decomposition

The Oaxaca-Blinder decomposition is a powerful tool for understanding wage dif-
ferentials, but it has several limitations that need to be considered. These in-
clude linear assumptions, endogeneity, omitted variable bias, the choice of non-
discriminatory wage structure, interpretation of the unexplained component, ag-
gregation issues, lack of dynamic analysis, and context-specific factors. Resear-
chers must be cautious in interpreting the results and acknowledge these limita-
tions to avoid misleading conclusions.

Despite these criticisms, the Oaxaca-Blinder decomposition remains a valu-
able method for labor economists, providing a structured approach to dissect
wage differentials and identify potential sources of inequality. Future research
should focus on addressing these limitations, possibly through the development
of more sophisticated models that incorporate nonlinearities, endogenous vari-
ables, and dynamic elements, and by ensuring a comprehensive set of variables
that reflect the complex nature of labor markets.
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4 Utilization of Linear Regression for Confounding Ad-

justment

Linear regression is a standard, widespread statistical model [87, 112, 149]. When
investigating the impact of an influencing factor (exposure, independent factor)
onto a target factor23 (outcome, dependent factor), the experienced analyst is
aware of potential confounding [182, 183, 165] and aims at controlling confound-
ing effects as effectively as possible.

In the context of linear regression, controlling confounding effects means to
add further influencing, potentially confounding factors to the analysis [143,
170], see [235, 153, 158, 135, 132, 136] for some recent concrete example stud-
ies. If the added factors actually have an impact on the target value, the coeffi-
cient estimator of the primary influencing factors (the factors that we are actu-
ally interested in) change [124, 37, 130, 185]. The coefficient estimator of a pri-
mary influencing factor analysed in the context of additional confounding factors
is then usually called adjusted coefficient, whereas the the coefficient estimator
of a primary influencing factor analysed without confounders added is usually
called crude coefficient. Furthermore, we call the coefficient estimator of a con-
founding factor a confounder coefficient. [170] give the following example: “For
example, in a research seeking for relationship between LDL cholesterol level and
age, the multiple linear regression lets you answer the question: How does LDL
level vary with age, after accounting for blood sugar and lipid (as the confounding
factors)? [..] The process of accounting for covariates is also called adjustment
[..] and comparing the results of simple and multiple linear regressions can clar-
ify that how much the confounders in the model distort the relationship between
exposure and outcome.”

The difference between a crude coefficient and its corresponding adjusted co-
efficient is usually called confounding effect, no matters how this difference is
actually measured, e.g., as increase factor, percentage difference , or, simply as
the (arithmetic) difference of the two estimators.

The aim of this chapter is to exactly explain confounding effects in terms of
the involved coefficients. To do so, we need the estimations of further relation-
ships, i.e., between the primary influencing factors and each of the additionally
added confounding factors. We call the coefficient estimators stemming from
such analyses latent coefficients24 – see Table 5 for an overview of all coefficient
estimators involved in our analysis.

23We prefer to talk about influencing factors and target factors over talking about inde-
pendent factors and dependent factors, as usual. In case of several influencing factors,
these are, in general, not independent among each other, neither any of them is indepen-
dent from the so-called dependent factor, i.e., it makes actually little sense to distinguish
between them as independent and dependent factors. When distinguishing between in-
fluencing factors and target factors, we do not want to express or impose any notion of
causality. We distinguish between influencing factors and targets factor only to express a
direction of analysis between factors. The relationship between the factors is to be under-
stood purely stochastically, as data. Only later, whenever it comes to the interpretation
of a statistical model or machine learning model, concepts of causality become relevant
in the argumentation, still remaining outer-mathematical concepts, either appealing to in-
tuition or drawn from a specific expert domain or experiment. Still, however, from a strict
viewpoint the analysis remains purely stochastically.

24The choice of latent coefficient might not be the best, as neither the primary influenc-
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Table 5: Coefficient estimators involved in our analysis of confounding adjustment in linear
regression.

crude coefficient Coefficient estimator of a primary influencing factor before
adjustment, i.e., before adding confounding factors to the
analysis. A primary influencing factor is subject to the
original analysis problem, whereas a confounding factor is
is added to the analysis for the purpose of controlling
confounding.

adjusted coefficient Coefficient estimator of a primary influencing factor after
adjustment, i.e., after adding confounding factors to the
analysis.

confounder coefficient Coefficient estimator of a confounding factor.

latent coefficient Coefficient estimator of a primary influencing factor in a
different role, i.e., as impacting a confounding factor as
target factor instead of the original target factor.

Our analysis and findings are based on a conjecture that is well-known from
the literature [88, 83]:

• A crude coefficient equals its adjusted coefficient plus the weighted sum of
all confounding coefficients, each weighted by its latent coefficient in re-
gard of the crude coefficient’s factor.

• The conjecture is noise-independent, i.e., holds independent of any con-
crete noise ϵ in the linear regression problem, i.e., it holds for the estimators
found after least-squares optimization and is the same for each noise.

Our discussion aims at improving the explainability of linear regression mod-
els, in general, and in the contexts of the domains where they are utilized. Con-
founding effects are typically dealt with by rule of thumbs such as a 10%-rule. In
practice, little effort is usually spent to investigate the significance of confound-
ing effects. Here, our findings can help to improve the theoretical basis and to
improve the maturity of discussions. For example, it follows immediately from our
conjecture, that the confounding effect onto a crude coefficient (here: measured
simply as arithmetic difference) is a latent-coefficient-weighted sum of all con-
founding coefficients, i.e., we can explain what the confounding effect is as op-
posed to merely measuring it. Such explanations can then help to avoid misinter-
pretation of experimental setups, diagnostic tests, clinical studiesclinical study,
and observational studies in general (interpretations of observations on natural
phenomenae, social phenomenae etc.).

We proceed as follows. In Sect. 4.1, we recap, from the literature, a conjecture
on the exact value of the omitted variable bias in linear regression. We state the
conjecture in the form of two Lemmas, i.e., Lemma 1 for the case of single variable

ing factors for which the latent coefficients are estimated are hidden nor their impact on
the confounders is latent in the moment of analysis. Still, we think that the terminology is
intuitive as it is in accordance with usual terminology – the impact they represent remains
the same and gets latent as soon as the confounders are screened off.
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regression and Lemma 2 for the general case of multiple linear regression. In Sec-
tion 4.2, we discuss an interpretation of the linear regression model by introduc-
ing so-called multiplicative edges diagrams and elaborating well-defined linear-
regressive scenarios, i.e., error-free/error-prone mediator/confounder scenarios,
heavily relying on Lemma 1 and Lemma 2 from Sect. 4.1. In Section 4.3, we dis-
cuss two kinds of utilization of linaer regression, i.e., predictions and assessments
of interventions. Based on our argumentation in Section 4.2 and Section 4.3 and
again the conjecture from Section 4.1, we discuss in how far our findings could
contribute to the explainability of linear regression models and their utilization in
various contexts in Section 4.4.

4.1 Equations for Screening Off Dimensions in Linear Regres-

sions

Each multiple linear regression problem is based on n given observations

(yi ,xi0,xi1, . . . ,xim),

where i ∈ {1, . . . ,n} and yi ,xi0, . . . ,xim ∈ R are real numbers. The goal is to find
regression coeficcients β0, . . . ,βm ∈R that minimize the error function

ϵ(β0, . . . ,βm) =
n∑
i=1

(β0xi0 + . . .+ βmxim︸                 ︷︷                 ︸
ŷi

−yi)2 =
n∑
i=1

(ŷi − yi)2 . (43)

In vector notation, having vectors Y = (y1, . . . , yn)T ,X0 = (x10, . . . ,xn0)T , . . . ,Xm =
(x1m, . . . ,xnm)T in the n-dimensional Euclidean space R

n, find a linear combination
Ŷ = β0X0 + . . .+ βmXm that minimizes the Euclidean distance

d(Ŷ ,Y ) = ∥Ŷ −Y ∥ =
√
⟨Ŷ −Y , Ŷ −Y ⟩ ,

where ⟨·, ·⟩ is the standard inner product of Rn, i.e. ⟨U,V ⟩ = u1v1 + . . . + unvn for
every two vectors U = (u1, . . . ,un)T ∈Rn and V = (v1, . . . , vn)T ∈Rn.

In econometric applications of linear regression, it is usually assumed that the
vectors X0, . . . ,Xm are linearly independent, which guarantees the uniqueness of
the solution β0, . . . ,βm.

Notational Conventions and Remarks:

• As it is common in the linear regression literature, we have chosen to start
the index of the column vectors by zero, i.e., we express the linear regres-
sion problem in terms of vectorsX0, . . . ,Xm and not in terms of vectorsX1, . . . ,Xm.

• In the linear regression literature, it is assumed that the vector X0 is al-
ways set to the all-ones-vector (1, . . . ,1)T ∈ Rn. Then, the regression coef-
ficient β0 is called intercept and all other regression coefficients β1, . . . ,βm
are called slopes. We call this the standard linear regression model. We
do not make any such assumption on X0 in our linear regression model. It
would only complicate the discussed Lemmas technically, without benefit.
All of our discussion also applies immediately to the standard linear regres-
sion model.
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• In texts on linear regression, the results βi of a linear regression optimiza-
tion are often denoted as β̂i , in particular, when discussed as estimator. In
our lemmas, there is no need for such extra notation, as it is always clear
from the lemmas’ conditions that all βi are part of a minimal solution to a
respective equation.

The following lemmas are well-known from the literature, see [83], equation (11)
on page 521, and [88], equation (17.4) on page 184:

Lemma 1 (Single Variable Case). Given Y ,X0, . . . ,Xm ∈ Rn such that the vectors
X0, . . . ,Xm are linearly independent and

Ŷ = β0X0 + . . .+ βm−1Xm−1 minimizes ∥Ŷ −Y ∥ (44)

Ỹ = β′0X0 + . . .+ β′m−1Xm−1 + β′mXm minimizes ∥Ỹ −Y ∥ (45)

X̂m = β′′0X0 + . . .+ β′′m−1Xm−1 minimizes ∥X̂m −Xm∥ (46)

then for every i ∈ {0, . . . ,m− 1} the regression coefficients satisfy the relations:

βi = β′i + β′mβ
′′
i (47)

Lemma 2 (General Case). Given Y ,X0, . . . ,Xm ∈Rn such that the vectorsX0, . . . ,Xm
are linearly independent and

Ŷ = β0X0 + . . .+ βkXk minimizes ∥Ŷ −Y ∥ (48)

Ỹ = β′0X0 + . . .+ β′kXk + β′k+1Xk+1 . . .+ β′mXm minimizes ∥Ỹ −Y ∥ (49)

X̂j = β
j
0X0 + . . .+ β

j
kXk minimizes ∥X̂j −Xj∥ for each j ∈ {k +1, . . . ,m} (50)

then for every i ∈ {0, . . . , k} the regression coefficients satisfy the relations:

βi = β′i + β′k+1β
k+1
i + . . .+ β′mβ

m
i . (51)

4.2 An Interpretation of the Linear Regression Model

With the discussion in this section, we want to come closer to the semantics (or to
what [40, 41] has called explication of a theory) of the linear regression model,
i.e., what could be meant by the equations of a linear regression model, and,
specifically, what could be meant by confounding and confounders in the context
of linear regression. Albeit there is an immediate intuition about these concepts,
it turns out to be a difficult endeavour to grasp a more precise understanding of
their intended meanings.

Figure 2 illustrates what we call an error-free linear-regressive mediator sce-
nario. The diagram in Fig. 2 has to be understood as what we call a multiplicative
edges diagram , i.e., values are multiplied by labels of edges as navigating via
edges. Multiplicate edges diagrams are instances of bilateral impact measure
diagrams, see Def. 3, where we want to have the scenario in Fig. 2 to be inter-
preted as described in Table 6. Considering Table 6 and Fig. 2, we can describe
the scenario consistently by the following equations:

X ′ = cX (52)

Y = aX + bX ′ (53)

Y = (a+ bc)X (54)
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Figure 2: A two-step error-free linear-regressive mediator scenario: multiplicative edges
diagram (compare to Table 6).

Note, that (54) can be gained by substituting the RHS of (52) for X ′ in (53):

Y
(53)
= aX + bX ′

(52)
= aX + b(cX) = (a+ bc)X (55)

Let us assume that we screen off X ′ from the scenario in Fig. 2, i.e., that we
turn X ′ into a latent variable . The concepts of screening off and latent variable
only make sense relatively to a specific external observer. In particular, for such
an observer, the factors a, b, and c would be unknown. Still, (54) would remain
valid. For the external reviewer, Y still would be determined perfectly, i.e., error-
free, by X via some factor d, i.e., for the external observer:

Y = dX (56)

The external observer, not being aware of the latent variable X ′ , would be able
to determine this factor d from his observations. But he cannot determine the
values of a, b and c. Once the observer learns about X ′ together with the values
a, b and c, he is able to refine his understanding of the impact of X to Y in terms
of (54), i.e., henceforth, he can use that d = a + bc. It can be said, that the root

cause of impact in Fig. 2 all stems from X, first, directly via X
a−→ +, then, second,

indirectly via X
c−→ X ′

b−→ +
All of this becomes different, when there would be no causal impact of X and

X ′ in the scenario of Fig. 2 (and also not vice versa, i.e., no causal impact of X ′

onto X). In empirical data, X and X ′ would than show as (nearly) stochastically
independent (assuming that empirical data set is large enough, and that there
exist no further latent variables). This scenario is illustrated in Fig. 3 by dropping

the edge X
c−→ X ′ from Fig. 2. Here, X ′ is not a mediator anymore. Instead, X and

X ′ immediately, i.e., in one step together impact Y . Now, Y cannot be anymore
perfectly determined solely in terms of X as in Fig. 2 and (54). Now, when screen-
ing off X ′ , the stochastic distribution of X ′ , is perceived as varying (stochastically
distributed) error ε, which disturbs the impact of X on Y as illustrated informally
in Fig. 3 (i). Henceforth, we will use a dotted arrow for the purpose of illustrating
such an error-prone impact, see Fig. 3 (ii).

Next, we switch our attention from the mediator in Fig. 2 the effect of con-
founding, see Fig. 4. Actually, Fig. 4 depicts the same scenario as Fig. 2, in the
sense that the process described in Table 6 an (52), (53), and (54) apply to it.
The difference is that we are now also interested in the role of X as being a con-
founder to X ′ in addition to understanding X ′ as being a mediator to X. The edge
X

c−→ X ′ still represents a causal impact, however, when we want to describe the
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Table 6: A two-step error-free linear-regressive mediator scenario: assumptions and pro-
cess of impact (compare to Fig. 2).

• X and X′ together causally impact Y .

• We can think of the impact of X and X′ on Y as a two-step process.

– Before the impact, X has the value v1. X′ and Y have values v2 resp. y,
which do not influence the impact process.

– First, X impacts X′ so that its value changes to v′2 = cv1, illustrated by the

edge X
c−→ X′ in Fig. 2.

– Second, Y is impacted so that its value changes to av1+bv′2 (illustrated in

Fig. 2 by the of edges X
a−→ +

b←− X′ and + −→ Y ).

• Note that during the whole process, the value v1 of X remains unchanged.
Therefore, after the second step, we have that the value of Y equals (a+ bc)v1.

• Consistently, the edge X
a+bc−−−−−→ Y in Fig. 2 represents the impact of X onto Y

when screening off X′ . X′ is called mediator in the given scenario.

• The impact process is perfectly error-free in all of its parts. We assume that it
is neither disturbed by the environment nor suffers measurement mistakes.

impact on Y merely in terms of X ′ , the reciprocal of c matters as depicted by the
edge X ′d X in Fig. 3. We have used a dashed arrow for X ′d X to indicate that it
does not a represent a causal impact but merely an observable behaviour. First,
we can rewrite (52) as follows:

X =
1
c
X ′ (57)

Next, we can describe the impact on Y merely in terms of X ′ as follows:

Y
(53)
= aX + bX ′

(57)
= a

1
c
X ′ + bX ′ =

(
a
1
c
+ b

)
X ′ (58)

To represent (58) accordingly, we have added a respective edge X ′ −→ Y to
Fig. 3. There is an important difference in mediator effects and confounding ef-
fects. After screening of the mediator X ′ , we keep still control over the impact
process, i.e., we can trigger the impact process with own values, as we have still
control over the variable X. When we screen off the confounder X ′ , we are forced
into the role of a pure observer. The whole process is triggered by the now latent
variable X and we can only record changes of Y as they come by.

Such considerations show, that our informal explanations are limited. To be
more precise, we needed to explain more about the experimental setup, its con-
ditions and ways to manipulate it. Still, we think that our discussion can help to
understand better how a linear regression model could be interpreted, and also,
to show the limitations of its interpretation.

Now, we turn to the usual linear regression model, in which all effects are
assumed to be error-prone as depicted in Fig. 5. Here, all factors β1,β

′
1,β
′′
1 and
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X (i) X (ii)

+ Y + Y

X ′ X ′

a

a+ε

a

a

b b

Figure 3: A one-step error-free linear-regressive mediator scenario leading to an error-
prone impact after screening off the mediator.

X

+ Y

X ′

a

a+bc

c 1
c

b

a 1
c +b

Figure 4: A two-step error-free linear-regressive mediator and confounder scenario.

β2,β
′
2,β
∗∗
2 are respective estimators. Let us compare Fig. 5 with Fig. 4, which show

important correspondences under some obvious renamings. When we consider
the renaming of a as β′1, b as β′2, and c as β

′′
1 , we have an exact correspondence

between the following edges25:

X
a+bc−−−−→ Y (59)

X
β′1+β

′
2β
′′
1−−−−→ Y (60)

See, how (60) is an instance of (47). Similarly, when we again match a with β′1,
b with β′2, but, now, 1/c with β∗∗2 , we again have an exact correspondence between
the following edges:

X ′
a 1
c +b−−−−→ Y (61)

X ′
β′2+β

′
1β
∗∗
2−−−−→ Y (62)

See, how (62) is again an instance of (47).
Despite the similarities, there are also important differences between the sce-

narios in Fig. 5 with Fig. 4. We want to highlight the following. With (59) and (60),

25Furthermore, we always assume X is renamed to X1 and X′ is renamed to X2. Be-
fore, we have used X,X′ instead of X1,X2 only to enhance readability and, furthermore,
to highlight that, with X,X′ we are not working with a usual regression model but specific
error-free equations.

49



we have mapped c to β
′′
1 , and with (61) and (62), we have mapped 1/c to β∗∗2 , how-

ever, a simultaneous mapping of c to β
′′
1 and 1/c to β∗∗2 is, in general not possible;

as in the regression model, we have, in general:

β∗∗2 ,
1

β
′′
1

(63)

Given a linear regression problem in matrix notation Y = Xβ, we have its sum-
of-least-squares optimization has the solution β = (XTX)−1XTY, see, e.g., [87,
149]. Therefore, assuming that the factors in Fig. 5 correspond to observation
vectors X = (x1, . . . ,xn)T and X ′ = (x′1, . . . ,x

′
n)

T , we actually have (with Y = X ′ and
X = X for β

′′
1 , as well as Y = X and X = X ′ for β∗∗2 ):

β
′′
1 =

n∑
i=1

xix
′
i

n∑
i=1

xixi

β∗∗2 =

n∑
i=1

x′ixi

n∑
i=1

x′ix
′
i

(64)

Clearly, according to (64) β
′′
1 and β∗∗2 are, in general, no reciprocals, rather, we

have that:

β∗∗2 =

n∑
i=1

xixi

n∑
i=1

x′ix
′
i

β
′′
1 (65)

Equation (64) means that linear regression optimization is asymmetric. It mat-
ters, in which direction we analyse a relationship between two factors X1 and X2.
Similarly, let us turn our scenario in Fig. 5 into a regression problem according to
the standard regression model by adding an observation vector X0 = (11, . . . ,1n)n

to account for the estimation of an intercept. Now, both X
β
′′
1−−→ X ′ and X ′

β∗∗2−−→ X
represent two simple regression problems in opposite directions. Again, the sce-
nario is asymmetric. With ρ

XY
denoting the Pearson correlation coefficient be-

tween X and Y and σ
X

denoting the standard deviation of X as usual, we have,
in general, the following (where the first equation (i) is due to Lemma B in Ap-
pendix 3):

β∗∗2
(i)
= ρ

X′X

σ
X

σ
X′

= ρ
X′X

σ
X

σ
X′
·
ρ
XX′

σ
X′
σ
X

ρ
XX′

σ
X′
σ
X

= ρ 2
XX′

1
β′′1

(66)

Again, in (66), the estimators stemming from two opposite directions are not sim-
ply reciprocal. Only in case of perfect correlation, i.e., whenever ρ

XX′ equals one,
the estimators are reciprocals.

4.3 On the Utilization of Linear Regression Models

Adjusting for confounding by adding additional factors is in widespread use, it is
then called, e.g., “Multiple linear regression with adjustment for confounding fac-
tors” [135], “linear regression analyses adjusting for confounding factors” [235],
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X

+ Y

X ′

β′1

β1=β′1+β
′
2β
′′
1

β′′1
β′2

β∗∗2

β2=β′2+β
′
1β
∗∗
2

Figure 5: An error-prone linear-regressive undetermined scenario (multiplicative edges di-
agram). Note that β′′1 = ρ

X1X2
/β∗∗2 and β∗∗2 = ρ

X1X2
/β′′1 .

“regression analysis [..] after adjusting for confounders” [153], “Multiple lin-
ear regression analyses [..] after adjustments for confounding factors” [132], or
“multiple linear regression analysis [..] after adjusting for potential confounders” [158].

Adjusting for confounding is considered a way of controlling confounding, i.e.,
the adjusted coefficient is considered a better value than the crude coefficient in
the sense that the adjusted coefficient would better reflect the genuine [65, 62]
or isolated impact of the factor.

There are two ways to utilize the findings of a regression model:

• Utilization in Predictions The found model is used in outcome prediction in
future cases. This seems to be the utilization of the regression model per
se – understanding “regression" as a synonym for prediction.

• Utilization for Assessments of Interventions The overall aim to intervene,
i.e., to affect the influencing factor, in order to have a desired impact on the
outcome. For example, a doctor would recommend to decrease body weight
in order to increase life expectancy. Now, the linear regression model would
tell, in how much a recommended treatment is relevant.

In any case, it is usually assumed that the data analysts have an understand-
ing of the causalities in the study. When it comes to confounder adjustments, it is
usually assumed that the factors, with which the original model is adjusted, are
actually confounders and not mediators. For example [130] states: “Specifically,
confounders are variables that are associated with both exposure and outcome
but not affected by either the exposure or outcome [180]."

4.3.1 Utilization in Predictions

In case of predictions, adjustment is about finding a better model. In future pre-
dictions, the adjusted coefficients alone would not be useful, even harmful, i.e.,
value is added only together with the additionally added confounding coefficient.
When you use the only the adjusted values of the extended model for predictions,
this would mean that you predict each future case as it would be at level zero for
all confounder, which renders such predictions obviously as inadequate. If you
have no access to confounder data in future cases, you are urgently advised to
stay with the crude coefficients. If you have access to confounder data in future
cases, you are advised to use the full extended model, i.e., adjusted coefficient
plus confounder coefficients together, to achieve more accurate predictions.

Therefore, if a study aims at predictions, a statement such as “We found that,
after adjustment for confondunding factors X,Y ,Z, . . ., the exposures A,B, . . ., im-
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pact the outcome C with βA = vA,βB = vB, . . ." rather seems to make little sense,
as the interesting information is about all coefficients, adjusted coefficients plus
confounding coefficients.

Similarly, it could be argued that is makes little sense to restrict adjustment
to confounders in this case. In a multiple regression model with a known causal
direction between any two of the influencing factors, we have that one them is a
confounder from the perspective of the other, and the other is a mediator from the
perspective of the previous, see Fig. 4. So, a multiple regression model is made
of confounders and mediators anyhow, and the model is utilized regardless of
whether the one or the other is a confounder or a mediator. So, why restricting
the refinement of a given model to the addition of confounders only?

4.3.2 Utilization for Assessment of Interventions

In scenarios that aim at intervention, i.e., at strengthening or weakening a pri-
mary influencing factor in service of a wanted effect onto the outcome, a report
such as “We found that, after adjustment for confounding factors X,Y ,Z, . . ., the
exposures A,B, . . ., impact the outcome C with βA = vA,βB = vB, . . ." (compare to
Section 4.3.1) makes sense. Enforcing a change of a primary influencing factor
would not change the level of the confounder. The idea would be that the impact
increases according to the adjusted coefficient for each fixed level. Therefore,
it makes sense to consider the adjusted coefficient at the more realistic impact
than the crude impact. Whether the system actually behaves as such after an
intervention from the outside is merely an assumption, more sophisticated ob-
servations would be needed to provide evidence for such than provided by the
plain linear regression data. This means, as the data, on which such assessment
is based, stems from a study in which the particular intervention has not been en-
acted, such utilization is speculative. Ideally, the effects needed to be evaluated
on the basis of new, typically longitudinal, data from after invention.

In this case, it also makes sense to exclude mediators from the adjustment,
as mediators impact the exposure on behalf of the primary influencing factor,
i.e., the primary influencing factor remains the original cause of the impact and,
therefore, adjusting for a mediator would not be appropriate.

4.4 On Cutoff Rules in Confounder Adjustment and Improvements

Many studies use linear regression with adjusting for confounders. However, of-
ten, the resulting confounding effects themselves are not discussed further or
only little, in particular, there might be no discussion of the significance of the
confounding effects [235, 153, 158, 135, 132, 136]. In such studies, it might sim-
ply be taken for granted that adding further factors to the ones which the study
is primarily interested in, would increase the quality of the findings by control-
ling the confounding effects. The additional factors might be selected in regards
of common sense or domain knowledge. When the study is not conducted with
a specifically collected primary data, but with an already existing data set such
as NHANES26 (National Health and Nutrion Examination Survey) [235], it would
be naturally to extend the model with additional factors that are available in the
data anyhow.

In the literature, it is stated that studies often use a change-in-estimate cutoff

26https://www.cdc.gov/nchs/nhanes/
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rule to distinguish significant from non-significant confounders, see, e.g., [130,
180, 37, 138]. For example, [130] states: “A cutoff of 10% is commonly cited in
the literature [37]." Various studies [37, 143, 138, 145, 91, 146] have investigated
various ways to optimally select confounders to be included into the model. In re-
gard of the cutoff rule, [130] furthermore states: “However, the appropriateness
of this cutoff has never been evaluated.”

Our approach is not to rely on rule of thumbs such as the cutoff rule at all.
Instead of merely measuring a confounding effect and base decisions on it, we
suggest to investigate and explain the confounding effect. Let us assume that a
confounding effect (change-in-estimate) is measured as the (absolute) percent-
age change |(β − β′)/β| of a crude coefficient β and its adjusted coefficient β′ .
Now, please consider the example in Fig. 6. Figure 6 illustrates three different
data scenarios (i–iii) with a primary influencing factor A and a confounder B as
multiplicative edges diagrams, compare to Figs. 2 through 5. Here, we assume
that the regression problem is given as a standard regression problem including
the estimation of an intercept, however, we have omitted the intercept as a factor
from the diagram to keep the illustration simple. This explains the occurrence of
the Pearson correlation coefficient ρ

AB
in Fig. 6, compare to (66). All of the three

scenarios show exactly the same confounding effect, as the crude coefficients as

well as the adjusted coefficients are always the same, i.e., A
1.1−→ C and A

1−→ + re-
spectively. Despite the same confounding effect, the scenarios are very different.
In scenario (i), the individual impact of A and B in the full (adjusted) regression
model are perfectly balanced, i.e, their coefficients are the same, they are both
one ; whereas, the causal impact of B onto A is relatively high (ρ 2

AB × 10) – result-
ing into a relatively small latent coefficient of 0.1. In contrast, in scenario (ii),
both the causal impact (ρ 2

AB) and the latent coefficient (1.0) are relatively moder-
ate; whereas the adjusted coefficient (1.0) and differs a lot from the confounder
coefficient (0.1). So, it can be said that, in scenario (i), the confounding effect
can be explained rather by the large causal impact of the confounder, whereas,
in scenario (ii), it can be rather explained by the smallness of the confounder co-
efficient. From the perspective of (ii), scenario (iii) is a merely more extreme form
of scenario (i). The latent coefficient is further decreased, whereas, this time,
the confounder coefficient is relatively large, i.e., twice as much as the adjusted
coefficient.

Now, given a 10% cutoff rule, the confounder B would be rejected for all three
scenarios in Fig. 6. However, given the explained differences between the scenar-
ios, an analyst might want to decide differently in each scenario. A discussion of
how is beyond the scope of this study, as concrete decisions needed to be based
on the domain knowledge surrounding the respective study, the concrete study
design (experimental setup, clinical studyclinical study setup etc.) and, last but
not least, the intended purpose of the analysis, i.e., utilization in predictions vs.
utilization in assessments – compare to Sects 4.3.1 and 4.3.2.

Next, let us assume that the confounding effect is measured particularly sim-
ple, as (arithmetic) difference ∆(β) = β−β′ of a crude coeffienct β and its adjusted
coefficient β′ . Now, our findings (47) and (51) show as

∆(βi) = β′mβ
′′
i (67)

∆(βi) = β′k+1β
k+1
i + . . .+ β′mβ

m
i (68)
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A (i)

+ C

B
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1.1

1

0.1ρ 2
AB×10

A (ii) A (iii)

+ C + C

B B

1

1.1

1

1.1

0.1

1ρ 2
AB

2

0.05ρ 2
AB×20

Figure 6: Three different data scenarios, each showing the same confounding effect
(change-in-estimate) of less than 10% (≈9%, absolutely) for the primary influencing fac-
tor A after adjusting for the confounder B (in each of the data scenarios (i–iii), the crude
coefficient is 1.1., whereas the adjusted coefficient is 1).

Given, (67) and (68), it could be said that a confounding effect ∆(βX ) equals
the direct impact of the confounders speed up by their indirect latent influences
(where a latent influence of a confounder stems from reversal of its impact onto
the primary influencing factor X). Now, let us assume that we invert the direction
of causality for (67) and (68). This is simply a question of perception and ter-
minology, i.e, we consider the factors that are added to the regression model to
form an extended model as mediators instead of as confounders. Now, it is fair to
talk about ∆(β) as a mediator effect. Now, it could be said that a mediator effect
∆(βX ) equals the direct impact of the mediators speed up by their indirect latent
impacts.
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5 Measuring the Impact of a Categorical Factor in its

Entirety

5.1 On the Impact of a Categorical Factor in its Entirety

Given a categorical factor, i.e., a random variable X : Ω −→ {v1, ....,vn}, it is not
obvious, how to assess the impact of X as a whole, i.e., in its entirety. To be
used in data science methods such as linear regression, logistic regression, or
association rule mining, categorical factors have to be prepared or transformed
first. One option is to turn each category, i.e., each instance of a categorical
random variable, into a single binary factor, before processing the whole group
of resulting variables jointly within some data science method. This splitting of
categorical factors is exactly what is done by leading ARM tools such as Rapid-
Miner27. Similarly, as just one important example, this technique was also used
by the gender pay gap analysis of the EU commission [72], as part of utilizing
Oaxaca-Blinder decomposition – see Section 3.3. Another option is to impose an
artificial order on the categories and assign numbers to them, so that the cate-
gorical factor is coerced into a numerical factor, and this is exactly what we do
later in Chapters 7 and 8, when we deal with mixed-scaled data.

To explain the issue in more depth, let us a have a more concrete example,
i.e., our introductory example from Table 1 on page 19. In the terminology of
association rule mining the impact of each single profession onto the salary could
be assessed as a lift, i.e.,

E(Salary | Profession=Chef)/E(Salary),

E(Salary | Profession=Builder)/E(Salary),

E(Salary | Profession=IT)/E(Salary),and

E(Salary | Profession=Lawyer)/E(Salary).

And similarly, the impact of each single city onto the salary could be assessed as:

E(Salary |City= Boston)/E(Salary),

E(Salary |City=NY)/E(Salary),

E(Salary |City=LA)/E(Salary),and

E(Salary |City=Seattle)/E(Salary).

Now we can compare the impact of each two instances of the factors among
each other, both, homogeneously, i.e., between instances of the same factor such
as

Profession=Chef vs. Profession=Builder,

Profession=Lawyer vs. Profession=IT,

City=NY vs. City= Boston,and

City=Seattle vs. City=LA,

or, heterogeneously, i.e., between instances of the various factors such as

27https://altair.com/altair-rapidminer
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Profession=Chef vs. City= Boston, (69)

Profession=Builder vs. City=LA, (70)

Profession=IT vs. City=NY,and (71)

Profession=Lawyer) vs. City=Seattle. (72)

Whether comparisons such as (69) through (72) might be useful resp. mean-
ingful in some context is not important here, however, the example shows what
cannot be done without further endeavors. It is not clear how to compare the
impact of the factor Profession onto Salary as a whole with the impact of the fac-
tor City onto Salary as a whole, i.e., in their entireties. If the factors Profession
and City were binary variables in our model (5) through (9) on page 18, we could
compare their impacts on the basis of the conditional expectations

E(Salary | Profession)/E(Salary),and (73)

E(Salary |City)/E(Salary), (74)

however, in our model, the factors Profession and City are non-binary, categorical
variables, and the expectations (73) and (74) simply do not exist in our model.

In linear regression, see Chapter 4, such questions do not appear, because,
here, the influencing factors are numerical factors. In linear regression, the ef-
fect of an influencing measure is indeed always assessed as a whole, i.e., in its
entirety. However, whenever the influencing factors are categorical variables, the
question on how to deal with them as a whole appears. One approach has been
described above, i.e., transforming them into numerical variables. In Section 5.2,
we develop a novel measure to assess the impact of a categorical variable in its
entirety.

5.2 A Novel Measure: Coupled Impact Assessment (C-IA)

We introduce a novel measure that quantifies the “impact" of a categorical in-
fluencing factor X on a real-valued target variable y by aggregating the relative
differences between the conditional expectations of y given X = vi and y given
X = vj across all possible pairs values vi and vj of X, each weighted with the
probabilities of X being vi and X being vj .

First, we provide the formal definition of the measure in Def. 15, then, we pro-
vide an explanation on how we came up with the measure in Section 5.3.

For our impact definition in Def. 15, we first need to define the notions of sheer
value and sheer lift . The sheer value of a real number turns any fraction, that
has an absolute value smaller one, into its reciprocal, and behaves like the iden-
tity on all other real numbers in R\]− 1,1[, see Def. 13. Sheer values are to quo-
tients, what absolute values are to (subtractive) differences. For the sake of con-
venience, we also include the definition of absolute value, see Def. 12.

Definition 12 (Absolute Value). Given a real number x ∈R, we define the absolute
value x, denoted as |x|, as usual, as follows:

|x| =
{
x , x ⩾ 0

−x , else
(75)
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Definition 13 (Sheer Value). Given a real number x ∈R, we define the sheer value
of x, denoted as ||x||, as follows:

||x|| =


x , |x| ⩾ 1
1
x

, else
(76)

The idea of sheer values is to utilize them in the definition of what we call
sheer lifts, i.e., yielding quotient-based measures for the distinctness of two ef-
fects m1 ∈R+

0 and m2 ∈R+
0 that are independent of the order of m1 and m2, i.e.:

Definition 14 (Sheer Lift). Given real numbers m1 ∈ R+
0 and m2 ∈ R+

0 , we define
their sheer lift as the sheer value (Def. 13) of their quotient, i.e.:∣∣∣∣∣∣∣∣m1

m2

∣∣∣∣∣∣∣∣= ∣∣∣∣∣∣∣∣m2

m1

∣∣∣∣∣∣∣∣≥ 1 (77)

Definition 15 (Coupled Impact Assessment (C-IA)). Given a target variable
y : Ω −→ R

+
0 and an influencing factor X : Ω −→ {v1, . . . , vn}, we define the impact

of X on y, denoted as ι(X⇒ y) as follows:

ι(X⇒ y) =
∑
1≤i≤n

∑
1≤j≤n

P(X = vi)P(X = vj )
∣∣∣∣∣∣∣∣E(y |X = vj )

E(y |X = vi)

∣∣∣∣∣∣∣∣ (78)

The sheer lift and coupled impact assessment are defined only for positive
real numbers, as it is not obvious, how to compare and aggregate sheer values of
different sign. For the course of this thesis, this poses no practical problem, as all
of our approx. 700 datasets have only positive numerical target values. However,
in future work, it might be interesting to develop a measure that works for real
numbers in general.

5.3 Stepwise Development of the C-IA Measure

A first attempt to provide a measure for the impact of a categorical factor X onto
a numerical factor y, would be to simply take the average of the impacts of the
individual instances ofX onto y. Here, the individual impact of a single instance of
X onto y can be, for example, oriented towards the lift in association rule mining,
just in its generalized form adopted to conditional expectations28, as follows:

1
n

∑
1≤i≤n

E(y |X = vi)
E(y)

(79)

The problem with the attempt in (79) is that it entirely neglects the probabili-
ties P(X = v1), . . . ,P(X = vn) of the various instances of X. This leads to counter-
intuitive effects, as can be constructed by some example as follows. Table 7
shows two factors of a dataset X and X ′ , each having the same number of three
instances. Now, X and X ′ have the same conditional expectations for their first,
second and third instance, but significantly different values for the probabilities
of their corresponding instances29. Now, in therms of the measure in (79), X

28see the discussion on (16) on page 19.
29Note, that the categories of X are, in general, different from those of X′ . The number

of categories ofX andX′ is the same just for the sake of this example. The correspondence
between the variables is according to their indices.
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Table 7: Scenario with two factors X and X′ showing the same conditional expectations
but significantly different values for the probabilities of their instances, each with its im-
pact value (rounded) according to (79), its impact value (rounded) according to (80), its
impact value (rounded) according to (81) and its C-IA impact ι(X⇒y) (rounded) according
to Def. 15, (78).

X
P(X=v1) P(X=v2) P(X=v3) EX=v1(y) EX=v2(y) EX=v3(y) (79) (80) (81) ι(X⇒y)

1/3 1/3 1/3 1.000 2.000 3.000 1.00 1.5 1.5 1.78

X’
P(X ′=v′1) P(X ′=v′2) P(X ′=v′3) EX′=v′1

(y) EX′=v′2
(y) EX′=v′3

(y) (79) (80) (81) ι(X′⇒y)

0.99 0.005 0.005 1.000 2.000 3.000 1.97 1.98 1.03 1.03

has an impact value of 1 and X ′ has an impact value of ≈1.97. The impact of
X ′ is, according to (79), higher than the impact of X. This can be considered as
counter-intuitive. We argue that the factor X, considered in its entirety, shows sig-
nificantly more activity than factor X ′ . Actually, the factor X ′ is almost inactive,
as most of its individuals are concentrated in just one instance of its categories,
i.e., instance X ′ = v1. The concepts of active versus inactive heavily rely on intu-
ition, and we make no attempt to formalize it here. We try to provide some more
intuition about it later, when we introduce a 2-step game on the dataset. First, we
want to analyse (79) further.

We identify two potential reasons for the fact that the impact of X ′ is higher
than the impact of X according to (79), i.e., (i) the fact that the several corre-
sponding instances of X and X ′ have different probabilities and (ii) the fact that
(79) is not defined in terms of sheer lift, but straightforward as generalization of
lifts from ARM. Considering the factor X, the lift of its first instance category v1
is smaller than one, therefore, outbalancing the effect of the lift of the third in-
stance category. We can try to fix this by adopting the impact definition of (79) to
sheer lifts (Def. 14), resulting into:

1
n

∑
1≤i≤n

∣∣∣∣∣∣∣∣E(y |X = vi)
E(y)

∣∣∣∣∣∣∣∣ (80)

Applying the new measure (80) to the data in Table 7 yields an impact value of
1.5 for X, and an impact value of ≈1.98 for the factor X ′ , see Table 7. This means
that the impact of X ′ is still significantly higher than that of X, i.e., the situation
is basically the same as with the measure from (80). The situation only changes
when we incorporate the probabilities of the category instances in the measure
as with our measure C-IA, see Table 7. Our measure yields 1.78 for X and 1.03 for
X ′ . The value of X ′ is very close to 1, which also fits our intuition that the factor
X ′ is almost inactive.

A next straightforward try would be to incorporate probabilities of category
instances as weights into (80) yielding weighted averages instead of direct aver-
ages, resulting into: ∑

1≤i≤n
P(X = vi)

∣∣∣∣∣∣∣∣E(y |X = vi)
E(y)

∣∣∣∣∣∣∣∣ (81)
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•

X† = v1 · · · X† = vn

X‡ = v1 · · · X‡ = vn X‡ = v1 · · · X‡ = vn

E(y|X=v1)
E(y|X=v1)

E(y|X=vn)
E(y|X=v1)

E(y|X=v1)
E(y|X=vn)

E(y|X=vn)
E(y|X=vn)

×P(X=v1)×P(X=vn)

×P(X=v1) ×P(X=vn) ×P(X=v1) ×P(X=vn)

Figure 7: Impact of a categorical factor according to Def. 15: A two-step game is played
on a dataset D for its factor X via two random variables X† and X‡ (of an appropriately
constructed data set D⋆ ) that have both the same distribution as X w.r.t D.

It turns out that (81) resolves the counter-intuition of our example in Table 7,
i.e., the factor X receives an impact value of 1.5, whereas X ′ receives a smaller
impact value of ≈ .1.03. The measure in (81) is worth to be investigated in further
work, however, for the purpose of this thesis, we step further and provide the more
fine-grained measure C-IA. Considering our example of Table 1 on page 19, we
could choose that the target factor y stands for salary, X stands for professions
and X ′ stands for cities. Now, the following could be said:

• The measure (81) stands for the impact of selecting a profession or a city
for living, whereas

• the measure C-IA stands for the impact of changing the profession or mov-
ing from one city to another.

Disclaimer: As a disclaimer we need to say that such explanation is only for
illustrative purposes, to give an appeal to intuition. We cannot tell from the data
at all, whether the causalities in the real world behave as such. Our explanation
is only for the purpose of creating intuition about the measure.

We can think of our measure C-IA as a two-step game as illustrated in Fig. 7.
The dataset is taken as basis for conducting two experiments as a thought exper-
iment: each experiment tossing from the individuals represented by the dataset,
i.e., according to the probabilities of dataset. Technically, you can think of this as
constructing a larger data set by duplicating rows appropriately, i.e., preserving
probabilities, and having two i.i.d. random variables X† and X‡ that have both the
same distribution as X w.r.t. the original data set.
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6 Utilizing Coupled Impact Assessment for Confound-

ing Adjustment

In order to utilize the C-IA measure from Def. 15 for confounding adjustment, we
need to clarify how to apply it to more than one influencing factor simultaneously.

In Def. 15, we have defined the measure C-IA for measuring the impact of a
categorical factor X, in its entirety, onto a numerical factor y. Next, we would like
to have a similar measure for the simultaneous impact of n categorical factors
X1, . . .Xn onto a numerical factor. It turns out that Def. 15 is completely sufficient
for this purpose as we can apply it to an appropriate concept of tuple factors.
Each set of factors can be treated in a natural way as a single tuple factor as
follows.

Definition 16 (Tuple Factors). Given factors X1 :Ω −→ V1, . . .X1 :Ω −→ Vn, we de-
fine their tuple factor ⟨X1, . . . ,Xn⟩ :Ω −→ V1 × · · ·×Vn for all instances ⟨v1, . . . , v2⟩ ∈
V1 × · · · ×Vn as follows:

P(⟨X1, . . . ,Xn⟩ = ⟨v1, . . . , v2⟩) = P(X1 = v1, . . . ,Xn = vn) (82)

Now given a target factor y, a primary impacting categorical factor X and a
series of further, potentially confounding, categorical factors, C1, . . . ,C2, we can
use the C-IA measure to assess the impact X onto y alone, and, also to assess
the simultaneous impact of X,C1, . . .Cn onto y, i.e.:

ι(X⇒ y) (83)

ι(⟨X,C1, . . .Cn⟩ ⇒ y) (84)

Now, we say that (84) adjusts the confounding effect of C1, . . . ,Cn, and we call
(84) the adjusted value of (83). By comparing (83) and (84), we can assess the
existence of potential confounding effects, and utilize this in our experiments, see
Chapters 7 and 8.
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7 Experimental Setup

The experimental setup of this study consists of the usual well-defined stages
of data analytics [99] that help to achieve credible outcomes. After an intensive
search for suitable data by screening existing repositories, we have selected a
total of 694 dataset as follows:

• 657 datasets from the Harvard Dataverse30 repository, plus,

• 37 datasets from the New Zealand government repository31.

To eliminate possible problems with missing values, outliers, and other incon-
sistencies, we meticulously cleaned these data.

See Figure 8 for an overview of the experimental setup that will be described
in detail in Sections 7.1 through 7.4. We proceed as follows. In Section 7.1, we
provide explanations about the datasets used in our experiments. In Section 7.2,
we describe the experiments that we have conducted. In Section 7.3, we describe
the technical setup with Google Colab. In Section 7.4, we discuss the key features
of the Harvard Dataverse as important background information.

694 datasets

Ad-Hoc Linear RegressionOaxaca-Blinder CI-A

TP
TPC1

TPC1...Cn

…

Harvard
Dataverse

NZ Government
Repository

TP
TPC1

TPC1...Cn

…

TP
TPC1

TPC1...Cn

…

TP
TPC1

TPC1...Cn

…

removing 
sparse and inconsistent
data columns

numerical-to-categorical
coercion

categorical-to-numerical
coercion

37 datasets657 datasets

 2,776 experiments
 3,942,812 measure runs

Figure 8: Experimental setup.

30https://dataverse.harvard.edu/
31https://data.govt.nz/
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7.1 The Used Datasets

7.1.1 Heterogeneity

A heterogeneous dataset refers to a collection of data that combines information
from diverse sources, formats, or domains [2, 8, 115, 25]. This diversity allows
for a more comprehensive analysis, capturing complex relationships and interac-
tions across different dimensions. The datasets come from various fields, such
as health, economics, social sciences, environmental studies, and technology.
The integration of such diverse data provides a broader perspective, enabling re-
searchers to study multifaceted problems that span multiple domains [21].

The main advantage of heterogeneous datasets lies in their ability to reflect
real-world complexity more accurately [218, 69, 86]. They allow researchers to
explore interactions between variables that might otherwise be overlooked in iso-
lated datasets. As a result, studies based on heterogeneous data are often more
robust, generalizable, and capable of addressing intricate questions involving
multiple factors [230].

To achieve more credible and precise results, we integrated 694 datasets span-
ning diverse categories. This extensive dataset selection enhances our under-
standing of interactions among multiple variables, enabling stronger and more
general conclusions. As illustrated in Figure 9, the datasets encompass a wide
range of domains, including health data, environmental factors, social and eco-
nomic status, income levels, and other demographic characteristics. Such com-
prehensive coverage ensures that our data capture the full spectrum of variable
values, contributing to the depth and specificity of our analysis.

By incorporating data from multiple fields, we address complex relationships
that may not be evident in smaller or more narrowly focused datasets. This ap-
proach not only increases the robustness of our findings but also minimizes bi-
ases arising from limited data sources. The inclusion of diverse datasets supports
broader generalizations, making the results applicable across different domains.

0

20

40

60

80

100

120

140

160

180

Figure 9: Heterogeneity of the 694 used datasets: Number of datasets per domain.
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Table 8: Meta data about sizes of the used 694 datasets.

Min. number of rows 41

Max. number of rows 1,048,576

Avg. number of rows 76,160

Min. number of columns 3

Max. number of columns 16

Avg. number of columns 9

Number of measure runs 3,942,812

7.1.2 Meta Data

In Table 8 we have collected meta data about the sizes of the 694 used data sets.
The number of rows is relevant for the statistical significance, in particular, when
as we heavily drill-down as part of our experiments. The number of columns is
relevant as it reflects the high number of combinations needed by the combina-
torial design of our experiments, showing in the number of 3,942,812 measure
runs as part of our experiments, as will be explained in Section 7.2.2.

7.2 Conducted Experiments

7.2.1 Data Cleansing

We checked each data set for sparse data and inconsistencies, see Figure 9, as
follows:

• Whenever the values in a column have been too sparse, the column has
been removed.

• In regard of inconsistencies, we checked previous studies of other researchers
who have used a given data set. We also checked the manual given along
with the dataset, whether it reports inconsistencies. Whenever previous
studies or the manuals mentioned inconsistencies for some columns, we
have removed these columns from the dataset.

7.2.2 Combinatorial Design of the Conducted Experiments

All datasets that we have selected for this study have at least one numerical
column. For each dataset, we have chosen one numerical column as the target
factor, and the remaining columns as the influencing factors . From those influ-
encing factors, we have selected a column as the primary influencing factor and
the remaining as the potential confounders . We have selected the target factor
and the primary influencing factor on the basis of investigating previous stud-
ies of other researchers who used this dataset. Whenever such studies were not
available, we tried to make a rational choice on the basis of the structure of the
dataset, e.g., selecting naturally appearing columns such as salary.

Then, we conducted experiments on the target and the primary factor with the
four measures from Section 3.2, 3.3, 4 and 5, i.e., the Ad-Hoc measure, linear re-
gression, OB-decomposition, and our novel Coupled Impact Assessment measure
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(C-IA). Each of these experiments yielded a marginal impact value (henceforth,
also just marginal value for short) to be used as baseline for further experiments
with potential confounders. We consider a confounding effect as detected, when-
ever there is at least a 10% change (percentage difference), during drill-down as
compared to the marginal value, see Def. 17. These 10% of required change are
also minimum threshold in our study.

Definition 17 (Study’s Cutoff Rule). In all our experiments (and for all used mea-
sures), a confounding effect is detected, whenever there exists at least 10%
percentage difference between the marginal value (excluding the potential con-
founders) and the drill-down value (including the potential confounders).

A 10% difference is a commonly used minimum threshold to identify con-
founding effects, see Publication II and [130, 104] as well as Section 4.4.

For drill-down, we combine the potential confounders (remaining columns)
with the primary influencing factor. We create all possible combinations of po-
tential confounding variables with the primary influencing factor, e.g., let us con-
sider a dataset consisting of 5 columns P ,A,B,C,T as an example. Here, P is the
primary influencing factor, T is the target factor and A,B and C are the poten-
tial confounding factors. The combination of the potential confounder with the
primary influencing factor and target factor for such table will be:

T ,P ,A

T ,P ,B

T ,P ,C

T ,P ,A,B

T ,P ,A,C

T ,P ,B,C

T ,P ,A,B,C

Then, we use these combinations for further analyses (drill-down), and to com-
pare their results with the marginal value to detect confounding effects.

In our study, we call the execution of a measure towards a single of the above
drill-down combinations a measure run , see Def. 18. Furthermore, in our study,
we say that a single experiment consists of running a measure towards a dataset,
where running a measure towards a dataset means to execute it combinatorially
often as explained above, i.e., to execute all of its measure runs, see Def. 19.

As we conducted experiments with four measures against 694 datasets with
various numbers of columns, see Figure 8 and Table 8, our experimental setup
resulted into:

• 2,776 experiments

• 3,942,812 measure runs

Definition 18 (Measure Run). Given any dataset together with a selection of the
target variable T , the primary influencing factor P and potential confounders
C1, . . .Cn, measure run is the name for the execution of a measure towards P ,
T and a single combination Ci1 , . . . ,Cim such that m ≤ n.
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Definition 19 (Study’s Experiment). In the context of this study, we say that an
experiment consists of running a measure towards all possible measure runs,
see Def. 18, against a dataset and specific selection of a target value, primary
influencing factor and collection of potential confounders.

7.2.3 Transformation of Columns

The used datasets have both numerical and non-numerical, i.e., categorical col-
umns. However, the measures that we tested in our experiments do not work for
mixed numerical/categorical influencing factors, i.e., Oaxaca-Blinder decompo-
sition and linear regression work only with numerical influencing factors, whereas
the ad-hoc method and C-IA only work with categorical influencing factors. There-
fore, conflicting columns need to be transformed into the needed scale before
processing them in an experiment. We call these transformations categorical-to-
numerical coercion and numerical-to-categorical coercion and they are needed
as follows:

• Oaxaca-Blinder decomposition, linear regression : Categorical-to-numerical
coercion.

• Ad-Hoc, C-IA : Numerical-to-categorical coercion.

We explain the details of how we have conducted the categorical-to-numerical
coercion and numerical-to-categorical coercion in Sections 7.2.3.1 and 7.2.3.2.

7.2.3.1 Categorical-to-Numerical Coercion

The first step of transforming categorical values into numerical values involved
examining whether the categorical variables exhibited a natural order such as
levels (e.g., low, medium, high) or rankings. If such a natural order was present,
we directly mapped these categories to corresponding numerical values.

However, in cases where no inherent order existed, we imposed an order based
on the relationship between the categorical variable and the target variable, see
Table 9 for an example with artificial data. To achieve this, we calculated the av-
erage of the target variable for each distinct category in the categorical column.
This distinctive average served as the basis for ordering the categories. Once
the averages were computed, we sorted the categories in an order according to
their average target values. We then assigned numerical values to the categories
in alignment with this sorted order, ensuring a meaningful representation of their
influence on the target variable. Finally, these numerical values replaced the orig-
inal categorical labels and were used in subsequent analyses.

Table 9: Example of categorical-to-numerical coercion (artificial data).

Profession Avg. Salary Numerical Label

Lawyer 7,000 4

Software Developer 5,500 3

Teacher 4,500 2

Chef 3,500 1
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7.2.3.2 Numerical-to-Categorical Coercion

The Ad-Hoc measure and the C-IA measure are specifically designed to function
only with categorical influencing factors. However, numerical variables often play
a significant role in data analysis. To incorporate these variables, we convert
them into categorical data by stratifying them into smaller groups, see Table 10
for an example with artificial data. This approach ensures that numerical data
can be effectively analysed within the framework of categorical measures.

The stratification process begins by identifying the minimum and maximum
values within each numerical influencing column. The range between these val-
ues is then calculated to determine the overall distance. To simplify the data, this
distance is divided into five groups of equal length, creating distinct intervals that
categorize the numerical data into discrete classes. These newly defined groups
serve as categorical representations of the original numerical values, allowing us
to integrate them seamlessly into our analytical model. We have chosen a num-
ber of five to create groups, as this is a common number of categories used in the
widely used Likert scale [134, 39].

Table 10: Example of a numerical-to-categorical coercion (artificial data) showing the re-
sult of stratifying original data in the form of individuals with an age (in the range of 15 to
65 years) together with their salary. The stratified data shows age groups (instead of age)
and avg. salaries (instead of salaries).

Age Group Avg. Salary

15-25 2,500

25-35 3,000

35-45 3,500

45-55 4,200

55-65 4,100

By adopting this method, we retain the variability and distribution patterns
present in numerical data while aligning it with the categorical requirements of
the combinatorial measure. This transformation not only preserves meaningful
distinctions between data points but also enables the exploration of relationships
between numerical and categorical variables in a unified manner.

7.3 Google Colab

We have conducted all of our experiments in Google Colab. Google Colab32 is a
cloud-based tool that allows users to write and execute Python code along with
sharing Jupyter notebooks33. Created by Google Research, Colab has become
popular among data scientists, machine learning engineers, teachers, and re-
searchers. Some of the advantages include a user-friendly interface, and that it
is easily accessible and has powerful computational capability.

The platform creates a space where it is easy to write and run Python code
without having to download any program. Colab’s integration with cloud services

32https://colab.research.google.com/
33https://jupyter.org/
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also enables it to provide the users with powerful computational resources, and
also gives out free access to graphical processing units (GPUs) and tensor pro-
cessing units (TPUs)34, which are crucial in the training and deployment of ma-
chine learning models.

We utilized the free version of Google Colab for our analysis. The CPU config-
uration available to free users includes:

• a dual-core Intel Xeon processor,

• 16 GB of memory, and

• 100 GB of storage.

These resources, while modest, provided sufficient computational power for our
needs.

The total runtime needed to complete the experiments for all the four mea-
sures amounted to 125 hour. Despite the limitations of the free-tier environment,
such as session timeouts and restricted resource availability, we effectively man-
aged the workflow to optimize performance.

The entire analysis of these results spanned approximately 100 days. This
timeline accounts for various stages of the process, including calculating the per-
centage difference, identifying the confounding effects (by eliminating combina-
tions of potential confounders whose percentage differences fall below our cutoff
rule (Def. 17)), identifying various patterns of confounding, and making compar-
isons between the measures. By leveraging Google Colab’s accessible platform,
we were able to conduct the analysis without incurring additional infrastructure
costs. While the free-tier resources required careful management and planning,
they ultimately proved to be a practical and effective solution for our computa-
tional needs.

7.4 Harvard Dataverse

Harvard Dataverse is an advanced open source data repository solution for stor-
ing and sharing research data at its best. Developed by the Institute for Quan-
titative Social Science at Harvard University, it is designed to provide a secure
web-based environment where researchers can identify suitable data for preser-
vation and sharing. They can do so easily and quickly irrespective of the discipline
they belong to. Originally conceived as a Harvard initiative, Harvard Dataverse is
now one of the world’s largest and most impactful repositories.

The platform greatly assists the paradigm of open science, providing an open
data deposit which increases the amount of data openly available for analysis.
For each dataset that is stored on the Harvard Dataverse, the data receive a Dig-
ital Object Identifier(DOI). Versioning and editing facilities of a dataset enable a
researcher to always have the most updated and accurate dataset.

Key features of the Harvard Dataverse are:

• Foundational Support and Features The principal objective of using the Har-
vard Dataverse is to provide researchers, regardless of their fields, efficient
tools and services for managing their data. It is easy for researchers to
upload their datasets and the datasets can be made public accessible for
other scholars to use.

34https://cloud.google.com/tpu
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• Comprehensive Data Management An important advantage of Harvard Data-
verse is its data management system. The data management system has
a flexible structure that allows the user to define complex data fields, ver-
sions, and metadata. Scholars can easily edit and modify the embodied
data as well as metadata; this way, the data collected remains up-to-date
and credible.

• Security and Access Control Harvard Dataverse pays a lot of attention to
authorised user access and data security. Researchers have flexibility in
managing datasets, including controlling access to protect sensitive or pro-
prietary information. This capability allows researchers to agree with set
ethical standards and legal provisions during data dissemination.

• Integration and Interoperability: The platform is easily integrated with many
different formats of research utilities and services, such as data analysis
software and institutional repositories. This integration also benefits the
data stored in Harvard Dataverse by expanding its accessibility and making
it easily integrated into researchers’ current processes.

• Community and Collaboration: Harvard Dataverse fosters scientific col-
laboration by enabling scholars to create libraries and curate datasets by
theme, project, or team. For example, the leading data catalogue service
data.world 35 ,36 supports integration with Harvard Dataverse. Such libraries
help identify related datasets and connect diverse research fields, promot-
ing interdisciplinary cooperation and advancing the common good.

Thus, Harvard Dataverse is a key structure in the academic and research soci-
ety. Thematically, it is rich in terms of covered functions, is completely committed
to the principles of open science, and has a rather large impact on the practices
of researchers. Thus Harvard Dataverse also substantially helps the multiple-
researcher cooperation as well as the identification of the higher objectives of
science and development.

35https://data.world/
36https://www.gartner.com/reviews/market/active-metadata-management/vend

or/data-world/product/data-world
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8 Experimental Results

8.1 Inter-Rater Reliabilities of the Investigated Methods

Table 11: Proportional agreement p, Cohen’s κ, φ-coefficient and p-value of the χ2 test for
independence p(χ2

AyB) for all combinations of the investigated methods, i.e., the Ad-Hoc
method, Oaxaca-Blinder Decomposition (OB-Dec.), linear-regression-based (Regr.), and C-
IA-based.

A B pAB κAB φAB p(χ2
AyB)

Ad-Hoc OB-Dec. 0.5765 0.0027 0.0027 0.0064

Ad-Hoc Regr. 0.6526 -0.0001 -0.0001 0.9270

Ad-Hoc C-IA 0.6165 0.0491 0.0491 0.0000

OB-Dec. Regr. 0.6094 0.0001 0.0001 0.9018

OB-Dec. C-IA 0.5875 0.0424 0.0426 0.0000

Regr. C-IA 0.6636 0.0648 0.0689 0.0000

Table 11 presents the main discovery of this study37. When mutually com-
pared, the four investigated methods for detecting confounders do not show any
relevant agreement or disagreement in the sense of Cohen’s κ (Def. 6), i.e., they
do not show any relevant agreement or disagreement beyond chance, see the
discussion in Section 2.4.1 and Def. 9.

Actually, for all pairs of used methods, Cohen’s κ is almost zero (κ ≈ 0), see Ta-
ble 11. As the quality of Cohen’s κ has been discussed in the literature [53, 44], we
also provide the φ coefficients (Def. 11) for each pair of methods in Table 11. The
φ coefficients re-confirm the result, i.e., their are almost no correlations (φ ≈ 0)
between any pair of methods.

The fact that the investigated methods do not show any relevant agreement
or disagreement is a surprising and relevant discovery at the same time:

• Surprisingness: The fact is surprising, as all of the investigated methods
have been specifically designed for exactly the same target: to detect con-
founders, where, actually, three of the methods (Ad-Hoc, OB-decomposition,
linear-regression-based) have been in widespread use over the decades in
a plethora of scientific studies for detecting confounders.

• Relevance: The fact is highly relevant for the working data scientist in choos-
ing methods for the detection and adjustment of confounders. A dominat-
ing decision criterion remains good fit to the data science technique that
is used in a specific study. Decision criteria for data science techniques, in
general, are in the composition of heterogeneous data, i.e., the scale of the
most important factors in a study, and, on the other hand, best practices of
the respective study’s research field.

37the precise calculations (30 decimal points) are available as Excel-file for download:
https://github.com/istaltech/Measures-of-Impact-and-Confounding
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Given that both the κ-values and φ-coefficients are all very close to zero for
all combinations, this immediately leads to the assumption that the factors are
all pairwise independent, or at least close to independency. A look into the cor-
responding contingency tables and confusion matrices, see in Table 12 and 13,
immediately reconfirms us with this assumption (with values 48.50 vs. 48.45,
60.73 vs. 60.74, 52.83 vs. 51.84 etc.), at least from a practical, data-analyst
viewpoint.

Given that the observed values are seemingly close to independence, we have
also conducted a X2 test for independence for each combination, see Table 11.
From a statistical viewpoint, only the combinations of Ad-Hoc/Regression and
OB-Decomposition/Regression would usually be argued to be close to indepen-
dence, with very high p-values of 0.9270 and 0.9018 respectively38. All other
combinations show very small p-values39, and, therefore, must not be considered
as independent from the viewpoint of statistical significance. The results of the
X2 test are due to the very large sample sizes, with close to 1 Million experiment
runs for each measure, see Fig. 8.

The calculated p-values of the X2 tests (Table 11) are a good example for
ASA’s warning [225], that p-values should not be interpreted barely without con-
text40. Given the large sample sizes, the X2 test for independence is simply a
too fine-grained analytical device (“too sharp knife"). Instead the κ-statistic and,
similarly, the φ-coefficient, provide appropriate (pragmatic/heuristic) measures
from the viewpoint of the working data analyst. In case of our data, the κ-values
and φ-coefficients are even almost equal for all combinations, see Table 11. It is
known from the literature, that Cohen’s κ and the φ coefficient behave similarly
under certain conditions [44, 53, 89, 7], e.g., they are exactly the same in case of
perfectly balanced contingency tables41 [7]. In our case, it can be assumed that
the similarities of the κ-values and φ-coefficients are rather due to the fact, that
they are all already very close to zero.

For the sake of completeness, we have also conducted the z-test for Cohen’s κ
under the null hypothesis that κ = 0 (H0 : κ = 0) for all combinations of measures,
see Table 14 for the calculated p-values (calculated according to [76, 77], see
Sect. 2.4.4, Def. 10 and (24)). Given the large sample sizes, the p-values of the
κ z-tests and the χ2 tests are almost perfectly the same for all combinations,
see their differences in terms of 20 decimal points in Table 14. This means, in
our case, that the κ z-tests are just another device for testing independence,
reconfirming the analysis of the χ2 tests through the lens of inter-rater reliability.

38Formally, the p-values merely mean, that at least 92.70% resp 90.18% of data sets
would show observed values as least as extreme (as least as different from independent
values (H0 hypothesis)) as the current data set. Note, the American Statistical Association
(ASA) has clarified that “a relatively large p-value does not imply evidence in favour of the
null hypothesis” [225].

39Actually, the p-values of all three combinations of the C-IA measure with other mea-
sures are zero up to 30 decimal points.

40“Researchers should recognize that a p-value without context or other evidence pro-
vides limited information." [225]

41In case of 2× 2-contingency tables with factors A and B, the contingency table is said
to be perfectly balanced in case that P(A) = P(B) (and, consequentially, P(¬A) = P(¬B)).
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Table 12: Contingency tables for all combinations of the investigated methods, i.e., Ad-
Hoc, Oaxaca-Blinder decomposition (OB-Dec.), regression (Regr.), Coupled Impact Assess-
ment (C-IA), each contingency table showing also the product (hypothetical independent
probability) of the marginals.

A B P(AB) P(AB) P(AB) P(A B) P(A) P(B) P(A)P(B)

Ad-Hoc OB-Dec. 48.50 24.43 17.92 9.15 72.93 66.43 48.45

Ad-Hoc Regr. 60.73 12.20 22.54 4.53 72.93 83.28 60.74

Ad-Hoc C-IA 52.83 20.10 18.25 8.82 72.93 71.08 51.84

OB-Dec. Regr. 55.32 11.11 27.96 5.62 66.43 83.28 55.32

OB-Dec. C-IA 48.13 18.29 22.95 10.62 66.43 71.08 47.22

Regr. C-IA 60.36 22.91 10.72 6.00 83.28 71.08 59.20

Table 13: Confusion matrices for all combinations of the investigated methods,i.e., Ad-Hoc,
Oaxaca-Blinder decomposition (OB-Dec.), regression (Regr.), Coupled Impact Assessment
(C-IA), with N=985,703 overall existing combinations of potential confounders.

A B AB AB AB A B A B Ay B

Ad-Hoc OB-Dec. 478,103 240,793 176,662 90,145 718,896 654,765 477,535

Ad-Hoc Regr. 598,652 120,244 222,201 44,606 718,896 820,853 598,667

Ad-Hoc C-IA 520,774 198,122 179,907 86,900 718,896 700,681 511,023

OB-Dec. Regr. 545,283 109,482 275,570 55,368 654,765 820,853 545,261

OB-Dec. C-IA 474,432 180,333 226,249 104,689 654,765 700,681 465,436

Regr. C-IA 594,987 225,866 105,694 59,156 820,853 700,681 583,498

Table 14: p-value p(zκ=0) of the z-test for Cohen’s κ under the null hypothesis that κ = 0
(H0 : κ = 0), p-value of the χ2 test for independence p(χ2

AyB), and their difference up to 20
decimal points for all combinations of the investigated methods, i.e., the Ad-Hoc method,
Oaxaca-Blinder Decomposition (OB-Dec.), linear-regression-based (Regr.), and C-IA-based.

A B p(zκ=0) p(χ2
AyB) p(zκ=0)− p(χ2

AyB)

Ad-Hoc OB-Dec. 0.0064 0.0064 0.00000000000000122125

Ad-Hoc Regr. 0.9270 0.9270 -0.00000000000030819791

Ad-Hoc C-IA 0.0000 0.0000 0.00000000000000000000

OB-Dec. Regr. 0.9018 0.9018 -0.00000000000024724667

OB-Dec. C-IA 0.0000 0.0000 0.00000000000000000000

Regr. C-IA 0.0000 0.0000 0.00000000000000000000
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Table 15: Investigated drill-down patterns of confounding behaviour: pattern name; pat-
tern description; method used in data case study.

Pattern Pattern Description Measure

Increased
Confounding

A confounding effect is substantially
increased as the result of adding further
potential confounders to the analysis, see
Section 8.3.

Ad-Hoc

Negative Explained
Effect
(specific to
OB-decomposition)

The unexplained effect increases as the
result of adding a further potential
confounder, i.e, a negative explained
effect occurs, see Section 8.4.

Oaxaca-Blinder
Decomposition

Cancelling Out A confounding effect is substantially
reduced or even vanishes as the result of
adding further potential confounders to
the analysis, see Section 8.5.

Linear
Regression

Time-Wise Change A confounding effect changes over time,
see Section 8.6.

C-IA

8.2 Identified Drill-Down Patterns of Confounding Behaviour

Overall, we have conducted 2,776 experiments, see Def. 19 and Figure 8. Be-
yond the quantitative investigations presented in Sect. 8.1, we started to care-
fully study the experiment outcomes qualitatively. In the beginning, we aimed
at discovering interesting phenomena such as statical paradoxes [196] and any
kind of data patterns [50]. After a while, our focus was narrowed on identifying
patterns of confounding during drill-down, i.e., to be more precise, during drill-
down into multiple potential confounders.

In a first round, we have briefly studied the outcomes of each experiment in-
dividually in order to gain an overview. In a second round, we delved deeper into
investigating the experiment outcomes, individually and comparatively against
each other. In our investigation, we used our Python code base, see Appendix A
(see Publication V, IV, and II), enriched with data visualizations42.

After these studies, we found four patterns of confounding worth to be com-
municated that we have summarized in Table 15.

The first pattern, called Increased Confounding, is about accumulative con-
founding effects. Here, some confounders have been found, and then, adding
further potential confounders to the analysis increases the confounding effect.
This pattern might seem rather intuitive and straightforward, but is important,
in particular when compared to its dual pattern Cancelling Out to be discussed
in due course. In Section 8.3, we present two data case studies that detect this
pattern with the help of the Ad-Hoc method of confounder adjustment.

The second pattern, called Negative Explained Effect, is specific to Oaxaca-
Blinder decomposition. Here, the unexplained effect found in an Oaxaca-Blinder
decomposition increases as the result of adding a further potential confounder,
i.e, a negative explained effect occurs. We investigate this pattern in two data

42https://matplotlib.org/
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case studies in Section 8.4.
The third pattern, called Cancelling Out, is dual to the pattern Increased Con-

founding. Here, some confounders have been found, and then, adding further
potential confounders to the analysis decreases the confounding effect. This pat-
tern shows, how important it is, to conduct fine-grained, combinatorial analyses
of confounding effects. In Chapter 4, we have discussed that it is common prac-
tice in many studies to utilize multiple linear regression to detect confounders.
Here, usually, multiple potential confounders are added simultaneously to adjust
for confounding. However, as the Cancelling Out pattern shows, important con-
founding effects might be overlooked, if individual potential confounders are not
also analysed isolated or in smaller groups. Therefore, in Section 8.5, we present
two data case studies that detect this pattern with the help of linear-regression-
based confounder adjustment.

The fourth pattern is called Time-Wise Change. Here, the confounding effect
of a group of confounders changes over time. In Section 8.6, we present two
data case studies that detect this pattern with the help of linear-regression-based
confounder adjustment.

Each of the confounding patterns shows in one of the data case studies in Sec-
tions 8.4 through 8.6. Table 15 includes information, in which of the Sections 8.4
through 8.6 each pattern is shown, and also, which measure is used to detect the
pattern in the respective data case study.

8.3 Case-Studies on the Ad-Hoc Method

In this analysis, the Ad-Hoc method (32) is used to assess causal effects within
694 datasets. The analysis focuses on evaluating the causal impact of the pri-
mary influencing variable by systematically controlling for confounding variables.
Incorporating potential confounding variables into the analysis ensures that the
estimated causal effect represents the direct influence of the primary influenc-
ing variable more accurately, thereby minimizing distortions caused by external
influences.

A key observation from the analysis is the role played by confounding vari-
ables in refining causal estimates. The confounding effect is indicated by the
increase in percentage difference of potential confounders when adding to the
analysis as a combination. Some variables show negligible or non-confounding
effects after adding them individually to the analysis. To gain a deeper under-
standing of this effect, we will explore specific examples from our dataset.

8.3.1 Child Weight Dataset

The dataset captures details about children’s age, weight z-scores, expenditures
on food and health, and gender. The analysis focus on identifying the causal
effect of age (in months) on weight z-scores while accounting for potential con-
founders.

The dataset consists of 9,168 observations with the following variables:

• Gender (X): Gender, serving as the primary influencing factor, measured as
a categorical variable encoded as integers (Primary Influencing Factor).

• weight_z (Y): Weight z-score, serving as the target variable, measured as
continuous variable (Target Variable).
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• exp_food (Z1): Expenditure on food, measured as a continuous variable (Po-
tential Confounder).

• exp_health (Z2): Expenditure on health services, measured as an integer
(Potential Confounder).

• age_months (Z3): Gender, measured as continuous variable (Potential Con-
founder).

For an overview over the Child Weight dataset and relationships among its
factors, see Figure 10.

age_months 
77.24 - 92.51  

0.963 

exp_food 
25000 - 30000 

0.496 

exp_health 
8000 - 400000 

 0.982 

weight_Z 
Gender  
(Male) 

1.686 

Figure 10: Impact graph of the Child Weight Dataset: Edges are annotated with lifts as la-
bels. The information in the impact graph is incomplete. It highlights only the ARM lifts [4]
between selected instances of potential confounders and a selected instance of the pri-
mary influencing factor Gender=Male, as well as the generalized ARM lift (see (16) and
[62]) between a selected instance of the primary influencing factor Gender=Male and the
target value weight_z.

This analysis aims to estimate the causal effect of Gender on weight_z while
accounting for potential confounders using the Ad-Hoc formula (32). Several sce-
narios were considered, where potential confounders were introduced incremen-
tally to adjust for their influence on the causal relationship between Gender and
weight_z.

The initial analysis examined the relationship between Gender and weight_z
without adjusting for any potential confounders. The observed value of weight_z
for Gender = 0 was -1.686, while for Gender = 1, it was -1.677. The difference be-
tween these two values was -0.009. These results represent the marginal values,
as no adjustments for confounding variables were made.

When the variable age_months was introduced as a confounder, the adjusted
values of weight_z changed slightly. For Gender = 0, the adjusted value was
-1.687, while for Gender = 1, it was -1.676. The difference between these ad-
justed values was -0.0114. This adjustment indicated a percentage difference
of 23.56% compared to the marginal values. This notable percentage difference
suggested that age_months had an influence on the causal relationship between
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Gender and weight_z. Including this confounder brought to light the importance
of age in months as a factor affecting weight outcomes.

The next confounder examined was exp_food, representing expenditure on
food. After adjusting for this variable, the adjusted value of weight_z for Gender =
0 was -1.684, and for Gender = 1, it was -1.677. The difference between these two
values was -0.007, corresponding to a percentage difference of -24.76% com-
pared to the marginal values. The results indicated that expenditure on food had
an impact on the causal effect of Gender on weight_z.

When exp_health, representing expenditure on health services, was introduced
as an individual confounder, the results were more or less the same as the marginal
values. The percentage difference was below of our cutoff rule (Def. 17). This
result suggested that exp_health did not have a substantial confounding effect
when considered individually.

The analysis was extended to examine combinations of potential confounders.
When age_months was combined with exp_health, the percentage difference in-
creased from 23.56% (the individual effect of age_months) to 28.57%, indicat-
ing a 5% increase. This highlighted the synergistic effect of combining these
two variables in the adjustment process. Similarly, when exp_food was com-
bined with exp_health, the percentage difference shifted significantly, reaching
-38.84%. This substantial change demonstrated that exp_food and exp_health
together influenced the causal effect of Gender on weight_z stronger than any
of the potential confounders individually.

Finally, when adjustments were made for all potential confounders simulta-
neously, the pattern of increasing percentage differences persisted. The com-
bined adjustment resulted in a percentage difference of 28.83%. This result un-
derscored the importance of considering multiple confounders together, as their
combined effects might reveal stronger confounding influences even when indi-
vidual effects appeared negligible. The findings demonstrated that a drill-down
approach, where adjustments are made incrementally and systematically, is es-
sential for accurately identifying and accounting for confounding effects.

8.3.2 CEQ Assessment Guatemala

The analysis aimed to estimate the causal effect of urban on tot_exp while adjust-
ing for potential confounders using the Ad-Hoc formula (32). To ensure compre-
hensiveness, the analysis included various combinations of potential confounders
to assess their individual and combined influence on the relationship between ur-
ban living and total expenditure.

The dataset consists of 11,530 observations with the following variables:

• urban (X): Indicator of whether the household is located in an urban area,
serving as the primary influencing factor, measured as a categorical vari-
able encoded as integers (Primary Influencing Factor).

• tot_exp (Y): Total expenditure of the household, serving as the target vari-
able, measured as continuous variable (Target Variable).

• final_Income (Z1): Total income, measured as a continuous variable (Poten-
tial Confounder).

• no_persons (Z2): Persons in the household, measured as a continuous vari-
able (Potential Confounder).
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• elec_pc (Z3): Electricity expenditure per capita, measured as a continuous
variable (Potential Confounder).

• fee_hlth_pc (Z4): Health-related expenditure per capita, measured as a con-
tinuous variable (Potential Confounder).

• fee_educ_pc pc (Z5): Education-related expenditure per capita, measured
as a continuous variable (Potential Confounder).

• alc_pc pc (Z6): Alcohol expenditure per capita, measured as a continuous
variable (Potential Confounder).

• nal_pc (Z7): non-alcoholic beverages expenditure per capita, measured as
a continuous variable (Potential Confounder).

• cigr_pc (Z8): Tobacco expenditure per capita, measured as a continuous
variable (Potential Confounder).

For an overview over the CEQ Assessment Guatemala dataset and relation-
ships among its factors, see Figure 11.

The initial phase of the analysis focused on the unadjusted relationship be-
tween urban and tot_exp. The observed value of tot_exp for urban = 0 was
212.92 , while for urban = 1, it was 152.72. The difference between these two
values was 60.2. Since no adjustments were made for potential confounders at
this stage, these values represented marginal effects. These results served as a
baseline for subsequent comparisons after adjusting for confounders.

In the next stage, the analysis incorporated individual confounders to adjust
the observed relationship. When final_Income was introduced as a confounder,
the adjusted tot_exp for urban = 0 decreased to 167.78, and for urban = 1, it
increased to 194.86. The difference between these adjusted values narrowed to
27.08, representing a substantial percentage change of 75.89% compared to the
marginal values. Similarly, when elec_pc (electricity expenditure per capita) was
included as a confounder, the adjusted tot_exp values were 165.4 for urban = 0
and 197.72 for urban = 1, resulting in a difference of 32.32. This represented
a percentage change of 60.27% relative to the marginal values. These findings
suggested that both final_Income and elec_pc had a significant confounding ef-
fect on the relationship between urban living and total expenditure, indicating
their strong influence on the observed causal relationship.

In contrast, the introduction of fee_educ_pc (expenditure on education) as
an individual confounder yielded results closely resembling the marginal values.
The adjusted percentage difference was merely 1.69%, falling below our cutoff
rule (“Def. 17”). This negligible change suggested that fee_educ_pc did not exert
a substantial confounding effect when considered in isolation.

Further analyses examined the impact of additional potential confounders, in-
cluding no_persons, fee_hlth_pc, alc_pc, nal_pc, and cigr_pc. When these vari-
ables were individually introduced as confounders, the adjusted values of tot_exp
shifted notably. The percentage differences relative to the marginal values were
34.33% for no_persons, 40.82% for fee_hlth_pc, 27.88% for alc_pc, 25.79% for
nal_pc, and 15.27% for cigr_pc. These results demonstrated that, except for
fee_educ_pc, all other potential confounders had a measurable confounding ef-
fect on the relationship between urban and tot_exp when considered individually.
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Figure 11: Impact graph of the CEQ Assessment Guatemala Dataset: Edges are annotated
with the lift as labels. It highlights only the ARM lifts [4] between selected instances of
potential confounders and a selected instances of the primary influencing factor urban =
1, as well as the generalized ARM lift (see (16) and [62]) between the primary influencing
factor urban and the target value tot_exp.

The analysis then progressed to examine combinations of potential confoun-
ders to explore their combined effects on the relationship between urban living
and tot_exp. Interestingly, when fee_educ_pc, which showed a negligible individ-
ual confounding effect, was combined with other variables, its impact became
more pronounced. For instance, the combination of fee_educ_pc and fee_hlth_pc
resulted in a percentage difference of 43.01% compared to the marginal values.
This was a significant increase from the individual effects of fee_educ_pc (1.69%)
and fee_hlth_pc (40.82%), suggesting a synergistic interaction between these
two confounders. Similar patterns were observed when fee_educ_pc was com-
bined with other variables. These findings highlighted the importance of consid-
ering combinations of confounders, as their joint effects might reveal underlying

77



interactions that are not apparent when variables are analysed individually.
To deepen the understanding of these interactions, the analysis considered

all potential confounders simultaneously. The combined adjustment resulted in
a dramatic increase in the percentage difference, reaching 152.46% relative to
the marginal values. This finding underscored the cumulative effect of multiple
confounders on the observed relationship between urban living and total expen-
diture. While some variables, like fee_educ_pc, exhibited negligible individual ef-
fects, their inclusion in the combined adjustment revealed significant interactions
with other variables. This highlights the need for comprehensive approaches to
confounder adjustment, as neglecting such interactions can lead to biased con-
clusions.

8.4 Case Studies on Oaxaca-Blinder Decomposition

The Oaxaca-Blinder decomposition is a statistical technique widely used to anal-
yse group-based differences in a selected outcome variable, see Section 3.3. The
method is particularly valuable for disentangling the sources of disparities ob-
served between groups, as it decomposes the overall difference into two primary
components: the explained component and the unexplained component.

The Oaxaca-Blinder decomposition identified less confounding effects than
any other measures used in this study, i.e., 66.43%, see Table 12. This could be
attributed to several factors, such as the method’s relative complexity or its spe-
cific applicability to certain types of data. Unlike more straightforward methods,
the Oaxaca-Blinder decomposition requires rigorous model specification and a
deep understanding of the relationships between variables, which may make it
less accessible or less commonly applied in certain contexts.

In this section, we identify a negative explained effect of confounding variable,
which is an interesting phenomenon in the datasets. A negative explained effect
indicates that the observed differences in characteristics should, in theory, re-
duce the gap – but instead, the gap persists or even increases. This implies that
these improved characteristics should reduce the observed gap; however, they
do not, because the unexplained component dominates.

To further demonstrate negative explained effect, we analyse some examples
from our dataset.

8.4.1 K12Education

The dataset comprises comprehensive information about total wages of different
persons, capturing different aspects of attributes such as employer name, posi-
tion, elected , etc. The primary focus of the analysis is to investigate the effect of
gender on total wages while carefully accounting for potential confounders.

• Gender (X): Gender, serving as the primary influencing factor, measured as
a categorical variable encoded as integers (Primary Influencing Factor).

• TotalWages(Y): Total Wages, serving as the target variable, measured as
continuous variable (Target Variable).

• EmployerName (Z1): The name of the employer, measured as a categorical
variable (Potential Confounder).

• Position (Z2): Position, measured as a categorical variable (Potential Con-
founder).
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• ElectedOfficial_B (Z3): Officially elected for the post, measured as a boolean
variable (Potential Confounder).

• EmployerCounty (Z4): The employment place, measured as a categorical
variable (Potential Confounder).

For an overview over the K12Education dataset and relationships among its
factors, see Figure 12.

ElectedOfficial 

1.716 

Position 

0.002 

EmployerCounty 

0.5
90

 

EmployerName 

0.124 

TotalWages Gender 261.61 

Figure 12: Impact graph of the K12Education Dataset: a green edge indicates a positive
slope of the linear regression line between two nodes. Edges are annotated with the con-
crete slopes as labels. The information in the impact graph is incomplete. It highlights only
slopes between potential confounders and the primary influencing factor Gender, as well
as the slope between the primary influencing factor Gender and target value TotalWages.

When only gender is used as an explanatory variable, the explained effect is
0.00 and the unexplained effect is 262.24. None of the wage gap is attributed to
observable differences in gender. The entire wage gap is left unexplained, sug-
gesting that factors such as discrimination or unobservable characteristics con-
tribute significantly to the gap. This serves as the baseline for subsequent mod-
els. These values are considered as marginal values for performing a drill-down
operation to identify the impacts and patterns within the dataset.

Adding EmployerName as an explanatory variable accounts for a portion of
the wage gap, as evidenced by the positive explained effect (62.95) and a re-
duced unexplained effect (206.70). This indicates that differences in employer

79



representation between groups contribute to the wage disparity. The significant
decrease in the unexplained effect compared to the marginal value demonstrates
that employer-related factors play a substantial role in reducing the unexplained
component of the wage gap. However, despite this reduction, the majority of the
gap remains unexplained, implying that additional factors not captured by Em-
ployerName may also influence the wage gap.

Including Position and ElectedOfficial independently as explanatory variables
results in negative explained effects of −8.37 and −1.97, respectively, while the
unexplained effects are 270.6 and 264.21, respectively. These results indicate
that the wage gap increases after accounting for positions. This counterintuitive
finding may arise from overlapping effects between variables. Furthermore, the
status of being an elected official provides minimal explanatory power, as shown
by the small negative explained effect. Despite these adjustments, most of the
wage gap remains unexplained, indicating that neither the elected official status
nor the position significantly contribute to the wage disparity.

The most comprehensive model, which includes all available potential con-
founding variables, achieves the highest explained effect (64.05) among the mod-
els. This indicates that these variables collectively explain a significant portion
of the wage gap. Additionally, the unexplained effect decreases to 198.19, sug-
gesting that this model captures more variation in the data than simpler models.
However, even with this more sophisticated model, a substantial portion of the
wage gap remains unexplained.

Observable factors such as EmployerName and Position explain a meaningful
portion of the wage gap, with EmployerName consistently contributing to a sig-
nificant portion of the explained effect. This highlights the role of employer-level
factors in wage disparities. However, variables such as Position and ElectedOffi-
cial occasionally result in negative explained effects, suggesting potential biases
i.e., how these variables interact with others.

The dominance of the unexplained effect across all models is evident in this
dataset. Regardless of the explanatory variables used, the unexplained effect
remains the largest contributor to the wage gap. This finding suggests that un-
measured or unobservable factors play a critical role in the observed disparities.
This indicates that the gap persists or widens because individuals receive lower
returns for these variables. It suggests that improving observable characteristics
alone will not be sufficient to close the gap.

8.4.2 Payroll-2014-2015 Dataset

The dataset comprises comprehensive information about payroll for the year of
2014 and 2015, capturing different aspects of attributes such as agency name,
hours worked, account description , etc. The primary focus of the analysis is to
investigate the effect of Year on wages while carefully accounting for potential
confounders.

The dataset contains payroll information for 2014 and 2015 from the city of
Oklahoma, USA, comprising 903,131 records and six columns.

• Year (X): Year, serving as the primary influencing factor, measured as a cat-
egorical variable (Primary Influencing Factor).

• Wages (Y): Wages, serving as the target variable, measured as continuous
variable (Target Variable).
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• Agency Name (Z1): The name of the agency, measured as a categorical
variable (Potential Confounder).

• Hours (Z2): The number of hours worked, measured as continuous variable
(Potential Confounder).

• Account Description (Z3): Description of the payment type, measured as a
categorical variable (Potential Confounder).

• Month (Z4): Month, measured as a categorical variable (Potential Confoun-
der).

For an overview over the Payroll-2014-2015 dataset and relationships among
its factors, see Figure 13.

Hours 
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Description 

-67.86 
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-37
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Figure 13: Impact graph of the Payroll-2014-2015 Dataset: a green edge indicates a pos-
itive slope and a red edge indicates a negative slope of the linear regression line between
two nodes. Edges are annotated with the concrete slopes as labels. The information in the
impact graph is incomplete. It highlights only slopes between potential confounders and
the primary influencing factor Year, as well as the slope between the primary influencing
factor Year and target value Wages.

The initial analysis focused on the decomposition of Wages where Year was
the sole explanatory variable. The approach revealed that the explained effect
was negligible, showing a value of 0.00, while the unexplained effect was 2563.04.
These results indicate that Year alone does not account for any observed Wages
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disparities. This outcome underscores the necessity of incorporating additional
variables to capture the complexities of Wages differences and identify their sour-
ces.

A significant shift occurred when Hours was added alongside Year in the anal-
ysis. The inclusion of Hours dramatically increased the explained effect to a
value 2246.48, while the unexplained effect sharply dropped to 316.56. This repre-
sents a percentage difference of −156.02% from the marginal value of the unex-
plained effect. The reduction in the unexplained effect demonstrates that Hours
captures much of the variation that Year alone could not.

The inclusion of Agency Name as an additional factor alongside Year brought
another layer of insight to the analysis. With this combination, the explained
effect increased to 461.69, while the unexplained effect decreased from 2563.04
to 2101.35. However, despite the improvement, a significant unexplained portion
of the Wages difference persists. This indicates that Agency Name alone are
insufficient to fully account for the observed disparities.

In contrast, when Account Description and Month were added individually
alongside Year, the explained effect turned negative (−92.32 and −591.95 , re-
spectively), while the unexplained effect increased to 2655.36 and 3154.99. These
negative explained effects indicate that the variations in these variables actually
contribute to widening the gap. This counterintuitive outcome suggests that cer-
tain confounding factors associated with Account Description and Month may
interact in ways that exacerbate disparities. These findings are particularly note-
worthy, as they highlight the complex interplay of factors that can influence out-
comes.

Interestingly, all combinations involving Account Description and Month con-
sistently exhibited this negative explained pattern, except when Hours was in-
cluded. This anomaly further underscores the significant role of Hours in mitigat-
ing disparities. The findings imply the following: while Account Description and
Month may independently amplify disparities, their combined effect with Hours
neutralizes, i.e., reduces, these impacts. This highlights the importance of drill-
down analysis, as isolated effects may not capture the full picture of their influ-
ence on outcomes.

8.5 Case Studies on the Linear-Regression-Based Method

In this section, we investigate the confounding effects of various variables (“Z”)
on the relationship between primary influencing variable (“X”) and target variable
(“Y”) using multiple regression analysis.

To further demonstrate its effectiveness, we will analyse some examples from
our dataset.

8.5.1 Residential Survey Dataset

The dataset comprises comprehensive information about citizens from various
states in India, capturing key demographic and socio-economic attributes such as
average income, average expenditure, gender, religion, land area, age, and edu-
cation levels. The primary focus of the analysis is to investigate the causal effect
of age on average income while carefully accounting for potential confounders.

Age, as a critical demographic variable, is hypothesized to influence income
levels through various channels such as experience and career progression. How-
ever, this relationship can be obscured or distorted by confounding factors like
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education level, gender, or regional disparities in economic opportunities. For ex-
ample, individuals with higher education levels may earn more, regardless of their
age; or cultural norms around gender roles may impact income levels differently
across groups.

The dataset consists of 14,851 observations with the following variables:

• Age (X): Age, serving as the primary influencing factor, measured as contin-
uous variable. (Primary Influencing Factor)

• Avgincome (Y): Average income, serving as the target variable, measured
as continuous variable. (Target Variable)

• Avgexp (Z1): Average expenditure, measured as a continuous variable (Po-
tential Confounder).

• Education (Z2): Education, measured as a categorical variable indicating
the education level (Potential Confounder).

• Gender (Z3): Gender, measured as a categorical variable encoded as inte-
gers (Potential Confounder).

• Landarea (Z4): Land area, measured as a continuous variable (Potential
Confounder).

• Religion (Z5): Religion, measured as a categorical variable encoded as inte-
gers (Potential Confounder).

• State (Z6): State, measured as a categorical variable indicating the states
(Potential Confounder).

See Figure 14 for an overall impact graph (Def. 3) for the dataset. This specific
impact graph indicates the slopes of the regression line between each potential
confounder and the primary influencing factor (Age) as a green edge (for positive
slopes) or red edge (for negative slopes), together with the concrete slope as
a label. Furthermore, it indicates the slope of the regression line between the
primary influencing factor (Age) and the target value (Avgincome).

In this analysis, age was the sole predictor of average income, and the analy-
sis revealed a coefficient of 5.11 for age. This coefficient represents the marginal
increase in average income corresponding to a one-unit increase in age. To as-
sess whether other variables act as confounders, we incorporated, step by step,
additional potential confounders into the regression model and analyzed their
impact on the coefficient for age.

When gender was introduced into the regression model as an additional pre-
dictor, the coefficient for age increased slightly from 5.11 to 5.19, reflecting a
percentage difference of 1.53%. This marginal change suggests that gender has
a minimal confounding effect on the relationship between age and average in-
come. Notably, the coefficient for gender itself was 20.48, but it did not pass
our study’s 10% cutoff rule (Def. 17), indicating that gender alone does not sub-
stantially influence average income in this context. These findings suggest that,
while gender may have some effect on income, its role as a confounder in the
age-income relationship is limited.

Introducing average expenditure into the model substantially altered the coef-
ficient for age, reducing it from 5.11 to 4.27, a percentage difference of -17.90%.
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Figure 14: Impact graph of the Residential Survey Dataset: a green edge indicates positive
slope and a red edge indicates a negative slope of the linear regression line between two
nodes. Edges are annotated with the concrete slopes as labels. The information in the
impact graph is incomplete. It highlights only slopes between potential confounders and
the primary influencing factor Age, as well as the slope between the primary influencing
factor Age and the target value Avgincome.

This substantial decrease in the age coefficient indicates that average expendi-
ture acts as a strong confounder. Its inclusion suggests that part of the income
variation previously attributed to age can actually be explained by expenditure
patterns. This result highlights the importance of accounting for economic be-
haviours such as spending when analysing the determinants of income.

Education and state were added to the regression model to investigate their
individual and combined effects. When education was included as a predictor,
the coefficient for age increased significantly to 14.67, a percentage difference
of 96.72% to the marginal coefficient. Similarly, when state was included inde-
pendently, the coefficient for age increased to 7.99, a percentage difference of
43.90%. When both education and state were included together as predictors,
the coefficient for age was 7.23, reflecting a combined percentage difference of
103.62%. These results suggest that both education and state strongly con-
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found the age-income relationship, as they substantially influence the coefficient
of age. Higher education levels are often associated with better-paying jobs, while
state-level variations could reflect regional economic disparities.

When land area and religion were added as predictors, the changes in the
age coefficient were negligible. The percentage differences were below our min-
imum threshold (Def. 17) required to indicate a confounding effect. While these
variables might play a role in specific contexts or subgroups, their overall impact
appears to be minimal in the current analysis.

When education and state were combined with average expenditure in the
model, the confounding effect was effectively cancelled out, with the age coef-
ficient decreasing slightly to 4.96, reflecting a percentage difference of -2.9%.
This phenomenon suggests that adding multiple confounders can offset their in-
dividual influences, neutralizing the overall confounding effect. Interestingly, the
combination of education and average expenditure also failed to meet the con-
founding criteria based on the cutoff threshold. This highlights the complex in-
terplay between these variables, where their combined inclusion may account for
overlapping variance or interactions that mitigate their individual impacts on the
age-income relationship.

8.5.2 Cooking Energy Survey Dataset

This dataset contains information related to cooking energy access and house-
hold characteristics. The primary focus is on understanding factors that influ-
ence cooking expenditure, which serves as the dependent variable. The dataset
includes several demographic, socioeconomic, and lifestyle variables, making it
suitable for analysing relationships and confounding effects between household
characteristics and their cooking-related spending.

The dataset is well-suited for regression and causal analysis, as it includes
both continuous variables (e.g., cooking expenditure and household size) and
categorical variables (e.g., ration card type, income source, and primary fuel).
By examining these variables, we can investigate how household characteristics
and resource availability impact cooking expenditures and identify potential con-
founding effects among the variables.

• hh_num (X): Number of persons in the house, serving as the primary influ-
encing factor, measured as continuous variable (Primary Influencing Fac-
tor).

• Cooking_expenditure (Y): The amount of money spent on cooking-related
resources, serving as the target variable, measured as continuous variable
(Target Variable).

• hh_type (Z1): Type of household (e.g., rural or urban), measured as a cate-
gorical variable (Potential Confounder).

• Age (Z2): Age, measured as continuous variable(Potential Confounder).

• Education (Z3): Education, measured as a categorical variable indicating
the education level (Potential Confounder).

• Gender (Z4): Gender, measured as a categorical variable encoded as inte-
gers (Potential Confounder).
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• Religion (Z5): Religion, measured as a categorical variable encoded as inte-
gers (Potential Confounder).

• type_rationcard: (Z6): Type of ration card held by the household indicating
socio-economic classification, measured as a categorical variable (Poten-
tial Confounder).

• monthly_income (Z7): Monthly income, measured as a categorical variable
indicating income levels (Potential Confounder).

• primary_cookstove (Z8): The type of primary cookstove used (e.g., LPG stove,
traditional stove), measured as a categorical variable (Potential Confounder).

• primary_fuel (Z9): The type of primary fuel used for cooking (e.g., firewood,
LPG, kerosene), measured as a categorical variable (Potential Confounder).

• income_source (Z10): Primary income source , measured as a categorical
variable (Potential Confounder).

See Figure 15 for an overall impact graph (Def. 3) for the dataset. Figure 15
indicates positive and negative linear regression slopes between potential con-
founders and the primary influencing factor hh_num, plus the slope between the
primary influencing factor hh_num and the target value Cooking_expenditure.

The analysis investigates the presence of confounding effects in the relation-
ship between the number of persons in a household (hh_num) and cooking expen-
diture (Cooking_expenditure) by incorporating socio-economic variables as po-
tential confounders. Using regression analysis, the aim was to determine whether
these variables altered the observed association between household size and
cooking expenditure, indicating the presence of confounding effects.

In the initial regression model, the number of persons in a household was
the sole predictor of cooking expenditure. The analysis revealed a coefficient
of 278.99 for household size, indicating a positive relationship. This coefficient
suggests that, on average, for every additional person in a household, cooking
expenditure increases by approximately 278.99 money units. This finding is intu-
itive, as larger households typically consume more resources for cooking due to
higher demand.

To explore potential confounding effects, primary fuel type (primary_fuel ) was
introduced as an additional predictor in the regression model. The inclusion of
primary fuel type resulted in a slight decrease in the coefficient for household
size, from 278.99 to 278.05, a percentage difference of 0.34%. This minimal
change suggests that primary fuel type has a negligible confounding effect on
the relationship between household size and cooking expenditure. However, the
coefficient for primary fuel type itself was 272.30, indicating a significant positive
association with cooking expenditure. This finding implies that the choice of fuel
type significantly influences cooking expenditure.

When ration card type (type_rationcard ) was introduced into the regression
model, the coefficient for number of persons increased from 278.99 to 317.00,
a percentage difference of 12.75%. This change suggests that the ration card
type has a moderate confounding effect on the relationship between number of
persons in a house and cooking expenditure. The ration card type often reflects
a household’s socio-economic status, with different card types providing varying
levels of subsidies or access to resources [24]. Households with certain types
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Figure 15: Impact graph of the Residential Cooking Energy Survey Dataset: a green edge
indicates a positive slope and a red edge indicates a negative slope of the linear regres-
sion line between to nodes. Edges are annotated with the concrete slopes as labels. The
information in the impact graph is incomplete. It highlights only slopes between potential
confounders and the primary influencing factor hh_num, as well as the slope between the
primary influencing factor hh_num and the target value Cooking_expenditure.

of ration cards may receive subsidized food or fuel, which could influence their
cooking expenditure. Larger households, often eligible for higher subsidies, may
experience reduced cooking costs, leading to this confounding effect.

When monthly income was included in the regression model, the coefficient
for household size decreased significantly, from 278.99 to 203.00, reflecting a
percentage difference of -31.54%. This substantial change indicates that monthly
income acts as a strong confounder in the relationship between household size
and cooking expenditure. Households with higher monthly incomes typically spend
less on cooking in proportion to their income, as they may have access to more
efficient cooking technologies, such as gas stoves or electric cookers, and ben-
efit from subsidies or discounts on modern fuel types. Conversely, lower-income
households may rely more heavily on traditional cooking methods and cheaper
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fuels, leading to higher relative expenditures. Interestingly, the effect of monthly
income was consistent across different combinations of predictors, reinforcing
its significant role as a confounder.

When ration card type and monthly income were combined as predictors in
the regression model, the confounding effect appeared to be canceled out. The
coefficient for household size decreased slightly from 278.99 to 274.92, a per-
centage difference of 1.47%. This minimal change indicates that the combina-
tion of these two variables neutralized their individual confounding effects. The
observed cancellation of the confounding effect may result from overlapping in-
fluences of ration card type and monthly income. Both variables are closely tied
to socio-economic status and access to resources, and their combined inclusion
in the model likely captures the majority of variance in cooking expenditure at-
tributable to socio-economic factors. This overlap diminishes their individual im-
pact on the relationship between household size and cooking expenditure.

8.6 Case Studies on the C-IA Method

In these case studies, we investigate the results of utilizing the C-IA method (78)
for identifying confounding.

8.6.1 California State University Public Salary Dataset

This dataset provides comprehensive salary and benefit data for employees of
the California State University system over multiple years (from 2009 till 2016).
The primary goal is to analyze factors influencing TotalWages, which serves as
the dependent variable. The analysis examines how different factors, including
EmployerCounty differences and Position impact TotalWages. By investigating
these variables, the study aims to uncover the primary influences on TotalWages
while identifying potential confounding effects.

The dataset consists of 524,280 observations with the following variables:

• EmployerCounty (X): Employer County, serving as the primary influencing
factor, measured as a categorical variable. (Primary Influencing Factor).

• TotalWages (Y): Total Wages, serving as the target variable, measured as
continuous variable. (Target Variable).

• Position (Z1): Position, measured as a categorical variable. (Potential Con-
founder).

• Gender (Z2): Gender, measured as a categorical variable encoded as inte-
gers. (Potential Confounder).

For an overview over the California State University dataset and relationships
among its factors, see Figure 16.

As an initial step, we have calculated the impact of EmployerCounty on To-
talWages for all availabe years, with the maximum difference observed in 2009
(-193.21) and the minimum in 2012 (-182.47). The year-by-year analysis high-
lighted minor fluctuations, as depicted in Figure 17. Figure 17 demonstrates that
while the values have shown some variation, the changes over time were rela-
tively small, suggesting a stable influence of EmployerCounty on TotalWages.

When Position was added to the analysis, a significant shift in the results
has been observed. The impact of EmployerCounty on the TotalWages for 2009
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Figure 16: Impact graph of California State University Dataset. It highlights the C-IA im-
pacts of the potential confounders onto the primary influencing factor EmployerCounty,
as well as the C-IA impact of the primary influencing factor EmployerCounty onto the tar-
get value TotalWages.

2009 2010 2011 2012 2013 2014 2015

EmployerCounty -193.21 -186.75 -188.11 -182.47 -183.65 -186.63 -189.77 -188.52
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Figure 17: Impact of EmployerCounty on TotalWages over the years.

changed from -193.21 to -96.26, while for 2012, it changed from -182.47 to
32.10. This stark change signifies the profound influence of occupational roles
on TotalWages. Figure 18 clearly expresses this transformation, where the graph
illustrates a significant divergence as compared to Figure 17. The distance be-
tween points in the graph increased substantially, indicating a higher variability
in the data when Position was included into the consideration.

Then, Gender was added to the model to examine its combined effect with
EmployerCounty and Position, see Figure 19. Interestingly, the inclusion of Gen-
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Figure 18: Impact of EmployerCounty and Position on TotalWages over the years.

der did not significantly alter the overall pattern observed in the case of only
adding Position to the analysis (Figure 18). The impacts remained aligned with
those seen in the case of only adding Position, suggesting that gender differences
did not substantially influence the TotalWages beyond the occupational factors
already accounted for. These fluctuations are depicted in Figure 19, which shows
a pattern similar to Figure 18. This similarity reinforces the idea that Position
is the dominant factor influencing the observed trends, whereas Gender rather
plays a secondary role in shaping the outcomes.

2009 2010 2011 2012 2013 2014 2015 2016

EmployerCounty, Position,Gen 67.57 66.53 46.96 16.43 24.31 37.03 33.22 43.95
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Figure 19: Impact of EmployerCounty, Position and Gender on TotalWages over the years.
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8.6.2 Old Dominion College Dataset

The Old Dominion College dataset provides a detailed compilation of salary and
benefit information for employees, covering the years 2008 to 2021. The primary
objective of this study is to examine the determinants of Salary, which is des-
ignated as the target variable. This dataset serves as a valuable resource for
exploring trends, disparities, and potential predictors, offering insights into wage
dynamics within a large public system over an extended period. The dataset con-
sists of the following columns:

• Gender (X): Gender, serving as the primary influencing factor, measured as
a categorical variable encoded as integers. (Primary Influencing Factor).

• Salary (Y): Salary, serving as the target variable, measured as continuous
variable. (Target Variable).

• Department (Z1): Department, measured as a categorical variable (Poten-
tial Confounder).

• Position (Z2): Position, measured as a categorical variable (Potential Con-
founder).

For an overview over the Old Dominion College dataset and relationships among
its factors, see Figure 20.

Position 

4.55 

Department 

2.36 

Gender 
1.26 

Salary


Figure 20: Impact graph of the Old Dominion College dataset. It highlights the C-IA impacts
of the potential confounders onto the primary influencing factor Gender, as well as the C-
IA impact of the primary influencing factor Gender onto the target value salary.

Initially, the analysis focused on the marginal effect of Gender on Salary across
all available years. The maximum percentage difference was observed in 2016,
reaching 116.71%, while the minimum was recorded in 2009 at 128.90%. Despite
these year-specific variations, the overall differences across years were relatively
small. As illustrated in Figure 21, the yearly percentage differences reflect small
changes, suggesting that the influence of Gender on Salary has been relatively
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stable during the analysis period. This stability implies that the disparities asso-
ciated with Gender in terms of Salary have not undergone significant shifts.

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Gender 125.73 128.90 126.90 127.26 120.39 120.04 123.04 118.37 116.71 122.47 122.94 120.38 122.16 125.17
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Figure 21: Impact of Gender on Salary over the years.

When the potential confounding variable Department was included in the anal-
ysis, the results followed a pattern similar to the marginal analysis of Gender. The
observed changes remained relatively small, as shown in Figure 22. The maxi-
mum impact of Department on Salary in terms of percentage difference occurred
in 2012, with a value of 11.47%. Conversely, the minimum impact was observed
in 2017, at 16.18%, which amounts to a difference of 4.71%. For the year 2016,
the inclusion of Department changed the percentage difference from 116.71%
to 11.60%. Similarly, for 2009, the percentage difference changed from 128.90%
to 11.74%. These adjustments demonstrate the moderate role of Department in
the relationship between Gender and Salary. However, the overall stability of the
impact across years, as illustrated in Figure 22, suggests that the influence of
Department on Salary variations is relatively small.

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Department 11.79 11.74 11.80 11.96 11.47 13.36 14.14 14.46 11.60 16.18 15.58 15.57 14.64 14.26
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Figure 22: Impact of Department on Salary over the years.
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The inclusion of the variable Position introduced significant changes to the
observed patterns, indicating a substantial influence on Salary. Unlike the rel-
atively stable trends observed in the analyses of Gender and Department, the
percentage differences fluctuated significantly when Position was accounted for.
The maximum percentage difference was recorded in 2012 at 48.73%, while the
minimum was observed in 2021 at 10.35%. This range reflects a difference of
38.38% between the minimum and maximum values. The fluctuations in per-
centage differences, as shown in Figure 23, highlight the variability introduced by
Position. The significant divergence in Figure 23, compared to Figures 21 and 22,
underscores the critical role of occupational roles in shaping salary outcomes.
Such insights emphasize the importance of considering Position when analysing
salary-related disparities, as it appears to be a primary driver of variation.

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Position 21.58 11.21 21.60 21.70 48.73 41.66 47.38 44.73 31.76 18.23 19.00 19.20 20.73 10.35
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Figure 23: Impact of Position on Salary over the years.

To further explore the combined effects of these variables, both Department
and Position were added to the model alongside Gender. The results of this com-
prehensive analysis are depicted in Figure 24. Interestingly, the inclusion of these
potential confounders showed a pattern that closely resembled the one observed
when only Position is included (Figure 23). This similarity suggests that Depart-
ment variations did not substantially influence Salary beyond the variations al-
ready accounted for by Position. In the combined model (Figure 24), the maxi-
mum percentage difference was observed in 2018 at 64.75%, while the minimum
occurred in 2016 at 10.16%, resulting in a difference of 54.59% between the
maximum and minimum values. These fluctuations (Figure 24) further highlight
the dominant role of Position in shaping Salary outcomes, with Department con-
tributing minimally when considered alongside Position.

93



2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Department, Position 55.90 37.44 57.29 60.31 37.26 28.30 33.24 30.27 10.16 62.11 64.75 59.99 61.09 38.47
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Figure 24: Impact of Department and Position on Salary over the years.
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9 Future Directions

9.1 Further Measures for the Impact of Factors in their Entirety

The novelty of the C-IA in Def. 15 is that is allows for assessing the impact of
categorical variable as a whole, i.e., in its entirety. However, the concrete C-IA in
Def. 15 is not the only possibility to define such measure, and other should be
tried out and compared with Def. 15.

Let us have a look at the definition of the C-IA measure (78). Now, let us call
the expression ∣∣∣∣∣∣∣∣E(y |X = vj )

E(y |X = vi)

∣∣∣∣∣∣∣∣ (85)

in (78) the inner impact of the C-IA measure. We have chosen the quotient of
E(y |X = vj ) and E(y |X = vj ), i.e., their change factor, to define the inner impact
of (78). We have chosen the change factor as basic measure, because it is also
used in the definition of the lift impact measure in ARM [4] and, therefore, rather
a familiar choice. Basically, replacing the inner impact of (78) based on any other
basic measure43 to compare E(y |X = vj ) and E(y |X = vj ) is one means to yield
other measure for assessing the impact of a categorical variable in its entirety.

Remember that the C-IA measure is only defined for positive real numbers as
target values. A concrete goal would be to define an impact measure for cate-
gorical values in their entirety that are defined for all real numbers, positive and
negative. A first attempt would be to replace the inner impact of (78) by its abso-
lute value yielding the following potential impact measure:

∑
1≤i≤n

∑
1≤j≤n

P(X = vi)P(X = vj )

∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣E(y |X = vj )

E(y |X = vi)

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣ (86)

Unfortunately, (86) is not a useful definition of an impact measures, because
it works only properly whenever E(y |X = vj ) and E(y |X = vi) have the same sign,
i.e., if they are either both positive or both negative. For example, if E(y |X = vj )
and E(y |X = vi) have different signs but the same absolute value a , 0, their in-
ner impact value amounts neutral impact value 144, which is counter-intuitive,
as the distance of their values on the number line amounts to 2a and, therefore,
intuitively, the situation represents some impact. Here, utilizing the percentage
difference as basic measure to define the inner impact, would be an interesting
option.

Replacing the inner impact of (78) by utilizing other basic measures to com-
pare E(y |X = vj ) and E(y |X = vi) is only one means to create other, potentially
interesting, impact measures. With (81), we have introduced an alternative im-
pact measure that compares the effect45 E(y |X = vj ) of the event X = vj onto the
target variable y with the marginal expectation E(y) of y instead of comparing it
with the effect E(y |X = vi) of any other event X = vi . We have tried to provide

43see Section 2.3, in particular, Table 2.
44In case of utilizing relative factors as basic measure, 1 needs to be considered as neu-

tral impact value, representing no impact; whereas, e.g., in case of utilizing the percentage
difference as basic measure, 0 needed to be considered as neutral impact value.

45or: confidence (when generalizing ARM [4] terminology from probabilities of target
values to expectations of target variables, compare with Section 2.1).
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some intuition about the difference of (81) and the C-IA measure (see page 59)
and we have started a comparison of the two measures in terms of an artificial
data example in Table 7. A more systematic investigation of the measure in (81)
would be interesting.

Further potentially interesting measures can be created and then investigated
by replacing the inner impact of (81)46 by utilizing all kinds of different basic mea-
sures, as we have described for (78) and (85).

9.2 Integration of Confounding Patterns Into Tool Support

As described in Chapter 1, confounder adjustment should be integrated more sys-
tematically into data mining tools. For example, in Publication II, we have started
this by integrating linear-regression-based confounder adjustment into our tool
GrandReport, see Publications V and II. It would be interesting to integrate de-
tection of the confounding patterns that we have found during our analyses (see
Table 15 on page 72) into data mining tools and to validate the usefulness of such
pattern detection. A first step would be to integrate such pattern detection into
our tool GrandReport.

9.3 High-Performant Implementation of GrandReport

Our tool GrandReport47,48 is a prototypical implementation to evaluate the use-
fulness [51] of grand reports [65, 62], see Publication V, and linear-regression-
based detection of confounders, see Publication II. However, the GrandReport
tool is a prototypical implementation and no particular effort has been invested
into its performance. Yet, in today’s instant economics [217, 216], decision sup-
port systems are expected to answer as quick as possible, ideally, in real-time.
Therefore, it would be interesting to optimize the GrandReport tool for high per-
formance, in service to evaluate its usefulness [51] with larger datasets and en-
abling deeper drill-downs in short response times. In particular, it would be in-
teresting to re-implement the GrandReport tool on the basis of an underlying
columnar in-memory database [169], as massive real-time analytical reporting
is exactly what columnar in-memory databases are designed for. Given its design
as columnar in-memory database [95] , its extensibility [66] and its availability49

for research, we have identified the innovative Hyrise50 technology as particu-
larly promising platform for these endeavours, see Publication I.

9.4 Utilizing Our Findings for Machine Learning

In [71, 70], Esmaelizadeh et al. suggest to utilize the data science toolkit to anal-
yse model outputs and model-performance metadata. In particular, they suggest
to present significant positive predictive values of the trained model in the form
of explanation tables51 [50, 82, 81], each row drill-down in regard of one or more

46In case of (81), the inner impact has to be defined as ||E(y |X = vi ) : E(y)|| accordingly.
47http://grandreport.me
48https://github.com/istaltech/grandreport
49https://github.com/hyrise/hyrise/wiki
50https://hpi.de/plattner/projects/hyrise.html
51An explanation table [50, 82, 81] is a particularly intuitive and convenient form of pre-

senting association rules [4] for a fixed target variable together with some impact measure
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instances of the training data set’s input parameters. The suggested approach
[71, 70] is an important into the direction of responsible and trustworthy artificial
intelligence.

It would be interesting to integrate such model-performance analyses with de-
tection of confounders and detection of our confounding patterns (see Table 15).
A particular challenge would be in finding useful [51] measures for the signifi-
cance of detected confounding effects and confounding patterns, that should be
oriented towards or be consistent with the Kullback-Leibler (KL) [127] divergence-
based approach of explanation tables [81].

9.5 Utilizing Neural Networks for Our Findings

Simpson’s paradox52 [233, 200], see also [62], is an extreme form of confounding
effect, where the stratification towards the confounder seemingly reverts the ef-
fect of an exposure. In [195, 192, 194] we have implemented53 and investigated
the detection of Simpson’s paradox in data from various perspectives, including
fairness [194] and the generalization of Simpson’s paradox to continuous vari-
ables [195]. Various other implementation of Simpson’s paradox exists such as,
e.g., [229] and [9, 10]. The implementations in [195, 192, 194, 229, 9, 10] have in
common, that they implement the detection of Simpson’s paradox in a straight-
forward manner in terms of the definition54 of Simpson’s paradox. Instead, Wang
et al. [222] have implemented the detection of Simpson’s paradox with a neu-
ral network called SimNet, claiming the advantage that their approach “can dis-
cover various Simpson’s paradoxes caused by discrete” 55 “and continuous vari-
ables,” 56 “even hidden variables.” [222]. In the same vein, it would be interesting
to understand the potential of utilizing neural networks for our findings, i.e., for
detecting C-IA impact (see Section 5), detection of confounding based on our
C-IA measure (see Chapter 6 and Section 8.6) and detecting the confounding
patterns that we have found during our analyses (see Table 15 on 72 and Sec-
tion 9.2).

(such as ARM confidence [4] and positive predictive value). Explanation tables come with
a notion of significance of rules to be included in tables [81], which is defined as infor-
mativeness based on Kullback-Leibler (KL) divergence [127] between the training and the
predicted distribution.

52also called Yule-Simpson’s paradox
53https://github.com/rahul-sharmaa/SimpsonP
54https://plato.stanford.edu/entries/paradox-simpson/
55compare to [192, 194, 229, 9, 10]
56compare to [195]
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10 Conclusion

This thesis is devoted to the study, improvement, and unification of confounding
measures. In any scientific discipline, analysing confounding effects and decon-
founding is one of the critical ingredients of any high-quality quantitative scien-
tific study. Confounding, a common problem in experimental and observational
studies, occurs when the relationship between an exposure and an outcome is
distorted by a third variable. Confounding is pervasive in scientific data and,
therefore, is a severe risk for the accuracy of results and conclusions of scien-
tific studies.

Based on the research findings with our data mining tool GrandReport, in-
cluding behaviour of Pearson correlation during drill-down and linear-regression-
based confounder adjustment, we have identified the need for more systematic
understanding of confounding measures and confounding patterns. Therefore,
we have decided to systematically compare four methods of confounding adjust-
ments using the same datasets on a large scale.

In this thesis, we have contributed as follows. First, we have introduced a novel
measure for the impact of categorical variables in their entirety, called Coupled
Impact Assessment (C-IA). Furthermore, we have introduced a novel method to
detect confounders utilizing the C-IA measure. Then, we have conducted combi-
natorially designed experiments with 694 datasets from the Harvard Dataverse
and the NZ Government Repository to investigate three well-established approa-
ches for detecting confounders, i.e., the Ad-Hoc method, Oaxaca-Blinder decom-
position, and the linear-regression-based method, together with our own novel
C-IA-based method.

Based on our experiment results, we have discovered, that the four investi-
gated methods for detecting confounders do not show any relevant agreement
or disagreement beyond chance (in terms of both Cohen’s κ and Yule’s φ). This
is surprising result, as all of the four methods have been specifically designed
for exactly the same target: to detect confounders, and, actually, three of the
methods have been in widespread use over the decades in a plethora of scien-
tific studies for detecting confounders. Additionally, we argue that the finding is
highly relevant for the working data scientist.

Furthermore, based on our experiment results, we have identified four interest-
ing patterns of confounding effects during drill-down into potential confounders,
that we have showcased in eight data case studies.

We have elaborated a systematic interpretation of the linear regression model
utilizing so-called multiplicative edges diagrams. We have utilize this interpreta-
tion to reflect on linear-regression-based confounding, including a critical discus-
sion off cutoff rules for confounding adjustments.

Although confounding effects are ubiquitous in data and scientific studies,
confounding is rather neglected in the common data mining tools, be it from
Association rule mining (ARM) or Online analytical processing (OLAP). Here is,
where this thesis aims at envisioning a paradigm shift, i.e., to design an integrate
systematic support for treatment of confounding in data mining tools.

We have identified a series of interesting future research directions. It would
be interesting to investigate further measures for the impact of categorical fac-
tors in their entirety, including such based on other basic measures and such
based on comparing impacted values with marginals. It would be interesting to
integrate the identified confounding patterns into our GrandReport tools. More-
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over, it would be interesting to optimize the GrandReport tool for high perfor-
mance, in service to evaluate its usefulness [51] with highest-volume datasets.
In particular, it would be interesting to re-implement the tool on the basis of an
underlying columnar in-memory database, as these have been designed for mas-
sive real-time analytical reporting. Also, it would be interesting to investigate our
findings can be utilized in the machine learning pipeline, as well, in how far neural
network model can be utilized for our findings.

Eventually, this thesis aims at extending the limits of confounding measures
so that they can be utilized in scenarios of more informed, massive, automatic
exploratory analysis to the benefit of today’s decision-makers.
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A Source Code

# Categorical to numerical Coercion

def ca_coe(dfInput,infVariable,trgtVariable):

for dtColumn in dfInput :

# Checking for the categorical columns

if dfInput[dtColumn].dtypes == ’O’ and dtColumn in infVariable:

dfavg=(

dfInput.groupby(dtColumn)[trgtVariable].mean()

).sort_values(trgtVariable)

# Avg of target column values according to the distince

values of influvencing column and sort according to it

(hot number encoding with groupby)

dfavg[’row_num’] = np.arange(len(dfavg))

# Removing the hierarchical index of dataframe

dfavg.reset_index(inplace=True)

dfInput[dtColumn+"_cat"] =dfInput[dtColumn]

#Assigning values to the coresponding column values

for index, dtavgColumn in dfavg.iterrows() :

dfInput = dfInput.replace(

{dtColumn: {dtavgColumn[dtColumn] :

dtavgColumn[’row_num’]}}

)

return dfInput
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# Calculating the expected value

def expectation_function(y, x_value):

# Mean value of each variable

return np.mean(y[X == x_value])

# Compare expected values with others

def compexpvalue(dfGroup,trgtVariable,infVariable):

for i in range(len(dfGroup)):

for j in range(len(dfGroup)):

# Probability of X = v_i

prob_X_i = np.mean(dfGroup == dfGroup[i][infVariable])

# Probability of X = v_j

prob_X_j = np.mean(dfGroup == dfGroup[j][infVariable])

# Expected value calculation.

expectation_ratio = abs(

expectation_function(

dfGroup[trgtVariable],

dfGroup[j][infVariable]

) /

expectation_function(

dfGroup[trgtVariable],

dfGroup[i][infVariable]

)

)

impact += prob_X_i * prob_X_j * expectation_ratio

print ("GROUP "+[i]+": " +impact)
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# C-IA Measure

# Numerical-to-Categorical Coercion

def fciameasure(dfInput, infVariable, trgtVariable):

# numerical checking

if ’int64’ in list(dfInput.dtypes) :

for dtColumn in dfInput :

if (dfInput[dtColumn].dtypes == ’int64’ or

dfInput[dtColumn].dtypes == ’float64’)

and dtColumn in infVariable:

minMAxDiff=dfInput[dtColumn].max() -

dfInput[dtColumn].min() # Min Max Difference

if(dfInput[dtColumn].min()==0):

minMAxDiff=minMAxDiff/5

else :

minMAxDiff=minMAxDiff/4

for i in range(5):

if(i==0):

dfInput[dtColumn] = np.where(

(dfInput[dtColumn] <= minMAxDiff * (i+1)),

i,

dfInput[dtColumn]

)

else :

dfInput[dtColumn] = np.where(

(dfInput[dtColumn] > minMAxDiff * (i) &

dfInput[dtColumn] <=minMAxDiff * (i+1)),

i,

dfInput[dtColumn]

)

dfGroup = dfInput.groupby(infVariable)

# Calling expecetd value comparison function

compexpvalue(dfGroup,trgtVariable,infVariable)

return 0
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#Oaxaca-Blinder decomposition

def fobd(dfInput,infVariable,trgtVariable,groupCol):

# Categorical to numerical Coercion

dfInput = ca_coe(dfInput,infVariable,trgtVariable)

model=[]

xmean = []

ymean = []

dfGroup=[]

if (groupCol !=’’):

for index,i in dfInput.groupby(groupCol) :

x = sm.add_constant(i[infVariable])

model.append(

sm.OLS(i[trgtVariable],

x.astype(float)).fit()

)

xmean.append(x.mean())

ymean.append((i[trgtVariable]).mean())

# Calling Oaxaca-Blinder decomposition calcualation function

fobdCmp(model,xmean,ymean)

return 0

# Calculating Oaxaca-Blinder decomposition

def fobdCmp(model,xmean,ymean) :

# Calculating explanined part

explained = (xmean[0] - xmean[1])

.dot((model[0].params + model[1].params) / 2)

# Calculating unexplained part

unexplained = (model[0].params - model[1].params)

.dot((xmean[0] + xmean[1]) / 2)

# Calculating total difference

total_difference = ymean[0] - ymean[1]

print("Difference in coefficients:", total_difference)

print("explained:", explained)

print("unexplained:", unexplained)

return 0
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# Linear-Regression based adjustment

def fregAdj (dfInput, infVariable, trgtVariable):

# Categorical to numerical Coercion

dfInput = ca_coe(dfInput,infVariable,trgtVariable)

for dtColumn in infVariable :

x = sm.add_constant(dfInput[dtColumn]) # adding a constant

model = sm.OLS(dfInput[trgtVariable], x).fit()

predictions = model.predict(x)

# Calling print function

fprint_reg(

model.params,

(x.drop([’const’],

axis=1)).keys(),

trgtVariable

)

return model

# Printing Linear-Regression results

def fprint_reg(model, infVariable, trgtVariable):

# Printing the constent

print(trgtVariable[0] + ’ (Const) : ’ + str(D(model[’const’])))

# Printing the slops (Coefficients)

for variableFields in infVariable :

print(variableFields + ’ : ’ + str(D(model[variableFields])))

print("\n")
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# Ad-Hoc based adjustmet

def fadhmethod(dfInput, infVariable, trgtVariable):

# numerical checking

if ’int64’ in list(dfInput.dtypes) :

for dtColumn in dfInput :

if (dfInput[dtColumn].dtypes == ’int64’ or

dfInput[dtColumn].dtypes == ’float64’)

and dtColumn in infVariable:

minMAxDiff=dfInput[dtColumn].max() -

dfInput[dtColumn].min() # Min Max Difference

if(dfInput[dtColumn].min()==0):

minMAxDiff=minMAxDiff/5

else :

minMAxDiff=minMAxDiff/4

for i in range(5):

if(i==0):

dfInput[dtColumn] = np.where(

(dfInput[dtColumn] <= minMAxDiff * (i+1)),

i,

dfInput[dtColumn]

)

else :

dfInput[dtColumn] = np.where(

(dfInput[dtColumn] > minMAxDiff * (i) &

dfInput[dtColumn] <=minMAxDiff * (i+1)),

i,

dfInput[dtColumn]

)

grouped = dfInput.groupby(infVariable)

# Calculate conditional expectation

except primary influencing factor

conditional_means = grouped[trgtVariable].mean().

reset_index(name=’E_Y_given_X_Z’)
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# Calculate marginal probability

z_group_counts = dfInput.groupby(infVariable[1:]).size()

z_marginal_probabilities = z_group_counts / len(dfInput)

z_marginal_probabilities = z_marginal_probabilities.

reset_index(name=’P_Z’)

# Merge conditional expectations with marginal probabilities

merged_data = conditional_means.merge(

z_marginal_probabilities,

on=trgtVariable

)

# Calculate the weighted contribution for P(Y | do(X))

merged_data[’Weighted_Contribution’] = (

merged_data[’E_Y_given_X_Z’]

* merged_data[’P_Z’]

)

# Sum over Z to get P(Y | do(X)) for each level of X

results = merged_data.groupby(X)

[’Weighted_Contribution’].sum()

.reset_index(name=’P_Y_do_X’)

return results
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# Main function

def main():

pd.set_option("future.no_silent_downcasting", True)

# excel file path

mstrfle = pd.ExcelFile("file path")

# reading the master sheet

excelMaster = pd.read_excel(mstrfle, ’MasterSheet’)

# dataframe creation according to master sheet

dfMaster=pd.DataFrame(excelMaster,

columns= [

’sheetName’,

’targetVariable’,

’variableFields’,

’stratifyVariable’,

’groupCol’

]

)

# removing null values

dfMaster = dfMaster.fillna({’stratifyVariable’: ’’})

dfMaster = dfMaster.fillna({’groupCol’: ’’})

dfMaster = dfMaster.reset_index()

excelReaderold=""

try:

for index,dfRows in dfMaster.iterrows():

# reading data sheet

excelReader = pd.read_excel(mstrfle, dfRows[’sheetName’])

# influencing variables

infVariable=list(dfRows[’variableFields’].split(","))

# target variable

trgtVariable=list(dfRows[’targetVariable’].split(","))

dfInput= pd.DataFrame(

excelReader,

columns= (

infVariable

+

108



trgtVariable

)

)

if excelReaderold != dfRows[’sheetName’]:

print (dfRows[’sheetName’])

print(’Influencing variables : ’ + dfRows[’variableFields’])

print(’Target variables : ’ + dfRows[’targetVariable’])

print(’Stratify variables : ’ + dfRows[’stratifyVariable’])

print(’Grouping variables : ’ + dfRows[’groupCol’])

# Calling Linear-Regression based adjustment function

fregAdj (dfInput,infVariable,trgtVariable)

# Calling Oaxaca-Blinder decomposition function

fobd(dfInput,infVariable,trgtVariable,groupCol)

# Calling Ad-Hoc based adjustmet function

fadhmethod(dfInput, infVariable, trgtVariable)

# Calling C-IA Measure function

fciameasure(dfInput, infVariable, trgtVariable)

except NameError:

print(NameError)

main()
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B Auxiliary Lemma

Lemma 3 (Estimator Coefficients in Terms of Pearson Corrletation). Given two
numerical factors x :Ω −→R and y :Ω −→R and the linear regression problem

⟨yi = β0 + β1xi1 + ϵi⟩1⩽i⩽N (87)

we have that the following holds for their fitted regression line:

β̂1 = ρx,y
σy
σx

(88)

Proof. We have that (see [227] Equation 2.19, page 29):

β̂1 =

∑
i=1

(
xi − E(X)

)(
yi − E(Y )

)
∑
i=1

(
(xi − E(Y )

)2 (89)

Due to (89) and the definitions of covariance, variance and the Pearson corre-
lation coefficient (see, e.g., [149], p.14), we have the following:

β̂1 =
Ncov(x,y)

Nσ2
x

=
cov(x,y)
σxσy

·
σy
σx

= ρx,y
σy
σx

(90)
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latent variable, 10, 47
law of total expectations, 37
lift, see ARM lift
linear regression, 43, 56
linear-regressive scenario, 45
longitudinal studies, 34

machine learning, 23, 35, 96
Matthews correlation coefficient, 25

MCC, see Matthews correlation coeffi-
cient

measure runs, see study’s measure
runs

mediator, 45
minimum threshold, 64
ML, see machine learning
multiplicative edges diagram, 20, 45, 46
multivariate regression, 35

natural experiment, 34
neural network, 97
neutral impact value, 95
NZ Government Repository, 15

Oaxaca-Blinder decomposition, 39
OB-decomposition, see Oaxaca-Blinder

decomposition
OLAP, see online analytical processing
online analytical processing, 17

Pearson correlation, 13, 30, 111
coefficient, 25, 30, 50, 111

percentage difference, 21, 43, 64, 83
phi coefficient, 25
positive predictive value, 96
potential confounder, 63
prediction, 23
primary influencing factor, 63
probability, 11

space, 17
theory, 17, 19

projection, see tuple projection
propensity score matching, 33
proportionate agreement, 22, 22
Python, 72

randomized controlled trial, 31, 34, 35
randomized sampling, 26
RapidMiner, 55
RCT, see randomized controlled trial
relational algebra, 17
roll-up, 17
rosiglitazone, 28
row, 18

sensitivity analysis, 27, 35
sheer lift, 56, 57
sheer value, 57
Simpson’s paradox, 97
sparse data, 27
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Spearman’s rank correlation coefficient,
30

standard categorical adjustment, 37
standard deviation, 50
statistics, 17, 36, 38
stratification, 15, 33, 36, 66, 97
structural equation modeling, 34
structured data, 27
study’s

cutoff rule, 52, 64
experiment, 65
interpretation of κ, 23
measure run, 63, 64, 64

test, 23
testee, 23
tuple projection, 17
type 2 diabetes, 28

unexplained part, 41
unstructured data, 27

variable, 18
variance, 111

Yule-Simpson’s paradox, seeSimpson’s
paradox97
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Technical Aids

Grammarly, Writefull and ChatGPT has been used to improve the grammar and
sentences.
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Abstract

Measures of Impact and Confounding – An Analysis

and Experimental Comparison of Novel and Established

Measures

Confounding is pervasive in data, both in experimental and observational studies,
and is a severe risk for the accuracy of results and conclusions of scientific stud-
ies. Based on the research findings with our data mining tool GrandReport, in-
cluding behaviour of Pearson correlation during drill-down and linear-regression-
based confounder adjustment, we have identified the need for more systematic
understanding of confounding measures and confounding patterns. Therefore, in
this thesis, we systematically compare four methods of confounding adjustments
using the same datasets on a large scale.

In this thesis, we contribute as follows. First, we introduce a novel measure
for the impact of categorical variables in their entirety, called Coupled Impact As-
sessment (C-IA). Furthermore, we introduce a novel method to detect confounders
utilizing the C-IA measure. Then, we conduct combinatorially designed experi-
ments with 694 datasets from the Harvard Dataverse and the NZ Government
Repository to investigate three well-established approaches for detecting con-
founders, i.e., the Ad-Hoc method, Oaxaca-Blinder decomposition, and the linear-
regression-based method, together with our own novel C-IA-based method.

Based on our experiment results, we discover that the four investigated meth-
ods for detecting confounders do not show any relevant agreement or disagree-
ment beyond chance (in terms of both Cohen’s κ and Yule’s φ). This is surprising,
as all of the four methods have been specifically designed for exactly the same
target: to detect confounders, and, actually, three of the methods have been in
widespread use over the decades in a plethora of scientific studies for detect-
ing confounders. Additionally, we argue that the finding is highly relevant for the
working data scientist.

Furthermore, based on our experiment results, we identify four interesting pat-
terns of confounding effects during drill-down into potential confounders, that we
showcase in eight data case studies.

Also, we elaborate a systematic interpretation of the linear regression model
utilizing so-called multiplicative edges diagrams. We utilize this interpretation to
reflect on linear-regression-based confounding, including a critical discussion of
cutoff rules for confounding adjustments.

Although confounding effects are ubiquitous in data and scientific studies,
confounding is rather neglected in the common data mining tools, be it from
Association rule mining (ARM) or Online analytical processing (OLAP). Here is,
where this thesis aims at envisioning a paradigm shift, i.e., to design an integrate
systematic support for treatment of confounding in data mining tools.
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Kokkuvõte

Mõju ja segajate mõõdikud – uute ja väljakujunenud
meetmete analüüs ja eksperimentaalne võrdlus
Segasus on levinud nii eksperimentaalsetes kui ka vaatlusuuringutes ning ku-
jutab endast tõsist ohtu teaduslike uuringute tulemuste ja järelduste täpsuse-
le. Meie andmekaevetööriista GrandReport abil tehtud uurimistulemuste põhjal, 
sealhulgas Pearsoni korrelatsiooni käitumise analüüsil andmete süvitsiminekul 
ning lineaarregressioonipõhisel segajate korrigeerimisel, oleme tuvastanud va-
jaduse süsteemsema arusaama järele segasuse mõõtmismeetoditest ja segasu-
se mustritest. Seetõttu võrdleme selles doktoritöös süsteemselt nelja erinevat 
segasuse korrigeerimise meetodit, kasutades samu andmestikke suures mahus.

Selle doktoritöö peamised panused on järgmised. Esiteks, tutvustame uudset 
kategooriliste muutujate mõju hindamise mõõdikut, mida nimetame Coupled Im-
pact Assessment (C-IA) ehk sidusmõju hindamiseks. Lisaks esitleme uut meetodit 
segajate tuvastamiseks, mis põhineb C-IA mõõdikul. Seejärel viime läbi kombinee-
ritud eksperimendid 694 andmestikuga, mis on pärit Harvard Dataverse ja Uus-
Meremaa valitsuse andmehoidlast, et uurida kolme laialdaselt kasutatud sega-
jate tuvastamise meetodit – Ad-Hoc meetodit, Oaxaca-Blinderi dekompositsiooni 
ja lineaarregressioonil põhinevat meetodit – koos meie enda uudse C-IA meetodil 
põhineva lähenemisega.

Eksperimentaalsete tulemuste põhjal avastasime, et uuritud neljal segajate 
tuvastamise meetodil ei esine olulist kokkulangevust ega lahknevust juhuslikku-
se tasemest (hinnatud nii Coheni κ kui ka Yule’i φ abil). See on üllatav, kuna kõik 
neli meetodit on loodud täpselt sama eesmärgi jaoks – segajate tuvastamiseks –
ning kolm neist on olnud laialdaselt kasutusel aastakümneid paljudes teadusuu-
ringutes. Samuti väidame, et see tulemus on äärmiselt oluline andmeteadlaste 
jaoks.

Lisaks tuvastasime oma eksperimentaalsete tulemuste põhjal neli huvitavat 
segasuse mustrit, mis ilmnevad võimalike segajate analüüsil andmete süvitsimi-
nekul. Neid mustreid illustreerime kaheksas juhtumiuuringus.

Samuti töötame välja süsteemse tõlgenduse lineaarse regressioonimudeli koh-
ta, kasutades niinimetatud multiplikatiivsete servade diagramme. Kasutame seda 
tõlgendust, et analüüsida lineaarregressioonil põhinevat segasust ning kriitiliselt 
arutleda segasuse korrigeerimise läviväärtuste reeglite üle.

Kuigi segasuse mõju on andmetes ja teadusuuringutes kõikjal esinev, on se-
da andmekaevetööriistades, nagu assotsiatsioonireeglite kaevandamine (ARM) 
või veebipõhine analüütiline töötlemine (OLAP), seni suuresti eiratud. Käesoleva 
doktoritöö eesmärk on algatada paradigmanihe kavandada ja integreerida and-
mekaevetööriistadesse süsteemne tugi segasuse käsitlemiseks.
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Abstract—In this paper, we provide informed arguments for
using columnar in-memory database technology, in particular
the Hyrise database, for the high-performant implementation
of the highly combinatorial data mining tool GrandReport.
In service of that we provide a targeted review of columnar
databases, a targeted review of columnar in-memory databases,
and a comparison of nine established columnar in-memory
databases. On the basis of this, we discuss advantages of using
the Hyrise database as the future implementation platform for
the GrandReport tool.

Index Terms—Online Analytical Processing, OLAP, data
mining, numerical association rule mining, grand reports,
GrandReport, columnar databases, in-memory databases, Hyrise

I. INTRODUCTION

Our tool GrandReport1,2 [1] is a prototypical implementa-
tion to evaluate the usefulness [2] of grand reports [3], [4], and
linear-regression-based detection of confounders [5]. However,
the GrandReport tool is a prototypical implementation and
no particular effort has been invested into its performance.
Yet, in today’s instant economics [6], [7], decision support
systems are expected to answer as quick as possible, ideally,
in real-time. Therefore, it would be interesting to optimize the
GrandReport tool for high performance, in service to evaluate
its usefulness [2] with larger datasets and enabling deeper drill-
ins in short response times.

In this paper, we provide informed arguments for re-
implementing the GrandReport tool on the basis of an un-
derlying columnar in-memory database [8], as massive real-
time analytical reporting is exactly what columnar in-memory

1http://grandreport.me
2https://github.com/istaltech/grandreport

databases are designed for. Given its design as columnar in-
memory database [9] , its extensibility [10] and its availability3

for research, we identify the innovative Hyrise4 technology as
particularly promising platform for these endeavors.

We proceed as follows. In Section II, we provide a targeted
review of columnar databases. In Section III, we provide a
targeted review of columnar in-memory databases and a com-
parison of nine established columnar in-memory databases,
including SAP HANA, ClickHouse, Google BigQuery, Ama-
zon Redshift, MonetDB, kdb+, Apache Arrow, HyPer, and
Hyrise. In Section IV, we provide a targeted review of the
Hyrise database technology. In section IV, we provide a brief
overview of the GrandReport tool. In Section V, we discuss
advantages of using the Hyrise as implementation platform
for GrandReport. We finish the paper with a conclusion in
Section VI.

II. COLUMNAR DATABASES

Databases play a crucial role in storing, organizing, and
managing data efficiently across various applications. A
database is a structured collection of data stored in a com-
puter system, enabling efficient storage, retrieval, and man-
agement [11]–[14]. The advent of database management sys-
tems (DBMS) revolutionized data handling, enhancing per-
formance, scalability, and security. Today, databases remain
fundamental to modern computing, powering a wide range of
digital applications.

Columnar databases [15], also known as column-oriented
database management systems (DBMSs) [15], are designed
to store data in a column-oriented format rather than in

3https://github.com/hyrise/hyrise/wiki
4https://hpi.de/plattner/projects/hyrise.html



the traditional row-based structure [16]. This architectural
shift offers significant advantages for analytical and read-
heavy workloads, making them particularly well-suited for
large-scale data processing and business intelligence appli-
cations [17]. By organizing data column by column instead
of row by row, these databases allow for efficient data com-
pression [18], optimized storage utilization [19], and improved
query performance [20]. Since analytical queries often require
accessing only a subset of columns, column-based databases
reduce I/O overhead, leading to faster processing speeds and
better resource efficiency [21].

The primary motivation behind columnar databases is to
accelerate analytical queries by selectively retrieving only the
necessary columns. This selective retrieval reduces data trans-
fer and computation time, making them highly efficient for
data warehousing, business analytics, and real-time reporting.
The ability to compress data more effectively than row-based
databases also contributes to lower storage costs and faster
query execution. Compression techniques such as run-length
encoding, dictionary encoding, and delta encoding further
enhance performance, allowing for high-speed data retrieval
and improved analytical capabilities.

Modern columnar databases, including Google BigQuery,
Amazon Redshift, and ClickHouse, have gained widespread
adoption due to their ability to handle massive datasets effi-
ciently. These databases support complex analytical queries,
making them essential for enterprises that require scalable
and high-performance solutions. Additionally, columnar stor-
age formats such as Apache Parquet and Apache ORC en-
hance processing efficiency through optimized encoding and
vectorized query execution [22]. The continued evolution
of columnar storage techniques and hybrid database models
indicates a promising future for this technology in the realm
of big data and analytics [23], further revolutionizing data-
driven decision-making.

A. Advantages of Columnar Databases

a) Improved Query Performance: The retrieval of
specific (fewer) columns of data is faster in columnar
databases [64]. Their structure is particularly advantageous for
analytical queries that involve aggregations and computations
on large datasets across a limited number of attributes. Since
only the necessary columns are retrieved, query performance
improves significantly, reducing I/O operations [65], [66].
Additionally, columnar databases leverage parallel processing
by distributing workloads across multiple processors, which
further accelerates data retrieval and query execution [67]. This
faster retrieval make columnar databases highly effective for
analytical workloads, enabling faster insights and improved
performance in data-intensive environments.

b) Enhanced Compression: The data can be efficiently
compressed because the column formats exhibit a high degree
of homogeneity, meaning they follow consistent structures
and patterns. This homogeneity allows advanced compression
algorithms to achieve significant data reduction without loss
of information [68], [69]. Effective compression minimizes

storage requirements [28], [70], making data management
more cost-effective and scalable. Additionally, reduced data
size enhances query execution speed, as smaller datasets
require less processing power and memory, leading to faster
retrieval and improved overall system performance.

c) Scalability: Columnar databases offer scalability by
enabling horizontal expansion, where additional nodes can
be added to a cluster to accommodate growing datasets ef-
ficiently [66], [71]. This distributed architecture enhances per-
formance, allowing faster query execution and improved fault
tolerance. Columnar databases also support cross-platform
data sharing and are optimized for modern analytical require-
ments [22]. Unlike traditional row-based databases, columnar
storage is well-suited for denormalized schemas, reducing
the need for complex joins and optimizing read-heavy work-
loads [66], [72].

III. COLUMNAR IN-MEMORY DATABASES

Dictionary-encoded column-oriented in-memory databases
[8], [73] (henceforth called columnar in-memory databases [8]
for short) have transformed data processing by leveraging
the advantages of both columnar storage and in-memory
computing, resulting in exceptional performance for analytical
workloads [20]. By storing data in a columnar format, they
optimize compression and retrieval, significantly enhancing
query performance and real-time analytics [74]. The in-
memory approach eliminates disk I/O bottlenecks, enabling
faster data access and efficient data management. As organi-
zations increasingly rely on data-driven decision-making, the
adoption of these databases has become essential for modern
analytics and business intelligence applications. Their ability
to handle large-scale data with speed and efficiency makes
them a vital component in contemporary data ecosystems.

Understanding columnar in-memory databases requires a
deep dive into two fundamental concepts: in-memory com-
puting and columnar databases. In-memory computing refers
to the technique of storing and processing data directly in
main memory, i.e., in random-access memory (RAM). instead
of relying on traditional disk-based storage. This approach
dramatically reduces latency, as data retrieval and processing
occur at much faster speeds as compared to disk I/O oper-
ations. A columnar database, on the other hand, structures
data in a way that stores each column separately, rather
than following the conventional row-based storage model,
see Section II. When these two concepts are combined,
columnar in-memory databases emerge as a powerful solution
for handling large-scale data processing efficiently. A key
to the performance is dictionary encoding as follows. In
case of assuming a row-based in-memory database, column
scans could be speed-up significantly via striding (picking
only the scanned column cell from each row) [20]. However,
stride access provokes significantly more L2-cache misses than
dictionary-encoded columns scans, making dictionary-encoded
columns scans significantly faster [20]. Columnar in-memory
databases enable real-time aggregations, removing the need
for pre-built aggregate tables [8]. This streamlines data models



TABLE I
COMPARISON OF COLUMNAR IN-MEMORY DATABASES

Database o.s.⋆ Primary Use Case Pros Cons
SAP HANA
by SAP

No SAP HANA is designed to handle both
Online Transaction Processing (OLTP)
and Online Analytical Processing
(OLAP) workloads on the same data
representation [24], [25].

SAP HANA allows extremely fast data
processing and real-time
analytics [26]–[28]. SAP HANA is
designed to handle large-scale data
analytics and complex queries
efficiently [27], [29]. SAP HANA
supports the complete data lifecycle,
including modeling, provisioning, and
consumption, making it a holistic data
management solution [26].

Integration and utilization of latest
features of SAP HANA into existing
systems for the effective use of its
features can be time-consuming and
might require significant effort [30],
[31]

ClickHouse
by Yandex

Yes ClickHouse is optimized for
performing complex analytical queries
on petabyte-scale data sets with high
ingestion rates [32]. The storage layer
of ClickHouse combines a data format
based on traditional log-structured
merge (LSM) trees with novel
techniques for continuous
transformation of historical data.

ClickHouse uses a state-of-the-art
vectorized query execution engine with
optional code compilation, which
enhances query processing speed [32].
ClickHouse can handle large volumes
of data efficiently, making it suitable
for big data applications [32], [33].
ClickHouse uses aggressive pruning
techniques to avoid evaluating
irrelevant data in queries [32].

The implementation and maintenance
are complex [33]. Ensuring data
consistency can be challenging,
particularly in distributed environments.
ClickHouse does not support
transactional operations (OLTP) as
efficiently as other databases [33].

Google
BigQuery by
Google

No BigQuery is extensively used to design
and provision data warehouses,
enabling organizations to store and
manage large volumes of data
efficiently [34], [35]

BigQuery supports real-time insights
and fast query processing, making it
suitable for large-scale data
analytics [36]. It offers multi-cloud
support, allowing deployment on
non-GCP clouds, which is beneficial
for organizations with a multi-cloud
strategy [37]

Preparing and de-normalizing data for
import into BigQuery can be
challenging and additional frameworks
for preprocessing might be needed to
complete it [38]. Integration and
maintenance of data in multi-cloud
deployment setup is complex and it has
the security issues like data privacy
and compliance [37], [39].

Amazon
Redshift by
AWS

No Amazon Redshift is primarily used as
a cloud-based data warehousing
solution designed to efficiently analyze
large volumes of data [40].

For large-scale data analysis, Redshift
shows highest cost-effectiveness [41].
The integration with AWS services are
very easy [40], [42].

Sometimes Redshift requires manual
integration to adjust the aspects of
workload scaling and
optimization [43]. Cold start issues can
impact the predicted exicution time and
performance [43], [44].

MonetDB by
CWI
Amsterdam

Yes MonetDB is mostly used in read-heavy
scenarios of web applications [45],
[46].

A physical design strategy in MonetDB
improves query execution times [47].
MonetDB supports database cracking
for self-organization and informative
query summaries [48].

Due to the complex design of
MonetDB, it require a steep learning
curve to achieve full system
capabilities [48]. Performance
improvements of MonetDB depend on
the availability and integration of
high-performance hardware [48], [49]

kdb+ by KX
Systems

No† kdb+ is mostly used in the financial
industry for real-time data analysis and
time series databases [50], [51]

The Q programming language is
optimized for querying time series
data [52]. kdb+ can handle large-scale
data environments and its architecture
efficently handles data storage and
retrieval [51], [52].

The Q programming language requires
a steep learning curve [51]. kdb+
applications cannot run directly on
SQL databases [52], creating
integration issues.

Apache Arrow
by Apache
Foundation

Yes Apache Arrow is mostly used for
cross-language development
platforms [53]

Apache Arrow uses DataFusion, which
makes it more adaptive for OLAP
engines and other data-intensive
systems [54]. The utilization of data is
less expensive with Arrow APIs [53],
[55].

To utilize the full potential of Arrow’s
capabilities, sometimes the existing
systems needs modifications to adapt
Arrow’s protocols [56]. Understanding
the architecture and APIs of Apache
Arrow is challenging for those new to
the platform [54].

HyPer by TU
Munich

No‡ HyPer supports hybrid
transaction/analytical processing
workloads, allowing it to handle
real-time business analytics [57], [58]

HyPer achieves high transaction rates
(up to 100,000 transactions per
second) [59], [60]. The horizontal
scale-up of HyPer is easy with the
ScyPer extension [57].

HyPer’s performance is highly
dependent on the availability of
sufficient main memory [61]. Needs
large amounts of main memory and
additional servers for scaling out [57].

Hyrise by
Hasso Plattner
Institute

Yes Hyrise has evolved to significantly
support a wide range of research areas
and projects [9], [10].

The hybrid row- and column-format
data storage allows Hyrise to optimize
for different types of queries and
workloads, [9], [62], [63]. Hyrise aims
at continously integrating latest
research innovations.

Replication improves the performance
of Hyrise, but managing and
maintaining a replicated system adds
complexity [63].

⋆o.s.=open source †Free for personal usage. ‡Acquired by Tableau.



and simplifies applications by reducing complexity and storage
overhead.

A key advantage of columnar in-memory databases is their
ability to achieve high performance through vector processing
over main memory-resident columns. Systems such as SAP
HANA leverage this capability to execute analytical queries
at unprecedented speeds [75]. Vector processing involves
performing operations on entire sets of values (vectors) at
once, rather than processing individual values sequentially.
This approach takes full advantage of modern CPU archi-
tectures, where SIMD (Single Instruction, Multiple Data)
vectorization techniques play a crucial role in optimizing
query execution [76]. SIMD enables the parallel processing of
multiple data points in a single CPU instruction, significantly
accelerating query performance.

To enhance efficiency, columnar in-memory databases make
extensive use of data compression techniques. Since columnar
storage often contains repetitive values within a column, com-
pression algorithms can significantly reduce the data footprint,
leading to faster processing and reduced memory usage [68],
[77]. Techniques such as run-length encoding, dictionary en-
coding, and delta encoding are commonly employed to com-
press columnar data effectively. Compression not only reduces
memory requirements but also speeds up query execution by
minimizing the amount of data that needs to be scanned and
processed.

In Table I, we provide a comparison of nine established
columnar in-memory databases in terms of their primary
use case, advantages and disadvantages (pros and cons) and
their public availability (whether open source or not). The
investigated databaes comprise SAP HANA5, ClickHouse6,
Google BigQuery7, Amazon Redshift8, MonetDB9, kdb+10,
Apache Arrow11, HyPer12, and Hyrise13.

IV. HYRISE DATABASE

Hyrise is an advanced in-memory database system designed
to deliver high-performance analytical and transactional work-
loads. It serves as a research database, developed to explore,
analyze, and optimize the performance of database systems in
handling large-scale data processing tasks. Hyrise is particu-
larly focused on leveraging modern hardware capabilities, such
as multi-core processors and large main memory capacities,
to achieve superior data processing efficiency [10], [78]. By
integrating cutting-edge database management techniques with
modern hardware optimizations, Hyrise enables real-time data
processing and hybrid transactional and analytical processing
(HTAP), making it suitable for both research and enterprise
applications [62].

5https://www.sap.com/estonia/products/data-cloud/hana.html
6https://clickhouse.com/
7https://cloud.google.com/bigquery/
8https://aws.amazon.com/redshift/
9https://www.monetdb.org/
10https://kx.com/products/kdb/
11https://arrow.apache.org/
12https://hyper-db.de/
13https://hpi.de/plattner/projects/hyrise.html

The architecture of Hyrise is centered around the concept
of dictionary-encoded columnar storage, which enhances in-
memory performance through efficient data compression and
faster query execution. Columnar databases are particularly
well-suited for analytical queries, as they allow for improved
cache efficiency and reduced data retrieval times compared
to traditional row-based storage systems. By implementing a
hybrid row- and column-format storage mechanism, Hyrise
effectively balances the needs of transactional and analytical
workloads, ensuring optimal data access patterns for different
types of queries [10]. This hybrid storage model facilitates
seamless transitions between transactional and analytical oper-
ations, minimizing the need for data duplication or movement.

Initially developed at the Hasso Plattner Institute (HPI)
in Germany, Hyrise [9], [10] has evolved into a sophisti-
cated database system that integrates state-of-the-art database
management strategies14. The system is designed to optimize
database performance by leveraging multi-core processors,
vectorized query execution, and modern storage techniques.
Vectorized execution enables Hyrise to process multiple data
points simultaneously by utilizing SIMD (Single Instruction,
Multiple Data) instructions, significantly accelerating data
processing tasks [80], [81]. By taking advantage of parallelism
at the hardware level, Hyrise achieves remarkable performance
improvements in executing complex analytical queries.

A key differentiator of Hyrise from traditional database
systems is its ability to support HTAP workloads, effectively
bridging the gap between online transactional processing
(OLTP) and online analytical processing (OLAP). Traditional
databases often require separate systems for handling transac-
tional and analytical queries, leading to increased complexity
and latency. Hyrise eliminates this limitation by enabling real-
time analytics alongside transaction processing, making it an
attractive solution for applications requiring instant insights
from operational data. This capability is particularly beneficial
for industries such as finance, healthcare, and e-commerce,
where real-time decision-making is critical.

Hyrise incorporates advanced optimization techniques, such
as adaptive indexing and partitioning, to enhance query perfor-
mance based on the workload characteristics [62]. Adaptive in-
dexing dynamically adjusts index structures to optimize query
execution, reducing the overhead associated with maintaining
traditional indexes. Partitioning strategies help distribute data
efficiently across processing units, ensuring balanced workload
execution and minimizing bottlenecks. These optimizations
contribute to the system’s ability to scale effectively and
maintain high performance under varying workloads.

Furthermore, Hyrise continuously evolves through ongoing
research and development efforts, incorporating new advance-
ments in database technology and hardware capabilities. Re-
searchers and developers actively explore novel techniques to
further enhance its efficiency, adaptability, and scalability. As
modern hardware architectures continue to advance, Hyrise

14another important research prototype of HPI is SanssouciDB [73], [79],
which shares concepts with Hyrise and SAP Hana.



remains at the forefront of database innovation, pushing the
boundaries of high-performance data processing.

Standard association rule mining (ARM) [82] often necessi-
tates discretizing numeric target variables [83], [84], a process
that can result in information loss and yield less precise
insights. To overcome this limitation, we introduced the novel
tool GrandReport [1], which enhances ARM by calculating
and reporting the mean values of a selected numeric target
column across all possible combinations of influencing factors.
The tool enables decision-makers to interpret associations
based on aggregate values as in online analytical processing
(OLAP) [85], however, automatically as in ARM instead of
interactively as in OLAP and at the scale of ARM, providing
results that align more closely with real-world analytical
practices.

While conducting numerous analyses using the
GrandReport platform [5], we observed significant patterns of
variation in results between marginal values and drill-down
analyses. The observed behavioral differences suggest the
presence of statistical paradoxes [86] and other data-related
fallacies such as selecting suboptimal measures [87], and,
last but not least, confounding effects [88], [89]. To address
these challenges, we have expanded the capabilities of the
GrandReport tool by incorporating additional data analytical
methods [5]. This enhancement aims to generate diverse
perspectives and identify potential confounding effects within
datasets. Specifically, we integrated multiple linear regression
adjustment into the platform to mitigate confounding effects
in mixed multidimensional data [5]. This enhancement allows
for more accurate analyses by adjusting for confounders
without requiring the segregation of numerical and categorical
data.

V. ON UTILIZING HYRISE FOR GRANDREPORT

The GrandReport is designed for generating comprehen-
sive reports, analytics, and insights from diverse datasets,
see Section IV. Integrating the Hyrise database [10], [62]
into GrandReport could significantly enhance its capabilities,
particularly in terms of performance, scalability, and efficiency,
see Table I. Furthermore, the primary use case of Hyrise are
research projects, as it has evolved significantly to support a
wide range of research areas, see Table I.

One of the primary advantages of using Hyrise for
GrandReport is enabling real-time analytics and reporting.
Given that GrandReport processes large volumes of data, users
often require instant insights and dynamically updating dash-
boards. Hyrise’s in-memory architecture and columnar storage
format are optimized for fast data retrieval and processing,
making it ideal for handling complex analytical queries in real
time.

Hyrise’s in-memory design and efficient data compression
techniques enhance scalability, ensuring that GrandReport
can manage growing data volumes without compromising
performance. By storing data in memory, Hyrise eliminates
the latency associated with disk-based storage, will allow

GrandReport to process large datasets quickly, even as data
grows over time.

GrandReport frequently performs complex, multi-
dimensional queries. Hyrise’s adaptive query processing
capabilities dynamically optimize execution plans based on
data distribution and workload. This ability to adjust query
plans on the fly will ensure that GrandReport maintains
optimal performance even when query patterns or underlying
data change.

Additionally, GrandReport requires support for advanced
analytical operations, including machine learning integration.
Hyrise’s architecture efficiently handles complex joins, win-
dow functions, and other analytical operations, making it well-
suited for such tasks. Furthermore, Hyrise supports concurrent
read and write operations, will allow GrandReport to serve
multiple users simultaneously without performance degrada-
tion.

Hyrise’s efficient memory usage and data compression tech-
niques will help to reduce GrandReport’s operational costs.
Moreover, Hyrise seamlessly integrates with other data pro-
cessing and visualization tools, which can enable GrandReport
to function as a comprehensive analytics platform. Researchers
will be able to leverage GrandReport with Hyrise to analyze
large datasets from experiments, simulations, and observations,
facilitating faster discovery and decision-making.

VI. CONCLUSION

In this paper, we have provided informed arguments for
using columnar in-memory database technology for the high-
performant implementation of the GrandReport tool. In service
of that, we contribute as follows:

• We have provided a targeted review of columnar
databases.

• We have provided a targeted review of columnar in-
memory databases.

• We have provided a comparison of nine established
columnar in-memory databases, including SAP HANA,
ClickHouse, Google BigQuery, Amazon Redshift, Mon-
etDB, kdb+, Apache Arrow, HyPer, and Hyrise.

On the basis of these investigations, we have discussed
the advantages of utilizing the Hyrise database as the future
implementation platform for the GrandReport tool.
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Abstract. Currently, we witness a significantly increased understand-
ing, that disaggregation of data is the key to better-informed decision-
making and enactment. The UN 2030 Agenda for Sustainable Devel-
opment prominently stresses the importance of disaggregated data for
achieving its goals. We argue that the key benefit of data disaggrega-
tion is the increased potential to understand confounding effects. Un-
fortunately, in today’s tool landscape, it lacks systematic support for
understanding confounders. Therefore, in this paper, we contribute as
follows. We integrate a means of confounder adjustment, i.e., multiple
linear regression adjustment, as a new feature into the data analysis
tool GrandReport, which works in mixed mode, i.e., for both numerical
and categorical data in parallel. Next, we conduct experiments on an
extended air pollutants data set from several cities. We utilize the tool
GrandReportl to investigate the correlation between standardized air
quality indices and CO2 levels before and after confounder adjustment
in regard of additional city data. We argue that the experiments provide
evidence for the usefulness and usability of the suggested approach.

Keywords: Decision support systems, association rule mining, linear
regression, confounding, confounder adjustment, environmental sciences,
smart cities

1 Introduction

Currently, we witness a significantly increased understanding among top-level
policymakers and decision makers, that disaggregation of data is the key to better
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informed decision making and enactment. The United Nations 2030 Agenda
for Sustainable Development stresses the importance of disaggregated data for
monitoring the achievement of the UN sustainability goals5:

“Our Governments have the primary responsibility for follow-up and
review, at the national, regional and global levels, in relation to the
progress made in implementing the Goals and targets over the coming
fifteen years. [...] Quality, accessible, timely and reliable disaggregated
data will be needed to help with the measurement of progress and to
ensure that no one is left behind.” [30]

In the same vein, the Statistics Division of the UN Department of Economic
and Social Affairs explains the fundamental role of disaggregated data:

“Improving data disaggregation is fundamental for the full implemen-
tation of the SDG indicator framework to fulfil the ambition of the 2030
Agenda for Sustainable of leaving no one behind.”6

Higher the data disaggregation immediately allows for more precise, more
fine-grained monitoring and control, albeit in terms of more complexity and
therefore more efforts. When it comes to decision making, data disaggregation
allows for more sophisticated reasoning as follows. The higher the disaggregation
of data, the more latent variables become explicit. Therefore, the higher the
disaggregation, the better we can potentially understand confounding effects.
We argue that the benefits of disaggregation for decision-making can even be
characterized as the essentially improved potential to understand confounders.
However, unfortunately, in today’s tool landscape, it lacks a systematic, mature
support for understanding confoundig effects.

With the current study, we aim at contributing to the development of tool-
integrated support for understanding confounders. With this paper, we con-
tribute as follows:

– Tool Integration. The new data analysis feature of GrandReport7 [10, 4, 2, 24]
tool, i.e., multiple linear regression adjustment, we utilize this feature to find
the confounder. The adjustment feature works in mixed multidimensional
data scenarios, i.e., it allows for the incorporation of both numerical and
categorical variables in the same scenario.

– Experiments. With GrandReport, we conduct experiments on an extended
air pollutants data set. In service of this, we first join air pollutants data of
several cities with CO2 level data and, furthermore, additional disaggregated
data from cities from various sources. Then, we utilize the tool to investigate
the correlation between standardized air quality indices8 [8] and CO2 levels

5 https://sdgs.un.org/goals
6 https://unstats.un.org/sdgs/iaeg-sdgs/disaggregation/
7 http://grandreport.me/
8 https://www.legislation.gov.au/Details/F2016C00215
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(i) before confounder adjustment in regard of the additional city data, and
(ii) after confounder adjustment in regard of the additional city data.

– Results. We argue that the experiments confirm the need of systematic tool-
integrated support for confounder adjustment. We argue that the experi-
ments provide evidence for the usability of the suggested tool-integration
approach.

We proceed as follows. In Sect. 2, we discuss and define fundamental concepts
that are relevant to this study. In Sect. 3, describes the integration of a novel
feature for confounder analysis into the tool GrandReport. In Sect. 4, we explain
the experimental setup of consisting experiments with standardized air quality
indices and CO2 levels before and after confounder adjustment in regard of ad-
ditional city data. In Sect. 5, we evaluate the experimental results. In Sect. 6, we
briefly discuss potential future directions and finish the paper with a conclusion
in Sect. 7.

2 Background and Definitions

2.1 Related Work

Confounding arises as a causal misconception when an additional variable is con-
nected to both the subject of interest and the ultimate result, and this connection
is not adequately addressed in the design or analysis of the study. Consequently,
the apparent link between the subject of interest and the outcome might be
attributed to the confounding variable rather than the subject of interest itself.

In their work, Greenland and Robins [21] highlight the significance of con-
founding in causal inference. Confounding occurs when a third variable is cor-
related with both the studied exposure and the eventual outcome, potentially
leading to a distortion in estimating the causal effect. The authors delve into
diverse approaches for recognizing and managing confounding, such as stratifi-
cation, matching, and propensity score methods. Furthermore, they explore the
relevance of addressing selection bias in the realm of causal inference.

Austin (2011) elucidates a collection of statistical methodologies designed to
mitigate the impacts of confounding in observational studies. This exploration
extends beyond the mere presentation of statistical formulas and equations, pro-
viding practical insights into the application of these techniques in real-world
research. The study posits that the proposed method is particularly advanta-
geous in identifying confounding variables compared to regression methods.

Judea Pearl and his team provide a layman-friendly introduction to causal
inference, as outlined in their works [19, 20]. Emphasizing comprehension of di-
verse causal relationships and discerning them from misleading associations, the
authors delve into various approaches for recognizing causal connections. These
include randomization, controlled experiments, and structural equation mod-
elling.

These instances represent a handful of numerous studies that have explored
or introduced techniques for detecting confounding effects or variables within
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datasets. For instance, in works such as [31, 11, 29, 21, 27], various authors elu-
cidate methods for recognizing and managing confounding. Additionally, [22]
discusses diverse approaches to identifying and controlling for confounders as
explained by different researchers.

2.2 The GrandReport Tool

The continuous development of information technology created a massive amount
of data [13]. Association rule mining(ARM) [1, 28], introduced as early as in the
1990s, has become a standard technique in data mining. Association rule min-
ing technique identifies the interesting patterns or the combinations of the data
items with the help of classical measures such as support, confidence and lift [26,
?]. As such it is well-established in today’s data mining tool landscape as well
as the subject of exhaustive research endeavours. Unfortunately, the inclusion
of numerical target column is achieved only by discretization [25, 15] in today’s
association rule mining tools. This is a severe limitation, because, when it comes
to numeric target values, decision-makers and domain experts want to base their
arguments on mean values. The GrandReport have addressed this problem. The
tool reports mean values of chosen numerical target columns against all combi-
nations of influencing factors. A grand report [10] can be characterized as the
complete print-out of all possible generalized association rules [10, 2]. The po-
tential of the approach has been investigated, among others, in [10, 2, 4, 3, 24,
5].

2.3 Confounding

Confounding poses a significant challenge in scientific research, particularly in
understanding the impact of an influencing variable on a given outcome or target
variable [3]. When confounding occurs, it hides the actual effect of the variable
being studied. Thus, controlling or eliminating this confounding influence be-
comes crucial to obtaining accurate and meaningful results.

Confounding complicates the accurate assessment of how an exposure truly
affects an outcome. A variable is considered as a potential confounder if it meets
certain criteria like 1; it must connected to the target variable. 2; it must be
connected with the influencing variable and distributed unevenly among influ-
encing variable groups. 3; it must not be an outcome of the influencing variable
[14]. The confounding bias is often characterized as a mixing of effects [32, 12]. It
happens during the impact analysis of an influencing variable on the occurrence
of a target variable but unintentionally calculates the impact of another variable.
The variable whose effect is calculated is known as the confounding variable [14].

Addressing confounding begins with careful consideration during the study
design phase, a pivotal point where researchers can implement strategies to min-
imize its potential impact. One such strategy is randomization, where partici-
pants are randomly assigned to different groups, ensuring an even distribution of
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potential confounding variables across these groups [14]. Restriction involves lim-
iting the study population to specific characteristics minimizing the variability
of confounding factors.

However, the battle against confounding continues after the study design.
Even after completing the study, researchers have options to control for con-
founding and refine their findings. Stratification allows for the analysis of sub-
groups based on potential confounders, enabling a clearer understanding of the
variable’s effect within each subgroup. Multivariate analysis, a more complex
technique, involves considering multiple variables simultaneously to assess their
independent effects, effectively controlling for confounding.

Importantly, successful adjustment for confounding in post-study analysis
depends on the availability and accuracy of information about the potential
confounding factors collected during the study. Accurate and comprehensive data
are fundamental in addressing confounding and obtaining reliable conclusions
from the research. In summary, recognizing and managing confounding at various
stages of the research process are essential steps to ensure the integrity and
validity of the study’s results.

2.4 Coerced Multiple Linear Regression Adjustment

We assume that a statistical data set D of n data points is given as an indexed
set as follows:

D =
(
⟨yi, xi1 , xi2 , . . . , xip︸ ︷︷ ︸

confounders

⟩
)
1≤i≤n (1)

The data setD is said to consist of one y-column and p x-columns. The several
columns of the data points in (1) have different roles in regard of the intended
linear regression analysis as follows. We call yi the target variable. We call xi1 the
primary influencing factor. We call xi2 , . . . , xip potential confounders and also
further influencing factor. (When clear from the context, the primary influencing
factor is sometimes simply called the influencing factor as opposed to the further
influencing factors, which are then also simply called the confounders.)

On the basis of that, we define the marginal regression line in terms of D as
follows:

yi = βm0 + βm1 xi1 + ϵmi (2)

As usual, (2) is considered to be the solution to the respective optimization
problem of linear regression with ϵmi represents a normally distributed error
term.

Next, we define the adjusted regression line in terms of D as an adjustment
measure as follows:

yi = βa0 + βa1xi1 + βa2xi2 + · · ·+ βapxip + ϵai (3)
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In the context of confounder analysis, the coefficient β1 is the fundamental
regression analysis parameter. It represents the effect of the primary influencing
variable xi1 onto the target variable yi. When this coefficient changes signifi-
cantly (e.g., more than 10%) after a further influencing variable x′ has been
added to the regression analysis, it becomes important to consider this x′ as a
confounding variable [17, 6, 18, 23]. Addressing confounders in analysis gives a
comprehensive understanding of the correlation between the exposure and the
outcome. It helps in decision-making based on the analysis and generates valid
interpretations.

Against this background, we now define the adjustment lift α in terms of D
as follows:

α =
βa1
βm1

(4)

Furthermore, we use the following adjustment measure ψ, because it is used
in practice and the literature [17, 6, 18, 23], and we call it adjustment measure in
terms of percentage difference:

ψ =
βa1 − βm1(
βa
1+β

m
1

2

) (5)

In practice and literature, the measure (5) is often utilized to define a thresh-
old for the identifying confounders, where a threshold of 10% is a usual, arbitrary
threshold.

3 Tool-Integrated Confounder Adjustment

For this study, the techniques specified in Section 2.4 has been included in the
GrandReport tool. The integrated method allows us to effectively apply these
techniques within the context of the tool, enhancing its analytical capabilities
and providing valuable insights through the implementation of multiple linear
regression. Figure 2.4 shows a snippet of a report generated by GrandReport.

In order to generate a comprehensive report using the GrandReport tool,
the user initiates the process by choosing the input source – either an Oracle
database or an Excel file. Subsequently, the users can select the specific table or
sheet, depending on the chosen source, that they intend to utilize for the report
generation. The tool then displays the column names, presenting the user with
two essential options.

– The first option allows the user to designate the target variable, pinpointing
the central focus of the analysis. However, at present, the tool permits the
selection of only one column as the target variable.

– Subsequently, the second option enables the user to specify the influencing
factors which play a crucial role in the analysis process.
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Fig. 1. The report generated by GrandReport.

The GrandReport tool achieves an integration of association rule mining [1,
28] and Pearson correlation reports [3]. With the novel feature, the GrandReport
tool steps further by integrating and facilitating multiple linear regression. An
illustrative representation of the tool’s interface is shown in Figure 2.4, where
distinct colours have been strategically employed for various columns. These
colours help the user to identify each column’s behaviour in the course of the
analysis.

Through this systematic approach, GrandReport facilitates a seamless and
efficient process of generating insightful and visually distinguishable reports for
effective decision-making and analysis.

GrandReport is an ASP.NET framework web application with Ajax and
JSON functions for seamless data transfer. This integration involved the uti-
lization of the MathNet package, specifically employing LinearRegression. We
called the MultipleRegression.NormalEquations function to execute the multiple
linear regression by passing our influential and target variables.

4 Experimental Setup

For our experiments, we have used meteorological data from China, i.e., the
CMDC (China Meteorological Data Service Centre) data set9 [7]. The CMDC
portal10 was developed with the primary objective of simplifying the sharing
9 https://www.legislation.gov.au/Details/F2016C00215

10 http://data.cma.cn/en
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and dissemination of daily meteorological data. By doing so, it facilitates ad-
vancements in science and technology by promoting seamless collaboration and
knowledge exchange within the scientific community.

The CMDC dataset plays an essential part in the research of meteorological
data in China. This data contains comprehensive and crucial environmental pa-
rameters, including pollutants such as PM2.5, PM10, SO2, NO2, O3, and CO.
Additionally, the CMDC also provides data on the average Air Quality Index
(AQI) for each city across China. The availability of the mean Air Quality Index
(AQI) for every city in China within the CMDC dataset is used for studying
air quality across different areas. This information is crucial for decision-makers
and researchers.

In our experiments, the AQI from CMDC dataset has been used as the tar-
get variable to be investigated. To conduct a useful confounder analysis, we
have extended the CDMC dataset with additional parameters, resulting into the
following data per city:

– Target Variable: Air Quality Index (AQI)
– Primary Influencing Factor: CO2 level
– Potential Confounders: population density, gross domestic product, numbers

of vehicles.

We argue that the usage of the CMDC dataset for our experiments is a par-
ticularly good choice, given its vast and diverse availability of meteorological
and pollutant-related information. With the vast set of parameters, the CMDC
dataset empowers researchers to delve into crucial environmental problems and
generate sustainable solutions, in alignment with the CMDC’s primary objec-
tives of promoting scientific community and collaboration in meteorology and
environmental science.

4.1 Compilation of the Data Set

AQI is a critical measurement for assessing air quality in different cities, it also
provides the implications of residing in cities with different AQI levels. The AQI
index plays a critical role in making sensible decisions by the policymakers about
the health and well-being of individuals.

The Australian Capital Territory11 has defined a specific method for calcu-
lating AQI. According to it, the reading of a particular pollutant is divided by
the corresponding pollutant standard value, and the result is then multiplied
by 100. This method produces the AQI value for a specific pollutant, delivering
an explicit indication of the pollution levels in the air11. Australian national
standard values12 for each pollutant are given in Table 1.

The pollutant standard value used in this calculation may vary according to
the national guidelines or national air quality standards. The variations in air
11 https://www.health.act.gov.au/about-our-health-system/population-

health/environmental-monitoring/air-quality/measuring-air
12 https://www.legislation.gov.au/Details/F2016C00215
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quality standards are essential to the analysis of air quality to the circumstances
of each nations 13. The air quality standards for different countries are avail-
able in the Air Quality Standard portal14, this enriching the awareness of AQI
calculations and their importance across the globe.

The Air Quality Index (AQI) is a comprehensive calculation that takes into
account different pollutants present in the air. The average AQI is the product
of all pollutants. In order to improve the accuracy and profoundness of our re-
search, we expanded our investigation beyond just the pollutants. We undertook
a comprehensive process by integrating further influencing factors which play
an important role in air quality. This extended approach involved integrating
variables such as CO2 levels, population density, gross domestic product (GDP)
data, and the number of vehicles in each city. A sample of the extended data set
is given in table 2 The extended influencing factors have been incorporated from
the China Urban Carbon Dioxide Emission Dataset, accessible at 15. This ex-
tended integration enriches the deepness of research, providing a more complete
perspective on air quality determinants.

The inclusion of additional influencing factors to the air quality helps to
understand the impact and correlations of human density, carbon dioxide emis-
sions, economic activities of a region and traffic-related pollution of each city.
By adding these influencing factors in to AQI analysis, we are trying to identify
the confounding effects that influence the air quality. This method facilitates a
better and vast understanding of the AQI, enabling sensible decision-making [4]
and improving air quality management in cities.

Table 1. Standards for pollutants according to [8].

Pollutant Avg.
Period

Maximum

Carbon monoxide 8 hours 9.0 ppm
Nitrogen dioxide 1 hour 0.12 ppm

1 year 0.03 ppm
Ozone 1 hour 0.10 ppm

4 hours 0.08 ppm
Sulfur dioxide 1 hour 0.20 ppm

1 day 0.08 ppm
1 year 0.02 ppm

Lead 1 day 50 µg/m3

Particles as PM10 1 day 50 µg/m3

1 year 25 µg/m3

Particles as PM25 1 day 25 µg/m3

1 year 8 µg/m3

13 https://www.transportpolicy.net/topic/air-quality-standards
14 https://www.transportpolicy.net/topic/air-quality-standards/
15 http://www.cityghg.com/toArticleDetail?id=203
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Table 2. A Sample table of standardized air quality indices and CO2 levels with
additional city data.

City Aqi CO2(t) Population/104 GDP/108 Vehicles
Ankang 78.71 446 249 1089 242,86
Anqing 46.7 2462 528 2468 650,957
Anshan 54.90 8128 333 1739 382,184
Anshun 62.25 1505 247 967 133,069
Anyang 67.4 6368 548 2301 950,443
Baicheng 47.38 1454 155 492 305,672
Baishan 36.5 861 95 509 156,612
Baiyin 69.33 2342 151 497 268,633
Baoding 71 6445 924 3353 964,879
Baoji 112 2439 332 2277 492,2

4.2 Conducted Experiments

In this experiment, AQI represents the target variable (dependent variable).
The remaining columns (CO2, Population density, GDP, Number of vehicles)
represent the influencing factors (independent variables).To identify the adjusted
regression line Multiple linear regression method is used, with influencing factors
as the input and AQI as the target factor. Then, We performed linear regression
for each influencing factor with a target factor to identify the marginal regression
line.

Subsequently, we created the different combinations of primary influencing
factor CO2, by comparing it with potential confounding variables such as pop-
ulation density, GDP, and the number of vehicles. By doing so, we aimed to
perform Multiple linear regression to identify the effect of these potential con-
founding variables on AQI when considering CO2 as the primary influencing
factor. To quantify the influence of confounding, we calculated the percentage
difference between the adjusted and marginal regression lines. This calculation
is crucial for identifying the difference in the relationship between AQI and CO2
while considering the confounding variables.

It is important to realise that defining a cutoff point for identifying an in-
fluencing variable as a confounding variable can differ based on several factors.
These include sample size, influencing factors correlation, standard deviation er-
ror, etc [18]. The experimented method delivers a strong framework to explain
the detailed association between influencing factors, AQI and CO2 level.

Table 3. Marginal regression line for influencing factors

Influencing factors Regression line
CO2 59.6598
Population density 59.8219
GDP 61.9739
Number of Vehicle 61.3835
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Table 4. Adjusted regression line for the Air Quality Index (AQI) as target variable
dependent on CO2 (primary influencing factor) and various combinations of other
influencing factors: the slopes of adjusted regression lines are shown for CO2, population
density (=Population/Pop.), gross domestic product (=GDP), and number of vehicles
(=Vecicles/Veh.).

Combinations of
Further Influencing

Factors
Regression Slope

Adjustment
Measure in
Terms of

Percentage
Difference

Adjustment
lift

(Potential Confounders) CO2
β1

Pop.
β2

GDP
β3

Veh.
β4

ψ-Measure (5) α-Measure (4)

unadjusted/marginal 59.66 0.00 1.00
Population 59.26 59.25 – – 0.68 0.99
GDP 59.78 – 59.78 – -0.21 1.00
Vehicles 59.88 – – 59.88 -0.37 1.00
Population, GDP 55.77 58.75 60.78 – 6.73 0.93
Population, Vehicles 58.70 59.70 – 59.71 1.62 0.98
GDP, Vehicles 59.45 – 59.45 59.45 0.34 1.00
Population, GDP, Vehicles 55.49 58.47 59.49 59.49 7.24 0.93

5 Experimental Results

In the process of coerced multiple linear regression adjustment, two types of
regression lines, namely the marginal and the adjusted regression lines, are gen-
erated and then compared. The marginal regression line involves the computa-
tion of the slopes for each individual influencing factor and the target factor.
These slopes are presented in Table 3. On the other hand, the adjusted regres-
sion line is created by performing multi-linear regression, using combinations of
influencing factors as input and the target factor as the output. The resulting
slopes of the adjusted regression for various combinations of CO2 with other
influencing factors are detailed in Table 4. Additionally, the table includes the
adjustment measure in terms of percentage difference and adjustment lift for
CO2 with potential confounders.

The adjusted regression delivers an in-depth knowledge of the effects of var-
ious combination factors, it is creating a more useful interpretation of the cor-
relation between the primary influencing factor (CO2) and the target variable
(AQI) variable in comparison to the marginal approach.

The presented results shed light on the presence of a confounding effect re-
lated to the Gross Domestic Product (GDP) and Population Density when con-
sidering CO2 as the primary influencing factor in the context of the Air Quality
Index (AQI). This effect manifests distinctly only when both GDP and Popu-
lation Density are considered in combination; independently, these variables do
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not exhibit any confounding effect. Moreover, the third potential confounding
variable, Number of Vehicles, does not demonstrate a confounding effect on AQI
either when analyzed in isolation or in various combinations.

GDP and Population Density show the characteristics of confounding vari-
ables when analysing their correlation with CO2 and AQI. The experiment does
not define these are the only confounding variables of AQI and CO2, but some-
what emphasises their possible role as such founded on the monitored effects on
the correlation between standardized air quality indices and CO2 levels.

6 Future Directions

There are two major strands of future work. The first is about more general-
ized linear regression adjustment and its “grand” reporting in terms of arbitrary
groups of influencing factors and arbitrary groups of confounders. The report in
this paper is limited to a single primary influencing factor that is taken from the
first column of influencing factors, see Table 4. The conducted experiment was
chosen to provide evidence for the usefulness of the feature, yet, the feature needs
to be generalized significantly to realize the very notion of the GrandReport tool
to serve as a tool for wide, exploratory analysis. Therefore, in future work, we
will generalize the method for multiple primary influencing factors. Hand-in-
hand with that, the generalization will allow for primary influencing factors to
be taken from arbitrary positions.

The second strand of future work is about a systematic comparison of linear
regression adjustment with categorical adjustment as an alternative confounder-
adjustment measure. In our work, we want to utilize a generalized form of cat-
egorical adjustment that allows for the inclusion of numerical target values [9,
2, 24, 16] as well as numerical influencing factors [9, 2, 24]. The inclusion of nu-
merical influencing factors is achieved by coercion, i.e., by splitting numerical
columns into partitions. We will use standard methods for that such as splitting
column data along the median or other quantiles.

7 Conclusion

The UN 2030 Agenda for Sustainable Development strongly emphasizes the ne-
cessity of using disaggregated data to effectively meet its objectives. We contend
that the primary advantage of disaggregating data lies in its potential to better
comprehend confounding effects within intricate systems. Unfortunately, obtain-
ing such disaggregated data is often challenging due to limitations in available
analytical tools or the inherent complexity of performing these processes. The
Integrated multiple linear regression adjustment in GrandReport introduces a
potent mechanism to identify and account for confounding effects when analyz-
ing complex data sets.

In this research, we utilize the new feature of Grandreport tool, i.e., newly
integrated multiple linear regression adjustment as a novel feature to investigate
the correlation between standardized air quality indices and CO2 levels. This
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investigation was conducted both before and after adjusting for potential con-
founders, using additional city data. As shown in the result, this approach can
identify confounding effects of influencing variables. The experiments conducted
with GrandReport provided compelling evidence of the viability and efficacy
of the suggested approach. This research highlights the critical importance of
identifying and addressing confounding variables in data analysis, underscoring
the potential for significant advancements in our understanding of complex sys-
tems and contributing to informed decision-making, aligning with the UN 2030
Agenda for Sustainable Development.
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Abstract. Drill-down is a natural and extensive data analysis method
that is widely used to analyse aggregate values of data at different levels
of granularity. As such, drill-down has proven as an essential tool for
informed decision-making in various scenarios. In this paper, we argue
that drill-down can be equally utilised to analyse the behaviour of data
patterns at various levels. To evaluate the usefulness of such an approach,
we investigate the behaviour of Pearson correlation at different drill-
down levels in the well-known meteorological data set CMDC. We test
the hypothesis that the Pearson correlation between various attributes
is preserved during drill-down and provide a systematic discussion of the
outcome of these tests.

Keywords: Pearson correlation · drill-down.

1 Introduction

Decision-makers need to do frequent data analysis to generate proper decisions.
Going through a small amount of data is acceptable. However, there is a drastic
change in the volume of the data produced every day [8]. It is undoubtedly
good for decision-makers to understand all the available data before making any
decision [14]. Due to the inability to go through each layer, decision-makers
analyse the outermost margin or drill-down until they feel comfortable making
the decision. They assume that the rest of the data follows the same pattern,
which might result in the wrong conclusion.

Accessing the deeper layers of an organised dataset or a file structure is known
as drill-down. Drill-down allows the decision-makers to analyse the granular
layers of the dataset by combining more constraints. Drill-down can provide
insights into each layer of data to decision-makers other than a marginal [16,
10]. For example, a drill-down report which shows the salary distribution of each
state in a country will also provide the capability to view and compare the salary
distribution of each province or profession in the state. The drill-down method
allows decision-makers to go deeper into each level for in-depth knowledge of each
layer and compare it with each other. In the drill-down salary distribution report,
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decision-makers can compare the salaries in different provinces to identify which
is the high-paying profession and high-paying province for the same profession.
Seeing data from a different point of view will give a different perspective about
the data; drill-down allows decision-makers to analyse the same data from a
different point of view and compare it with different layers of results to make a
better understating of data.

The rest of the paper is structured in the following manner: Section 2 delves
into the issue or challenge being addressed in this paper. Then, Section 3 explains
the data preprocessing method which is used in this study. In Section 4, we
answer the question we raised in Section 2. Finally, Section 5 offers a concise
overview of the findings from this study before proceeding to conclude the paper.

2 Problem Statement

In this paper, we calculate the bivariate Pearson correlation in each level
and compare it with the outer marginal level. In bivariate analysis, the rela-
tionship of two variables is studied simultaneously [6, 12]. Pearson correlation
specifies the existence of a correlation between two variables and discovers the
magnitude of the correlation between them. This method is commonly used for
numerical variables [11]. A correlation shows the influence of one variable on
another, but the actual causality might be in a different direction than we as-
sume, so the correlation would not indicate causation. The correlation values
vary from 1 (strong positive correlation) to -1 (strong negative correlation). The
correlation value of uncorrelated variables will be 0 [2]. This correlation value
shows, how a variable will behave when an increase or decrease happens to the
other variable [15]. According to David(1938), the recommended sample size for
calculating Pearson correlation is greater than or equal to 25 (n ≥ 25) [3]. So,
we can consider this number(25) as our minimum threshold for this study. The
equation for the Person correlation of two variables is the sum of the covariance
of variables divided by the sum of the square root of covariance [1].

∑n
i=1(xi − x)(yi − y)√∑n

i=1 (xi − x)2
√∑n

i=1 (yi − y)2
(1)

In recent times, individuals, particularly politicians and the media, often
make inaccurate assertions regarding the causality of misleading or inappropri-
ate correlations. These claims have a significant impact on decision-making. As
we explained in the previous paragraph, correlation is not always the answer
to causality. It does not mean that the correlated variable has a causal impact
on each other. A vast volume of data is created on a daily basis, necessitating
decision-makers to thoroughly review the data for informed decision-making. To
alleviate this workload, they may opt to review the data at a superficial level or
discretize the values. Selecting pertinent information and suitable features from
the dataset has historically posed a challenge for decision-makers [14]. The sys-
tem’s performance has a vital role in finding these features and information [7].
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Choosing unsuitable features will mislead the decision-makers, resulting in in-
correct conclusions or confusion regarding the variables’ impact.

Utilizing a drill-down approach enhances decision-makers’ understanding of
the data. In this study, we integrate drill-down capabilities with Pearson corre-
lation to gain a deeper understanding of the data. This combined approach aids
decision-makers in reaching more informed conclusions. To help the decision-
makers, we have created a tool(Grandreport [5]1) with multiple data mining
techniques [13] and ACIF generator function [17]. The Grandreport will produce
numerous rows of report. This is due to the absence of constraints on support
and confidence, enabling generalized association rule mining. Analysts utilize this
approach to integrate every line of the report into their decision-making process
[5]. In Grandreport, we have integrated association rule mining, Pearson corre-
lation and regression to improve the decision-making process. In association rule
mining, the target columns are discretized for numeric values to facilitate the
mining process [4]. In the Grandreport, we utilize values in their original form
to achieve improved results. This stands as a primary advantage of our system.
The main disadvantage of this tool is that it reports all possible combinations
of influencing factors and generates a lengthy report. To tackle this problem,
we decided to report only the exciting and valuable factors by analysing the
output with the measures provided by integrated data mining techniques before
showing it to the user. From this process, we noticed that some of the variables
with high correlation in the marginal level are not showing correlation during
the drill-down, and most decision-makers are not considering this pattern.

In this paper, we are trying to answer,

– Does the correlation shown in the marginal for a variable follow the same
pattern during drill-down, or will it behave differently?

Our hypothesis is that the correlation observed at the marginal level for a
variable will maintain a consistent pattern during drill-down.

3 Experimental Study

Within this research, we examine the patterns present at the marginal layer
in comparison to each subsequent drill-down layer within a real-world dataset.
Subsequently, we discuss our findings regarding the patterns observed in each
dataset.

3.1 CMDC Dataset

For this study, Meteorological Data in China [9] (CMDC 2) is used. The establish-
ment of this portal aimed to facilitate the sharing of daily meteorological data,
1 http://grandreport.me/
2 http://data.cma.cn/en
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ultimately advancing science and technology. The CMDC dataset encompasses
various meteorological attributes, including precipitation amount, sea level pres-
sure, snow depth, temperature, visibility, wind speed, and more. Each attribute
comprises one year’s worth of data from 31 provinces.

3.2 Preprocessing

Pearson correlation involves a bivariate analysis and is most effective with numer-
ical values. To enhance performance and reduce computation time, we refined
the dataset by generating distinct tables for various attributes. Each column
represents the mean value of a specific attribute for each day within a partic-
ular province(table 1). The comparison between the provinces will generate an
overview of climate differences in each province.

Table 1: CMDC dataset separated by province.
Date Beijing Tianjin Hebei Shanxi Neimenggu Liaoning Jilin Heilongjiang
01-Jan 3.300 2.114 2.386 3.160 3.103 3.272 3.001 8.108
02-Jan 4.000 2.914 2.844 3.004 3.442 3.028 4.059 6.415
03-Jan 3.100 2.084 2.986 3.214 3.569 3.069 3.251 5.038
04-Jan 3.600 3.330 3.362 3.661 4.332 2.673 3.095 4.738
05-Jan 2.700 3.951 3.663 3.144 3.926 2.988 2.730 4.100
06-Jan 5.900 4.711 3.747 3.158 4.867 3.943 2.959 3.723
07-Jan 10.800 8.600 5.164 3.800 4.293 8.369 3.475 3.923
08-Jan 4.300 5.597 3.536 3.504 3.912 4.142 3.458 5.008
09-Jan 3.500 2.654 2.767 3.405 2.884 2.501 3.112 4.038
10-Jan 10.900 6.989 4.223 3.780 4.126 3.429 2.972 3.592

3.3 Setup

The objective of this study is to determine the correlation between variables
and compare the Pearson correlation value of each drill-down layer against the
marginal level. sing the above-described dataset (CMDC), we computed the
Pearson correlation for each drill-down and compared it with the province’s
marginal layer. To ensure accuracy, we omitted correlation results with a count
of less than 25 [3]. Put simply, if a month is absent or the number of values for
a specific month is below 25 in any province, those months are excluded from
the comparison. We developed a Python command line application to calculate
correlation. To ensure accuracy and efficiency, we utilized the ’corrcoef’ function
from the ’NumPy’ library.

As an example of the output generated by the application, see Table 3, which
shows the correlations of the provinces Tianjin and Hunan for various months.
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4 Evaluation

As previously mentioned, utilizing the drill-down approach enhances our un-
derstanding of the data. The outcomes confirm that drill-down helps to gener-
ate a deeper understanding of the data. Our experimentation with the CMDC
dataset to verify the hypothesis, revealing diverse patterns across the dataset.
The results shown here are for different meteorological attributes of Tianjin
province. In this section, we address the questions posed earlier in this study.

- Whether the correlation shown in the marginal for a variable will follow the
same pattern during drill-down or will it behave differently?

To answer this, we can compare the Figs. 1, 2, 3, 4 and 5. Our investigation
revealed that nearly all combinations exhibit a consistent pattern with marginal
level, with a few exceptions. The result shown in the Figs. 1, 2, 3, 4 and 5 can
be divided into three groups.

1, The correlation patterns of drill-down have the same pattern as the marginal.
2, The correlation patterns of the majority drill-down are not the same as the

marginal.
3, The correlation patterns of the drill-down and marginal behave in opposite

directions.

The ‘X’ and ‘Y’ axes represent the correlation and number of elements.
Figures 1 and 2 show the same pattern for the marginal and drill-down. In

this, the marginal shows a weak correlation, and the drill-down also shows the
same pattern for most variables. However, a handful of variables (less than 5%)
show strong correlations. Around 65% of attributes in the CMDC dataset follow
this pattern.

Figures 3 and 4 show different patterns for drill-down and marginal. Here,
the marginal will have a strong positive or negative correlation, while drill-down,
we are getting different correlations. A strong positive correlation is generated
for the marginal in Figs. 3 and 4. However, drill-down shows a weak or moderate
correlation for the same dataset. Some exceptional variables(less than 10%) also
show strong positive correlations. 25% of the attributes in the CMDC dataset
follow this pattern.

The drill-down and marginal correlation patterns behave in opposite direc-
tions in Fig. 5. A negative correlation is generated for the marginal, while drill-
down, strong or moderate positive correlations are generated for most of the
variables. More than 60% of the variables behave in opposite directions. Figure
5 exemplifies the importance of drill-down techniques in data analysis. Only 10%
of CMDC dataset attributes exhibit this pattern.

This result shows that it is always recommended to delve deep into the
dataset to find the actual pattern before making any conclusions. In some cases,
the correlation between the marginal and drill-down behaves differently (like Fig.
5). Moreover, the existence of the statistical paradoxes and other data fallacies
(like confounding effects) have a significant impact on the outcome.
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Table 2: Outer marginal correlations between (a) the mean temperature of ‘Tian-
jin’ and the mean temperature of various other provinces, and (b) the weighted
mean sea level pressure of ‘Tianjin’ and the weighted mean sea level pressure of
other provinces.

Province (a) mean temperature
correlation with ‘Tianjin’

(b) sea level pressure
correlation with ‘Tianjin ’

Anhui 0.9311 -0.4885
Fujian 0.8471 0.0413
Hebei 0.9897 -0.4860
Heilongjiang 0.9672 -0.4951
Jiangsu 0.9191 0.1049
Jiangxi 0.8910 -0.6206
Liaoning 0.9768 -0.0667
Neimenggu 0.9729 0.0736
Shanghai 0.8863 -0.8132
Shandong 0.9696 -0.1986
Zhejiang 0.8858 -0.7389

Table 3: Drill-down correlations between (a) the mean temperature of ‘Tianjin’
and ‘Hunan’, and (b) the weighted mean sea level pressure of ‘Tianjin’ and
‘Hunan’.

Layer
(a) mean temperature
correlation between

‘Tianjin’ and ‘Hunan’

(b) sea level pressure
correlation between

‘Tianjin’ and ‘Hunan’

Year (Marginal) 0.9018 0.0086
January 0.2872 0.2913
February 0.6760 0.5680
March 0.4209 0.8667
April 0.5133 0.5599
May -0.0876 0.0572
June 0.1998 0.3018
July 0.3676 0.9029
August 0.4704 -0.9963
September -0.7657 0.8607
October 0.0351 0.7164
November 0.8734 0.8754
December 0.2183 0.9346
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Fig. 1: Correlation plot for inverse-distance weighted maximum wind gust.
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Fig. 2: Correlation plot for inverse-distance weighted maximum sustained wind
speed.
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Fig. 3: Correlation plot for inverse-distance weighted mean temperature.
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Fig. 4: Correlation plot for inverse-distance weighted mean dew point.
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Fig. 5: Correlation plot for inverse-distance weighted mean sea level pressure.
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5 Conclusion

The overall aim of this work is to identify the importance of the drill-down
approach in data analysis. Given the importance of data analysis in decision-
making, we wanted to understand the data more deeply and identify the patterns
of each layer with the impact on the outcome. We calculated the correlation of
each layer and compared it with the marginal correlation. This approach aims
to identify the different patterns in drill-down and marginal. The results show
three different patterns for CMDC data in this work.

The main confrontation faced in this work was to identify the proper sta-
tistical method to find the pattern to such scenarios. The experiment is carried
out only on a small scale, with a limited number of meteorological attributes of
CMDC data for one year. So, the presented results deliver only a general view
of the importance of drill-down analysis. Further changes and more statistical
analytical methods are required to enhance the results. For now, we are only us-
ing the correlation method to identify the patterns; however, as a next step, we
would like to add regression to generate different perspectives and find the con-
founding effect of each attribute. Also, as part of future work, we would like to
investigate on a larger scale(with hundreds of real-world datasets) to understand
the patterns of drill-down in different types of datasets.
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ABSTRACT
The large volume of information being produced in organizations
today poses new challenges to the accuracy and effectiveness of
any organizations’ decision-making processes. These challenges,
namely sensemaking and trust, can critically impact the decision-
making processes, even if the organizations are relying on business
intelligence (BI) strategies. Given the critical impact an organiza-
tions’ BI can have on its sustainability and thus its success, in this
work, we attempt to draw insights from the literature on collective
intelligence and, based on these, present a novel artifact that aims
to empower organizations’ BI by supporting the organizations’ em-
ployees in establishing trust and sense when working up with new
ideas and solutions. The proposed artifact utilizes a novel reputation
model, which calculates reputation based on an individual’s area
of expertise and reputation score, in order to assist in establishing
trust among system users, and thus helps improve decision-making
processes.
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• Information systems→ Crowdsourcing; • Software and its
engineering → Development frameworks and environments; Use
cases; Abstraction, modeling and modularity; Designing software.
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1 INTRODUCTION
Today’s business organizations face endless instabilities and volatil-
ities, which can lead to creation of massive volumes of data; being
produced by organizations both internally and externally [22]. To
harness the possibilities of this transformation, several organiza-
tions now aspire (but often even struggle) to convert these large
volumes of existing data into a clear understandable chunks that
could be utilized in their business processes. In order to achieve
this businesses reply on Business Intelligence (BI); a strategy that
enables organizations to examine their past actions and decisions,
and thus consequently, predict the future. BI denotes a wide range
of technologies, processes and applications that assist organizations
in gathering, storing, evaluating, and granting access to data for
refining business’s processes and over-all decision-making [17, 39].
It aids organizations by continuously collecting and analyzing orga-
nizational information (including performance metrics) and assists
by making the decision-making processes more efficient.

Although BI is a powerful tool and can be typically used in an
organization’s almost all decision-making processes (both long-
term and short-term), however, business organizations today only
use BI for day-to-day (i.e., short-term) decision-making [20] and,
presently, BI abilities are not necessarily utilized for identifying
the organizations’ long-term progression, which could indeed help
them in improving their methods when undertaking tactical deci-
sions [8]. Another problem that can arise when using BI (which
is also often discussed in literature) is sensemaking [36]; this is a
key precondition to reach an informed decision and is based on the
prior actions of humans [3]. This is to say, that given BI relies on
both machine intelligence and human intelligence, when assisting
organizations in decision-making; the humans involved in analysis
tasks can often get confused by the lack of sense in an idea or an
outcome.

Now given that by gaining a better ‘sense’ of the organization
overall, managers (and other decision makers) could better under-
stand their business’s organizational environment and hence make
healthier decisions [35]; BI applications and related strategies can
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play a critical part in sensible decision making, and even added
advantages beyond conventional decision-making. It is key to note
here that, the decisions that are made using BI should be both sensi-
ble and explainable and should cover various potential possibilities.

In BI, data/information is used to create reports, summarize past
actions, forecast actions, and to understand current and future
risks. When relying on BI, the precision of predictions (made using
BI strategies) depends on the quality of the information and its
sources [40]; if the information and it’s source are not trustable,
the entire action and its outputs can become futile (even counter-
productive). Managers and decision makers who use these outputs
typically understand on-going scenarios, and hence create produc-
tive decisions or implement their decisions keeping the scenarios
in mind [10]; however, a key factor that can influence the decision-
making process in such scenarios is ‘trust’; specially since humans
are involved in the process. Consider this for example, if managers
from distinct departments/sections of an organization are work-
ing together on creating a solution for given scenario, individuals
who have encountered similar scenarios before might be able to
contribute more to the solution, however, if the managers are not
aware of the past experiences of their colleagues, they might end
up not considering ideas of the individual that could contribute the
most. This is in line with literature, where researchers have found
that, when working together in groups humans tend to make better
decisions when there is trust among group-members [30].

That said, in this work we attempt to tackle the above men-
tioned issues of sensemaking and trust, and propose a novel plat-
form designed as discussion forum oriented towards managers,
decision-makers and other employees working in organizations.
To achieve this, we draw influence from another domain (one that
dates back to Aristotle), that is, Collective Intelligence (CI, defined
as, “groups of individuals acting collectively in ways that seem
intelligent” [21]); as the domain has recently gained traction in a
wide variety of domains [30]. So much so, that it is actively being
used by both governing bodies and organizations today; not only to
collect citizen/end-user feedback, but also in the design processes
for solving critical issues and developing new products, respectively
(for example, in Crowd4Roads and CAPSELLA [31], and openIDEO
and Threadless [30]). In general, through its fundamental concepts
of collection and collaboration, CI has allowed organizations to
make better use of the (collective) intelligence of their employees
and their users, and thus helps enhance their decision-making pro-
cesses, when gathering information from numerous sources and
creating valuable outputs using CI methods.

With this in mind, the overall aim of this study, is to discover
how BI strategies could contribute to better decision-making in
presence of sensemaking and trust. The study mainly focuses on the
organizations’ employee’s perspective and tries to identify factors
that generate trust between employees and attempts to understand
how this trust helps in sensible decision-making processes. In par-
ticular, we would like to answer to answer the following research
questions:

Q1: Can we solve the issues of trust and sensemaking in BI using
the concepts from CI?

Q2: How can we design a reputation model for such a BI system
while solving well-known challenges related to reputation in CI plat-
forms?

The remaining paper is organized as follows, in Section 2, back-
ground and related work of BI, CI, trust and reputation systems are
described. Then, Section delves into the novel reputation model of
trust and sensemaking, and Section discusses the proposed artifact
(i.e., the CI-Forum). In Section 5 we describe the evaluation process
for the developed forum and reputation model; and finally, Sec-
tion provides a brief discussion on the findings of this work before
concluding the paper.

2 BACKGROUND AND RELATEDWORK
Business organizations’ performance relies on real-time and ef-
fective organizational information. BI systems analyze this infor-
mation and identify shortcomings and problems within an organi-
zation, they provide businesses with insights and suggestions in
real-time and support decision-makers in coming up with better
conclusions; which subsequently helps organizations sustain and
improve productivity [2, 34]. By implementing innovative ideas
and new technologies in the their processes, businesses can achieve
competitive advantage and success in rapidly changing business
conditions [13, 23].

2.1 Business Intelligence
The decision-making processes change according to the informa-
tion businesses are using to make decisions within their organiza-
tions [18]. We can characterize a BI system as a framework that
collects, makes modification and generates business’s organiza-
tional information from different resources. This reduces the time
required for analyzing important business information and helps
managers to make efficient decisions that can be utilized to improve
business strategies. BI is the process of combining different series
of actions and business information to provide a competitive ad-
vantage to business organizations by helping decision-makers [26].
It is a system and generates answers to support decision-makers
to understand the economic situations of the business organiza-
tions [24]. Conventionally, BI uses methodological models and
numerical functionalities for analysis, used for mining valuable
business information and data from basic information to help man-
agers and decision-makers [32]. These business information mining
processes and analysis procedures enhance forecasting and help
decision-makers understand the progression and problems of any
business organization [27].

2.2 Collective Intelligence and Crowdsourcing
General intelligence, as understood by psychologists is the (single)
statistical factor that predicts variance in performance, when an
individual performs some cognitive tasks (e.g., [11]); it includes an
individuals capacity for logic, understanding, learning, reasoning,
planning, creativity, critical thinking, problem-solving and many
other aspects. When a group of individuals (human or machine)
work together and use their individual intelligence, the aggregated
intelligence of the group can be understood as CI.

In Information and Communications Technologies (ICT), CI has
several definitions (for example, the most prominent ones are by
Levy [11] and Malone [21]); each defines CI as having, three com-
ponents: “individuals (with data/information/knowledge), coordi-
nation and collaboration activities (according to a predefined set
of rules), and means/platform for real-time communication (viz.,
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hardware/software)”–together these “enable intelligent behavior
in groups or crowds” [30]. That said, that advent of the Internet
has allowed for mobilization and harnessing of CI in truly novel
ways, and this has enabled creation of web-based group discussion
platforms that play a key role decision making today [29]. This
has opened the gates to a wide variety of emerging research topics,
including for example, research where scientists and academicians
are trying to understand the influence of group discussion plat-
forms on performance improvement in the quality, efficiency, and
effectiveness of decision-making when using such platforms [25].
Some researchers are also focusing on how users behave, group
members carry out activities, and knowledge that is generated on
group discussion platform by a user and their groups. There also
have been studies which focuses on collaborative IT solutions and
group discussion systems (designed as web-based platforms), and
aim to explain how BI is being used in business organizational
context [8].

Another application of CI, that is gaining tremendous interest
in research is crowdsourcing (defined as, process where a group
of people work together and carry out a task, typically involving
collection of data/information or building a solution; that was con-
ventionally done by a single individual [7]. CI (also, crowdsourcing)
involves group of people working together, but its key that the
individual members of group are diverse [30]. Some researchers
have expressed that the main aim of crowdsourcing is to distribute
the task of one person to a group of people, and by doing this the
overall workload can be divided and hence the task can be carried
out effortlessly [6]. Such crowdsourcing activities are divided into
three categories. First, directed crowdsourcing, where, a coordina-
tor asks a specific question (with relevant explanation) oriented
towards participants, and participants earn some kind of rewards
or benefits to the effort and time they contribute. The second cate-
gory is self-directed, where, participants contribute due to intrinsic
motivations. Here participants comes to a common platform and
discuss various topics according to their volition and try to come up
with decisions or actions according based on the topic at hand. The
third and final category is passive, where crowdsourcing is only
a side effect of output produced by some action. Here, participant
are not obliged to generate the output, or might not be even aware
that are participating in a crowdsourced system [37].

A first popular example of crowdsourcing that has is often dis-
cussed in literature is the Goldcorp Inc.’s initiative from the year
2000, where they used crowdsourcing to identify gold mines in the
Red Lake. The participants were awarded around 0.5 million, and
Goldcorp agreed to share the information about the gold mines
if they were able to find 6 million ounces of gold, from an identi-
fied site. Geologists and engineers from various counties started
analysing the information provided by Goldcorp and the company
started to receive replies (i.e., potential sites with gold) in a short
amount of time. The results produced by participants were verified
by a panel decided by Goldcorp, and the end of the competition
the panel members were surprised by the both the creativity of the
participants and the results produced by them. Goldcorp drilled
at the best 5 locations suggested by participants, and found gold
from at each of the locations. A key finding of the competition was
that participants were able to find gold from all of these locations,
without even the locations once. The competition also illustrated

how intelligent individuals are, and that by utilizing humans (col-
lective) intelligence combined with technology, organizations could
come up with novel and innovative solutions (which could not be
achieved conventionally) [5, 38].

2.3 Trust
Reputation and trust are considered key factors of a civilized soci-
ety [12]. In CI systems too, trust is considered a key property [14, 30].
The success rate of a CI platform can be judged by measuring the
trust and openness among the users [4, 14]. An easy method to as-
sess the trustworthiness can be to just ask the users if they trust the
source of information [33]. Dworken et al. [15] explained how trust
perceived by organizations using examples from the news indus-
try. They claimed that news coverage over the years has changed
dramatically, and this is because users have started to analyze both
the news and its source to check the reliability of the informa-
tion [15]. Trust is also a key component in decision making as
well as in collaborative working environments [12]. Trust is the
belief that the trusted person or the organization will accomplish
a particular task according to the task givers expectation [16]. BI
applications provide trustable descriptions of various business situ-
ations and deliver numerous outcomes for understanding business
organizational risks; whoever, as we eluded to earlier, even with
the trustable nature of BI applications, trust and sensemaking still
remain a challenge to some extent.

2.4 Reputation Systems
Reputation systems are mathematical functions used to calculate
a user or objects trustworthiness or value as perceived by fellow
users, and is calculated based on user feedback (which can repre-
sented using up-votes, stars, like etc.). Theses user score provided
by fellow users can be used as a benchmark to identify the level
of user trustworthy, and the aggregate of votes and feedback are
considered as the reputation score. Literature indicates that theses
votes/feedback and thus reputation score can often be violated,
thus providing untruthful feedback to gain reputation (supporting
non-worthy users) or to decrease the reputation of other users [28].
Reputation systems also face numerous other challenges [1], for
instance, Sybil attacks, where attackers (or malicious users) create
multiple fake accounts to up-vote their contributions in order to
gain higher reputation score, or excessive use of self-promotion, or
users with high negative reputations tend to delete old accounts and
create new ones (this is referred to as whitewashing). A solution
to whitewashing however is that the time duration it takes for an
individual to gain reputation can be studied (as was done in [19]),
as true good reputation typically only grows gradually. Another
challenge to reputation systems is oscillation attack, where, the
attacker creates a user account and behaves fairly to achieve good
reputation, and then changes their behaviour, hence misleading no-
ble users who trusting the reputation of the attacker [9]. This these
challenges in mind, in this work, we aim to develop a novel repu-
tation model that would attempt to tackle some of the challenges
described above.

To summarize, this section presented a brief background of liter-
ature of BI, CI and reputation systems; this is critical as the review
of the literature allowed us to illustrate the purpose of the study,
the questions, limits and advantages. It also provides theoretical
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viewpoints, current views for identifying the study questions and
a review of related experimental studies concerning the respec-
tive fields. The following section explains the proposed reputation
model and how it is different from existing models and systems.

3 NOVEL REPUTATION MODEL
The study proposes a novel approach to the reputation system
which aims to avoid the problems explained in the reputation sys-
tem’s literature review. The proposed approach follows a decen-
tralized reputation system. To some extent, this model is similar to
existing distributed reputation models like the one used by ‘Stack
Overflow’. The users give feedback through positive and negative
votes (i.e., up-down votes). Whenever a user receives a vote, their
reputation score is altered dynamically according to the received
votes. In the proposed method, users would not getting the same
score every time they receive an up/down vote; instead the amount
of score that would added or reduced would depend on the reputa-
tion score of the user giving the vote. This means, if a user has a high
reputation and they they give an up-vote to another user then the
receiving user’s reputation score would increase by a higher value,
and if the user giving the up-vote does not have any reputation then
the receiving user will get the minimal increase in their reputation
score. In this approach, the overall score is not calculated while
making the vote; but rather the votes are calculated with respect
to the category tags (on the individuals profile, i.e., only the topics
the user is familiar with) and points are also calculated according
to these category tags.

In the proposed reputation model scores are calculated based
on the category tags. Whenever a user casts their vote, the system
first checks for the reputation score of that user according to the
category. If the user has a reputation score, then the system divides
that score (that will be added to the receivers reputation) using the
total number of votes that the user has received for the particular
category. If the calculated score is less than theminimum score, then
the receiving user receives the minimum score else they receive
the calculated score.

Take for example the following scenario, let us assume there are
ten users (A1,A2,A3, . . . ,A10) and three categories (C0,C1, andC2).
At time T0, all users will start with reputation scores of 1.0 (both,
overall and for individual categories).

Now lets assume, by timeT1,A6 has received five up-votes in cat-
egory C0 (each from A1,A2,A3,A4andA5), and hence A6’s overall
and category reputation score (for C0) will be 6.0.

At time T2, A6 gives an up-vote to A7 in category C0. So A7’s
new reputation score forC0 will be calculated by dividingA6’s total
score inC0 with total up-votes (as received byA6 inC0) and adding
to A7’s reputation score for C0; i.e.,

(6/5) + 1 = 2.2
Hence, A7’s overall and category reputation score (for C0) will

be 2.2.
Now at timeT3,A6 gives an up-vote toA8 forC1; sinceA6 started

with 1.0 for category C1 and has not received a single up- or down-
vote in due time, a score of 1.0 would be added to A8’s category
reputation score (for C1). Hence, A8’s new C1 category reputation
score will be 2.0.

Finally at time T4, A9 gives an up-vote to A6 for category C2;
sinceA9 has not received a single up- or down-vote in due time cat-
egoryC2, a minimum score of 1.0 will be added toA6’sC2 category
reputation score.

At this point, the final reputation scores for users (A1,A2,A3, . . . ,A10)
will be as follows,

• A1,A2,A3,A4,A5,A9,A10 = 1.0
• A6 = 8.0(C0 = 6.0,C1 = 2.0)
• A7 = 2.2(C0 = 2.2)
• A8 = 2.0(C1 = 2.0)

When generating scores for negative votes (i.e., down votes) the
exact same strategy is used, but with subtraction is used instead of
addition.

To summarise, in this section, a novel reputation model has been
described. The main advantage of the proposed reputation system
is, that users can identify the expertise of every user by viewing an
overall reputation score and separate score based on every category
(the individual contributes/has contributed to). Now to validate this
reputation model we have created an artifact, which we delve into
in Section 4.

4 PROPOSED CI-FORUM
To study how sensemaking and trust can influence on user be-
haviour, and to evaluate the previously proposed reputation model
here we present as discussion forum (named “CI-Forum”). The
proposed artifact allows users to post questions and reply to the
questions posted by other users. Users can the platform share knowl-
edge and help other users to solve problems. Users can up-vote or
down-vote other users comments and feedback, which in turn is
used to calculate user reputation. Users can view posts by using
filters, for example sorted based on the reputation scores of the
user who posted the question/comment; and thus should be able to
identify individuals experts (based on the best answers/comments).
The primary notion behind the artifact is that such a CI based forum
could potentially be used in line with BI strategies, and would allow
organizations to use the collective intelligence of their employees
when carrying out decision-making processes.

4.1 Coding and Implementation
The user interface for the artifact is designed using HTML, CSS
and JavaScript. To send and receive data, AJAX POST method is
used. The CI-Forum website communicates with the server and
collects information in the form of JSON objects and files. To make
the design process easier and to master coding, pages are used.
On the server side, C# is used as the main programming language,
together with a layered architecture. The application consists of
four layers, i.e., a main project layer, a business logic layer, a data
access layer, and a business object layer. The main project layer
contains the ‘.aspx’ files. The business logic layer provides all of
the logical functionalities for the application. The layer works as a
linking layer between the data access layer and the main project
layer. The data access layer communicates with the business logic
layer and collects data from the database. The business object layer
contains objects and their values. Oracle 12C is used as the database.
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4.2 System Features
The application has almost all functionality required by a question
and answer (Q and A) forum. In addition to this, the application also
shows overall and separate reputation scores for each category tag.
This view helps the users to identify the best answer concerning the
keywords and user. The main functionalities of the application are
user creation, login, creating posts, viewing posts, viewing a single
post with its answers, viewing reputation scores for every user
and a user dashboard. The list of posts can be ordered in several
ways, e.g., according to the latest posts, most viewed posts, most
commented posts, or most favourites posts. The forum also has
the feature to search posts by their titles and tags. The posts are
listed in the form of a table, and each row consists of titles, contents,
main category, and last three participant posts. Additionally,total
number of comments to the post, the total number of viewers,
date/time when the post was create are also visible to the users.
Users can click on each participants name and view their basic
information (including the name of the participant, when they
joined the platform, overall reputation scores, reputation scores per
category and achieved badges). These attributes were chosen so as
to provide users with an overall idea of who their co-members are,
thereby assisting in establishing a sort of trustworthiness among
members of the community.

Users can click on each post, which then opens the post as a
separate page. The post page shows users the posted question, their
answers, comments, and edit-options for each post. Each post itself
contains the contributor’s name, the date when the post was created,
its description, up and down vote options, its count and on option
to mark the post as favourite. In addition to the question post, there
are also options to create answers, make edits and add comments
to the post. On the same page, users can see the basic information
about the contributor by clicking on the contributor’s name. To
create a new post, users can select the ‘Create New Post’ option
from the provided menus. Under the ‘Create New Post’ form, user
can add the title, main category, subcategory, description and also
upload relevant documents. The options to select tags is provided
in the main and subcategory fields. Under the subcategory field,
user can select multiple categories, as per their convenience.

To reiterate, a key advantage of designed artifact is that users can
view the overall and individual reputation of all their co-members.
This would helps users identify the best answers/contributions. The
application also has the option to give votes to the other users based
on the posts/contributions and behaviour. The code for the designed
artifact and the associated database files are openly available as
a repository on GitHub (https://github.com/ssijopious/CI-Forum).
This is done so that the results presented in the work, can be repro-
duced and built upon by others.

5 EVALUATION
In this section we attempt to answer the questions we raised previ-
ously in this work. The first question, how to implement CI methods
in the BI platform so as to solve business organization’s decision-
making problems related to trust and sensemaking in the process
of decision making.

As we eluded to earlier, BI systems can help resolve issues and
support in the process of business organizational sensemaking and

trust, however it there is a need to create crowd-based platforms
to make ensure data quality, flexibility and risk management. And
maintaining data quality, requires that the source of the data are
given higher priority. To make sure the integrity of the source,
we can utilize the collective knowledge of humans using crowd-
sourcing methods within BI systems. To entrust a source or user,
would require time, and trustable users would need to contribute
trustworthy information while also cooperating with other users of
the system. The continuous interactions of the user would help de-
velops trust in the platform. This accuracy of trust will have a high
impact on the business organizational decision-making processes.

To solve the next question, this study proposes a new reputation
model to identify the problems of the CI reputation model and
support the BI system to make more trust and sensible decisions.
To evaluate this artifact quantitative research method is used. A
question and answer platform are created to implement this new
reputation system (CI-Forum). A target group is selected for testing
this platform and making the evaluations. In this evaluation, we
tried to identify the target group’s general understanding and habits
of the reputation model. The target users are software engineers
and IT specialists. Most of the participants have experience in
using question and answer platform. The target group is from two
different countries. To collect the evaluation, a questionnaire is
created.

5.1 Experimental Procedure
To evaluate the designed artifact we conducted lab experiments
with multiple users. The candidates for the experiments were iden-
tified through social media (primarily Facebook), by using snow-
balling. More that 50 potential candidates were identified and given
presentation on how to use the platform. After the presentation,
the candidates (i.e., participants or users) were provided the web
address of the application (which was hosted online during the
experiments). Each participant was asked to create separate user
profiles, and were instructed to create multiple posts (questions,
answers and comments). After this, the participants were asked to
actively use the platform over the next two weeks. It is important
to note here that all participants had a background in software
development, hence they were asked to use the platform in the
daily workflows. At the end of two weeks, more than 75 questions
with multiple answers had been posted on the platform.

After this, all participants were forwarded survey questionnaires,
and were given two days to fill in the same. In total, 68 question-
naires were collected at the end of the experiment. Only 45 valid
opinions we found, and hence the remaining were 23 questionnaire
responses were rejected.

5.2 Reputation Model
To assess the reputation model, the participants we asked ques-
tions related to identification of trustable users. This included three
questions (given below), and participants were asked to score the
questions through Likert scale ranging from (1) indicating ‘Com-
pletely Disagree’ to (5) indicating ‘Completely Agree’. The results
of the participants feedback is illustrated in Table and Figure .

• Did the CI-forum help the participant to identify the trust-
worthy user?
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Figure 1: A screenshot of list of posts as viewed by end-users on the proposed CI-Forum

• Did the CI-forum help to analyze user expertise?
• Did the CI-Forum provide more overview of the users?

Table 1: User’s assessment of the Reputation Model

Sub-factors Level of Agreements Mean
1 2 3 4 5

Trust N 1 5 11 18 10 3.7 Agree
% 2.2 11.1 24.4 40 22.2

User N 1 4 11 16 14 3.9 Agree
Expertise % 2.2 8.9 24.4 35.6 31.4
Overview N 2 4 19 19 2 3.3 Agree
of Users % 4.4 8.9 42.2 42.2 2.2
Total 4 13 41 53 26 3.6 Agree

The participants feedback illustrates that the proposed repu-
tation model helped users in identify trustful users. By showing
a separate reputation for each category, users were able to iden-
tify the area of expertise of their co-members. The platform also
helped users gain a better overview of their co-members overall.
As indicated in Table and Figure for every question, most of the
participants voted for ‘Agree’ and the average score was more than
3, so we conclude that the reputation model successfully assists
users in making sensible decisions through the use of reputation
score. The overall score of 3.6 indicates that all participants agreed
with the new reputation model approach and were ready to accept
the reputation scores. If a user had a high reputation score, then
their fellow users considered them as a trustworthy users and ac-
cepted their answers. These results also answer the second research
question raised in this work. We can create a reputation model
to solve the trust problem in BI by showing separate reputation
score for each category, as this method benefits users by helping
them identify the experts and helps users select the best inputs
according to this information. This further aids BI to maintain data
quality thereby assisting in sensible decision-making. We argue
that this approach compels users to contribute consistently and
mimics reputation as it exists in the real-world.

5.3 Usability of CI-Forum
To assess usability, the questionnaire (presented to the participants)
contained four questions all revolving around the systems user
interface and features. Answers to these provide us an overview of
user interactions and the usability and ease-of-use of the designed
CI-Forum. These questions again were supposed to be answered us-
ing a Likert scale ranging from (1) indicating ‘Completely Disagree’
to (5) indicating ‘Completely Agree’.

• CI-Forum is easy to use or not?
• Are you willing to continue using the CI-Forum?
• Is CI-Forum having a clearer and easier operating interface?
• CI-Forum will be recommended to family and friends?

Table 2: User’s feedback regarding the usability of the pro-
posed CI-Forum

Sub-factors Level of Agreements Mean
1 2 3 4 5

Easy to use N 2 7 17 16 3 3.2 Agree
Easy to use % 4.4 15.6 37.8 35.6 6.7
Will continue N 0 7 12 20 6 3.6 Agree

to use % 0.0 15.6 26.7 44.4 13.3
Easier N 0 7 15 18 6 3.6 Agree

operating % 0.0 15.6 33.3 40.0 13.3
interface

Recommended N 1 6 17 12 9 3.5 Agree
to family and % 2.2 13.3 37.8 26.7 20.0

friends
Total 3 27 61 66 24 3.6 Agree

As Table and Figure indicate, the users found the system’s in-
terface easy-to-use and the forum in general usable. The users’
interaction with CI-Forum were meaningful as they did not face
any issues while using the application. Most of the users stated that
they would to continue as well as recommended to their friends
and family. The mean value of every question was more than 3.
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Figure 2: A screenshot of a single posts as viewed by end-users on the proposed CI-Forum

Figure 3: Users’ evaluation of the proposed Reputation Model (left) and usability of CI-Forum (right)
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The average of the mean value was 3.5, which means that all users
were satisfied with their interactions with the CI-Forum. Most users
agreed that CI-Forum is useful for their purposes.

During the development phase of the CI-forum, additional feed-
back was gathered from industry experts, especially those working
in the field of software development and testing. These feedback
were used to enhance the systems functionalities and usability. Most
feedback gathered during this process was positive, and although
the experiments with participants was carried out at a smaller
sample size, almost all participants simulated actual real-world end-
users the CI-forum is oriented towards–as mostly confirmed by
the obtained results. The results of the experiments and its follow-
ing quantitative analysis will be utilized in future to improve the
CI-Forum further. The results of the above experiments are only
limited by the number and homogeneity of the participant sam-
ple, and further user tests are required to develop more conclusive
outcomes.

6 CONCLUSION
The overall aim of this work was two main challenges that are
encountered when using BI strategies today, these are, sensemak-
ing and trust. Given the critical nature of BI strategies in solving
business organizational issues and in supporting organizational
decision-making processes; we set out to solve the issues of sense-
making and trust by drawing influences from research in CI. We
proposed a novel crowdsourcing approach to reputation models,
built around a novel discussion-forum, with focus on organizational
employees’ perspective and helps establish trust among employees
when using BI systems and strategies. By showing users separate
reputation scores for each area of expertise, users were able to
identify the experts among their fellow users. The idea, behind the
approach was that if trustable users works together, the information
and results generated by them would be by those organizations is
more trustable and sensible to the organizations, specially when
compared with non-expert/trustable employees.

The main challenges encountered in this work was that current
technologies are still not well adapted to such scenarios. The eval-
uation of both the reputation model and the CI-forum were only
carried out at a small scale, with limited number of participants.
Hence the accumulated results only present a superficial view of
the usability and usefulness of the proposed contributions. Fur-
ther changes and fine-tuning is required to enhance the developed
artifact. For now, the artifact allows users to identify users with
expertise in specific tasks, however, for the next iteration of the
forum we would like to develop it so that it can accommodate multi-
organization scenarios. Also, as part of future work, we would like
to investigate (on a larger scale) and understand the long-term ef-
fects of use of reputation scores within organizations and their BI
systems.
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Abstract. Since its introduction in the 1990s, association rule min-
ing(ARM) has been proven as one of the essential concepts in data min-
ing; both in practice as well as in research. Discretization is the only
means to deal with numeric target column in today’s association rule
mining tools. However, domain experts and decision-makers are used to
argue in terms of mean values when it comes to numeric target values.
In this paper, we provide a tool that reports mean values of a chosen nu-
meric target column concerning all possible combinations of influencing
factors – so-called grand reports. We give an in-depth explanation of the
functionalities of the proposed tool. Furthermore, we compare the capa-
bilities of the tool with one of the leading association rule mining tools,
i.e., RapidMiner. Moreover, the study delves into the motivation of grand
reports and offers some useful insight into their theoretical foundation.

Keywords: Grand report · association rule mining · relational algebra

1 Introduction

The continuous development of information technology created a massive amount
of data [8]. Data mining can be defined, in general, as the process of finding
rules and patterns from large data sets. Association rule mining (ARM) is one
of the leading data mining techniques. ARM helps to find relationships between
attributes and to create rules according to these relationships. In ARM, imprac-
tical rules are created along with important rules. The ARM algorithms compare
association rules with ancestor association rules to eliminate redundant and im-
practical rules [12]. The target column and its influencing factors are the heart
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of an association rule. Nevertheless, in RapidMiner, it is often called as a con-
clusion and premises. Support and confidence are the two essential measures of
interestingness. Support and confidence calculate the strength of the association
between itemsets.

The implementation of support and confidence with a minimum threshold
could eliminate the association which are below than this minimum threshold.
Some useful association rules might miss due to this method. The decision-
makers need to observe all the valuable association and its measures in order
to make productive decisions. The listing of all possible combinations and its
measures called as a grand report [4]. A grand report contains the list of asso-
ciations and their measures on every attribute in a data set. The ARM tools
discretize the target numeric value columns for easy handling. The discretized
values association rules give an idea of the association and its measures, however,
decision-makers need to have a better picture. The mean value method could
help decision-makers to overcome this situation.

This paper attempts to implement the grand report and the mean value
method in ARM with the help of a new tool4. This tool generated a grand re-
port for the data set and calculated the mean value for numeric target columns
concerning the influencing factors. The tool also calculates the support, lift and
conditional probability for the target columns. Grand report and mean value cal-
culations are generated with the help of relational algebra functions. A compre-
hensive description of the grand report and its calculations is given in section 2.
Section 3 illustrates the details about ARM and discretization of the target nu-
meric values. Whereas, development and comparison of the tool are described in
section 4.

2 Grand Reports

A grand report is the complete print-out of a generalized association rule. In
the grand report, work with most minimal minimum supports (i.e., support
threshold larger than zero but smaller than 1/N , with N being the number of
rows) and the minimal minimum confidences (i.e. zero). The grand report could
produce all possible combinations of the influencing factors against the target
columns. A grand report is the complete unfolding of the pivot table. The grand
report will generate many rows as a report. This is because it does not have any
constraints on support and confidence. It is generalized ARM through which
analyst incorporate every line of the report in decision making [4]. The grand
report generates 2n combinations of influencing factors by using the sum of the
binomial coefficients, where n is the number of columns. Usually, a grand report
is massive in size, so users might feel inconvenience to read the entire report.
Let T be a table with columns C where C = X1 : T1, . . . , Xn : Tn,
X1 . . . Xn are the column names and T1 . . . Tn are the column types.
To generate the report for table T,

∀1 ≤ ψ ≤ n (1)

4 http://grandreport.me/
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∀D = {X ′
1 : D1, . . . , X

′
ψ−1 : Dψ−1} ⊆ C (Di = d1, . . . , dni) (2)

∀d′
1 ∈ D1, . . . , d

′
ψ−1 ∈ Dψ−1 (3)

Here, D is the subset of C and the influencing factor.

∀Y : < ∈ C or Y = Xij : B,Xi : di ∈ C (4)

Y is the target column, < is the real-valued numbers. One can use a select
query with “where” condition in relation algebra, to generate the grand report.
The select query returns the average value of the target column. In “where”
conditions, it is necessary to specify the influencing factors:

SELECT AVG(Y ) FROM T WHEREX ′1 =d1, . . . , X
′
ψ−1 =dψ−1 (5)

In SQL we can use “group by” instead of “where” conditions:

SELECT AVG(Y ) FROM T GROUP BYX ′1, . . . , X
′
ψ−1 (6)

3 Association Rule Mining (ARM)

Association rule mining(ARM) is the process of finding the association of fre-
quent itemsets in a large data set and generate rules according to the asso-
ciations [2]. The ARM first introduced by a research team from Vancouver,
British Columbia in 1993 [1]. There are numerous algorithms used in ARM;
each of it has its advantages and disadvantages [10]. The ‘Apriori’ algorithm is
the most popular and commonly used algorithm in the ARM [2]. Various types
of constraints that can be applied to identify interesting association rules from a
data set [7]. Sometimes, These constraints will generate different rules according
to their property, and these rules might be conflicting [13]. The most popular
constraints in association mining are support and confidence with a minimum
threshold [9]. Support is the percentage of transactions which contain a partic-
ular itemset. For an itemset X, supp(X) is the percentages of transaction which
contain X. Confidence defines how often itemset Y occurs during the transaction
with itemset X.

supp(X) = {t ∈ T | t satisfiesX}/|T | (7)

conf(X ⇒ Y ) = supp(X ∪ Y )/supp(X) (8)

T = Transactions, X ⊆ T, Y ⊆ T, usually : X ∩ Y = θ, |Y | = 1

A sample binary representation of data is shown in Table 2. In the table, every
row is corresponds to a transaction (T1, T2, T3, T4), and each column corresponds
to a data item. If an item is present in a transaction, then its value is 1 else it
is 0 in the table.

T1 : {Milk,Bread,Diaper,Beer}
T2 : {Diaper,Beer}
T3 : {Milk,Bread,Diaper,Beer}
T4 : {Milk,Bread,Beer}

(9)
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Table 1. Binary data set.

TID Milk Bread Diaper Beer

1 1 1 0 0

2 0 0 1 1

2 1 1 1 1

2 1 1 0 1

In a database, let I be a set of M binary attributes {i1, i2, i3, . . . ,im } called
database items. T be a set of n Transactions {t1, t2, t3, . . . ,tn}, each transaction
t has a unique ID and is a subset of the Items in I, i.e. t ⊆ I.An Association
Rule may be represented as an implication of the form

X ⇒ Y (10)

where X,Y ⊆ I (Item set) and X ∩Y = φ. The left-hand side of the implication
known as the antecedent and right hand side of the implication is known as
consequent:

X ⇒ Y := X = {x1, . . . , xn} ⊆ I ⇒ Y = {y1, . . . , yn} ⊆ I (11)

{Bread,Butter} ⇒ {Milk,Butter} (12)

In this association rule example {Bread,Butter} is antecedent and {Milk}
is consequent. Generally, an association rule may be represented as a production
rule in the expert system, if statement in programming and implication in logic.

In ARM, the target cluster method is used to generate association rules for
numeric target values [11]. Target clustering and discretization of the target
column are equivalent. In association rule mining numeric target columns are
generally discretized for easy mining [3]. Garćıa et al. (2013) [6] and Fayyad &
Irani (1993) [5] described well about the discretization of the target column.
Once the discretization applied on a target column, then it will be easy to iden-
tify those columns as binary values. For example, the column age contains the
value from 0 to 140, and column age discretized into different groups. Age 70,
140 group is considered as older people in this example [6]. Most of the in-
teresting measures of ARM are only adaptive with binary target columns [7].
Sometimes misinterpretation of association rules or loss of information occurred
by discretization of the target column. Determining the median of the target col-
umn, calculation of mean value and identifying the variance of target attributes
are the different possible way to find the association rules on numeric target
column. Determining the mean value of a numeric target column is much easier
than discretization. This tool is using the generalized selection of relational alge-
bra to find the mean value of a numeric target column. For example, ‘SELECT’
syntax with ‘AVG’ function.
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4 The Proposed Tool

In this study, a web application created to generate a grand report and verify
data set. As explained in the previous section, the grand report is complete print-
out of a generalized association rule. The tool computes all possible combinations
of influencing factors against the target column to generate generalized associa-
tion rules. A data set of four columns has used to test the application. This data
set creates seven combinations of influencing factors and calculates the aggregate
value or conditional probability of the target column for each combination. This
tool is capable of accessing data from the Oracle database and Excel file and is a
combination of RapidMiner association mining and relational algebra functions.

4.1 Development and Functionalities

ASP.NET, an open-source framework, is used to develop this tool. The Ajax
request method used to establish the communication between the server-side and
client-side. For a smooth data transfer, JSON serialization and deserialization
functions are used. As mentioned earlier, this tool is capable of accessing data
from the Oracle database and Excel files. Furthermore, the Oracle Data provider
and OLE DB methods used to access the Oracle database and Excel file.

Table 2. Technologies used for the development of the tool.

C# Language

ASP.NET Framework

Ajax To send and retrieve data from a server asynchronously

Oracle Data Provider (ODP) Data access to the Oracle database

OLE DB Data access to the Excel file

Determining the support, lift and conditional probability or aggregate values
are the main functionality of this tool. A few steps need to be carried out to
find these results. At first, the user needs to select the input source. It can
be either Oracle or Excel source. The user needs to provide host address, port
number, sid, table name, username and password to connect the Oracle database.
Whereas, the user needs to upload the file for Excel. If the uploaded Excel file
contains more than one sheet, then the user needs to select the sheet name as
well. After these steps, the tool will load each column head with a radio button
and checkbox. The radio button is to set the column as the target column and
checkbox is to set the column as an influencing factor. If a column is selected
as a target column, then it can not be selected for influencing factor and vice
versa. After selecting the target column and influencing factors, press the report
button to generate the report. While generating the report, the tool will identify
the target column type.

The aggregate function is used for the numeric value target column. In aggre-
gate, the average value of the target column calculated against the influencing
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factors (select AVG(target column) from table group by influencing factors).
If the target column type is categorical, the tool will calculate the conditional
probability of the target column (select (conditional probability of target column
under influencing factor) from table group by target column and influencing fac-
tors). For both functions, support and lift also calculated. The order of columns
for numeric target column report is support, lift, the average value of the tar-
get column and the influencing factors. The column order for categorical target
column report is support, lift, conditional probability, target column and the
influencing factors. A sample pseudo-code for finding the combinations of influ-
encing factors and retrieving data from the Oracle database is given in Listing 1.

Listing 1 Pseudo-code for finding the combinations of influencing factors and
retrieving data from the Oracle database.

FUNCTION column_combination(

influencingColumns:STRING[], numberofColumns:INTEGER,

startPosition:INTEGER, columns:STRING[]

)

IF numberofColumns != 0 THEN

FOR i FROM startPosition TO lengthOf(influencingColumns)-1

columns[lengthOf(columns)-numberofColumns] := influencingColumns[i]

call: column_combination(

influencingColumns, numberofColumns-1, i + 1, columns

)

ENDFOR

ENDFUNCTION

FUNCTION generate_report (

tableName:STRING, targetColumn:STRING,

influencingColumns:STRING[], numberofColumns:INTEGER

)

columnCombination := call: column_combination(

influencingColumns, numberofColumns,

0, columns

)

orclQuery := "

Select Count(*)/ (Select count(*) from tableName ) AS SUPPORT,

(Select Avg(targetColumn)from tableName) / Avg(targetColumn) AS LIFT,

Avg(targetColumn) AS AVG_targetColumn, columnCombination

from tableName group by columnCombination order by columnCombination";

ENDFUNCTION

There are three different colours used in the report. Red colour indicates
influencing factors; green used for target/principle measures. Principle measures
are the average value of the target column or conditional probability of the target
column, and target means of the target column. Either conditional probability or
the average value will be present in the report. Blue is used to further measures
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like support and lift. Support and lift showed in the first, in order to maintain
the uniqueness. For numeric target columns, there is only one column in green
because the average column is the representation of the target columns aggregate
value. In categorical target column, there are two columns in green. The first
column is the conditional probability of the target column, and the second one
is the target column value.

In categorical target column, it shows the fibrillation mechanism. It means
the tool will compute the conditional probability for all instances of the target
column. For example, consider a target column called ‘education’ and its values
are ‘A, B, C, D, E’. The column name ‘education’ is the factor, and its values
are the instances of the factor. In report generation, the tool will calculate the
conditional probability for each instance.

�l out out

out

out

out

out

out

out

inp
exa exa

ori

exa exa

ori

exa exa

ori

exa exa

ori

exa exa

ori

exa exa

ori

exa exa

ori

�l

thr

thr

thr

thr

thr

thr

thr

inp

inp

inp

inp

inp

inp

inp

Read CSV

Aggregate Functions

Multiply Write Excel

Fig. 1. A sample project for generating all possible combinations of influencing factors
against target column in RapidMiner.

4.2 Comparison and Advantages

This tool is a combination of RapidMiner association rule mining and relational
algebra. In RapidMiner average value of numeric target column against all pos-
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   SUPPORT    LIFT    AVG_DailyRate    Age    Gender   Education   #

Report

0.400

1

5

4

3

6

7

2 0.116

0.222

0.056

0.082

0.018

0.041

0.97

0.98

0.99

0.96

0.93

0.86

0.96

825.44 

822.42

808.27

837.75

836.38

928.96

836.97

20-30

A  

Female

20-30 Female

A20-30

A20-30 Female

A Female                                            

Age
Education

All

DailyRate
Gender

Influencing factors
Target / principal measure
Further measures

Fig. 2. First record of all combinations in grand report.

sible combinations of influencing factors, the user needs to create different func-
tions for different combinations (Fig.1.). Similarly, for different data set user
needs to modify the columns and its combinations. That means users need to
create a different project for different data sets. In this tool, the user needs to
select the target column and select all from the list to generate all combinations
of influencing factors. The tool will automatically identify the combination and
generate the report (Fig.2.).

  Education = A    Education = B    Education = C    Education = D     Education = E  

true

true

true

true

true

true

true

true

false

false

false

false

false

false

false false

false

false false

false false false

falsefalsefalse

Fig. 3. Binominal column conversion in RapidMiner.

In RapidMiner categorical columns are converted into binominal columns
(Fig.3.). The binominal columns are treated as separate columns, and a separate
report generated for each column. RapidMiner shows influencing factors and its
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values in the column called ‘conclusion’. Meanwhile, target columns and values
in the column called ‘premises’ (Fig.4.). In conclusion and premises column,
combinations are shown in the style of “factor=value, factor=value”. It is hard
for users to identify each factor and its instance. The grand report tool creates
separated columns for each factor to avoid this. In this tool, all the measures are
located on the left side of the table. It is beneficial for users to verify the output.
In the next stage, the column will have the options for filtering the output.

   SUPPORT    LIFT    CONDITIONAL_PROBABILITY    Age   Education   #

Report

0.097

1

5

4

3

2 0.043

0.056

0.023

0.002

0.488

0.223

0.25

0.085

0.062

0.488

0.223

0.25

0.085

0.062

20-30

B

D

Age
Education

All

DailyRate
Gender

Influencing factors
Target / principal measure
Further measures

20-30

20-30

20-30

20-30

A  

C

E

Fig. 4. Premises and conclusion in RapidMiner.

  Premises    Conclusion  

Education = D

Age = 30-40, Education = DGender

Gender, Age = 30-40

Fig. 5. Grand report of a categorical target column.

5 Conclusion

The outcome of the present study shows that the study could able to generate
the grand report for a data set. The study tried to calculate the mean value for
the numeric target columns. The grand report, which generated in this tool, is
providing more association rules and giving a better understating of associations
between the attributes. The discretization and mean value calculation creates
different kinds of the association on numeric target columns. One of the attrac-
tions of the studied tool is that the decision-makers can quickly identify different
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measures and influencing factors with the help of different colours. It observed
that the grand report generates numerous number of records. It is deemed that
a filtering option must be needed in place to make the grand report more user
friendly. The tool can be accessed publicly (http://grandreport.me/).
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