
Tallinn 2023

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Stanislav Matšel 202869IADB

Atomic Database Updates and Messages

Publishing in Microservice Architecture

Bachelor's thesis

Supervisor: Aleksei Talisainen

 MSc

Tallinn 2023

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Stanislav Matšel 202869IADB

Jagamatu andmebaasi uuendused ja sõnumite

avaldamine mikroteenuste arhitektuuris

Bakalaureusetöö

Juhendaja: Aleksei Talisainen

 Magistrikraad

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Stanislav Matšel

28.02.2023

4

Abstract

The aim of the thesis was to implement atomic database updates and event publishing in

scope of existing application and provide description of work which was done to fulfil

requirements.

The analysis evaluates technologies of existing application and theoretical approaches

which can be used for problem-solving. Proof of concept was developed using

information of analysis.

Solution described in proof of the concept was evaluated and delivered to production

environment. During solution operation was found places for initial solution

improvement, improvements was implemented and delivered to production environment

as well.

The solution metrics was collected and analysed which gives an overview of solution

performance.

The result of the thesis is a working solution using outbox pattern with transaction log

tailing on production environment.

The thesis is written in English and is 46 pages long, including 7 chapters, 17 figures and

9 tables.

5

Annotatsioon

Jagamatu andmebaasi uuendused ja sõnumite avaldamine mikroteenuste

arhitektuuris

Lõputöö eesmärk on rakendada jagamatu andmebaasi uuendused ja sõnumite avaldamine

olemasoleva rakenduse raames ning kirjeldada, kuidas see oli tehtud et täita nõuded.

Töö käigus on tehtud olemasolevate rakenduste tehnoloogiate ning antud probleemi

teoreetilisi lähenemisviiside analüüs. Analüüsi tulemused olid kasutatud, et välja töötada

lahenduse kontseptsiooni ning tõendada antud lahendus võib kasutatud probleemi

lahendamiseks.

Lahendus kirjeldatud kontseptsioonis oli testitud ning pärast testimist rakendatud

tootmiskeskkonnas. Antud lahenduse kasutamise käigus oli kogutud info, mis võib algses

lahenduses paremaks tegema. Lahenduses oli tehtud vajalikud täiustused, testitud ja

rakendatud tootmiskeskkonnas.

Töö käigus oli kogutud ja analüüsitud lahenduse meetrikat, mis annavad ülevaade

lahenduse jõudluse kohta.

Töö tulemus on töötav lahendus tootmiskeskkonnas, mis kasutab väljamineku mustri

andmebaasi tehingulogi sabaga.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 46 leheküljel, 7 peatükki, 17

joonist, 9 tabelit.

6

List of abbreviations and terms

ActiveMQ An open source, multi-protocol, Java-based message broker.

Apache Avro A language independent, schema-based data serialization library

Apache Kafka An event streaming platform

CDC Change data capture

Cassandra An open-source NoSQL distributed database

CockroachDB A distributed database with standard SQL for cloud applications

Commit log A log that records all transactions and the database modifications

made by each transaction, same as transaction log

Database publication A group of tables whose data changes are intended to be

replicated through logical replication

Database transaction A fundamental concept of all database systems that it bundles

multiple steps into a single, all-or-nothing operation

Database trigger A special stored procedure that is run when specific actions occur

within a database

Db2 A family of database management system (DBMS) products

from IBM that serve several different operating system (OS)

platforms.

Debezium An open-source distributed platform for change data capture

DynamoDB A fully managed, serverless, key-value NoSQL database

designed to run high-performance applications at any scale

developed by Amazon

JVM Java virtual machine

Java General-purpose, high-level, portable, object-oriented,

interpreted language

Java virtual machine A virtual machine that enables a computer load, verify, and

execute Java bytecode.

Kafka Connect A free, open-source component of Apache Kafka that works as a

centralized data hub for simple data integration between

databases, key-value stores, search indexes, and file systems

Kafka connect source

connector

A ready-to-use component that can collect data from external

systems into Kafka topics

Kafka event A record of a state change in the system

7

Kafka event header A part of Kafka event that contains metadata about it

Kafka event key A part of Kafka even that represent key of event

Kafka event payload A part of Kafka event that represent value of event

Kafka topic A part of Apache Kafka which is used for organizing and storing

events

LinkedIn Databus A source-agnostic distributed change data capture system, which

is an integral part of LinkedIn's data processing pipeline

Log mining A process of reading the transaction log entry and publish change

as a message-to-message broker

Message broker A software that enables applications, systems, and services to

communicate with each other and exchange information

Message relay A process that sends the messages stored in the outbox to the

message broker

Microservice Software architectural style that structures an application as a

collection of services which is responsible you own domain part

MongoDB A document database

Oracle Database A multi-model database management developed Oracle

Corporation

POC Proof of concept

Pooling publisher A process of publishing events by polling the database outbox

table

PostgresSQL A powerful, open-source object-relational database system

RabbitMQ Open-source message broker

Reactive Spring A framework that enables to write asynchronous, nonblocking

architecture

Replication slot A stream of changes that can be replayed to a database client in

the order they were made on the origin server

Retention policy A policy that describes how long to keep a piece of information,

where information stored and how to dispose it when its time

SMT Single Message Transformation

SQL Server Relational database management system developed by Microsoft

Spanner Distributed SQL database management and storage service

developed by Google

Spring Cloud A framework that provides implementation of common patterns

in distributed systems

Spring Framework An application framework and inversion of control container

Transactional log A log that records all transactions and the database modifications

made by each transaction, same as commit log

8

Transactional log tailing A software architectural pattern that describes idea of tailing the

database transaction log and publishing each change as an event

Transactional outbox A software architectural pattern that describes an approach to

execute multiple tasks atomically

UML Unified Modeling Language

Vitess A database solution for deploying, scaling, and managing large

clusters of open-source database instance

WAL Write-Ahead Logging

Write Ahead Log A standard method for ensuring data integrity in database

systems

9

Table of contents

1 Introduction ... 12

2 Analysis of technologies used in application .. 13

2.1 Java programming language ... 13

2.2 Spring Framework .. 13

2.3 Reactive Spring... 13

2.4 PostgresSQL database .. 14

2.5 Apache Kafka ... 14

2.6 Apache Avro ... 14

3 Analysis of transactional messaging patterns .. 16

3.1 Publish events using database trigger ... 17

3.2 Transactional outbox .. 17

4 Proof of the concept ... 21

4.1 Choosing pattern and tools ... 21

4.2 Architecture of the solution .. 22

4.2.1 Design of outbox table ... 22

4.2.2 Role of microservice .. 23

4.2.3 Kafka Connect ... 24

5 Solution operation ... 29

5.1 PostgreSQL inactive or lagging replication slots ... 29

5.2 Huge amount of data in outbox table .. 30

6 Results ... 31

6.1 Kafka source connector performance ... 31

7 Summary .. 37

References .. 38

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 43

Appendix 2 - Explanation of connector configuration parameters................................. 44

10

List of figures

Figure 1. Sequence diagram of nonatomic event publishing.. 16

Figure 2. Sequence diagram of transactional outbox with polling publisher message relay

 .. 18

Figure 3.Sequence diagram of transactional outbox with transactional log tailing message

relay .. 19

Figure 4. OutboxWriter and DefaultOutboxWriter class diagram 24

Figure 5. Visualisation of Kafka Connect source connector pipeline 25

Figure 6. Create a publication that only publishes INSERT operations in the outbox table

 .. 25

Figure 7. Check WAL level .. 25

Figure 8. Set logical level for WAL ... 26

Figure 9. Connector creation command via Kafka Connect REST interface 28

Figure 10. Debezium connector heartbeat query .. 30

Figure 11. Retention policy specification command in database table using pg_cron

extension ... 30

Figure 12. SQL query to check count of record written to outbox table during 33

Figure 13. SQL query to collect statistic of outbox table write rate per minute for given

period .. 33

Figure 14. SQL query to collect statistic of outbox table write rate per second for given

period .. 33

Figure 15. SQL query to check count of record written to outbox table during given period

 .. 35

Figure 16. SQL query to collect statistic of outbox table write rate per minute for given

period .. 36

Figure 17. SQL query to collect statistic of outbox table write rate per second for given

period .. 36

11

List of tables

Table 1. Advantages and disadvantages of different message relay pattern 19

Table 2. Outbox table ... 22

Table 3. Semantics of outbox table .. 23

Table 5. Debezium heartbeat table ... 29

Table 6. Kafka source connector metrics from testing environment (Apr 13, 1:20 pm –

Apr 13, 1:35 pm) .. 31

Table 7. Record the writes rate of testing environment for period (Apr 13, 1:20 pm – Apr

13, 1:35 pm) .. 33

Table 8. Kafka source connector metrics from prod (Apr 4, 12:00 am – Apr 13, 4:29 pm)

 .. 34

Table 9. Record the write rate of production environment for period (Apr 4, 12:00 am –

Apr 13, 4:29 pm) .. 36

12

1 Introduction

In recent years microservice architecture has become a new trend in software

development. It brings a lot of benefits to businesses, such as agility and cost reduction

via granularity and reusability [1].

Microservice benefits are indisputable, but such architecture brings a lot of challenges for

developers such as complexity of distributed system, difficulties to refactor across

boundaries, testing service dependencies, data integrity, network congestion and latency,

careful management of features that span multiple services and other [2], [3].

Solving problems of data integrity can be quite challenging for developers to keep data

consistency. As we know, different microservices are responsible for different domain

parts, but very frequently one microservice should know what happens in another too.

There are different solutions for it - synchronous and asynchronous communication.

Asynchronous communication happens via message brokers such as Kafka or RabbitMQ.

It is usual to have some transaction in scope of one microservice, and when it is fulfilled,

it should tell other microservices that it is done. But the transaction can be rolled back,

then message should not be sent to message broker, it means sending messages to message

broker should be part of the transaction. It is common to use asynchronous

communication between microservices via message broker. Thus, the problem of atomic

database updating and sending messages arises in microservice architecture. The problem

needs to be solved to avoid data inconsistency and bugs.

Our development team faced the same problem of reliability database updating and

messaging sending. The task of resolving the problem was set before me. It was quite

challenging in scope of the given application and technology stack to implement proper

atomic database updates and messages publishing to message broker that guarantee data

consistency and synchronization between different microservices.

The thesis will give an overview of how theoretical approach can be implemented in

scope of given application with given technology stack which can be useful for future

cases.

13

2 Analysis of technologies used in application

A critical part of problem solving in scope of given application is analysis of existing

technology stack. As we know technology stack can bring additional problems or

limitation during problem solving. So, it is important to have analysis of existing

technology stack for software engineer that provide better problem solution which is

suitable for concrete application. This chapter brings overview of technologies which was

used in application before proposal of the solution.

2.1 Java programming language

Java is general-purpose, high-level, portable, object-oriented, interpreted language. Java

API was designed to be backward compatible that allow upgrade JVM version without

updating language [4], [5].

There were economic and technical factors that led to use Java as the primary

programming language for the application. Java platform provides APIs for general-

purpose computing, which will be complemented with rich set of libraries for different

purposes [6], [7].

2.2 Spring Framework

Spring Framework is an open-source application development framework designed for

Java enterprise application. Spring handles infrastructure and developers can focus on

application development. The framework has good support for building microservices in

cloud. Spring Boot with Spring Cloud build good foundation for quickly launch

application in cloud [8], [9], [10].

2.3 Reactive Spring

The casino platform should be designed to have low-latency and high-throughput loads.

One of the main reasons why Spring reactive stack was chosen for the project. Spring

reactive stack promises to bring performance and better resource utilization to the project

14

[11]. Reactive stack promises to bring a lot advantages, but it also creates additional

complexity of code design. It changes the approach to how to write code – from object-

oriented to functional programming, so the level of the development team should be more

professional.

2.4 PostgresSQL database

PostgresSQL is a powerful object-relational database. PostgreSQL offers proven

architecture, reliability, data integrity, robust feature set, extensibility, and the dedication

of the open-source community. It comes with a rich feature set and will be a good choice

for an application which will use a relation database [12], [13].

PostgresSQL has some specific features such as Write-Ahead Log which should be

considered during atomic database updates and messages publishing implementation.

2.5 Apache Kafka

Apache Kafka is an event streaming platform. Apache Kafka can be used for messaging,

web site activity tracking, metrics, log aggregation, stream processing, event sourcing and

log commit. In messaging domain Kafka is comparable to traditional messaging systems

such as ActiveMQ or RabbitMQ, but has better throughput, built-in partitioning,

replication, and fault-tolerance [14], [15].

2.6 Apache Avro

Apache Avro is a language independent data serialization system. Apache Avro uses

JSON for specifying the data structure. Avro serialization and deserialization process

allow use of two types of encodings: binary and JSON. Binary encoding is preferable

because Avro does not include type and fields name during data serialization in this

serialized data is small and can be delivered faster, but during deserialization process

consumer needs deserialize data using Avro Schema [16], [17], [18].

In this project Avro Schema was associated with Kafka topics. Applying Avro Schema

to Kafka topic gives several advantages. One of the biggest advantages is that an event

can be validated before sending it to topic, so it can be guaranteed that only events with

correct structure persist in topic. It also allows manage schema evolution via choosing

15

right compatibility type, so it protects downstream data consumers from malformed data

[19], [20].

Avro Schema presence on topic can create additional complexity during atomic database

updates and messages publishing implementation, because message should be serialized

to given format before sending it to Kafka.

16

3 Analysis of transactional messaging patterns

This chapter brings overview of the problem and analysis of theoretical approaches which

can be used for problem solving.

3.1 The problem

Microservices need to update the database and send messages/events to message queue.

The problem of atomic updating the database and sending messages can take place and

should be solved to avoid bugs and data inconsistency.

Figure 1. Sequence diagram of nonatomic event publishing

17

As we can observe from sequence diagram (Figure 1) problem of sending event can occur

in step 5 and 6 when service tries to send message to message broker. Root case can be

broker failure or network issues.

There are different approaches to how this problem will be solved. This chapter brings

overview of pattern are designed to solve the problem.

3.2 Publish events using database trigger

Atomic database updates and event/messages publishing can be achieved by using

database triggers to insert record representing event into outbox table. A separate process

will read records to send them to message broker [21]. This approach has one biggest

disadvantage that logic of event publishing will be represented in database trigger, so this

approach not considered as solution. Practical example of this approach can be found in

[22].

3.3 Transactional outbox

Transactional outbox pattern uses the idea to insert records representing the event into

additional outbox table inside same transaction with entity manipulation. In this way the

service outboxes new events which should be sent to message broker. A separate process

named message relay monitors changes in outbox table and publishes new events to

message queue.

Transactional outbox pattern needs implementation of message relay. There are two

common patterns how implement message relay:

• Polling publisher

• Transactional log tailing

Message relay with pooling publisher pattern periodically query outbox table to pull

unpublished events, publish them to message broker and deletes published events from

outbox table [2].

Pooling publisher can be implemented using the needed database driver and execute

suitable query for fetching new messages for outbox table.

18

Figure 2. Sequence diagram of transactional outbox with polling publisher message relay

Message relay with transactional log tailing pattern uses transaction log miner which is

responsible retrieving changes in database using database transactional log or commit log.

19

Figure 3.Sequence diagram of transactional outbox with transactional log tailing message relay

It is simple to conclude using Table 1 that transactional log tailing message relay has more

advantages and less disadvantages than pooling publisher message relay [2].

Table 1. Advantages and disadvantages of different message relay pattern

 Pooling publisher Transactional log tailing

Pros Simple approach, easy to

implement

Well on low scale

Well on high scale

Implementation from scratch is complex

Can be framework dependent

No change required at the application

level

Cons Frequently pooling is an

expensive operation

Query pattern for NoSQL

database is complex

Bad on high scale

Hard to understand

20

Depending on database here is different technologies that can be used for transactional

log mining.

Debezium is an open-source distributed platform for change data capture which can be

used for MongoDB, MySQL, PostgresSQL, SQL Server, Oracle, Db2, Cassandra, Vitess,

Spanner databases [23].

Some databases like CockroachDB, DynamoDB and SQL Server databases offer built-in

CDC [24], [25], [26].

There are also database specific solutions like LinkedIn Databus for Oracle [27].

21

4 Proof of the concept

Previous chapters bring an overview of the problem, the application technology stack, the

patterns of problem solving and technologies which can be used for the problem solving.

This chapter will describe how problem can be solved using given information.

4.1 Choosing pattern and tools

Using information from chapter 3 about different approaches to implement atomic

database updates and messages publishing it is decided to use transactional outbox pattern

with transactional log tailing. As we can see from chapter 3 transactional outbox with

transactional log tailing better on high scale and less expensive than polling publisher.

Information from chapter 2 should be used to choose the right tool. As we can see from

the chapter, the existing application has PostgreSQL database which does not have built-

in CDC functionality. PostgresSQL has one important feature Write-Ahead Logging [28].

It is possible to implement WAL miner using logical replication to capture changes from

scratch, but it is complex and there are tools like Debezium which already solve this

problem [29]. So, it was decided to use Debezium for these purposes.

Debezium can be embedded to any Java or Spring application, it gives more control, but

adds one more component which should be developed [30]. Main task of this component

is to read changes from database outbox table using Debezium and publish it to

corresponding Kafka topic. Here is another tool which can be used to solve this problem

– Kafka Connect. Kafka Connect is a tool for scalable and reliable streaming data between

Apache Kafka and other data systems [31]. So, Kafka Connect connector can play role of

message relay in transactional outbox pattern. Kafka Connect connector can be

configured to use Debezium connector for PostgreSQL [32], [33].

As we can see from chapter 2 Avro schema with backward compatibility was applied to

Kafka topic. It is possible to create a new topic and switch all consumers to a new topic,

but it is quite expensive to switch all microservices to a new topic. So, it was decided to

keep event structure as it is. The presence of a schema registry creates additional

difficulties for outbox pattern implementation. The outbox table should contain a column

22

with Avro byte array serialized payload which should be published to Kafka topic. Also,

some events in some topics had applied additional message headers which were not

related to stored entities. All these characteristics of existing Kafka events should be

considered during the implementation.

4.2 Architecture of the solution

4.2.1 Design of outbox table

Take into consideration all the requirements needed for Kafka event in topic final outbox

table should contain information about event key, event payload and event headers. It is

also important to have unique message id which can be included to headers for

independent consumers by detecting duplicate events. The final design of outbox table

shown in Table 2.

Table 2. Outbox table

Column Type Modifiers

id uuid not null primary key

topic varchar (255) not null

created_at timestamp with time zone not null default now()

event_key varchar (255) not null

event_payload bytea not null

event_payload_type varchar (255) not null

event_headers varchar

Table 3 gives an overview of the information that will be stored inside each column. The

data from the table will be used by Kafka Connect source connector.

23

Table 3. Semantics of outbox table

Column Semantics

id unique id of each message

topic name of topics in Kafka where the event will be routed

created_at record creation timestamp

event_key Kafka event key

event_payload Kafka event payload represented by Avro byte array

event_payload_type type of event payload represented by byte array

format: body_type:event_type

event_headers Kafka event headers

format: key1:value1,key2:value2...keyN:valueN

4.2.2 Role of microservice

Microservice should be responsible open database transaction before manipulation with

business entity then insert, update, or delete entity and insert records representing

outboxed events to outbox table and finally close transaction. Important to note that

microservice will be responsible for constructing correct outbox table record representing

event. This action is repeatable therefore it was decided to delegate this responsibility to

DefaultOutboxWriter class which will implement custom OutboxWriter interface. Figure

4 demonstrates interface and its implementation using UML. In this way we can reuse

implementation in code and exchange implementation if there are changes in storing

record representing event to database.

24

Figure 4. OutboxWriter and DefaultOutboxWriter class diagram

In given application all business logic happens in service layer and communication with

database using repository classes. Service layer class will be responsible to open database

transaction before any changes in database then do changes and write event to outbox

table using public methods of OutboxWriter interface.

4.2.3 Kafka Connect

Record representing event will be stored to outbox table and should be retrieved by Kafka

Connect using source Debezium connector. Connector will be responsible for

constructing Kafka event structure by using event key, payload, headers then event should

be routed to corresponding topic. Kafka Connect has a set of built-in single message

transformations which can be used for it [34]. The built-in transformations work quite

well in simple scenarios, but it has not any transformation which can read additional event

headers from column with given format, parse it and add them to Kafka event header.

Kafka Connect provides the possibility to create custom transformation and include it to

connector transformation pipeline [35]. The idea of such transformation is quite simple:

connector generated data change event record, check that operation is create and read

value of event_headers column from event, parse it using given format and construct new

Kafka record with added header. The structure of connector generated initial data change

event record can be found here [32].

25

Figure 5. Visualisation of Kafka Connect source connector pipeline

When header is added then event can be routed to corresponding Kafka topic by using

topic column from outbox table (Table 2). This task can be solved by using the available

SMT Outbox Event Router [36]. The visualization of source connector SMTs pipeline

can be found in Figure 5. It demonstrates that our pipeline has only two simple message

transformations, but if needed it can have more.

It is important to note that Debezium streams change events for PostgreSQL source tables

from publications that are created for the tables. Publications contain a filtered set of

change events that are generated from one or more tables [32]. Here is only one database

table (outbox) for which Kafka source connector should capture change events, so

publication should be configured accordingly. It is important to note that the outbox table

has only append mode, which means records representing event can be only inserted to

the table, so only insert events should be captured by Kafka connect source connector. As

a result, Postgres publication should be configured only for outbox table insert events. It

can be done by executing following SQL command:

CREATE PUBLICATION dbz_publication FOR TABLE outbox

WITH (publish = 'insert');

Figure 6. Create a publication that only publishes INSERT operations in the outbox table

It is important to note that PostgreSQL WAL level should be set to logical to successfully

read WAL by Debezium connector. It can be checked by executing following SQL

command:

SHOW wal_level;

Figure 7. Check WAL level

26

If WAL set to some other value, it can be changed to logical by executing following

command (Figure 8)

ALTER SYSTEM SET wal_level = logical;

Figure 8. Set logical level for WAL

After command execution configuration should be reloaded by database server restart or

by execution configuration reload command [37].

Before connector setup it should be checked that the user has all the needed permissions:

REPLICATION and LOGIN [38].

After that we can start creating Kafka connect source connector via Kafka Connect REST

interface for outbox table (Figure 9).

27

POST /connectors/ HTTP/1.1

Host: localhost:8083

Content-Type: application/json

Content-Length: 2046

{

 "name": "outbox-debezium-source-connector",

 "config": {

 "name": "outbox-debezium-source-connector",

 "connector.class": "io.debezium.connector.postgresql.PostgresConnector",

 "tasks.max": "1",

 "database.hostname": "${file:/var/secrets/kafka-connect/credentials.

properties:DATABASE_HOSTNAME}",

 "database.port": "${file:/var/secrets/kafka-connect/credentials.

properties:DATABASE_PORT}",

 "database.user": "${file:/var/secrets/kafka-connect/credentials.

properties:DATABASE_USER}",

 "database.password": "${file:/var/secrets/kafka-connect/credentials.

properties:DATABASE_PASSWORD}",

 "database.dbname": "${file:/var/secrets/kafka-connect/credentials.

properties:DATABASE_DBNAME}",

 "database.server.name": "${file:/var/secrets/kafka-connect/credentials.

properties:DATABASE_SERVER_NAME}",

 "schema.whitelist": "public",

 "table.whitelist": "public.outbox",

 "tombstones.on.delete": "false",

 "slot.name": "debezium_dev",

 "slot.drop.on.stop": "false",

 "publication.name": "dbz_publication",

 "plugin.name": "pgoutput",

 "transforms": "addHeaders,outbox",

 "transforms.addHeaders.type":

"com.b.k.e.c.t.DebeziumAddHeadersTransformation",

 "transforms.addHeaders.table.field.event.headers": "event_headers",

 "transforms.outbox.type": "io.debezium.transforms.outbox.EventRouter",

 "transforms.outbox.table.field.event.id": "id",

28

 "transforms.outbox.route.by.field": "topic",

 "transforms.outbox.table.field.event.key": "event_key",

 "transforms.outbox.table.field.event.payload": "event_payload",

 "transforms.outbox.route.topic.replacement": "${routedByValue}",

 "heartbeat.action.query": "update debezium_heartbeat set last_heartbeat_ts

= now();",

 "heartbeat.interval.ms": "60000",

 "value.converter": "io.debezium.converters.ByteBufferConverter"

 }

}

Figure 9. Connector creation command via Kafka Connect REST interface

The explanation of parameters is given in appendix 2 [39], [40], [41], [42], [43]. It is

possible to follow how SMTs pipeline is configured. It is important to note that the order

of transformations is significant, some transformations cannot be applied after others. In

this case if change order of addHeaders and outbox, it will not work, because EventRouter

class will encode event to Avro byte array, but DebeziumAddHeadersTransformation not

able to encode from Avro byte array to retrieve needed values from change data capture

event.

29

5 Solution operation

As result solution which was demonstrated in POC was evaluated and applied, but as we

know no solution can be perfect on its first attempt. Some problems can occur during

solution operation and the solution should be improved.

This chapter will describe problems which was faced during solution operation and how

initial solution was improved to resolve this problem.

5.1 PostgreSQL inactive or lagging replication slots

It is widespread practice to use a single PostgreSQL database instance to reduce the cost

of development and staging environment. WAL is shared between PostgreSQL server

instance and there is no way to sprit it between database, schema, or table. There can be

many updates in one database, but connector not captured changes for this database, as

example here is connector for outbox table in development database and staging database,

if here is a lot of inserts to development database then it can create replication slot lag.

Also, there only one outbox table included to connector changes capturing, so if changes

happen in other tables, then replication slot lag can occur. Inactive or lagging replication

could cause problems in a database, like an ever-increasing disk usage not associated to

any growth of the amount of data in the database [40]. Debezium connector have proposal

for such situation. Here is way to include Debezium heartbeat [45].

For Debezium heartbeat implementation was designed additional database table

debezium_heartbeat (Table 4).

Table 4. Debezium heartbeat table

Column Type Modifiers

last_heartbeat_ts timestamp with time zone default now() primary key

Usage of debezium_heartbeat table is simple every time when heartbeat happens insert

new timestamp to last_heartbeat_ts column. In this way following query will be used as

parameter for heartbeat.action.query in Kafka connector configuration:

30

UPDATE debezium_heartbeat

SET last_heartbeat_ts = NOW();

Figure 10. Debezium connector heartbeat query

Parameter heartbeat.interval.ms will be set to 60000 to execute this query every minute.

5.2 Huge amount of data in outbox table

Outbox table is representing append-only log in relational database. In this way every

time when record representing event inserted to database stays here forever, which cases

database size grow. In some use cases, it will be useful or necessary to store such records

forever, but in scope of given application it just consumes disk space. One way to handle

this situation is delete record representing event from database immediately after it has

been processed by Kafka connect connector and sent it to corresponding Kafka topic.

However, this approach may result in the loss of any useful information in case of a

production incident. Another option is to establish a retention policy to determine the

appropriate duration for retaining this data before it is deleted. Retention policy can be

applied on database or application level. Retention policy on database level can be done

by using pg_cron extension and specifying job using SQL command (Figure 11) for

running at 00:00 on day-of-month 8 and on Monday and keep 1 week data [46].

SELECT cron.schedule('0 0 8 * MON', $$DELETE FROM outbox WHERE created_at

< now() - interval '1 week'$$);

Figure 11. Retention policy specification command in database table using pg_cron extension

Retention policy can be also implemented on application level by using Spring

@Scheduled annotation using 0 0 8 ? * MON cron expression and executing same SQL

query by using R2dbcEntityTemplate.

Implementation retention policy in application level gives more flexibility to manipulate

cron job period via environment variable and change query if needed without

administrator just change code and re-deploy latest version. The reason for given solution

was used application level cron job for outbox table clean up.

31

6 Results

This chapter will give overview about solution operation results.

6.1 Kafka source connector performance

Every new solution needs to be evaluated before going to production environment. Load

tests were performed on the testing environment for the reliability of the solution

verification.

Kafka connector metrics (Table 5) was collected for 15 minutes during load test from

testing environment. During this period, approximately 4640 records were written to the

outbox table, processed by the connector, and written to Kafka topics. This can be

calculated by using source-record-write-total maximum value subtract minimum value

of period.

Table 5. Kafka source connector metrics from testing environment (Apr 13, 1:20 pm – Apr 13, 1:35 pm)

Metrics Avg. Min. Max.

Average time in milliseconds taken by the task to

commit offsets [43]

(offset-commit-avg-time-ms)

11.08 0 49

Average size of the batches processed by the connector

[43]

(batch-size-avg)

2.59 9e-3 3.6

Maximum time in milliseconds taken by the task to

commit offsets [43]

(offset-commit-max-time-ms)

11.08 0 49

Maximum size of the batches processed by the

connector [43] (batch-size-max)

9.02 1 14

Average percentage of the task’s offset commit attempts

that succeeded [43] (offset-commit-success-percentage)

1 1 1

Average percentage of the task’s offset commit attempts

that failed or had an error [43] (offset-commit-failure-

percentage)

0 0 0

32

Most recent number of records polled by the task but not

yet completely written to Kafka [43] (source-record-

active-count)

0.033 0 2

Maximum number of records polled by the task but not

yet completely written to Kafka [43] (source-record-

active-count-max)

9.02 1.00 14

Average number of records polled by the task but not yet

completely written to Kafka [43] (source-record-active-

count-avg)

1.40 9e-3 2

Number of records output from the transformations and

written to Kafka for the task belonging to the named

source connector in the worker [43] (since the task was

last restarted) (source-record-write-total)

13.88k 11.54k 16.18k

After transformations are applied, this is the average

per-second number of records output from the

transformations and written to Kafka for the task

belonging to the named source connector in the worker

(excludes any records filtered out by the

transformations) [43] (source-record-write-rate)

5.12 0.021 7.19

Before transformations are applied, this is the number of

records produced or polled by the task belonging to the

named source connector in the worker (since the task

was last restarted) [43] (source-record-poll-total)

13.88k 11.54k 16.18k

Before transformations are applied, this is the average

per-second number of records produced or polled by the

task belonging to the named source connector in the

worker [43] (source-record-poll-rate)

5.19 0.017 7.22

To check the count of records written to outbox table during this period here was executed

query (Figure 12) and received result of 4640 records. Number of records written to

outbox table is the same as number of records written to Kafka during this period collected

by metrics. 100% of records representing events were successfully read by connector and

33

published to corresponding Kafka topic which also confirmed by parameter from Kafka

Connect metrics.

SELECT COUNT(*)

FROM outbox

WHERE created_at >= '2023-04-13 13:20'

 AND created_at <= '2023-04-13 13:35';

Figure 12. SQL query to check count of record written to outbox table during

To collect statistics on the write rate per minute and per second of the outbox table, the

queries (Figure 13, Figure 14) were executed. There are results of the queries (Table

6)Error! Reference source not found..

SELECT AVG(req_per_ts), MIN(req_per_ts), MAX(req_per_ts)

FROM (SELECT TRUNC(EXTRACT(EPOCH FROM created_at) / EXTRACT(EPOCH FROM

INTERVAL '1 min’)) AS ts, COUNT(*) AS req_per_ts

 FROM outbox

 WHERE created_at >= '2023-04-13 13:20'

 AND created_at <= '2023-04-13 13:35'

 GROUP BY ts) AS ts_and_req_per_ts

Figure 13. SQL query to collect statistic of outbox table write rate per minute for given period

SELECT AVG(req_per_ts), MIN(req_per_ts), MAX(req_per_ts)

FROM (SELECT TRUNC(EXTRACT(EPOCH FROM created_at) / EXTRACT(EPOCH FROM

INTERVAL '1 s')) AS ts, COUNT(*) AS req_per_ts

 FROM outbox

 WHERE created_at >= '2023-04-13 13:20'

 AND created_at <= '2023-04-13 13:35'

 GROUP BY ts) AS ts_and_req_per_ts

Figure 14. SQL query to collect statistic of outbox table write rate per second for given period

Table 6. Record the writes rate of testing environment for period (Apr 13, 1:20 pm – Apr 13, 1:35 pm)

 Avg. Min Max

Records/per minute 330 27 421

Records/per second 6 1 19

The results (Table 5, Table 6) passed acceptance criteria and solution was published to

production.

34

Real metrics can only be collected and analyzed after solution operation in the production

environment. Kafka connector metrics (Table 7) was collected for period 9 days from

production environment. During this period, approximately 12.08 million records were

written to the outbox table, processed by the connector, and written to Kafka topics. This

can be calculated by using source-record-write-total maximum value subtract minimum

value of period.

Table 7. Kafka source connector metrics from prod (Apr 4, 12:00 am – Apr 13, 4:29 pm)

Metrics Avg. Min. Max.

Average time in milliseconds taken by the task to

commit offsets [43]

(offset-commit-avg-time-ms)

6.02 4.05 23.9

Average size of the batches processed by the connector

[43]

(batch-size-avg)

7.24 1.31 22.7

Maximum time in milliseconds taken by the task to

commit offsets [43]

(offset-commit-max-time-ms)

6.02 4.05 23.9

Maximum size of the batches processed by the

connector [43] (batch-size-max)

19.21 6.27 61.4

Average percentage of the task’s offset commit

attempts that succeeded [43] (offset-commit-success-

percentage)

1.00 0.99 1

Average percentage of the task’s offset commit

attempts that failed or had an error [43] (offset-commit-

failure-percentage)

0 0 0

Most recent number of records polled by the task but

not yet completely written to Kafka [43] (source-

record-active-count)

0.19 0 1.35

Maximum number of records polled by the task but not

yet completely written to Kafka [43] (source-record-

active-count-max)

19.21 6.27 61.42

35

Average number of records polled by the task but not

yet completely written to Kafka [43] (source-record-

active-count-avg)

3.71 0.85 11.52

Number of records output from the transformations and

written to Kafka for the task belonging to the named

source connector in the worker (since the task was last

restarted) [43] (source-record-write-total)

24.99M 18.57M 30.65M

After transformations are applied, this is the average

per-second number of records output from the

transformations and written to Kafka for the task

belonging to the named source connector in the worker

(excludes any records filtered out by the

transformations) [43] (source-record-write-rate)

14.52 2.64 45.46

Before transformations are applied, this is the number

of records produced or polled by the task belonging to

the named source connector in the worker (since the

task was last restarted) [43] (source-record-poll-total)

24.99M 18.57M 30.65M

Before transformations are applied, this is the average

per-second number of records produced or polled by

the task belonging to the named source connector in the

worker [43] (source-record-poll-rate)

14.51 2.63 45.55

To check the count of records written to outbox table during this period here was executed

query represented in Error! Reference source not found. and the result of the query is

12088969 records. Number of records written to outbox table is the same as number of

records written to Kafka during this period collected by metrics. 100% of records

representing events were successfully read by connector and published to corresponding

Kafka topic which also confirmed by parameter from Kafka Connect metrics.

SELECT COUNT(*)

FROM outbox

WHERE created_at >= '2023-04-04 00:00'

 AND created_at <= '2023-04-13 16:29';

Figure 15. SQL query to check count of record written to outbox table during given period

36

To collect statistics on the write rate per minute and per second of the outbox table, the

queries (Figure 16, Figure 17) were executed. There are results of the queries (Table 8).

SELECT AVG(req_per_ts), MIN(req_per_ts), MAX(req_per_ts)

FROM (SELECT TRUNC(EXTRACT(EPOCH FROM created_at) / EXTRACT(EPOCH from

INTERVAL '1 min')) AS ts, COUNT(*) AS req_per_ts

 FROM outbox

 WHERE created_at >= '2023-04-04 00:00'

 AND created_at <= '2023-04-13 16:29'

 GROUP BY ts) AS ts_and_req_per_ts;

Figure 16. SQL query to collect statistic of outbox table write rate per minute for given period

SELECT AVG(req_per_ts), min(req_per_ts), max(req_per_ts)

FROM (SELECT TRUNC(EXTRACT(EPOCH FROM created_at) / EXTRACT(EPOCH FROM

INTERVAL '1 s')) AS ts, COUNT(*) AS req_per_ts

 FROM outbox

 WHERE created_at >= '2023-04-04 00:00'

 AND created_at <= '2023-04-13 16:29'

 GROUP BY ts) AS ts_and_req_per_ts;

Figure 17. SQL query to collect statistic of outbox table write rate per second for given period

Table 8. Record the write rate of production environment for period (Apr 4, 12:00 am – Apr 13, 4:29 pm)

 Avg. Min Max

Records/per minute 867 1 4347

Records/per second 15 1 2579

Using metrics (Table 7) it can be concluded that connector is able capture and process

quite a high number of records. The period when 2579 records were inserted to database

was additionally analyzed and it took only one minute to process all records by connector.

37

7 Summary

The aim of this thesis was to implement atomic database updates and event publishing in

scope of existing application and provide description of work which was done to fulfil

requirements.

This thesis demonstrates how atomic database updates and event publishing can be

implemented in scope of given technologies.

During the thesis was done analysis of technology stack of given application, which

allowed to consider the peculiarities of application and to choose more suitable tools for

problem solving. The thesis collects information about different patterns for problem

solution, analysis benefits and drawbacks of each of pattern. Proof of the concept was

developed by author taken into consideration collected information about application and

possible theoretical implementations. Proof of the concept was applied to staging

environments first, then evaluated and applied to production environment. After that

author collected feedback about solution and adjusted it to fulfil new requirements.

The thesis collects metrics results during load testing in testing environment and real

solution operation in production environment, which made it possible to verify solution

performance. The metrics show that solution is stable under high load and performs very

well in the production environment.

The approach evaluated and developed in scope of the thesis can be adjusted and used in

other applications with same technology stack. As given application uses SQL database

and the solution provided in the thesis based on SQL database features, so future

development of the topic can be development solution for NoSQL databases.

38

References

[1] Microservices and APIs: Why Should Businesses Care?, Akana, Mar. 5, 2023. Accessed:

Mar. 5, 2023. [Online]. Available: https://www.akana.com/resources/microservices-why-

should-businesses-care.

[2] C. Richardson, Microservices Patterns: With Examples in Java, New York: Manning, 2018.

[3] Microservice architecture style, Microsoft, 2023. Accessed: Mar. 3, 2023. [Online].

Available: https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/

microservices.

[4] Java: The Complete Reference, Eleventh Edition 11th Edition, New York: McGraw-Hill

Education, 2019.

[5] Upgrading major Java versions, Oracle, Oct. 6, 2014. Accessed: Mar 7, 2023. [Online].

Available: https://blogs.oracle.com/java/post/upgrading-major-java-versions.

[6] Java Top 10 Libraries, JavaTpoint, 2021. Accessed: Mar. 7, 2023. [Online]. Available:

https://www.javatpoint.com/java-top-10-libraries.

[7] Java Platform, Standard Edition & Java Development Kit, Oracle, 2023. Accessed: Mar. 7,

2023. [Online]. Available: https://docs.oracle.com/en/java/javase/11/docs/api/.

[8] Overview of Spring Framework, VMware, 2023. Accessed: Mar. 7, 2023. [Online].

Available: https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/

html/overview.html.

[9] Spring Framework Overview, VMware, 2023. Accessed: Mar. 7, 2023. [Online]. Available:

https://docs.spring.io/spring-framework/docs/current/reference/html/overview.html.

[10] Spring Cloud: Overview, VMware, 2023. Accessed: Mar. 7, 2023. [Online]. Available:

https://spring.io/projects/spring-cloud.

[11] Reactive, VMware, 2023. Accessed: Mar. 5, 2023. [Online]. Available:

https://spring.io/reactive.

[12] PostgreSQL: About, The PostgreSQL Global Development Group, 2023. Accessed: Mar. 5,

2023. [Online]. Available: https://www.postgresql.org/about/.

39

[13] PostgreSql: Feature Matrix, The PostgreSQL Global Development Group, 2023. Accessed:

Mar. 5, 2023. [Online]. Available: https://www.postgresql.org/about/featurematrix/.

[14] Apache Kafka: Introduction, Apache Software Foundation, 2023. Accessed: Mar. 9, 2023.

[Online]. Available: https://kafka.apache.org/intro.

[15] Apache Kafka: Use Cases, Apache Software Foundation, 2023. Accessed: Mar. 9, 2023

[Online]. Available: https://kafka.apache.org/uses..

[16] Apache Avro 1.11.1 Documentation, The Apache Software Foundation, 2022. Accessed:

Mar. 9, 2023 [Online]. Available: https://avro.apache.org/docs/1.11.1/..

[17] Apache Avro: Data Serialization and Deserialization, Apache Software Foundation, 2022.

Accessed: Mar. 9, 2023. [Online]. Available: https://avro.apache.org/docs/

1.11.1/specification/#data-serialization-and-deserialization.

[18] Guide to Apache Avro, Baeldung, Feb. 19, 2023. Accessed: Mar. 9, 2023. [Online].

Available: https://www.baeldung.com/java-apache-avro.

[19] Schema Evolution and Compatibility, Confluent, 2023. Accessed: Mar. 9, 2023. [Online].

Available: https://docs.confluent.io/platform/current/schema-registry/avro.html.

[20] Why Avro for Kafka Data?, Confluent, Feb. 25, 2015. Accessed: Mar. 9, 2023. [Online].

Available: https://www.confluent.io/blog/avro-kafka-data/.

[21] Publish events using database triggers, microservices.io, 2023. Accessed: Mar. 11 Mar,

2023. [Online]. Available: https://microservices.io/patterns/data/database-triggers.html.

[22] T. Eric, How to Build a Reliable Live Data Replication Architecture (Part 1): Track Events

With SQL Triggers, Jul. 13, 2021. Accessed: Mar. 11, 2023. [Online]. Available:

https://medium.com/bina-nusantara-it-division/how-to-build-a-reliable-live-data-

replication-architecture-part-1-track-events-with-sql-triggers-4d6cb3c12eac.

[23] Debezium: Connectors, Debezium Community, 2023. Accessed: Mar. 18, 2023. [Online].

Available: https://debezium.io/documentation/reference/stable/

connectors/index.html.

[24] Cockroach: Change Data Capture Overview, Cockroach Labs, 2023. Accessed: Mar. 18,

2023. [Online]. Available: https://www.cockroachlabs.com/docs/stable/

change-data-capture-overview.html#what-is-change-data-capture.

[25] Change data capture for DynamoDB Streams, Amazon, 2023. Accessed: Mar. 18, 2023.

[Online]. Available: https://docs.aws.amazon.com/amazondynamodb/latest/

40

developerguide/Streams.html.

[26] Enable and disable change data capture, Microsoft, 2023. Accessed: Mar. 18, 2023.

[Online]. Available: https://learn.microsoft.com/en-us/sql/relational-databases/

track-changes/enable-and-disable-change-data-capture-sql-server?view=sql-server-ver15.

[27] LinkedIn Databus, LinkedIn, 2023. Accessed: Mar. 18, 2023. [Online]. Available:

https://github.com/linkedin/databus.

[28] PostgreSQL: Write-Ahead Logging, The PostgreSQL Global Development Group, 2023.

Accessed: Mar. 19, 2023. [Online]. Available: https://www.postgresql.org/

docs/current/wal-intro.html.

[29] PostgreSQL Extensions to the JDBC API, The PostgreSQL Global Development Group,

2023. Accessed: Mar. 19, 2023. [Online]. Available:

https://jdbc.postgresql.org/documentation/server-prepare/.

[30] Introduction to Debezium, Baeldung, May 6, 2023. Accessed: Mar. 19, 2023. [Online].

Available: https://www.baeldung.com/debezium-intro.

[31] Kafka Connect, Confluent, 2023. Accessed: Mar. 19, 2023. [Online]. Available:

https://docs.confluent.io/platform/current/connect/index.html#kafka-connect.

[32] Debezium connector for PostgreSQL, Debezium Community, 2023. Accessed: Mar. 19,

2023. [Online]. Available: https://debezium.io/documentation/reference/stable/

connectors/postgresql.html.

[33] G. Morling, Reliable Microservices Data Exchange With the Outbox Pattern, Feb. 19, 2019.

Accessed: Mar. 19, 2023. [Online]. Available: https://debezium.io/blog/

2019/02/19/reliable-microservices-data-exchange-with-the-outbox-pattern/.

[34] Single Message Transforms for Confluent Platform, Confluent, 2023. Accessed: Mar. 20,

2023. [Online]. Available: https://docs.confluent.io/platform/current/

connect/transforms/overview.html#single-message-transforms-for-cp.

[35] Custom transformations, Confluent, 2023. Accessed: Apr. 4, 2023. [Online]. Available:

https://docs.confluent.io/platform/current/connect/transforms/custom.html#custom-

transformations.

[36] Outbox Event Router, Debezium Community, 2023. Accessed: Apr. 4, 2023. [Online].

Available: https://debezium.io/documentation/reference/stable/transformations/outbox-

event-router.html.

41

[37] PostgreSQL Documentation: ALTER SYSTEM SQL Commands, The PostgreSQL Global

Development Group, 2023. Accessed: Apr. 8, 2023. [Online]. Available:

https://www.postgresql.org/docs/current/sql-altersystem.html.

[38] Debezium connector for PostgreSQL: Setting up permissions, Debezium Community, 2023.

Accessed: Apr. 8, 2023. [Online]. Available: https://debezium.io/documentation/

reference/stable/connectors/postgresql.html#postgresql-permissions.

[39] JSONPath Syntax, SmartBear Software, 2023. Accessed: May 7, 2023. [Online]. Available:

https://support.smartbear.com/alertsite/docs/monitors/api/endpoint/jsonpath.html.

[40] Debezium connector for PostgreSQL: Connector configuration example, Debezium

Community, 2023. Accessed: May 7, 2023. [Online]. Available:

https://debezium.io/documentation/reference/stable/connectors/postgresql.html#postgresql-

example-configuration.

[41] How to Use Kafka Connect - Get Started, Confluent, 2023. Accessed: May 7, 2023. [Online].

Available: https://docs.confluent.io/platform/current/connect/userguide.html.

[42] Outbox Event Router, Debezium Community, 2023. Accessed: May 7, 2023. [Online].

Available: https://debezium.io/documentation/reference/stable/transformations/

outbox-event-router.html.

[43] Kafka Connect Configurations for Confluent Platform, Confluent, 2023. Accessed: May 7,

2023. [Online]. Available: https://docs.confluent.io/platform/current/installation/

configuration/connect/index.html.

[44] Set up logical replication to Aiven for PostgreSQL: Manage inactive or lagging replication

slots, Aiven Team, 2023. Accessed: Apr. 9, 2023. [Online]. Available:

https://docs.aiven.io/docs/products/postgresql/howto/setup-logical-replication#manage-

inactive-or-lagging-replication-slots.

[45] Debezium connector for PostgreSQL: WAL disk space consumption, Debezium Community,

2023. Accessed: Apr. 9, 2023. [Online]. Available: https://debezium.io/documentation/

reference/stable/connectors/postgresql.html#postgresql-wal-disk-space.

[46] PostgresSQL extention pg_cron official github page, Citus Data, 2023. Accessed: Apr. 10,

2023. [Online]. Available: https://github.com/citusdata/pg_cron.

[47] Monitor Kafka Connect and Connectors: Use JMX to Monitor Connect, Confluent, 2023.

[Online]. Available: https://docs.confluent.io/platform/current/connect/

monitoring.html#use-jmx-to-monitor-kconnect. Accessed: May 6, 2023.

42

[48] Kafka Connect Security Basics, Confluent, 2023. [Online]. Available:

https://docs.confluent.io/platform/current/connect/security.html#fileconfigprovider.

Accessed: Apr. 8, 2023.

43

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Stanislav Matšel

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis,"Atomic Database Updates and Messages Publishing in Microservice

Architecture" supervised by Aleksei Talisainen

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation thesis

that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis is based

on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her graduation thesis

consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive license shall not be

valid for the period.

44

Appendix 2 - Explanation of connector configuration

parameters

JSONPath of payload Explanation

$['name'] The name of the connector

$['config’] The connector’s configuration

$['config’]['name'] The name of the connector

$['config']['connector.class'] The name of this PostgreSQL

connector class

$['config']['tasks.max'] The maximum number of tasks

that should be created for this

connector

$['config']['database.hostname'] The address of the PostgreSQL

server. FileConfigProvider is

used [39] for given configuration.

$['config']['database.port'] The port number of the

PostgreSQL server.

FileConfigProvider is used [39]

for given configuration.

$['config']['database.user'] The name of the PostgreSQL user

that has the required privileges.

FileConfigProvider is used [39]

for given configuration.

$['config']['database.password'] The password for the PostgreSQL

user that has the required

privileges. FileConfigProvider is

used [39] for given configuration.

$['config']['database.dbname'] The name of the PostgreSQL

database to connect to.

FileConfigProvider is used [39]

for given configuration.

45

$['config']['database.server.name'] The database server logical name.

FileConfigProvider is used [39]

for given configuration.

$['config']['schema.whitelist'] List of schemas to include in

copying

$['config']['table.whitelist'] List of tables to include in

copying

$['config']['tombstones.on.delete'] Controls whether a delete event is

followed by a tombstone event

$['config']['slot.drop.on.stop'] Whether or not to delete the

logical replication slot when the

connector stops in a graceful,

expected way

$['config']['publication.name'] The name of the PostgreSQL

publication created for streaming

changes when using pgoutput

$['config']['plugin.name'] The name of the PostgreSQL

logical decoding plug-in installed

on the PostgreSQL server

$['config']['transforms'] Aliases for the transformations to

be applied to records

$['config']['transforms.addHeaders.type'] The addHeaders transformation

class

$['config']['transforms.addHeaders.table.field.eve

nt.headers']

The addHeaders transformation

configuration of column

containing headers in

key1:value1,key2:value2...keyN:

valueN format

$['config']['transforms.outbox.type'] The outbox transformation class

$['config']['transforms.outbox.table.field.event.id'] Specifies the outbox table column

that contains the unique event ID.

This ID will be stored in the

46

emitted event’s headers under the

id key

$['config']['transforms.outbox.route.by.field'] Contains a value that the SMT

appends to the name of the topic

to which the connector emits an

outbox message

$['config']['transforms.outbox.table.field.event.ke

y']

Specifies the outbox table column

that contains the event key.

$['config']['transforms.outbox.table.field.event.pa

yload']

Specifies the outbox table column

that contains the event payload

$['config']['transforms.outbox.route.topic.replace

ment']

Specifies the name of the topic to

which the connector emits outbox

messages

$['config']['heartbeat.action.query'] Specifies a query that the

connector executes on the source

database when the connector

sends a heartbeat message

$['config']['heartbeat.interval.ms'] Controls how frequently the

connector sends heartbeat

messages to a Kafka topic.

$['config']['value.converter'] Converter class used to convert

between Kafka Connect format

and the serialized form that is

written to Kafka

