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Abstract 

Categorizing the content of seized devices for potential evidentiary value, particularly 

photos, is inherent in a forensic investigation. This use-case can be re-formulated as a 

machine learning classification problem. The performance of neural networks in solving 

image classification is unparalleled, some already exceeding human-level accuracy. 

These state-of-the-art neural networks are built from powerful computer vision models 

pre-trained in various categories from benchmarked datasets, and freely available online.  

Using design science, this paper demonstrates how pre-trained computer vision models 

can be utilized for developing a tool that is usable, easy to use and effective, addressing 

a genuine gap in the tools available to forensic examiners. A prototype classifier for gun 

and not-gun categories for automatic categorization of photos is developed in Flask and 

Python 3 with a Keras-TensorFlow architecture. 

Model selection and evaluation are completed using synthetically-generated realistic 

datasets. During selection, the InceptionV3 model outperformed Xception, ResNet and 

VGG16 models, and was used as the final model for the prototype. For evaluation, it is 

tested against two unbalanced datasets containing only 1% of gun pictures while the web-

and console-based prototype is tested for usability, learnability, and effectiveness by five 

respondents. The usability and learnability attributes, measured using the System 

Usability Scale (SUS) approach, resulted in a rating of “Acceptable”. Effectivity is 

measured by comparing the speed of completing tasks between the manual method versus 

the prototype. Hypothesis testing to determine the significant difference of the tool’s 

performance was found to be neither worse nor better (no significant difference). 

However, this could be attributed to the low number of respondents, resulting in low 

statistical power.  Additionally, alternatives to InceptionV3 (Magnet Axiom software and 

the Xception model) were also investigated, and the results are promising. 

This thesis is written in English and is 108 pages long, including 6 chapters, 76 figures, 

33 tables, and 15 equations. 
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1 Introduction 

In the field of computer vision research, machine learning has gained significant traction 

in different industries such as medicine, entertainment, and commercial products and 

services. Similarly, in digital forensics, re-formulation of traditional questions into either 

a regression or a classification problem is already being studied such as classifying 

fingerprint quality in forensic analysis [1], object identification in police photographs for 

evidence recognition [2], and classifying tampered images in digital image forensics [3]. 

This extension of computer vision to applications in digital image forensics (sometimes 

known as multimedia forensics) is a natural progression, attributed to the ubiquitous use 

of digital pictures and videos, and hence, increasing potential evidentiary value. The need 

for automation becomes even more apparent with under-staffed police forces with 

financial constraints and institutions with limited resources.  

The idea for this research study came from discussions with forensic examiners in a 

renowned digital forensics firm during an internship in Croatia. During interactions with 

the team, it was revealed that although analysing photos is such an integral part of forensic 

analysis, there is no automated way to categorise the images using non-proprietary tools.  

It is estimated that a 64GB iPhone could hold at least 35,000 images based on SanDisk’s 

[4] estimation on the number of JPEG1 files that can be stored.  During a forensic 

acquisition, thousands of photos are often extracted and analysed for processing. Without 

access to proprietary tools that provide media classification (e.g. Magnet Forensics’ 

Magnet Axiom), the forensic examiner must manually review these photos by hand to 

search for artefacts - “items of interest that help an investigation move forward” [5]. The 

trivial task of categorizing photos manually consumes the examiner’s time especially 

when there is a substantial number of devices acquired waiting to be processed. The 

forensic examiners who were interviewed lamented the lack of open-source tools that 

could (1) automate categorisation, as well as (2) provide information that would be 

relevant in a forensic analysis. 

                                                 

 
1 The most common file format in consumer cameras 
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The implementation of neural networks to solve image recognition problems was 

introduced in 2012 when the first team using a neural network framework called AlexNet 

[6], won the ImageNet competition (ILSVRC) [7] by a significant margin, and the first 

team to achieve a remarkable error rate of below 25% since the competition started in 

2010. ImageNet1 is a dataset of benchmarked high-resolution images with around 22,000 

categories. The ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)2 uses 

only a subset of ImageNet with 1000 categories of around 1000 images in each category. 

Since AlexNet, the performance of neural networks in solving image classification and 

detection problems is unparalleled. In 2016, such models already exceeded human-level 

accuracy [8].  Technology and algorithm development have improved significantly that 

we see automated classification deployed in applications such as Pinterest [9], Google 

Photos [10], and Facebook [11] for quite some time now. 

To improve the performance of models, rather than going through the process of 

designing, developing and training a model, the winning entries usually perform a transfer 

of learned representations approach (transfer learning). That is, a pre-trained computer 

vision model with pre-learned capabilities from some popular benchmarked datasets like 

ImageNet, is modified to serve in a different context or answer a different question from 

what it was originally created for. To illustrate, a base computer vision model trained in 

different categories (birds, animals, buildings, plants) can be fine-tuned to detect different 

species of flowers. The overwhelming simplicity and robustness of transfer learning 

allow data science enthusiasts of all levels to achieve remarkable results. The performance 

of the winning entries can be attributed to the already powerful base models that were 

pre-trained in many categories, and these models are freely available online. 

Then, if these models are indeed powerful, robust and more importantly - freely available, 

can we use these pre-trained computer vision models to create a tool specifically for 

digital forensic usage? Can forensic examiners use this tool to aid in their investigations?   

                                                 

 
1 http://image-net.org/ 
2 http://image-net.org/challenges/LSVRC/ 

http://image-net.org/
http://image-net.org/challenges/LSVRC/
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The open-source development of a tool using such state-of-the-art1 neural network-based 

classifiers to meet the needs of forensic examiners is one of the goals of this research. 

Therefore, a non-trivial choice for a category or a class (output response of a classifier) 

to measure its feasibility in the forensics field must be considered. Consideration is also 

given to the available classes from which the models had been trained on.  

Magnet Forensics’ Magnet Axiom2 automatically categorises the following: Possible 

weapons, card/ID/paper documents, vehicles(cars/trucks/vans/buses), militants, 

buildings(exterior), child abuse content, drones/UAVs, money, screen captures, nudity, 

and drugs. Weapon classification is the most practical option because of the availability 

of benchmarked data available from ImageNet. However, the term “weapons” 

encompasses a broad array of categories from firearms and explosives to knives. In this 

prototype, only firearms such as handguns and rifles are considered.   

1.1 Research Questions 

To address the genuine gap in the tools available to forensic examiners, this research 

endeavoured to answer the following questions: 

• Is it possible to adopt a state-of-the-art pre-trained machine learning model to 

create an open-source tool to aid forensic examiners in their forensic 

investigation? 

• Using gun classification as a prototype, how does the chosen model perform with 

realistic forensic data? 

• How usable is the prototype to forensic examiners and potential forensic 

examiners? Can the prototype be used with ease (learnability)? Once the users 

learned the design, can they perform the task efficiently (speed of performance)?  

                                                 

 
1 The level of development reached at the time of writing this paper that resulted out of common methodologies, research and 

development of neural networks employed for classification  
2 https://www.magnetforensics.com/ 

https://www.magnetforensics.com/
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1.2 Open-source in Digital Forensics  

In the courtroom, the reliability of the forensic tools used is paramount when presenting 

results as digital evidence. The historical discussion between proprietary (closed-source) 

versus open-source is a contentious battle waged from different contexts and 

circumstances. In the realm of forensics, those advocating for proprietary software raise 

the issue of security, while those in favour of open-source, cost. When the source of the 

digital evidence is questioned, software reliability, whether proprietary or open source, 

takes on an immediate and profound meaning that the extent to which these tools meet 

the legal requirements surrounding the admissibility of digital evidence must be 

scrutinised. The dichotomy was comprehensively discussed by Kenneally in [12], in 

which the article concluded that open-source code had the significant advantage because 

it could be validated and substantiated. Carrier [13] examined how some open source 

technology may fare better than their closed-code counterparts in clarity and 

comprehension.  

As such, the drive for this research project is fuelled by the idea of working with open-

source technologies that can be easily cross-examined and validated by software 

developers. Within the developer ecosystem, the Python programming language has seen 

a remarkable rise in usage since 2014 according to Stack Overflow [14]. Perhaps due to 

its efficient syntax and readability, extension to web development and data science 

applications, the enthusiastic adoption of Python within the developer community seems 

to be the trend in the next few years, and thus, a smart choice for the programming 

language used in the prototype.  

1.3 Data Corpus 

The need to acquire real-life data is a challenge in any scientific study. Digital forensics 

had always suffered from the lack of standardised data suitable for experimental research 

and even for comparative edification. We were not able to procure a real-life case data of 

photos extracted from devices acquired from an arms deal, for example. Hence, for 

evaluation, realistic data was used instead. This research has two evaluation parts: (1) 

computer vision model selection and (2) testing of the prototype and its model. The data 

corpus used for model selection is simulated by randomly downloading images from the 
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internet, generating thumbnails as well as using an available test dataset1 from Olmos, 

Tabik and Herrera’s paper: Automatic Handgun Detection Alarm in Videos [15]. The data 

corpus used for testing the prototype and its core model is laboratory-generated from a 

mobile phone dump, a hard-disk dump, and downloaded images with manufactured EXIF 

information. 

Due diligence had been taken to ensure that images for selection and testing had not been 

downloaded2 from ImageNet since the computer vision models were pre-trained from the 

ImageNet dataset. Using even one training image as part of the test set is tantamount to 

cheating as the performance of a model should be evaluated on data that the model has 

never seen before.  

1.4 The Prototype 

The prototype’s user interface is inspired by Google Photos’ content-based image 

searching functionality, and most forensic software’s information and GPS coordinates 

display. It uses Python with a Keras-based neural network open-source library running 

on a TensorFlow abstraction backend. It runs from the console to predict the output 

classes for each image in the directory while a web interface is provided for parsing and 

visualising the results. The source code called cbis (content-based image search), 

installation and documentation guide and sample datasets are fully available in GitHub 

[16] [17]. 

1.4.1 The Pre-trained Neural Network 

For prediction, different state-of-the-art computer vision models pre-trained in ImageNet 

were evaluated: InceptionV3 [18], Xception [19], ResNet [20] and VGG16 [21]. The 

InceptionV3 model gave the most promising results based on the model selection criteria 

and was, therefore, used as the basis for the prototype. 

                                                 

 
1  https://sci2s.ugr.es/weapons-detection 
2 http://image-net.org/download.php 

https://sci2s.ugr.es/weapons-detection
http://image-net.org/download.php
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1.5 Usability, Learnability and Efficiency 

In a survey on digital forensic tools [22], the paper concluded how the existing tools 

investigated1 have usability issues such as the lack of intuitive interfaces, the lack of user-

friendliness in reporting and graphics, and a limited collaborative environment among 

other forensic tools. 

In the context of computer forensic analysis tools, usability is understood to be “a 

characteristic of the interaction between the forensic investigator and the computer system 

they are utilising to effect an investigation” [23]. ISO 9241-11:2018 defined usability as 

“the extent to which a system, product or service can be used by specified users to achieve 

specified goals with effectiveness, efficiency, and satisfaction in a specified context of 

use” [24] . Nielsen [25] viewed usability as a multi-faceted acceptability of a system, tool 

or device. According to him, usable systems should be easy to learn (Learnability), 

efficient (Efficiency), easy to remember (Memorability), free from errors (Errors) and 

results in a pleasant experience for users (Satisfaction). However, he stated that improving 

all attributes is only ideal as they are non-orthogonal - improving one attribute such as 

learnability might adversely affect efficiency.  

The research study employs Nielsen’s view on usability by focusing measurement on the 

user’s perceived usability, learnability, and efficiency in operating the prototype to 

complete a task. Learnability is how well a new user can learn the system while efficiency 

measures the effort of completing a required task [25]. In this study, usability and 

learnability were measured using the System Usability Scale (SUS) approach, while 

efficiency was measured by the speed in which tasks were completed manually and 

through the prototype. Tasks were designed to elicit a semblance of interaction between 

the forensic examiner (user) and the prototype (tool) in solving an investigation, in line 

with the definition of usability in [23].  

1.6 Hypothesis and Contributions 

This research addresses a genuine and important gap in the tools available to forensic 

examiners in the performance of their forensic activities. This research hypothesizes that 

                                                 

 
1 The tools used in the survey were FTK, EnCase, Autopsy, Sleuth Kit 
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an open-source tool can be created based on a pre-trained machine learning-based 

classifier and that this resulting tool can be deployed to aid real-life forensic 

investigations.  

As technology advances, the need for content classification in forensics becomes evident 

with the growing amount of raw data that require processing during an investigation. 

Proprietary tools incur huge licensing costs. Cellebrite Analytics, for example, costs 

around €5,000 – €15,000 for the first year with a discounted rate for subsequent updates1. 

While user-friendly, convenient and reliable, the functionalities are also available from 

some open-source options and are not less reliable and less effective than their proprietary 

counterparts [26]. The resulting prototype from this research project provides an open-

source option written in Python, creating a viable way for forensic examiners to 

categorize through a vast number of digital photos from a forensic acquisition.  

This paper demonstrates the approach using Design Science methodology using both 

balanced and unbalanced datasets. Balanced dataset has an equal or nearly equal number 

of positive (guns) and negative (not guns) classifications. The unbalanced dataset is the 

attempt to simulate dataset distribution occurring in most forensic acquisitions where the 

ratio of relevant pictures against the non-relevant pictures is meager. This research 

provides insight into the performance of pre-trained classifiers against unbalanced 

datasets.  

1.7 Importance and Applicability  

The contribution of this paper is both immediate and applicable to other situations, even 

beyond forensics. The usefulness of machine learning in many different aspects of 

practical life can be seen in the way we make use of tools and applications. Technology 

and the community have allowed a data-intensive approach to thrive and its prevalence 

raised the bar on how we expect things to work.  The growing maturity and the avid 

support of developers and organisations surrounding the field of computer vision and 

machine learning make it easier for data science enthusiasts to transition from theoretical 

                                                 

 
1 Forensic experts were asked about the cost of tools because prices are not published online 
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knowledge of machine learning architectures to implementation of applications, tools or 

functionalities that are relevant in their specific fields.  

In digital forensics, content-based searches have unlimited potential applications. 

Searching for content can be expanded to searching for similar photos from other cases 

(cross-case relation), evidence detection based on photos and videos, determining make 

and model of specific objects such as firearms and explosives, extracting and determining 

content from screenshots, triaging based on photos and video categorization, and many 

more. Such applications save resources – time, cost and human resources. The tedious 

task of categorization is minimised or even eliminated - allowing the examiner to focus 

on essential investigative tasks. Aside from resources, there is also potential to improve 

the mental health of examiners. In a child exploitation case, for instance, the potential to 

fully automate the search and detection of child sexual abuse material (CSAM) has a 

tremendous impact on the general psyche of the examiner tasked to review such images 

and videos.  

One of the implications of automated classification of objects leveraging powerful pre-

trained models is the development of time- and cost-efficient tools without the need for 

modelling new neural networks. Employing this transfer learning approach saves 

development and training time for models, cutting short the time-to-deploy process. The 

possibilities are exciting as architecture platforms, such as TensorFlow [27], continually 

evolve to create easy-to-use, powerful, and robust backend structures with flexible, 

comprehensive, cross-platform and freely-available ecosystem of tools and libraries.  

This research hopes to inspire the development of similar machine learning-based tools 

with practical applications, in this case, in forensic investigations. 

1.8 Novelty of the Study 

Although content-based image classification is not particularly novel, nor is gun 

classification, this research focuses on the open-source development of pre-trained 

classifiers evaluated to meet the requirements of forensic examiners systematically. The 

development of a prototype that showcases the integration of machine learning with a 

real-world tool that can be validated and even modified to suit different needs addresses 
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a genuine gap in the tools available to forensic examiners. Hence, this paper is a first 

foray into the digital forensics domain that attempts to develop a tool for content image 

search based on a pre-trained classifier using the Design Science methodology. 

As of our present knowledge, there is no academic literature that performs image 

classification with specific applications in digital forensics. Moreover, limited academic 

works on the Design Science methodology were found, and interestingly, none that 

tackles both digital forensics and machine learning. The Related Works section identifies 

some of the papers that (1) answer a classification problem using machine learning in the 

digital forensics’ domain, and (2) perform image classification for handgun images and 

videos. 
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2 Background of the Study 

2.1 Machine Learning Essentials 

2.1.1 Variables and Data 

In machine learning notation, the inputs, typically denoted as X, are often called 

observations, predictors, independent variables, features, attributes or variables. The 

output, denoted as Y, is sometimes called the dependent variable or the response. In 

classification problems, qualitative predictors are also called factors; the possible values 

for these factors are also known as levels. Quantitative values take on a numerical value 

such as age, price and income. Qualitative values take on descriptive values also known 

as labels, classes or categories such as gender, brand of product purchased, or a cancer 

diagnosis. Data are characterized as either continuous or discrete, nominal or ordinal. 

Discrete data are countable such as the number of bedrooms in a house. Continuous data 

are non-countable, such as age and time. Nominal data are named values which take no 

order or hierarchy, such as marital status (single, married, divorced, widowed). Data that 

only take two values such as gender (male or female) are called dichotomous. Ordinal 

data takes an order or hierarchy based on a position, for example, temperature on a scale 

or size of a house in square meters (small, medium, large).  

In this research, the predictors are the image parameters and features while the output is 

the class or object labels.  

2.1.2 Supervised versus Unsupervised 

The two major categories of machine learning approaches are: Supervised and 

Unsupervised. Other categories such as Active Learning and Reinforced Learning are just 

some forms and variations of supervised and unsupervised approaches.  

Supervised learning means that for every observation or input, there is an associated 

response. The goal of supervised learning is to fit a model that relates the labelled data 

instances to its response (which is known a-priori during training), with the aim of (1) 

accurately predicting the response for future and unseen data, or (2) a better understanding 

of the relationship between the input and response. In machine learning, fitting a model 
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means choosing the best and most generalised model that predicts the responses or infer 

relationships that are as close as possible to the input observations. When there are more 

observations or data from which the model learns from, the model becomes better at 

generalisation. An underfit model has poor accuracy in both training and test data while 

an overfit model has the best accuracy in training but performs worse in test.  A general 

model (neither underfitting nor overfitting) performs well in both training and test data. 

The best model, therefore, is expected to perform well with unseen and future data which 

is the objective of all machine learning solutions. 

In contrast, unsupervised learning offers no associated output response during training. 

The lack of response to supervise the prediction or inference makes this approach and its 

corresponding analysis, challenging. 

This research paper uses the traditional supervised approach. It brings its own challenges 

such as the accurate labelling of ground truth data by a domain expert. In this case, ground 

truth labelling is crucial to the process of model selection because the evaluation of the 

performance metrics occurs on the model’s predictive capacity versus the correctly 

represented labels of the images. In this research, the ground truth labeller is the 

researcher in which a gun is classified as an actual gun when it is detectable to the human 

eye.  

2.1.3 Regression vs Classification 

Machine learning problems can be formulated as either a regression or a classification 

problem. A regression problem typically involves quantitative or continuous dataset as 

an output, such as predicting the house selling price based on features like location and 

floor area.  A classification problem, on the other hand, is used for responses expecting 

qualitative or categorical values such as determining if today’s stock price goes up or 

down. A model that attempts to answer a classification problem is called a classifier.  

However, this distinction is not almost always clear. Classification models may behave 

like regression models because they first predict the probability of each category, that is, 

the output is a bunch of quantitative values, as the basis of making a classification. This 

research paper follows this approach. The neural network used in this research behaves 

as a regression model, but the resulting prototype is a classifier.  
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Binary classifiers are classifiers that produce only two output responses (e.g. yes or no, 

gun or not gun). Multi-class classifiers produce more than two categorical outputs.  

In this paper, the pre-trained neural network produces multiple labels with a 

corresponding probability for each response class. In Figure 1, the InceptionV3 model 

predicts the first 20 possible labels for the guns2.jpg image. Additionally, the web 

application creates a visualisation that outputs the binary responses of both gun and non-

gun labels as seen in Figure 2. 

 

Figure 2 Prototype's Classification for Guns and Not Gun labels 

Figure 1 Input Image and Multi-class Output Responses (Predictions) 
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2.1.4 Classification, Detection and Recognition 

In the field of computer vision, the terms classification, detection and recognition are 

often encountered. It is important to establish the distinction between terms in this paper.  

To have a standardized definition, this paper borrowed the definitions from Russakovsky 

et al.'s paper [28]. Image (object) classification is the identification of object classes, for 

example, a person, and determining whether the image contains an instance of that class. 

Object detection is the localization or identification of the location of learned objects in 

the image. For example, detection implies determining the bounding box coordinates 

within the image to identify where the person is. Figure 3 is taken from [29] and clearly 

shows the distinction between classification and detection algorithms and the expected 

outcomes from the same image. Object recognition is a term that encompasses both 

classification and detection tasks. 

 

Figure 3 Classification versus Detection from [29] 

2.1.5 Models 

Machine learning algorithms are typically chosen based on the type of problem: 

regression or classification. For example, predictions expecting quantitative responses 

typically employ regression-based algorithms while predictions involving label or 

categories use classifier-based techniques.  

Again, this distinction is not always clear. The Logistic Regression model, despite its 

name, is used as a classification method. Other models such as K-Nearest Neighbour 

(KNN) and Decision Trees, can be used in both quantitative or qualitative responses.  
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In solving image classification problems, a traditional machine learning pipeline involves 

two modules: feature extraction and classification. Feature extraction is the retrieval of 

higher-level information from raw pixel values that capture the distinction or differences 

between the categories in the training set. Such features may be regions, edges, corners 

or areas. Examples of feature detectors include Histogram of Oriented Gradients (HoG), 

Difference of Gaussians (DoG), and Speeded Up Robust Features (SURF). After the 

features are extracted, the classification module is trained with the extracted features and 

their corresponding labels.  Traditional classification models using feature extraction 

include Logistic Regression, Decision Trees or Support Vector Machine (SVM). 

The main drawback of traditional image classification is in the feature extraction module. 

It is challenging to achieve a level of generalisation of features that can represent all the 

categories with an accuracy that is close to human level.  

With neural networks, there is no hard-coded feature extractor built in the model. The 

network is the combination of a feature extractor and a classifier; the network learns to 

discriminate the representations of the images (feature extractor) and identify them based 

on supervised data (classifier).  

As shown in Chapter 3.1, the best performing models evaluated for digital forensic triage 

classifiers are shown to be traditional machine learning techniques such as Bayesian 

Networks (Bayes Net and Naïve Bayes), Decision Trees and KNN. Chapter 3.2, on the 

other hand, shows Neural Networks dominating the gun classifier category. 

2.2 Neural Networks  

One of the most popular algorithms in machine learning, neural networks take centre 

stage in computer vision research. Inspired by the human brain’s architecture, the basic 

building block of a neural net is a neuron, which takes some input and fires some form of 

output. A neuron is a mathematical function termed as an activation function. There are 

five major activation functions used today: step, sigmoid, tanh and ReLu (Rectified 

Linear Unit). These functions introduce non-linearity in the modelling capabilities of the 

network. The collection of these mathematical functions (neurons) is called a layer.  
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Figure 4 shows a regular neural network. Nodes are also called units and layers are the 

collection of units. A bias unit is a node that is not affected by the other nodes but directly 

influences the output. Bias can be compared to the “y-intercept” in the linear expression 

for a line y = mx + b, where m is the slope and b is the y-intercept. Layer 1 is called the 

input layer with 2 input units X1 and X2 (does not include the bias unit, +1). Layer 3 is 

the output unit with only 1 node (one node for each class prediction). The middle layer is 

the hidden layer because the values are not transparent during training. All neural 

networks have one input and one output layer. The number of hidden layers is dependent 

on the complexity of the problem.  

During training, each neuron learns weights at every layer using forward and backward 

propagation based on some metric such as a loss function. Weights are just the 

coefficients assigned to each node representing the strength of connection of each neuron.  

The weights determine how much each node influences the output. The ideal is to find 

the weights where the loss (or error) is minimum. Gradient descent is another technique 

in which the weights are adjusted in small increments (learning rates) by the calculation 

of the derivative (gradient) of the loss function. The derivative tells the algorithm in which 

direction to descend to reach the global minimum (where the error is at minimum). In 

practice, Stochastic Gradient Descent (SGD) is widely used as this is done in several 

batches of shuffled data in successive iterations (epochs).  

2.2.1 Convolutional Neural Network  

In a regular neural network, every layer is made up of a set of neurons where every node 

is fully connected to all the neurons before it (except for the bias nodes). The last fully-

X1 

X2 

+1 

 

 

+1 

Y1 

Layer 1 Layer 2 Layer 3 

Figure 4 A Regular Neural Network 

Class 

Prediction 
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connected layer is the output layer that represents the predictions or class outputs. On the 

other hand, a convolutional neural network does not have all neurons connected to the 

layer before and after it. The hidden layers typically consist of convolutional (CONV) 

layers, pooling (POOL) layers and fully-connected (FC) layers.  

Convolution is a mathematical operation on two functions (or images) to produce a third 

function that expresses how the shape of one modifies the other. This is essentially a dot 

product of two functions. In image processing, the input image is one function while the 

other function (called a kernel) is a filter that passes over the image function and changes 

the value of each pixel as it passes by.  

Pooling is a sample-based discretization process, that is, it reduces the spatial 

dimensionality of the input image. Down-sampling using this method reduces the 

parameters, thus reducing computational resources while controlling the risk of 

overfitting the data. 

Taken from [30], the interaction between the input image matrix and the output matrix in 

the convolution layer is shown in  Figure 5 while the down-sampling in the pooling layer 

is shown in Figure 6. These layers (convolution and pooling) perform operations to 

automatically detect features (feature extraction), for example, detecting the barrel, 

trigger and the grip for a gun image. The fully connected layers serve as the classifier that 

assigns a probability for the object on the image. 

Taken from [31], a sample of the convolutional neural network architecture is shown in 

Figure 7. Here, the input image of a car is subjected to a network of convolutions and 

pooling layers including ReLu activations, while the output classifier is represented by 

the fully connected layer that displays the predicted classes (car, truck, airport, etc) and 

the probabilities.  
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Figure 5 Convolution Layer from [30] 

 

 

Figure 6 Pooling Layer from [30] 

 

 

Figure 7 A Sample Convolutional Neural Network from [31] 
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2.3 Machine Learning in Digital Forensics 

Machine learning has been proposed on areas of digital forensics such as email forensics, 

network forensics, data analysis and file fragment classification. In email forensics, for 

example, authorship identification is a forthcoming field of interest especially for tracing 

identity in digital investigations. This research paper focuses on digital image forensics. 

The research potential and interest in this field had long been discussed [32] [33] and 

research is ongoing with Adobe joining the fray [34].  

2.3.1 Photos as Digital Evidence 

Part of the forensic investigation is the systematic search for evidence. Guidelines such 

as ACPO ’s Good Practice Guide [35], and DOJ’s Seize and Seizure Manual [36] 

advocate the formulation of a forensic or search strategy to speed up the investigation by 

focusing on relevant information. The same guidelines stressed the need to consider the 

nature and purpose of the investigation in which an initial triage or review of digital 

evidence to identify priority might be necessary. DOJ’s Guide to First Responders [37] 

classifies pictures as a data source with potential evidential value for certain categories of 

crime such as child exploitation and harassment. In practice, the identification of the types 

of potential evidence based on the nature of the investigation is one of the considerations 

for formulating a forensic strategy.  

To illustrate, in a child exploitation case, media files (Child Sexual Abuse Material or 

CSAM) are one of the first sources of data that are extracted and analysed. Although 

provenance1 of digital evidence is equally crucial in the investigation [33], identifying the 

existence of certain types of graphic content is primary in determining interesting 

artefacts for further analysis. This use-case can be re-formulated as a machine learning 

question, specifically a classification problem. 

                                                 

 
1 Record or chronology of ownership and origin, custody or location of digital evidence 
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Analysing the content of seized devices such as photos is inherent in a forensic 

investigation that almost all digital forensic toolkits have some form of photo analysis 

functionality. Aside from photo carving which is fundamental in computer forensics, 

recent versions of forensic tools have included advance analysis software such as explicit 

content detection and media classification with machine learning integration.  

Figure 8 shows the machine learning-based classification functionality of Magnet Axiom 

from Magnet Forensics1. During processing of the acquired device, each photo or video 

detected by the software is tagged with possible categories: drones, drugs, money, nudity, 

weapons, etc. The examiner can then search for images and categorise them based on 

these tags. A CSV report based on the search results can also be retrieved. 

  

                                                 

 
1 https://www.magnetforensics.com/ 

Figure 8 Magnet Axiom's Photo Categorisation - Weapon Tagging 

https://www.magnetforensics.com/
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3 Related Works 

The increasing amount of data that needs to be processed has outpaced the effectiveness 

of traditional digital forensic methods and the desire for automated methods of detecting 

and classifying content is a natural step further.  Research on machine learning and deep 

learning (neural networks) techniques are prevalent, extending far beyond image 

classification. However, limited works can be found dealing with image classification for 

use in the digital forensics’ domain. The classification for our choice of the output class, 

gun, had had extensive research but these works were formulated to address data science 

questions such as architecture evaluation and model performance.  

This section divides these related works into two parts: (1) classifiers used in Digital 

Forensic Tools, and (2) hand-gun classifiers. Dataset generation, evaluation and 

performance metrics used during the evaluation of the models are of particular importance 

for this research study.   

3.1 Works on Classifiers in Digital Forensic Tools 

2009, Grillo et al., Fast user classifying to establish forensic analysis priorities [38], 

proposed a methodology called Five-Minute-Forensics (5MF) and a classifier to support 

computer user profiling as a triage tool. The authors generated the dataset themselves, 

extracted and processed using SleuthKit1. For the classifier validation, they used ten-fold 

cross validation test on 25 feature vectors, five per user category (occasional user, chat-

internet user, office worker user, experienced user, hacker user). The study experimented 

with different models: Bayesian algorithms BayesNet and Naïve Bayes, and Decision 

Tree (J48) with preliminary results for accuracy ratings of 100%, 92%, and 84%, 

accordingly.   

2010, Garfinkle et al., An Automated Solution to the Multiuser Carved Data Ascription 

Problem [39], proposed a machine learning-based approach to ownership attribution for 

carved information on disk drives and storage media. The tool fiwalk2 (file and inode 

                                                 

 
1 http://www.sleuthkit.org/autopsy/ 
2 http://www.forensicswiki.org/wiki/Fiwalk 
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walker) had already been integrated into SleuthKit. The classifier is auditable and 

appropriate for use in court cases as the accuracy can be verified using cross-validation 

and manual inspection. Reliability (error rate) specific for the disk on which it was run is 

also reported. The datasets came from realistic (laboratory-generated data) and real data 

(acquired from the secondary computers from second-hand markets). For validation, they 

used leave-one-out and ten-fold validation.  Accuracy rate was used as a performance 

metric with the Decision Tree (C.45) classifier achieving 96.47% against K-NN (k = 1) 

at 75.45%.  

2011, Marturana et al., A Quantitative Approach to Triaging in Mobile Forensics [40], 

worked on a study dedicated to the evaluation of triage mobile data in paedophilia cases. 

The study evaluated BayesNet, WEKA Decision Tree (J48) and Locally Weighted 

Learning (LWL) using three performance indictors: precision, recall and f-measure. 

BayesNet and J48 achieved 100% on all metrics. Note that accuracy is not an evaluation 

metric in this study. 

2012, Gomez, Triage in-Lab: case backlog reduction with forensic digital profiling [41], 

presented a triage model using an automated predictive classifier focused on child 

exploitation and intellectual property theft. The classifiers C.45, Naïve Bayes, K-NN, 

SVM and Classification Tree were evaluated against classification accuracy and its area 

under the ROC curve (AUC). K-NN achieved the best accuracy at 90% with an AUC of 

94.44%. 

2013, Marturana and Tacconi, A Machine Learning-based Triage methodology for 

automated categorization of digital media [42], presented a model for both live and post-

mortem mobile device investigation for copyright infringement and child exploitation 

cases. The dataset was taken from real-life investigations. The following metrics were 

calculated for the infringement dataset: accuracy, mean absolute error, root mean squared 

error, precision, recall and f-measure while only precision, recall and f-measure were used 

for the exploitation set. Different classifiers outperform others depending on the scenario. 

BayesNet outperformed other classifiers: SVM, decision tree, LWL (Locally Weighted 

Learning), by achieving a weighted accuracy rating of 99%, 93.5%, 89.5% and 78.5% 

accordingly for the copyright infringement dataset. Decision Tree outperforms BayesNet, 
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and LWL with 68%, 64.44%, 55.3% for precision, 64.4%, 63.2%, 57.9% for recall, and 

64.4%, 63.6% and 56% for f-measure, respectively.  

The methods discussed relied on crime-related templates, implying that examiners had to 

know a-priori what artefacts to search for as part of a forensic search strategy (ACPO 

Guide [35] and DOJ’s Seize and Seizure Manual [36]). To improve accuracy and reduce 

mis-triage incidents, Marturana and McClelland built on the former work of Marturana 

and Tacconi [42] by introducing the feature manipulation approach to address the 

generality recommended in methodologies dealing with incident response.  A Digital 

Forensics Triage methodology based on feature manipulation techniques [43] aimed to 

build a comprehensive Digital Forensic Triage methodology using automatic weighing 

for classification of mobile devices. The ground truth weighted features were generated 

manually from forensic experts using survey and interview.  Data is taken from real-life 

investigations from mobile devices and hard-drives. Only the child exploitation dataset 

exhibited improved performance of 19.2% from the baseline (Naïve Bayes) of 55.6% 

accuracy rate. 

Figure 9 summarises the different digital forensic tools mentioned in this section. The 

diagram shows that out of six papers, there are four best models selected after evaluation: 

Naïve Bayes, BayesNet, Decision Tree (J48) and KNN. This tells us that traditional 

machine learning techniques were demonstrably applicable for some classification tasks 

in forensics. 

3.2 Hand-gun Classifiers   

2013, Lach and Sieradzki, Automated Recognition of Firearms in Surveillance Video 

[44], used sensitivity and specificity as metrics. Classification accuracy was not disclosed.  

Figure 9 Related works – Digital Forensic Tools 
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2015, Tiwari and Verma, A Computer Vision based Framework for Visual Gun Detection 

using SURF [45], was based on true positive rate and false positive rate metrics. The 

proposed model claimed to be rotation, scale and shape invariant. 

2017, Verma and Dhillon, A Handheld Gun Detection using Faster R-CNN Deep 

Learning [46], dealt with gun classification taken from the Internet Movie Firearms 

Database using Faster R-CNN. The classifier performance was based on accuracy, true 

positive rate and false positive rate. Accuracy was 93.1% for the Faster R-CNN while 

92.6% was achieved for the SVM model. 

2017, Olmos, Tabik and Herrera, Automatic Handgun Detection Alarm in Videos [15], 

aimed on minimizing the number of false positives as well as reaching near real-time 

detection. In this paper, the measures used to evaluate the classifiers were accuracy and 

speed. True positive was evaluated based on a 50% bounding box threshold. Ground truth 

was based on human eye recognition. Classification accuracy was 90.6% while Recall is 

at 100%.  

The researchers of [15] were contacted regarding the dataset used to test and achieve the 

metrics specified in the study. The availability of this dataset1 made comparative 

edification possible – that is, a sound comparison can be conducted in the context of 

binary gun classification. See the section on Model Selection for a detailed explanation 

on how the dataset was utilized in this study. 

Figure 10 summarises papers related to gun classification. It is apparent that neural 

networks are overwhelmingly employed in image classification: 3 out of 4 papers use 

neural nets to perform gun classification.  

                                                 

 
1 https://sci2s.ugr.es/weapons-detection#testset 

Figure 10 Related Works - Gun Classifiers 
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3.3 Human classifier 

The level of human classifier accuracy is included in this section to understand just how 

far state-of-the-art classifiers have come in creating and developing architecture close or 

even surpassing this baseline. 

The highly influential paper by Russakovsky et al. [28] did not only describe the creation 

of ImageNet’s benchmarked dataset but also the measurement of the accuracy of a human 

person in classifying multiple objects. The trained human annotator - Andrej Karpathy 

[47], achieved 5.1% error rate, outperforming GoogLeNet (the precursor of the Inception 

architecture) at that time by 1.7%, a statistically significant difference.  

The exhaustive AI Progress Measurement project [48], a collaborative and on-going 

effort, summarizes the state of the accuracy of classifier algorithms in relation to the 

human-level annotator mentioned in [28]. Figure 11, taken from [48] , tells us that in the 

ImageNet validation datasets, machine learning algorithms have already exceeded 

human-level accuracy since 2016.    

 

Figure 11 ImageNet Performance, taken from [48] 
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3.4 Summary of Related Works 

Surpassing the accuracy of human-level classification is undoubtedly one of the 

milestones of machine learning algorithm development.   The visualisation in Figure 12 

summarises the performance metrics of the preceding related literature in the context of 

the accuracy achieved by the human annotator (dashed line).  The green markers indicate 

the classifiers with published accuracy results exceeding the human-level classifier; the 

red ones, otherwise.  

 

Figure 13 shows Precision and Sensitivity values for the same related works. No human-

level precision and recall could be accounted for because the paper [28] did not disclose 

the confusion matrix for the human classifier. The arithmetic mean (solid dark line) is 

Figure 12 Related Works - Performance Metrics (Accuracy) 

Figure 13 Related Works - Performance Metrics (Precision and Recall) 
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used to summarize the data. The choice of arithmetic mean as a central tendency to 

describe the results is arbitrary.  

The models, dataset and metrics used by each paper and presented in this section are not 

intended to suggest a general error rate or create baseline out of the findings but to 

understand the level of accuracy achieved from these studies in the context of the 

following factors: 

• the dataset used (realistic or real dataset) 

• the size of the dataset used for training, validation, test data 

• the hyperparameters used to achieve the “best” results (e.g. the K-value that gives 

the optimum performance) 

• the type of errors that may be introduced and the biases introduced during training 

and testing 

• the purpose of the classifier (context) 

• the type of input data (e.g. files, images, videos) 

• the complexity of the methodology 

• the type of classifiers tested 

 

Placing these papers side-by-side is not meant as an apple-to-apple comparison in the 

mere fact that the input and output formats, dataset size, and the rigorous testing and 

validation processes of each paper is different. Care must be exercised in order not to be 

misled by seemingly high values of test results as this should be evaluated based on the 

target function or a performance requirement.  For machine learning classifiers where 

emphasis on accuracy is encouraged, it should be noted that accuracy alone as the basis 

of performance is limited and even misleading without considering the domain and 

context for which the model is used for.  

The factors raised above is a clear reminder that the persistent call for standardized digital 

corpora in the realm of digital forensics ( [49], [50], [51], [52]) remains a necessity if 

consistent and sound comparisons are to be made. 
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4 Methodology 

This research study used Design Science as it is well suited to the creation of a viable 

artefact (prototype) that is grounded on solid research principles in the information 

systems domain. The work of Peffers et al. [53] demonstrated a six-step process for 

design science: problem identification and motivation, definition of the objective for a 

solution, design and development, demonstration, evaluation and communication. The 

process is outlined in Figure 14. 

Figure 14 Design Science Process 

 

As the research study aimed to create a digital forensic prototype that is innovative, 

purposeful, and evaluated in the proper scientific process, the Design Science 

methodology is applicable and therefore has been adapted. The design science approach 

used in this study is described in detail in the next section. 

Step 1: Problem Identification and Motivation

•Unstructured interview with forensic experts

Step 2: Definition of the objectives of a solution

•Development of objectives, functionality  and goals with forensic experts and supervisors

•Skills matrix and identification of risks 

Step 3: Design and Development

•Proof of concept in object classification

•Preparation of classifiers

•Evaluation of classifiers

•Preparation of software environment

•Software development and unit testing

Step 4: Demonstration

•Demonstration of the prototype

• Initial feedback

•Code changes

Step 5: Testing

•Usability test

• Interviews

Step 6: Communication

•Defense and Presentation
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4.1 Problem Identification and Requirements  

The first activity for this research is an unstructured interview with forensic experts to 

find out gaps especially in tools used for forensic investigations. Figure 15 shows the 

respondents’ distribution of practical experience in the industry: three junior examiners 

and two senior consultants.  

 

Figure 16 summarizes the discussion in a mind map while Appendix 8 – Unstructured 

Interview – Raw Data compiles the data gathered during the interview.  

An open-source forensic tool with the discussed capabilities in Figure 16 would be a 

remarkable feat. However, the development of a fully functional tool with the described 

functionalities is not possible within the timeframe of the study. However, since the 

research aims to investigate the feasibility of using pre-trained classifiers, a prototype 

2

3

Distribution of Years of Experience of 
Respondents

Forensic Consultant ( > 10 yrs) Forensic Examiner ( < 5 yrs)

Figure 15 Unstructured Interview Respondent Distribution 

Figure 16 Unstructured Interview Discussion 
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with the following minimum requirements would nevertheless be useful in a forensic 

investigation: 

• Open-source tool that can be customized, modified and improved 

• Automated categorisation of images  

• Meta-data extraction and maps 

• File export 

• Visualisation  

• Weapon categorisation 

 

Creating test cases and scenarios meant to cover the minimum functionalities is part of 

the development of the unit test and design of the usability test. 

4.1.1 The Binary Classifier Dilemma for Forensic Use 

The prototype attempts to create a binary classifier for weapons, specifically guns. A 

binary classifier would have to detect a gun against all the other non-gun objects in the 

wild. To illustrate, Figure 17 shows that a binary classifier needed for this study requires 

successfully differentiating a gun, such as a revolver, rifle or a pistol against a non-gun 

object which could be a plant, animal, building, or person. 

Take a cat vs dog classifier, for example. The machine learning algorithm is trained with 

images from cat and dogs. The machine is trained to tell them apart by learning the 

distinct features of a cat and a dog to differentiate the two output classes. During testing, 

the algorithm is fed with images containing only a cat or a dog and then classifies them 

accordingly. However, in the context of this study, in a gun detection scenario, the non-

gun labels are infinite. The algorithm would have to differentiate a gun from the rest of 

Figure 17 Gun Classifier 
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the other objects such as an animal or a plant or a building or a person – and the extent of 

the categories is vast.  A more practical solution is to use a multi-label a classifier before 

a binary classifier as seen in Figure 18.  

The design and development of the prototype’s classifier is based on this approach. 

4.1.2 Algorithm for the Prototype 

 

Figure 18 Multi-class Classifier 

Figure 19 Prototype Process Diagram 
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Figure 19 shows the proposed algorithm for the prototype. The prototype aims to leverage 

the extensive ImageNet pre-training done on the neural networks. Appendix 1 – ImageNet 

Classes contains the full list of the output classes the models were trained on. These multi-

classifier models are available for download from the Keras library. The best model based 

on some evaluation criteria is taken and used in the prototype as the classifier or predictor. 

The binary classifier is a module that takes into account the search criteria, the output 

labels of the predictor and threshold values if supplied.  

4.2 Design and Development 

4.2.1 Performance Estimation 

The design and development of this research study is centred on performance estimation. 

The predictive performance of a model with unseen or future data is the goal of machine 

learning applications or the development of new algorithms. A typical machine learning 

process involves training a model, validating a model (tuning hyperparameters and 

estimating performance) and testing the model with unseen data. In this study, the models 

were already trained in ImageNet and the (published) accuracy has been estimated using 

ImageNet’s validation dataset. The validation set contains the 1000-class output labels 

while our study only requires the gun classification accuracy. Therefore, one of the 

questions we attempt to answer in estimating performance: Does the published accuracy 

of the selected models hold when evaluated and tested against our dataset in our context 

(gun classification)?  

How do we choose the best model? The study is interested in selecting the best-

performing model from a pre-defined set of pre-trained models downloaded from Keras 

by ranking them against each other based on some criteria. To achieve this, the approach 

illustrated in Figure 20 is implemented. During model evaluation, four models are 

evaluated based on some performance metrics on a specific dataset (WEAPON-DB3). 

The best model is selected based on performance. The performance of the best model is 

estimated by running the model against a few more datasets. If the model’s performance 

is acceptable, the final model is used as the multi-label classifier for the prototype.  
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Based on the approach outlined in Figure 20, the design and development flow can be 

divided into five major steps: Data Collection and Pre-processing, Model Evaluation and 

Selection, and Prototype Development. This five-step process is illustrated in Figure 21 

and discussed in detail in the next sections. 

 

Figure 21 Design and Development Approach 

4.2.2 Data Collection 

Data acquisition is required for two processes: (1) model evaluation and selection, and 

(2) prototype testing. The evaluation dataset is used to select the best computer vision 

model (best and final model) based on the performance metrics. Once the model is 

selected, the prototype is developed using the final model as the predictor or classifier. 

The testing dataset is then used to evaluate the performance and usability of the prototype.  

Data 
Collection

Data Pre-
processing

Model 
Evaluation

Model 
Selection

Prototype 
Development

Figure 20 Performance Estimation Approach 
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No evaluation and testing images should be downloaded from the ImageNet database1 

because the pre-trained computer vision models had been trained from this set.  

Dataset for Model Evaluation and Selection 

The following dataset sources are used to evaluate the computer vision models and select 

the best performing model for the prototype: 

(1) Dataset2 from Olmos, Tabik and Herrera’s paper: Automatic Handgun Detection 

Alarm in Videos [15]. The dataset is taken from the test folder3 with 304 images of guns 

and non-guns. This dataset is named “WEAPON-DB3” or “WEAPON-DB3: Ugr.Es” in 

this paper. 

(2) Randomly downloaded data from Google images searching for pistol and revolvers 

with 3-channel images (coloured) 

(3) Gun images viewed from Windows Explorer, retrieved from the Window’s thumbnail 

cache4 and exported using ThumbCache viewer open source tool [54]  

(4) Partially carved gun images such as one shown in Figure 22 

 

 

Dataset for Testing 

(1) Exported images from an Android mobile dump with some random gun images;  

(2) Exported images using FTK from a Windows hard disk dump with some random gun 

images 

(3) Gun images with modified EXIF information for testing 

                                                 

 
1  http://image-net.org/synset?wnid=n03948459 
2  https://sci2s.ugr.es/weapons-detection 
3 https://sci2s.ugr.es/sites/default/files/files/TematicWebSites/WeaponsDetection/BasesDeDatos/Test.zip 
4 C:\Users\{UserName}\AppData\Local\Microsoft\Windows\Explorer 

Figure 22 Carved and Partial Gun Image 

http://image-net.org/synset?wnid=n03948459
https://sci2s.ugr.es/weapons-detection
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Dataset Description 

Datasets are either balanced or unbalanced. Balanced dataset indicates a relatively similar 

percentage of guns and not-gun in the distribution. In digital forensics, it is highly unlikely 

that a balanced distribution is acquired. It would be oversight if the models and the 

prototype were not tested against the skewed cases.  

 

Figure 23 describes the frequency distribution of the common image formats for each 

dataset. It also summarises the number of guns versus the not-gun images in the dataset. 

From the figure, we can see that the evaluation and test sets are dominated by unbalanced 

datasets with a negatively skewed distribution, that is, an overwhelming number of not-

guns are present. This is intentional because we want to create datasets that are close to 

real (realistic) as possible. Although the datasets do not guarantee that the diversity of the 

file formats is truly representative of the real-world case data, due diligence was 

employed in simulating realistic data in the evaluation and test datasets, i.e. random gun 

pictures downloaded from the Internet in various file formats. This enables us to 

determine the performance of the model when tested in the context of forensics. 

Figure 23 Frequency Distribution of Datasets 
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Also, it is worth noting that the Keras image libraries do not rely on the file extensions to 

predict images. It verifies the content of the file object. Figure 24 shows the exploratory 

testing done on a mismatched file extension “image.txt” to show that the Keras-based 

model can process and display misnamed files.   

 

All images collected have file extensions representing the file format of the images (no 

mismatched file extensions).  Figure 25 summarises the distribution of file formats (based 

on file extensions) for the datasets used in this study. JPG/JPEG images remain the largest 

distribution of test images because it is the most common image file format in the wild.  

Figure 24 Prediction on a mismatched extension (image.txt) 

Figure 25 Frequency Distribution for Images containing guns 
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Dataset Summary 

The complete list of datasets collected and used is summarised in Table 1. 

Table 1 List of Datasets Used 

4.2.3 Data Pre-processing 

4.2.3.1 Download of Images 

Gun images are downloaded from Google Images and filtered by usage rights and colour 

as shown in Figure 26. 

 

Figure 26 Google Image search for gun pictures 

Although nowadays, people upload enhanced photos using filters that distort the contrast 

and the colour distributions of the image, filters are not checked when downloading the 

pictures from the internet. Hence, images may or may not contain enhanced photos 

uploaded by users. 

Dataset % of guns Total Guns Not Guns Unprocessed 

Evaluation Dataset for Model Selection  

WEAPON-DB3 (Ugr.Es) 50.00% 608 304 304 0 

WEAPON-DF 50.00% 40 20 20 0 

WEAPON-DB5 50.62% 81 41 39 1 

WEAPON-DB6 0.79% 7746 61 7426 259 

WEAPON-DB7 0.63% 3836 24 3740 72 

WEAPON-DB8 0.31% 7709 24 3740 3945 

WEAPON-DB9 19.35% 124 24 99 1 

WEAPON-DB10 4.49% 534 24 509 1 

WEAPON-DB11 2.33% 1030 24 27 2 

Testing Dataset for Prototype Evaluation  

ANDROID 1.17% 3236 38 3198 214 

JANE 1.05% 4101 43 4058 112 
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4.2.3.2 Extraction of Images 

Since the datasets are retrieved by simulating realistic data by taking all exported photos 

from a hard-disk dump and mixing some gun images in the folder, some file formats are 

uncommon while some cannot be processed by the model. This is to simulate an 

unbalanced dataset by using the export function from FTK without filtering or cleaning 

the data (such as removing uncommon file formats). This also means that the prototype 

can be directly supplied with the directory of freshly extracted photos from any forensic 

tool. Figure 27 shows a scenario wherein the forensic tool (e.g. FTK) extracts the photos 

from the acquired device (e.g. mobile) to a directory. This directory is supplied to the 

prototype even without filtering the images (full-sized, thumbnails, icons, carved, etc). 

Although in a real case, some form of filtering would have been employed.  

 

  

Figure 27 Photo Extraction 
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4.2.3.3 EXIF Information Modification 

The tool used to retrieve, modify or erase the EXIF information is taken from [55]. For 

the testing scenario, the modification of EXIF information is necessary to simulate a gun 

picture with GPS Coordinates. The steps in manufacturing EXIF information is shown in 

Figure 28. Since the tool allows transfer of all tags from one picture to another, the tags 

of a picture with Croatia’s GPS coordinates, “Croatia.jpg” is transferred to a gun image, 

“guns2.jpg”.  

4.2.3.4 Ground Truth Labelling / Annotation 

In classification tasks, ground truth labelling is often an arduous activity because of the 

overwhelming amount of data that needs to be annotated. For training images, the 

annotation itself takes the bulk of the researcher’s time. Annotation must be conducted 

with care because the performance of a classifier hinges on the ground truth having 

minimal error. The ImageNet dataset contains approximately 0.3% of incorrectly 

annotated ground truth labels [28],  noting that 5 out of 1500 images from the ILSVRC1 

test set were found to be wrongly classified.  

In this study, we are the perfect classifier for the ground truth data. If a gun is detectable 

by the human eye, then it is classified as a gun. The images for model selection (all 

                                                 

 

1 Large Scale Visual Recognition Challenge (ILSVRC) 

Figure 28 Gun with manufactured EXIF 
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datasets named WEAPON-*) did not pose any problems during ground truth labelling. 

The images with guns are easy enough to identify. WEAPON-DB3: Ugr.Es, in particular, 

was already annotated by the paper’s researchers1. However, some challenges are 

encountered when trying to annotate the test dataset (ANDROID and JANE datasets). We 

tried to overcome these challenges using optimistic labelling. 

ANDROID and JANE: Optimistic Labelling 

 The test images for testing the prototype are taken from disk dumps from data that we, 

the human ground truth annotator, have not seen before. Although humans tend to detect 

better than machines in classifying images by visual saliency (i.e. classification based on 

an object that is more highlighted and pronounced than the rest) [28], the common-sense 

approach (human-eye detectable) does not help much when faced with images from 

movie posters or images taken in poor lighting conditions. To resolve the dilemma, 

optimistic classification is used. This means, for the unsure images (is this a gun or not a 

gun?), we have labelled them as guns. Table 2 shows two images where optimistic 

labelling has been performed.  

Table 2 Examples of Optimistic Classification 

During evaluation, some of the optimistic classifications ended up as a mis-detection 

(false negative).  Forensic examiners have been asked during the evaluation phase if these 

mis-detections are acceptable. The images that are labelled as guns by the annotator but 

can be contested are shown in Table 3 with the top-5 predictions from InceptionV3. 

                                                 

 
1 https://sci2s.ugr.es/weapons-detection 

Images  Notes  

 

Can this be classified as a gun? Is the assault rifle in this image too 

small to be recognized? Perhaps the context and background of the 

picture help reinforce that the person is holding something that 

resembles a rifle?  

 

Classify as a gun, anyway. 

 

Can this be classified as a gun? The x-ray image does look like it is a 

gun but only when viewed with similar images.   

 

Classify as a gun, anyway. 

https://sci2s.ugr.es/weapons-detection
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Table 3 Optimistic Ground Truth Labelling of Test Dataset 

 

Image Prediction by InceptionV3 

 

Ground Truth 

Annotation 

Folder: Jane Doe 

 

1. book_jacket: 30.17% 

2. binder: 20.26% 

3. web_site: 6.52% 

4. comic_book: 4.57% 

5. packet: 3.72% 

Gun 

Folder: Android 

 

1. switch: 80.35% 

2. radiator: 4.34% 

3. panpipe: 3.32% 

4. picket_fence: 1.55% 

5. space_heater: 1.03% 

Gun 

Folder: Android 

 

1. plate_rack: 15.94% 

2. teapot: 13.97% 

3. water_jug: 7.17% 

4. pitcher: 3.48% 

5. coffeepot: 3.22% 

Gun 

Folder: Android 

 

1. mask: 32.53% 

2. toilet_tissue: 15.16% 

3. paper_towel: 8.46% 

4. packet: 3.05% 

5. matchstick: 3.03% 

Gun 

Folder: Android 

 

1. iron: 12.62% 

2. shower_curtain: 8.09% 

3. shoe_shop: 2.89% 

4. toilet_tissue: 2.37% 

5. electric_guitar: 2.27% 

Gun 

Folder: Android 

 

1. printer: 49.46% 

2. cradle: 6.77% 

3. grand_piano: 3.58% 

4. toilet_tissue: 3.44% 

5. toilet_seat: 2.41% 

Gun 

Folder: Android 

 

1. syringe: 70.25% 

2. switch: 1.28% 

3. bonnet: 1.22% 

4. panpipe: 1.00% 

5. quill: 0.86% 

Gun 

Folder: Android 

 

1. syringe: 48.23% 

2. sewing_machine: 5.17% 

3. can_opener: 3.28% 

4. modem: 2.48% 

5. dial_telephone: 2.16% 

Gun 

Folder: Android 

 

1. syringe: 87.88% 

2. screw: 0.79% 

3. switch: 0.24% 

4. lotion: 0.23% 

5. upright: 0.20% 

Gun 
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4.2.4 Model Evaluation 

The core of the prototype is the computer vision model. Selecting the right model is 

crucial in creating a working and usable prototype. The selection of the best performing 

model in machine learning requires a sound comparison of appropriate metrics. The 

following section describes some of the metrics used in this study. 

4.2.4.1 Metrics 

For regression-based algorithms, performance can be based on residuals (errors) or 

deviations between predicted and ground truth values such as the root mean squared error 

(RMSE); the model of choice is the algorithm with the minimal RMSE. Classifiers, on 

the other hand, are evaluated based on either a class or a probability output. In the context 

of a binary classification problem, the values are by convention either positive (+) or 

negative (-). This classifier can make two types of errors: (1) it can incorrectly classify an 

image with no gun under the gun category (false positive or Type I error), and (2) it can 

incorrectly classify an image with a gun under the not_gun category (false negative or 

Type II error). It is easier to determine and visualise these misclassifications by creating 

a confusion matrix or sometimes called a contingency or confounding table.  

Confusion Matrix  

The performance of a classifier is evaluated based on a baseline classification, ideally a 

perfect classifier such as the Bayes classifier1 but in practice an output of another gold 

standard test2. For this study, we are the ground truth baseline. The resulting cross-

tabulated results of predicted and actual values is called a confusion matrix as shown in 

Table 4.  

Table 4 Confusion Matrix 

Confusion Matrix Ground Truth / True, Actual or Target 

Positive Negative 

Predicted / Classified by 

the Model  

Positive TP FP 

Negative FN TN 

                                                 

 
1 The Bayes classifier is an unattainable gold standard for classification because in real life, there is no way to know the conditional 

distribution of Y given X for the population. [56] 
2 For example, large-scale image classification employed by ImageNet is done by leveraging crowdsourcing strategy via Amazon 

Mechanical Turk (see [89]) 
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TP (True Positive) – correctly classified as Positive, also called a “hit”  

TN (True Negative) – correctly classified as Negative 

FP (False Positive) – misclassified as positive but is negative; also called “false alarm” 

FN (False Negative) – misclassified as negative but is positive; also called a “miss” 

 

Table 4 shows the confusion matrix: test prediction results are on the vertical axis and 

baseline or ground truth baselines are on the horizontal axis. The underlying performance 

evaluation criteria used throughout this study is derived from this matrix. 

Accuracy and Precision  

Common in regression problems, accuracy can also be used to measure how well the 

classifier identifies or excludes a condition. Also called Rand Accuracy or Classification 

Accuracy, it takes the ratio of correctly classified predictions against the total number of 

samples. The formula for accuracy is taken from [56] and shown in Equation 1: 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 (𝑨𝑪𝑪) =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵
 

Equation 1 Classification Accuracy 

 

Good accuracy results may not always be relevant. For a model that aims to detect a gun, 

for example, the cost of a miss (false negative, i.e. a gun classified to be not a gun) may 

be unacceptable.  

Precision is called the Positive Predictive Value (PPV) or True Positive Accuracy. It is 

defined as the number of true positives that the model deemed to be positive. The formula 

for precision is taken from [57] and shown in Equation 2: 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 (𝑷𝑷𝑽) =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

Equation 2 Precision 

Sensitivity and Specificity 

Sensitivity or Recall is the ratio of true predictions from the target positive classifications. 

The term sensitivity and recall are used interchangeably in this paper. This is also called 

the Hit Rate, True Positive Rate or the Probability of Detection. This value reflects the 



55 

number of relevant positive cases that the classifier was able to detect. In e-discovery, 

this measure is not highly regarded because the relevance of the documents that were not 

retrieved cannot be determined. However, in medicine, this measure is primary as the 

desired goal is to identify as much positives as the model can. The formula for recall is 

taken from [57] and shown in Equation 3: 

𝑹𝒆𝒄𝒂𝒍𝒍 𝒐𝒓 𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

Equation 3 Recall 

The inverse of sensitivity or specificity is the proportion of true negatives from the total 

target negative cases. It is also called True Negative Rate. The formula for specificity is 

taken from  [56] , [57] and shown in Equation 4: 

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 =
𝑻𝑵

𝑭𝑷 + 𝑻𝑵
 

Equation 4 Specificity 

As the model’s sensitivity increases, specificity decreases.  To illustrate, a model that is 

sensitive means that it classifies any firearm (rifle, grenade launcher, rocket, machine 

guns) as a hand-gun (more false positives) while a highly specific model will only classify 

a pistol but not a revolver as a hand-gun (more false negatives). The delicate art of finding 

the right balance between sensitivity and specificity drives many research applications 

today.  

False Negative Rate and False Positive Rate 

The proportion of target positives that are classified otherwise is called a miss or formally, 

the False Negative Rate. The formula for false negative rate is taken from [57] and shown 

in Equation 5 

𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆 𝑹𝒂𝒕𝒆 =
𝑭𝑵

𝑻𝑷 + 𝑭𝑵
 

Equation 5 False Negative Rate 
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The complementary form for the false negative rate is called a fallout, false alarm rate or 

the false positive rate. The formula for false positive rate is taken from [57] and shown in 

Equation 6: 

𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝑹𝒂𝒕𝒆 (𝑭𝑷𝑹) =
𝑭𝑷

𝑭𝑷+𝑻𝑵
 or 𝟏 − 𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 

Equation 6 False Positive Rate 

The definitions of the metrics are translated into questions to easily understand their 

relevance in the context of gun classification in this paper. The metrics and corresponding 

questions are tabulated in Table 5. 

Table 5 Summary of Metrics 

Metrics Formula Questions 

Accuracy 𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵
 

Out of all pictures in the directory, how many have 

been correctly classified? 

Precision 𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

Out of all pictures classified as guns, how many are 

actual guns? 

Sensitivity or  

Recall 

𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

Out of all the actual gun pictures, how many are 

correctly classified?  

Specificity 𝑻𝑵

𝑭𝑷 + 𝑻𝑵
 

Out of all the actual pictures without guns, how many 

are correctly classified? 

False Negative 

Rate  

𝑭𝑵

𝑻𝑷 + 𝑭𝑵
 

Out of all the actual gun pictures, how many are 

wrongly classified? How many guns pictures did the 

model miss?  

False Positive 

Rate 

𝑭𝑷

𝑭𝑷 + 𝑻𝑵
 

Out of all the actual pictures without guns, how many 

are wrongly classified? How many no- gun pictures 

did the model miss? 

In practice, evaluating trade-offs is unavoidable. The trade-off between accuracy and 

precision should be reasonable and practical in real life. For example, if the goal is to fit 

a model that can detect all the gun images (100% recall rate, no false negatives) regardless 

of the false positives, then it might return too many false positives that the model has now 

become unbearably useless.  

F-score 

There are attempts to summarize the confusion matrix into a single number. One such 

attempt is the F-score (sometimes called F-measure) which is the harmonic average of 

precision and recall. The formula is taken from [57] and shown in Equation 7: 
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𝑭𝜷 = (𝟏 + 𝜷𝟐 )
(𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗ 𝑹𝒆𝒄𝒂𝒍𝒍)

(𝜷𝟐 ∗ 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍)
 

Equation 7 F-score 

 

The most common measure is F1 which gives equal weight to precision and recall at 𝛽 =

1. The formula is taken from [56], [57] and shown in Equation 8:   

𝑭𝟏 = 𝟐 ∗
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗ 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
 

Equation 8 F1-score 

If more weight is given to recall, the score is called F2, and F0.5 score is meant to give less 

weight to recall than precision. 

Oftentimes, this measure is enough to evaluate the performance of a model. However, if 

true negatives are equally important, one major drawback is this calculation’s inability to 

take the true negatives into account. For unbalanced datasets, where true negatives far 

outweigh true positives, the F-measure might provide misleading results.  

Matthew’s Correlation Coefficient (MCC) 

The Matthews correlation coefficient (MCC) is regarded as one of the best measures that 

summarizes the confusion matrix into a single probability [57]. Among other measures 

such as F1 and accuracy, MCC is more informative as it is easily interpretable, robust to 

changes in the prediction goal [58], and  takes the size of the matrix into consideration to 

adjust for unbalanced datasets [59] . Unfortunately, this value is not reported among any 

of the literature reviewed in this paper. The MCC is given in Equation 9: 

𝑴𝑪𝑪 =
𝑻𝑷 ∗ 𝑻𝑵 − 𝑭𝑷 ∗ 𝑭𝑵

√(𝑻𝑷 + 𝑭𝑷)(𝑻𝑷 + 𝑭𝑵)(𝑻𝑵 + 𝑭𝑷)(𝑻𝑵 + 𝑭𝑵)   
 

Equation 9 Matthew's Correlation Coefficient 

MCC returns a value from -1 to 1. 1 indicates a perfect prediction, -1 indicates an 

unmatched prediction versus observation values and 0 indicates random guess. A value 

of 1 is ideal. This study reports this metric instead of the F-measure; models with MCC 

as close to 1 as possible are regarded as “good” classifiers. 
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Receiver Operating Characteristics (ROC) Curve 

As mentioned, reporting the performance of a classifier using accuracy is misleading and 

inaccurate. As such, most dichotomous responses usually employ ROC curves to express 

Sensitivity and Specificity across a range of threshold values. In most papers, the ROC 

curves are plotted using the False Positive Rate1  instead of Specificity as it gives a more 

intuitive feel, up is good versus down is good for the latter. Figure 29 shows two 

representations of the ROC graph: Specificity vs TPR (left) and 1- Specificity vs TPR 

(right). 1 – Specificity is also called the False Positive Rate. The graph on the right is the 

more commonly seen version of the ROC because it is more intuitive to choose better 

models in an upward trend as opposed to the left graph; using the downward trend is 

counter-intuitive. The ideal regions are highlighted; the perfect classifiers are in (1,1) and 

(0,1) for left and right graphs respectively.  

 

 

Figure 29 ROC Curves 

Visualising Trade-offs 

In a paper by Provost et al. [60], the authors recommended the use of ROC to show the 

trade-off between correctly classified results (recall or sensitivity) and falsely classified 

results or false alarm rates. In [61], the ROC space is shown to evaluate the performance 

of a binary classifier. 

 

                                                 

 
1 FPR = 1 – Specificity 

Ideal Ideal 
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Figure 30 ROC Space 

Figure 30 shows the ROC graph taken from Fawcett’s work[61], but in which we had 

superimposed the classifier performance within the ROC space as explained by Fawcett 

in the same paper. The point (0,1), where classifier D is located, represents a perfect 

classifier. It has virtually no false positives. This is the area that the model aims to achieve. 

The point (0,0) represents an extreme strategy of issuing no positive classification and 

therefore, no false alarms. Classifiers along this area are deemed conservative: a positive 

prediction is only given when there is strong evidence. Thus, classifiers along this space 

also yield low positive classifications as well as low false alarms. The point (1,1) issues 

the opposite strategy by classifying all observations as positive. Classifiers around this 

area tend to be generous or liberal with their predictions resulting in high positive rate at 

the cost of false alarms. The dashed diagonal line (y = x) represents the strategy of 

randomly guessing an output class having a probability of 0.501. Classifiers near or along 

this line are said to be near to “guessing" the positive classification. 

Decision or Probability Threshold 

For probabilistic classifiers2 such as Naïve Bayes, Linear Discriminant Analysis model 

or a Neural Network, the output is an instance probability (a continuous numeric score) 

that represents the degree to which the instance is a member of a class. The classification 

is implemented by using a decision threshold (or probability threshold) to produce a 

                                                 

 
1 Bayes classifier uses a threshold of 50% for the probability of assigning a random observation to the positive or negative class.  
2 Classifiers that output probabilities instead of categorical data 

Conservative 

Liberal 
Ideal 
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discrete (binary) classifier: if the output is above the threshold it is positive, else, negative 

[56].  

The ROC curve below is shown by thresholding the predictions. Figure 31 shows two 

ROC graphs with different threshold values. The left graph is taken from [61] and the 

right graph from [56]; a smoother curve is achieved by running the function on multiple 

thresholding values as seen in the right graph. 

 

 

 

 

 

 

 

 

 

Figure 31 ROC Curve with Threshold  

 

Although classifiers along a higher true positive rate but lower false positive rates are 

deemed to be good performing classifiers and is ideal, determining the appropriate 

threshold value depends on domain knowledge, that is, it depends on the problem and the 

industry for which the algorithm will be used for [56]. Hence, a certain degree of balance 

is crucial in finding a “good” classifier in this context. The tuneable parameters and ideal 

values are not intrinsic in the test or validation methodology; these should be determined 

by the context on which the test is applied.  

Area Under the Curve (AUC) 

To quantify the performance of the ROC in terms of numerical values, analysts use the 

Area Under the Curve (AUC) measure. In machine learning, the ROC AUC is often used 

to measure model performance. The AUC of a random classifier is 0.5 [56]. A model with 

an AUC that is greater than 0.50 means it performs better than a random model (see 

Equation 10). A perfect classifier has an AUC of 1.00 (see Equation 11). 
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𝟎. 𝟓𝟎 < 𝑨𝑼𝑪 < 𝟏. 𝟎𝟎  

Equation 10 AUC of a classifier that is better than a “random” guess 

𝑨𝑼𝑪 =  𝟏. 𝟎𝟎  

Equation 11 AUC of a perfect classifier 

However, there are drawbacks in using the ROC and AUC, such as sensitivity to noise, 

ignores the relevance of Type I and II errors, and unreliable in unbalanced datasets [62],  

and these considerations must be taken into account when using this measure as a 

performance indicator.  

Precision-Recall Curve 

Many real-world applications such as digital forensics are dominated by an unbalanced 

amount of negative sets. For example, when searching for CSAM1, the number of images 

without explicit content is higher than the number of target images. As such, the ROC 

curve is deemed inappropriate [56].   

For highly skewed datasets, the cost curve or more formally, the precision-recall curve is 

recommended instead of the ROC curve [63]. The figure below is taken from the work of 

Davis and Goadrich [64] that discusses the relationship between and ROC and a PR curve.  

 

Figure 32 ROC curve (left) and PR curve (right) [64] 

 

Taken from [64], Figure 32 shows that in an ROC curve (left), the differences between 

algorithms is not immediately apparent, but Algorithm 2 clearly performs better when 

plotted against the PR curve (right).  The difference is due to a larger number of true 

negative observations compared to true positives. In the ROC curve, a huge increase in 

                                                 

 
1 Child Sexual Abuse Material, CSAM  
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false positives does not necessary have a huge effect on the rate1 as the true negative 

values are significantly larger. This scenario is common in many real world domains such 

as digital forensics. In a PR curve, instead of false positives, the comparison is done on 

the actual positives by using precision2; the performance difference now becomes 

apparent. 

4.2.4.2 Models Used in this Study 

As mentioned in the preceding sections, the computer vision models are taken from 

Keras3. Keras is an open-source neural network API written in Python and capable of 

running in open-source deep-learning toolkits such as TensorFlow4, Microsoft’s 

Cognitive Toolkit (CNTK) 5 and Theano6. This research study used the TensorFlow 

platform. The modularity, flexibility and user-friendly APIs of Keras allow for a painless 

and fast prototyping of machine learning models for research, experimentation or tool 

development. It also runs seamlessly with GPU and CPU deployments. 

The Keras website lists a summary7 of accuracy results for each of the 12-computer vision 

models available on the platform. We picked the classifiers with more than 90% top-5 

accuracy. Tabulated in Table 6 are the reported classification accuracies for the four 

selected models (Xception, VGG16, ResNet50 and Inception) with published Top-1 and 

Top-5 values evaluated using the ImageNet validation set. 

Table 6 Model Accuracy based on ImageNet Validation Set 

Model Size Top-1 Accuracy Top-5 Accuracy 

Xception [19] 88 MB 0.79 0.945 

VGG16 [21] 528 MB 0.713 0.901 

ResNet50 [20] 98 MB 0.749 0.921 

InceptionV3 [18] 92 MB 0.779 0.937 

The accuracy values published for these models do not guarantee the same set of 

accuracies for gun classification using our dataset. In performance estimation, the 

                                                 

 
1 FPR = FP / (FP + TN) 
2 Precision = TP / (TP + FP) 
3 https://keras.io/ 
4 https://www.tensorflow.org/ 
5 https://docs.microsoft.com/en-us/cognitive-toolkit/ 
6 http://www.deeplearning.net/software/theano/ 
7 https://keras.io/applications/#models-for-image-classification-with-weights-trained-on-imagenet 
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question, “Does the published estimated accuracy of the selected models hold when 

evaluated and tested against our dataset?” is answered during model evaluation and 

selection in Final Model: InceptionV3 Performance.  

The classifiers for selection are described briefly below. 

VGG16 

This deep learning method is one of the first attempts of adding depth to improve 

classification accuracy. The best performance is achieved in 16-19 weight layers. In this 

study, VGG16 is evaluated instead of VGG19 because the accuracy published is relatively 

the same, 0.901 and 0.90 respectively, but VGG19 is more computationally expensive 

than its -16 counterpart. The full paper [21] is published online. 

InceptionV3 

While VGG achieved phenomenal accuracy on the ImageNet dataset compared to 

AlexNet’s winning entry in 2012, it is resource-intensive. GoogLeNet, the first Inception 

version, devised an “inception” module optimising resource by growing “wider” instead 

of “deeper”. The filters (kernel) of multiple sizes operate on the same level. This is also 

an answer to the problem of saliency1 variation in which different objects will have 

various variations depending on the location of the object in the picture. A closeup of an 

image requires a larger kernel (global filter) than an object taken at the far end of the room 

(local filter). Choosing the correct kernel size to reflect either global or local variations to 

perform the convolution is not straightforward and the inception module was built to 

improve this bottleneck. The version 3 of this network added upgrades to the optimisation 

and regularization of the network to avoid overfitting.  The full paper [18] is published 

online. 

ResNet50 

Yet another winner, this model secured the first place in both ImageNet and COCO 

competitions in 2015. This model introduced a deep residual training network (“Res” in 

ResNet is Residual) that showed that it is relatively easy to train residual networks of 

                                                 

 
1 classification based on an object that is more pronounced than the rest 
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great depth. The paper also showed that gains in accuracy can be achieved by increasing 

the level of depth of the network. The full paper [20] is published online. 

Xception 

The Xception model is based on InceptionV3 model. Based on the ImageNet validation 

set, this model outperforms ResNet, InceptionV3 and VGGNet architecture. The full 

paper [19] is published online.  

4.2.5 Model Selection 

During the model evaluation phase, the four models from the Keras application are 

evaluated on the” WEAPON-DB3: Ugr.Es” dataset taken from [15]. This dataset contains 

304 images of guns and 304 images of non-guns (faces, objects, etc). The model with the 

best performing metrics (i.e., Recall, Precision, False Positive Rate and Matthew’s 

Correlation Coefficient) is chosen. The InceptionV3 model scored the highest recall rate 

and therefore, is the model of choice (best model). The InceptionV3 is then evaluated 

through other datasets to identify if the recall rate remains consistent (around 100%) 

among the rest of the remaining datasets (final model). The final model is then used as 

the basis for the prototype. This process is summarised in Figure 33 and the full approach 

was described in the preceding Performance Estimation section. 

 

During the evaluation of the computer vision models, the main tool used is the Jupyter1 

notebook in an Anaconda-Python 3 environment with Keras and TensorFlow in the 

backend. Popular among data-science enthusiast, the Jupyter notebook lets users interact 

                                                 

 

1 https://jupyter.org/ 

Best Model: InceptionV3 Final Model: InceptionV3 

Models

•VGG16

•InceptionV3

•ResNet50

•Xception

Model 
Evaluation

•Evaluate 
using 
WEAPON-DB

Model Selection

•Evaluate 
using other 
Datasets

Implement 

• Implement in 
Prototype

Figure 33 Model Selection Process 

https://jupyter.org/
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with the python code, save and load machine learning models, and run simulations and 

visualizations. 

4.2.6 Prototype Development  

The prototype is powered by Python 3 using Flask web development framework. The 

prototype uses web technologies because of the ease of which to build and customise 

powerful visualisations, make changes to the code, and host a working demo online for 

usability testing.  Figure 34 shows the technical overview of the prototype architecture. 

Technologies Used 

Anaconda1 is a toolbox in Python and R programming languages that can perform data 

science and machine learning tasks in an easy way. It can manage libraries and 

dependencies, develop and train machine learning models using scikit-learn, and the 

TensorFlow backend, and visualise results using Matplotlib2 and seaborn3 visualisation 

libraries.  

                                                 

 
1 https://www.anaconda.com 
2 https://matplotlib.org/ 
3 https://seaborn.pydata.org/ 

Figure 34 Technical Overview 

https://www.anaconda.com/
https://matplotlib.org/
https://seaborn.pydata.org/
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Keras.io1 was initially developed as a research effort of project ONEIROS (Open-ended 

Neuro-Electronic Intelligent Operating System). Now a full-grown neural network 

library, it is written in Python with state-of-the-art deep learning models available for 

prediction, finetuning, and feature extraction. For this project, the ImageNet pre-trained 

library is used directly for prediction. The simple APIs and exhaustive documentation and 

tutorials make this deep learning framework a popular choice among data analyst and 

machine learning enthusiasts.  

TensorFlow2 is an end-to-end ecosystem for machine learning and deep learning created 

by Google’s Brain Team. It uses Python as a convenient front-end API for creating and 

building applications and neural networks while executing those applications in the back-

end using high performance C++ binaries. The TensorFlow architecture can run on any 

target distribution such as a CPU, GPU and even Android and iOS devices.  

Flask3 is a microframework (i.e. a minimalistic web application framework) written for 

Python. Since the prototype required in this research needs only the core functionalities 

of a web application without the extensions of most full-blown web frameworks such as 

database abstractions or server configurations, Flask is the ideal choice. Gunicorn4 (Green 

Unicorn) is a Python Web Server Gateway Interface HTTP server for the UNIX 

environment that is light and fast, appropriate for development and prototyping activities. 

It is compatible with several web frameworks such as Flask, and in this project, the 

prototype runs in gunicorn.  

                                                 

 
1 https://keras.io/models/about-keras-models/ 
2 https://www.tensorflow.org/ 
3 http://flask.pocoo.org/ 
4 https://gunicorn.org/ 

https://keras.io/models/about-keras-models/
https://www.tensorflow.org/
http://flask.pocoo.org/
https://gunicorn.org/
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Figure 35 shows the process diagram for the prototype. There are three main 

functionalities of the prototype: prediction, search and visualization.  

Prediction is the core function of the prototype. This is console-based where the directory 

of the images is supplied to the command prompt. It has 2 main modules: (1) prediction 

of output classes and the (2) extraction of EXIF data. During prediction, the desired 

Figure 35 Process Diagram 
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computer vision model is loaded (see Figure 36). This part of the code can be easily 

modified to allow other neural network models to be used instead of InceptionV3 (the 

final model chosen in the study).  The model predicts each image from the supplied 

directory including the probabilities for each output class. A CSV file is generated at the 

end of the process. In the extraction of EXIF data, each image is subjected to an EXIF 

extractor module; an output file is also generated (this can be seen in Figure 37). 

 

Figure 36 Prediction Module - Loading of Model 

 

Figure 37 Prediction Module – Saving the Results 

 

The prototype's main user function is the search, which deals with returning the images 

based on the keywords searched by the user. The CSV files generated by the prediction 

function is parsed for content, top-k predictions, probability thresholds and EXIF 

information (Maker, Model, Software, and Date created) based on the keyword search by 

the user (see “Search for Image Content” in Figure 38). Additional classification is 

performed for gun and non-gun content from the web interface (see “Summary of Search 

Results” in Figure 38). For the console, only textual information is displayed (see Figure 

39). 
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Figure 38 Search - Web Interface 

 

 

Figure 39 Search - Console 
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For the visualization module, this is only available from the web interface. Parsed from 

the CSV files from the prediction module, the data is consolidated to display a 

summarized visual form of the data such as a Frequency Count and a Bubble Graph in 

Figure 40 and Figure 41 respectively. 

  

 

The functionalities: prediction, search and visualization, cover the minimum 

requirements specified during the discussion (see Problem Identification and 

Requirements). The Requirements and the implementations are tabulated for clarity in 

Table 7.  

Table 7 Requirements Implemented 

Requirements Status  

Open-source tool that can be customized, 

modified and improved 

Implemented Developed in Python and released in 

GitHub 

Automated categorization of images Implemented Search for guns and other image objects 

Metadata extraction and maps Implemented EXIF extraction 

File Export Implemented CSV file output for predictions and EXIF 

data 

Visualization Implemented Visual graphs from web application 

Weapon categorization Implemented Image categorization using the best 

computer vision model during selection 

 

  

Figure 41 Visualisation - Bubble Chart 

Figure 40 Visualisation - Frequency Count 
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Unit testing 

Unit testing was done using Python’s built-in pytest module. The classic code-and-test 

approach is employed in the development.  

 

Figure 42 Unit Testing - PyTest 

4.3 Demonstration and Testing  

Although the instructions and evaluation forms are hosted online, a demonstration of the 

working prototype was provided prior to commencing the test. Feedback is received via 

email or face-to-face as some respondents readily gave their insights regarding the tool 

right after testing was completed. 

Part of this research study measures the overall perceived usability of the resulting 

prototype in terms of usability, learnability and efficiency with a series of tasks in which 

the forensic users and potential users attempt to solve. The tasks are designed to simulate 

questions that might arise from some investigative work such as: “The suspect uploaded 

a photo in Instagram of a restaurant in India on July 25, 2017 in the afternoon. 

Investigators speculated that he stayed the night in this area. Where do you think the 

suspect could have stayed?” 

The perceived usability of the respondents is taken from the overall mean score of the 

System Usability Scale (SUS) test. Learnability is taken from item-level results of the 

same test while efficiency is measured by the speed of which tasks are completed.   
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4.3.1 Design of Usability Test 

The test is designed as a classic test-and-measure approach. A series of tasks (tests) were 

designed to measure the following research questions: 

1) Usability – Is the prototype usable in a forensic investigation? 

2) Learnability – Can the prototype be used with ease? 

3) Efficiency – Can the users perform the task efficiently?  

A properly designed usability test ensures that the above measures are covered. To 

measure efficiency, the speed of completing the tasks is measured before and after using 

the tool. Usability and learnability are measured using the System Usability Scale (SUS) 

test [65] [66].  

Usability testing has been a well-established evaluation method that measures the 

perceived usability of users or potential users of a system, device or application [67]. 

According to [68], valid usability tests have been mentioned to have six characteristics: 

(1) usability as the focus, (2) respondents are end-users or potential end-users, (3) there 

must be a system or a tool to evaluate, (4) performance of tasks by respondents, (5) 

responses are recorded and analysed, and (6) the results are communicated.  

The following sections explains how these characteristics are implemented in this study. 

4.3.1.1 Focus on Usability 

The evaluation test conducted online is divided into four sections in a test-and-measure 

paradigm. It tests for the usability of the system and some of its attributes such as 

learnability.  

4.3.1.2 End-Users 

A valid usability test includes respondents who are part of the target market for the tool. 

A user profile of relevant characteristics should be built prior to the release of the 

evaluation form as suggested in [68]. The objective of a user profile is to ensure that the 

range of users targeted for the tool are clearly defined. This provides insight and 

understand to whom this prototype is built for.  The user profile for this research study is 

described in Table 8. 
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Table 8 User Profile 

User Category User Profile 

Student Digital Forensic Students  

Taken the Systems Forensics Course in Taltech in Spring 2018 

Experience Level: 0 - 2 years  

Location: Tallinn Technical University 

Entry Level Users Forensic Examiners  

Experience Level: 1 – 5 years  

Location: Anywhere 

Mid-Level Users Forensic Examiners  

Experience Level: 5 – 10 years  

Location: Anywhere 

Senior Users Forensic Examiners  

Experience Level: 10+ years  

Location: Anywhere 

Although the evaluation form, instructions and codes are online and no personal 

information are gathered, due diligence is performed in ensuring that only examiners and 

potential examiners fitting the user profile are accepted.  

4.3.1.3 Product for Evaluation 

Prototypes can be categorised as low-fidelity or high-fidelity prototypes. Fidelity 

encompasses the breadth of features, the degree or complexity of the functionality 

implemented, or the style of interaction. Low-fidelity prototyping could be a pen-and-

paper approach or a static HTML mock-up while a high-fidelity prototype can be a 

running demo website.  In this study, a high-fidelity testing is performed as the range of 

functionalities available are mature and almost complete.  Completeness of functionality 

implies that the requirements gathered during the elicitation phase had been implemented 

(refer to Table 7 for the list of requirements and the corresponding functionalities 

implemented). 
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4.3.1.4 Performance of Tasks 

It is important to emphasize that the tasks probe the usability of the prototype and not the 

skill of the respondent. Hence, our interaction with respondents are crucial in ensuring 

the tasks are well understood and feedback is timely. The tasks tap into the core 

functionalities of the tool: categorisation of image (prediction), detection of guns (search), 

and visualisation. The complete list of questions is found in Appendix 2 – Evaluation 

Questions and Answer Key. 

 

Figure 43 shows how the test is designed. The respondent is requested to download the 

dataset (data collection) and prepare the environment before proceeding with the tasks. 

The time to complete each task is recorded manually. After answering the set of questions, 

a 10-question usability test is presented including space for the respondent to fill-in the 

feedback. The resource links that are supplied to the respondents are given in Table 9. 

To explain the process flow in detail: 

(1) Data Collection: Respondents are asked to download three datasets (Evaluation, 

Android and Jane) for evaluation. The datasets folders contain random gun images with 

manufactured EXIF information.  

Figure 43 Evaluation Flow 
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(2) Preparation of Environment for Manual Categorisation: The first part of the test is to 

evaluate the dataset using manual or existing tools that the respondents have already been 

using such as Window Explorer or a downloadable EXIF tool extractor [55] from Phil 

Harvey. They had to download the necessary tools before proceeding to answer the tasks. 

(3) Recording of Time: Respondents are asked to record the start and end time to complete 

the tasks.  

(4) Answer Questions: Respondents answer the questions without using the prototype and 

using the tools in step (2). 

(5) Preparation of Environment for Prototype Use: This requires that the respondents 

answer the same set of questions using the prototype. There were three ways to gain 

access to the prototype:  

(a) installation from source code - a guide to install in Ubuntu 18.04.1 LTS fresh 

machine is provided, 

(b) use of a portable VirtualBox virtual machine (~.ova file) with pre-installed 

dependencies and pre-loaded GitHub source code, or  

(c) use of the demonstration website online 

(6) Recording of Time: Respondents are asked to record the start and end time to complete 

the tasks using the prototype.  

(7) Answer Questions: The respondents are asked to answer the same set of questions 

using the prototype. 

(8) Answer Usability Questions: The respondents answer the Usability test using the 

System Usability Scale (SUS) approach. This is explained in detail in the System 

Usability Scale (SUS) section.  

(9) Feedback: Feedback is gathered at the end of the test via email, form or face-to-face.  
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Table 9 Resource Links during Evaluation 

Description  Links 

Evaluation Instructions  Google Doc http://bit.ly/2WmLAf6 

How to Use the Prototype  Online https://cbis.jrdelmar.dev/help 

Source Code GitHub https://github.com/jrdelmar/cbis 

Dataset  GitHub https://github.com/jrdelmar/cbis-dataset 

VirtualBox virtual machine One drive http://bit.ly/2HFXnkv 

Demo Website Online  https://cbis.jrdelmar.dev/ 

Evaluation Tasks and 

Usability Test 

Google Form https://forms.gle/pbZyky4XBSCVRTc9A 

Table 9 lists the online resource links released for evaluation by potential forensic 

examiners and digital forensic professionals. 

4.3.1.5 Recording and Communication of Responses 

The forms are created via Google Forms; therefore, responses are stored after the 

respondents click the submit button. The responses are then analysed and communicated 

in the Results and Discussion section of this paper. 

4.3.2 System Usability Scale (SUS) 

The usability questionnaire used the System Usability Scale (SUS) method. SUS is a well-

known questionnaire in usability research for various kinds of applications such as 

websites, devices, systems, hardware, software and tools. Developed by John Brooke in 

1986 [69], it has demonstrated validity and reliability and has now become an industry 

standard with references in over a thousand articles and publications [67]. Even with 

small sample sizes, even recommending only three to five users [70] for early-phase 

usability tests, SUS can provide reliable results. 

This study can be considered as an early-phase usability test; therefore, five respondents 

are deemed enough to perform preliminary analysis.  

The SUS questionnaire consists of ten five-level Likert-scale questions, half worded 

positively, and half worded negatively. The respondents are then asked to score these 

items in a scale of 1 – 5 from Strongly Agree to Strongly Disagree, with 3 as Neutral. The 

typical SUS questionnaire has standardised questions, but this study had to revise some 

of the statements for clarity.  

http://bit.ly/2WmLAf6
https://cbis.jrdelmar.dev/help
https://cbis.jrdelmar.dev/
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4.3.2.1 SUS Questions 

The list of SUS questions including the changes against the standard questions (italicised 

for emphasis) are shown: 

1. I think that I would like to use this system frequently if I have to deal with 

categorizing images and getting EXIF information. 

2. I found the system unnecessarily complex. 

3. I thought the system was easy to use. 

4. I think that I would need assistance (technical or non-technical) to be able to use 

this system. 

5. I found the various functions (console prediction, search, display EXIF 

information, report screen) in this system were well integrated. 

6. I thought there was too much inconsistency in this system. It would be difficult to 

deploy the tool in the real world. 

7. I think that most forensic examiners would learn to use this system very quickly. 

8. I found the tool inconvenient to use. 

9. I felt very confident using the tool. 

10. The learning curve to use this tool is steep. I needed to learn a lot of things before 

I could use the tool.  

4.3.2.2 Interpreting scores  

Overall Mean SUS Score 

The scoring for SUS is not straightforward. Each question is converted into a new 

number; the score for each odd number is deducted by 1 point (x – 1) while the score for 

each even number will be deducted from 5 points (5 – x). The minimum score is 0 while 

the maximum score is 100, but this does not convey percentages, only percentile ranking. 

This unit-less measurement does not convey any meaning, but some studies had proposed 

an adjective rating scale (Worst imaginable, Awful, Poor, Ok, Good, Excellent, Best 

Imaginable) by Bangor et.al [65] and letter grades (A to F) by Lewis and Sauro [66].   
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Figure 44 is taken from [65] and illustrates the proposal from Bangor et al.; it is shown 

that the acceptable SUS scores are 70 and above which is the upper 25% of the 

distribution.    

However, the more recent study of Lewis and Sauro [66] suggests that the widely adopted 

adjective-adjusted scoring system by Bangor et al. [65] is inaccurate and the curved 

method based on a linear regression model is proposed. They showed that in 241 

industrial usability studies, the published norms for overall SUS mean scores have an 

average grade of 68 and yet “it is becoming a common industrial goal to achieve a SUS 

of 80 as evidence of an above average user experience.” [66]   

Figure 45 is taken from [71] and illustrates the revised scoring method proposed in [66]. 

The overall SUS average of 68 means 68% of the maximum score is reached but it belongs 

to the 50th percentile with a grade of C. 

 

 

Figure 45 The curved scoring function  

Figure 44 Adjective-based scoring from Bangor et al.  
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Overall SUS Benchmark 

The average SUS rating of 68 and its corresponding letter grade of “C” is the benchmark 

applied in this study. This benchmark determines the minimum acceptable level of 

perceived usability of the prototype.  

Individual Item Scores 

Along with the curved scoring system, item-level benchmarking from individual SUS 

questionnaires was introduced in the same paper by Lewis and Sauro [66]. The paper 

proposed item-level benchmarking to measure other user experience attributes such as: 

perceived complexity (question 2), perceived ease-of-use (question 3), perceived 

consistency (question 6), perceived learnability (question 4, 10) 1, and confidence-in-use 

(question 9). The questions can be found in the preceding section: SUS Questions. In [72], 

Sauro proposed a two-factor assessment of SUS using Usability and Learnability. Sauro 

[71] graphed learnability versus usability using learnability scores for questions 4 and 10 

and usability – for the rest of the 8 questions. Thus, to answer the research question on 

usability and learnability, the same approach is employed.   

Item-level SUS Benchmark 

The same benchmark for the overall SUS rating is adopted for item-level scores. That is, 

the average SUS rating of 68 and its corresponding letter grade of “C” is the benchmark 

applied in this study.  

 

 

  

                                                 

 
1 Question 7 (“I  would  imagine  that  most people  would  learn  to  use  this system very quickly”) is not considered because it 

refers to other people’s skills and not the user’s  [72] 
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5 Results and Discussion 

5.1 Model Selection 

There are two kinds of performance metrics that are reviewed in the Related Works 

section of this paper: (1) metrics to evaluate classifiers as digital forensic tool, and (2) 

metrics to evaluate gun classifiers. It is apparent that there is no standard consensus on 

the minimum performance requirement of a classifier. Thus, the findings are not 

evaluated against any baseline but only among the results achieved. The baseline 

throughout the study serves only as a sanity-check as suggested in [73].  

The use of accuracy alone in evaluating performance is insufficient and even misleading. 

Class-specific metrics common across the reviewed literature are: Accuracy, Precision 

and Recall. However, this study also considers other metrics such as Matthew’s 

Correlation Coefficient and False Positive Rate. 

Recall Figure 20 in Performance Estimation section; the first part of the process diagram 

presents the model selection and evaluation process and is explored in more depth in the 

next section. 

5.1.1 Model Evaluation 

Figure 46 shows the model evaluation process employed in this study. The four models: 

InceptionV3, Xception, Resnet, and VGGG16 are evaluated using the dataset used in 

Olmos et al.’s Handgun detection paper [15]. There are two advantages of using an 

existing dataset. One is to remove any possibility of error that we could have introduced 

Figure 46 Model Evaluation Approach 
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due to misclassification introduced during ground truth labelling; second, to have a 

baseline.   

For selecting the best model among the four models in the list, the following metrics are 

evaluated: Sensitivity(recall), False positive rate (1 - specificity), Precision, Matthew’s 

correlation coefficient (MCC) and Processing Time (in seconds per image). Relegating 

accuracy over recall during model selection implies that this study prioritises models that 

can detect more guns (ideally all guns, no false negatives) rather than accuracy which 

takes all predicted values (false positives, false negatives) into account. The model is 

willing to tolerate mistakes in detecting a non-gun as a gun (false positives, Type I error) 

than detecting a gun as a non-gun (false negatives, Type II error).  

Table 10 shows the complete results of the four selected models during evaluation. Top-

5 indicates that only the first five output labels are considered when tabulating the 

confusion matrix while Top-20 takes into account all the output labels provided by the 

model (the models output a maximum number of 20 labels per image). Probability 

thresholds that filter labels (e.g. more than 35% probability) are not introduced here. Time 

is measured in seconds. Sensitivity, precision and MCC have ideal values of 1.00 while 

false positive rate has an ideal value of 0. 

 

  

Table 10 Cross-tabulated results for selecting the model 
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5.1.1.1 Recall versus False Positive Rate 

To visualise the trade-off between sensitivity (recall) and specificity for each model, we 

created a Recall versus False Positive Rate (1 – Specificity) graph as shown in Figure 47.  

The ROC graph in  Figure 47 shows that the metrics from Olmos et al.’s paper [15] is 

used as the baseline and indicated by the dashed lines with text “Us.Gr.Paper”. The 

baseline values are 0.1875 and 1.0 for false positive rate and recall, respectively.   

The colour and filling indicate the Top-K predictions when performing the predictions. 

Blue unfilled markers are the Top-5 while orange filled markers are Top-20. Most of the 

Top-5 predictions have lower false positives, they can filter out most of the Type I errors 

at the expense of lower recall rate. Top-20 predictions, on the other hand, achieve higher 

and even perfect recall (as in the case of Inception and Xception models) at the expense 

of false positives.  

The size of the markers is indicative of the processing time measured during prediction, 

that is, the time to complete the prediction divided by the number of pictures processed. 

To measure time, we used Python’s %timeit function. This method is recommended 

when timing functions for benchmarking programs as it abstracts the intricacies of the 

different timing functions in Python.  

Figure 47 Model Evaluation: Recall vs False Positive Rate on WEAPON-DB3 dataset 
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Recalling Figure 30 in Visualising Trade-offs section, the ideal area should be closer to 

coordinates (0,1) which indicates a lower false positive detection rate but a higher recall 

rate. As seen from Figure 47, the InceptionV3 and Xception models for the Top-20 

predictions have 100% recall rate, and therefore are the only choices for further 

consideration. The result is not surprising as Xception is based on the Inception 

architecture. Table 10 shows that InceptionV3 has the lowest false positive rate score, 

higher MCC value and faster in processing speed than Xception for the WEAPON-DB3 

dataset.  

5.1.1.2 Total Processing Time 

Figure 48 shows the total time the function completes processing each dataset. Here, 

InceptionV3 model for the Top-20 is faster by almost seven minutes for the same set of 

608 (gun and not gun) images.  For an estimated 10,000 images, the InceptionV3 model 

would take 2.5 hours while Xception will take 4 hours in an x-64-based Intel Core i5 2-

core CPU with 16-GB RAM. 

Figure 48 Total Completion Time 
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5.1.1.3 Precision and Recall  

In the Precision-Recall or PR Graph, the ideal spot would be at the coordinates (1,1) for 

the maximum value of precision and recall rate. Figure 49 shows that InceptionV3 

outperforms Xception for this dataset. 

 

5.1.1.4 Accuracy among Models 

In this study, the accuracy metric is not chosen as a criterion in model selection since in 

forensics, the recall rate holds more importance. However, it played a role in selection 

since two of the models achieved a recall rate of 100%.  

Figure 50 shows the accuracy values of Top-5 Published, Top-5 and Top-20 Gun 

Evaluation for each model. Top-5 Published are accuracy values taken from their 

published papers (see Models Used in this Study section) and are tested against the 

ImageNet validation set. This is only used as a benchmark. Top-5 and Top-20 are the 

accuracy values achieved when running the prediction models on the WEAPON-DB3 

dataset.  

Figure 49 Precision and Recall for models tested in WEAPON-DB3 dataset 
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Figure 50 Accuracy Scores 

Interestingly, although the InceptionV3 model only ranks second to Xception in the 

ImageNet validation set, it scores the highest among the four models in the Top-5 gun 

category. The Top-20 accuracy ratings of both InceptionV3 and Xception drop 

significantly compared to ResNet and VGG16 due to the increased number of false 

positives. The accuracy rating for InceptionV3 for both Top-5 and Top 20 gun predictions 

tested on the WEAPON-DB3 dataset is higher than the Xception model. 

5.1.1.5 Ranking of Results 

To decide the best model, the models are ranked against the metrics. Table 11 summarises 

the ranking results. A checkmark indicates that the model evaluated has the highest score.  

Table 11 Model Ranking based on Results 

Model Recall* Accuracy 

(Top-5) 

Precision False 

Positive 

Rate 

Processing 

Time 

MCC 

InceptionV3  1 ✓ 1✓ 3 3 1 ✓ 4 

Xception 1 ✓ 2 4 4 3 3 

ResNet 2 3 2 2 4 2 

VGG16 3 4 1  1  2 1  
* takes precedence over the other metrics 

0.78 0.79 0.75 0.71

0.937 0.945 0.921 0.901
1.00 0.99 0.99 0.98

0.96 0.95 0.96 0.97

InceptionV3 Xception ResNet50 VGG16

Accuracy Scores

Top-1 Published Accuracy Top-5 Published Accuracy

Top-5 Evaluated Accuracy Top-20 Evaluated Accuracy
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Table 12 Decision Matrix 

Model Recall* False 

Positive 

Rate 

Precision Proc 

Time 

Accuracy  MCC Results 

P * Rank 

Decision 

Priority 

Ranking (P) 

1 2 3 4 5 4 
 

 

InceptionV3  1 3 3 1 1 4 41 ✓ 

Xception 1 4 4 3 2 3 55  

ResNet 2 2 2 4 3 2 51  

VGG16 3 1 1 2 4 1 40  

* takes precedence over the other metrics 

 

 

Table 12 shows the decision matrix based on the ranks and priorities set out for this study. 

The priority rankings are based on our interpretation of the requirements during the 

identification stage. The priority rankings are multiplied by the individual rank scores to 

get the total results.  The Recall metric takes precedence among any other metric. The 

other metrics (FPR, Precision, Processing Time, Accuracy, MCC) are considered in the 

decision making process after the recall pre-requisite is satisfied. Thus, only InceptionV3 

and Xception vie for the best model.  The lowest value is taken; in this case, InceptionV3 

is the choice.  

It can be inferred that the published accuracy of computer vision models, although tested 

in a multi-class setting such as ImageNet, is insufficient grounds to assess its performance 

when used for a different domain and dataset. Testing the models again on some dataset, 

as this study has done, showed that sometimes a simpler model might offer better results. 

Therefore, the best model selected to be used for the prototype is the computer vision 

model: InceptionV3.  

5.1.1.6 InceptionV3’s Accuracy among Related Works 

Figure 51 and Figure 52 give an overview of the performance metrics from Related Works 

sections against the InceptionV3 model. The InceptionV3 values are indicated by dashed 

lines. These are not meant to compare results; they merely show how the InceptionV3 

model perform relative to other forensic and gun classifier literature in terms of class-

specific metrics commonly used in forensics such as accuracy, precision and recall.  
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The central tendency used is the median (black solid line) which is the middle value of 

the distribution and is not sensitive to outliers. Both Figure 51 and Figure 52 indicate that 

the resulting findings in this study for the InceptionV3 model (indicated by the dash lines) 

lie within the upper 50% of the distribution. 

 

5.1.2  Model Selection 

Figure 53 describes that after the best model is selected, in this case InceptionV3, it is 

evaluated through a series of evaluation datasets to determine its performance outside the 

“WEAPON-DB3” dataset. 

Figure 52 Related Works and InceptionV3 Precision-Recall Results 

Figure 53 Model Selection: InceptionV3 

Figure 51 Related Works and InceptionV3 Accuracy Results 
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5.1.2.1 Recall versus False Positive Rate with Threshold  

Figure 54 shows the recall versus FPR graph including the probability threshold values. 

Superimposed on the graph is the suggested ROC space (recall Figure 30 in Visualising 

Trade-offs section). Images with prediction probabilities equal to or above the threshold 

are classified accordingly. The threshold values, indicated by colours in this graph, are in 

the range of 0.05 to 0.95. The size of the markers indicates the total number of images 

processed.  

 

For the Recall-FPR graph, the ideal points should be as close as possible to the 

coordinates (0,1) where there are virtually no false positives and no false negatives. In a 

typical machine learning use-case, this ideal point remains a “gold standard” because the 

training dataset of models only account for a small subset of data in the infinite 

possibilities of images found in the real world. However, our graphs seem to indicate 

promise as observed from the number of points congregating around the area of high 

sensitivity and low false positive rates. These points have a threshold of below 0.50 as 

indicated by the red colours prevalent in these points. We also observe that the lower the 

thresholds set, the higher the sensitivity value.  

Figure 54 Recall vs False Positive Rate of InceptionV3 with Other Datasets 

Conservative 

 

Liberal 

Ideal 
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Figure 55 is a matrix showing threshold (row), sensitivity (value in cell) and false positive 

rate (colour) mappings per dataset (column). Despite the intuition that lower thresholds 

result in higher false positive rates (i.e. a lower threshold tolerates more mistakes), this 

doesn’t seem to be the case for most datasets (light-coloured cells). The intuition holds 

true only on w_db6, w_db7 and w_db8 datasets (indicated by darker colours as the 

threshold decreases). The labels on each cell are the recall rate (sensitivity) based on the 

number of true positives (gun pictures identified as guns) against the total actual gun 

images (actual + missed). As the threshold decreases, the number of missed pictures also 

decreases, but the sensitivity increases. This is observed in all datasets. In some datasets 

(in w_db7, w_db8, w_db9, w_db10), the ideal sensitivity of 1.00 is achieved with 

minimum 0.05 probability threshold.  

A good threshold value is observed to be in the 0.35 probability threshold for majority of 

the datasets.  On this threshold, the lowest sensitivity is 63.41% in db5. However, it is 

reasonable to grant flexibility to the tool according to the dataset and user preference by 

offering adjustments to the threshold or even a choice to ignore the threshold option 

altogether. This observation is also supported by one of the feedbacks from the user (see 

Appendix 9 –Raw Feedback Responses during Evaluation). 

5.1.2.2 Precision and Recall  

The aim is to get a value of recall as close to 1.0 as possible since the goal is to detect as 

many gun images in the dataset. The trade-off between precision and recall is visualised 

better in a PR curve. Supporting the findings summarised in Figure 55, Figure 56 shows 

Figure 55 Thresholds with False Positive Rates 
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a PR curve for datasets db6, db7 and db8; colours indicate threshold levels (the slider is 

marked at 0.35). It is observed that the highest level of recall is achieved in w_db8 and 

w_db7 datasets with 0.35 decision threshold at the expense of precision. We can also 

observe that as recall increases, there is a corresponding increase in false positives 

(indicated by deeper colours in Figure 55) and a decrease in precision (Figure 56). Thus, 

depending on the context of the application, trade-offs between false positive values, 

precision and sensitivity should be considered. Allowing users to adjust these parameters 

from their end had already been suggested by one of the respondents. 

 

  

Figure 56 Precision-Recall with Thresholds for db6, db7 and db8 
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To summarise the findings, Figure 57 shows the maximum values of sensitivity and 

precision based on previous figures (Figure 55 and Figure 56) regardless of threshold 

values using a scatter plot with label: False Positive Value (False Negative Value). The 

results are promising, however there are 3 images detected as false negatives for dataset: 

WEAPON-DB5 and WEAPON-DB6. 

Analysing the false negatives shows 

that both w_db5 and w_db6 have the 

same images missed by the model. 

Figure 58 lists the false negatives. 

This seems to be acceptable and 

therefore, InceptionV3 is the final 

model selected. 

Figure 57 Precision – Recall with no thresholds 

Figure 58 InceptionV3 Missed Guns 
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5.1.2.3 Final Model: InceptionV3 Performance  

Table 13, Table 14 and Table 15 show the performance of the InceptionV3 model for the 

evaluation datasets (WEAPON-DB3, WEAPON-DF, WEAPON-DB5, WEAPON-DB6, 

WEAPON-DB7, WEAPON-DB8, WEAPON-DB9, WEAPON-DB10, WEAPON-

DB11). Although the performance mean is better expressed as a confidence interval, the 

sample data with only nine datasets is inconclusive to draw conclusions about the 

population (images in the wild used during investigations). In performance estimation 

detailed in the next section (Section 5.2), conclusions are drawn based on the central 

tendencies: mean, median and mode from the sample data, and reported in Table 13, Table 

14 and Table 15. Individual results from which these values are derived can be seen in 

Appendix 10 – Raw Data for Metrics Computation.  

Table 13 InceptionV3 - Evaluation Results - 1 
 

Accuracy Sensitivity Specificity Precision 

Mean 0.92 0.99 0.90 0.54 

Median 0.93 1.00 0.90 0.67 

Mode 0.83 1.00 0.83 0.04 

 

Table 14 InceptionV3 - Evaluation Results - 2 
 

False 

positive rate 

False 

discovery rate 

False 

negative rate 

MCC1 

Mean 0.10 0.46 0.01 0.62 

Median 0.10 0.33 0.00 0.81 

Mode 0.17 0.96 0.00 0.17 

 

Table 15 InceptionV3 - Evaluation Results - 3 
 

Processing Time  

(second/picture) 

Mean 2.03 

Median 1.42 

Mode - 

 

  

                                                 

 
1 Matthew’s correlation coefficient 
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Table 16 shows the accuracy findings from the nine datasets against the model’s 

published values (recall Table 6). The recorded evaluation accuracy is based on Top-20 

output labels.  

Table 16 Evaluation Accuracy vs Published Accuracy 

Model Top-5 

Accuracy 

Top-20 

Accuracy 

Published 

Top-1 Accuracy 

Published 

Top-5 Accuracy 

InceptionV3 Mean  0.98 0.92 0.779 0.937 

One of the questions raised in the preceding section 4.2.4.2: Models Used in this Study 

is: Does the published accuracy of the selected models hold when evaluated and tested 

against our dataset in our context (gun classification)? From Table 16, we can observe 

that this paper’s accuracy value for Top-5 labels is higher by 4.3 percentage points, 

promising good performance estimation for unseen and future data.  

5.2 Final Model – Evaluation of Results 

5.2.1 InceptionV3 model 

Table 17 shows the results for comparative analysis of the “evaluation” set (recall Table 

13), which is referred to here as the “InceptionV3 Mean Values”, against the results 

gathered for the “unseen test set” (Android and Jane datasets).  

Validating the test result findings is best expressed by reporting the overall mean within 

a confidence interval. A confidence interval with a significance level of 0.05 means that 

if this sampling (evaluation dataset) is repeated, the true mean of the population (gun 

images in the wild) resides within the interval 95% of the time.   

Unfortunately, although sample means are best expressed as a confidence interval, the 

underlying assumption of normality does not hold (unless normality tests are conducted). 

But, using a box-plot, we can verify visually if our model’s performance on unseen data 

are within reasonable range1. 

                                                 

 
1 1.5±IQR (Inter Quartile Range) 
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Table 17 marks the metrics and values that are visibly outliers based on the boxplots 

drawn.  

Table 17 Comparison of Results from Evaluation Dataset 

Dataset Accuracy Sensitivity Precision FPR MCC Time 

InceptionV3  

Mean Values 

0.92 0.99 0.56 0.10 0.94 4.26 

Android 0.83 0.78* 0.06 0.17 0.18 0.74 

Jane Doe 0.84 0.95 0.08 0.16 0.22 0.62* 

* outlier 

 

For Accuracy and Precision (see Figure 59), False Positive Rate and MCC (see Figure 

60), the values from the evaluation dataset are not outliers.  

  

 

Figure 60 Box Plots – MCC, False Positive Rate – no outliers 

Figure 59 Box Plots - Accuracy, Precision – no outliers 
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Figure 61 shows that sensitivity has an outlier of 0.78, and processing time has an outlier 

of 0.62 for the Android and Jane datasets, respectively. 

We try to analyse the reasons for the outlier values. As seen from Equation 3 Recall, 

sensitivity is most affected by ground truth labelling mistakes. We initially suspected a 

level of misclassification of ground truth labels for the Android dataset; earlier, our 

approach to labelling is optimistic. However, if we remove four images that were 

occluded1 and some partial images using the pessimistic approach, there is a positive 

increase in value from 0.62 to 0.89. However, this new value is still considered an outlier. 

Therefore, the misclassification factor could not be the main cause.  

Another factor could be that the model could not properly detect occluded images. 

However, this can be refuted since the InceptionV3 model was able to detect and predict 

partial pictures successfully.  

                                                 

 
1 When an object is hidden but itself or by some other object 

Figure 62 Partial images detected by InceptionV3 

Figure 61 Box Plots – Processing Time, Sensitivity – with outliers 
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The only logical conclusion we could surmise is that these models were not fully trained 

on filtered occluded and partial images. However, additional empirical tests should be 

conducted to support this observation. Regardless, filtered images should be taken into 

consideration when planning to re-train models to improve accuracy.  

Although part of the criteria in model selection, processing time outlier could be safely 

ignored as speed in processing images is not a class-specific metric and therefore not the 

focus of this study. Speed is mentioned merely to illustrate the average speed of models 

when processing images and offer comparisons. 

5.3 Prototype - Evaluation of Results 

The test and measure approach on usability is completed with five respondents. The 

respondents are asked to test out the prototype by answering tasks in both manual method 

and in using the prototype. Then the usability is measured using SUS.   

5.3.1 Distribution of Respondents 

Sixty percent of the users who evaluated the prototype are forensic professionals each 

from Estonia, Germany and Croatia, two have extensive forensic experience. Two MSc 

Cyber Security second-year students who took the Systems Forensics course in Spring 

2018 from Tallinn University of Technology made up the remaining 40% of the 

distribution.  

2, 40%

1, 20%

2, 40%

Distribution of Respondents

More than 10 years (Professionals)

More than 5 years but less than 10 years (Professionals)

More than 1 year but less than 5 years (Students)

Figure 63 Distribution of Respondents 
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5.3.2 Efficiency - Speed of Performance 

One of the research questions of this study is: Once the users learned the design, can they 

perform the task efficiently? This is answered by determining if the analysis time 

(duration) is reduced when using the prototype (tool).  The duration in completing tasks 

by manually searching for content versus using the tool is analysed for statistical 

difference. Using hypothesis testing, we reformulate the question as: “Is there a 

significant difference in speed using the tool compared to the existing manual methods of 

searching for image content?”. 

In hypothesis testing, a parametric approach is taken when the distribution is known, for 

example, t-test if the distribution is normal or approximately normal. When normality 

does not hold, a non-parametric approach is employed. For both approaches, the sample 

size plays a central role in the interpretation of results in relation to statistical power and 

significance level.  

Assuming Non-Normality: Wilcoxon Rank Signed Test 

Testing for normality is usually the first step in statistical analysis as most statistical 

procedures have an underlying assumption of normality. There are four commonly used 

formal normality tests that can be conducted: Shapiro-Wilk, Kolmogorov-Smirnov, 

Lilliefors and Anderson-Darling tests. These “normality tests” test the following 

hypothesis: 

𝐻0: 𝐷𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

𝐻1: 𝐷𝑎𝑡𝑎 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑓𝑜𝑙𝑙𝑜𝑤 𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

Equation 12 Normality Hypothesis testing 

However, in this paper, the sample size is low (n = 5). In [74], experiments show that all 

four tests are not reliable when it comes to small sample sizes (n < 10) due to low 

statistical power. The statistical power is the ability to correctly identify a significant 

difference if there is one, that is, reject the null hypothesis if the alternative hypothesis is 

true. This means that the likelihood of detecting the distribution to be “not normal” when 

it is true is low. For this reason, the test for normality is not conducted and we assume 

that the data distribution violates the assumption of normality.  

Using the Wilcoxon signed rank test is the equivalent of a paired t-test, and this is the 

non-parametric test used in this paper.  
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There are key assumptions in using this test: the differences of the set of pair-wise values 

are continuous and symmetric around the mean [75]. Our data comes from matched pairs 

as respondents performed both tasks, the duration is a continuous variable and lastly, the 

data shows relative symmetry as illustrated by the box plot in Figure 64. 

Table 18 Task Duration with Differences for each 

Participant  

 

 

Table 18 shows the time of completion of tasks for individual participants in using manual 

methods (M) and in using the tool (T). Figure 64 shows the corresponding box-plot taken 

from the values of the differences (M – T). Data distribution is seen to be symmetrical 

along the mean (identified by the “x” mark in the boxplot). Therefore, key assumptions 

specified in [75] are not violated, and the Wilcoxon signed rank test can be conducted.  

We assume a null hypothesis (H0) that both samples have no statistical difference (mean 

between the two samples is zero: µmanual −  µtool = µd = 0. We want to prove that the 

tool allows the users to perform the tasks faster, that is, our alternate hypothesis (H1) is 

μd is greater than zero.   

𝐻0: 𝑀𝑑 = 0 

𝐻1: 𝑀𝑑 > 0  

Equation 13 Wilcoxon Signed Rank Test Hypothesis Testing 

The calculations (outlined in Appendix 11 – Speed: Hypothesis Testing)  show that the 

critical value for the significance level α=0.10 is w = 0 and the null hypothesis is rejected 

at W ≤ 0. Since in this case, W is 6 and (W ≥ w | H0), the null hypothesis is not rejected. 

There is no statistical difference in using the manual method against using the prototype 

in completing the tasks. 

P M T M - T 

1 21 57 -36 

2 8 9 -1 

3 29 16 13 

4 39 10 29 

5 20 35 -15 

Figure 64 Symmetry Check using a Box Plot 
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Assuming Normality: T-test 

According to Sauro [76], the average task time should be reported using the geometric 

mean and expressed as a confidence interval. Since task time is positively skewed, his 

paper suggests running statistical analysis on the task time by log-transforming the data 

first to fit it into a normal distribution. Using his research as the basis for the assumption 

of normality for the distribution of task times, we conducted a one-tailed paired t-test. 

One-tailed because we want to determine a positive difference between the two means of 

the distribution, paired because we are measuring one group with paired observations 

(before using the prototype and after using the prototype) and t-test because of the small 

number of samples (n = 5) and the unknown variances of our distribution.  

The hypothesis is tested similarly to a Wilcoxon signed rank test earlier. We assume a 

null hypothesis (H0) that both samples have no statistical difference. We want to prove 

that the tool allows the users to perform the tasks faster; our alternate hypothesis (H1) is 

an upper-tailed test where μd is greater than zero.  We used the level of significance, α = 

0.05. 

𝐻0: µmanual = µtool 

𝐻1: µmanual >  µtool 

Equation 14 t-test Hypothesis Testing 

 

Table 19 Task Duration: t-test 

 Log Transformed Data Manual (log-trans) Tool (log-trans) 

Mean 20.69952485 (minutes) 19.57316596 (minutes) 

t Stat 0.133474971 
 

P(T<=t) one-tail 0.450131797 
 

t Critical one-tail 2.131846786 
 

 

Table 19 shows the results of the t-test using log-transformed data for each participant’s 

task duration. From the results, the p-value calculated is P(T ≥ t | H0) with α=0.05 which 

means that our null hypothesis is not rejected. There is no statistical difference in using 

the manual method against using the prototype in completing the tasks.  

Both parametric and non-parametric tests support the same conclusion. 
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Expressing the duration as a confidence interval based on the geometric mean as 

suggested in [76], we can express the time to complete the tasks to be within (18.6, 22.79) 

and (16.86, 22.28) minutes with 95% confidence for manual method and using the tool, 

respectively. This is tabulated in Table 20.  

Table 20 Task Duration - Confidence Intervals 

Inspection of the data might be misleading as it shows that the tool seems to perform 

better: the mean is lower for the tool, having a margin of error larger by only 0.6 seconds. 

However, the statistical power of this test is low because the number of respondents is 

low (n = 5), therefore a larger difference is expected to be able to conclude a significant 

difference between the two methods.  

The complete solutions are found in Appendix 11 – Speed: Hypothesis Testing 

Real-Case Estimations 

Perhaps a contributing factor to the conclusion of finding no difference between using the 

tool against existing manual methods might be the number of test data examined. Based 

on an estimated real case load, we estimated that a case would have a minimum of one 

personal computer (PC) and one mobile device. For an organised crime case, minimum 

would be around five of each pair (PC and mobile). A pair roughly has 3,000 images 

(irrelevant images from the system are filtered out) while the organised crime case would 

have a minimum of 30,000 images to go through. However, requesting users to go through 

3,000 to 30,000 images requires significant amount of time and dedication. As a 

compromise, the users are asked to go through a total of 7618 images with two-thirds (4 

out of 6) of the tasks dedicated to searching for image content from only 281 images.  In 

comparison with the minimum real-case estimates and the tasks involved, the proportion 

of test images for one pair is 47% and 9.4% for organised crime. The test cases barely 

cover half of the minimum estimated case load and only a tenth for organised crime.  

Perhaps if we had used large-scale image content search in our usability tests as is 

estimated, the results would have been more reflective of an actual case load.    

 
Manual (minutes) Tool (minutes) 

Geometric Mean 20.69952485  19.57316596  

Confidence Interval at 95% 20.70 ± 2.096 19.57 ± 2.71  
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Correct Answers vs Duration 

In this study, the efficiency of the tool is measured by the difference in the speed of 

performance between manual methods and the tool. While the preceding section measures 

the task time, this section analyses the time duration of completing the task and the 

number of correct answers as shown in Figure 65. 

All the students, who got all the answers right, were able to solve the tasks faster using 

the tool than manually doing it, while the experienced (senior) forensic respondents had 

more correct answers using the manual method. Perhaps this could be attributed to the 

examiner’s adept usage of manual methods and the student’s unfamiliarity of the built-in 

image viewers as a tool in forensic investigations. No one used specialised software for 

classification of images; the respondents used default built-in tools such as Windows 

Explorer, and image viewers in iOS and Ubuntu.  

A demo of the prototype was conducted for participant 1, 3 and 4 while others evaluated 

the tool using the online installation instructions. Two out of five respondents (40%) got 

more correct answers after using the tool while one student got all the answers correct for 

both methods.  

Correlation of Variables 

Analysing the relationship between two variables such as correct answers and duration, 

is best done by computing for the Pearson Correlation Coefficient (r) to indicate the linear 

p1 Senior p2 Mid-level p3 Student p4 Student p5 Senior

Correct Answers vs Duration

Manual Correct answers Tool Correct answers

Manual Duration(mins) Tool Duration(mins)

Figure 65 Summary of Correct Answers and Duration 
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relationship between variables. The interpretation of the scores is taken from [77] (see 

Appendix 5 – Rule of Thumb for Analysing Size of a Correlation Coefficient).  

Correlation does not imply causation (i.e. one variable causes an effect - increase or 

decrease, on another variable). This coefficient implies an association between variables, 

for a Pearson coefficient, it checks for a linear relationship between the variables.  

Correct Answers vs Duration 

For the manual method, duration and number of correct answers have a moderate linear 

relationship (r = 0.5, p-value=0.39), that is, an increase in the correct answers correspond 

to an increase in duration. This seems to be logical, as the number of tasks is increased 

with a constant processing time, the total task time also increases. For the prototype, there 

is a strong indication of negative correlation for correct answers and speed – increase in 

correct answers correspond to a decrease in duration (r = -0.82, p-value=0.08, α = 0.05). 

67% of the variation in duration, denoted by the coefficient of determination1 (r2), is 

explained by the correct answers. This seems contrary to intuition – users with a high 

number of correct answers spend less time on the task. One plausible explanation could 

be that the processing time per image decreases because of the growing experience in 

using the tool.  

However, the p-value tells us that the associations of the variables (manual and tool) 

would not be considered statistically significant at 95% confidence. Although the 

correlation seems to be strongly indicative of a negative relationship, the results are 

inconclusive. We need to establish an improved testing process or increase the number of 

respondents to increase the statistical power of our test.  

The correlation table and p-values are in Appendix 6 – Correlation Solution.  

5.3.3 Usability Score 

Sauro [78] has consolidated the different methods from different papers [65] [66] in an 

attempt to interpreting the raw scores. His findings are tabulated in Table 21.  

                                                 

 
1 explains the percentage of variation in Y that can be predicted from X. 
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The mean SUS score gathered for the five respondents is 69. This raw score falls under 

C and within the 50% percentile, getting an ‘OK’ rating (highlighted row). Based on the 

SUS results, it can be concluded that the prototype is acceptable. However, the SUS itself 

is non-diagnostic. Problems with the user interface could only be discovered during the 

interview and/or feedback.  

Table 21 SUS Score Interpretation  

Grade SUS Percentile range Adjective Acceptable 

A+ 84.1-100 96-100 Best Imaginable Acceptable 

A 80.8-84.0 90-95 Excellent Acceptable 

A- 78.9-80.9 85-89 Good Acceptable 

B+ 77.2-78.8 80-84 Good Acceptable 

B 74.1 – 77.1 70 – 79 Good Acceptable 

B- 72.6 – 74.0 65 – 69 Good Acceptable 

C+ 71.1 – 72.5 60 – 64 Good Acceptable 

C 65.0 – 71.0 41 – 59 OK Acceptable 

C- 62.7 – 64.9 35 – 40 OK Marginal 

D 51.7 – 62.6 15 – 34 OK Marginal 

F 25.1 – 51.6 2– 14 Poor Unacceptable 

F 0-25 0-1.9 Worst Imaginable Unacceptable 

Figure 66 shows the SUS scores per participant, the overall mean score (average) is 

indicated by an orange dashed line and the baseline of 68 is a black solid line. 

 

5.3.4 Learnability 

For measuring learnability, we employ the method used in [66] in benchmarking results 

for item-level SUS items. Table 22 is taken from [66] and tabulates the usability attribute 

20.0 77.5 62.5 87.5 97.5
0.0

20.0

40.0

60.0

80.0

100.0

p1 p2 p3 p4 p5

Individual SUS Scores

SUS Score Average Baseline

Mean Score = 69 

Baseline = 68 

 

Figure 66 Individual SUS Scores 
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of each question and the corresponding item score (as a range) for the associated target 

SUS level (average and good). 

Table 22 Item-level benchmarks 

SUS Item 

Question 

Usability Attribute Target for Average 

Score (SUS = 68) 

Target for Good 

Score1 (SUS = 80) 

1  ≥ 3.39 ≥ 3.80 

2 Complexity ≤ 2.44 ≤ 1.85 

3 Ease of Use ≥ 3.67 ≥ 4.24 

4 Learnability ≤ 1.85 ≤ 1.51 

5  ≥ 3.55 ≥ 3.96 

6 Consistency ≤ 2.20 ≤ 1.77 

7 Learnability ≥ 3.71 ≥ 4.19 

8  ≤ 2.25 ≤ 1.66 

9 Confidence ≥ 3.72 ≥ 4.25 

10 Learnability ≤ 2.09 ≤ 1.64 

 

The score for each item is derived from the regression equation given in [66]. The results 

can either be Good, Average or Poor. Good means that a SUS of 80 is achieved, Average 

is at least 68 and Poor means neither of the targets were achieved.  

The sub-scale computations for usability and learnability against the overall SUS score 

are taken from Sauro [66], [72]. The results are presented in Figure 67. Although the 

results from participant 3 (p3) shows a different trend, in general, the learnability aspect 

                                                 

 
1 Standard industrial goal for a good user experience [66] 
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Figure 67 Usability and Learnability Graph 
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of the tool outperforms both global and usability scores. This can be an indication that the 

tool can be used with ease when deployed in practice.  

The numerical basis (from which Figure 67 is taken) and its corresponding rating is 

tabulated in Table 23. Here, we can clearly see that the SUS findings for learnability show 

an Average and Acceptable rating.  

Table 23 SUS Item-level Results 

SUS Item Score Usability 

Attribute 

Results 

1.      I think that I would like to use this 

system frequently if I have to deal with 

categorizing images and getting EXIF 

information. 

3.421583 Usability Average - C 

2.      I found the system unnecessarily 

complex. 

2.39837835 Complexity Average - C 

3.      I thought the system was easy to use. 3.72199864 Ease of Use Average - C 

4.      I think that I would need assistance 

(technical or non-technical) to be able to use this 

system. 

1.82251156 Learnability Average - C 

5.      I found the various functions (console 

prediction, search, display EXIF information, 

report screen) in this system were well 

integrated. 

3.58101901 Usability Average - C 

6.      I thought there was too much 

inconsistency in this system. It would be difficult 

to deploy the tool in the real world. 

2.16144182 Consistency Average - C 

7.      I think that most forensic examiners 

would learn to use this system very quickly. 

3.74977867 Usability Average - C 

8.      I found the tool inconvenient to use. 2.19662174 Usability Average - C 

9.      I felt very confident using the tool. 3.75991896 Confidence Average - C 

10.  The learning curve to use this tool is 

steep. I needed to learn a lot of things before I 

could use the tool.  

2.05625717 Learnability Average - C 
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5.3.5 Acceptability of the Prototype as a Forensic Tool 

Figure 68 presents the survey responses (in a stacked bar graph in percentages) 

categorised by important areas: visualisation, usage of tool, prototype vs manual method 

and acceptability of tool. When asked about the acceptability of the false negative rate of 

the model, “Acceptability of Tool Despite False Negatives”, all respondents answer 

positively (Yes and Yes with Potential for Improvement).   

When asked for the possibility of using the tool in an investigation, “Usage of Tool in a 

Forensic Investigation”, one respondent answers “No”. However, his feedback clarifies 

that his forensic work does not involve object classification or content search.  

On performance speed, statistical analysis shows that there is no significant difference in 

using manual methods and the tool. However, when asked about preference of using the 

tool over the manual methods, “Use of Prototype vs Manual Method”, and 

“Visualisation”, only one professional preferred the manual method over the tool.  

5.3.6 Summary of Evaluation 

The summary of evaluation findings in the context of the requirements (recall Problem 

Identification and Requirements section) is given in Table 24. 

Table 24 Requirements and User Feedback 

Requirements Status User Feedback 

Open-source tool that can be 

customized, modified and improved 

Implemented - 

Automated categorization of images Accepted Majority (70%) - Yes, with further  

improvements 

0.7
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Figure 68 Survey Responses 
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Metadata extraction and maps Implemented - 

File Export Implemented - 

Visualization Accepted 80% - Yes, visualization is useful and can 

be improved (e.g. bar graph or frequency 

chart) 

Weapon categorization Accepted Despite the false negatives, all users said 

the prototype can be used and improved.  

The SUS test is not a diagnostic tool, it does not give insights on the functionality that 

should be improved or the areas in the tool that need to be addressed. The SUS is 

supplemented by a feedback either in email or face to face discussions. The responses are 

recorded in Appendix 9 –Raw Feedback Responses during Evaluation. 

5.4 Alternatives to InceptionV3 

5.4.1 Forensic Software 

The purpose of this section is to evaluate the neural network-based categorisation feature 

of existing forensic software against the pre-trained models used by the prototype. Magnet 

Axiom is used for comparison. The screenshot of the weapons categorization function in 

Magnet Axiom is displayed in Figure 69. 

Figure 69 Magnet Axiom - Weapons Categorization 
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Magnet Axiom1 is a forensic software capable of acquiring and recovering digital 

evidence from multiple sources (mobile, laptop, cloud) including categorization of multi-

media. A trial version of the software was downloaded to categorise pictures with gun. 

Unlike the prototype, the categories in Magnet Axiom are fixed (e.g. possible weapons, 

card/ID/paper documents, vehicles(cars/trucks/vans/buses), etc). The equivalent search 

for guns in Magnet Axiom is “Possible Weapons” categorization.  

5.4.1.1 Comparison of InceptionV3 and Magnet  

The class-based performance metrics of both InceptionV3 and Magnet Axiom are 

recorded in Figure 70. 

Figure 70 Confusion Matrix between InceptionV3 and Magnet 

 

From the confusion matrix in Figure 70, Magnet Axiom produces higher accuracy 

because of the fewer false positives. However, the number of missed guns in the test set 

is higher in Magnet Axiom, thrice that of InceptionV3 results.  

                                                 

 
1 https://www.magnetforensics.com/products/magnet-axiom/ 

Figure 71 Inception vs Magnet 

https://www.magnetforensics.com/products/magnet-axiom/
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In Figure 71, we can observe that Magnet Axiom has a higher accuracy and precision due 

to lower false positives at the expense of sensitivity. The performance for sensitivity in 

the Jane dataset is lowest at around 51%. This value is 12 percentage points lower than 

the sensitivity observed for the observed optimal threshold of 35% for the sample datasets 

(see Recall versus False Positive Rate with Threshold section) using the InceptionV3 

model. 

5.4.2 Other Pre-trained Networks  

There are other pre-trained models available in the Keras framework. Table 25 shows the 

models supported in Keras along with the published accuracy ratings at the time of this 

writing. Parameters are the weights of the neural connections and depth is the number of 

topological layers such as activation and normalisation layers. The highlighted rows 

indicate the models used during the selection process (recall Models Used in this Study).  

Table 25 Pre-trained Models available in Keras1. 

Model Size Top-1 

Accuracy 

Top-5 

Accuracy 

Parameters Depth 

Xception 88 MB 0.79 0.945 22,910,480 126 

VGG16 528 MB 0.713 0.901 138,357,544 23 

VGG19 549 MB 0.713 0.9 143,667,240 26 

ResNet50 98 MB 0.749 0.921 25,636,712 - 

ResNet101 171 MB 0.764 0.928 44,707,176 - 

ResNet152 232 MB 0.766 0.931 60,419,944 - 

ResNet50V2 98 MB 0.76 0.93 25,613,800 - 

ResNet101V2 171 MB 0.772 0.938 44,675,560 - 

ResNet152V2 232 MB 0.78 0.942 60,380,648 - 

ResNeXt50 96 MB 0.777 0.938 25,097,128 - 

ResNeXt101 170 MB 0.787 0.943 44,315,560 - 

InceptionV3 92 MB 0.779 0.937 23,851,784 159 

InceptionResNetV2 215 MB 0.803 0.953 55,873,736 572 

MobileNet 16 MB 0.704 0.895 4,253,864 88 

MobileNetV2 14 MB 0.713 0.901 3,538,984 88 

DenseNet121 33 MB 0.75 0.923 8,062,504 121 

DenseNet169 57 MB 0.762 0.932 14,307,880 169 

DenseNet201 80 MB 0.773 0.936 20,242,984 201 

NASNetMobile 23 MB 0.744 0.919 5,326,716 - 

NASNetLarge 343 MB 0.825 0.96 88,949,818 - 

                                                 

 

1 https://keras.io/applications 
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During Model Evaluation, the InceptionV3 and Xception models had had the highest 

recall rating (100%), but InceptionV3 offered better accuracy, precision, false positive 

rate and MCC on the evaluated “WEAPON-DB3” dataset.  However, the model selection 

only evaluated the models on one dataset – the “WEAPON-DB3” from Olmos’ paper 

[15]. Although the published accuracy ratings do not guarantee the same accuracy against 

any non-ImageNet dataset, it serves as a benchmark and sanity check. 

Since the Xception model results were promising during the model selection phase, we 

analyse the performance of the Xception model against the rest of the evaluation dataset.   

 

Figure 72 Xception Predictions for InceptionV3’s false negatives (missed guns) 

 

In the InceptionV3 model, there are three images missed out in the DB5 and DB6 datasets. 

When predicted using the Xception model, two out of three images are detected; see 

Figure 72 for the images and predictions. However, Figure 73 shows there is one image, 

“me2.bmp”, that the Xception missed but InceptionV3 detected.  



111 

 

Table 26 displays the tabulated mean values of InceptionV3 and Xception models. The 

dispersion for the Xception model is lower compared with the Inception model as 

observed by a narrower inter-quartile range in Figure 74. The narrower bands from the 

Xception results indicate that we could expect a more stable (less variation or fluctuation 

from the average values) and possibly higher accuracy than InceptionV3.  

Table 26 Comparison of Means between InceptionV3 and Xception 

*processing time in second per picture  

 

 

 

Model accuracy sensitivity specificity Precision FPR MCC  Time* 

InceptionV3 0.92 0.99 0.90 0.54 0.10 0.62 2.03 

Xception 0.95 0.99 0.93 0.58 0.07 0.67 1.65 

Figure 73 me2.bmp InceptionV3 and Xception 

Figure 74 Box plot results - InceptionV3 vs Xception 
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 Table 27 Inception vs Xception Test Results 

Table 27 shows that running the results through the testing dataset (Android and Jane 

datasets) tells us that InceptionV3 model is outperformed by Xception but not by a large 

margin. However, in the Jane dataset, an exceptional recall rate of 100% was achieved by 

the Xception model.   

 

At the expense of accuracy and sensitivity, the processing time per image increases. 

Processing time is seen as the ratio of the time it takes to complete the classification 

against the total number of processed images. As seen in Figure 75, in the Jane dataset, 

the InceptionV3 model completed 10 minutes earlier. InceptionV3 completed in 1 hour 9 

minutes and 55 seconds while Xception completed in 1 hour 29 minutes and 55 seconds.  

Identifying the best performing model cannot be easily identified even by intuition or 

graphical methods. A statistical non-parametric test called McNemar’s test is employed 

to verify whether the two models have a statistical difference. This method is based on 

the accuracy of the models. 

5.4.2.1 Comparing Models using McNemar’s Test 

A suggested method to compare models using hypothesis testing is called McNemar’s 

test which is suggested by Kohavi [79] to establish goodness of fit between two classifier 

                                                 

 
1 False positive rate 

Dataset Model Accuracy Sensitivity Specificity Precision FPR1 

ANDROID InceptionV3 0.83 0.78 0.83 0.06 0.17 

ANDROID Xception 0.86 0.81 0.86 0.07 0.14 

JANE InceptionV3 0.84 0.95 0.84 0.06 0.16 

JANE Xception 0.88 1.00 0.88 0.08 0.12 

Figure 75 Processing Time: InceptionV3 and Xception 
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models. McNemar’s test is a non-parametric1 statistical test for comparing the accuracy 

of two models to determine if the models differ (reject the null hypothesis) or if they are 

statistically equal (accept the null hypothesis). It is important to note that this model does 

not check for accuracy as metric, but it checks the skewedness of the disagreements 

between the two models. The 2x2 contingency matrix for McNemar’s Test is constructed 

as a comparison for each model. Like the confusion matrix for a classifier, instead of 

Ground Truth, the second model is used as a comparison. The table for McNemar’s is 

constructed in Table 28. 

Table 28 McNemar's Contingency Table 
 

Model 2 Model 2 

Correct Wrong 

Model 1 Correct A B 

Model 2  Wrong C D 

 

Let B be the number of images that the InceptionV3 model predicts correctly while 

Xception has it wrong. Let C be the number of images that Xception predicts correctly 

and InceptionV3 has it wrong.  

If the null hypothesis that both models have the same performance are true, then B = C 

and the test statistics follow the chi-square distribution with 1 degree of freedom using 

the continuity correction [79]. To compute for the chi-square test statistic, we use 

Equation 15. 

χ2 =
(|B − C| − 1)2

𝐵 + 𝐶
 

Equation 15 Chi-squared Test Statistic 

The contingency table is constructed based on the predicted output labels and not 

reconstructed from each classifier’s confusion matrix values. Since the computation 

highlights the differences, the values where the models do not differ (A and D) do not 

need to be computed. Table 29 shows the McNemar’s table populated with results from 

Android and Jane datasets. 

                                                 

 
1 No assumptions on the underlying data distribution (e.g. does not assume normality holds) 
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Table 29 McNemar's Contingency Table with Values 

As seen in Table 29, intuition tells us that model 2 (Xception) is the better model because 

it was able to predict 628 images correctly while model 1 (InceptionV3) got 385 wrong. 

However, we can substantiate the claim by running a statistical hypothesis test using 

McNemar’s method.  

For this test, we hypothesize (null hypothesis, H0) that the probabilities of p(B) and p(C) 

are the same (no significant difference between the two models). The alternate hypothesis 

(H1) supports that the probability distribution differs. The chosen significance level is α 

= 0.05, if the computed p-value is lower than the critical chi-squared level, then we accept 

our null hypothesis that the two models are equal. The critical value is χ𝑐𝑟𝑖𝑡
2 = 3.84, for 

probability (p-value) 0.05 and 1 degree of freedom. The computed chi-squared statistic 

based on Equation 15Equation 15 is  χ2 = 57.81. Since 3.84 < 57.81, we reject the null 

hypothesis: there is a statistical difference between the accuracy values of InceptionV3 

and Xception models. 

5.4.3 Summary of Metrics 

The Table 30 and Table 31 summarise the class-performance metrics taken from 

calculating the results of InceptionV3 and Xception, and the forensic software Magnet 

Axiom evaluated from the Android and Jane datasets.  

Table 30 Inception, Xception and Magnet - Confusion Table 

Dataset Model TP FP FN TN 

ANDROID InceptionV3 29 496 8 2489 

ANDROID Magnet Axiom 27 12 11 3186 

ANDROID Xception 30 409 7 2576 

JANE InceptionV3 41 628 2 3318 

JANE Magnet Axiom 22 59 21 3999 

JANE Xception 43 475 0 3471 

 

Table 31 Inception, Xception and Magnet 

Dataset Model Accuracy Sensitivity Precision FPR 

ANDROID InceptionV3 0.83 0.78 0.06 0.17 

ANDROID Magnet Axiom 0.99 0.71 0.69 0.00 

ANDROID Xception 0.86 0.81 0.07 0.14 

 
Xception 

Correct Wrong 

InceptionV3 
Correct - 385 

Wrong 628 - 



115 

JANE InceptionV3 0.84 0.95 0.06 0.16 

JANE Magnet Axiom 0.98 0.51 0.27 0.01 

JANE Xception 0.88 1.00 0.08 0.12 

 

Comparing Models using AUC 

We can verify which of the models perform better using the area under the curve (AUC) 

metric. Table 32 shows AUC values for each row. Since AUC’s ideal value is 1, the best 

value among the three is Xception. Based on the results, Xception model outperforms the 

rest of the models, and this conclusion has been supported in the preceding chapter using 

McNemar’s test of significant difference and the values in Table 31. Figure 76 is the 

graphical representation of all three AUCs.  

Table 32 AUC values 

Model AUC 

InceptionV3 0.856 

Magnet Axiom  0.851 

Xception 0.892 

 

 

The computations are given in Appendix 7 – Area Under the Curve Computation. 

Based on the above findings, this tells us that generally, the tested computer vision models 

(InceptionV3 and Xception) that are pre-trained in the ImageNet dataset outperform a 

forensic software tool, Magnet Axiom with a trained neural network core, in ensuring less 

missed classified guns, i.e. the models have a higher recall rate. Although Magnet Axiom 

has remarkable accuracy, the study uses Sensitivity (Recall) as the deciding factor in 

evaluating models.  

Figure 76 ROC-AUC Summary 
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This is promising because having created an open-source tool - that we could improve 

core machine learning models, perhaps even cater for running multiple models and apply 

the best model for use in practice.  

5.5 Future Work 

There is a growing interest in machine learning applications in cybersecurity and 

forensics. The adoption of machine learning techniques in forensic investigations is not 

new but the creation of open-source tools employing machine learning theories for 

practical implementation is noteworthy. This study can be used on exploring visualisation 

on content-based searches for e-discovery applications, employ transfer learning to 

enhance neural network models by fine-tuning or feature extraction to improve accuracy 

and precision and further evaluate models based on real data from real cases.  

In digital forensics, content-based searches have unlimited potential applications. 

Searching for content can be expanded to searching for similar photos from other cases, 

evidence detection based on photos and videos, determining make and model of specific 

objects such as firearms and explosives, extracting and determining content from 

screenshots, triaging based on photos and video categorization, and many more. 

Regarding this study, most of the statistical analysis done in this research has been 

severely limited by the low number of respondents during the evaluation phase of the 

tool. As the prototype is still in its infancy, future research could focus on photo 

categorization of real cases (with anonymised data), including more filtered images in 

training and test set, and testing by at least ten users. It is also encouraged to get 

respondents from different users and potential users – that is, from forensic students, 

technical examiners and senior consultants with a varying level of expertise. The 

constructive feedback of the professional forensic community is invaluable in 

encouraging the development and improvement of similar open-source tools. 

Finally, work is underway for the integration of this study to one of the mainstream open-

source tools - SleuthKit.  
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6 Conclusion 

 

This study demonstrated the feasibility of adopting a state-of-the-art machine learning 

model and create an open-source tool to aid forensic examiners in forensic investigations. 

In this study, we had taken the gun (revolver, pistol, rifle, assault rifle, muzzle) as the 

instance class (the output label of a binary classifier). The performance of the models is 

measured by the number of pictures the models have correctly or erroneously classified. 

Attempting a binary classifier is challenging because of the infinitely large number of 

images under the not-gun category. Using a multi-class classifier to solve this binary 

classifier dilemma, we had demonstrated that pre-trained classifiers can achieve the ideal 

100% recall rate during evaluation. 

The dataset for evaluation and testing used realistic data, simulated with balanced and 

unbalanced datasets. Balanced datasets have an equal number of guns and not-gun 

pictures; unbalanced, otherwise. In this study, there were three balanced datasets 

(WEAPON-DB3, WEAPON-DB5, and WEAPON-DF) while the rest of the eight 

datasets were unbalanced. Gun images were taken from jpg/jpeg, gif, png and bmp file 

formats downloaded from the Internet, some extracted in thumbnail form while some 

contained manufactured EXIF information as part of the testing dataset for the prototype. 

The model selection was divided into two phases: model evaluation and model selection. 

The selected computer vision models from the Keras framework were: InceptionV3, 

VGG16, ResNet, and Xception. The model evaluation phase aimed to find the best model 

from the four selected models based on their performance on the WEAPON-DB3 dataset 

– the test dataset taken from Olmos et al.’s paper [15]. The evaluation criteria include the 

processing time per image and the class-based performance metrics generated from the 

confusion matrix, namely: sensitivity (recall), precision, false positive rate (FPR), and 

Matthew’s correlation coefficient (MCC) – with recall as the priority. Both InceptionV3 

and Xception scored the highest recall rate at 100% - thus, only these two models were 

further evaluated. Comparing processing time, precision, false positive rate and MCC 

metrics, InceptionV3 outperformed Xception, and was therefore chosen as the best model 

during the evaluation phase.  
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The model selection phase used the best model to estimate the performance of the model 

with unseen data by evaluating it against nine datasets. InceptionV3 performed 

reasonably well, with an estimated performance expressed as a five-number summary1: 

accuracy (0.71 ,0.86, 0.93, 0.97, 1.00) and mean of 0.92, sensitivity (1, 1, 1, 1, 1) with 

mean of 0.99, precision (0.00, 0.05, 0.67, 0.90, 1.00) with mean of 0.56, FPR (0.00, 0.03, 

0.10, 0.15, 0.33) with mean of 0.10, MCC (0.00, 0.21, 0.81, 0.86, 1.00) with mean of 

0.94, and processing time, seconds per picture (0.00, 0.87, 1.43, 1.56, 1.00) with mean of 

2.03. InceptionV3 was the final model used as the prototype’s core classifier.  

InceptionV3 was tested on two unseen datasets (Android and Jane) with accuracy, 

precision, FPR and MCC within the expected range (i.e. ±1.5IQR2). The sensitivity value 

in the Android dataset produced an outlier which might be explained by image filters 

distorting the colour and contrast of the images. Images with filters should be taken into 

consideration when planning to re-train models to improve accuracy. 

The evaluation of the computer vision models used the Jupyter notebook while the 

prototype was developed using the Flask-Python 3 micro-framework with a TensorFlow 

abstraction architecture and Keras library support. Released in a test-and-measure 

approach, the users were given questions in the form of scenarios. The usability test using 

the System Usability Scale (SUS) approach was conducted at the end to measure usability 

(is the prototype usable in a forensic investigation?) and learnability (can the prototype 

be used with ease?). 

The prototype had an overall SUS mean score of 69 (Average); the baseline was set at 

68. Based on the overall mean score and item-level scores of the SUS computation, the 

findings showed an “Acceptable” level in both usability and learnability. Four out of five 

respondents feel that the prototype could be used in the field if the model and visualisation 

is improved.  Thus, the results of the SUS demonstrated that a pre-trained classifier such 

as InceptionV3 can be used (usable and learnable) to aid forensic investigations. 

                                                 

 
1 The numerical representation of the box-plot is a five-number summary: (Q1-1.5IQR, Q1, Median, Q3, Q3+1.5IQR) based on 

Tukey’s method where IQR is Inter-Quartile Range 
2 Inter-Quartile Range 
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To measure the efficiency of the prototype, the time to complete the task using both 

manual method and the prototype is recorded. Using both paired t-test (normality holds) 

and Wilcoxon signed rank test (normality does not hold), and the speed of performance 

showed no significant difference between the manual method and the use of the prototype, 

that is, it is neither worse nor better.  

Although a small sample size was deemed sufficient for an early-phase usability test, the 

underlying statistical analysis conducted, such as the test for efficiency or correlation 

between correct answers and duration, was affected by the low statistical power due to 

the insufficient number of respondents. A larger difference was expected to be able to 

conclude a significant difference between the two methods. Other than the small pool of 

testers, the number of test data examined was also considered as one of the contributing 

factors. The test cases barely covered half of the minimum estimated case load and only 

a tenth for organised crime.  

Alternatives to InceptionV3 was also covered in this study: Magnet Axiom and the 

Xception computer vision model. Although Magnet Axiom, a forensic software tool that 

automatically categorises possible weapons, produced higher accuracy and precision 

because of the fewer false positives, the number of missed guns were higher. The 

performance for sensitivity in the Jane dataset was lowest at around 51%. 

As an alternative to InceptionV3, we had further analysed the results from the Xception 

model (the model that had also achieved a 100% recall rate during model evaluation) 

using the nine other datasets used during model selection. The McNemar’s test was used 

to evaluate the difference between the models. The findings showed that there is a 

statistical difference between InceptionV3 and Xception models. The test, however, did 

not prove which model is better, but only established that the two models do not come 

from the same distribution. The Area Under the Curve (AUC) metric was used to support 

the claim that Xception (AUC = 0.892) outperformed the InceptionV3 model (AUC = 

0.856) by a significant difference. Although the recall rate for both models were the same 

(0.99), the overall means reported for other metrics were better: accuracy at 0.95, 

specificity at 0.93, precision at 0.58, FPR at 0.07, MCC at 0.67 and processing time at 

1.65 seconds per picture. 
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The findings showed that the computer vision models we had tested: InceptionV3 and 

Xception, both pre-trained in the ImageNet dataset, outperformed Magnet Axiom in 

ensuring less missed classified guns, i.e. the models had a higher recall rate as this paper 

used sensitivity (recall) as the deciding factor in evaluating models. 

Thus, we demonstrated that existing state-of-the-art classifiers (such as InceptionV3 and 

Xception models) trained in non-forensic data (ImageNet) produced acceptable results 

when presented to forensic examiners and potential forensic examiners as a tool for 

forensic investigation. This is indeed promising because both InceptionV3 and Xception 

models are powerful base classifiers and could be further improved by transfer learning 

techniques such as fine-tuning and feature extraction.  

As the prototype is still in its infancy, future research could focus on photo categorization 

of real cases (with anonymised data), including more filtered images in training and test 

set, and testing by at least ten users. Future improvements on the prototype could also be 

expanded to searching for similar photos from other cases, evidence detection based on 

photos and videos, determining make and model of specific objects such as firearms and 

explosives, extracting and determining content from screenshots, triaging based on photos 

and video categorization. It is also encouraged to get respondents from different users and 

potential users – that is, from forensic students, technical examiners and senior 

consultants with a varying level of expertise. The constructive feedback of the 

professional forensic community is invaluable in encouraging the development and 

improvement of similar open-source tools. 

The research study produced an open-source code, and thus the code could be easily 

validated by a human expert. The source code is available in GitHub at 

https://github.com/jrdelmar/cbis with the full installation guide for the console and the 

web application at https://cbis.jrdelmar.dev/help. Working demo is online at  

https://cbis.jrdelmar.dev/. 

 

https://github.com/jrdelmar/cbis
https://cbis.jrdelmar.dev/
https://cbis.jrdelmar.dev/
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Appendix 1 – ImageNet Classes 

ImageNet classes1 used in Keras. The highlighted labels are classified as guns. 

Afghan_hound African_chameleon African_crocodile African_elephant African_grey African_hunting_dog Airedale 

American_Staffordshire_terrier American_alligator American_black_bear American_chameleon American_coot 

American_egret American_lobster Angora Appenzeller Arabian_camel Arctic_fox Australian_terrier Band_Aid 

Bedlington_terrier Bernese_mountain_dog Blenheim_spaniel Border_collie Border_terrier Boston_bull 

Bouvier_des_Flandres Brabancon_griffon Brittany_spaniel CD_player Cardigan Chesapeake_Bay_retriever 

Chihuahua Christmas_stocking Crock_Pot Dandie_Dinmont Doberman Dungeness_crab Dutch_oven Egyptian_cat 

English_foxhound English_setter English_springer EntleBucher Eskimo_dog European_fire_salamander 

European_gallinule French_bulldog French_horn French_loaf German_shepherd German_short-haired_pointer 

Gila_monster Gordon_setter Granny_Smith Great_Dane Great_Pyrenees Greater_Swiss_Mountain_dog Ibizan_hound 

Indian_cobra Indian_elephant Irish_setter Irish_terrier Irish_water_spaniel Irish_wolfhound Italian_greyhound 

Japanese_spaniel Kerry_blue_terrier Komodo_dragon Labrador_retriever Lakeland_terrier Leonberg Lhasa Loafer 

Madagascar_cat Maltese_dog Mexican_hairless Model_T Newfoundland Norfolk_terrier Norwegian_elkhound 

Norwich_terrier Old_English_sheepdog Pekinese Pembroke Persian_cat Petri_dish Polaroid_camera Pomeranian 

Rhodesian_ridgeback Rottweiler Saint_Bernard Saluki Samoyed Scotch_terrier Scottish_deerhound Sealyham_terrier 

Shetland_sheepdog Shih-Tzu Siamese_cat Siberian_husky Staffordshire_bullterrier Sussex_spaniel Tibetan_mastiff 

Tibetan_terrier Walker_hound Weimaraner Welsh_springer_spaniel West_Highland_white_terrier Windsor_tie 

Yorkshire_terrier abacus abaya academic_gown accordion acorn acorn_squash acoustic_guitar admiral affenpinscher 

agama agaric aircraft_carrier airliner airship albatross alligator_lizard alp altar ambulance amphibian analog_clock 

anemone_fish ant apiary apron armadillo artichoke ashcan assault_rifle axolotl baboon backpack badger bagel 

bakery balance_beam bald_eagle balloon ballplayer ballpoint banana banded_gecko banjo bannister barbell 

barber_chair barbershop barn barn_spider barometer barracouta barrel barrow baseball basenji basketball basset 

bassinet bassoon bath_towel bathing_cap bathtub beach_wagon beacon beagle beaker bearskin beaver bee bee_eater 

beer_bottle beer_glass bell_cote bell_pepper bib bicycle-built-for-two bighorn bikini binder binoculars birdhouse bison 

bittern black-and-tan_coonhound black-footed_ferret black_and_gold_garden_spider black_grouse black_stork 

black_swan black_widow bloodhound bluetick boa_constrictor boathouse bobsled bolete bolo_tie bonnet book_jacket 

bookcase bookshop borzoi bottlecap bow bow_tie box_turtle boxer brain_coral brambling brass brassiere breakwater 

breastplate briard broccoli broom brown_bear bubble bucket buckeye buckle bulbul bull_mastiff bullet_train 

bulletproof_vest bullfrog burrito bustard butcher_shop butternut_squash cab cabbage_butterfly cairn caldron 

can_opener candle cannon canoe capuchin car_mirror car_wheel carbonara cardigan cardoon carousel carpenter's_kit 

carton cash_machine cassette cassette_player castle catamaran cauliflower cello cellular_telephone centipede chain 

chain_mail chain_saw chainlink_fence chambered_nautilus cheeseburger cheetah chest chickadee chiffonier chime 

chimpanzee china_cabinet chiton chocolate_sauce chow church cicada cinema cleaver cliff cliff_dwelling cloak clog 

clumber cock cocker_spaniel cockroach cocktail_shaker coffee_mug coffeepot coho coil collie colobus 

combination_lock comic_book common_iguana common_newt computer_keyboard conch confectionery consomme 

container_ship convertible coral_fungus coral_reef corkscrew corn cornet coucal cougar cowboy_boot cowboy_hat 

coyote cradle crane crane crash_helmet crate crayfish crib cricket croquet_ball crossword_puzzle crutch cucumber 

cuirass cup curly-coated_retriever custard_apple daisy dalmatian dam damselfly desk desktop_computer dhole 

dial_telephone diamondback diaper digital_clock digital_watch dingo dining_table dishrag dishwasher disk_brake 

dock dogsled dome doormat dough dowitcher dragonfly drake drilling_platform drum drumstick dugong dumbbell 

dung_beetle ear earthstar echidna eel eft eggnog electric_fan electric_guitar electric_locomotive electric_ray 

entertainment_center envelope espresso espresso_maker face_powder feather_boa fiddler_crab fig file fire_engine 

fire_screen fireboat flagpole flamingo flat-coated_retriever flatworm flute fly folding_chair football_helmet forklift 

fountain fountain_pen four-poster fox_squirrel freight_car frilled_lizard frying_pan fur_coat gar garbage_truck 

garden_spider garter_snake gas_pump gasmask gazelle geyser giant_panda giant_schnauzer gibbon go-kart goblet 

golden_retriever goldfinch goldfish golf_ball golfcart gondola gong goose gorilla gown grand_piano grasshopper 

great_grey_owl great_white_shark green_lizard green_mamba green_snake greenhouse grey_fox grey_whale grille 

grocery_store groenendael groom ground_beetle guacamole guenon guillotine guinea_pig gyromitra hair_slide 

hair_spray half_track hammer hammerhead hamper hamster hand-held_computer hand_blower handkerchief hard_disc 

hare harmonica harp hartebeest harvester harvestman hatchet hay head_cabbage hen hen-of-the-woods hermit_crab hip 

hippopotamus hog hognose_snake holster home_theater honeycomb hook hoopskirt horizontal_bar hornbill 

                                                 

 
1 https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json 
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horned_viper horse_cart hot_pot hotdog hourglass house_finch howler_monkey hummingbird hyena iPod ibex 

ice_bear ice_cream ice_lolly impala indigo_bunting indri iron isopod jacamar jack-o'-lantern jackfruit jaguar jay jean 

jeep jellyfish jersey jigsaw_puzzle jinrikisha joystick junco keeshond kelpie killer_whale kimono king_crab 

king_penguin king_snake kit_fox kite knee_pad knot koala komondor kuvasz lab_coat lacewing ladle ladybug lakeside 

lampshade langur laptop lawn_mower leaf_beetle leafhopper leatherback_turtle lemon lens_cap leopard lesser_panda 

letter_opener library lifeboat lighter limousine limpkin liner lion lionfish lipstick little_blue_heron llama loggerhead 

long-horned_beetle lorikeet lotion loudspeaker loupe lumbermill lycaenid lynx macaque macaw magnetic_compass 

magpie mailbag mailbox maillot maillot malamute malinois manhole_cover mantis maraca marimba marmoset marmot 

mashed_potato mask matchstick maypole maze measuring_cup meat_loaf medicine_chest meerkat megalith menu 

microphone microwave military_uniform milk_can miniature_pinscher miniature_poodle miniature_schnauzer 

minibus miniskirt minivan mink missile mitten mixing_bowl mobile_home modem monarch monastery mongoose 

monitor moped mortar mortarboard mosque mosquito_net motor_scooter mountain_bike mountain_tent mouse 

mousetrap moving_van mud_turtle mushroom muzzle nail neck_brace necklace nematode night_snake nipple 

notebook obelisk oboe ocarina odometer oil_filter orange orangutan organ oscilloscope ostrich otter otterhound 

overskirt ox oxcart oxygen_mask oystercatcher packet paddle paddlewheel padlock paintbrush pajama palace panpipe 

paper_towel papillon parachute parallel_bars park_bench parking_meter partridge passenger_car patas patio pay-phone 

peacock pedestal pelican pencil_box pencil_sharpener perfume photocopier pick pickelhaube picket_fence pickup pier 

piggy_bank pill_bottle pillow pineapple ping-pong_ball pinwheel pirate pitcher pizza plane planetarium plastic_bag 

plate plate_rack platypus plow plunger pole polecat police_van pomegranate poncho pool_table pop_bottle porcupine 

pot potpie potter's_wheel power_drill prairie_chicken prayer_rug pretzel printer prison proboscis_monkey projectile 

projector promontory ptarmigan puck puffer pug punching_bag purse quail quill quilt racer racket radiator radio 

radio_telescope rain_barrel ram rapeseed recreational_vehicle red-backed_sandpiper red-breasted_merganser red_fox 

red_wine red_wolf redbone redshank reel reflex_camera refrigerator remote_control restaurant revolver 

rhinoceros_beetle rifle ringlet ringneck_snake robin rock_beauty rock_crab rock_python rocking_chair rotisserie 

rubber_eraser ruddy_turnstone ruffed_grouse rugby_ball rule running_shoe safe safety_pin saltshaker sandal sandbar 

sarong sax scabbard scale schipperke school_bus schooner scoreboard scorpion screen screw screwdriver scuba_diver 

sea_anemone sea_cucumber sea_lion sea_slug sea_snake sea_urchin seashore seat_belt sewing_machine shield 

shoe_shop shoji shopping_basket shopping_cart shovel shower_cap shower_curtain siamang sidewinder silky_terrier 

ski ski_mask skunk sleeping_bag slide_rule sliding_door slot sloth_bear slug snail snorkel snow_leopard snowmobile 

snowplow soap_dispenser soccer_ball sock soft-coated_wheaten_terrier solar_dish sombrero sorrel soup_bowl 

space_bar space_heater space_shuttle spaghetti_squash spatula speedboat spider_monkey spider_web spindle 

spiny_lobster spoonbill sports_car spotlight spotted_salamander squirrel_monkey stage standard_poodle 

standard_schnauzer starfish steam_locomotive steel_arch_bridge steel_drum stethoscope stingray stinkhorn stole 

stone_wall stopwatch stove strainer strawberry street_sign streetcar stretcher studio_couch stupa sturgeon submarine 

suit sulphur-crested_cockatoo sulphur_butterfly sundial sunglass sunglasses sunscreen suspension_bridge swab 

sweatshirt swimming_trunks swing switch syringe tabby table_lamp tailed_frog tank tape_player tarantula teapot teddy 

television tench tennis_ball terrapin thatch theater_curtain thimble three-toed_sloth thresher throne thunder_snake tick 

tiger tiger_beetle tiger_cat tiger_shark tile_roof timber_wolf titi toaster tobacco_shop toilet_seat toilet_tissue torch 

totem_pole toucan tow_truck toy_poodle toy_terrier toyshop tractor traffic_light trailer_truck tray tree_frog 

trench_coat triceratops tricycle trifle trilobite trimaran tripod triumphal_arch trolleybus trombone tub turnstile tusker 

typewriter_keyboard umbrella unicycle upright vacuum valley vase vault velvet vending_machine vestment viaduct 

vine_snake violin vizsla volcano volleyball vulture waffle_iron walking_stick wall_clock wallaby wallet wardrobe 

warplane warthog washbasin washer water_bottle water_buffalo water_jug water_ouzel water_snake water_tower 

weasel web_site weevil whippet whiptail whiskey_jug whistle white_stork white_wolf wig wild_boar window_screen 

window_shade wine_bottle wing wire-haired_fox_terrier wok wolf_spider wombat wood_rabbit wooden_spoon wool 

worm_fence wreck yawl yellow_lady's_slipper yurt zebra zucchini
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Appendix 2 – Evaluation Questions and Answer Key 

Questions Answer 

Record the time started 
 

1. In the "Evaluation folder", how many images with guns (revolver, 

rifle...) did you find?   

4 

2. What is the filename of the gun picture taken in Croatia? picture.jpg 

3. Were there any gun images potentially taken in Italy? Yes 

4. What is the model of the camera embedded in those gun pictures? Apple iPhone 6s 

5. The suspect uploaded a photo in Instagram of a restaurant in India 

on July 25, 2017 in the afternoon. Investigators speculated that he stayed 

the night in this area. Where do you think the suspect could have stayed? 

FabHotel Blueberry 

Hauz Khas 

6. Were there any gun images found in this folder? Yes 

7. Were there any gun images found in this folder? Yes 

Record the time completed 
 

List the tools you used (E.g. Windows Explorer, CLI EXIF Tool, Google maps) 

Record the time started 
 

Did you install the cbis tool yourself? 

1. Was the number of false-positives (detected as a gun but is not actually a gun) tolerable when 

performing a quick image search during a forensic task?   

2. What is the filename of the picture taken in Croatia? picture.jpg 

3. Were there any gun images potentially taken in Italy? Yes 

4. What is the model of the camera embedded in those gun pictures? Apple iPhone 6s 

5. The suspect uploaded a photo in Instagram of a restaurant in India 

on July 25, 2017 in the afternoon. Investigators speculated that he stayed 

the night in this area. Where do you think the suspect could have stayed? 

FabHotel Blueberry 

Hauz Khas 

6. Were there any gun images found in this folder? Yes 

7. Were there any gun images found in this folder? Yes 

Record the time completed 
 

-- Start of Usability Test --- 

1. I think that I would like to use this tool frequently if I have to deal with categorizing images and 

getting the exif information. 

2. I find the tool unnecessarily complex. 

3. I think that the tool is easy to use and easy to navigate. 

4. I think that I would need assistance (technical or non-technical) to be able to use this tool. 

5. I find that the various functions (console prediction, search, display exif information, report 

screen) in this tool are well-integrated. I was easily able to complete the tasks at hand. 

6. I think there is too much inconsistency in the tool. It would be difficult to deploy the tool in the 

real world.  

7. I think most forensic examiners would learn to use this tool very quickly. 

8. I find the tool inconvenient to use. 

9. I feel confident using this tool. 
 

10. The learning curve to use this tool is steep. I need to learn a lot of things before I could use the 

tool.  

-- Image Classification Questions --- 

11. In a forensic investigation, would you prefer to use the prototype than manually working your 

way through the images using other open-source applications?  

12. In your opinion, based on the Android test set, can the tool be used in forensic work despite the 

number and the quality of the undetected gun images? 

12.a If you have answered, "No, I prefer the tool to detect 'some' images", please enumerate the 

images that the tool should have detected. 
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13. In your opinion, based on the Jane Doe test set, can the tool be used in forensic work despite 

the number and the quality of the undetected gun images? 

14. Overall, do you think that the tool can be used to aid an actual forensic investigation? 

15. Does the visualization (images below) showing overall labels detected in the images useful in 

a forensic investigation? 

How long have you been conducting forensic analysis (school, work or as a hobby)? 

I uphold freedom of speech. If you have something to say (that is related to the tool and this task), 

this space is for you. Shoot. 

Appendix 3 – InceptionV3 Evaluation Results  

Dataset accuracy sensitivity specificity precision 

DB3-2 0.96 1.00 0.91 0.92 

DF-2 0.93 1.00 0.85 0.87 

DB5-2 0.91 0.93 0.90 0.90 

DB6-2 0.86 0.95 0.86 0.05 

DB7-2 0.83 1.00 0.83 0.04 

DB8-2 0.83 1.00 0.83 0.04 

DB9-2 0.98 1.00 0.98 0.92 

DB10-2 0.98 1.00 0.98 0.67 

DB11-2 0.98 1.00 0.98 0.67 

Mean 0.92 0.99 0.90 0.56 

 
Dataset False 

positive rate 

False 

discovery rate 

False 

negative rate 

MCC1 

DB3-2 0.09 0.08 0.00 0.91 

DF-2 0.15 0.13 0.00 0.86 

DB5-2 0.10 0.10 0.07 0.83 

DB6-2 0.14 0.95 0.05 0.21 

DB7-2 0.17 0.96 0.00 0.17 

DB8-2 0.17 0.96 0.00 0.17 

DB9-2 0.02 0.08 0.00 0.95 

DB10-2 0.02 0.33 0.00 0.81 

DB11-2 0.02 0.33 0.00 0.81 

Mean 0.10 0.44 0.01 0.94 

 

Dataset Processing Time 

(seconds/picture) 

Log-Transformed 

DB3-2 0.87 -0.14 

DF-2 8.00 2.08 

DB5-2 1.43 0.35 

DB6-2 0.72 -0.32 

                                                 

 
1 Matthews correlation coefficient 
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DB7-2 0.77 -0.26 

DB8-2 1.52 0.42 

DB9-2 2.17 0.77 

DB10-2 1.45 0.37 

DB11-2 21.40 3.06 

Mean  0.70 

Mean 2.02  

CI @ 95.0% Confidence (0.84, 4.87)  

 

 

Appendix 4 – McNemar’s Computation 

Let B = 385; C = 628. Computing for χ2: 

χ2 =
(|B − C| − 1)2

𝐵 + 𝐶
 

Plug-in the values: 

χ2 =
(| 385−628|−1)2

385+628
 = 57.8124383 

The chi-squared critical value,  χ𝑐𝑟𝑖𝑡
2 , can be retrieved from MS Excel using α = 0.05 with 

1 degree of freedom: 

χ𝑐𝑟𝑖𝑡
2 = = 𝐶𝐻𝐼𝑆𝑄. 𝐼𝑁𝑉. 𝑅𝑇(0.05,1) = 3.84 

  

Dataset Top-5 Accuracy 

DB3-1 0.99 

DF-1 0.97 

DB5-1 0.95 

DB6-1 0.98 

DB7-1 0.97 

DB8-1 0.98 

DB9-1 0.99 

DB10-1 0.99 

DB11-1 0.99 

Mean 0.98 
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Appendix 5 – Rule of Thumb for Analysing Size of a 

Correlation Coefficient 

Taken from [77] 

Size of Correlation Interpretation 

.90 to 1.00 (-.90 to –1.00) Very high positive (negative) correlation 

.70 to .90 (-.70 to -.90) High positive (negative) correlation 

.50 to .70 (-.50 to -.70) Moderate positive (negative) correlation 

.30 to .50 (-.30 to -.50) Low positive (negative) correlation 

.00 to .30 (.00 to -.30) Little if any correlation 

Appendix 6 – Correlation Solution 

Manual  Tool  

Answers Duration Answers Duration 

6 21 4 57 

4 8 5 9 

4 29 6 16 

6 39 6 10 

5 20 5 35 

 

The values are normalised by proportion, f(x) = x/max{(x1, …, x5)}, to scale the values 

uniformly across different measures (answers and duration). The resulting values are now 

relative to the maximum number.  

Manual  Tool  

Answers Duration Answers Duration 

1 0.538461538 0.666667 1 

0.714286 0.205128205 0.833333 0.157894737 

0.714286 0.743589744 1 0.280701754 

1 1 1 0.175438596 

0.857143 0.512820513 0.833333 0.614035088 
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Output of regression values using Microsoft Excel Data Analysis Pack: 

Manual method: 

Correlation Matrix   Correct answers Duration(mins) 

Correct answers 1 
 

Duration(mins) 0.499905509 1 

 

Regression Statistics 

Multiple R 0.499906 

R Square / Coefficient of Determination 0.249906 

Adjusted R Square -0.00013 

Standard Error 0.142866 

Observations 5 

 

  Coefficients Standard Error t Stat P-value 

Intercept 0.711856 0.158748255 4.484183 0.020685192 

Duration(mins) 0.242144 0.242205501 0.999748 0.391106414 

 

 

Prototype: 

Correlation Matrix   Correct answers Duration(mins) 

Correct answers 1 
 

Duration(mins) -0.821058995 1 

 

Regression Statistics 

Multiple R 0.821058995 

R Square / Coefficient of Determination 0.674137873 

Adjusted R Square 0.565517163 

Standard Error 0.091914511 

Observations 5 

 

  Coefficients Standard Error t Stat P-value 

Intercept 1.008347179 0.070171106 14.36983449 0.000730458 

Duration(mins) -0.317944458 0.127624253 -2.491254213 0.088386106 
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Appendix 7 – Area Under the Curve Computation 

Code inspired from MachineLearningMastery [80]. 
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For Xception: 

 

For Magnet Axiom: 
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Appendix 8 – Unstructured Interview – Raw Data 

Snippets of the information taken from the internship weekly report – includes the 

discussions regarding the formulation of the research problem. 

 [Internship, Week 2, July 30 - Aug 3, 2018] 
30.07.2018 Discussion with Krešimir Hausknecht: 
Problem description: During a forensic analysis, huge amount of images are often extracted from a disk. 
Searching for a particular incriminating photo (a weapon for example) means having to manually search 
through tons of images manually.  
Proposed solution: Develop a tool/system/CLI (anything) that can perform large scale object detection 
using machine learning with integrated visualization for digital forensics 
Proposed steps: 
⦁ Code will scan through a directory of images (10,000 images or more) 
⦁ It will return objects detected (search on weapons, drugs, porn, bomb? - depends on the scope 
for thesis, depends on usability requirements) Note from Krešimir: Persons, Weapons, Money, Vehicles, 
Pictures of Documents (papers or printscreen of a receipt, piece of paper) 
⦁ Visualize the results 
⦁ User can extract the report (csv file with path/filename ) 
During the development of the tool, I need help on the following: 
⦁ Training, cross-validation and test images dataset 

⦁ Design and usability evaluation by actual forensic analysts and non-technically trained personnel 
(police officers?) 

 
[Internship, Week 8, Sept 10-14, 2018]  
13.09.2018  Discussion with Antun Đuranec, Josip Salaheddin Paun Jarallah and Saša Deković: 
Object Detection: 
Image classification, classifying weapons is more important than identifying where  the weapon is in that 
particular image. Defining the location of that object within the image is not really important. 
What they need: Reduce the manual way of reviewing images, save on analysis time 
Ideas: 
• Image classification, separate weapons category from the rest of those images non-pertinent to the 

case 

• Filter by category, filter what kind of weapon 

• Alert / Identify if weapons are found, tag for report, add notes 

• Metadata extraction 

• Extract forensic information like date/time, serial number 

• Visualise date and time in a timeline  

• Extract GPS coordinates (visualise in a map) 

• Scenario: if the picture of a gun was taken in a warehouse, the GPS will be crucial 
in getting the exact location  

• Extract EXIF data like camera information 

• Scenario: if the picture of a gun was taken from a smartphone or camera, it will 
identify the phone for further analysis or perform search and seizure for that specific 
model (if it was not acquired), or find out if the camera has been attached to a 
computer  

• Source image extraction 

• Determine whether the image was downloaded from the internet, shared in messenger 
groups (WhatsApp, Viber), sent/received from email, taken and saved by the user himself 

• Visualise graphically  

• Weapon recognition 

• If there is a database of existing weapon repository, compare the detected image and identify 
what type of weapon it is (Joanna: Machine learning can do this but training will be a pain) 

• If there is a weapon picture, find out same instances of that weapon anywhere. Example, 
someone took a picture of a gun from a phone and showed it around. Task is to find that 
same gun (same picture or same instances of that gun (despite angle or illumination) from 
different forensic sources (desktop, email communication, etc) 

• Hand-gun detection in videos (Joanna: Maybe I can integrate prior research about handgun 
detection in videos) 
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• Data mining 

• aside from exported images, find out if the suspect has been viewing, googling for weapons 
over the internet/deep net/darknet  

• Linkages of images between different devices (computers, smartphones, usbs) 
Evaluation Ideas: 

• To measure time saved / create a benchmark measure 

• create a test or a forensic case with questions  

• compare speed of using it (1) manually, using a (2) proprietary tool and using my (3) tool 

• Note down human errors, how many misclassified images did the human make, how much 
time will it take to answer and find out EXIF specific questions 

20.09.2018 Discussion with Danijel Sladović: 
Object Detection: 
Image classification, classify pictures with persons and guns or just guns 

Tool:   
• There are existing python libraries that can search through browser apps (Chrome, FF, IE) or 

messenger apps (Skype, Whatsapp, Viber) 

• You can also create a mapping with proven directories of where files are usually stored, example 
location of Temporary Internet files or Outlook files (to identify the source data of the image) 

• Timeline can also be exported as a tool, there are python libraries that can export information in a 
text file or rtf file 

• There are also existing python scripts that can search through keywords  

• Do not making loading of the tool complicated, just point to a path maybe with the list of source 
information (FTK can export the file and give information on the source) 

Appendix 9 –Raw Feedback Responses during Evaluation 

Feedback from p1via email 

• First setup was difficult, but it works if I imported OVA file to VirtualBox and I replaced old cbis 
folder with new cbis version. Graphical web interface works only in folder named “cbis” (other 
folder name printed errors on console) 

• I think it’s problem that web interface can show only pictures in “cbis” folder, but I need analyze 
files on external device (mounted in “media” folder). I can analyze on terminal but can’t see in 
web interface. 

• Third problem is keyword search. For example „rifle“ found „trifle“ – web interface show wrong 
results and think that trifle is also gun. Better solution is enumerate keywords – integer search is 
faster than keyword search and no matches in substrings – more accurate. You also will add to 
web interface keyword tree with checkboxes – user can choose interesting items. 

• Probability filter can decrease false positives results – graphical interface show always 5 first 
(also near 0% probability), but I think that better limit is probability percent. 

• First run offline map didn’t work (@console „urlopen.error“) because lab machine don’t have 
internet connection. I connected temporary to internet and I tried again – console output 
“downloading” texts . After download map worked (also offline). I’m not sure that map works 
correctly – I did’n see point on Italy, but one picture was taken in Italy. 

• In future you will update your project with video files. 

• It’s bad that I must use virtual machine in Windows to use CBIS because I can’t use full machine 
performance. 

• I think that this functionality will more helpful in photo management system (for example Picasa). 
It will be nice in Accessdata FTK (“Overview” tab –files are categorized different groups) but I 
never have been need search general objects in image files. Maybe police needs. Sometimes I 
need search current image or face. 
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Feedback from p3 via face-to-face discussion 

• Search for filename 

• Incomplete EXIF information displayed 

• Map issues, Windows photo can find by location (sort of) 

• Add timeline 

• Enlarge the images 

• Map isn’t very helpful because it doesn’t show properly 

• Adjustment of threshold values like a slider 
 

Feedback from p5 via email 

• Good work Joanna. The tool has a potential. It's fairly easy to use (after the prerequisites are 
met). I did spend much more than 30 minutes though ;). The tool took around 30+ minutes just to 
go through all three folders with images - I shouldn't have used the verbose switch I assume. 

• Does the visualization (images below) showing overall labels detected in the images useful 
in a forensic investigation? It depends. Visualization is always a good thing to have at hand, 
because it helps to speed up the detection, classification, and overall investigation process. If we 
are searching only for guns - this particular bubble graph could be replaced with 2 bars: Bar1 - 
guns, Bar2 - not guns - which is a clickable option on the graph. Good work! 

Appendix 10 – Raw Data for Metrics Computation 

Computations for InceptionV3 Model: Performance Evaluation of Metrics 

 
Accuracy Sensitivity Specificity Precision 

WEAPON-DB3 0.955592 1 0.911184 0.918429 

WEAPON-DF 0.925 1 0.85 0.869565 

WEAPON-DB5 0.9125 0.926829 0.897436 0.904762 

WEAPON-DB6 0.864565 0.95082 0.863857 0.054256 

WEAPON-DB7 0.831562 1 0.830481 0.036474 

WEAPON-DB8 0.831562 1 0.830481 0.036474 

WEAPON-DB9 0.98374 1 0.979798 0.923077 

WEAPON-DB10 0.977486 1 0.976424 0.666667 

WEAPON-DB11 0.970817 1 0.97012 0.444444 
 

False positive rate False 

discovery 

rate 

False 

negative rate 

Matthews 

correlation 

coef 

WEAPON-DB3 0.088816 0.081571 0 0.914799 

WEAPON-DF 0.15 0.130435 0 0.859727 

WEAPON-DB5 0.102564 0.095238 0.073171 0.825039 

WEAPON-DB6 0.136143 0.945744 0.04918 0.209334 

WEAPON-DB7 0.169519 0.963526 0 0.174043 

WEAPON-DB8 0.169519 0.963526 0 0.174043 

WEAPON-DB9 0.020202 0.076923 0 0.951015 

WEAPON-DB10 0.023576 0.333333 0 0.806814 

WEAPON-DB11 0.02988 0.555556 0 0.656631 
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Appendix 11 – Speed: Hypothesis Testing  

Parametric: t-Test  

 Participant Manual  

Duration 

Manual  

Duration(log) 

Tool 

Duration 

Tool  

Duration (log) 

1 21 3.044522438 57 4.043051268 

2 8 2.079441542 9 2.197224577 

3 29 3.36729583 16 2.772588722 

4 39 3.663561646 10 2.302585093 

5 20 2.995732274 35 3.555348061 

Geometric mean 20.69952485 19.57316596 

Duration is expressed in minutes 

 

  Manual (log-trans) Prototype (log-trans) 

Mean 3.030110746 2.97416 

Variance 0.355028834 0.643895 

Observations 5 5 

Hypothesized Mean Difference 0 
 

df 4 
 

t Stat 0.133474971 
 

P(T<=t) one-tail 0.450131797 P(T>t0.05 | H0), do not reject H0 

t Critical one-tail 2.131846786 
 

 

Non-parametric: Wilcoxon Signed Rank Test  

Raw data of participants completing the tasks in minutes using manual (M) method and 

tool (T). The positive difference in time, Md, shows that manual method takes more time 

(tool is better) and a negative difference shows that the manual method is faster (manual 

method is better). 

Participant Manual(M) Tool (T) Md = M - T 

1 21 57 -36 

2 8 9 -1 

3 29 16 13 

4 39 10 29 

5 20 35 -15 
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Setting up the hypothesis test: 

As we want to test if the tool performs better than the manual method, the null and 

alternative hypothesis are stated as follows: 

𝐻0: 𝑀𝑑 = 0 

𝐻1: 𝑀𝑑 > 0  

We will employ a one-tailed Wilcoxon signed test with a 5% level of significance (α = 

0.05). Ignore the zeros (no differences between manual and tool) and rank accordingly. 

Md = M - T Participant Sign Rank Signed Rank  

-36 1 -1 5 -5 

-1 2 -1 1 -1 

13 3 1 2 2 

29 4 1 4 4 

-15 5 -1 3 -3 

 

Sum the rank of the positive differences:  

𝑊+ = 2 + 4 = 6 

Sum the rank of the negative differences: 

𝑊− = 5 + 1 + 3 = 9 

Interpreting the test statistics: 

If the number of observations per pair is greater than 20, then the normal approximation 

using the z-table can be used.   

𝑛(𝑛 + 1)

2
=

5(5 + 1)

2
= 15 < 20 

If the null hypothesis is true, there is no significant difference between the two methods, 

W+ and W- are relatively the same. There are two test statistics, in this case, W+ and W-, 

we take the minimum value W+, suggesting that participants felt that the tool is better 

than the manual method.  

𝑊 = min{𝑊+, 𝑊−} = min(6,9) = 6 
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The critical value from the table is taken from the Wilcoxon table1: 

Table 33 Wilcoxon Table for Critical Values 

 Alpha values 

n 0.2 0.1 0.05 0.02 

4 0    

5 2 0   

6 3 2 0  

7 5 3 2 0 

8 8 5 3 1 

 

The table shows the critical value at the level of significance (α) specified. Given that W+ 

is a small value, what is the probability that this occurred by chance? For this case, we 

reject the null hypothesis at 𝑊+  ≤ 𝑊𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙. From the table, Wcritical is 0. Since,  𝑊 =  6 

> 0, then we do not reject the null hypothesis.  

 

 

                                                 

 
1 https://www.real-statistics.com/statistics-tables/wilcoxon-signed-ranks-table/ 

https://www.real-statistics.com/statistics-tables/wilcoxon-signed-ranks-table/
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