
Evaluating Novel Agile Requirements Engineering Method: A Case
Study

Tanel Tenso1, Alex Norta1, Irina Vorontsova1

1Department of Informatics, Tallinn University of Technology, Tallinn, Estonia
tanel.tenso@ttu.ee, alex.norta.phd@ieee.org, ivorontsova@gmail.com

Keywords: Visualization, Agile, Requirements Engineering, Modelling, Goals

Abstract: The use of agile methods during software development is a standard practice and user stories are an established
way of breaking complex system requirements into smaller subsets. However, user stories do not suffice for
understanding the bigger picture of system goals. While methods exists that try to solve this problem, they lack
visual tool support and are too heavy for smaller projects. This article fills the gap by evaluating a novel agile
agent-oriented modelling (AAOM) method for requirements engineering. The AAOM-method comprises a
visual approach to agile requirements engineering that links goal-model creation techniques taken from agent-
oriented modelling and connects goals intuitively to user stories. A case study based evaluation explores the
applicability of AAOM for requirements engineering in an agile software development process.

1 Introduction

Requirements engineering (RE) is an important
software-development activity and traditionally con-
sidered one of the first phases in software develop-
ment. RE is a process of formulating, documenting
and managing the requirements for software (I. Som-
merville, 1997),(Hull et al., 2005) and comprises
requirements identification, analysis, documentation
and validation (I. Sommerville, 1997). Since RE is
the first software-development phase, late detected er-
rors are very costly (Leffingwell and Widrig, 2000;
Carlson and Matuzic, 2010) and produce incorrect
software that does not satisfy customer needs.

RE may unfold in variations depending on the
software-development method it is coupled with. In
the case of waterfall-method affiliation (Neill and La-
plante, 2003), RE is presented as the first phase of the
development process. Agile development is the most
widely used method (Version One, 2015) for develop-
ing software systems. Agile software development is
a group of software development methods that adhere
to the agile manifesto (Beck et al., 2001). For exam-
ple, (Cao and Ramesh, 2008) describe agile develop-
ment methods as time-boxed, iterative and incremen-
tal. Characteristic is also a frequent delivery of usable
software and collaboration with customers. Addition-
ally, the agile method supports self-organizing cross-
functional teamwork. These factors play a role in the
ability to quickly respond to changes.

In modern agile software-development projects
(Cao and Ramesh, 2008), RE continues through the
lifetime of a system. For agile affiliated RE, again
several variations exist that also affect the use of
RE, e.g., Scrum (Schwaber, 2004), XP (Beck, 2000),
Lean (Poppendieck and Poppendieck, 2007), Kanban
(Kniberg and Skarin, 2010). Common for these agile
variations are problems (Cao and Ramesh, 2008) of
a lacking intuitive alignment between engineered re-
quirements and intuitive visual system development
support.

To address this gap we define a novel require-
ments engineering method, namely the agile agent-
oriented modelling (AAOM) method (Tenso and
Taveter, 2013). AAOM emerges through multiple ex-
periments in various projects varying from small scale
projects, for example adding release management ca-
pability for task management system, to large scale
distributed projects like crisis simulation software de-
velopment. AAOM is derived from agent-oriented
modelling (AOM) (Sterling and Taveter, 2009), a
holistic method for analysing and designing socio-
technical systems consisting of humans and technical
components. More concretely, AAOM focuses on a
specific model type out of a larger model set that are
part of AOM, namely goal models that comprise func-
tional goals, quality goals that are also knows as non-
functional goals, and affiliated roles that these goals
affect. The AAOM method in its current state is de-
scribed in Section 2.

To evaluate the applicability and usefulness of
AAOM, we choose a case study based research
methodology (Runeson et al., 2012; Yin, 2013; Stake
and Savolainen, 1995; Runeson and Höst, 2009).
We use as a running case a project for developing a
lost&found (l&f) mobile app. The business idea of
the mobile app is to reunite lost objects of any type
with their rightful owners. Instead of having to rely
on lost&found offices at police stations, airports, cin-
emas and so on, the l&f-app is a simple and quick mo-
bile solution to report findings by using smartphone
capabilities: a phone camera allows to instantly take
a picture of a found item while simultaneously the
photo-shot location is traced and stored via smart-
phone GPS. The app is also beneficial for people who
lose something: the app announces the loss and re-
ceives notifications when an item with a similar de-
scription and attributes is found and entered into the
database. The l&f-app either establishes the associ-
ation between object and owner because of provided
descriptions, or the object is tagged with a visual iden-
tification code a mobile phone can read. The l&f-
app also offers a so-called giveaway section for found
items that nobody claims.

The remainder of the paper is structured as fol-
lows. Earlier studies and theory of AAOM are in Sec-
tion 2. Research questions, case setup, data collec-
tion, analysis and validity procedures are described in
Section 3. In Section 4, we present results and find-
ings of the analysis of collected data. Finally, Section
5 concludes findings and gives open issues for future
work.

2 Related Work

To provide a basis for the evaluation, in Section
2.1, we give more details about the application of
AAOM. In Section 2.2, we discuss similar methods
to AAOM for comparison.

2.1 AAOM-method explanation

Face-to-face communication in agile over written
specifications facilitates embracing change and ap-
plying iterative cycles for RE. As Figure 1 depicts
(Tenso and Taveter, 2013), AAOM commences with
a discovery of preliminary goal models for mapping
system-product goals onto them. After an initial dis-
covery phase called Sprint 0, the result is a set of fur-
ther elaborated goal models and affiliated user stories
for which a preliminary backlog is established. Next,
in interactive feedback provisions, the goal models

and their user stories evolve by changing, eliminat-
ing, updating the latter.

Figure 1: A lifecycle for AAOM application.

Once the main development phase of a project
ends in Figure 1, the system-maintenance phase com-
mences where the goal models and user stories are
the foundation for exploring how to add, modify, or
remove features.

We choose AAOM because the models are intu-
itively understandable for stakeholders, also for non-
technical practitioners (Sterling and Taveter, 2009;
Miller et al., 2011). As the sequel explains, AAOM
links goal models to user stories in accordance with
Figure 2. In the depicted model, goals are shaped
as parallelograms and quality goals shaped as clouds
represent functional- and non-functional system re-
quirements respectively. Goal models also contain
roles as sticky men with relationships between roles
and goals/quality goals. User stories are attached in
Figure 2 at the leave-level of sub-goals for establish-
ing and tracing a connection to a system’s top goal.

The Notation For Goal Model

Reunite Item

Trustworty,
using

protocols Lost Item
User

Enter lost item info Search lost item

User StoriesUser Stories

As an app user I want to be able to see list of all lost
items from database

As an app user I want to be able to see list of found items
from database

As an app user when clicking on item in a list of found/
lost items I want to see all available item information on a

screen (picture + all the info)

Symbol Meaning

Goal

Quality Goal

Role

Relationship between
goals

Goal and quality goal
relationship

Figure 2: Example of a goal model with user stories at-
tached

User stories are simple artefacts for agile software
development and requirements documentation (Cohn,

2004; Paetsch et al., 2003). A user story is a written
sentence or two that describe functionality from a sys-
tem’s user point of view. There are several formats
and concepts, in which Cohn’s (Cohn, 2004) defini-
tion is as follows:

As a <role/type of user>, I want <goal/desire> so
that <benefit/reason> .

The last part ”so that <benefit>” can be omitted in
some cases if the goal describes the benefit/reason
well enough.

Examples:

As a user, I want to reserve a hotel room.
As a frequent flyer, I want to rebook a past
trip, so that I save time booking trips I take
often.

A user story must be small enough for implemen-
tation within one development iteration while larger
user stories must comprise smaller user stories (Cohn,
2004). This limits implementation work per user
story, providing a fast feedback and verification of re-
quirements for system development.

Similar to AAOM, other methods exist, that pro-
vide structure to agile requirements by organizing
user stories. These methods are briefly discussed in
the next section.

2.2 Earlier Studies

Similar to AAOM, there are methods for organiz-
ing user stories into structures to mitigate visibility
problems, for example Cohn (Cohn, 2004) suggests
Epics, that are bigger user stories grouping smaller
ones. Epics covering different levels of abstrac-
tion are also used in Scaled Agile Framework(SAFe)
(Leffingwell, 2013). Large-Scale Scrum (LeSS) (Lar-
man and Vodde, 2008) concentrates on splitting re-
quirements into small Product Backlog Items, usually
user stories. Disciplined Agile Delivery (DAD) (Am-
bler and Lines, 2012) sums up many agile practices
and introduces term Portfolio management which is
requirements management in a hierarchical list of
work items. Scrum of Scrums (Sutherland et al.,
2007) includes team level planning and requirements
tracking between teams. The lean approach to ag-
ile requirements (Leffingwell, 2010; Leffingwell and
Aalto, 2009) divides requirements according to de-
tails onto team-, program- and portfolio level. De-
spite having several positive impacts and influenc-
ing AAOM theory aspects, these approaches are not
truly visual and, according to our experience not gras-
pable without special training by non IT stakehold-
ers. Furthermore, these methods are meant for enter-
prise scale usage and are too heavyweight for smaller

projects where it is important to establish a conversa-
tion with clients and align everybody to the same set
of goals.

On the other hand, goal modelling techniques
exist exactly for depicting system goals in a vi-
sual way. Goal-based requirements engineering well
established, for example Hull et al. (Hull et al.,
2005) suggest representing use scenarios as a se-
quence of goals. (Dardenne et al., 1993) approach
goal modelling from a formal point of view, pro-
viding a mathematical proof and meta model for
goal based requirements engineering. More recent
work by (Van Lamsweerde, 2001) elaborates and re-
fines this mathematical model. Lamsweerde also in-
cludes goal modelling in his requirements engineer-
ing book (Van Lamsweerde et al., 2009), covering
high-level system analysis with that technique. One
prominent method in including goal modelling is i*
(Eric, 2009) that provides both tooling and princi-
ples for the dissecting problem domain. Finally, an
example of more social goal-modelling techniques is
described in agent-oriented modelling (AOM) (Ster-
ling and Taveter, 2009) theory that is the basis for
AAOM as covered in this article. However, the
aforementioned approaches are too heavyweight to be
included into short agile development feedback cy-
cles and are meant for model driven development.
While AOM provides the most lightweight goal mod-
elling technique for relating roles, functional- and
non-functional requirements, its other models focus
on the agent paradigm and are thus too specific for
wider system-design use. Connecting agile user sto-
ries with goal models is a novel approach introduced
by AAOM.

3 Case Study Design

We choose a case study research method to con-
duct the evaluation of the AAOM-method. First we
define research questions in Section 3.1 for guiding
the AAOM evaluation, followed by a justification
of case- and subject selection in Section 3.2. Data
sources of evidence are discussed in Section 3.3, fol-
lowed by an analysis procedure in Section 3.4. A
validity discussion finalizes the case study design in
Section 3.5.

3.1 Research questions

Based on previous experiments with the AAOM
method and feedback gathered during them, the fol-
lowing main research question is devised:

How AAOM helps to improve software engineering
requirements engineering activities?
This question can be refined in various sub-questions:
RQ1: What are the benefits of using AAOM from a
user perspective?
RQ2: What effect has project setup and tooling on
AAOM usage?
RQ3: Which aspects of the AAOM-method usage
need further refinement?
Aforementioned questions establish the basis for se-
lecting appropriate case, data sources and analysis
methods.

3.2 Case Selection

The l&f-app development project follows an agile
software development cycle in accordance with the
AAOM method. While the presence of just one de-
veloper yields simple development processes, spe-
cific scrum techniques such as planning with user sto-
ries, backlog management and iterative development
are used. Three development iterations take place
in which work is visualized with a scrum board and
meetings with clients take place at the end of itera-
tions.

For the l&f-project research, we set up as a sin-
gle case study with holistic design (Runeson et al.,
2012). The unit of analysis, and thus the case, is
an AAOM RE method application for iterative re-
quirements gathering. Four people participate in this
project whom we label with two labels: role and ex-
perience. Role helps us to evaluate the AAOM usage
by different team members, experience provides reli-
ability for gathered information.Three participants fill
the role of client who order the l&f-app development,
one person acts as an analyst and developer. One of
the three clients has a high level of experience as an
ICT expert while the other two customers are from
different domains. Likewise, the developer is highly
experienced and the analyst is not. A high level of
experience means a person acts at least two years in a
specific role.

The research team setup is simple, consisting of
three researchers working in co-operation, providing
peer-review to each other. Procedures to observe a
case include taking part in all meetings between case
subjects that are modelling, demo and retrospective
sessions while video recoding them all. We act as
silent participants making notes of the AAOM us-
age throughout different meetings. Based on the re-
search questions and meeting notes, we devise inter-
view questions and sessions for gathering qualitative
data. The analysis of the gathered data by researchers
provides answers to research questions.

3.3 Data sources

Interviews are the most valuable data source for
the running case study. Based on recommendations
from (Runeson et al., 2012), interview planning com-
mences with selecting interviewees. There are four
people and three roles in the running case as men-
tioned in Section 3.2 and all participants are inter-
viewed. Since there is one person in both roles of
analyst and developer, different questions are posed
to her addressing both roles. Next follows the plan-
ning of interview sets. Ideally, interviews take place
multiple times, for example after elaborating a first
branch of requirements, after every development iter-
ation and at the end of the project. As a limitation,
for this l&f-app project, we conduct only one set of
interviews after completing the planning session and
three development iterations.

For conducting interviews, we choose a semi-
structured format (Robson, 2002; Runeson et al.,
2012). While planning the interview questions, their
order is not of importance and changeable during
the interview, depending on a discussion flow and
interviewee answers to preceding questions. Semi-
structured interviews can also provide additional in-
sight beyond interview questions.

The research questions stated in Section 3.1 and
researchers meeting notes guide the preparation of in-
terview questions. Different sets of questions target
each respective role (client, analyst, developer) with-
out offering predefined answers. Thus, interviewees
can not answer, e.g., ”yes” or ”no”, instead they must
express their own opinions. Questionnaires for client
role are represented in Table 1, for analyst in Table 2
and developer in Table 3

The interviews adhere to a time-glass model
(Runeson et al., 2012) so that an interview begins with
broad questions first and continues with more specific
questions. At the end of an interview, again broad
questions are presented. All together, in the current
case study, four interviews include three with clients
and one combined for the developer/analyst. The in-
terview structure is similar in all cases and the in-
terviewees are informed about the interview structure
during the process.

Each interview session lasts roughly one and a
half hours and starts with an introduction, followed
by role specific questions. The interviews are audio
recorded into MP4 files for subsequent post-interview
activities and analysis. In case an interviewee re-
sponds to a question briefly, we ask additional ques-
tions on the same topic to gather more insight. At
the end of an interview, a participant learns that ev-
ery interview is transcribed and sent for verifying the

Table 1: Client questionnaire

Question
Did the goal models prove to be useful in
subsequent conversation, over changes?
Was the implementation of the system
satisfactory?
Did something specific about the implementation
catch your attention?
Did you see that quality goals affect the
implementation outcome?
Any ideas or questions about models, user stories
and implementation alignment?
Was progress of implementation traceable for
you?
Has the tooling satisfied your needs so far?
Did your idea about the project outcome change
after implementation?
Any other ideas or remarks about the modelling
method?

Table 2: Analyst questionnaire

Question
Did negotiating changes with clients work better
with goal models, assuming there were changes?
How much did goal models change?
How much time did it take to reflect changes back
to goal models?
If and how did quality goals affect user stories?
How much did existing user stories change?
Did developers understand the user stories?
How much did developers need extra clarification
about user stories?
Has the tooling satisfied your needs so far?
Did your idea about the project outcome change
after the implementation?
Any other ideas or remarks about the modelling
method?

Table 3: Developer questionnaire

Question
When implementing user stories, did you receive
many questions that couldn’t be answered with
goal models?
Were the user stories small enough for you to
implement in a day or two?
When implementing user stories, did you have the
question: ”why is this functionality needed”?
Would you have liked your tasks to be presented
in other ways?
Did your idea about the project outcome change
after implementation?
Any other ideas or remarks about the modelling
method?

captured ideas are correct.
We also gather work artefacts, such as goal mod-

els, user stories and source code. Since a dedicated
development toolkit for AAOM does not exist yet, we
employ provisionally a set of freely available tools to
host our case. The first tool, Draw.io1, is an online
diagramming tool to draw goal models for the l&f-
app. Another used tool is Trello2, a collaboration tool
to organize project tasks on boards. Trello visualizes
tasks in the form of user stories similar to post-it notes
in status columns to observe the progress during soft-
ware development, e.g., to do, pending, in progress,
completed, and so on. Finally, BitBucket3 is a free
source code hosting service for Git and at the same
time a simple wiki for storing documentation.

The generated goal models and user stories are rel-
evant for investigating the evolution during the project
while the history of changes is recorded. Project
source code for the l&f-app in a version control sys-
tem allows to observe lines of code (LOC), changes
in LOC, time between LOC changes and links to
goal models. After evaluating these quantitative data
sources, the main finding is that there is no existing
body of knowledge for analysing them as needed for
the AAOM method usage validation. Thus, we use
these anecdotal data sources only to subjectively eval-
uate some statements received from interviewees.

As our main data source is interviews, we focus
in the next section on interview analysis. The latter
yields answers to the research questions of evaluating
AAOM.

3.4 Analysis procedure

To analyse the interview requires first transcribing and
then coding (Gibbs and Taylor, 2005; Saldaña, 2009)
the results. To code the interviews, we determine
first a set of labels or codes based on research in-
terests. Codes are assigned to phrases, or sentences
from the interviews in a second step. Additionally,
sentences not fitting under predefined codes are added
to code lists as grounded codes. To summarize cod-
ing, themes are introduced (Runeson et al., 2012) for
grouping codes. Each theme corresponds to a re-
search question from Section 3.1. In the sequel, a
formula is devised to compare the validity of codes
against each other for analysing and evaluating as-
pects of AAOM.

We transcribe the interview text files manually be-
fore analysing them. To allow for a final possibility

1https://www.draw.io
2https://trello.com
3https://bitbucket.org

for corrections and clarifications, the interviewees re-
view the transcripts. As a next step, we use a coding
technique to prepare transcripts of the interviews for
the analysis phase. According to (Gibbs and Taylor,
2005; Saldaña, 2009), coding is defined as

”the process of combing the data for themes,
ideas and categories and then marking similar
passages of text with a code label so that they
can easily be retrieved at a later stage for fur-
ther comparison and analysis. ... Coding the
data makes it easier to search the data, to make
comparisons and to identify any patterns that
require further investigation.”

Shortly, codes are meaningful keywords, or labels or-
ganized by themes, or categories. Each code repre-
sents a phrase, or few phrases from interviews. For
coding, we use the tool NVivo4 that is a qualitative
data analysis software.

At the start, a list of so-called a priori codes
(Gibbs and Taylor, 2005; Saldaña, 2009) are deduced
from the research questions. Upon labelling inter-
views with predefined labels, we detect sentences and
blocks of text that do not fit under existing codes. The
contents of these exceptions lead to the creation of
new codes called grounded codes (Gibbs and Tay-
lor, 2005; Saldaña, 2009). The latter are a source of
unexpected-, or novel findings.

The second cycle commences (Saldaña, 2009)
with so-called axial coding where connections be-
tween the categories and codes are identified. Addi-
tionally, we perform theoretical coding for devising a
set of attributes to codes for evaluating the latter dur-
ing analysis. The chosen attributes attached to codes
are polarity and type. Polarity denotes an emotional-
ity of a code, and the type show if a code is a recom-
mendation, or a remark from the interviewee.

Polarity has three possible values showing the
opinion of the interviewee, namely positive, neutral
or negative. Type has two values, namely statement
or suggestion. The former means that an interviewee
references an existing situation and the latter refer-
ences a need for change, or addition.

Polarity- and type values provide combinations
that describe whether a code proves, contradicts, or
has no relation to research. The first combination of
six, negative suggestion, indicates a need to change
an existing part of case under investigation. Second,
positive suggestion is an additional idea, or improve-
ment put forward by the interviewee. Next, neutral
suggestion is not related to the AAOM method evalua-
tion, negative statement denotes a flaw in the AAOM-
method while the interviewee has no improvement

4http://www.qsrinternational.com/

suggestion. The final two combinations are positive
statement for indicating a participants’ satisfaction
with AAOM and neutral statement for representing
an opinion, or a statement of affairs not related to the
research question.

The final step in preparing the interviews for
analysis is post-coding to establish theme groups
(Saldaña, 2009). Themes are also divided into two
sets, either based on relations to research questions
(Section 3.1), or for not having any relation.

We use a simple formula to evaluate which codes
have more value for analysis. Three components play
a role in determining code validity, namely first ref-
erences that show how many times a code is men-
tioned in interviews. The second element is sources
denoting how many different interviewees mention
one code. Finally, role experience expresses an in-
terviewee’s experience in a role. Each component has
numeric values and a higher value increasing code va-
lidity. The formula to sort codes based on mentioned
components is as follows:

codevalue = (re f erences∗ sources)+ experience

To justify our case selection, data collection pro-
cedures and analysis procedures, we discuss validity
procedures next.

3.5 Validity procedure

To asses the validity of our research, we use cri-
teria proposed by A. K. Shenton (Shenton, 2004),
namely credibility, transferability, dependability and
confirmability. To increase credibility, we employ the
following strategies:

• We use a well established body of knowledge of
conducting case studies, mainly Runeson et al
(Runeson et al., 2012). To set up and receive
useful data from interviews, we use guidelines by
Robson (Robson, 2002) and for best-practices to
analyse gathered data, we consider Gibbs and Sal-
dana (Gibbs and Taylor, 2005; Saldaña, 2009).

• We conduct interviews with all participants in the
project covering all different roles. This is consid-
ered as a form of triangulation since we capture
viewpoints of all informants (Van Maanen, 1979).
Unfortunately, we are not able to triangulate via
other types of data sources, since there is a lack of
methods for analysing goal models.

• Before starting the l&f-app development, re-
searchers study AAOM as the unit of analysis and
also context where it is applied, the field of finding
and losing assets.

• To help ensure honesty in subjects, we inform
them that the data use is anonymous and that
their voice is recorded. All interviewees agree
with recording. The interviewees review the tran-
scribed documents to assure a valid transferral of
ideas.

• Three researchers participate in the case study
and provide constant peer reviewing to each other.
With that setup and constant debriefing among
each other, the researchers’ vision is wider then
working alone.

• The researchers participating in the case study
have relevant related backgrounds. Thus, credi-
bility is assured by the extensive research experi-
ence.

The second criteria, transferability, can not be
demonstrated since the case covers only a specific
project and a specific set of individuals (Shenton,
2004). Still, reporting context of this case study is
helpful for other researchers to compare their results
with ours (Shenton, 2004). To test transferability, we
conduct another case study with a similar setup to ver-
ify whether the same results reoccur. One more factor
assuring transferability is the fact that agile teams are
limited by definition to a size of 3 to 9 (Cockburn and
Highsmith, 2001).

To address dependability, Shenton et al. (Shenton,
2004) recommend a case study report includes sec-
tions devoted to:

• the research design and its implementation

• the operational detail of data gathering

• reflective appraisal of the project

In this article, the research design is described in Sec-
tion 3 and data gathering details depicted in Section
3.3. Evaluating the effectiveness of processes under-
taken in the current case study, is not carried out. This
will be a evaluated by a future case study.

According to (Jensen, 2008), confirmability is an
accurate means through which to verify the two basic
goals of qualitative research:

• to understand a phenomenon from the perspective
of the research participants and

• to understand the meanings people give to their
experiences

This research contains a threat to researcher bias be-
cause one researcher is the inventor of AAOM, a
method under investigation. We are aware of this
threat and avoid it with the same means as for credi-
bility - by providing detailed descriptions. According
to (Shenton, 2004), in a qualitative study, researchers
biases are inevitable.

The next section focuses on finding answers to the
research questions posed in the beginning of current
section.

4 Results

The main goal of the analysis is to understand
whether theories about the AAOM method are valid
by finding answers to questions specified in Section
3.1. We also take into account any non-expected data
found during the interviews. All themes and codes
presented in subsequent tables have the same nota-
tion. The theme/code column contains themes span-
ning over all columns and codes. Polarity- and type-
attribute values we abbreviate, i.e., polarity value P
denotes positive, N stands for neutral and E stands for
negative. The type column values are respectively S
for statement and U for suggestion. The value column
gives the analysis formula result. The reminder of
the current section displays the results from the code
analysis.

4.1 Benefits of using AAOM from a user
perspective (RQ1)

In order to find answers to RQ1, we use the themes in
Table 4. With these five themes, we cover direct bene-
fits that participants state about how AAOM improves
communication by collaborative modelling and the
inclusion of participants. Also a method comparison
along with visual representation provides insights to
AAOM.

To evaluate results, we refer to a formula devised
in Section 3.4. A detailed list of codes for RQ1 related
themes is in Table 5. The first theme Benefits shows
all codes are positive statements for using AAOM. All
the codes in this theme are positive statements and ad-
here to the case-study research question about what
are the benefits of using AAOM. The highest ranked
codes are a secure feeling for a project direction, mu-
tual communication and discovering new angles in re-
quirements for the project. Four codes have a lower
evaluation score, and thus are more unreliable to draw
confident conclusions from.

Next, theme Collaborative Modelling relates to
the AAOM-theory of improving communication be-
tween clients and the development team by working
together on requirement elicitation. The highest rated
codes are all positive suggestions, thus confirming the
expectations set by AAOM. Having everyone on the
same page, improves understandability and pinpoint-
ing problems represents a benefit for collaborative

modelling. There is one negative suggestion about
composing goal models should be more structured.

The Method Comparison theme gathers the par-
ticipants’ experience with similar methods compared
to AAOM. Unfortunately, the experience with similar
methods is low amongst participants in the running
case study. As the result, a comparison with other
methods is not sufficient and does not provide enough
results.

The final two themes have less codes than Bene-
fits and Collaborative Modelling while the codes have
high formula value that shows same opinions from all
participants. The Participation theme gathers objec-
tive opinions about how the method includes everyone
in the project and it shows the ICT-expertise is an ad-
vantage. The theme Visual Representation consists of
only one strongly referenced code denoting that the
goal-model representation is a definite benefit.

The next section discusses how the project setup
and tooling affect usage of AAOM.

Table 4: AAOM usage benefits themes

Theme name Theme
Benefits What are the benefits

of using AAOM?
Collaborative modelling How to improve

communication
between participants?

Method Comparison How does AAOM
competitively
compare to other
methods?

Participation Does AAOM include
participants?

Visual Representation Is a visual approach
suitable for RE?

4.2 Effects of the projects setup and
tooling on AAOM (RQ2)

Table 6 introduces themes related to RQ2 raised in
Section 3.1. Three themes cover this research ques-
tion, starting by explaining the setup of elaboration
sessions and finding the effects for AAOM method
application. The next theme is related to temporal
measures as well, explaining time usage to manage
AAOM models. The final theme covers effects of
software based tooling usage on AAOM application.

To evaluate which practices are favoured and
which need improvement, we use again formula re-
sults (Section 3.4), details are presented in Table 7.
The Elaboration Sessions theme covers the AAOM-
method’s application-session content, -duration and

-suitability. The highest ranked code suggests that
the selected session length, which is 1.5 hours, is se-
lected correctly, even though one low ranked contract-
ing code is gathered to have shorter sessions. The re-
maining codes are ranked relatively low with incon-
clusive findings.

The theme Modelling Time Usage answers to
questions related to spent time on modelling activities
carried out using the AAOM method. Positive state-
ments are gathered for system requirements fast cap-
ture, fast development based on models and overall
effective time usage. One neutral statement is added
that moderate time is spent until an idea is formed
as a user story. The unit of measurement is the par-
ticipants’ subjective feelings about the time spent on
method activities.

In order to answer aspects of tool importance in

Table 5: AAOM usage benefits codes

Theme/Code

Polarity

Type

Value

Benefits
Secure feeling for project
direction

P S 10

Mutual communication P S 7
Discover new angles P S 4
Intuitively understandable P S 2
Easily modifiable P S 2
Constructive modelling P S 1
Estimate work ahead P S 1
Collaborative Modelling
Having everyone on the same
page

P S 18

Improved understandability P S 14
Pinpointing problems P S 13
Involving participants P S 5
Composing goal models should
be more structured

N U 2

Few feelings about collaboration N S 1
Sharing tasks well P S 1
Method Comparison
Making notes P S 1
Modelling in Scrum P S 1
Participation
Participation level is satisfactory P S 13
Too detailed discussions of
system design are not interesting

N S 4

Background with ICT helps to
participate

N S 2

Visual Representation
Goal model representation -
benefit

P S 25

using AAOM, we find a theme Tools Usage. There are
several different codes revealing several viewpoints.
The two highest ranked codes show that using freely
available tools is provisionally satisfactory while hav-
ing an integrated suit would reduce the amount of
work needed for completing tasks. Available com-
mercial tools are considered better while they are pro-
hibitively expensive, especially in smaller projects.
We conclude that interest exist to use new tools that
are better tailored than the chosen free tools in the
running case.

Next, we discuss findings related to AAOM short-
comings.

Table 6: Project setup and tooling themes

Theme name Theme
Elaboration Sessions How much time does it

take to follow AAOM
practices?

Modelling Time Usage How long does it take
to sketch system needs
with AAOM?

Tools Usage What is the effect of
tooling on AAOM
application?

4.3 Further AAOM-refinement needs
(RQ3)

For further improvements we collect codes under only
one theme called Method Clarification that addresses
what practices of AAOM are clear and which need
explanation, or redefining. The gathered codes are
depicted in Table 8. From the positive side, we find
that the sequence of activities for goal models com-
posing is clear. In top ranked codes we also find pos-
itive statements about concepts of quality goals, user
stories and roles being clear.

On the negative side, we gather contradicting in-
formation if creating user stories for the lowest level
goal in goal models is clear. Both codes have high
ranking while statements about the process being un-
clear ranked a bit higher. Studying this contradiction
is future research work in addition with the exact us-
age of quality goals in relation to user stories that is
currently unclear. As a counterpart for top ranked
positive statements, there are few contradicting neg-
ative statements about same aspects. Analysing these
contradictions deeper, we find that a lack of experi-
ence causes these results.

Next, we discuss codes that emerge outside of re-
search questions providing hindsight into the AAOM
evaluation.

4.4 Emerged results

Emerged codes result from grounded coding that is
explained in Section 3.4 and depicted in Tables 9
and 10. The participants express their feelings in
the theme Drawbacks about the project setup that is
not directly related to AAOM modelling, but still af-
fect its usage. The most mentioned code states that
experienced participants are needed to fully benefit
from the AAOM-method. Thus, AAOM is not intu-
itively fully understandable to all participants in re-
quirements engineering. To aid understandability, a
solution could be a better user guide for the AAOM
method, as suggested by interviewees in second top
mentioned code. Also analyst is identified as carry-
ing vital role in AAOM usage by having most respon-
sibility in modelling activities. As a final statement
worth noting, is a fact that doubt exists pertaining to
the method suitability in smaller projects due to a pos-

Table 7: Project setup and tooling codes

Theme/Code

Polarity

Type

Value

Elaboration Sessions
Session length suitable P S 5
Sessions could be earlier, less
tired

P U 2

Shorter sessions for
inexperienced in analysis

E U 2

New ideas since previous meeting
offloading

P S 1

One topic per meeting P S 1
Only new info on sessions P S 1
Modelling Time Usage
Quickly to development P S 11
Refining goal models is fast P S 5
Method used before AAOM takes
a lot of time

P S 5

Time used effectively P S 4
From idea to user story in
moderate time

N S 1

Tools Usage
Manual integration works but a
lot of extra work

E S 9

Good enough for starters N S 6
Need more integration E U 5
Commercial tools better E S 4
Commercial tools expensive E S 4
Dedicated tool support E S 2
Easy and flexible P S 2
Interesting to use new tools P S 1
New tools need training N S 1

Table 8: AAOM-refienement theme and codes

Theme/Code

Polarity

Type

Value

Method Clarification
Sequence of activities clear P S 30
Goal model understandable P S 26
Usage of quality goals
understandable

P S 21

User story concept
understandable

P S 20

From goals to user stories unclear E S 16
From goals to user stories logical P S 10
Usage of roles clear P S 10
Quality goals link to user stories
unclear

E S 9

User story concept unclear E S 7
Development process unclear E S 2
User stories created by analyst
unclear

E S 2

Goal model lowest level finding
unclear

E S 1

Quality goals should have more
details

E U 1

Roles useful for user story
creation

P S 1

Usage of quality goals unclear E S 1

sible method overhead.
The Expectations theme shows the participants’

positive impression. Working results and extensible
implementations are expected, goal models and user
stories are expected to be updated. A negative point
is that more participants are needed to accomplish the
goals pertaining to the project setup and not the im-
plementation phase of AAOM.

The results captured under the theme Modelling
Suitability support the theory about the method help-
ing to focus on objectives elicitation and organizing
thoughts to express a client’s feelings. Statements
gathered under the theme New Ideas give novel sug-
gestions from the participants, such as assigning fi-
nancial values to the goal, to use goal models as a
system documentation, and so on.

5 Conclusion

In this article, we evaluate the AAOM-method as a
novel method for requirements engineering in small-
scale project that employ agile software development.
A case-study based research approach is instrumental
for an evaluation. We apply the method in real-life

Table 9: Emerged themes

Theme name Theme
Drawbacks What negative

impressions exist about a
project setup?

Expectations What are the
expectations about
AAOM benefits?

Modelling Suitability What are the AAOM
suitability issues in IT
projects?

New Ideas What proposals exist for
method improvements,
or for project-setup
improvement?

setting for developing a mobile app from scratch. In
a running case, the AAOM-method is used during the
planning phase for requirements elicitation.

Interviews with project participants provide the
most relevant input for the AAOM-method’s evalu-
ation. We perform an analysis of interviews to check
different aspects of the AAOM application. Inter-
views are coded by searching answers to research
questions, also new knowledge outside the scope of
research questions is brought out. We employ ad-
ditional coding techniques to organize data along
themes and by apply a ranking formula for analysing
codes to reveal confirming-, or contradicting findings
to research questions.

The analysis of interviews shows that the AAOM
method provides guidance to requirements elicitation
for the project. The visual approach presents an intu-
itive way for both clients and the development team
to perceive how user stories are connected to system
goals and vice versa. The method is extensible, en-
courages collaboration and participation, and does not
take much time.

The benefits of using the AAOM-method from a
user perspective is evaluated positively. Benefits are
a secure feeling for project direction, mutual commu-
nication and discovering new angles in requirements
for the project. The visual representation provided
by AAOM for requirements engineering is intuitively
comprehensible. The same holds for gathered infor-
mation about AAOM-procedures and the correspond-
ing sequence of activities, goal modelling and usage.

Time spent on AAOM activities for gathering re-
quirements is found to be adequate and even accel-
erates the requirements-engineering process. Over-
head during that process is marginally low while re-
fining and working with AAOM-models during later
system-maintenance stages is considered fast. A gath-

ered low-scoring contradiction claims AAOM is not
suitable for smaller projects. The ideal length of elab-
orations sessions is 1.5 hours and less for inexperi-
enced developers. For projects on budget, free tools
with manual integration suffice while there is a desire
for AAOM-tailored integrated tool support.

Unclear procedures that need better guidance, or
redefining pertain to the way of finding the lowest
level of goal models with the corresponding deducing
of user stories, and quality-goal use. Furthermore, the
AAOM-method enforces communication via collab-
orative modelling, improving understandability, pin-
pointing problems and involving participants. Also
the participation level for different roles governed by

Table 10: Emerged themes codes

Theme/Code

Polarity

Type

Value
Drawbacks
Experienced participants required
for full potential

E S 22

Better guide for analyst needed E S 14
Analyst has the most
responsibility

N S 5

Method might be overhead for
smaller projects

N S 5

Goal models too general, need
more technical details

N S 2

Initial user stories take time N S 2
Initial models need refinement N U 1
Starting from scratch should be
more structured

E U 1

Expectations
Updates to models and user
stories

P S 8

Working results N S 5
Extensible implementation N S 4
Need more resources to
accomplish goals

E S 1

Modelling Suitability
Clarifies what needs to be done P S 10
Organizing thoughts P S 6
Modelling fits into various
project setups

P S 5

Quality goals provide value for
analyst and developer not client

N S 1

New Ideas
Link metrics to goals N U 2
Models can be used for system
documentation

P U 2

Quality goals holding technical
details

P U 2

AAOM, matches expectations.
Findings outside the scope of research questions

is collected thanks to semi-structured interviews used
in this case study. One of the discovered factors iden-
tified is AAOM not being intuitively understandable.
Before using it effectively, longer experience in ICT
is needed or additional guidance should be available.
Also the analyst role has been identified as too heavy
in applying the modelling method. Outcome of the
project depends too much on the analyst. Another
type of feedback gathered is expectations, covering
working results and extensible implementation. New
ideas cover linking models to financial data for mea-
suring goal effectiveness, using models for system
documentation and quantifying quality goals.

As a limitation for this paper, the results gath-
ered during the running case study have limitations.
Three participants out of four fill the client role and
thus, the collected information is mostly based on the
client-side opinion about the AAOM-method. Only
two of the four participants have experience partici-
pating in software development processes and conse-
quently, feedback also stems from inexperienced par-
ticipant. The latter is also important since this shows
how easy it is for laymen to adopt AAOM for practice.
Another limitation is a lack of interview feedback by
the participants with respect to methods for agile and
requirements/engineering methods. This comparison
promises to reveal how well the AAOM-method is
combinable with other agile methods. A final limi-
tation is related to research bias towards supporting
factors of AAOM usage, since one researcher is an
inventor of AAOM.

Further studies and investigation must apply the
AAOM-method in diverse domains for demonstrat-
ing its universal applicability. On the other hand and
based on a feedback from participants of the running
case, an improvement of the AAOM-method must fo-
cus on the following aspects. The role of quality goals
must be explained more effectively at an earlier stage.
Since the analyst plays an important role during ap-
plying the AAOM-method, we need a deeper under-
standing of this essential role. Finally, we need to
further verify case study validity by repeating similar
research without the limitations of the current study.

Acknowledgement

We thank Mari-Ann Vellerand and Hando Rand
for donating their time to participate in the running
case of this paper. We thank Pekka Abrahmson and
Dietmar Pfahl for providing constructive feedback on
the case study setup.

REFERENCES

Ambler, S. W. and Lines, M. (2012). Disciplined agile de-
livery: A practitioner’s guide to agile software deliv-
ery in the enterprise. IBM Press.

Beck, K. (2000). Extreme programming explained: em-
brace change. Addison-Wesley Professional.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A.,
Cunningham, W., Fowler, M., Grenning, J., High-
smith, J., Hunt, A., Jeffries, R., et al. (2001). The
agile manifesto.

Cao, L. and Ramesh, B. (2008). Agile requirements en-
gineering practices: An empirical study. Software,
IEEE, 25(1):60–67.

Carlson, D. and Matuzic, P. (2010). Practical Agile Re-
quirements Engineering. Technical report.

Cockburn, A. and Highsmith, J. (2001). Agile soft-
ware development: The people factor. Computer,
34(11):131–133.

Cohn, M. (2004). User Stories Applied: For Agile Software
Development. The Addison-Wesley Signature Series.
Addison-Wesley.

Dardenne, A., Van Lamsweerde, A., and Fickas, S. (1993).
Goal-directed requirements acquisition. Science of
computer programming, 20(1):3–50.

Eric, S. Y. (2009). Social modeling and i*. In Conceptual
Modeling: Foundations and Applications, pages 99–
121. Springer.

Gibbs, G. R. and Taylor, C. (2005). How and what to code.
Online QDA.

Hull, E., Jackson, K., and Dick, J. (2005). Requirements
engineering, volume 3. Springer.

I. Sommerville, P. S. (1997). Requirements engineering: a
good practice guide. John Wiley & Sons, Inc., Lon-
don, 2nd edition.

Jensen, D. (2008). Confirmability, page 113. SAGE Publi-
cations, Inc., 0 edition.

Kniberg, H. and Skarin, M. (2010). Kanban and Scrum-
making the most of both. Lulu. com.

Larman, C. and Vodde, B. (2008). Scaling lean & agile
development: thinking and organizational tools for
large-scale Scrum. Pearson Education.

Leffingwell, D. (2010). Agile software requirements: lean
requirements practices for teams, programs, and the
enterprise. Addison-Wesley Professional.

Leffingwell, D. (2013). Scaled agile framework. Siehe:
http://scaledagileframework. com.

Leffingwell, D. and Aalto, J. (2009). A lean and scalable re-
quirements information model for the agile enterprise.
Modern Analyst. com, posted, 2.

Leffingwell, D. and Widrig, D. (2000). Managing software
requirements: a unified approach. Addison-Wesley
Professional.

Miller, T., Pedell, S., Sterling, L., and Lu, B. (2011). En-
gaging stakeholders with agent-oriented requirements
modelling. In Agent-Oriented Software Engineering
XI, pages 62–78. Springer.

Neill, C. J. and Laplante, P. A. (2003). Requirements en-
gineering: The state of the practice. IEEE Software,
20(6):40–45.

Paetsch, F., Eberlein, A., and Maurer, F. (2003). Require-
ments engineering and agile software development. In
2012 IEEE 21st International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enter-
prises, pages 308–308. IEEE Computer Society.

Poppendieck, M. and Poppendieck, T. (2007). Implement-
ing lean software development: from concept to cash.
Pearson Education.

Robson, C. (2002). Real word research. Oxford: Blackwell.
Runeson, P. and Höst, M. (2009). Guidelines for conduct-

ing and reporting case study research in software engi-
neering. Empirical software engineering, 14(2):131–
164.

Runeson, P., Host, M., Rainer, A., and Regnell, B. (2012).
Case study research in software engineering: Guide-
lines and examples. John Wiley & Sons, New Jersey.

Saldaña, J. (2009). The coding manual for qualitative re-
searchers. Los Angeles, CA [etc.]: Sage.

Schwaber, K. (2004). Agile project management with
Scrum. Microsoft Press.

Shenton, A. K. (2004). Strategies for ensuring trustwor-
thiness in qualitative research projects. Education for
Information, 22(2):63–75.

Stake, R. E. and Savolainen, R. (1995). The art of case
study research, volume 95004979. Sage publications
Thousand Oaks, CA.

Sterling, L. and Taveter, K. (2009). The art of agent-
oriented modeling. MIT Press.

Sutherland, J., Viktorov, A., Blount, J., and Puntikov, N.
(2007). Distributed scrum: Agile project management
with outsourced development teams. In System Sci-
ences, 2007. HICSS 2007. 40th Annual Hawaii Inter-
national Conference on, pages 274a–274a. IEEE.

Tenso, T. and Taveter, K. (2013). Requirements engineering
with agent-oriented models.

Van Lamsweerde, A. (2001). Goal-oriented requirements
engineering: A guided tour. In Requirements Engi-
neering, 2001. Proceedings. Fifth IEEE International
Symposium on, pages 249–262. IEEE.

Van Lamsweerde, A. et al. (2009). Requirements engineer-
ing: from system goals to uml models to software
specifications.

Van Maanen, J. (1979). The fact of fiction in organizational
ethnography. Administrative Science Quarterly, pages
539–550.

Version One, I. (2015). 9th annual state of ag-
ile survey. http://info.versionone.com/
state-of-agile-development-survey-ninth.
html.

Yin, R. K. (2013). Case study research: Design and meth-
ods. Sage publications.

