
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Priit Kullerkupp 040849IATM

5G NB-IoT Implementation for Predictive Car
Maintenance

Master's thesis

Supervisors: Muhammad Mahtab
Alam
PhD

Priit Roosipuu

MSc

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Priit Kullerkupp 040849IATM

5G IoT rakendus auto hoolduse ennustamiseks

Magistritöö

Juhendajad: Muhammad Mahtab
Alam
Doktorikraad

Priit Roosipuu

Magistrikraad

Tallinn 2020

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Priit Kullerkupp

15.12.2020

3

Abstract

Predictive maintenance (PdM) and connected cars are trends that are gaining in

popularity year by year and are set to change our current perception of car maintenance.

Massive machine type connections (mMTC) are becoming a reality with the

introduction of 5G wireless communications which provides connectivity options for

various use cases.

Modern vehicles produce a lot of data which is useful for supporting PdM, however the

availability of relevant (historic) data and the means by which it can be collected,

processed and communicated to cloud services is not something that is commonly

implemented in vehicles. Moreover, fault detection needs to be modelled with machine

learning (ML) algorithms to be able to give an early indication of a problem which

poses additional hardware related requirements in itself.

In this thesis open solutions and standards are used to build a prototype data collection

device which is integrated to cloud services to overcome limitations with many

commercially available devices. Through practical experiments (air filter restriction,

engine air leak) and test driving it is evaluated if Narrowband Internet of Things (NB-

IoT) is able to support PdM for vehicles with data that is collected in real-time.

This thesis is written in English and is 64 pages long, including 5 chapters, 37 figures

and 12 tables.

4

Annotatsioon

5G IoT rakendus auto hoolduse ennustamiseks

Ennustav hooldus ja ühendatud autod on märksõnad, mis koguvad aasta-aastalt

populaarsust ning on muutmas meie tavapärast arusaama auto hooldusest. Viienda

põlvkonna (5G) traadita side tehnoloogial põhinevad massilised masintüüpi ühendused

(massive machine type connections) võimaldavad erinevates kasutusvaldkondades

juurutada uusi sidelahendusi.

Ennustav hooldus on süsteemsel andmete kogumisel ja analüüsil põhinev teadusharu,

mis võimaldab loodud mudelite alusel prognoosida vaadeldava süsteemi veatut

toimimist. Kaasaegsed autod on varustatud erinevate sensoritega, millelt saadava info

töötlusel tema juhtmoodulites tagatakse erinevate mehhanismide õige töö. Auto

juhtmoodulite töövõime on piiratud, seepärast on autodes ennustava hoolduse

rakendamiseks vaja täita nõudeid (andmete kogumine, töötlemine, võrgule edastamine)

täiendava riistvara näol – tänaseni ei ole selliste lahenduste kaasamine autodes

tavapärane.

Käesoleva magistritöö eesmärk on hinnata kitsaribalise asjade interneti (Narrowband

Internet of Things) sobivust auto ennustava hoolduse tarbeks, mis tugineb

virtuaalserveriga (cloud server) integreeritud seadmest reaalajas andmete kogumisel.

Prototüüpseadme arendamisel on lähtutud süsteemi avatuse ja standardite kasutamise

põhimõtteist. Kogutud andmeid on vaadeldud kahe eksperimendi (piiratud õhufiltri

töövõime, mootori õhuleke) käigus loodud masinõppe (machine learning) mudelite abil.

Lisaks on antud töös kogutud tavasõidu ajal 5G võrgust parameetreid (paketikadu ja

viide) ning saadud tulemused on esitatud tabeli kujul, mille põhjal on võimalik hinnata

pakutava lahenduse töökindlust.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 64 leheküljel, 5 peatükki, 37

joonist, 12 tabelit.

5

List of abbreviations and terms

3GPP 3rd Generation Partnership Project

ANN Artificial neural network

APP Accelerator pedal position

ARIMA Autoregressive integrated moving average

AT ATtention

CAN Controller area network

CDF Cumulative distribution function

CSMA/CA Carrier sense multiple access with collision avoidance

DLC Datalink connector

DTC Diagnostic troublecode

ECT Engine coolant temperature

ECU Electronic control unit

eDRX Extended discontinuous reception

eMTC Enhanced machine type communication

EOF End of frame

FT Fuel trim

GPIO General purpose input-output

ID Identifier

IoT Internet of Things

IP Internet protocol

LPWAN Low power wide area network

LTE Long-Term Evolution

LTFT Long-term fuel trim

MAF Mass airflow

MIL Malfunction indicator light

ML Machine learning

MLR Multiple linear regression

MQTT Message Queuing Telemetry Transport

MSE Mean squared error

6

NB-IoT Narrowband Internet of Things

NVRAM Non-volatile random access memory

OBD On-board diagnostics

OSI Open Systems Interconnection

PCA Principal component analysis

PCM Powertrain control module

PDF Probability density function

PdM Predictive maintenance

PDP Packet data protocol

PID Parameteric identifier

PROM Programmable read-only memory

PSM Power save mode

QoS Quality of Service

RAM Random access memory

RF Random forest

RPM Revolutions per minute

RUL Remaining useful life

SBC Singleboard computer

SOF Start of frame

SSH Secure shell

STFT Short-term fuel trim

SVM Support vector machine

SVR Support vector regression

TA Timing advance

TCP Transmission control protocol

TPS Throttle position sensor

URC Unsolicited return code

USB Universal serial bus

7

Table of Contents

1 Introduction..13

1.1 Problem statement..14

1.2 Problem description...15

1.3 Background..16

1.3.1 OBD-II..16

1.3.2 Electronic Control Unit (ECU)...17

1.3.3 Controller area network (CAN)..18

1.3.4 Internet of Things (IoT) and cloud computing...20

1.3.5 Narrowband Internet of Things (NB-IoT)..21

1.3.6 Message Queuing Telemetry Transport (MQTT)..21

1.3.7 Machine learning (ML)..22

2 State of the art...23

2.1 Algorithms for predictive maintenance...23

2.1.1 Machine learning metrics...26

2.2 Maintenance strategies...27

2.3 Remaining useful life (RUL)...28

2.4 Data collection devices..30

2.4.1 Conclusion from tested devices..32

2.5 Related works..33

2.5.1 Conclusion..36

3 Implementation of predictive maintenance system..37

3.1 Hardware configuration...38

3.1.1 Modem configuration...39

3.1.2 ELM327 configuration...41

3.2 Software configuration..42

3.2.1 Cloud server configuration...44

3.3 Methodology..47

4 Experimental results...49

8

4.1 Experiment 1 – airflow restriction...49

4.1.1 Data collection..50

4.1.2 Data processing...52

4.1.3 Modelling results..56

4.1.4 Conclusion from experiment..57

4.2 Experiment 2 – air leak..58

4.2.1 Data collection..60

4.2.2 Modelling results..63

4.2.3 Conclusion from experiment..67

4.3 Key performance indicator evaluation...68

5 Conclusion and future works..75

References...78

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis..81

Appendix 2 - Disabling unused kernel modules and system services.............................82

Appendix 3 – Cloud server information..84

Appendix 4 – System service watchdog..85

9

List of Figures

Figure 1. Cloud-based predictive maintenance infrastructure for vehicles.....................13

Figure 2. J1962 type-a female connector...17

Figure 3. CAN-bus topology with three nodes..18

Figure 4. CAN frame structure [7]: start of frame (SOF), identifier (ID), remote trans-

mission request (RTR), control, data, cyclic redundancy check (CRC), acknowledge

(ACK), end of frame (EOF)..19

Figure 5. CAN-bus arbitration showing start of frame (SOF) bit and standard 11bit iden-

tifier field...19

Figure 6. Random forest algorithm..24

Figure 7. SVM hyperplane (line) with two input features...25

Figure 8. General structure of multilayered neural network...25

Figure 9. Algorithms based on: (a) classification, (b) regression, (c) clustering............26

Figure 10. Maintenance strategies [26]...28

Figure 11. Remaining useful life [26],[29]..29

Figure 12. Weibull distribution probability density function..30

Figure 13. System architecture for predictive car maintenance......................................37

Figure 14. Hardware components: (a) Raspberry Pi Zero, (b) Zero2Go Omini, (c)

SIM7070G...38

Figure 15. Wiring diagram for data collection device...39

Figure 16. Flow diagram of created system service for publishing OBD-II data to cloud

server...43

Figure 17. Udev rule for CAN-serial bridge in /etc/udev/rules.d/80-rename-obdadapter-

.rules..44

Figure 18. Prototype data collection device..44

Figure 19. Cloud server firewall configuration...45

Figure 20. ThingsBoard real-time dashboard view with configurable widgets: (a)

desktop view, (b) smartphone view...45

Figure 21. ThingsBoard rulechain for processing incoming data...................................46

10

Figure 22. Experiment 1 data collection..51

Figure 23. Test setup: (a) fault condition 1, (b) fault condition 2...................................51

Figure 24. Fault code P0101: (a) ELM327, (b) VCDS...52

Figure 25. Linear regression plots for original data (no air filter restriction).................53

Figure 26. Linear regression plots for preprocessed data (no air filter restriction).........55

Figure 27. Residual plots comparison for MLR, SVR and RF models for MAF predic-

tion using fuel rail pressure, throttle position and engine speed as input features with no

air filter restriction...56

Figure 28. Setup for air leak experiment...60

Figure 29. Data from air leak experiment during engine idle...61

Figure 30. Data from STFT, LTFT, TA, RPM, MAF and ECT sensors during air leak

experiment...62

Figure 31. Total fuel trim histogram and empirical CDF on collected driving data.......64

Figure 32. RF classification for air leak detection during engine idle............................66

Figure 33. Fault probability comparison of method1 and method2 based on collected

driving data..66

Figure 34. Air leak forecasting on simulated data using ARIMA(5,1,1) model.............67

Figure 35. Flowchart for publishing ping latency, NB-IoT serving cell and OBD-II data

to cloud server using SIM7070G modem..68

Figure 36. Ping delay: (a) inside building, (b) inside car at standstill, (c) city driving, (d)

highway driving. Negative ping values denote that timeout (1000ms) was reached......72

Figure 37. NB-IoT Reference Signal Received Power (RSRP): (a) inside building, (b)

inside car at standstill, (c) city driving, (d) highway driving..73

11

List of Tables

Table 1. OBD-II data collection devices...31

Table 2. Selected hardware components for IoT device...38

Table 3. SIM7070G configuration commands..40

Table 4. ELM327 configuration commands..42

Table 5. Cloud server specification...45

Table 6. Experiment 1 OBD-II PIDs...49

Table 7. RF, SVR, MLR and simple linear regression R2 score comparison..................57

Table 8. Experiment 2 OBD-II PIDs...58

Table 9. Observations from air leak experiment...61

Table 10. Total fuel trim probabilities...65

Table 11. Parameters for estimating the performance of NB-IoT...................................69

Table 12. Obtained metrics for various driving conditions with NB-IoT device............70

12

1 Introduction

Predictive maintenance (PdM), based on continuous condition monitoring, is closely

related to Internet of Things (IoT) as data from sensors is used for estimating the

remaining useful life (RUL) of user equipment. Implementation of a PdM system needs

to consider the environment in which the user equipment is operating as well as data

related requirements. In Figure 1 a general infrastructure of vehicle-based PdM system

is depicted which can be categorized as follows:

 data source (sensors in vehicle)

 local data processing (IoT device inside vehicle)

13

Figure 1. Cloud-based predictive maintenance infrastructure for vehicles.

 data transmission medium

 remote data processing (predictive algorithms)

 external services (maintenance scheduling)

Modern cars are equipped sensors which are monitored by various control modules and

used as inputs for proper engine functionality. Access to these sensors is made available

through standardized onboard diagnostic (OBD) connectors and signalling protocols

which originate from engine emission control requirements. Control modules in

vehicles are preprogrammed to detect irregular behaviour and will set fault codes in the

module’s memory. The processing and storage capabilities of vehicle control modules

are limited as they are designed for robust operation, therefore additional hardware

resources are needed for PdM purposes.

IoT device’s main tasks are sensing, data processing and communication. In a vehicular

application data must be requested from vehicle-bus, returned raw data is processed to

convert it to human readable format and saved locally. Using appropriate data

interchange format and protocol, the communication interface is used to forward data to

cloud server for further processing over transmission medium.

Cloud services in PdM implementation are used for storing historical data, running

predictive algorithms and informing relevant parties of maintenance actions (such as

scheduling and pre-ordering of components). The benefits of vehicle based PdM

solutions should be obvious, as the aim is to schedule maintenance actions when

needed, thereby reducing costs for the user, but also in advance if a pending failure is

detected. Implementation of such systems is not widespread due to increase in

complexity (requirements for data collection, processing, storage, security and

predictive modelling) compared to traditional maintenance strategies.

1.1 Problem statement

The research question this thesis aims to answer is if Narrowband Internet of Things

(NB-IoT) can be used for data collection in a real-time vehicular setup and which

14

supervised machine learning algorithms are suitable for predictive maintenance in such

use case.

1.2 Problem description

In PdM data is needed over a longer time period and depending on the use case some

loss of information may not be critical as relevant data is accumulated during this

period. On the other hand if data is collected too infrequently there may not be enough

relevant samples based on which decisions could be made with required confidence

levels. Some faults are more difficult to detect than others while in some cases it may be

impossible. The goal of PdM is not the detection of immediate faults – it is assumed that

based on historical data a model can be created which can be used to estimate the

condition of the system with required accuracy. Compared to traditional maintenance

strategies where maintenance is performed at certain intervals, PdM requires a more

sophisticated approach as an understanding of the system is needed with a model. A

question that arises from the modelling requirement is where data processing should

take place – either in vehicle or cloud servers, because both options have their

advantages and disadvantages. Availability of data and and the nature of it varies greatly

from one vehicle to another, therefore it is not feasible to create an universal model

which could work equally well on different types of vehicles.

Sensing IoT devices, unlike multimedia and streaming applications, do not have high

requirements for throughput and latency as data generally needs to be transmitted

infrequently. The emergence of low power wide area network (LPWAN) radio access

technologies in recent years such as NB-IoT and eMTC (enhanced machine type

communication) have broadened the possibilities for deploying IoT on a massive scale

in industrial, medical, home and other areas. Compared to NB-IoT, eMTC has full

mobility support and increased data rates, although at the expense of higher spectrum

bandwidth usage (1,4 MHz). NB-IoT has the potential to serve larger amount of devices

needing only 180 kHz of spectrum bandwidth and can offer extended coverage but

currently mobility support in commercially available hardware is limited which makes it

more challenging to use in a vehicular application.

15

In this thesis it is studied if NB-IoT can be used to support PdM in vehicular setup – for

this purpose a prototype data collection device is developed and integrated with cloud

services. Using the configured system, data is collected in real-time for two PdM case

studies (air filter restriction and engine air leak) and the performance of the system for

such use cases is evaluated. The focus of this work is on configuring and integrating the

system with appropriate protocols and processing collected data with algorithms for

PdM.

The chapters are structured as follows. Chapter 1 gives background information on

relevant terminology. In chapter 2 overview for state of the art with related works is

given. Chapter 3 describes an implementation of predictive maintenance system in

detail and chapter 4 provides experimental results. Conclusion for the work is given in

chapter 5.

1.3 Background

The following subchapter gives an overview of relevant terminology used in this thesis.

1.3.1 OBD-II

On-board diagnostics (OBD) standards originate from United States where a serious air

quality problem was recognized in the 1970s. The first iteration of the standard (OBD-

I), introduced in 1985, required only malfunction indicator light (MIL) to be set and was

generally found insufficient because it did not define a standard way how various

vehicles could be diagnosed, therefore in 1989 OBD-II was introduced which specified

unified data link connectors (DLCs), signalling protocols and self-diagnosis (monitors)

for engine control systems [1].

OBD-II is defined in a way which leaves some room for future expansion and

implementation of new functionality – there are 10 defined operating modes (typically

manufacturers add their own modes after those) and some of the DLC pins are unused

by OBD-II standardized signalling protocols. An OBD-II DLC with 16 pinholes is

shown in Figure 2, usage of the pins depends on the signalling protocol used by the

16

vehicle. Pins 4 and 16 (chassis ground and battery positive terminal) are commonly

used by all five signalling protocols [2]:

 SAE J1850 PWM

 SAE J1850 VPW

 ISO9141-2

 ISO14230-4

 ISO15765-4

1.3.2 Electronic Control Unit (ECU)

ECU is a broad term used to describe a system or subsystem which is electronically

controlled. In automotive context ECUs with specific functions are also referred to as

control modules such as powertrain control module (PCM), engine control module

(ECM), transmission control module (TCM).

ECU is essentially a digital microprocessor which translates inputs (usually voltage

signals) received from sensors or other ECUs to binary data, processes them and sends

appropriate commands to actuators (such as solenoid driven valves, fuel pump relay,

fuel injectors). ECUs use programmable read only memory (PROM) as lookup tables

(maps) to assist in their decision making with regards to received input signals – for

17

Figure 2. J1962 type-a female connector.

example fuel injection pulse width maps, ignition timing maps. Random access memory

(RAM) is used by ECU to store sensor values and diagnostic troublecodes (DTCs) [1].

1.3.3 Controller area network (CAN)

CAN is a serial communications protocol (maximum bitrate 1Mbit/s) developed by

Bosch and standardized as ISO 11898-1 in 1993. Development of CAN was motivated

from need for low-cost real-time control systems, new functionalities and to reduce the

amount of wiring in automotive applications. Nowadays CAN is also used in industrial

automation, medical equipment and other real-time embedded networking [3].

CAN protocol is defined in the first two layers of OSI (Open Systems Interconnection)

model – physical and data link layer. Carrier sense multiple access with collision

avoidance (CSMA/CA) is used in CAN as well as mechanisms for error detection. An

arbitration process, which involves bitwise comparison of identifier (ID) fields (lower

IDs are always prioritized), is held between nodes in CAN-bus to assign priorities

before data transmission can start [3].

CAN-bus, as depicted in Figure 3, is a network of nodes on a pair of wires terminated

with resistors at both ends of the bus where frames are delivered to all nodes on the bus

because there is no recipient defined in the frame structure (Figure 4). The end of frame

(EOF) is signalled with 7 recessive bits (logical 1) and the bus needs to be idle for the

duration of interframe spacing (device specific) where only recessive bits are

transmitted [4].

18

Figure 3. CAN-bus topology with three nodes.

Figure 5 depicts the arbitration process of two nodes with ID values 7E8 and 7E9 (in

hexadecimal). CAN-bus start of frame (SOF) is one dominant bit (logical 0) followed

by ID bits. Dominant bit has priority over recessive bit meaning that dominant bit is

always written on the bus if both are transmitted at the same time. In this example

ECU2 stops transmitting when it detects that dominant bit was written on the bus while

it transmitted a recessive bit and must wait until the end of frame until it can try to

retransmit.

The increasing amount of ECUs and as a result increased load on CAN-bus in modern

vehicles make it more and more difficult for nodes with lower priority to transmit as

they need to keep waiting for longer time periods. A CAN message compression

algorithm suitable for automotive applications is proposed in [5] to reduce the

transmission data to up to 22%. Competing protocols for automotive applications are

19

Figure 4. CAN frame structure [7]: start of frame (SOF), identifier (ID), remote transmission request
(RTR), control, data, cyclic redundancy check (CRC), acknowledge (ACK), end of frame (EOF).

Figure 5. CAN-bus arbitration showing start of frame (SOF) bit and standard 11bit identifier field.

LIN (Local Interconnect Network), CAN-FD (CAN with flexible data rate), FlexRay

and TTCAN (time-triggered CAN). LIN is mostly used with low speed applications

where FlexRay and CAN-FD were designed to support high speed networks up to 10

and 5 Mbit/s respectively [6].

1.3.4 Internet of Things (IoT) and cloud computing

IoT is a term used to describe a set of physical devices which contain embedded

technology, use internet protocol (IP) to communicate with cloud services and are

capable of sensing with external environment [7], [8]. IoT can be categorized into

following layers:

 sensing

 processing

 communication

 application (backend and cloud services).

National Institution of Standards and Technology (NIST) defines cloud computing as a

model for enabling on-demand network access to a shared pool of computing resources

– its capabilities can be modified without requiring human interaction. The service

models for cloud computing are [9]:

 software as as service (SaaS)

 platform as a service (PaaS)

 infrastructure as a service (IaaS).

There are numerous wireless technologies which could be used for IoT communication

either in short range (Bluetooth, WiFi, ZigBee, Z-Wave) or long range (LoRa, Sigfox,

NB-IoT, eMTC). Also various protocols for data transmission exist such as MQTT

(Message Queueing Telemetry Transport), CoAP (Constrained Application Protocol)

and more traditional such as HTTP (Hypertext Transfer Protocol) and FTP (File

Transfer Protocol). The goal of this work is not to list or compare the features and

20

differences of various protocols as such works already exist [8],[10]. In this work NB-

IoT was selected because the network coverage is provided by mobile network

operators compared to technologies which operate in unlicensed spectrum bands (LoRa,

Sigfox) and require the setup of dedicated infrastructure. Furthermore, the

implementation and evaluation of NB-IoT for real-time communications in mobile

environment is not well addressed as it is considered more a technology suitable for

devices which are stationary in first few releases. MQTT is used in this work mainly

because it is a light and already well established protocol in IoT which is integrated into

many commercially available modems and cloud server platforms.

1.3.5 Narrowband Internet of Things (NB-IoT)

NB-IoT is a 5G radio access technology introduced in 3GPP release 13. The focus of

NB-IoT is on the efficient use of radio spectrum – to support thousands of IoT devices

over limited bandwitdh (180kHz) and it is predicted that for 2024 it will become a

massive IoT technology (for smart cities, homes and industrial IoT) with the total

number of connections exceeding 4 billion [11].

NB-IoT is related with LTE (Long-Term Evolution) technology, thus it can be deployed

in unused guard intervals or in-band within an LTE carrier as well as in standalone

mode [12]. NB-IoT is a LPWAN technology making use of features such as extended

discontinuous reception (eDRX) and power save mode (PSM) for power efficiency

[13]. 3GPP release 14 enhanced NB-IoT with Radio Resource Control (RRC) re-

establishment allowing user equipment (UE) to resume data transfers while release 15

provided reduced transmission delays, release 16 adds improvements for idle mode and

optional connected mode mobility [11],[14].

1.3.6 Message Queuing Telemetry Transport (MQTT)

MQTT is an application layer (OSI model layer 5-7) protocol aimed for unreliable and

bandwidth limited networks working on top of TCP/IP (transmission control protocol /

internet protocol). MQTT is commonly used in IoT for data transmissions – it is based

on publish-subscribe communication model where clients subscribe to topics to receive

messages published from other clients. There is no direct communication link between

21

clients – all messages are delivered through a broker (server) instance. Three quality of

service (QoS) levels can be configured:

 “at most once” – packet loss can occur as no retransmission attempt is made

 “at least once” – packet delivery is guaranteed but duplicates may occur

 “exactly once” – packets are assured to be delivered only once .

MQTT has low packet overhead with a fixed header size of 2 bytes [15].

1.3.7 Machine learning (ML)

ML is described as a computerized method for solving learning problems, which,

through the use of various algorithms applied to observed data, is able to improve the

performance of the system [16]. Supervised ML algorithms use historical (labelled) data

to create models that best represent the relationship between inputs and outputs, usually

by assigning weights to features (inputs) [17]. Two main approaches used for training

supervised ML models are physical and data-driven. While effectively both approaches

are based on measurable data, all available data is used for model training in data driven

approach. With physical approach a subset of available data is used by performing a

feature selection with the assumption that the selected features have the most impact on

the key parameter we are trying to predict. In unsupervised learning the training data is

not labelled and it is generally applied to clustering tasks to identify patterns within data

[18].

22

2 State of the art

In this chapter an overview is given for commonly used algorithms for predictive

maintenance and OBD-II based data collection devices. At the end of the chapter related

works are reviewed.

2.1 Algorithms for predictive maintenance

A recent systematic literature review [19] reveals that interest in PdM as a maintenance

strategy is increasing based on the growth of yearly publications in the field which is

attributed to the increased amount of data produced by industrial applications and

advances in ML algorithms. According to the review most commonly used ML

algorithms are random forest (RF), artificial neural networks (ANN), support vector

machines (SVM) and K-means. A recent research paper [20] highlights that ML can be

applied to improve the cybersecurity of next-generation vehicles – it is said that the

most critical aspect to train a model is the availability of data not the ML algorithm

itself, at the same time it is noted that due to constraints on computing hardware

resources in vehicles, the models can not be overly complex.

Random forest (RF) is a machine learning algorithm based on decision trees and can be

applied to classification and regression modelling. RF creates a number of decision trees

(estimators) and for each tree uses random sampling (bootstrapping) of original data to

create its training dataset – for each step in a decision tree randomly selected features

are used (Figure 6). Prediction results from individual decision trees are averaged using

statistical means with each decision tree having equal weight. Due to random sampling

of training data, RF can produce good results even with reduced quality training datasets

[21].

23

Support vector machine (SVM) was initially introduced as a classification algorithm but

later also extended for regression tasks. SVM classifier tries to find a hyperplane which

provides best separation between classes while maximizing the margin between the

hyperplane and closest data points. The dimensions of the hyperplane depend on the

number of input features – with two features the hyperplane is a line, as shown in Figure

7, and with three features it is a two-dimensional plane [22].

SVM uses a technique called kernel trick to map the input data into a space with higher

dimensions to obtain a separating hyperplane if no separation is otherwise possible

which is often the case with non-linear data. Radial basis, linear, polynomial and

sigmoid are widely used SVM kernel functions. Proper tuning of kernel function

parameters as well as scaling (standardizing features to have zero as mean value and

unit variance) is essential for the best performance of SVM [22],[23].

24

Figure 6. Random forest algorithm.

Artificial neural networks (ANN) is a supervised ML algorithm where data is moved (in

one direction) from nodes in bottom layers to upper layers forming a network of nodes,

as shown on Figure 8. Linear combination of data from inputs is fed to nodes at multiple

layers where they are summed and based on activation functions (sigmoid, hyperbolic,

tangent, rectified linear unit) it is decided if the data should be forwarded to next layers.

Weights are randomly selected when training is started and are adjusted while learning

the model. ANNs with a large number of layers is called deep-learning [24],[25].

25

Figure 7. SVM hyperplane (line) with two input features.

Figure 8. General structure of multilayered neural network.

Principal component analysis (PCA) is an unsupervised statistical method used to

reduce the dimensionality of data which is beneficial in reducing the time required for

ML model training. Principal components, calculated from covariance matrix, are a

linear combination of all input data and try to maximize variance within the data while

being uncorrelated to another – if the scores (explained variance) of first few principal

components are significantly higher than the remaining ones’, then the dataset can be

represented with those components with minimal loss of accuracy [26].

2.1.1 Machine learning metrics

The performance of ML algorithms are compared based on their prediction accuracy –

the use of metrics depends on the type of algorithm that is used: (a) classification, (b)

regression, (c) clustering. Classification and regression models are based on supervised

learning whereas clustering (unsupervised) models have no prior knowledge for what

the output should be. Classification models are used when we are interested if the output

belongs to a range of values separated by a classifier (1 and 0 for binary classification).

Regression models are used when continuous output values need to be predicted (Figure

9).

Classification metrics:

 Accuracy is the ratio of
Tp+Tn

Tp+Tn+Fp+Fn
,where Tp is the number of true

positives, Tn true negatives, Fp false positives and Fn false negatives.

26

Figure 9. Algorithms based on: (a) classification, (b) regression, (c) clustering.

 Precision is the ratio of
Tp

Tp+Fp
, where Tp is the number of true positives

and Fp false positives.

 Recall is the ratio of
Tp

Tp+Fn
, where Tp is the number of true positives

and Fn false negatives.

 F1 score is the ratio of
2∗Precision∗Recall
(Precision+Recall)

Regression metrics:

 MSE (mean squared error) is calculated as
1
n
∑
i=1

n

(y i− ŷ i)
2 , where y i is true

value and ŷ i predicted value.

 R2 score is defined as R2=1−
u
v
=1−

∑
i=1

n

(y i− ŷ i)
2

∑
i=1

n

(y i− ȳ)
2

, where u is sum of

squared residuals, v is total sum of squares, ŷ i is predicted value, ȳ is

statistical mean and y i is true value. The maximum value for R2 is 1 which

denotes a perfect prediction.

2.2 Maintenance strategies

According to standard EN-13306, PdM is a preventive maintenance policy based on

continuous condition monitoring which in IoT generally assumes the use of sensors.

Historical data both from corrective and preventive maintenance is useful for modelling

a PdM system (Figure 10). PdM aims to reduce operational costs by scheduling

maintenance activities only when needed, thereby using equipment to its full potential.

PdM assumes that it is possible to map gradual degradation or deviation processes to

time scale to make a prediction about the future health state or some other key indicator

of the system [27].

27

A recent literature survey in PdM [28] reveals that the use of remote data storage and

access for PdM systems is not widely addressed. Furthermore, system integration is said

to be problematic because of the effort needed to make different systems and devices

work together [29].

2.3 Remaining useful life (RUL)

RUL prediction (Figure 11) is based on a set of models which try to connect

degradation process to time scale. RUL prediction models are classified as follows [30]:

 knowledge based models

 life expectancy models

 ANN models

 physical models

28

Figure 10. Maintenance strategies [27].

Knowledge based models are a set of rules created by experts based on their previous

learned experiences – the advantage is that the model is relatively easy to create but

requires an extensive set of rules to be defined. Life expectancy models use probability

and reliability related methods to model failure data with statistical distribution

functions and other metrics such as mean-time-to-failure (MTTF) and trend

extrapolation. ANN models are useful for RUL prediction when a good physical

understanding of the system can not be obtained whereas physical models require deep

understanding of the system with mathematical models [30].

Weibull distribution (Weibull minimum extreme value) function is regularly used in

life expectancy failure rate modelling, its probability density function (PDF) is defined

with equation (1), where x≥0 , c>0 and λ>0 .

f (x)=
c
λ
(
x
λ
)
c−1

exp(−(
x
λ
)
c

) (1)

λ is the scale parameter of the function and in standardized form (λ=1) Weibull

distribution is described by equation (2), where c is the shape parameter of the

function and values c>1 indicate that the failure rate is increasing over time as

depicted in Figure 12.

f (x)=cxc−1 exp(−xc) (2)

In special cases of c=1 and c=2 Weibull distributions become respectively

exponential and Rayleigh distributions [31].

29

Figure 11. Remaining useful life [27],[30].

ARMA (autoregressive moving average) and ARIMA (autoregressive integrated

moving average) statistical modelling is another common method for time series

forecasting where future states are defined as a linear combination based on previous

observations [30].

2.4 Data collection devices

This subchapter gives an overview of devices that were considered and tested for this

thesis. Various hardware solutions for OBD-II data collection with cellular connectivity

options already exist. These devices are typically Arduino or Raspberry Pi based, some

of them are listed in Table 1.

ELM327 is an integrated circuit (IC) from ELM Electronics which supports all five

OBD-II protocols and found inside many scan tools. These devices act like a bridge

between OBD-bus and computer serial interface (WiFi, Bluetooth or USB) and are

configured using AT (ATtention) commands [32]. Many smartphone based apps

compatible with ELM327 OBD-II scan tools exist which mainly communicate over a

Bluetooth connection to monitor in vehicle signals. While WiFi and Bluetooth allow

30

Figure 12. Weibull distribution probability density function.

convenient access to OBD-bus, they generally impose weak security. USB-based

ELM327 scan tool was used in this thesis as a part of data acquisition system from

vehicle CAN-bus while Bluetooth-based adapter was used in initial phases as the

functionality of these devices is the same.

Table 1. OBD-II data collection devices.

Device name Description

Huasheng HS-4000C CAT M1/NB OBD GPS Tracker

Teltonika FMM001 LTE CAT M1/GNSS/BLE plug and play OBD
tracker

Freematics ONE OBD-II telematics prototyping platform

AutoPi Telematics Unit WiFi/NB/Cat M1 telemetry device

Raspberry Pi is a singleboard computer (SBC) which comes with various connectivity

options such as WiFi, Bluetooth, USB, Ethernet and GPIO (general purpose input-

output). Raspberry Pi runs on Linux operating system and due to its low cost is widely

used as an IoT device with the addition of sensor boards and other applications.

PiCAN2 is an add-on board for Raspberry Pi which allows it to communicate with

CAN-bus (CAN v2.0B at 1 Mbit/s) over a network interface provided by SocketCAN

driver. With SocketCAN it is possible to monitor traffic or send messages to CAN-bus

using provided application programming interface (API).

Arduino is a singleboard microcontroller which can be extended with various shields to

act as an IoT device for data acquisition. The computational power of these devices is

limited and they can generally be assigned to perform a specific task as running multiple

threads is not supported, which complicates communication with multiple serial devices

at the same time. Arduino MKR NB 1500 is a board integrated with narrowband

modem which was tested initially for this thesis. The advantage of using a

microcontroller such as Arduino is that they can start operating instantly when powered

on as there is no overhead in terms of operating system which needs to boot and shut

down properly as is the case with Raspberry Pi. The downside, however is that a lot of

low-level code is needed (managing memory, buffers, data type conversions) and the

31

software needs to be compiled and uploaded every time a change is made which limits

the rate at which a prototype can be developed.

HS-4000C is an OBD-based telematics device (microcontroller) which was tested with

a view for data collection for this thesis. The configuration of this device is done over a

serial connection and server side communication – everything had to be implemented on

the cloud server:

 a TCP server instance was created with Python socketserver module

 all encoding and decoding functions were explicitly implemented following

device protocol

A common approach with many commercially available devices appears to be to use

messaging protocols where data is packed as hexadecimal strings using type-length-

values (TLVs). On the one hand this approach can make data transmissions more

efficient but on the other it makes cloud server integration more difficult because data

needs to be parsed accordingly to each devices specification and firmware. In the end

not enough usable data could be collected from the device for this thesis – at the time of

writing this many of the standard PIDs (parametric identifiers) we were interested in

were not supported.

2.4.1 Conclusion from tested devices

An existing solution which could be easily modified to perform various experiments

and to answer the research question of this thesis was not found, therefore it was

decided to develop a prototype device which could:

 work independently from a smartphone and not require interaction from the

driver

 be easy to access, configure and monitor

 use open standards and frameworks which are easy to interpret and process such

as JSON (JavaScript Object Notation) and MQTT.

32

ELM327-based scan tools and Raspberry Pi were found to be straightforward to work

with and fulfilled the above requirements. In this thesis only standard OBD-II PIDs

were considered to be used. Using standard OBD-II PIDs we are able to access only a

part of sensors that are available in a vehicle – the manufacturers are not obligated to

support all standard PIDs and as a result their availability depends greatly on the make

and model of the vehicle. Access to vehicle specific non-standard PIDs is available

using expert diagnostic software (such as VCDS, ODIS, Autel, Delphi Auto) and are

beyond the scope of this thesis.

2.5 Related works

An automated fault detection approach for detecting engine pre-ignitions based on deep

neural networks is proposed in [33]. According to the authors analytical methods could

use all ECU signals to identify fault patterns more accurately – referred to as Deep

Automotive Diagnostic Network (DADN), which is implemented in Python3 with

Tensorflow and Keras frameworks. Their training dataset consists of 1600 test drives

and in total 1681 ECU signals. They have compared the resulting models’ accuracy with

traditional classification machine learning models and shown that their model has

higher accuracy for detecting pre-ignitions of an engine while the detection of no pre-

ignitions performance was comparable with traditional models. They have shown that

the performance of the classifier can be improved if 50% of statistically relevant signals

are used. It is noted that future research is needed for implementing an onboard

embedded microcontroller with the fault detection model.

Although the focus of [33] was for model generation, the methodology and hardware

setup used for collecting ECU signals is not revealed nor which type of vehicle was

used (it is said a vehicle fleet with the same engine). It is not explained which method

has been used for obtaining statistically relevant signals to improve model classification

accuracy.

The authors of [34] have applied statistical methods (mean, 25th percentile, 75th

percentile and standard deviation) for data aggregation and used RF regression in

combination with LIME (Local Interpretable Model-agnostic Explanations) algorithm

for most relevant signals preselection to predict the ageing of a vehicle powertrain

33

component (exhaust gas recirculation cooler). They have said that based on manually

selected signals it is difficult to evaluate the ageing process of vehicle components.

They say extensive amount of data collected from one vehicle could be later used on

other similar vehicles using a cloud based approach.

Renyi entropy analysis has been used in [35] to provide information about an upcoming

fault with engine coolant temperature sensor. The authors suggest there is lack of

automated solutions for collecting and analysing data from vehicles, thus they have

reverse engineered an android app (Torque) to process its logfiles and publish the data

to a NoSQL (not only structured query language) server using HTTP (hypertext transfer

protocol) requests. The use of open source standards and technologies is encouraged in

this work for easier access to data.

The system architecture in [35] is not truly automated because it is based on the

existence of an android phone which requires the user to start an app every time for data

collection. A more automated approach could have been to develop an android service

which runs continuously in the background and a more suitable protocol with lower

packet overhead than HTTP could have been used for telemetry upload.

Statistical and ML methods have been applied in [26] to CNC (computer numerical

control) drilling machine to predict the flank wear of drillbit. They have calculated five

statistical features for each sensor and among these features have selected those which

are showing high correlation (using Spearman correlation coefficient) with measured

tool wear. For the selected features they have applied PCA to reduce the dimensionality

and the required training time of the ANN model, which yields very accurate results

based on RMSE (root mean squared error). They highlight the importance of reducing

the amount of data volume for modern industries.

A low cost PdM approach for a small manufacturing enterprise (SME) is proposed in

[36] – data acquisition system based on Raspberry Pi and a sensor board is implemented

to measure temperature and vibrations and compared to the roughness of each produced

machine part. Recursive partitioning and regression tree ML models were used to

predict machining quality.

34

They have used Dropbox in [36] as a cloud data storage due to easy integration with

Raspberry Pi, although it would have made more sense to use a database management

system instead of storing plain text files for production use.

Recently histogram data from a large fleet of heavy-duty Scania trucks was used in [37]

to build a model based on RF classification to predict failure of NOx sensor. Relevant

historical data, which is stored onboard each truck in aggregated form, is downloaded

during every workshop visit – the final dataset included 16980 trucks (with 951 reported

NOx failure data). It is noted that due to data aggregation, there is loss in information

(especially sudden changes in data) which could be used to detect a fault. It is said that

no clear improvements have not been made in the field to build predictive models from

such aggregated data. The accuracy obtained for identifying faulty trucks was 84%.

R. Prytz and others have provided a method in [38] which could be used to detect

anomalies in the operation of vehicles based on most interesting (relevant) signals. They

have collected on-board data from a Volvo truck under normal and self-inflicted fault

conditions (clogged air filter and exhaust, charge air cooler leak), in total 21 signals

were collected during each drive. LASSO (Least absolute shrinkage and selection

operator) and RLS (recursive least squares) methods have been used to obtain signals

which show strong correlation among them and used as parameters to estimate

particular signals. Classification accuracy of ML algorithms (linear regression, SVM,

RF) has been compared and their results show that RF performs much better than

others. It is said that some faults are hard to detect, attributed to the accuracy and

availability of related measurements.

Work Research
problem

Used
algorithms

Data source Data collection
hardware

Cloud
integration

[33] Engine pre-
ignition
detection

Deep neural
networks

1600 test drives, in
total 1681 ECU
signals from vehicle
fleet with same
engine

Not revealed no

[34] Ageing of
exhaust gas
recirculation
cooler

RF, LIME Data from workshop
in certain intervals

CAN logger no

35

Work Research
problem

Used
algorithms

Data source Data collection
hardware

Cloud
integration

[35] Engine coolant
temperature
sensor fault

Renyi entropy
analysis

Torque android
application

ELM327
Bluetooth
adapter

yes

[26] Drillbit flank
wear of CNC
machine

ANN, PCA Multiple sensor
monitoring system

National
Instruments
USB-6361 data
logger

no

[36] Machining
quality
prediction

Recursive
partitioning,
regression tree

CNC machine Raspberry Pi
with vibration
and temperature
sensor board

yes

[37] NOx sensor
failure
prediction

RF 16980 Scania trucks
(with 951 reported
NOx failure data)

Data logger.
Data is
downloaded
during workshop
visits

no

[38] Anomaly
detection based
on most
interesting
signals

RF, SVM,
linear
regression,
LASSO, RLS

Volvo VN780 truck,
21 signals from 14
driving runs with
normal and faulty
conditions

Data logger no

2.5.1 Conclusion

Review of PdM literature reveals that no best approach stands out that can be applied to

a PdM system – the methods used for data acquisition, availability of historical and

relevant data, computing power and expert domain knowledge all affect the accuracy of

the predictive model. ML algorithms such as ANN, SVM and RF are commonly used

for classification or regression tasks which are aided by statistical methods for feature

selection to improve accuracy of the model. Future research is needed for deploying

PdM algorithms in embedded devices. PdM can be applied to systems where gradual

deterioration or a pattern which leads to failure of a component can be observed and

identified.

36

3 Implementation of predictive maintenance system

One of the challenges faced when starting work on this thesis was to decide which

hardware solution could be used for data collection and how the device could be

integrated to cloud services for further data processing. Key aspects such as supported

communication protocols, OBD-II PIDs and configurability of the hardware were

considered. Implemented system architecture is shown in Figure 13 where the IoT

device is permanently installed inside a vehicle and requires no interaction from the

driver.

37

Figure 13. System architecture for predictive car maintenance.

3.1 Hardware configuration

Table 2 lists the components selected for the IoT device – three stackable boards and

CAN-serial bridge (Figure 14). Raspberry Pi, power supply and modem shields are

connected using 40pin headers (Figure 15). Power is provided from J1962 connector

pins 16 (battery positive) and 4 (chassis ground) to power management shield which is

configured to automatically power on and off everything (from GPIO 5V and GND

pins) based on high and low voltage thresholds. Configuration and install of power

supply is done with an install script [39].

Table 2. Selected hardware components for IoT device.

Harware component Name

CAN-serial bridge ELM327 scan tool (with USB connection)

SBC Raspberry Pi Zero WH

Modem SIM7070G shield

Power supply Zero2Go Omini shield

Storage Sandisk Extreme Pro MicroSD 32GB

38

Figure 14. Hardware components: (a) Raspberry Pi Zero, (b) Zero2Go Omini, (c) SIM7070G.

Modem and power shield both use GPIO4 pin as power on (switch) signal by default,

therefore it was not possible to install modem shield directly on power shield – instead

jumper wires were used for making connections to avoid the conflict (assigning

GPIO27 to modem). Serial communication is used between modem and Raspberry Pi

with GPIO14 and GPIO15 pins. ELM327 scan tool is connected to Raspberry Pi using

microUSB OTG cable and accessed with USB-serial interface. MicroSD card is used

for running the operating system – Raspberry Pi OS.

3.1.1 Modem configuration

All configuration and communication with the modem is done over serial port

('/dev/ttyAMA0') with baudrate 115200, all commands used are summarized in Table 3

and are referenced from SimCom manual [40]. Modem was configured for NB-IoT

mode only and MQTT was used to publish data to cloud server. Engineering mode

command was used to gather signal strength and quality parameters, also ping latency

39

Figure 15. Wiring diagram for data collection device.

data was collected to evaluate the performance of NB-IoT. There are commands which

persist – they are saved in modem non-volatile memory (NVRAM) and are required to

be set only once. Other commands which are saved in random access memory (RAM)

will need to be executed every time modem is rebooted. AT prefix is set at the

beginning of each command and carriage return (CR) is used to terminate the command.

Once a command is executed we must wait for a final reply from modem (can be 'OK'

or 'ERROR') before another command can be sent. Another aspect to keep in mind is

that unsolicited return codes (URCs) could interrupt our program if not handled

properly – URCs might be received at any time. With some modems it is possible to

turn off URCs but nothing of the sort was found in relevant documentation, therefore

the following procedure was used: (i) create a list of URCs which could be sent by the

modem, (ii) keep reading data until a final reply was found, (iii) remove URCs from

received data if present and handle them as necessary.

Table 3. SIM7070G configuration commands.

Command Description

AT+CFUN=0 Put the modem in minimal functionality mode

ATE0 Turn off echo of sent commands

AT+CNMP=38 Set preferred mode selection to LTE only

AT+CMNB=2 Set NB-IoT mode only

AT+CBANDCFG="NB-
IOT",1,2,3,4,5,8,12,13,18,19,20,25,26,28,66,7
1,85

Set NB-IoT radio frequency bands

AT+CGDCONT=1,"IP","internet.emt.ee" Define PDP (packet data protocol) context to
use IPV4 and set APN (access point name)

AT+COPS=0,0,"",9 Use automatic operator selection (operator
field is ignored) and NB-IoT mode

AT+CSDP=2 Set service domain to circuit and packet
switched networks

AT+CFUN=1 Put modem in full functionality mode

AT+CNACT=0,2 Auto activate application network

AT+CGPADDR Check if IP address is obtained from network

40

Command Description

AT+CNACT? Check if PDP is activated

AT+CNSMOD? Show current network mode

AT+COPS? Show current network mode and operator

AT+CENG? Show engineering mode data from serving and
neighbor cells (signal strengths and quality
parameters)

AT+CNTP=pool.ntp.org,12,0,0 Synchronize local time with NTP (network
time protocol) server

AT+SNPING4=51.89.167.146,1,16,1000 Send one ping request with packet size 16
bytes and timeout of 1000ms

AT+SMCONF="URL",51.89.167.146,1883 Set MQTT broker server ip and port

AT+SMCONF="USERNAME",T1_TEST_T
OKEN

Configure MQTT username (access token)

AT+SMCONF="CLEANSS",1 Use a clean MQTT session

AT+SMCONF="QOS",0 Set MQTT QoS to level 0

AT+SMCONF="RETAIN",1 Retain the last message on MQTT broker

AT+SMCONN Establish connection to MQTT broker

AT+SMSTATE? Query MQTT broker connection state

AT+SMPUB="v1/devices/me/
telemetry",52,0,1

Publish MQTT message to specified topic and
set content length (in bytes), QoS and retain
policy

AT+SMDISC Disconnect from MQTT broker

3.1.2 ELM327 configuration

ELM327 scan tool is configured in a similar manner using AT commands with baudrate

38400 over serial port ('/dev/obdscanner'). ELM327 commands are terminated with CR

and it is necessary to wait for the final reply from the device before new requests can be

made – returned ‘>’ character means it is done processing a previous request. ELM327

has programmable parameters which are stored in NVRAM but no such commands

were used. Setting up ELM327 is relatively simple as can be seen from Table 4 – in this

41

configuration a CAN filter is set to accept data only from engine ECU with CAN ID

7E0 (8 hexadecimal is added in response ID, hence 7E8) which is useful for speeding up

how frequently requests can be made. Response speed from ELM327 can be improved

if we specify how many frames (lines) of data is expected so it does not have to keep on

waiting for data to arrive until timeout (200ms) is reached [32]. Service mode 1 PIDs 0-

60 (hexadecimal) all return one data frame. We have already set CAN receive filter, so

only one data frame is expected. We can therefore simply append “1” to the end of a

PID request. In such configuration new data can be requested every 10-20ms.

Table 4. ELM327 configuration commands.

Command Description

ATZ Reset the device

ATE0 Turn off echo of sent commands

ATL0 Turn off linefeeds (newline characters)

ATS0 Turn off printing of spaces

ATH1 Turn on message headers (reveals CAN ID)

ATTP6 Set ISO 15765-4 CAN (11 bit ID, 500 kbaud)
as OBD-II protocol

AT CRA 7E8 Set CAN receive filter which accepts
responses only from engine ECU with CAN
ID 7E8

ATRV Get battery voltage

3.2 Software configuration

Software for data acquisition was programmed in Python3 and installed as system

service for automatic startup. Figure 16 depicts the flow diagram of the main program

which uses three classes: (a) MSimSerial, (b) MObdSerial, (c) MObdDecoder.

42

MSimSerial class is used for modem setup – once it has connected to packet data and

set system time from NTP (network time protocol) server (all other activity is blocked

until then), an instance of MObdSerial class is started in a separate thread which in turn

configures CAN-serial bridge and starts requesting data from engine ECU. Publishing

data to server without correct timestamps would cause problems later when analysing

data – due to network conditions data could arrive out of order. An instance of

MObdDecoder class is created within MObdSerial to convert the raw PID data to

human readable format and save it as a variable in program memory. After starting

MObdSerial thread, MSimSerial will go into an infinite while loop which publishes

decoded PID data to cloud server using MQTT protocol. The advantage of using

threading is that in data publishing loop we do not introduce delays from requesting

PIDs – latest data is instantly available. Additionally a support service (watchdog) was

created which monitors the main service and restarts it if necessary.

To optimize the performance of the device unused kernel modules and system services

were disabled in the operating system (Appendix 2). Raspi-config utility was used to

enable hardware serial on Raspberry Pi and disable login shell over serial, also system

time zone was set to UTC. Udev rule was created for CAN-serial bridge for device

name persistence (Figure 17).

43

Figure 16. Flow diagram of created system service for publishing OBD-II data to cloud server.

The prototype data collection device is depicted in Figure 18 with the engine turned on.

3.2.1 Cloud server configuration

Cloud server was set up on a virtual private server (VPS) host with specifications listed

in Table 5. Additional information about server IP address and location is disclosed in

Appendix 3. Access to the server and all configuration was done using secure shell

(SSH) tunnel with private-public keypair (password authentication and root login were

disabled). Firewall was set up with uncomplicated firewall (UFW) allowing access from

Telia Eesti AS allocated dynamic IP range [41] to SSH and MQTT (Figure 19).

44

ACTION=="add", SUBSYSTEMS=="usb", ATTRS{idProduct}=="2303",
ATTRS{idVendor}=="067b", ATTRS{version}==" 1.10",
SYMLINK+="obdscanner"

Figure 17. Udev rule for CAN-serial bridge in /etc/udev/rules.d/80-rename-obdadapter.rules.

Figure 18. Prototype data collection device.

Table 5. Cloud server specification.

Operating system Ubuntu 18.04.5 LTS

RAM 8GB

CPU cores 4

Storage 160GB Nvme SSD

Allocated bandwidth 1Gbps

ThingsBoard (3.0.1) open source IoT platform was installed on the server as a backend

for database management, device integration and real-time monitoring (Figure 20). In

ThingsBoard devices panel a new device named OmniPi_N1 was registered and its

access token was used to configure MQTT username.

45

sudo /sbin/ufw allow 9393/tcp

sudo /sbin/ufw allow from 37.157.64.0/18 to any port 1883 proto tcp

sudo /sbin/ufw allow from 46.131.0.0/16 to any port 1883 proto tcp

sudo /sbin/ufw enable

Figure 19. Cloud server firewall configuration.

Figure 20. ThingsBoard real-time dashboard view with configurable widgets: (a) desktop view, (b)
smartphone view.

In ThingsBoard the way messages (incoming data) are handled is highly configurable

using rulechains. There are three types of messages:

 Post attributes, which is used for sending device attributes (firmware version,

serial numbers etc.) to server. With MQTT API these are published to topic

v1/devices/me/attributes

 Post telemetry, which is used for sending telemetry (data from sensors) to

server. With MQTT API these are published to topic v1/devices/me/telemetry

 RPC request, which is used for listening or sending remote procedure calls

(RPC) to server. With MQTT API the device can subscribe to topic v1/devices/

me/rpc/request/+ to listen for server RPCs.

Using message type switches incoming messages can be easily distinguished and

processed in separate chains checking for existence fields in data, using scripts for data

transformation, saving to database and performing other actions such as raising alarms.

To process incoming messages a rule chain (Figure 21) was created to check for

existence fields in data and then save data to time series.

46

Figure 21. ThingsBoard rulechain for processing incoming data.

Initially ThingsBoard Javascript engine was used for transforming incoming OBD-II

data (in hexadecimal) to human readable format, however when looking at saved data

on some occasions high signal values were seen which should not have been possible.

As a workaround to fix the issue all decoding functions were implemented on the

Raspberry Pi itself.

The modem used (SIM7070G) for publishing data to cloud server did not have support

for mobility management, as it was based on 3GPP release 14, and at the time of doing

this work devices with newer release versions were not available to the author, which

presented challenges with persisting the MQTT connection to the server while driving.

During testing it was discovered that in some instances the modem would report the

MQTT connection state incorrectly and would also hang forever waiting for a proper

response for the connection state command. To overcome this problem an additional

system service was created for restarting the main service which was triggered by

following events (Appendix 4):

 modem has exceeded threshold for reporting invalid transmit power (device is in

idle mode for certain time)

 threshold for unsuccessful MQTT connection establishments exceeded

 any AT command issued by the modem did not receive a proper response during

60 seconds

 any unhandled exception occurred during execution in the main program.

3.3 Methodology

In this thesis an implementation for a vehicular data collection device based on a

singleboard computer is proposed and it is integrated with an open source IoT platform

on a Linux cloud server instance over NB-IoT radio access technology. ML algorithms

and statistical methods were used on collected driving data to build models based on

following experiments:

1) airflow restriction
2) engine (vacuum) air leak

47

In the first experiment SVR (support vector regresion), RF and MLR (multiple linear

regression) ML models for regression analysis were created and compared with simple

linear regression model from single independent variable. The accuracy of the models

were compared with the coefficient of determination, R2.

The second experiment used histograms, cumulative distribution function (CDF) and

RF classification for fault detection. In addition an ARIMA model was created from

collected and simulated data for forecasts.

Development of the data collection device was based mainly on one vehicle – no

emulators were used as it was necessary to learn how vehicle sensors react to real

driving conditions and the limitations of using NB-IoT in a mobile application. Data

was mostly collected in normal driving conditions while monitoring real-time data from

cloud server using a smartphone – the aim was not to gather data in some specific way

as done by car workshops where a vast amount of data is collected over a short time

period and observed under certain conditions. No attempts were made to store the

gathered data locally or for retransmissions in case of packet loss – it is assumed that

over a longer time period enough samples are collected and stored on the cloud server.

Another reason for collecting data this way was to make sure that the received data on

cloud server was valid (included correct timestamps) and could be used as a data source

for experiments. Data was collected from all supported standard OBD-II service mode 1

PIDs, in total 29.

Software for the data collection device was programmed in Python3 using standard

software modules. RPi.gpio and pyserial modules were used for power control and

serial communication with modem and ELM327 adapter. ML and statistical models

were also created in Python3 with the following modules:

 scipy

 scikit-learn

 statsmodels

48

4 Experimental results

In this chapter two experiments were conducted with the device configured in previous

step exploring airflow restriction and engine air leak. An overview is given for the

sensors used in each experiment and conclusions from modelling results at the end.

Finally, the reliability of the system architecture is estimated with packet loss rates

obtained from various driving conditions.

4.1 Experiment 1 – airflow restriction

The goal of the following experiment was to evaluate how ML models could be applied

to detect an anomaly with airflow rate. Sensors used for this experiment are listed in

Table 6.

Table 6. Experiment 1 OBD-II PIDs.

OBD-II MODE + PID PID name

01 10 Mass airflow

01 23 Fuel rail gauge pressure

01 0C Engine speed (RPM)

01 0D Vehicle speed

01 0F Intake air temperature

01 11 Throttle position

01 49 Accelerator pedal position d

Throttle position sensor (TPS) is a sensor inside throttle body which gives feedback to

engine control systems about the opening of throttle valve by generating a voltage

signal. Throttle valve controls the airflow into the engine, it is linked to a DC motor

which opens or closes the valve and its rotary motion is proportional to the opening

49

angle of the valve. Throttle body is equipped with two springs which are used in case of

system failure to allow minimal airflow to the engine [42].

Accelerator pedal position sensor (APP) is used for providing torque demand to the

engine control systems from the driver. For safety concerns two APP sensors are used

and the output signal generated by both sensors are continuously compared – in case of

an inconsistency between the signals, the systems will go into failsafe mode. Earlier

vehicles had a direct mechanical link (cable) between accelerator pedal and throttle

body but nowadays the opening of throttle valve is controlled electronically from APP

and other engine systems (such as cruise control). In addition to input from APP sensor

engine control system uses two maps for throttle valve control: (a) torque demand pedal

map, (b) mass airflow map [42].

Mass airflow (MAF) sensor sits between air filter box and throttle body and is used by

engine control systems to calculate the the mass of air (grams/sec) entering the engine.

Typically a “hot wire” type MAF sensor is used where the amount of current needed to

heat the wire is proportional to the airflow as air passing over the wire will cool it down

[1]. A dirty MAF sensor will cause drivability problems as it will under report the

airflow, in case of a faulty MAF sensor it could also over report the airflow.

Engine speed sensor is used by engine control system to determine the rotary speed of

engine crankshaft wheel. Engine speed is expressed in revolutions per minute (RPM).

Fuel rail gauge pressure sensor signal is used by engine control system to measure the

engine fuel pressure relative to atmospheric pressure (provided by high pressure fuel

pump) [43]. An increase in engine speed and airflow will require higher fuel pressure to

be provided to fuel injectors to maintain correct air-fuel ratio (stoichiometric) – for

gasoline engines air-fuel ratio is 14,7:1 (14,7kg of air per 1kg of fuel).

4.1.1 Data collection

Data from sensors was collected during normal driving with: (i) new air filter, (ii) fault

condition 1, (iii) fault condition 2. Data collection period for each scenario was one

week and included driving in the city and highway (Figure 22).

50

For fault condition 1, cardboard pieces of various size were placed under the air filter

and for fault condition 2 aluminium foil tape was used to mask the air filter for

additional restriction (Figure 23).

With fault condition 1 there was a moderate lack of acceleration while driving

compared to normal conditions but no warning lights were displayed. With fault

condition 2 the lag under acceleration was significant, also a warning light regarding an

error with tire pressure monitoring was displayed multiple times which did not seem

related at the time, however when air filter restriction was removed later it did not

appear again. Later, when checking engine ECU for fault codes, a pending fault code

P0101 was discovered as show on Figure 24 – MAF sensor (G70) with an implausible

signal [44]. When a fault is discovered for the first time, it is stored as a pending code,

and if also detected during the next drive cycle it will be stored as a confirmed code and

engine light will be illuminated, otherwise the pending fault will be deleted from

memory. In this case engine light was not illuminated.

51

Figure 22. Experiment 1 data collection.

Figure 23. Test setup: (a) fault condition 1, (b) fault condition 2.

4.1.2 Data processing

Individual PIDs were plotted against MAF to visualize the relationship between sensors.

Collected samples were split into training (70%) and test (30%) sets – Pearson and

Spearman correlation coefficients were calculated for each training set. Simple and

robust (Theil-Sen, Siegel) linear regression models (estimators) were created based on

training data and plotted for test data, R2 score was used to compare the accuracy of the

models. Figure 25 depicts data collected with a new air filter during one week – in total

there were 9553 samples and the majority of them were collected under normal driving

conditions which can be read from throttle position (12-30%) and engine speed (800-

2500 RPM) ranges. Throttle position and fuel rail pressure seem to have a better linear

relationship with MAF than engine speed. It is noticeable that robust linear regression

models are less sensitive to outliers in data than simple linear regression, especially

from throttle position plot. From accelerator pedal position plot it can be seen that

correlation with throttle position is quite low – this is mainly because the the plot

includes driving data with cruise control enabled (when accelerator pedal is released it

reports constantly 14.9-15.3%).

52

Figure 24. Fault code P0101: (a) ELM327, (b) VCDS.

To obtain samples for moderate to heavy acceleration (impact of restricted airflow is

noticeable under increased engine load) initially it was considered to use oxygen

53

Figure 25. Linear regression plots for original data (no air filter restriction).

(lambda) sensor voltage which under heavy acceleration should report more than 0.8V,

however while driving and observing the recorded data it appeared that oxygen sensor

along with fuel trims do not update at the same frequency as throttle position or fuel

pressure, therefore they were not used. PIDs such as absolute and calculated engine load

are available but these are calculated directly based on MAF sensor in engine ECU.

After removing the outliers from original data (using throttle position, accelerator pedal

position and vehicle speed) it can be seen in Figure 26 that linear and robust regression

models give a more unified approximation for resulting 3271 samples. Vehicle speed

and intake air temperature were also plotted individually but were eliminated from

further analysis – vehicle speed correlation coefficient was below 0.3 and intake air

temperature showed negative correlation (air density decreases with increased air

temperature, therefore mass airflow will be negatively affected).

From Figure 26 it was concluded that based on engine speed alone it was not possible to

predict mass airflow very accurately, however it could be improved by including fuel

rail pressure and throttle position.

54

55

Figure 26. Linear regression plots for preprocessed data (no air filter restriction).

4.1.3 Modelling results

ML models were trained on the processed datasets (70% of samples for training data)

using MLR, SVR and RF algorithms – SVR model used radial basis kernel function

with scaling applied to data, RF model used 10 estimators. Figure 27 compares the

prediction accuracy of the three models on test samples using R2 score – SVR and RF

both achieved close to 97%, MLR fared slightly worse with 93%. For all the created

models we can observe that the residuals are scattered around 0 without forming any

distinct shapes or patterns which is what we want to see.

Models were created based on dataset with new air filter (no added restriction) for

MLR, SVR, RF (using throttle position, fuel pressure and engine speed for input) and

simple linear regression (using only throttle position for input). Datasets with added

restriction were used as inputs for created models and R2 score was calculated in each

case. To validate the created models additional samples were gathered with unrestricted

air filter scenario which were not used for training and testing the model. The results are

summarized in Table 7.

56

Figure 27. Residual plots comparison for MLR, SVR and RF models for MAF prediction using fuel rail
pressure, throttle position and engine speed as input features with no air filter restriction.

Table 7. RF, SVR, MLR and simple linear regression R2 score comparison.

Restriction
amount

Total samples
(used
samples)

RF R2 score SVR R2 score MLR R2
score

simple linear
regression R2
score

No restriction 9553 (3271) 0.97 0.97 0.93 0.88

“25%”
cardboard
piece

9844 (3625) 0.96 0.97 0.93 0.88

“75%”
cardboard
piece

5241 (2022) 0.97 0.97 0.93 0.89

“100%”
cardboard
piece

7281 (2788) 0.96 0.95 0.92 0.86

Aluminium
foil tape

3329 (2098) 0.82 0.84 0.76 0.81

4.1.4 Conclusion from experiment

During this experiment we collected data with various amounts of restriction in air

intake and stored it on Linux cloud server using NB-IoT. Data from cloud server was

preprocessed to retain samples which were relevant to detecting issues with airflow and

finally ML and simple linear regression models were used to predict mass airflow.

Performance of the created models was compared with coefficient of degradation. It

appeared that data collected with fault condition 1 (using various size cardboard pieces

as restriction) did not have big enough of an impact on the prediction score to be clearly

identified as a fault because deviation from normal mode was minimal. No warnings or

fault codes were stored in engine ECU while performing tests for fault condition 1,

although lack of acceleration was notable with larger cardboard pieces – this could be

because cardboard pieces used as restriction were able to move around in the air filter

box and still allowing adequate airflow for normal driving. With fault condition 2 (using

aluminium foil tape as restriction), however, there was a severe loss of acceleration

caused by limited airflow and this was also confirmed with increased deviation of the

prediction scores for all models. Fault code P0101 related to implausible MAF sensor

57

signal was later found on engine ECU. All ML models that were used for this

experiment were able to predict airflow more accurately than simple linear regression

with only one input variable – SVR and RF earned highest prediction scores with 97%.

A rolling ARIMA model based on obtained prediction scores could be used to forecast

the RUL (demonstrated with the next experiment). Overall, from this experiment it was

quite surprising to learn how limited the airflow needed to be in order for a fault code to

be set by the vehicle and a significant change in the prediction scores to be seen.

4.2 Experiment 2 – air leak

The objective of this experiment is to provide an indicator which could be used to detect

a gradually developing engine air (vacuum) leak. OBD-II PIDs used in this experiment

are listed in Table 8.

Table 8. Experiment 2 OBD-II PIDs.

OBD-II MODE + PID PID name

01 03 Fuel system status

01 05 Engine coolant temperature

01 06 Short term fuel trim (bank1)

01 07 Long term fuel trim (bank1)

01 0C Engine speed

01 0D Vehicle speed

01 0E Timing advance

01 10 Mass airflow

Fuel system status indicates the current operating mode of the engine – either open loop

or closed loop mode. In open loop mode oxygen (lambda) sensors are not used as

feedback for air-fuel ratio (stoichiometric) correction because the sensors need to be

heated up before they start sending valid signals to engine ECU. The purpose of oxygen

sensors is to provide engine ECU with information regarding unburned oxygen levels in

exhaust gases, based on which engine ECU will know if air-fuel mixture is rich (too

58

much fuel) or lean (not enough fuel). Once oxygen sensors are up to temperature (in

modern vehicles a heating element is included which allows to heat them up as quickly

as 19-30 seconds) the engine will go into closed loop mode and include oxygen sensors

for fuel injection timings (pulse widths) adjustment [1].

Engine coolant temperature (ECT) sensor provides a voltage signal to engine ECU,

based on which the temperature of engine coolant liquid can be calculated – voltage

drop is measured by voltage sensing circuit across a thermistor and converted to a

temperature value [1]. ECT sensor is used during engine warm-up (open loop mode) for

air-fuel enrichment by increasing fuel injector pulse width [45].

Short term fuel trim (STFT) is calculated from oxygen sensors and is used for fuel

injection corrections (to maintain air-fuel ratio) in closed loop mode only. STFT is

expressed in percentages – (i) 0% indicates that no corrections are needed, (ii) positive

STFT values indicate a rich command (engine is running lean and more fuel is needed),

(iii) negative STFT values indicate a lean command (engine is running rich and less fuel

is needed). STFT readings in open loop mode are invalid and should be ignored. STFT

values for normal operation should generally be in range -10% to 10% [1].

Long term fuel trim (LTFT) is a learned value and used together with STFT for fuel

injection corrections – difference being that it is adapted over a longer time period than

STFT. The purpose of LTFT is to keep STFT values close to 0% – for example if STFT

is constantly showing values above 10%, LTFT will be increased (as compensation)

which allows STFT to be lowered closer to 0%. LTFT, as opposed to STFT, is also used

in open loop engine mode. Normal operation range for LTFT is from -10% to 10%.

Absolute value of total fuel trim (FTtotal), in equation (3), exceeding 15% indicates an

abnormal operation [1].

FT total=STFT+LTFT (3)

Ignition timing advance (TA) maps are used by engine ECU to set ignition timings

based on various engine working conditions to optimize engine performance and fuel

economy. TA is specified as degrees before top dead center (BTDC) of the compression

stroke – in order for air-fuel combustion to happen at desired position (10 to 20 degrees

after top dead center during the combustion stroke), spark must be given early because

59

of a 3ms ignition delay. When ignition happens too late maximum combustion

efficiency is not achieved, however when too early it results in detonation [1].

4.2.1 Data collection

Data from sensors was collected during normal operation and thereafter by creating air

leaks. Air leaks are most easily detectable with lower engine loads because the ratio of

unmetered airflow to measured airflow reported by MAF sensor will be higher. Oil rod

was removed from the car and a fuel hose with a ball valve was attached – various

degrees of air leaks could then be simulated by opening the ball valve (Figure 28).

The experiment lasted for 90 minutes and the air leak amount was increased in 15

minute intervals, during which the car was driven for 5 minutes with slow speeds

(below 50 km/h) and standing still for 10 minutes (Figure 30). Air conditioning was

turned off to reduce engine load during this experiment and the engine had been running

long enough earlier to bring it into closed loop operating mode. Observations made

while doing the experiment are summarized in Table 9.

60

Figure 28. Setup for air leak experiment.

Table 9. Observations from air leak experiment.

Interval Observations

int1 (14:30-14:45) There is no air leak and engine is running normally. LTFT is below 10%.

int2 (14:45-15:00) Small air leak is present but LTFT is still in normal range (around 10%).

int3 (15:00-15:15) Air leak is increased and LTFT is just below 15%

int4 (15:15-15:30) Air leak is increased further. During first 5 minutes there is no change in
LTFT but after driving LTFT goes above 35% when car is standing still.

int5 (15:30-15:45) Air leak is increased again and straight away the engine starts idling
roughly with increased RPM. During first 5 minutes there is no change in
LTFT but after driving LTFT goes above 45% when car is standing still.

int6 (15:45-16:00) Air leak is eliminated. LTFT is just below 45% during first 5 minutes
while STFT is at -22% indicating a rich condition. The last 5 minutes
show engine has adapted to the rich condition and LTFT is lowered to
13%.

During the experiment a trend with LTFT and TA could be observed as depicted in

Figure 29. Collected data confirms that the effect of air leak is most noticeable with low

engine loads (standstill).

61

Figure 29. Data from air leak experiment during engine idle.

According to [46] TA is retarded because of the greater combustion rate of lean air-fuel

mixture (increased oxygen from air leak) which requires less timing. Driving data with

slow speeds showed a significant change for LTFT only with the last interval where air

62

Figure 30. Data from STFT, LTFT, TA, RPM, MAF and ECT sensors during air leak experiment.

leak was at its highest. MAF showed just a slight increase within the last air leak

interval caused by rough idling (increased engine speed). At the end of the experiment

engine ECU was scanned for fault codes but none were found, although LTFT was

clearly outside the boundaries of normal operation – this was attributed to the fact that

the engine ECU needs to detect this fault condition during multiple drive-cycles.

4.2.2 Modelling results

Experimental data collection shows that most relevant data for detecting an air leak can

be obtained from fuel trim and timing advance during engine idle – other parameters

such as RPM, MAF and ECT showed little to no change. Collected data was filtered

based on vehicle speed and fuel system status to indicate whether the car was moving or

stationary and engine operating in closed loop mode.

The following two methods were used for fault detection:

1. Histograms for FTtotal and cumulative distribution function (CDF)

2. RF classifier

In the first method a set of probabilities was calculated for each observation interval as

given in equations (4). The probabilities were obtained from CDF, which was

constructed from FTtotal histogram data, and describe how FTtotal is distributed between

normal and abnormal operating ranges. The probabilities should be saved as time series

for each day when the vehicle was used (or a sufficient amount of samples were

gathered) as illustrated in Figure 31.

63

{
P1=P(FT total≤−15)=CDF (−15) ,

P2=P(−15<FT total≤0)=CDF (0)−CDF (−15) ,
P3=P(0<FT total≤15)=CDF (15)−CDF (0) ,

P4=P(FT total>15)=1−CDF (15)

(4)

Table 10 summarizes the obtained FTtotal probabilities. Under normal operating

conditions the sum of probabilities P2 and P3 should be close to 1, which it is before

creating leaks and also during leaks 1 and 2 because FTtotal is mostly below 15%. During

leak 3 approximately 96% of collected samples were outside normal operating range as

indicated by P4 which increased to 100% with leak 4 when car was standing still. From

samples that were gathered while car was moving at slow speeds we can observe that it

is slower to react to changing conditions with P4 probabilities for leaks 3 and 4 for being

22% and 85%. FTtotal did not return to normal values straight away when air leak was

eliminated due to engine ECU needing more time to adapt.

64

Figure 31. Total fuel trim histogram and empirical CDF on collected driving data.

Table 10. Total fuel trim probabilities.

Samplesidle

(Samplesmoving)

P1_idle

(P1_moving)

P2_idle

(P2_moving)

P3_idle

(P3_moving)

P4_idle

(P4_moving)

No air leak (int1) 218 (99) 0 (0) 0 (0.293) 0.995 (0.707) 0.005 (0)

Air leak 1 (int2) 221 (88) 0 (0) 0 (0.011) 1 (0.989) 0 (0)

Air leak 2 (int3) 212 (98) 0 (0) 0 (0) 0.915 (0.980) 0.085 (0.020)

Air leak 3 (int4) 217 (90) 0 (0) 0 (0.011) 0.032 (0.767) 0.968 (0.222)

Air leak 4 (int5) 218 (83) 0 (0) 0 (0) 0 (0.145) 1 (0.855)

No air leak (int6) 215 (89) 0 (0) 0 (0) 0.484 (0.663) 0.516 (0.337)

In the second method binary RF classifier was used where for simplicity observation

intervals 1-3 and 6 were labelled as 0 and intervals 4-5 were labelled as 1 indicating a

fault condition. The reason for such labelling is that small air leaks are more difficult to

detect as illustrated in Figure 29. Only samples during which the vehicle was not

moving (1301) were used and 70% of those were used for training RF classifier (using

10 estimators) while the remaining 30% were used for testing the model. The

classification accuracy of the model was 98%, as shown in Figure 32.

In this experiment time series forecasting could be based on either P4 probability from

method 1 or fault probability, equation (5), in second method

Pfault=
S fault
S total

(5)

where S fault is number of samples classified as fault and S total is the total number of

used samples. Fault probabilities for both methods are shown in Figure 33 which are

based on collected driving data – probabilities were calculated only for days which had

at least 50 relevant samples. Both methods show a similar level of performance.

65

66

Figure 33. Fault probability comparison of method1 and method2 based on collected driving data.

Figure 32. RF classification for air leak detection during engine idle.

Figure 34 shows a slowly increasing air leak based on P4 probability where simulated

data was used to train and test an ARIMA model (p=5; i=1; q=1). MSE was used to

compare the fit of ARIMA model to rolling moving average of five previous

observations and obtained scores were similar. ARIMA model should be recreated when

new observations become available to make new forecasts (creating a rolling model).

4.2.3 Conclusion from experiment

Due to the way the engine works, air leaks have most impact under low engine loads

(idling), therefore most significant data samples for analysis can be obtained from

standstill. Data for this experiment was collected with our configured device and

uploaded to cloud server. Various degrees of air leaks were created in the engine and

their influence was observed on parameters such as STFT, LTFT and TA which were

used for creating two models for fault detection. The first model used CDF obtained

from total fuel trim histograms to calculate probabilities indicating normal and

abnormal states. The second model used RF classification which resulted in 98%

accuracy. Based on an ARIMA model created from driving and simulated data it is

67

Figure 34. Air leak forecasting on simulated data using ARIMA(5,1,1) model.

shown how the used methods for fault detection could be used for time series

forecasting. Alternatively, the same approach could be used to detect a problem with

air-fuel mixture getting increasingly rich (indicated by negative fuel trim values) which

could be caused by leaking fuel injectors or faulty fuel pressure regulator.

4.3 Key performance indicator evaluation

In addition to data from OBD-II also ping latency and NB-IoT radio signal parameters

were collected and uploaded to cloud server while driving as depicted in Figure 35.

Ping latency was measured from our cloud server (hosted physically in United

Kingdom) by sending out one ping request at a time with packet size of 16 bytes and

maximum delay of 1000ms. Following serving cell NB-IoT parameters were collected:

earfcn, pci, rsrp, rssi, rsrq, sinr, tac, cellid, mcc, mnc, tx power. Ping requests and

attempts to publish data to cloud server were made only when service mode was “LTE

NB-IOT”. Timestamps (in milliseconds) were added to collected data on the NB-IoT

device, saved locally on microSD card and compared to data received on the cloud

server to calculate packet loss. Data, formatted as JSON string, was published to cloud

68

Figure 35. Flowchart for publishing ping latency, NB-IoT serving cell and OBD-II data to cloud server
using SIM7070G modem.

server using MQTT protocol. Table 11 lists the parameters used for estimating the

performance of NB-IoT and in Table 12 the results are presented for four scenarios:

1. IoT device is not moving and inside building (no OBD-II related data is sent)

2. IoT device is not moving and inside car

3. IoT device is inside car and driven in the city at moderate speeds

4. IoT device is inside car and driven at highway speeds

Table 11. Parameters for estimating the performance of NB-IoT.

Parameter Description

Duration (sec) Total duration (in seconds) of the measurement scenario

PingTX_count, PingRX_count Total number of published/received ping packets

Pinglost_count Total number of lost ping packets

Pingtimeout_count Total number of received ping packets with ping delay greater than
1000ms

Pingtimeout_rate Pingtimeout_count/PingRX_count

Pingavg_delay (ms) Average ping delay (in milliseconds) for received packets (PingRX_count
- Pingtimeout_count) where ping delay is less or equal to 1000ms

Pingavg_size (bytes) Average content length (bytes) of published ping packets

PingTot_TX, PingTot_RX
(bytes)

Total content length (bytes) of published/received ping packets

SignalTX_count,
SignalRX_count

Total number of published/received NB-IoT signal packets

Signallost_count Total number of lost NB-IoT signal packets

Signalavg_size (bytes) Average content length (bytes) of transmitted NB-IoT signal packets

SignalTot_TX,
SignalTot_RX (bytes)

Total content length (bytes) of published/received NB-IoT signal
packets

OBDTX_count,
OBDRX_count

Total number of published/received OBD-II packets

OBDlost_count Total number of lost OBD-II packets

OBDavg_size (bytes) Average content length (bytes) of published OBD-II packets

69

Parameter Description

OBDTot_TX, OBDTot_RX
(bytes)

Total content length (bytes) of published/received OBD-II packets

Tdiff_max (ms) Maximum time difference (in milliseconds) between consecutive
service mode states (“NO SERVICE” or “LTE NB-IOT”)

Countno_service,
Countin_service

Total count of service mode status for NB-IoT (“NO SERVICE” or
“LTE NB-IOT”)

TotTX_count, TotRX_count Total number of published/received packets

TotTX, TotRX (bytes) Total content length (bytes) of published/received packets

Totpkt_loss_rate Total packet loss rate: (TotTX_count - TotRX_count)/TotTX_count

Tno_service_rate (2*Countno_service)/Duration

Tno_service_max (sec) Maximum duration (in seconds) during which modem reported “NO
SERVICE”

Table 12. Obtained metrics for various driving conditions with NB-IoT device.

Inside building
(no OBD data)

Inside car (no
movement)

City driving Highway
driving

Duration (sec) 1795 1765 1596 955

PingTX_count 702 653 530 285

PingRX_count 702 653 529 285

Pinglost_count 0 0 1 0

Pingtimeout_count 0 97 221 147

Pingtimeout_rate 0% 14.854% 41.776% 51.578%

Pingavg_delay (ms) 470 428 453 547

Pingavg_size (bytes) 42 42 43 43

PingTot_TX (bytes) 29484 27620 22705 12264

PingTot_RX (bytes) 29484 27620 22661 12264

SignalTX_count 702 639 488 263

SignalRX_count 702 639 487 263

70

Inside building
(no OBD data)

Inside car (no
movement)

City driving Highway
driving

Signallost_count 0 0 1 0

Signalavg_size (bytes) 164 163 163 163

SignalTot_TX (bytes) 114818 104240 79614 42940

SignalTot_RX (bytes) 114818 104240 79451 42940

OBDTX_count - 653 522 285

OBDRX_count - 653 522 285

OBDlost_count - 0 0 0

OBDavg_size (bytes) - 354 357 356

OBDTot_TX (bytes) - 362967 186450 101574

OBDTot_RX (bytes) - 362967 186450 101574

Tdiff_max (ms) 2838 3221 3486 3318

Countin_service 702 653 530 285

Countno_service 0 9 45 59

TotTX_count 1404 1945 1540 833

TotRX_count 1404 1945 1538 833

TotTX (bytes) 144302 362967 288769 156778

TotRX (bytes) 144302 362967 288562 156778

Totpkt_loss_rate 0% 0% 0.129% 0%

Tno_service_max (sec) 0 12 28 72

Tno_service_rate 0% 1.019% 5.639% 12.356%

From results it is clear that in this implementation NB-IoT and MQTT ensure reliable

data transmissions when the IoT device is in service as the maximum obtained packet

loss rate was 0,129% with packet payload sizes ranging from 42 to 357 bytes. Higher

driving speeds affected ping delay negatively – at highway speeds 51% of received ping

requests had a delay greater than 1000ms while for city driving it was 41% and during

engine idling 14% (Figure 36). In Figure 37 we can observe NB-IoT reference signal

71

received power (RSRP) during different conditions which shows that with a strong

signal there is no need for cell reselection (device inside building) and service is not lost

once while during engine idling serving cell was reselected three times and as a result

there was no service for 18 seconds.

72

Figure 36. Ping delay: (a) inside building, (b) inside car at standstill, (c) city driving, (d) highway driving.
Negative ping values denote that timeout (1000ms) was reached.

The impact of limited mobility management in used SIM7070G modem (based on

3GPP release 14) could be noted at higher driving speeds – the IoT device had no

service for 5% of the total travel time during driving in the city at moderate speeds (on

the highway it was 12%). A possible solution to overcome mobility limitations for

vehicular applications with NB-IoT, which need not be monitored in real-time, could be

73

Figure 37. NB-IoT Reference Signal Received Power (RSRP): (a) inside building, (b) inside car at
standstill, (c) city driving, (d) highway driving.

to transmit data when the journey has ended and vehicle has been parked or it has been

detected that the vehicle has not been in motion for a while. This approach would

require data to be stored locally until it has been forwarded to the network. In this

implementation, however data was intended to be gathered over a longer time period,

thus continuous network availability and low latency were not seen as a requirement.

74

5 Conclusion and future works

In this thesis an implementation for predictive car maintenance has been developed

which is based on open solutions and uses NB-IoT for data transmissions between cloud

server and vehicle. In chapter 1 an overview was given for the reader about relevant

protocols and technologies which enable to integrate data streams from vehicles to

cloud services. In chapter 2 state of the art machine learning algorithms, maintenance

policies and techniques for estimating remaining useful life were introduced along with

data collection devices and related works in predictive maintenance.

Data acquisition has an integral part in PdM, therefore the architecture of the system

which must be able to store, transfer and process the data needs to be carefully

considered. While data loggers and telematics units which interface with OBD-bus and

communicate with cloud services is nothing new, the author of this thesis could not find

an already existing solution which:

 is easily configured and customized

 is easily integrated to any cloud platform (uses open standards which are easy to

process and interpret for such matter)

 uses NB-IoT for cloud server communications

 does not require the existence of a smartphone.

The experience gained from integrating one commercially available telematics unit was

a learning point which gave the direction of developing a prototype which takes all of

the above into account. The architecture and implementation of the configured

predictive maintenance system is introduced in chapter 3. The use of open and

inexpensive solutions makes it possible to further extend or customize this work as

desired.

75

With embedded data acquisition systems storage space and processing power are

limited, therefore a compromise needs to be made with the resources that are available –

common practice thus far has been to store and process data on a cloud server instance

or store aggregated data on the device itself. The benefits of server side processing are

clear as the processing requirements are shifted away from the end-user device,

however when monitoring systems which generate hundreds of signals frequently it

would be impractical and not even possible to transmit them in real-time. Aggregating

data can be an option in such cases but related works have confirmed that information

for fault detection could be lost as a result. For a PdM system it would suffice if data

could be analysed on the end-user device itself and only prediction results from

deployed models be returned to the server to evaluate the need for maintenance actions.

PdM is applied to systems where a gradual deviation or degradation process can be

observed and identified, therefore real-time feedback from end-user device is not a

necessity.

From the outset of this work it was not clear which parameters should be collected, how

frequently and where they should be stored – either on cloud server or on the data

collection device itself. It was decided to take the cloud server approach because this

allowed to evaluate the performance of NB-IoT in a mobile environment and at the

same time learn how sensors in vehicle react to various driving conditions. Having

access to all available data on cloud server proved to be invaluable for identifying

communication issues and validating the stored data. After having resolved all major

communication and data related issues, two experiments were conducted with the

authors own vehicle (chapter 4):

 airflow restriction

 engine air leak.

With those experiments it is shown how machine learning (using regression and

classification analysis) and statistical methods (using histograms and autoregressive

models) can be applied to data collected from vehicle CAN-bus to build models for

predictive maintenance. In the first experiment highest prediction accuracy (97%) was

obtained with RF and SVR models while in the second experiment RF obtained 98%.

76

All ML models created during the experiments had higher prediction accuracy than

models with simple linear regression based on single input variable.

Future work is needed to deploy the resulting models on the end-user device itself to

accommodate storage and processing requirements as for car manufacturers it would be

desirable to integrate such systems. With electric and especially autonomous vehicles in

mind the processing power of traditional ECUs as well as local vehicle-bus network

throughput need to be increased. Most OBD-II PIDs collected in this work are relevant

for vehicles with internal combustion engine as with electric vehicles the focus is more

on battery health and optimization management, also electric vehicles are not required

to be compliant with OBD-II.

Although the setup used in this work had limited mobility management (NB-IoT

modem was based on 3GPP release 14), we have shown (in chapter 4) that packet loss

in this implementation is not an issue even at higher driving speeds when the IoT device

is in service. Potential loss of data would occur if it is not saved locally on the device

and can not be sent to the server while there is no service – as a result in this work an

indicator describing the rate of network unavailability was used for various mobility

scenarios (standstill, city driving, highway driving). The rate of network unavailability

increased with driving speeds – for city and highway driving the obtained results were

5% and 12% respectively while at standstill it was 1%. Ping delay measurements

followed the same trend – for city and highway driving respectively 41% and 51% of

total ping packets had a delay greater than 1000ms while at standstill it was up to 14%.

Data rates provided by NB-IoT are suitable for applications with relatively small packet

sizes (few hundred bytes) and medium to low latency requirements (ping delay of

500ms and more). NB-IoT is a preferred solution where communications with cloud

server need to be established infrequently (in case some anomaly is detected) or to

report some other key indicator of the system obtained over a longer time period,

making it possible to serve thousands of devices within limited radio resources.

Combined with advancements in machine learning, the widespread adoption of PdM

should be on the rise in the future.

77

References

[1] Hatch, S. V. Computerized engine controls (9th Edition). Cengage Learning, 2012.

[2] OBD (VAG) vehicle diagnostic [WWW]
https://allpinouts.org/pinouts/connectors/car/obd-vag-vehicle-diagnostic/ (27.10.2020)

[3] Johansson, K. H., Törngren, M. & Nielsen, L. Vehicle applications of controller area
network. In Handbook of networked and embedded control systems, Birkhäuser Boston,
2005, 741-765.

[4] Watterson, C. Controller Area Network (CAN) Implementation Guide [WWW]
https://www.analog.com/media/en/technical-documentation/application-notes/AN-
1123.pdf (05.12.2020)

[5] Wu, Y. J. & Chung, J. G. Efficient controller area network data compression for
automobile applications. Frontiers of Information Technology & Electronic Engineering,
2015, 16(1), 70-78.

[6] Talbot, S. C. & Ren, S. Comparision of fieldbus systems CAN, TTCAN, FlexRay and
LIN in passenger vehicles. In 2009 29th IEEE International Conference on Distributed
Computing Systems Workshops, IEEE, 2009, 26-31.

[7] NB-IoT Deployment Guide to Basic Feature set Requirements [WWW]
https://www.gsma.com/iot/wp-content/uploads/2019/07/201906-GSMA-NB-IoT-
Deployment-Guide-v3.pdf (16.11.2020)

[8] Larmo, A., Ratilainen, A. & Saarinen, J. Impact of COAP and MQTT on NB-IoT system
performance. Sensors, 2019, 19(1), 7.

[9] Mell, P. & Grance, T. The NIST definition of cloud computing. 2011.

[10] Sinha, R. S., Wei, Y., & Hwang, S. H. A survey on LPWA technology: LoRa and NB-
IoT. Ict Express, 2017, 3(1), 14-21.

[11] The 5G Evolution: 3GPP Releases 16-17 [WWW] https://www.5gamericas.org/wp-
content/uploads/2020/01/5G-Evolution-3GPP-R16-R17-FINAL.pdf (16.11.2020)

[12] Narrowband Internet of Things [WWW]
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_application/application_notes/
1ma266/1MA266_0e_NB_IoT.pdf (27.10.2020)

[13] Andres-Maldonado, P., Ameigeiras, P., Prados-Garzon, J., Navarro-Ortiz, J. & Lopez-
Soler, J. M. Narrowband IoT data transmission procedures for massive machine-type
communications. Ieee Network, 2017, 31(6), 8-15.

[14] Mwakwata, C. B., Malik, H., Mahtab Alam, M., Le Moullec, Y., Parand, S., & Mumtaz,
S. Narrowband Internet of Things (NB-IoT): From physical (PHY) and media access
control (MAC) layers perspectives. Sensors, 2019, 19(11), 2613.

78

https://www.5gamericas.org/wp-content/uploads/2020/01/5G-Evolution-3GPP-R16-R17-FINAL.pdf
https://www.5gamericas.org/wp-content/uploads/2020/01/5G-Evolution-3GPP-R16-R17-FINAL.pdf
https://www.gsma.com/iot/wp-content/uploads/2019/07/201906-GSMA-NB-IoT-Deployment-Guide-v3.pdf
https://www.gsma.com/iot/wp-content/uploads/2019/07/201906-GSMA-NB-IoT-Deployment-Guide-v3.pdf
https://www.analog.com/media/en/technical-documentation/application-notes/AN-1123.pdf
https://www.analog.com/media/en/technical-documentation/application-notes/AN-1123.pdf
https://allpinouts.org/pinouts/connectors/car/obd-vag-vehicle-diagnostic/

[15] MQTT Version 5.0 [WWW] https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-
os.html (16.11.2020)

[16] Mitchell, T. M. Machine learning. McGraw-Hill, 1997.

[17] Ignatow, G. & Mihalcea, R. Supervised Learning. In Text Mining: A Guidebook for the
Social Sciences, Thousand Oaks: SAGE Publications, 2017, 62.

[18] Pao, Y. H. & Sobajic, D. J. Combined use of unsupervised and supervised learning for
dynamic security assessment. IEEE Transactions on Power Systems, 1992, 7(2), 878-884.

[19] Carvalho, T. P., Soares, F. A., Vita, R., Francisco, R. D. P., Basto, J. P. & Alcalá, S. G. A
systematic literature review of machine learning methods applied to predictive
maintenance. Computers & Industrial Engineering, 2019, 137, 106024.

[20] El-Rewini, Z., Sadatsharan, K., Selvaraj, D. F., Plathottam, S. J. & Ranganathan, P.
Cybersecurity challenges in vehicular communications. Vehicular Communications,
2020, 23, 100214.

[21] Belgiu, M. & Drăguţ, L. Random forest in remote sensing: A review of applications and
future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114, 24-
31.

[22] Guenther, N. & Schonlau, M. Support vector machines. The Stata Journal, 2016, 16(4),
917-937.

[23] Support Vector Machines [WWW] https://scikit-learn.org/stable/modules/svm.html#
(16.11.2020)

[24] Hardesty, L. Explained: Neural networks [WWW] https://news.mit.edu/2017/explained-
neural-networks-deep-learning-0414 (16.11.2020)

[25] Amini, A. Introduction to Deep Learning [WWW]
http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L1.pdf (16.11.2020)

[26] Caggiano, A., Angelone, R., Napolitano, F., Nele, L. & Teti, R. Dimensionality reduction
of sensorial features by principal component analysis for ANN machine learning in tool
condition monitoring of CFRP drilling. Procedia CIRP, 2018, 78, 307-312.

[27] Schmidt, B. & Wang, L. Cloud-enhanced predictive maintenance. The International
Journal of Advanced Manufacturing Technology, 2018, 99(1-4), 5-13.

[28] Krupitzer, C., Wagenhals, T., Züfle, M., Lesch, V., Schäfer, D., Mozaffarin, A., ... &
Kounev, S. A Survey on Predictive Maintenance for Industry 4.0. arXiv preprint
arXiv:2002.08224, 2020.

[29] Li, Z., Wang, K. & He, Y. Industry 4.0 - Potentials for Predictive Maintenance. Advances
in Economics, Business and Management Research, 2016.

[30] Sikorska, J. Z., Hodkiewicz, M. & Ma, L. Prognostic modelling options for remaining
useful life estimation by industry. Mechanical systems and signal processing, 2011,
25(5), 1803-1836.

[31] Weibull minimum continuous random variable [WWW]
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weibull_min.html#scipy.s
tats.weibull_min (16.11.2020)

79

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weibull_min.html#scipy.stats.weibull_min
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weibull_min.html#scipy.stats.weibull_min
http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L1.pdf
https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
https://scikit-learn.org/stable/modules/svm.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html

[32] The ELM327 data sheet [WWW]
https://www.elmelectronics.com/wp-content/uploads/2016/07/ELM327DS.pdf
(16.11.2020)

[33] Wolf, P., Mrowca, A., Nguyen, T. T., Bäker, B. & Günnemann, S. Pre-ignition detection
using deep neural networks: A step towards data-driven automotive diagnostics. In 2018
21st International Conference on Intelligent Transportation Systems (ITSC), IEEE, 2018,
176-183.

[34] Sass, A. U., Esatbeyoglu, E. & Iwwerks, T. Signal Pre-Selection for Monitoring and
Prediction of Vehicle Powertrain Component Aging. Nauka I Tehnika, 2019, 18(6), 519-
524.

[35] Kowalik, B. & Szpyrka, M. Architecture of on-line data acquisition system for car on-
board diagnostics. In MATEC Web of Conferences, EDP Sciences, 2019, 252, 02003.

[36] Sezer, E., Romero, D., Guedea, F., Macchi, M. & Emmanouilidis, C. An industry 4.0-
enabled low cost predictive maintenance approach for smes. In 2018 IEEE International
Conference on Engineering, Technology and Innovation (ICE/ITMC), IEEE, 2018, 1-8.

[37] Gurung, R. B. Random Forest for Histogram Data: An application in data-driven
prognostic models for heavy-duty trucks (Doctoral dissertation, Department of Computer
and Systems Sciences, Stockholm University). 2020.

[38] Prytz, R. Machine learning methods for vehicle predictive maintenance using off-board
and on-board data (Doctoral dissertation, Halmstad University Press). 2014.

[39] Zero2Go Omini User Manual [WWW]
http://www.uugear.com/doc/Zero2Go_Omini_UserManual.pdf (16.11.2020)

[40] SIM7080 Series AT Command Manual V1.02 [WWW]
https://www.waveshare.com/w/upload/3/39/SIM7080_Series_AT_Command_Manual_V
1.02.pdf (16.11.2020)

[41] AS3249 Telia Eesti AS [WWW] https://ipinfo.io/AS3249 (16.11.2020)

[42] Ashok, B., Ashok, S. D. & Kumar, C. R. Trends and future perspectives of electronic
throttle control system in a spark ignition engine. Annual Reviews in Control, 2017, 44,
97-115.

[43] Global OBD Vehicle Communication Software Manual [WWW]
https://www.snapon.com/Files/Diagnostics/UserManuals/GlobalOBDVehicleCommunica
tionSoftwareManual_EAZ0025B43.pdf (16.11.2020)

[44] Mass Air Flow Sensor (G70): Implausible Signal [WWW] http://wiki.ross-tech.com/wiki/
index.php/16485/P0101/000257 (16.11.2020)

[45] Audi Engine management Systems [WWW]
http://www.vaglinks.com/vaglinks_com/Docs/SSP/VWUSA.COM_SSP_941002_Engine
_Management_Level1.pdf (16.11.2020)

[46] Szabo, B. Understanding Ignition Timing: Making Maximum Power Means Knowing the
Science [WWW] https://www.enginebuildermag.com/2017/09/understanding-ignition-
timing-making-maximum-power-means-knowing-science/ (07.11.2020)

80

https://www.enginebuildermag.com/2017/09/understanding-ignition-timing-making-maximum-power-means-knowing-science/
https://www.enginebuildermag.com/2017/09/understanding-ignition-timing-making-maximum-power-means-knowing-science/
http://www.vaglinks.com/vaglinks_com/Docs/SSP/VWUSA.COM_SSP_941002_Engine_Management_Level1.pdf
http://www.vaglinks.com/vaglinks_com/Docs/SSP/VWUSA.COM_SSP_941002_Engine_Management_Level1.pdf
http://wiki.ross-tech.com/wiki/index.php/16485/P0101/000257
http://wiki.ross-tech.com/wiki/index.php/16485/P0101/000257
https://www.snapon.com/Files/Diagnostics/UserManuals/GlobalOBDVehicleCommunicationSoftwareManual_EAZ0025B43.pdf
https://www.snapon.com/Files/Diagnostics/UserManuals/GlobalOBDVehicleCommunicationSoftwareManual_EAZ0025B43.pdf
https://ipinfo.io/AS3249
https://www.waveshare.com/w/upload/3/39/SIM7080_Series_AT_Command_Manual_V1.02.pdf
https://www.waveshare.com/w/upload/3/39/SIM7080_Series_AT_Command_Manual_V1.02.pdf
http://www.uugear.com/doc/Zero2Go_Omini_UserManual.pdf
https://www.elmelectronics.com/wp-content/uploads/2016/07/ELM327DS.pdf
https://www.elmelectronics.com/wp-content/uploads/2016/07/ELM327DS.pdf
https://www.elmelectronics.com/wp-content/uploads/2016/07/ELM327DS.pdf

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Priit Kullerkupp

1 Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “5G NB-IoT Implementation for Predictive Car Maintenance”, supervised by

Muhammad Mahtab Alam

1.1 to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2 to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Techno-

logy until expiry of the term of copyright.

2 I am aware that the author also retains the rights specified in clause 1 of the non-ex-

clusive licence.

3 I confirm that granting the non-exclusive licence does not infringe other persons' in-

tellectual property rights, the rights arising from the Personal Data Protection Act or

rights arising from other legislation.

15.12.2020

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's
application for restriction on access to the graduation thesis that has been signed by the school's dean,
except in case of the university's right to reproduce the thesis for preservation purposes only. If a
graduation thesis is based on the joint creative activity of two or more persons and the co-author(s)
has/have not granted, by the set deadline, the student defending his/her graduation thesis consent to
reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-
exclusive licence, the non-exclusive license shall not be valid for the period.

81

Appendix 2 - Disabling unused kernel modules and system

services

Onboard Wifi, Bluetooth and audio modules can be disabled by editing a text file in

/boot/config.txt (as depicted in Figure 38). Additionally splash screen and boot delay

were disabled to improve system startup speed.

Unused kernel modules were blacklisted from loading in /etc/modprobe.d/rpi-

blacklist.conf (Figure 39).

Unused system services were disabled using systemctl utility (Figure 40).

82

dtoverlay=disable-bt

dtoverlay=disable-wifi

dtparam=audio=off

disable_splash=1

boot_delay=0

Figure 38. Disable hardware in /boot/config.txt.

blacklist snd_bcm2835

blacklist brcmfmac

blacklist brcmutil

blacklist btbcm

blacklist hci_uart

blacklist bcm2835_codec

blacklist v4l2_common

blacklist videobuf2_common

blacklist bcm2835_v4l2

blacklist v4l2_mem2mem

blacklist videobuf2_v4l2

Figure 39. Blaclisted kernel modules.

83

systemctl disable rpi-eeprom-update.service

systemctl disable triggerhappy.service

systemctl disable ssh.service

systemctl disable alsa-restore.service

systemctl mask alsa-restore.service

systemctl disable networking.service

systemctl disable raspi-config.service

systemctl disable dhcpcd.service

systemctl disable avahi-daemon

systemctl disable systemd-timesyncd.service

systemctl disable wpa_supplicant.service

systemctl disable hciuart.service

systemctl disable bluetooth.service

Figure 40. Disabled system services.

Appendix 3 – Cloud server information

General information about IP address and Linux distribution of cloud server is shown in

Figure 41.

84

Figure 41. Cloud server information showing public IP address, location and Linux distribution.

Appendix 4 – System service watchdog

The code in Figure 42 and Figure 43 is responsible for monitoring the contents of a text

file every 30 seconds and performing a complete reset of main service when needed.

85

#!/usr/bin/python3

-*- coding: utf-8 -*-

import os

import time

import datetime

reset_required_conf = "/home/pi/reset_required.conf"

check_interval = 30

reset_script = "/home/pi/resetomnipiservice.sh"

reset_log = "/home/pi/reset.log"

def _ts():

return datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S")

while 1:

with open(reset_required_conf, 'r') as f:

status = int(f.read(1))

print(status)

if status:

ts = _ts()

print(f"{ts} resetting service")

log reset event

with open(reset_log, 'a') as r:

r.write(f"{ts}\n")

run reset script

os.system(reset_script)

else:

print(f"{_ts()} nothing to do")

time.sleep(check_interval)

Figure 42. Code for monitoring system service.

86

#!/bin/bash

sudo systemctl stop omnipi.service

echo "omnipi.service stopped"

sleep 5

echo "0" > /home/pi/reset_required.conf

sudo systemctl start omnipi.service

echo "omnipi.service started"

Figure 43. Code for executing system service reset.

	1 Introduction 13
	1.1 Problem statement 14
	1.2 Problem description 15
	1.3 Background 16
	1.3.1 OBD-II 16
	1.3.2 Electronic Control Unit (ECU) 17
	1.3.3 Controller area network (CAN) 18
	1.3.4 Internet of Things (IoT) and cloud computing 20
	1.3.5 Narrowband Internet of Things (NB-IoT) 21
	1.3.6 Message Queuing Telemetry Transport (MQTT) 21
	1.3.7 Machine learning (ML) 22

	2 State of the art 23
	2.1 Algorithms for predictive maintenance 23
	2.1.1 Machine learning metrics 26

	2.2 Maintenance strategies 27
	2.3 Remaining useful life (RUL) 28
	2.4 Data collection devices 30
	2.4.1 Conclusion from tested devices 32

	2.5 Related works 33
	2.5.1 Conclusion 36

	3 Implementation of predictive maintenance system 37
	3.1 Hardware configuration 38
	3.1.1 Modem configuration 39
	3.1.2 ELM327 configuration 41

	3.2 Software configuration 42
	3.2.1 Cloud server configuration 44

	3.3 Methodology 47

	4 Experimental results 49
	4.1 Experiment 1 – airflow restriction 49
	4.1.1 Data collection 50
	4.1.2 Data processing 52
	4.1.3 Modelling results 56
	4.1.4 Conclusion from experiment 57

	4.2 Experiment 2 – air leak 58
	4.2.1 Data collection 60
	4.2.2 Modelling results 63
	4.2.3 Conclusion from experiment 67

	4.3 Key performance indicator evaluation 68

	5 Conclusion and future works 75
	References 78
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis 81
	Appendix 2 - Disabling unused kernel modules and system services 82
	Appendix 3 – Cloud server information 84
	Appendix 4 – System service watchdog 85
	1 Introduction
	1.1 Problem statement
	1.2 Problem description
	1.3 Background
	1.3.1 OBD-II
	1.3.2 Electronic Control Unit (ECU)
	1.3.3 Controller area network (CAN)
	1.3.4 Internet of Things (IoT) and cloud computing
	1.3.5 Narrowband Internet of Things (NB-IoT)
	1.3.6 Message Queuing Telemetry Transport (MQTT)
	1.3.7 Machine learning (ML)

	2 State of the art
	2.1 Algorithms for predictive maintenance
	2.1.1 Machine learning metrics

	2.2 Maintenance strategies
	2.3 Remaining useful life (RUL)
	2.4 Data collection devices
	2.4.1 Conclusion from tested devices

	2.5 Related works
	2.5.1 Conclusion

	3 Implementation of predictive maintenance system
	3.1 Hardware configuration
	3.1.1 Modem configuration
	3.1.2 ELM327 configuration

	3.2 Software configuration
	3.2.1 Cloud server configuration

	3.3 Methodology

	4 Experimental results
	4.1 Experiment 1 – airflow restriction
	4.1.1 Data collection
	4.1.2 Data processing
	4.1.3 Modelling results
	4.1.4 Conclusion from experiment

	4.2 Experiment 2 – air leak
	4.2.1 Data collection
	4.2.2 Modelling results
	4.2.3 Conclusion from experiment

	4.3 Key performance indicator evaluation

	5 Conclusion and future works
	References
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis
	Appendix 2 - Disabling unused kernel modules and system services
	Appendix 3 – Cloud server information
	Appendix 4 – System service watchdog

