
TALLINN UNIVERSITY OF TECHNOLOGY 
DOCTORAL THESIS 

55/2018 

 
 
 
 
 

 
Neural Networks for Language Modeling 

and Related Tasks in Low-Resourced 
Domains and Languages 

 
 

 
 

 
 

OTTOKAR  TILK 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 



TALLINN UNIVERSITY OF TECHNOLOGY 
School of Information Technologies  
Department of Software Science 

This dissertation was accepted for the defence of the degree of Doctor of Philosophy in 
Informatics on June 15th, 2018. 

Supervisors: Tanel Alumäe, Ph.D.  
Tallinn University of Technology 
Tallinn, Estonia 

Prof. Emer. Leo Võhandu 
Tallinn University of Technology 
Tallinn, Estonia 

Opponents: Ebru Arısoy Saraçlar, Ph.D., Assistant Professor 
MEF University 
Istanbul, Turkey 

Anton Ragni, Ph.D., Senior Research Associate 
University of Cambridge 
Cambridge, United Kingdom 

Defence of the thesis: August 30th, 2018, Tallinn 

Declaration: 
Hereby I declare that this doctoral thesis, my original investigation and achievement, 
submitted for the doctoral degree at Tallinn University of Technology has not been 
submitted for doctoral or equivalent academic degree. 

Ottokar Tilk _______________________________ 
signature 

Copyright: Ottokar Tilk, 2018 
ISSN 2585-6898 (publication) 
ISBN 978-9949-83-321-4 (publication) 
ISSN 2585-6901 (PDF)  
ISBN 978-9949-83-322-1 (PDF) 



TALLINNA TEHNIKAÜLIKOOL 
DOKTORITÖÖ 

55/2018 

 
 
 
 

 
 

 
 

Tehisnärvivõrgud keele modelleerimise ja 
sellega seotud ülesannete jaoks väheste 
ressurssidega valdkondades ja keeltes 

 
 

 
 
 

 
 

OTTOKAR  TILK 
 
 
 
 
 
 

 
 
 
 
 
 
 

 





Contents

List of publications 9

Introduction 11
Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Claims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Abbreviations 15

1 Language modeling 17
1.1 Types of language models . . . . . . . . . . . . . . . . . . . . 17

1.1.1 N -gram models . . . . . . . . . . . . . . . . . . . . . . 17
1.1.2 Maximum entropy models . . . . . . . . . . . . . . . . 19
1.1.3 Neural network models . . . . . . . . . . . . . . . . . . 19
1.1.4 Hidden event language models . . . . . . . . . . . . . 22

1.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Multi-domain recurrent neural network language modeling
and adaptation 25
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Language model adaptation . . . . . . . . . . . . . . . 26
2.1.2 Multi-domain language models . . . . . . . . . . . . . 28

2.2 Multi-domain recurrent neural network language model . . . 29
2.2.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.4 Training and testing details . . . . . . . . . . . . . . . 35
2.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Multi-domain architecture based adaptation . . . . . . . . . . 36
2.3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5



2.3.3 Training and testing details . . . . . . . . . . . . . . . 39
2.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Recurrent neural networks for punctuation restoration 45
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Long short-term memory recurrent neural network . . 49
3.2.2 Bidirectional recurrent neural network with attention

mechanism . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.3 Two-stage training for combining text and prosody . . 51

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.1 Training and testing details . . . . . . . . . . . . . . . 53
3.3.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.4 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.5 Results and analysis . . . . . . . . . . . . . . . . . . . 57
3.3.6 Ablation studies . . . . . . . . . . . . . . . . . . . . . 65

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Low-resource headline generation with neural networks 71
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1 Encoder Pre-Training . . . . . . . . . . . . . . . . . . 75
4.2.2 Decoder Pre-Training . . . . . . . . . . . . . . . . . . 76
4.2.3 Distant Supervision Pre-Training . . . . . . . . . . . . 77

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.1 Training Details . . . . . . . . . . . . . . . . . . . . . 77
4.3.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.3 Results and Analysis . . . . . . . . . . . . . . . . . . . 79
4.3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Conclusions 87
5.1 Validation of claims . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

References 93

Acknowledgments 109

Abstract 111

6



Kokkuvõte 113

A Publication I 115

B Publication II 121

C Publication III 129

D Publication IV 137

E Publication V 167

Curriculum Vitae 177

Elulookirjeldus 181

7





List of publications

This dissertation is based on the following publications:

I Tilk, O. and Alumäe, T. (2014). Multi-domain recurrent neural network
language model for medical speech recognition. In Human Language
Technologies – The Baltic Perspective, volume 268, pages 149–152. IOS
Press, DOI: 10.3233/978-1-61499-442-8-149

II Tilk, O. and Alumäe, T. (2015). LSTM for punctuation restoration in
speech transcripts. In Interspeech 2015, pages 683–687. ISSN: 1990-
9770, https://www.isca-speech.org/archive/interspeech_2015/
i15_0683.html

III Tilk, O. and Alumäe, T. (2016). Bidirectional recurrent neural network
with attention mechanism for punctuation restoration. In Interspeech
2016, pages 3047–3051. DOI: 10.21437/Interspeech.2016-1517

IV Kurimo, M., Enarvi, S., Tilk, O., Varjokallio, M., Mansikkaniemi, A.,
and Alumäe, T. (2017). Modeling under-resourced languages for speech
recognition. Language Resources and Evaluation, 51(4):961–987, ISSN:
1574-0218, DOI: 10.1007/s10579-016-9336-9

V Tilk, O. and Alumäe, T. (2017). Low-resource neural headline gener-
ation. In Proceedings of the Workshop on New Frontiers in Summa-
rization, pages 20–26. Association for Computational Linguistics, DOI:
10.18653/v1/w17-4503

Author’s contribution to the publications

I The author’s contributions were participating in defining the method-
ology, implementing the model, running the experiments and writing
most of the paper in collaboration with the co-author.

II The author’s contributions were participating in defining the method-
ology, implementing the models, running the experiments, analysing
the results and co-writing the paper.

9



III The author’s contributions were defining the methodology and the
research problem, implementing the models, running the experiments,
analyzing the results and writing most of the paper in collaboration
with the co-author.

IV The author’s contributions were in sections about multi-domain lan-
guage models and adaptation: participating in defining the method-
ology, implementing the models, running the perplexity experiments,
analyzing the results and co-writing the sections.

V The author’s contributions were defining the methodology and part
of the research problem, implementing the models, running the ex-
periments, analyzing the results and writing most of the paper in
collaboration with the co-author.

10



Introduction

Motivation

Survival of small languages largely depends on their utility in modern use
cases like voice interfaces for computer systems, automatic transcription,
chatbots, automatic translation and summarization, predictive keyboards,
optical character recognition and handwritten text recognition. One crucial
component in these and other applications where the machine has to generate
text or estimate the probability that a string is valid in a language is a
language model. The quality of the language model largely depends on the
amount and quality of the available training data. Small languages generally
have less training data available and some applications like automatic speech
recognition (ASR) systems require manual labor to produce suitable training
data limiting the amount further. Thus obtaining good performance in
low-resourced languages and domains requires extra effort. Neural network
based language models have shown great generalizability even when training
data is scarce (Gandhe et al., 2014) and flexibility in utilizing context which
makes them a good candidate for low-resource scenarios. In this work we
focus on three low-resource problems related to language modeling and
propose solutions based on neural networks.

First, we focus on training better language models for small domains
which can improve the quality of speech recognition, machine translation
and all other applications where language models are used in these domains.
Secondly, we present models for restoring punctuation in ASR output to
improve the readability and usefulness of automatic transcripts. To utilize
both text and audio based cues the model has to be trained on large texts
and limited amount of prosody annotated transcripts. Finally, we propose
methods, other than getting more data, to improve automatic generation of
headlines for documents. Automatically generated headlines greatly simplify
browsing automatic transcripts and other texts where human generated
headlines are not present.

11



Claims

This dissertation consists of the following claims:

1. Recurrent neural network language models can benefit from a multi-
domain component (Alumäe, 2013) when the dataset consists of texts
from multiple small domains.

2. The multi-domain architecture can be effectively used for low-resource
adaptation.

3. Recurrent neural networks are better for hidden event language mod-
eling and enable learning a joint model on large text data and smaller
prosody annotated data.

4. Pre-training all parameters of a neural headline generation model helps
to utilize the available data fully and improves the quality of generated
headlines on small datasets.

To support these claims we develop and empirically evaluate several neural
networks based models and methods, described in the next section.

Contributions

The contributions of this thesis can be grouped in to three language modeling
related areas:

• Language modeling (Claims 1 and 2):

– Development of a multi-domain recurrent neural network language
model that enables using the same recurrent language model for
multiple potentially small target domains.

– A method that enables using the multi-domain architecture for
language model adaptation with very small amount of in-domain
data.

• Punctuation restoration (Claim 3):

– Development of a long short-term memory recurrent neural net-
work punctuation restoration model for unsegmented text and an
open source toolkit.

– A bidirectional extension to the recurrent neural network punctu-
ation restoration model for unsegmented text with an attention
mechanism. This work also resulted in a public open source
toolkit.

12



– A two-stage training method that allows a text based punctuation
restoration model to be integrated with a low-resource prosody
based model while simultaneously adapting the model to the
target domain.

• Headline generation (Claim 4):

– Development of neural headline generation model pre-training
methods that in conjunction enable initialization of all the pa-
rameters of the model and utilize all the available text to improve
the performance on small datasets.

– Analysis of the effect of pre-training different components of
neural headline generation models.

Outline of the thesis

The rest of the thesis is organized as follows.
Chapter 1 gives a general overview of language modeling. More detailed

background of subproblems is given in Chapters 2-4.
Chapter 2 is based on the publications I (Tilk and Alumäe, 2014) and IV

(Kurimo et al., 2017). The chapter describes a multi-domain extension that
is suitable for recurrent neural network language models and experiments on
an Estonian medical domain dataset. The chapter also presents a method
for using the multi-domain component for low-resource adaptation with
experiments on Finnish broadcast news dataset.

Chapter 3 is based on the publications II (Tilk and Alumäe, 2015) and
III (Tilk and Alumäe, 2016). The chapter presents two recurrent neural
network model architectures for punctuation restoration along with a two-
stage training method for utilizing smaller texts annotated with prosodic
features. The proposed models are evaluated on Estonian and English.

Chapter 4 is based on the publication V (Tilk and Alumäe, 2017).
The chapter describes three pre-training methods for neural networks based
headline generation models to improve the performance when little data is
available. The methods are evaluated and analyzed on Estonian and English
datasets.

Chapter 5 concludes the thesis with a discussion about the suitability
and effectiveness of the proposed methods along with some possible future
work directions.

13





Abbreviations

ASR automatic speech recognition.

BRNN bidirectional recurrent neural network.

FFNN feedforward neural network.

GRU gated recurrent unit.

LM language model.

LSTM long short-term memory.

NLP natural language processing.

PPL perplexity.

ReLU rectified linear unit.

RNN recurrent neural network.

ROUGE recall-oriented understudy for gisting evaluation.

SER slot error rate.

SGD stochastic gradient descent.

WER word error rate.

15





Chapter 1

Language modeling

In this chapter we give a general overview of different language modeling
approaches and how their performance is evaluated. More thorough overview
of task specific backgrounds is given in corresponding chapters.

Language can be modeled on different linguistic unit levels: characters,
morphemes or morphs, compound-split words or words. The larger the unit
the more likely is the occurrence of out-of-vocabulary units. On the other
hand, smaller units may produce nonsense words during generation. In
this section we focus on word-based language models, although most of the
methods work with other linguistic units as well.

Language models are used for estimating the probability of a word
sequence P (w1, . . . , wk) which is factored into the product of the probabilities
of the individual words using the chain rule:

P (w1, . . . , wk) ≈
k∏

t=1

P (wt|ct) (1.1)

where P (wt|ct) is the probability of the word wt given its context ct (pre-
ceding words w1, . . . , wt−1 for example). By sampling from the probability
distribution at each position in the sequence the language model can also be
used for generating text.

1.1 Types of language models

This section gives an overview of the most widely used models to estimate
the word probability P (wt|ct). We will not cover less common approaches
like decision tree or random forest based and structured language models.

1.1.1 N-gram models

The n-gram language models are fast and relatively easy to train and are one
of the most widely used type of language models. The n-gram models make

17



an assumption that each word depends only on the n− 1 preceding words
(Markov assumption) and uses context ct = wt−(n−1), . . . , wt−1 to estimate
the word probability. So the sequence probability is estimated with:

P (w1, . . . , wk) ≈
k∏

i=1

P (wt|wt−(n−1), . . . , wt−1) (1.2)

The context is limited to n − 1 words due to the shortcomings of n-gram
models — n-gram models estimate the word probabilities based on the
n-gram count statistics in the training corpus:

P (wt|wt−(n−1), . . . , wt−1) =
C(wt−(n−1), . . . , wt−1, wt)

C(wt−(n−1), . . . , wt−1)
(1.3)

Given a vocabulary V with size |V | the maximum number of different possible
n-grams N grows exponentially with increasing n-gram length:

N = |V |n (1.4)

With large vocabularies and long contexts the storage of all the counts
becomes problematic, but more importantly, the fraction of valid n-grams
that are never seen in the training data rises quickly (often referred to as
the sparsity issue). As words are treated as discrete units, the n-grams with
0 counts in the training corpus would get a 0 probability according to the
Equation 1.3 and the model would consider the entire sequence impossible if
even one word does not match a sequence in the training corpus. Limiting
n to a small number (typically 3-5) alleviates the issue and there exist
additional methods to further reduce the sparsity problem. For example,
the n-gram model can fall back to a shorter n− 1-gram in case the initial
n-gram has unreliable estimate or multiple estimates with different n can be
interpolated. Another options is to discount the counts of observed n-grams
and distribute the leftover probability mass between all unseen n-grams.
These techniques are used and combined in several smoothing methods (Good,
1953; Katz, 1987; Kneser and Ney, 1995) for n-gram models. The model size
can also be reduced by pruning — for example, deleting the counts that affect
the training set perplexity (PPL) less than some threshold (Stolcke, 1998).
Additional efforts towards helping the n-gram models generalize better to
unseen n-grams have been made with class-based models (Brown et al., 1992)
that automatically assign each word to a semantic or syntactic equivalence
class and predictions are typically made by interpolating word-based and
class-based probability estimates. To give the n-gram models some awareness
about the context beyond the last n − 1 words, cache-based models have

18



been proposed (Kuhn and Mori, 1990). Cache-based models use the relative
frequency of recent use to estimate the probability of a word. Despite the
described enhancements and extensions, the inability to utilize the context
to a more full extent and poor generalizability are remaining problems of
the n-gram models.

1.1.2 Maximum entropy models

Maximum entropy language model (Rosenfeld, 1994) is a log-linear model
that computes the conditional word probability P (wt|ct) based on a weighed
sum of many context based features:

P (wt|ct) =
e
∑

j λjfj(wt,ct)

∑
wk∈V e

∑
j λjfj(wk,ct)

(1.5)

where V is the vocabulary of the model, the functions fj are feature functions
and the feature weights λj ∈ Λ are the learnable parameters. Several
algorithms, like generalized iterative scaling (Darroch and Ratcliff, 1972) or
gradient descent and their more advanced versions can be used to optimize
the parameters Λ of the model. The feature functions fj are typically
binary valued functions that indicate the occurrence of a relation between a
predicted word wt and its context ct. For example:

fj(wt, ct) =

{
1 wt = modeling & lastword(ct) = language

0 otherwise
(1.6)

The feature functions offer a great flexibility and can include local context
based word or word class n-gram features, but also long range trigger features
(Rosenfeld, 1994). The performance of the model largely depends on the
quality of features and construction of good features can be difficult.

Maximum entropy models may alternatively be viewed as a single-layer
neural network with no hidden layer and as such can be integrated into a
neural network language model as a submodel (Mikolov et al., 2011a).

1.1.3 Neural network models

Earliest attempts at modeling language with neural networks took place
already in the 80s of the last century. For example Elman (1989) used a
recurrent neural network in a small scale experiment (29-word vocabulary and
a corpus of 10000 artificially generated 2- to 3-word sentences) to predict the
next word based on previous ones. It took over 10 years of advancements in
computing power for neural networks to gain attention in language modeling
and to be used in practical experiments (Bengio et al., 2001; Schwenk and
Gauvain, 2002), but instead of recurrent models, feedforward models were

19



wt−3 wt−2 wt−1

Softmax

W 0 W 0 W 0

W 1

W 2

Figure 1.1: The description of a 3-gram FFNN LM architecture.

used and remained the main neural approach for almost another 10 years
until Mikolov et al. (2010) developed a recurrent neural network (RNN)
language model (LM) that worked well.

The feedforward neural network (FFNN) LMs are essentially an n-gram
approach that predict the next word wt based on the last n− 1 words, but
they solve the generalization problem that exists in models that treat each
word as a discrete unit, by projecting each word into a lower dimensional
space where words are represented by continuous vectors that are jointly and
automatically learned with the rest of the model. The trained continuous
vector representations of words (often referred to as distributed representa-
tions or word embeddings) are similar for words that are similar. Thus the
model can generalize and assign similar probabilities to unseen but similar
sequences, even if none of the word identities match a sequence in the training
data as long as the words in the sequence are semantically or syntactically
similar (Bengio et al., 2001). The idea of distributed representations itself
is much older (Hinton, 1986), but it was Bengio et al. (2001) who finally
applied it to language modeling.

A typical architecture of FFNN LMs is described in Figure 1.1. The
n− 1 context words are represented by one-hot vectors (an input vocabulary
Vi sized vector with |Vi| − 1 zeros and a 1 at the position that corresponds
to the word index in the input vocabulary). The projection weights W 0 are
shared by all context positions and the matrix-vector multiplication in the
distributed representation computation is typically replaced with a low cost
word index based row lookup operation. The distributed representations of
context words are then concatenated and passed through a nonlinear hidden
layer. The hidden layer is followed by the computationally most expensive
output layer that computes the conditional probability distribution for the

20



wt−1 ct−1

ct

Softmax

W 0 W 1

W 2

Figure 1.2: Description of a RNN LM architecture.

next word over the entire output vocabulary Vo using the Softmax function:

Softmaxj =
ehtW 2[j]

∑|Vo|
k=1 e

htW 2[k]
(1.7)

for j = 1, . . . , |Vo|, where ht is the output of the hidden layer and [·] selects
the column vector of the matrix.

The FFNN LMs solve the generalization problem, but the limited context
problem remains (although, FFNN LMs have been successfully experimented
with using context of up to 29 words (Schwenk et al., 2014), it still imposes
a fixed limit on the model). To solve the fixed context limitation, RNN
based LMs can be used (Mikolov et al., 2010). Like FFNN LMs the RNN
LMs also use distributed representations of words for better generalization,
but instead of using n − 1 context words as an input, only the last word
wt−1 is given as input to the model at each time step t and the rest of the
information about the context is stored in the recurrent hidden layer. The
recurrent hidden layer state ct represents the context for predicting the word
wt and is computed based on the distributed representation of the last word
wt−1 plus an affine transformation (although Mikolov et al. (2010) omitted
the bias b1) of the previous context ct−1 passed through a nonlinear function
f :

ct = f(wt−1W 0 + ct−1W 1 + b1) (1.8)

The context vector ct is then passed through the Softmax output layer to
obtain the conditional probability distribution for the next word wt. A
general description of the RNN LM can be seen in Figure 1.2.

The simple RNN LM by Mikolov et al. (2010) used a logistic sigmoid
nonlinearity in the recurrent layer which can be difficult to train to remember
long range dependencies (Bengio et al., 1994) in the sequence. To fully utilize
the potential of recurrent models, long short-term memory (LSTM) units
(Hochreiter and Schmidhuber, 1997) can be used in the recurrent layer
(Sundermeyer et al., 2012). Each LSTM unit has an internal recurrence and
multiple gating mechanisms to control its behavior:

21



• An input gate to control the flow of new information into the unit.

• An output gate to control when the internal information should be
exposed to the rest of the model.

• A forget gate that erases the stored information when necessary.

The internal recurrence has a one-to-one connection with weight 1 and
identity activation that enables it to store information for many time steps
and the gradients to flow back in time without vanishing or exploding.

The main disadvantage of neural networks based language models is their
computational complexity mainly due to the large output layer that needs
to compute probabilities for all words in the output vocabulary for proper
normalization. There are several methods to overcome the complexity of
the output layer. For example, a much smaller shortlist vocabulary of the
most frequent words can be used in the output and a faster approach like
an n-gram model can be used to compute the probabilities for less frequent
words (Schwenk and Gauvain, 2002; Bengio et al., 2001). Another option is
to assign words into classes (Mikolov et al., 2011b) and factorize the output
layer so that the output word probability can be computed based on two
much smaller Softmax layers. Even greater speed-ups can be obtained by
decomposing the output layer into a binary tree based on binary hierarchical
clustering of a WordNet semantic hierarchy (Morin and Bengio, 2005).

The flexibility of neural network based LMs enables using them separately
for a particular problem in a system (e.g., choosing the most plausible word
sequence from several acoustically similar hypotheses in a speech recognition
system) or to integrate them into a more complex neural model as a submodel
(e.g., as a conditional LM decoder in a encoder-decoder network (Bahdanau
et al., 2015) for neural machine translation or summarization) enabling
end-to-end training for a given task.

1.1.4 Hidden event language models

Instead of predicting the next word given the context P (wi|ci) like standard
LMs, hidden-event LMs (Stolcke et al., 1998) estimate the probability of a
hidden event (e.g., disfluency, segment boundary or punctuation) between
words P (ei|ci).

Hidden event LM uses an n-gram model that is trained on a joint sequence
of words and events. Each word or event probability is estimated based on a
context of n− 1 preceding words and/or events. When testing, the n-gram
model is used to estimate the transition probabilities in a hidden Markov
model where word-event pairs correspond to states and words to observations.
A forward-backward dynamic programming algorithm (Rabiner and Juang,

22



1986) is then used to compute the probability of an event P (ei|w1, . . . , wk)
based on the word sequence (Stolcke et al., 1998).

Another option is to use the n-gram model to compute the weights of
the edges in a finite state automaton, where words correspond to nodes and
edges emit events, and then find the path with the lowest cost (Gravano
et al., 2009).

As the hidden event LM uses an n-gram model, the same shortcomings
that were described in Section 1.1.1 apply — the context is limited and the
model does not generalize well.

Despite the limitations, the n-gram based hidden event LMs have been
used for punctuation restoration (Gravano et al., 2009), sentence segmen-
tation (Stolcke and Shriberg, 1996), reconstruction of compound words
(Alumäe, 2007), disfluency annotation (Stolcke et al., 1998) and other tasks.

1.2 Evaluation

To evaluate and compare language models independently, the most commonly
used measure is PPL of a sequence that was not observed during training:

PPL = b−
1
k

∑k
t=1 logb P (wt|ct) (1.9)

The PPL value shows how confused the model is on average per word in the
test data — a PPL = x can be interpreted as if the model had to choose
uniformly and independently among x possibilities for each word. During
training, only the exponent − 1

k

∑k
t=1 logb P (wt|ct) (i.e., the cross-entropy

estimate) is generally used as the training objective.
While PPL evaluation is simpler, the usefulness for the target task can

be better estimated by integrating the LM into the system and evaluating
the system as a whole on the target task with appropriate metrics. For
example:

• word error rate (WER) in speech recognition;

• recall-oriented understudy for gisting evaluation (ROUGE) (Lin, 2004)
in summarization and headline generation;

• slot error rate (SER) (Makhoul et al., 1999) in punctuation restoration;

• bilingual evaluation understudy (BLEU) (Papineni et al., 2002) in
machine translation.

A model with lower PPL might not always produce better results on the
target task. One of the reasons is that the model is trained on correct
sequences and therefore relies on correct context to make predictions, while
as part of the whole system its input may contain errors made by other
components of the system.

23





Chapter 2

Multi-domain recurrent
neural network language
modeling and adaptation

This chapter is based on the work in publications I and IV.

Research questions:

• Can the multi-domain extension for FFNN LM (Alumäe, 2013) be
applied to RNN LM with similar gains in performance?

• Can the multi-domain architecture also be used for low-resource adap-
tation?

2.1 Background

Language models are known to perform better with more training data and
when the training data matches the target domain in style (Moore and Lewis,
2010). Unfortunately, there are use cases where obtaining large amount of
data from specific domain is not possible. For example, speech generally
differs from written text in style, but using it for language model training
requires laborious manual transcription. Sometimes the model needs to be
adapted to a specific topic or domain that has a limited amount of text
available. These problems are amplified for small languages.

Language model adaptation and multi-domain language models are both
approaches designed to deal with the scarcity problem of target domain
training data — they increase the total amount of training data by supple-
menting target domain with texts from other domains to improve learning
general patterns in the language while biasing the final model towards the
specific style of the target domain.

25



2.1.1 Language model adaptation

Adaptation (Park et al., 2010) usually starts with first training the language
model on general text (out-of-domain data) that might not produce an
ideal model for target domain, but enables the model to learn general word
semantics and language structures. The general model is then adapted to the
target domain (although sometimes the general and target-domain models
are trained jointly (Alumäe and Kurimo, 2010)). There are multiple ways
to adapt the model, but the overall goal is to minimize the loss on target
domain while avoiding overfitting to the often small target domain dataset
and forgetting the general patterns.

Language model adaptation can be categorized into two groups — super-
vised and unsupervised adaptation. In this work we focus on the supervised
case.

Supervised adaptation is more accurate than unsupervised adaptation
(Bacchiani and Roark (2003) report that unsupervised adaptation gives about
twice as large improvement in WER compared to unsupervised adaptation)
but requires target domain text or manual transcripts if the target domain
is speech.

Unsupervised adaptation is useful in situations where resources for tran-
scribing audio are not available as the transcription process can be quite
laborious. Instead of manual transcripts the unsupervised adaptation ap-
proach uses the automatic transcripts produced by the ASR system with an
unadapted language model to adapt the model.

One approach for both supervised and unsupervised adaptation is to add
domain-specific parameters to the model after training the general model
and only train the added parameters while the rest of the parameters are
kept fixed during adaptation. For example, (Park et al., 2010) added a
linear adaptation layer (more precisely N − 1 copies of the same shared
layer, one for each context word) between the projection/context layer and
the hidden layer in their FFNN LM during unsupervised adaptation. This
approach enables the model to learn about the target domain with the added
parameters, avoids overfitting by keeping the amount of domain-specific
parameters relatively small, and prevents forgetting general information by
keeping the rest of the parameters fixed.

Another approach is to use special regularization to keep the model
from deviating too much from the general model and overfitting to the
target domain. For example, Alumäe and Kurimo (2010) used a special
parameter regularization in a maximum entropy language model during
adaptation. Their approach is similar to L2 regularization, but instead
of 0-mean Gaussian prior for parameters, it uses the parameters of the
general model as the mean for the Gaussian prior and forces the parameters

26



to remain close to the general model unless there is good evidence in the
target domain data to deviate. The regularization approach can easily
be utilized in a neural network as well — in fact a method where output
probabilities are constrained instead of the parameters has been used in a
context dependent deep neural network hidden Markov acoustic model by Yu
et al. (2013). They add Kullback–Leibler divergence as a regularization term
to the objective function and show that it is equivalent to converting the
target distribution from a one-hot to a soft target. The soft target consists
of a linear interpolation of the ground truth from adaptation data and the
output distribution from the general model (the interpolation coefficient is a
tunable regularization hyperparameter).

One set of methods tries to solve the adaptation problem by changing
the way the data is sampled during training. Schwenk and Gauvain (2005)
use weighted sampling to train a FFNN LM where target domain samples
are drawn with much higher probability than general samples (e.g., 1.0 for
target domain and 0.1 for general samples). Additional benefit and their
main motivation for this method is greatly reduced training time. Shi et al.
(2014) propose curriculum learning (Elman, 1993) for RNN LM adaptation
which uses all the available data, but changes the order of samples so general
samples are seen at the beginning of training and target domain samples are
presented to the model towards the end of training so they have a greater
influence over the final model. Two effective method they propose either
keep the target domain samples towards the end of each epoch (Data-Sort)
or show the target domain samples only during last epochs (All-Specific).
Similar, but slightly more sophisticated method was also used by Mikolov
et al. (2011a). A simple approach (similar to All-Specific in Shi et al. (2014))
for unsupervised adaptation that seems to be effective in RNN LM models
is retraining the model on unsupervised data for just one epoch (Kombrink
et al., 2011) with different learning rate. Data selection also falls under this
category. In data selection a target domain language model is used to score
(e.g., cross-entropy or cross-entropy difference between target domain and
general model) text segments from general text and a cutoff is optimized on
validation data (Moore and Lewis, 2010). Segments below the cutoff point
are left our during training (i.e., sampled with 0 probability).

Daume III (2007) proposes a general adaptation method for wide range
of natural language processing (NLP) tasks that is based on creating copies
of input features — a general version, a target domain version and source
domain version. Source domain samples consist of general and source domain
versions of features and target domain samples consist of general and target
domain features. Although this method could be applied to neural network
language models as well, the amount of target domain specific parameters
would be too large — this is essentially equivalent to creating 3 copies of

27



the embedding matrix and combining the domain-specific and general word
vector for each word in the sample.

N -gram models most commonly use linear interpolation (Wegmann et al.,
1999) or count merging (both can be seen as different parametrizations for
maximum a posteriori adaptation (Bacchiani and Roark, 2003)) instead of
adaptation. In case of linear interpolation, a separate model is trained for
each domain and a convex combination of probabilities given by component
models is taken so the combined output is still a probability estimate. The
interpolation weights are tuned on the validation data of the target domain.
Another option is to use log-linear interpolation (Klakow, 1998) that amplifies
component model agreements, but on the other hand requires renormalizing
the outputs if probability estimate is desired (Broman and Kurimo, 2005).
Interpolation has been also used for RNN LM models (e.g., Shi et al. (2014)),
but it increases the computational cost during test time as multiple already
complex models have to do a forward pass. Often a neural network language
model is interpolated with a less computationally intensive n-gram model
(e.g., Gandhe et al. (2014)) with improvements in performance.

Our approach in this work for the multi-domain architecture based
adaptation falls under the supervised adaptation category. Similarly to
Park et al. (2010) we add new domain-specific parameters to the general
model, but the amount of the added parameters is much smaller enabling
us to train or tune these parameters on the validation set like it is done
with interpolation coefficients in language model interpolation. Training on
validation data enables use-cases where the amount of target domain data is
exceptionally limited.

2.1.2 Multi-domain language models

Multi-domain models are useful when there is more than one target domain.
Multi-domain models enable using a single joint model for N domains instead
of using N separately adapted models, reducing memory requirements and
improving processing speed. These advantages may be critical on devices
with limited resources or when the number of domains is large.

Alumäe (2013) proposes a multi-domain FFNN LM where the ability
to use a single model for multiple domains is achieved by adding a domain
switch input to the model and reserving a small portion of model parameters
for domain-specific use. The majority of parameters are still allowed to learn
general patterns that are common across all domains.

The adaptation method by Daume III (2007) can also be used in multi-
domain models by creating K + 1 versions of input features where K is the
number of domains. The disadvantage of this approach in case of neural
network language models is a large amount of domain-specific parameters
and a rapidly growing size of the model that can become prohibitive when

28



the number of domains is large.

Shi et al. (2014) also explore the multi-domain problem (more precisely,
they deal with sub-domains and call it within-domain adaptation), but they
use a separate RNN LM for each domain instead of a joint multi-domain
model.

Our contribution is extending the FFNN LM multi-domain model (Alumäe,
2013) to RNN LM models. Compared to other multi-domain approaches it
requires less domain-specific parameters than Daume III (2007) and does
not require a separate model for each domain like Shi et al. (2014).

2.2 Multi-domain recurrent neural network lan-
guage model

Our multi-domain RNN LM is based on the FFNN LM extension proposed
by Alumäe (2013). The model augments the classic FFNN LM architecture
by replacing the hidden layer weights of the model with a factored order-3
rank-d tensor, where d is the size of the factor layer. This allows each
domain to select a domain specific slice from the factored tensor and use
it as a domain specific hidden layer weight matrix. The domain specific
weight matrices allow the model to share general information across domains
as the tensor is factored into three matrices out of which two are shared
across domains, while also factoring in domain specific differences with the
third factorization matrix. Partially domain-specific parameters enable the
FFNN LM to complement the relatively small local n-gram context with
additional information about the general style and topic of the current target
domain. One of our goals is to find out whether the information about the
current target domain is also useful in RNN LMs that can potentially use a
much larger context than FFNN LMs and derive the general topic and style
information from there.

Preliminary experiments revealed that a direct application of the FFNN
multi-domain extension to RNNs does not work and actually degrades
the performance of the recurrent model in some cases. The unexpected
degradation motivated further experiments and analysis which revealed the
cause as the combined effect of two factors:

• Mathematical properties of the factored tensor.

• The sequential processing of the word stream in RNN LMs.

The next section describes the problems in detail.

29



2.2.1 Problem

Mathematical properties of the factored tensor in backpropa-
gation

Similarly to the multi-domain FFNN LM we placed the factored weight
tensor right after the context representation layer so that the domain-specific
weight matrix processes the context of sample t (recurrent layer state at
time step t in case of RNN LMs; n− 1 concatenated word embeddings of
tth n-gram sample in case of FFNN LMs). We omitted the factor bias
included in the original model by Alumäe (2013) as similar effect (avoiding
scaling of forward and backward signals too close to zero) can be achieved
by initializing domain specific weights to ones.

Given context representation c, the forward pass for the described LM
with factored tensors is:

ŷ = Softmax
(
(dW d ◦ cW c)W y + by

)
(2.1)

and loss L is:
L = −

∑

i

yi log ŷi (2.2)

where d and y are one-hot encoded domain input and target word vectors
respectively, and ◦ denotes an element-wise (Hadamard) product. Here we
have omitted the class output layer for simplicity, but it still illustrates the
problem without loss of generality.

In case of factored tensors the gradient of the loss function L with respect
to context vector c is:

∇cL =

(
dW d ◦

((
ŷ − y

)
W T

y

))
W T

c (2.3)

The problem is in the term dW d (the domain vector) that multiplies
all the gradients that are backpropagated through the factored tensor. The
domain vector has a similar contribution to the backpropagated gradients
as the error signal — both are a linear combination of the rows or columns
of one weight matrix.

Sequential processing in recurrent neural network language
models

Unlike FFNN LM models, which randomly sample n-grams, the RNN LM
models process the text sequentially. This opens opportunities like classed
output layer (Mikolov et al., 2011b), that enable using full vocabulary with
little computational overhead, but can render some methods that are effective
with FFNN LM models ineffective in RNN LM models.

30



With sequential processing the model sees all the samples from each
domain one-by-one. This entails that for long durations the domain vector
remains constant and, in case of factored tensors, appears in backpropagated
gradients as a significant factor. This can cause the model to fit well to the
domains appearing at the end of the sequence while rendering the domain
vectors of the domains at the beginning of the sequence less compatible with
the rest of the parameters of the model.

To verify the hypotheses we performed experiments with two FFNN LM
models:

• conventional FFNN LM with no domain-specific parameters (Bengio
et al., 2001)

• multi-domain FFNN LM with domain-specific weight matrices (multi-
plicative interaction with domain vector) (Alumäe, 2013)

and test them with random sampling and without random sampling in
original and reverse order.

Both models are trained with stochastic gradient descent (SGD) using
mini-batches of 200 samples and learning rate of 0.1 until validation loss
has not improved for last 5 epochs. We use shortlist vocabulary (Schwenk
and Gauvain, 2002) of 1024 most frequent tokens in the training set. The
embeddings are 100-dimensional, hidden layer size is 500 and uses rectified
linear unit (ReLU) activation (Glorot et al., 2011). The multi-domain model
uses factor layer of size 300.

As seen in Figure 2.1, it is evident that the domains towards the end of
the sequence tend to be more difficult in general, but it is also clear that
both the conventional single-domain model and multiplicative multi-domain
model tend to perform better on domains that were seen most recently
during training.

2.2.2 Solution

The solution to the described problems is simple — replacing multiplication
with addition.

Although a factored tensor gives the network an entire domain-specific
weight matrix, we found that this kind of power is apparently not crucial
to switch between domains and a simple domain specific bias is sufficient
plus it solves the problem of domain vectors contributing too much to the
gradients.

When using domain-specific bias (simply replacing multiplication with
addition) the forward pass becomes:

ŷ = Softmax
(
(dW d + cW c)W y + by

)
(2.4)

31



AG EN ES KT MG MR OP RG UH XX

5

10

15

20

25

30
None

random
original
reverse

AG EN ES KT MG MR OP RG UH XX
0

5

10

15

20

25

30

Multiplicative

random
original
reverse

Figure 2.1: (Color online) Test set shortlist perplexities per domain for FFNN LM
with different domain vector integration (none and multiplicative) and sampling
methods (random sampling, original order and reverse order). Lines show linear
regression trends.

32



AG EN ES KT MG MR OP RG UH XX
0

5

10

15

20

25

30
Additive

random
original
reverse

Figure 2.2: (Color online) Test set shortlist perplexities per domain for FFNN LM
with additive domain vector integration and different sampling methods (random
sampling, original order and reverse order). Lines show linear regression trends.

and the gradient becomes:

∇cL =
((

ŷ − y
)
W T

y

)
W T

c (2.5)

which removes the domain vector term from the gradient.

We show empirical evidence that this simple modification solves the
problem by performing the same experiments as in subsection 2.2.1 and
train a multi-domain FFNN LM (Alumäe, 2013) where multiplication in the
factor layer is replaced with addition. The model is tested again with and
without random sampling and in the latter case the samples are processed
both in the original and reverse order.

When it comes to the additive model (Figure 2.2), the slope of the trend
line is much less affected by the order of samples compared to single-domain
and multiplicative multi-domain model in Figure 2.1 indicating that additive
interaction with domain vectors is indeed less sensitive to the sequential
training. Since the gap between perplexities of different models tends to
reduce towards the end of the sequence, we can interpret the additive domain
vector as a domain-specific memory vector that helps the model to avoid
forgetting information about domains at the beginning of the sequence while
the single-domain and multiplicative multi-domain model do not have this
advantage (although the multiplicative multi-domain model could potentially
behave similarly, it is mostly neutralized by the mathematical characteristics
described in subsection 2.2.1).

With random sampling both the additive and multiplicative multi-domain

33



xt ct−1

ct

f t

dt

ŷt ẑt

W x W r

W c W d

W y W z

Figure 2.3: Description of MD RNN LM. Input layers are highlighted with gray
background.

model perform similarly and improve the overall perplexity compared to the
single-domain model. In sequential training without random sampling the
additive model improves the perplexity much more than the multiplicative
model.

Having shown the suitability of the additive multi-domain layer for
sequential training in out preliminary FFNN LM experiments, we plugged
it into the RNN LM model. To keep the multi-domain layer nonlinear we
decided to add a sigmoid activation function:

ŷ = Softmax
(
σ(dW d + cW c)W y + by

)
(2.6)

The word class output ẑ is computed similarly with W y and by replaced by
W z and bz.

The full model is described in Figure 2.3. Compared to the original RNN
LM model by Mikolov et al. (2010) the multi-domain RNN LM has two
additional layers: the domain input layer (dt) and the factor layer (f t) with
added parameters W c and W d.

The location of the factor layer allows it to function as a compression
layer (Mikolov et al., 2011b) reducing the overall computational cost of
training and testing while also minimizing the number of domain-specific
parameters to avoid overfitting to small domains.

2.2.3 Dataset

In our experiments we use a corpus that consists of medical notes from 10
different radiology domains (X-ray, computed tomography, ultrasound, etc.)
that are all regarded as target domains. Domains vary in size greatly ranging
from 27K tokens to 3.8M tokens adding up to 10.8M tokens in total. The
details of the corpus are given in Table 2.1.

Our initial experiments with the corpus were performed with n-gram

34



Table 2.1: Sizes of domains in the radiology dataset in number of tokens.

DOMAIN train dev test

AG 38075 1082 1004
EN 43255 68 222
ES 413735 1047 603
KT 3825363 2601 3408
MG 305908 143 180
MR 838995 606 994
OP 27391 405 26
RG 2372355 1462 1509
UH 2737499 1580 1197
XX 247407 991 484

total 10849983 9985 9627

models and revealed some characteristics of the corpus.
Firstly, the style and vocabulary of the medical corpus differs significantly

from typical written texts or speech transcripts. This was confirmed by the
fact that including written texts from newspapers and web or transcripts
from broadcast news and interviews did not improve the performance of the
n-gram model on the medical corpus. Therefore we do not use non-medical
corpora in RNN LM experiments.

Secondly, the domains are rather different, which was apparent from the
very large interpolation coefficients (mostly > 0.9) for the target domain
n-gram model and very small coefficients for other domains. On the other
hand, interpolated models still performed better than a single model over all
domains or separate models trained only on the target domain data. Given
these properties, the multi-domain approach seems like a great fit for the
corpus — it can factor in domain-specific differences while also learning
general patterns shared across domains.

2.2.4 Training and testing details

In our experiments we compare a single-domain and multi-domain RNN LM
with a back-off n-gram language model baseline.

Both RNN LMs are a modified version of the RNN LM toolkit by Mikolov
et al. (2011c) and use one model for all domains. Hyperparameters are chosen
with following values:

• vocabulary size: 52293;

• number of word classes: 230;

35



Table 2.2: Test set full vocabulary perplexities of evaluated models.

Model PPL

n-gram 22.2
RNN LM 20.9
MD RNN LM 17.5
MD RNN LM + n-gram 15.6

• recurrent layer size: 600;

• factor/compression layer size: 300;

• learning rate: 0.1;

• L2 regularization coefficient: 1e-7;

Both models are trained with backpropagation through time (Rumelhart
et al., 1986) truncated at 3 steps. For a more fair comparison, the single-
domain model uses a compression layer in place of factor layer so the multi-
domain model has only 3000 (0.0063%) additional parameters compared to
the single-domain model (300 per domain).

Unlike the RNN LM models, the back-off n-gram (N = 4) baseline uses
a separate model for each domain. The domain-specific n-gram models for
each domain are obtained by linearly interpolating all domain-specific models
with interpolation coefficients optimized on the target domain validation set.
The models were trained with the SRILM toolkit (Stolcke, 2002) and use
the modified Kneser-Ney discounting.

2.2.5 Results

The results of the experiments are shown in Table 2.2. The single-domain
RNN LM model already improves the perplexity by 6% relative compared
to the interpolated n-gram models. The multi-domain RNN LM brings
additional improvements of 16% with only 0.0063% larger amount of pa-
rameters, bringing the total relative improvement compared to the baseline
to 21%. When the multi-domain RNN LM and the interpolated n-gram
model probabilities are combined with equal weights, then the total relative
improvement rises to 30%.

2.3 Multi-domain architecture based adaptation

In this section we explore the possibility of using the multi-domain ar-
chitecture for supervised language model adaptation. Having very little

36



domain-specific parameters, the architecture should be useful in situations
where the amount of target-domain data is exceptionally limited.

2.3.1 Method

For adaptation approach we use a simplified version of the multi-domain
FFNN LM by Alumäe (2013). The architecture of our model is shown
in Fig. 2.4. It differs from the architecture described by Alumäe (2013)
in omitting the added adaptation layer and applying the multiplicative
adaptation factors directly to the pre-activation signal of the hidden layer
ReLUs. The hidden layer activations are computed as shown in Equation 2.7
where y0 and y1 are projection and hidden layer activations respectively, W 1a

and b1a are hidden layer and W 1b and b1b are domain adaptation weights and
biases respectively. W 1b consists of domain-specific row-vectors (domain
vectors) while b1b is shared across domains. To prevent the adaptation
factors from shrinking the inputs to ReLU from the start of training, the
weights W 1b or bias b1b can be initialized to ones (we used the latter in our
experiments).

y1 = ReLU
(
y0W 1a ◦ (dtW 1b + b1b) + b1a

)
(2.7)

This kind of hidden layer enables each domain to influence the structure
of sparsity in the output layer inputs (i.e. which hidden layer units are more
or less likely to be exactly zero for each domain) in addition to modulating
the nonzero outputs. One can consider the FFNN LM as a log-linear model
on top of an automatically learned feature vector obtained by transforming
the input through nonlinear transformations in lower layers (Seide et al.,
2011). In this perspective the multi-domain model can influence the relevance
of the log-linear model input features in the context of different domains.
Our experience shows that the simplified model performs just as well or even
marginally better than the original one with an additional layer.

Training multi-domain models generally requires the availability of in-
domain data in the training set. With limited-resource domains it is possible
that there is not enough target domain data for separate training, validation
and test set. This means that there might be no in-domain data left for the
training phase. We propose an adaptation approach which uses exactly the
same model architecture as the multi-domain model to overcome this problem.
The advantage of using the multi-domain architecture for adaptation is its
resistance to overfitting due to the very small amount of domain specific
parameters that need to be trained on the target domain data. The amount
of domain-specific parameters is limited to a single vector with a number of
elements equal to the hidden layer size (usually several hundred or thousand),
which is tiny compared to the total amount of parameters in the network

37



wt−3 wt−2 wt−1

dt

Softmax

W 0 W 0 W 0

W 1a W 1b

W 2

Figure 2.4: Description of the FFNN LM architecture. Dashed lines stress the
parts of the network that are characteristic only to the multi-domain architecture
based adapted models. The inputs (context word indices wt−1, wt−2, wt−3 and
the domain index dt) are one-hot-encoded vectors

(usually in millions). Thus, the training error on validation data can give
a good estimate of the performance on unseen data and all the available
in-domain data (except the test data) can be used for adaptation.

The adaptation procedure is as follows:

1. Train a general model on out-of-domain training data using the in-
domain validation data for early stopping and hyperparameter selec-
tion;

2. After the general model is ready, add the domain-specific parameters
W 1b, b1b and modify the hidden layer activation according to eq. 2.7;

3. Train only the domain-specific parameters added in the previous step
on the in-domain validation data until convergence, while keeping the
rest of the parameters fixed.

Initially, we believed that to effectively utilize the domain vectors, the
network should have a multi-domain architecture from the start and be
trained as such on non-target domains. However, the preliminary experiments
revealed that this is not true. The adapted model works just as well if all the
multi-domain architecture specific elements are added right before training
the target domain parameters.

This procedure raised a question whether the multi-domain model can
also be improved by combining all the in-domain data from both training
and validation set and using it to fine-tune the target domain vector as a
final step of training. Unfortunately, our preliminary experiments showed
that this does not significantly improve the perplexity of the test set.

38



Table 2.3: Finnish speech data
sets

Data set Words Hours

fi-std-train 131005 31.4
fi-conv-train 200415 15.2
fi-conv-eval 6268 0.73
fi-news-dev 35439 5.38
fi-news-eval 37196 5.58

Table 2.4: Sizes of Finnish text
data sets after preprocessing

Data set Words

fi-general 153535459
fi-webnews 12675262
fi-newswire 31809529

2.3.2 Dataset

The evaluation of the multi-domain architecture based adaptation was carried
out on the development and evaluation sets fi-news-dev and fi-news-eval
(Table 2.3), which consist of Finnish broadcast news recordings collected
in 2011 and 2012. For training the LMs, three data sources were used: a
random subset of 23 million words from fi-general, a corpus of texts from
Finnish web news portals (fi-webnews), and a corpus of newswire texts from
a Finnish news agency STT (fi-newswire) (Table 2.4).

2.3.3 Training and testing details

In our experiments we evaluate the models in terms of PPL and WER. The
models are evaluated on the Finnish broadcast news data set (fi-news-eval
in Table 2.3). The words in the dataset are split into morphs. The PPL
scores are calculated on morphs and WER scores are computed on words.

Our baseline LM is a back-off 4-gram model with modified Kneser-
Ney discounting constructed over all available training data. Surprisingly,
interpolating domain-specific models results in an inferior model.

It has been recently verified that FFNN LMs perform better than back-
off n-gram models on under-resourced languages (Gandhe et al., 2014).
One of our goals is to check whether adapted FFNN LMs bring additional
improvements and what is the relationship between the relative improvement
and training set size.

Four experiments are performed with each model. We start by training
all the models on all available text data and continue by halving the training
data for each consecutive experiment by taking every second line of the
previous data set. FFNN LM hidden and projection layer size is divided by√

2 every time the training data is halved. The initial hidden layer size is
500 and the projection layer size is 3× 100. The FFNN LM models use a
shortlist (Schwenk and Gauvain, 2002) of 1024 most frequent morphs plus
an additional end of sentence token. The input vocabulary consists of 50,410
most frequent morphs plus an additional token for the beginning of sentence

39



and unknown morphs. When interpolating the n-gram and FFNN LM model
outputs we use an equal weight of 0.5 for both models. Out-of-shortlist units
are evaluated only by the n-gram model. All FFNN LMs are trained with
backpropagation and mini-batch stochastic gradient descent using batch size
of 200 samples and learning rate of 0.1 until the best model according to
validation perplexity is not within the last 5 epochs.

In speech recognition experiments the recognition lattices were generated
using systems based on the Kaldi toolkit (Povey et al., 2011), and the lattices
were rescored using the FFNN LMs. Acoustic models are triphones, built
using fMLLR-based speaker-adaptive training (SAT) and optimized using the
boosted MMI criterion (Povey et al., 2008). Lattices are obtained after two
decoding passes: first pass uses speaker-independent models, and the second
pass fMLLR-transformed features with SAT-based models. The output
hypotheses of the speech recognition systems consist of morphs. These were
converted to word hypotheses using a hidden event LM that treats a word
break as a hidden word that needs to be recovered.

2.3.4 Results

The results of PPL and WER evaluations on the test set can be seen in
Tables 2.5 and 2.6 respectively. All FFNN LMs consistently outperform
back-off n-gram models in PPL and WER. Utilizing FFNN LMs in addi-
tion to n-gram models gives a similar effect as using about twice as much
training data: the PPL improves 7.1–10.2 % relative, statistically significant
WER improvement is about 2.7–4.3 % relative. The adapted a-FFNN LMs
consistently beat the unadapted FFNN LM in PPL evaluation (2.2–3.3 %
relative). Unfortunately this makes no significant difference in WER. When
comparing PPL on the validation and test set, it is clear that the validation
PPL is a good predictor of test set performance even though it was also used
as training data during adaptation phase.

2.4 Conclusions

We showed that the multi-domain extension for FFNN LMs (Alumäe, 2013)
can not be directly applied to RNN LMs. This is due to the difference in
the way words are sampled in each model — FFNN LMs randomly sample
n-grams from text while RNN LMs process the text sequentially. The
sequential processing in combination with the mathematical properties of
the multiplicative multi-domain component made the RNN model overfit to
more recently seen domain-specific parameters degrading the performance on
domains that were present towards the beginning of the corpus. By replacing
the multiplication in the multi-domain component with addition we were
able to develop a method that is less affected by the sequential processing
and is effective in RNNs.

40



Table 2.5: LM PPL with different sized training sets. Relative improvement
compared to the n-gram baseline in parentheses. a-FFNN LM is the adapted FFNN
LM

Test
Dataset size 1 1/2 1/4 1/8

n-gram 197 222 256 298
FFNN LM 183 (7.1%) 205 (7.7%) 236 (7.8%) 274 (8.1%)
a-FFNN LM 177 (10.2%) 200 (9.9%) 230 (10.2%) 268 (10.1%)

Validation
Dataset size 1 1/2 1/4 1/8

n-gram 196 223 256 300
a-FFNN LM 174 (11.2%) 199 (10.8%) 229 (10.5%) 269 (10.3%)

Table 2.6: LM test set WER with different sized training sets. Relative improvement
compared to the n-gram baseline in parentheses. a-FFNN LM is the adapted FFNN
LM

Dataset size 1 1/2 1/4 1/8

n-gram 33.3 34.0 34.9 35.7
FFNN LM 32.3 (3.0%) 32.9 (3.2%) 33.4 (4.3%) 34.3 (3.9%)
a-FFNN LM 32.4 (2.7%) 32.8 (3.5%) 33.4 (4.3%) 34.3 (3.9%)

41



Compared to the multi-domain FFNN LM results from Alumäe (2013)
where the FFNN LM model gained only 7% (3% after combining with
the n-gram model) relative on average with the inclusion of multi-domain
modifications, our results on Estonian radiology dataset show much larger
improvements. This was surprising as we expected the RNN to be able to
derive at least some of the domain-specific characteristics from the much
larger context it can utilize, which would make the explicit domain informa-
tion less useful and the gap between single-domain and multi-domain models
smaller. One explanation is that the simple RNN is not that good at long-
range dependencies (Bengio et al., 1994), so it is possible that we would see
smaller gains from the multi-domain architecture when using more advanced
long-range units like LSTM (Hochreiter and Schmidhuber, 1997). However,
there are also important differences between our experiments. Firstly, the
dataset is different and with fewer domains so the style across domains may
not vary as much as in our radiology domain and the domain vectors give less
fine-grained information. Another difference is in the vocabulary handling

— the FFNN LM can only affect the probabilities of the words included in
the 1024 token shortlist while the RNN LM uses the full vocabulary. One
hypothesis for explaining the larger performance gains in the full vocabulary
multi-domain RNN LM is that the majority of the improvements from the
multi-domain models come from the better modeling of less frequent words.
This question needs further investigation in future work.

Although our simple solution made the multi-domain component less
sensitive to the sequential processing of text, there are other solutions that
would enable using the original multi-domain component by Alumäe (2013).
For example, the text can be split into smaller subsequences consisting of one
or more sentences and if the recurrent state is reset after each subsequence,
then these subsequences can be shuffled before each training epoch like
n-grams are shuffled during FFNN LM training (Chen et al., 2014). The
negative side of partitioning the text into independent subsequences is that
the context is now limited by the length of subsequence.

Our proposed multi-domain RNN LM requires explicit information about
the domain identity during testing. An interesting future direction would be
developing a component that is able to detect the domain automatically (Shi
et al., 2014). Future research also includes testing the model on more datasets
and performing WER experiments to verify whether the improvements in
PPL also translate into improvements in the quality of ASR system output.

In our FFNN LM adaptation experiments on Finnish broadcast news
dataset, we showed that the multi-domain architecture is a good fit for low-
resource adaptation. By adapting only the domain-specific parameters we
keep the number of adapted parameters small enough that they can be tuned
directly on the validation set and the training error on the target-domain

42



validation set still gives an accurate performance estimate for unseen data.
The improvements in PPL we achieved with adaptation are similar to

the ones of French broadcast conversations domain by Alumäe (2013) with
a multi-domain model, although these experiments use different units in the
vocabulary (words in Alumäe (2013), morphs in our experiments). In contrast
to Alumäe (2013) our experiments showed no significant improvements in
WER. Compared to the RNN LM experiments on the radiology dataset, the
improvements in PPL by single-domain neural models over n-gram baseline
were similar or slightly larger in our adaptation experiments. On the other
hand, the RNN multi-domain model improved the PPL by 16% relative
compared to the single-domain neural model on the radiology dataset while
the FFNN LM adaptation experiments on Finnish broadcast news showed
only 2.2–3.3 % improvement. This seems to be another indication that
the better vocabulary coverage in RNN LMs enables the multi-domain or
adapted models to bring larger improvements, otherwise the gap between
single-domain models would have also been larger.

Our current adaptation experiments were performed on FFNN LMs,
so additional experiments on RNN LMs are required in future work. The
current work only verified that the multi-domain architecture can be used
for adaptation, but the comparison with other adaptation methods is still
required. An interesting future direction is applying the multi-domain
architecture to unsupervised or online adaptation (Souvignier and Kellner,
1998).

43





Chapter 3

Recurrent neural networks
for punctuation restoration

This chapter is based on the work in publications II and III.

Research questions:

• RNN LM models have shown advantages over traditional language
models. Can RNN LM models also be used effectively as hidden event
language models or more precisely for punctuation restoration?

• How can we use both large written text corpora and relatively scarce
transcripts with parallel audio to utilize both lexical and prosodic
features?

• Do bidirectional RNN LMs perform better than unidirectional RNN
LMs? Does attention mechanism bring additional improvements?

3.1 Background

Most ASR systems output an unpunctuated sequence of words. Restoring
the punctuation greatly improves the readability of transcripts and increases
the effectiveness of subsequent processing, like machine translation, sum-
marization, question answering, sentiment analysis, syntactic parsing and
information extraction.

Punctuation restoration and a related task of segmentation or sentence
boundary detection have been extensively studied.

Some previous approaches have used textual features only, enabling
applications where audio is not available. Various methods have been used,
like n-gram models (Gravano et al., 2009), conditional random fields (CRFs)
(Lu and Ng, 2010; Ueffing et al., 2013), transition-based dependency parsing
(Zhang et al., 2013), deep and convolutional neural networks (Che et al., 2016).

45



Some have treated the punctuation restoration as a machine translation task,
translating from unpunctuated text to punctuated text (Peitz et al., 2011;
Cho et al., 2015b).

On the other hand, there are methods that rely entirely on prosodic
or audio based features, such as pause durations between words, pitch
and intensity (Christensen et al., 2001; Levy et al., 2012). For example, a
combination of two neural networks has been used, where the first network
classifies input as speech or punctuation and the second one predicts the
punctuation type (Levy et al., 2012).

Both approaches have benefits — text based approach does not require
audio and has generally shown better results on reference transcripts, while
prosody based models are more robust to ASR system errors — but the
combination of the two brings further improvements (Kolář et al., 2006;
Kolár and Lamel, 2012). Pause durations between words have been shown
to be particularly helpful when combined with textual features (Christensen
et al., 2001; Kolář et al., 2004). Approaches for combining textual and
prosodic features can be roughly divided into two categories — a single
model that utilizes both types of features, and separate models that are
combined in various ways.

Single model approach has been used, for example, with maximum
entropy model (Huang and Zweig, 2002; Batista et al., 2007, 2008, 2012),
statistical finite state model (Christensen et al., 2001) and boosting-based
classifier (Kolář et al., 2006).

A common way to combine models is to pass the outputs of the textual
model along with prosodic features to the main model that makes the final
punctuation decision. For example, language model posteriors can be treated
as features by a decision tree (Stolcke et al., 1998), CRFs (Wang et al., 2012)
or adaptive boosting algorithm (Kolár and Lamel, 2012). Another option
is to use prosodic posteriors as features for a model that combines them
with textual features, like in (Xu et al., 2014) where deep neural network
based prosodic model posteriors were used as additional features in a text
based CRFs classifier. Prosodic and textual model posteriors can also be
interpolated (Stolcke et al., 1998; Kolář et al., 2004; Matusov et al., 2006;
Kolář et al., 2006) or passed to a third model as features (Khomitsevich
et al., 2015).

Combination of a separate textual and prosodic component makes it
straightforward to achieve a greater quality textual model, as it is not limited
to the availability of corresponding audio and can be separately trained on
a much larger amount of text (Khomitsevich et al., 2015). Single model
methods can achieve the same goal through adaptation or 2-stage training,
where the model is initially trained on a large text corpus using textual
features alone, and then adapted on a smaller corpus where both textual

46



and prosodic features are available.
In (Hasan et al., 2014), a multi-pass approach additionally refined a

prosody and text based CRFs result, by taking into account the distance
from the closest sentence boundary in both directions.

In this work we use two approaches. On the English dataset we use text
only, as prosodic features were unavailable to us and the previous best result
that we compare with. On the Estonian dataset we use textual features in
combination with a prosodic feature in a single model. The prosodic feature
we use is the pause duration between words, but other features can also be
easily incorporated into this model. For both approaches we use two models:

• Recurrent neural network with long short-term memory.

• Bidirectional recurrent neural network (Schuster and Paliwal, 1997) in
combination with an attention mechanism (Bahdanau et al., 2015).

The novelty of our work is that, to the best of our knowledge, it is the first
use of both model types for punctuation restoration in unsegmented text.
The source code of both models is publicly available 1. Additionally, we
propose a two-stage training method that enables a single model to effectively
utilize both text only and prosody annotated datasets. In the first stage
a large written text corpus is used for training textual features, and then
these features are combined with the prosodic features in the second stage
when the training is continued on a smaller pause annotated corpus.

The next section describes our approach in detail. Section 3.3 describes
training strategies, models, data, metrics and results. Section 3.4 concludes
the paper.

3.2 Methods

One of the most widely used approaches for punctuation restoration is
based on the so-called hidden event LM which uses a traditional n-gram
LM trained on texts that include punctuation tokens (Stolcke et al., 1998).
During decoding, the LM is used to recover the most probable sequence of
words and hidden punctuation symbols. Recurrent neural networks have
shown several advantages over the widespread n-gram models in language
modeling which we expect to transfer to hidden event language modeling as
well.

First, one of the problems with n-gram models is the data sparsity issue.
A better model should to be able to generalize to contexts that were not
seen during training. As it is well known from language modeling, neural
networks are much better at generalizing to unseen sequences, by learning

1https://github.com/ottokart/punctuator and https://github.com/ottokart/

punctuator2

47



distributed representations of words (Bengio et al., 2001) or entire contexts
as it is the case with RNNs (Mikolov et al., 2011b). This suggests that RNNs
should be able to learn similar representations for contexts around similar
punctuation and make accurate predictions even in unseen contexts.

Another weakness of n-gram models is that their context size is limited
to a fixed number of tokens. Although it has been shown that increasing
the context size does not help as much as getting more data (Gravano et al.,
2009), it seems unjustified to expect that the relevant context size is the
same for both types of punctuation and remains constant across the entire
text. Therefore, one of our requirements is that the model should be able to
dynamically decide on how long context is relevant. RNNs fit this requirement
and are able to utilize arbitrary length sequences. Although in practice
simple RNNs have difficulties in remembering long range dependencies due
to vanishing gradients (Bengio et al., 1994), this problem can be alleviated
by using more advanced units like gated recurrent unit (GRU) (Cho et al.,
2014) or LSTM (Hochreiter and Schmidhuber, 1997).

Lastly, neural networks are very simple to augment with additional
features, such as those derived from speech prosody, which gives them
another advantage over n-gram models.

The main disadvantage of neural networks is their training speed, al-
though it is not as huge problem as in language modeling as the output layer
is small.

Our hidden event RNN LM approach to punctuation restoration can rely
on both textual information and pause durations between words. Contrary
to many previous works, we don’t use any other prosodic features, such as
F0 contours, phoneme durations and energy values. This has two reasons:
first, previous research (Christensen et al., 2001; Kolář et al., 2004) has
shown that pause duration is by far the most useful and robust prosodic
feature for predicting punctuation symbols; second, it is easy to extract
pause durations from word-aligned recognition output that can be generated
using any decoder, without the need to re-analyze the audio signal. We also
opted against using other linguistic features, such as part-of-speech tags,
because we wanted our approach to be as portable to other languages as
possible.

In the next sections we first introduce two text based models followed by
a general two-step method for augmenting the textual models to additionally
use prosody features. The text based models can be used independently
in situations where no audio with punctuation annotated transcripts is
available.

48



. . . ht−1 ht . . .

Softmax

yt

tanh

xt

Figure 3.1: Description of the LSTM RNN model, predicting punctuation yt at
time step t for the slot before the current input word xt.

3.2.1 Long short-term memory recurrent neural network

The first text based model we propose is a unidirectional recurrent model
with LSTM units that decides the suitable punctuation for a slot based on
the word after the slot and the history of all previously seen words. The word
after the slot is given as one-hot encoded input vector and the information
about preceding words is stored in the LSTM memory units. The next word
is important for predicting both commas and periods correctly. For example,
in Estonian language there are many words that are almost always preceded
by a comma and thus it is essential to know the following word. Also, in
item listings it is indicative whether the following word is from the same
category. For periods it helps to detect thematic changes and to recognize
words which typically start a new sentence. Although looking only one word
ahead might not be enough in all cases, the advantage of short delay is that
it can be used for real-time punctuation prediction.

The forward pass of the model is described in the following equations:

et = tanh(xtW e) (3.1)

ht = LSTM(et,ht−1) (3.2)

yt = Softmax(htW y) (3.3)

where xt is the one-hot encoded vector representing the input word following
the punctuation slot, W e and W y the weight matrices of embedding and
output layer respectively. The LSTM unit uses forget gates (Gers et al.,
2000) and peephole connections (Gers et al., 2003) as defined as by Sak
et al. (2014), except biases are omitted because we found they brought no
noticeable improvement. The model is described in Figure 3.1.

49



3.2.2 Bidirectional recurrent neural network with attention
mechanism

Our second textual model is a bidirectional recurrent neural network (BRNN)
(Schuster and Paliwal, 1997) which enables it to make use of unfixed length
contexts before and after the current position in text.

In the recurrent layers we use GRUs (Cho et al., 2014) that are well
suited for capturing long range dependencies on multiple time scales. These
units have similar benefits as LSTM (Hochreiter and Schmidhuber, 1997)
units while being simpler and using less parameters which is useful in a
larger and more complex model.

We incorporated an attention mechanism (Bahdanau et al., 2015) into
our model to further increase its capacity of finding relevant parts of the
context for punctuation decisions. For example the model might focus on
words that indicate a question, but may be relatively far from the current
word, to nudge the model towards ending the sentence with a question mark
instead of a period.

To fuse together the model state at current input word and the output
from the attention mechanism we use a late fusion approach (Wang and Cho,
2016) adapted from LSTM to GRU. This allows the attention model output
to directly interact with the recurrent layer state while not interfering with
its memory.

Next we describe in detail how our model processes the inputs to produce
the outputs. At time step t the model outputs probabilities for punctuations
yt to be placed between the previous word xt−1 and current input word
xt. As there is no punctuation before the first word x1, the model predicts
punctuations only for words x2, . . . ,xT , where xT is a special end-of-sequence
token.

The sequence of one-hot encoded input words X = (x1, . . . ,xT ) is first
processed by a bidirectional layer consisting of two recurrent layers with GRU
units, where one recurrent layer processes the sequence in forward direction
and the other in reverse direction. Both recurrent layers are preceded by a

shared embedding layer with weights W e. The state
−→
h t at time step t of

the forward recurrent layer is

−→
h t = GRU(xtW e,

−→
h t−1) (3.4)

where GRU is the gated recurrent unit activation function as described by
Cho et al. (2014) with the exception of added biases. We use tanh as the new

hidden state nonlinearity φ. The state
←−
h t of the reverse recurrent layer is

computed similarly except the input word sequence X is processed in reverse
order. The bidirectional state ht is then constructed by concatenating the

50



states of the forward and backward layers at time t:

ht = [
−→
h t,
←−
h t] (3.5)

So this layer learns representations for each input word xt that depend on
both the preceding and following context, hopefully helping the model to
better identify question indicating words as this often depends on the context
(e. g. ”This is what I do.” vs. ”What do you do?”). Also, this gives the
model more information to determine whether the current word starts a new
sentence or not.

The bidirectional layer is followed by a unidirectional GRU layer with an
attention mechanism. This layer processes the bidirectional states sequen-
tially and keeps track of the current position in text, while the attention
mechanism can focus on relevant bidirectional context aware word represen-
tations before and after the current position. The state st of the layer

st = GRU(ht, st−1) (3.6)

is late fused with the attention model output at which is computed based
on the previous state st−1 and bidirectional layer states H = (h1, . . . ,hT )
as described by Bahdanau et al. (2015). The late fused state f t

f t = atW fa ◦ σ(atW faW ff + htW fh + bf ) + ht (3.7)

is fed to the output layer producing the punctuation probabilities yt at time
step t

yt = Softmax(f tW y + by) (3.8)

Graphical description of the model can be seen in Figure 3.2.

3.2.3 Two-stage training for combining text and prosody

Since the amount of pause annotated data is relatively small compared to
all available text, we propose a two-stage training procedure in which a
purely textual model is trained in the first stage on a large text corpus. The
two-stage training can be used with either of the introduced textual models
and should be general enough to work with any other text based neural
models.

After obtaining the fully trained textual model in the first stage, the
final model utilizing text and pause duration is trained in the second stage.
As proposed by Seide et al. (2011), we treat the last hidden layer outputs of
the textual model as high level features learned by the network, representing
everything the model knows about the textual input. The second stage
model then utilizes both pause durations and these high level features of

51



yt

Softmax

Late fusion

. . . st−1 st . . .

Attention

−→
h1

. . . −→
ht

. . . −→
hT

←−
h1

. . . ←−
ht

. . . ←−
hT

x1 . . . xt . . . xT

Figure 3.2: Description of the BRNN model with attention, predicting punctuation
yt at time step t for the slot before the current input word xt.

text to make decisions about punctuations. To construct a second stage
model the Softmax output layer of the textual model is discarded and its
last hidden layer features x∗t , concatenated with the pause duration pt before
word xt, are directed to a newly added unidirectional recurrent layer:

zt = f([x∗t , pt], zt−1) (3.9)

where f can be any recurrent unit, such as GRU or LSTM. The recurrent
layer output zt is passed to a newly initialized Softmax output layer, similar
to the one described in Equation 3.8.

During the second phase of training the model learns to use the now
available pause duration information in conjunction with textual features.
It also enables the model to adapt to the style of speech by learning a more
suitable classifier for the target domain. The remaining layers of the textual
model are still used in the forward pass of the second stage model, but are
fixed during training. Stacking a new classifier on top of the textual model
has several advantages when compared to e.g. adapting the parameters of the
existing first stage model. First, the amount of parameters that are trained
on the smaller pause annotated corpus can be easily adjusted to be optimal
for the smaller corpus size to prevent overfitting. Second, if the optimal
size of the second stage model turns out to be smaller than the first stage
model, then the training is faster and enables quicker experimentation with

52



different prosodic features. Finally, according to our experiments, stacking a
new classifier performs better than adapting the existing parameters. The
reason for that might be that as the second stage training corpus is smaller,
it does not contain all the words that are in the input vocabulary of the
model. Therefore some word embeddings are not updated while the rest
of the model changes, causing these embeddings to become less compatible
with the model.

3.3 Experiments

3.3.1 Training and testing details

The Estonian models have an input word vocabulary of 100K most frequent
words in the training corpus, plus the end-of-sequence and out-of-vocabulary
token. The vocabulary of our English models is constructed by taking
all words that occur at least twice in the training corpus, resulting in a
vocabulary of 27 244 words and the 2 special tokens.

The output vocabulary consists of the predicted punctuations (comma,
period and question mark; question marks were mapped to periods in LSTM
models) and a no punctuation token. Other punctuation symbols are either
mapped to one of the punctuations in our output vocabulary or removed
from corpora. For Estonian dataset, exclamation marks, semicolons and
colons are mapped to periods and all other punctuation symbols are removed.
In the English dataset exclamation marks and semicolons are mapped to
periods, while colons and dashes are mapped to commas.

Long short-term memory recurrent neural network

The LSTM model is trained similarly in both stages. Gradients are computed
with back-propagation through time (Rumelhart et al., 1986) over 5 time
steps and the weights are updated using AdaGrad (Duchi et al., 2011).
Learning rate starts from 0.1 and when there is no sufficient improvement
on the validation set we start to divide the learning rate by 2 at each
epoch (adopted from Mikolov et al. (2011c)). Training is stopped when
the shrinking learning rate no longer yields enough improvements or the
maximum number of 20 epochs has been reached. Weights are initialized to
random uniform values in a range of ±0.005 and all hidden states to zeros.
To speed up the training, the dataset is split into 100 sequences and these
sequences are fed to the network in parallel as mini-batches.

We minimize negative log-likelihood of punctuation during training.
During testing we select the punctuation with highest probability according
to model output at each step

The first and second hidden layer of the textual LSTM model consist of
100 tanh units and 100 single-cell LSTM blocks respectively.

53



The input size of the second stage LSTM model is 101 (textual features
plus current slot pause duration). Hidden layer has 100 LSTM units. The
second stage recurrent layer (Equation 3.9) uses the LSTM layer output ht
(Equation 3.2) as textual features x∗t and LSTM as recurrent unit f .

Bidirectional recurrent neural network with attention mecha-
nism

During training both stages of bidirectional models, the weights are updated
using AdaGrad (Duchi et al., 2011) with a learning rate of 0.02. The L2-norm
of the gradient is kept within a threshold of 2 by normalizing it every time
this threshold is exceeded (Pascanu et al., 2013).

Negative log-likelihood of the punctuation sequence is minimized during
training. During testing the punctuation with highest probability according
to model output is chosen at each time step. We also experimented with
giving the previously predicted punctuation as an input to the model and
using beam search to find the best sequence of predictions, but this caused
the model to accumulate mistakes and performed worse.

The first stage of two-stage training is finished when the validation
perplexity gets worse for the first time. The second stage of two-stage
training and single stage training is completed when the validation perplexity
has not improved in the last 5 epochs. Weights are initialized according to
the normalized initialization from (Glorot and Bengio, 2010) and biases are
initialized to zeros. All hidden layers consist of 256 units.

The second stage recurrent layer (Equation 3.9) uses the late fusion
output f t (Equation 3.7) as textual features x∗t and GRU as recurrent unit
f .

The models are implemented using Theano (Bergstra et al., 2010; Bastien
et al., 2012) and trained on GPUs. The input sequence is partitioned into 200
word long slices. Each slice always begins with the first word of a sentence.
If a slice ends with an unfinished sentence, then the unfinished sentence is
copied to begin the next slice. The output sequence is one element shorter
as no punctuation is placed before the first word. Slices are also used during
testing, but unlike during training, the sentence boundaries predicted by the
model are used. To reduce training time, the slices are shuffled before each
epoch and arranged into mini-batches of 128 slices.

3.3.2 Datasets

Estonian

The Estonian dataset we use consists of two parts — a 334M word out-of-
domain written text (e. g. newspapers and WWW) corpus and about 1M
word in-domain pause annotated speech transcripts (broadcast news and
conversations, lectures) corpus. Textual and audio data used for training the

54



Table 3.1: Number of tokens of textual data and the amount of hours of audio
data used for training the punctuation model.

Source #Tokens #Hours

Newspapers 203M
Web 74M
Fiction 35M
Magazines 29M
Parliament 15M
Social media 28M
Lecture speech 0.3M 39.3
Broadcast news 0.1M 32.1
Broadcast conversations 0.5M 74.0

Total 386M 145.4

Estonian punctuation model is summarized in Table 3.1. As development
data, we use two hours of broadcast news and 4.4 hours of broadcast conver-
sations (radio talk shows and telephone interviews) with a corresponding
27K word transcript. The test set contains two hours of broadcast news and
5.6 hours of broadcast conversations (30K words).

The audio data is force-aligned using the speech recognition system de-
scribed below. Inter-word pause durations, used for training the T-LSTM-p,
TA-LSTM-p and TA-BRNN-p model, are then captured from the alignments.
In order to insert reference punctuation marks into automatic transcripts,
the manual transcripts were aligned with the ASR output, using minimum
cost edit distance, and the punctuation marks in the reference texts were
propagated to the hypothesized texts.

The ASR system that is used for aligning punctuation model training
data and producing the ASR hypotheses for the evaluation data is described
in detail by Alumäe (2014), although some details have been improved since
then. The WER of the system is around 17%.

English

Experiments on English are performed on the IWSLT dataset which consists
of TED Talks transcripts. The current best result on this dataset was
achieved by Che et al. (2016). We use the same training, development and
test set to train and test our models. The training and development set
consist of 2.1M and 296K words respectively and come from the IWSLT2012
machine translation track training data. IWSLT2011 reference and ASR test
set are used for testing and contain about 13K words each. More detailed

55



description of the dataset can be found in (Che et al., 2016).

3.3.3 Models

Estonian

The Estonian dataset has both out-of-domain and pause annotated target
domain data available. Therefore we train our model using the two-stage
approach — first training on the large out-of-domain corpus and then
adapting on the pause annotated corpus. We train the two-stage Estonian
model both with (TA-LSTM-p and TA-BRNN-p) and without (TA-LSTM
and TA-BRNN) utilizing pause durations. The models trained without pause
durations in the second stage help us assess the effect of adaptation alone
and evaluate the effectiveness of the second stage training in utilizing pause
duration information. To demonstrate the importance of textual features
trained on a large corpus, we train an augmented textual LSTM model with
additional pause duration input (T-LSTM-p) on pause annotated text only.

As this work is the first in automatic punctuation restoration for Estonian,
we created our own two baselines: a hidden event LM and a decision tree that
combines textual and inter-word pause information. The 4-gram hidden event
LM uses a vocabulary of the same 100K words as the LSTM and BRNN
models plus punctuation symbols. The model is built by interpolating
the models compiled from the individual text sources using coefficients
optimized on the development set. The model is smoothed using Kneser-Ney
discounting and n-gram probabilities accounting for less than 10−7 training
set perplexity improvement are pruned. The second baseline is inspired
from the models proposed in (Kolář et al., 2004; Kolár and Lamel, 2012):
a decision tree (4-gram+DT-p) is trained on the pause annotated corpus,
using pause durations and the posterior probabilities of the punctuation
symbols assigned by the hidden n-gram LM as features. This allows the
decision tree to directly benefit from both inter-word pause information as
well as a large text corpus which has no corresponding speech data available,
similarly to the TA-LSTM-p and TA-BRNN-p model.

English

Since there is no prosody available for the English dataset we use purely
textual models T-LSTM and T-BRNN in our experiments. We compare
our models to the state of the art deep and convolutional neural network
models by Che et al. (2016). Two-stage training, while also possible on the
English dataset, would require out-of-domain data which was not used by
the baselines and would give our models an unfair advantage. The baselines
did use pre-trained word vectors, so we also train one T-BRNN model with

56



embeddings initialized to the same pre-trained word vectors 2 (T-BRNN-pre)
for comparison.

3.3.4 Metrics

All models are evaluated in terms of per punctuation and overall precision,
recall and F1-score. We also report the overall SER, as F1-score has been
shown to have some undesirable properties (Makhoul et al., 1999). The
metrics are based on the following statistics of the predicted punctuation:
correct (C), substitutions (S), deletions (D), and insertions (I). Precision is
defined as:

P =
C

C + S + I
(3.10)

Recall is defined as:

R =
C

C + S +D
(3.11)

F1-score is the harmonic mean of precision and recall:

F1 = 2
PR

P +R
(3.12)

SER is defined as:

SER =
S +D + I

C + S +D
(3.13)

or slot errors divided by total number of slots (Makhoul et al., 1999).

3.3.5 Results and analysis

All comparisons in this section are in terms of absolute differences. Models are
evaluated on both manual transcripts and automatic transcripts generated
by an ASR system.

Estonian

On the Estonian test sets (Table 3.2), it is clear that our newly proposed
neural textual models (TA-LSTM and TA-BRNN) outperform the 4-gram
model. The 4-gram model has decent performance in restoring commas but
fails miserably when it comes to periods where especially the poor recall of
25.5 stands out. This might indicate that periods depend on longer context
than the 4-gram model is able to utilize and require better generalization.

2http://nlp.stanford.edu/projects/glove/

57



T
a
b
le

3
.2

:
R

es
u
lt

s
o
n

E
st

o
n
ia

n
re

fe
re

n
ce

tr
a
n
sc

ri
p
ts

a
n
d

A
S
R

o
u
tp

u
t

te
st

se
t.

T
h
e

*
in

d
ic

a
te

s
th

a
t

th
e

q
u
es

ti
o
n

m
a
rk

s
h
av

e
b

ee
n

m
ap

p
ed

to
p

er
io

d
s.

M
od

el
C

O
M

M
A

P
E

R
IO

D
Q

U
E

S
T

IO
N

O
V

E
R

A
L

L
P

R
F
1

P
R

F
1

P
R

F
1

P
R

F
1

S
E

R

4-
gr

am
78

.3
60

.2
68

.1
46

.5
25

.5
33

.0
-

-
-

71
.3

50
.4

59
.0

61
.9

4-
gr

am
+

D
T

-p
76

.0
70

.2
73

.0
64

.4
60

.4
62

.3
-

-
-

72
.7

67
.4

70
.0

52
.6

T
-L

S
T

M
-p

78
.5

63
.3

70
.1

68
.9

59
.8

64
.0

-
-

-
75

.6
62

.3
68

.3
52

.8
T

A
-L

S
T

M
74

.5
72

.2
73

.3
62

.8
42

.9
51

.0
-

-
-

71
.9

63
.9

67
.7

52
.5

R
ef

.
T

A
-L

S
T

M
-p

8
2
.3

69
.9

75
.6

67
.7

76
.8

72
.0

-
-

-
77

.3
71

.9
74

.5
43

.7
T

A
-B

R
N

N
75

.1
7
5
.5

75
.3

65
.6

64
.1

64
.8

6
3
.6

43
.8

51
.9

72
.5

71
.9

72
.2

46
.1

T
A

-B
R

N
N

-p
81

.6
75

.4
7
8
.4

72
.5

77
.0

74
.7

59
.1

4
8
.7

5
3
.4

78
.6

75
.4

77
.0

39
.3

T
A

-B
R

N
N

*
75

.1
7
5
.5

75
.3

67
.4

64
.7

66
.0

-
-

-
73

.0
72

.4
72

.7
45

.6
T

A
-B

R
N

N
-p

*
81

.6
75

.4
7
8
.4

7
3
.8

7
7
.3

7
5
.5

-
-

-
7
9
.2

7
6
.0

7
7
.6

3
8
.7

4-
gr

am
69

.9
54

.4
61

.2
37

.7
18

.6
24

.9
-

-
-

63
.5

44
.3

52
.2

74
.1

4-
gr

am
+

D
T

-p
66

.1
62

.1
64

.0
51

.7
48

.4
50

.0
-

-
-

62
.1

58
.2

60
.1

71
.8

T
-L

S
T

M
-p

69
.9

57
.3

63
.0

57
.3

49
.0

52
.8

-
-

-
66

.2
55

.0
60

.1
68

.5
T

A
-L

S
T

M
64

.5
64

.6
64

.6
48

.8
32

.2
38

.8
-

-
-

61
.3

55
.5

58
.2

72
.1

A
S

R
T

A
-L

S
T

M
-p

7
1
.1

62
.5

66
.5

54
.9

61
.2

57
.8

-
-

-
65

.7
62

.1
63

.8
65

.5
T

A
-B

R
N

N
63

.9
6
7
.9

65
.8

54
.0

50
.3

52
.1

48
.8

29
.9

37
.0

61
.3

62
.6

62
.0

68
.7

T
A

-B
R

N
N

-p
69

.1
66

.8
6
8
.0

59
.7

6
1
.5

60
.6

5
1
.2

3
1
.3

3
8
.9

66
.3

64
.9

65
.6

62
.9

T
A

-B
R

N
N

*
63

.9
6
7
.9

65
.8

54
.9

50
.2

52
.4

-
-

-
61

.6
62

.9
62

.2
68

.4
T

A
-B

R
N

N
-p

*
69

.1
66

.8
6
8
.0

6
0
.6

61
.1

6
0
.8

-
-

-
6
6
.6

6
5
.2

6
5
.9

6
2
.6

58



The LSTM model trained on purely textual features (TA-LSTM) achieves
a 6 − 8.7% improvement in F1-score and 2 − 9.4% improvement in SER
over 4-gram model. While there are improvements in comma restoration,
most of the gains come from better period restoration performance. This
confirms that longer context and better generalization of LSTMs is indeed
helpful when it comes to punctuation restoration, particularly for periods.
TA-LSTM performance may be also partially attributed to the superiority
of the adaptation scheme used (the 4-gram model uses linear interpolation).
Just as with the 4-gram model, the TA-LSTM model is still worse at period
restoration than comma restoration, although the difference is noticeably
smaller. The more advanced TA-BRNN model brings further improvements
and increases the gap with 4-gram model to 9.8−13.2% in F1-score and 5.4−
15.8% in SER despite having to deal with an additional type of punctuation.
When question marks are mapped to periods, then the differences rise to
10− 13.7% in F1-score and 5.7− 16.3% in SER.

Adding pause duration features yields noticeable reductions in error
rate — improvements over corresponding purely textual model are between
3.6 − 11% in F1-score and 2.3 − 9.3% in SER. Both absolute and relative
improvements tend to be larger for weaker textual models and smaller for
stronger textual models. As expected, the biggest benefits of using pause
durations reveal themselves in large jump in period restoration recall, but
precision improves as well. Commas gain noticeably in precision when
utilizing pauses.

The best neural model (TA-BRNN-p) beats the 4-gram+DT-p baseline
by 5.5−7.6% in F1-score and 8.9−13.9% in SER and has higher performance
for all punctuation marks.

When comparing T-LSTM-p, a model trained on the small pause anno-
tated corpus only, to the TA-LSTM-p model, it becomes clear that using
textual features trained on a large corpus helps a lot. Biggest improvement
is in period recall, again hinting that good representations of long contexts
are important for period restoration.

It is clear that all models suffer from the errors made by the ASR system.
It is also evident that periods are affected more than commas. This might
be another indicator that restoring periods requires larger context and as
context size grows the more likely it is to encounter errors made by the ASR
system. On the positive side, the gap between performance on the reference
text and ASR output shows a the potential for improvements when the
WER of the ASR systems improves. Another thing to note is that alignment
method used to propagate reference punctuations to ASR output is not error
free either. Manual inspection of punctuation restored by models revealed
that many decisions made by the models that were counted as mistakes
were actually better than the ground truth punctuation. While flawed, our

59



Table 3.3: Confusion matrix of the TA-BRNN model on the Estonian reference test
set.

Predicted
SPACE COMMA PERIOD QUESTION

A
ct

u
al

SPACE 24136 602 226 6
COMMA 633 2502 174 4
PERIOD 220 212 789 10

QUESTION 15 16 14 35

Table 3.4: Confusion matrix of the TA-BRNN-p model on the Estonian reference
test set.

Predicted
SPACE COMMA PERIOD QUESTION

A
ct

u
al

SPACE 24290 446 227 7
COMMA 688 2499 121 5
PERIOD 169 99 948 15

QUESTION 12 17 12 39

current ASR output test set should still give a rough performance estimate.

We also analyze the confusion matrices for the TA-BRNN and TA-BRNN-
p models.

From Table 3.3 we notice that the prediction frequency of the TA-
BRNN model for punctuation marks is close to the actual frequency for
each punctuation mark. Commas are by far the most common punctuation
mark. Most common error for commas is deletion (predicting space instead
of comma), closely followed by insertion (predicting comma instead of space),
and much less frequent substitution with periods. The majority of period
prediction errors are roughly equally distributed between insertion, deletion,
and substitution with comma. Question mark is noticeably less frequent
than other punctuation marks in the test set which makes the conclusions
unreliable.

Using pause duration between words as an additional feature in the TA-
BRNN-p model reduces the overall amount of errors (Table 3.4). As expected,
the most significant improvement is in period prediction. The number of
errors where a period is substituted with comma is cut in half. Smaller but

60



still impressive reductions are in comma insertion, comma substitution with
period, and period and question mark deletion.

English

The results on English test sets (Table 3.5) are for text based models only.
We compare our models to the state-of-the art baselines by Che et al. (2016).
The overall F1-score improves by 8.9% on reference text and by 10.5%
on ASR output when comparing our T-BRNN model to the best baseline
(DNN-A). The best baseline in terms of SER is the DNN model and the
T-BRNN model reduces it by 11.6% on reference text and by 15.5% on
ASR output. The T-BRNN model shows improvements in all metrics for all
punctuation types. The biggest difference is in the question mark restoration
performance, as the models from (Che et al., 2016) were unable to restore
any question marks due to a limited fixed size context (3 words before and
2 words after the slot) that rarely included the question indicating words
that often are in the beginning of the sentence. Both the T-BRNN model
and the T-LSTM model were both able to restore question marks, as their
preceding context length is not limited to a fixed size. The T-LSTM model
showed the lowest period restoration scores, indicating that looking further
than one word into the following context is important for sentence boundary
detection. The T-BRNN model showed improvements despite the fact that
DNN, DNN-A and CNN-2A used an external source of information in the
form of pre-trained word vectors (trained on 6B tokens). When we use the
same word vectors as an initialization for our word embeddings, then we get
further improvements and achieve our best result (T-BRNN-pre).

Although some of the previous work (e.g. Peitz et al. (2011)) reports
comparable or even better scores, these results are not directly comparable
to ours as they are reported on already segmented text while our results are
achieved on unsegmented text.

61



T
ab

le
3.

5:
R

es
u

lt
s

on
E

n
gl

is
h

re
fe

re
n

ce
tr

an
sc

ri
p

ts
an

d
A

S
R

ou
tp

u
t

te
st

se
t.

M
o
d

el
s

m
ar

ke
d

w
it

h
[1

]
(D

N
N

,
D

N
N

-A
an

d
C

N
N

-2
A

)
ar

e
th

e
b

es
t

m
o
d

el
s

fr
om

(C
h

e
et

a
l.

,
2
0
1
6
).

M
od

el
C

O
M

M
A

P
E

R
IO

D
Q

U
E

S
T

IO
N

O
V

E
R

A
L

L
P

R
F
1

P
R

F
1

P
R

F
1

P
R

F
1

S
E

R

D
N

N
[1

]
58

.2
35

.7
44

.2
61

.6
64

.8
63

.2
0

0
-

60
.3

48
.6

53
.8

62
.9

D
N

N
-A

[1
]

48
.6

42
.4

45
.3

59
.7

68
.3

63
.7

0
0

-
54

.8
53

.6
54

.2
66

.9
R

ef
.

C
N

N
-2

A
[1

]
48

.1
44

.5
46

.2
57

.6
69

.0
62

.8
0

0
-

53
.4

55
.0

54
.2

68
.0

T
-L

S
T

M
49

.6
41

.4
45

.1
60

.2
53

.4
56

.6
57

.1
43

.5
49

.4
55

.0
47

.2
50

.8
74

.0
T

-B
R

N
N

64
.4

45
.2

53
.1

72
.3

71
.5

71
.9

67
.5

58
.7

62
.8

68
.9

58
.1

63
.1

51
.3

T
-B

R
N

N
-p

re
6
5
.5

4
7
.1

5
4
.8

7
3
.3

7
2
.5

7
2
.9

7
0
.7

6
3
.0

6
6
.7

7
0
.0

5
9
.7

6
4
.4

4
9
.7

D
N

N
[1

]
47

.2
32

.0
38

.1
59

.0
60

.9
60

.0
0

0
-

54
.4

45
.6

49
.6

73
.3

D
N

N
-A

[1
]

41
.0

40
.9

40
.9

56
.2

64
.5

60
.1

0
0

-
49

.2
51

.6
50

.4
79

.2
A

S
R

C
N

N
-2

A
[1

]
37

.3
40

.5
38

.8
54

.6
65

.5
59

.6
0

0
-

46
.4

51
.9

49
.1

83
.6

T
-L

S
T

M
41

.8
37

.8
39

.7
56

.4
49

.3
52

.6
55

.6
42

.9
48

.4
49

.1
43

.6
46

.2
83

.7
T

-B
R

N
N

6
0
.0

4
5
.1

5
1
.5

69
.7

69
.2

69
.4

6
1
.5

45
.7

52
.5

65
.5

57
.0

60
.9

57
.8

T
-B

R
N

N
-p

re
59

.6
42

.9
49

.9
7
0
.7

7
2
.0

7
1
.4

60
.7

4
8
.6

5
4
.0

6
6
.0

5
7
.3

6
1
.4

5
7
.0

62



Table 3.6: Confusion matrix of the T-BRNN-pre model on the English reference
test set.

Predicted
SPACE COMMA PERIOD QUESTION

A
ct

u
al

SPACE 10788 111 45 2
COMMA 274 391 160 5
PERIOD 125 91 582 5

QUESTION 6 4 7 29

We also analyze the confusion matrix (Table 3.6) for the T-BRNN-pre
model. The confusion matrix reveals that in the English dataset the commas
and periods are roughly equally frequent. Compared to the Estonian dataset,
the commas are much less frequent while periods are noticeably more common.
This might indicate shorter and simpler sentences in the dataset in addition
to the differences between the two languages. Prediction frequencies mostly
match with actual frequencies, with the exception of commas. Most common
error is comma deletion, followed by comma substitution with period. For
periods the most common error is deletion, followed by substitution with
comma, and finally insertion errors.

The comparison of the Estonian and English results reveals that comma
restoration is a much more difficult task in English than it is in Estonian. This
does not come as a surprise, as many commas in Estonian can be restored by
following relatively simple rules based on the next word. Commas are also
much more frequent in the Estonian dataset than they are in the English
dataset, giving the model more training examples. Although there is a big
difference in question mark restoration performance as well, it is hard to
make conclusions as they are too rare in both test sets.

Table 3.7 shows an example of actual and generated (T-BRNN-pre)
punctuation on the English reference test set. In this example, the majority
of errors are deletion errors. All the deletion errors are comma deletions,
which shows that commas are difficult for the model, but when it comes to
the readability of the text, comma deletion errors have the smallest negative
effect compared to sentence boundary punctuation deletions (periods and
question marks). There are also three substitution errors in the example,
but two of them are actually equally correct alternatives to periods. Overall,
the generated punctuation does have a positive impact on the readability.

63



Table 3.7: Punctuation example. Correct, deletion, insertion, and substitution
situations highlighted.

T-BRNN-pre i ’m assuming there are not many people here who
speak icelandic PERIOD so let me narrow the choices
down to two PERIOD is it a happy word SPACE or
a sad word QUESTION what do you say QUESTION
okay COMMA some people say it ’s happy PERIOD
most people COMMA a majority of people SPACE
say sad COMMA and it actually means sad PERIOD
why do SPACE statistically SPACE a majority of
people say that a word is sad SPACE in this case
COMMA heavy in other cases COMMA in my the-
ory SPACE language evolves in such a way that
sounds match SPACE correspond with the subjec-
tive SPACE with the personal intuitive experience
of the listener PERIOD

Actual i ’m assuming there are not many people here who
speak icelandic PERIOD so let me narrow the choices
down to two PERIOD is it a happy word COMMA or
a sad word QUESTION what do you say QUESTION
okay PERIOD some people say it ’s happy PERIOD
most people COMMA a majority of people COMMA
say sad PERIOD and it actually means sad PERIOD
why do COMMA statistically COMMA a major-
ity of people say that a word is sad COMMA in
this case COMMA heavy in other cases QUESTION
in my theory COMMA language evolves in such a
way that sounds match COMMA correspond with
the subjective COMMA with the personal intuitive
experience of the listener PERIOD

64



Table 3.8: Ablation studies of the T-BRNN model. Relative change in percent in
metrics on the English reference transcripts.

No late fusion No attention No reverse RNN

COMMA
P 9.6 1 -1.5
R -21.1 -19.1 -25.2
F1 -8.3 -10.1 -15.1

PERIOD
P -1.8 -1.4 -8.7
R 3.5 -3.4 -32.1
F1 0.8 -2.4 -22.2

QUESTION
P 17.1 1.8 -14.4
R 0 -29.9 -23.3
F1 8.2 -16.6 -19

OVERALL

P 4.7 0.6 -5.8
R -7.6 -11.2 -28.8
F1 -1.9 -5.6 -18.9

SER -1.2 5.4 34.2

3.3.6 Ablation studies

To better understand the individual contributions of late fusion, bidirection-
ality and attention, we trained additional versions of the T-BRNN model on
English with the components removed:

• No late fusion — Equation 3.7 is removed from the T-BRNN model,
Equation 3.6 is replaced with st = GRU(ht+at, st−1), and Equation 3.8
is replaced with yt = Softmax(stW y + by).

• No attention — Attention and late fusion (Equation 3.7) are removed
from the T-BRNN model and Equation 3.8 is replaced with yt =
Softmax(stW y + by).

• No reverse RNN — Bidirectionality is removed from the T-BRNN

model by replacing Equation 3.5 with ht =
−→
h t.

As seen in Table 3.8, bidirectionality turned out to be the biggest factor,
as removing the forward context caused the performance of all punctuation
marks (especially periods and question marks) to drop. The drop in recall
was much larger than in precision, indicating that the following context is a
critical component for successfully recovering punctuation marks. Removing
the attention (which also entails removing late fusion) had a much smaller,
but still clear negative effect, affecting mostly question mark and comma

65



recall. Removing the late fusion alone, showed a clear performance decrease
only in comma restoration recall. On the other hand, the overall precision
improved.

We also give examples of the attention weights of the T-BRNN-pre
and No late fusion models in Figure 3.3. For clarity the figure shows only
a 35×36 word slice of each attention matrix (the total size is 199×200).
The vertical axis labels show the input word at that time step along with
the punctuation mark that was predicted by the model to fill the slot
before this word. Both models use attention to focus on a few keywords
that remain almost constant through time steps. For both models, it is
hard to interpret why the model considers exactly these words as attention
worthy. The main thing that varies through time is the sharpness of the
attention. The attention sharpening is especially evident in the No late
fusion model where the otherwise smooth attention sharpens very clearly
each time after a punctuation mark is predicted. T-BRNN-pre has sharper
attention than the No late fusion model most of the time which changes
minimally through time steps, even when punctuation is predicted, with
the exception after predicting the first question mark. This behavior is
much different from how the attention functions in sequence-to-sequence
models in neural translation and summarization where focus shifts much
more through time, but our model knows about the exact position in the
encoded source at every step unlike sequence-to-sequence models. The almost
constant behavior of attention in our model suggests that the model can
be simplified by computing a single attention vector for the entire sequence
(this removes N − 1 attention computations, where N is the number of
prediction steps) and attention sharpness can be varied with a simpler and
computationally less expensive subnetwork with one logistic sigmoid output
for each prediction step.

The general conclusion from the ablation studies is that the attention and
bidirectional recurrence are definitely useful components in a punctuation
restoration model, but the late fusion should only be use when recall is
valued over precision.

3.4 Conclusions

In this chapter we presented two recurrent neural network models for restoring
punctuation marks in unsegmented transcribed speech. We presented first
results on Estonian in that field and achieved state-of-the art results on
the English TED Talks dataset. Also, to the best of our knowledge, the
proposed LSTM model was the first published work on applying RNNs to
the punctuation restoration problem.

Our results showed that the known benefits of RNN LMs over n-gram
LMs did indeed transfer to hidden event language modeling as well — all

66



i
'm

a
ss

u
m

in
g

th
e
re

a
re

n
o
t

m
a
n
y

p
e
o
p
le

h
e
re

w
h
o

sp
e
a
k

ic
e
la

n
d
ic so le
t

m
e

n
a
rr

o
w

th
e

ch
o
ic

e
s

d
o
w

n to
tw

o is it a
h
a
p
p
y

w
o
rd o
r a

sa
d

w
o
rd

w
h
a
t

d
o

y
o
u

sa
y

o
ka

y
so

m
e

Input words

SPACE 'm
SPACE assuming

SPACE there
SPACE are
SPACE not

SPACE many
SPACE people

SPACE here
SPACE who

SPACE speak
SPACE icelandic

PERIOD so
SPACE let
SPACE me

SPACE narrow
SPACE the

SPACE choices
SPACE down

SPACE to
SPACE two
PERIOD is

SPACE it
SPACE a

SPACE happy
SPACE word

SPACE or
SPACE a

SPACE sad
SPACE word

QUESTION what
SPACE do

SPACE you
SPACE say

QUESTION okay
COMMA some

P
re

d
ic

ti
o
n
 s

te
p

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

(a) T-BRNN-pre

i
'm

a
ss

u
m

in
g

th
e
re

a
re

n
o
t

m
a
n
y

p
e
o
p
le

h
e
re

w
h
o

sp
e
a
k

ic
e
la

n
d
ic so le
t

m
e

n
a
rr

o
w

th
e

ch
o
ic

e
s

d
o
w

n to
tw

o is it a
h
a
p
p
y

w
o
rd o

r a
sa

d
w

o
rd

w
h
a
t

d
o

y
o
u

sa
y

o
ka

y
so

m
e

Input words

SPACE 'm
SPACE assuming

SPACE there
SPACE are
SPACE not

SPACE many
SPACE people

SPACE here
SPACE who

SPACE speak
SPACE icelandic

PERIOD so
SPACE let
SPACE me

SPACE narrow
SPACE the

SPACE choices
SPACE down

SPACE to
SPACE two
PERIOD is

SPACE it
SPACE a

SPACE happy
SPACE word

SPACE or
SPACE a

SPACE sad
SPACE word

QUESTION what
SPACE do

SPACE you
SPACE say

QUESTION okay
COMMA some

P
re

d
ic

ti
o
n
 s

te
p

0.006

0.012

0.018

0.024

0.030

0.036

0.042

0.048

0.054

(b) No late fusion

Figure 3.3: Attention weights examples on a section from English reference test set.

67



neural models outperformed the hidden event n-gram model by a large
margin. Our models were able to utilize larger context, generalized better
to unseen contexts and were more adapted to the target domain which all
turned out to be useful in punctuation restoration.

We also showed that utilizing both large text corpora and a limited
amount of prosody annotated transcripts can be effectively done with our
proposed two-stage training method. The method allows for a separate
tuning of the second stage hyperparameters to prevent overfitting to the
annotated transcripts and as an additional benefit enables the adaptation
of the model to the target domain. Supplementing textual features with
prosodic features (in our case pause durations between words) brought largest
improvements in period restoration as expected and was more useful the
weaker the textual component of the model was.

Comparison of unidirectional and bidirectional RNNs showed that bidirec-
tional models outperform the unidirectional ones by a large margin (although
the unidirectional model can still be useful when low latency is crucial),
suggesting that knowing a larger than one word context ahead is an im-
portant factor in determining punctuation. The attention mechanism also
turned out to be a useful component in our BRNN model, although to a
much smaller extent than bidirectionality. Our analysis also showed that
the way the attention was used by our model can be approximated with a
simpler and faster architecture in future work. The late fusion we used in
our model to integrate the attention component output into the rest of the
model improved the overall recall of the model, but reduced the precision,
so the total amount of errors remained similar.

3.4.1 Future work

While our models performed well, there are still some weaknesses to address.

First, our models have a limited vocabulary and all words out of that
vocabulary are mapped to a shared out-of-vocabulary token. This might
hide valuable information from the model and hurt punctuation restoration
performance in some contexts. Although, the problem can be somewhat
mitigated with the use of additional text based features like part-of-speech
tags (Cho et al., 2015a), it makes the model dependent on the availability
and quality of corresponding model. A potentially better way to mitigate
this problem is adding a character-level submodule to the model that is
trained jointly with the rest of the model (Rei et al., 2016). Another option
is to train a character based model that can predict embeddings for out-
of-vocabulary words separately (Pinter et al., 2017). The latter has the
advantage that it can be easily used with preexisting models.

Secondly, in this work we restored a limited amount of punctuation types
and the only prosodic feature we used was pause duration between words.

68



Future research may include a richer set of prosodic features and predict a
larger variety of punctuation marks such as dashes, colons, semicolons and
parentheses. Parentheses and other paired punctuation marks might create
new challenges for the models.

Thirdly, errors in the ASR system output had a large negative impact on
punctuation restoration performance for all models. Improved robustness to
ASR errors would produce more accurate predictions on transcribed speech
as has been shown for neural headline generation (Yu et al., 2016).

Finally, the English TED Talks dataset that was used is relatively small.
It is likely that more impressive results can be obtained with the help of
larger training sets.

One potential weakness of the BRNN model is the fact that the amount
of context diminishes towards the edges of the sequence, potentially making
punctuation prediction there harder and less accurate than in the middle of
sequence. Adding additional context-only words on both sides of the sequence
might alleviate the problem (or, in other words: predicting punctuation only
for a subsequence in the middle).

Another problem in our models was that we were unable to utilize previous
predictions of the model for subsequent predictions without performance
degradation. The same problem was found by Xu et al. (2016a). It is worth
exploring whether using scheduled sampling (Bengio et al., 2015) and similar
techniques improves the robustness to previous prediction mistakes and
makes the quality of restored punctuation better.

In addition to fixing the shortcomings of current work, there are several
other opportunities for future research.

While in this work we mainly focused on restoring punctuation in speech
transcripts, it would be interesting to explore other use cases like automatic
punctuation suggestions in mobile keyboards or word processor software.

We showed that RNNs are better hidden event language models than
n-gram models, so a natural course would be to apply RNNs to other hidden
event language modeling problems, such as, reconstruction of compound
words (Alumäe, 2007). Joint punctuation and capitalization models can also
be explored (Gravano et al., 2009).

The input layer weights or word embeddings in neural language models
have shown very interesting and useful properties (Mikolov et al., 2013).
One future direction could be studying the embeddings of neural hidden
event language models and find out whether they also have useful properties
or can be complementary to regular embeddings.

Finally, our two-step training method used only the last recurrent layer
state as the input to the second stage model. More information can be
extracted by learning a linear combination of more layers of the first stage
model (Peters et al., 2018).

69





Chapter 4

Low-resource headline
generation with neural
networks

This chapter is based on the work in publication V.
Research questions:

• Can we improve headline generation performance if we utilize the
available text in the corpus to a more full extent and how much does
pre-training help?

• Most commonly used pre-training method used is pre-trained word
embeddings. What is the effect of pre-training other components of
the model? Does it help to pre-train more parameters?

4.1 Background

Neural headline generation (NHG) is the process of automatically generating
a headline based on the text of the document using artificial neural networks.

Headline generation is a subtask of text summarization. While a summary
may cover multiple documents, generally uses similar style to the summarized
document, and consists of multiple sentences, headline, in contrast, covers
a single document, is often written in a different style (Headlinese (Mardh,
1980)), and is much shorter (frequently limited to a single sentence).

Due to shortness and specific style, condensing the the document into a
headline often requires the ability to paraphrase which makes this task a
good fit for abstractive summarization approaches where neural networks
based attentive encoder-decoder (Bahdanau et al., 2015) type of models have
recently shown impressive results. Starting with simpler FFNN LM decoder
combined with convolutional and attention based decoders (Rush et al., 2015),

71



more recent models have switched to RNN based encoders (Lopyrev, 2015)
and decoders (Chopra et al., 2016). Lopyrev (2015) additionally proposes a
simplified attention mechanism that performs better and uses a small subset
of hidden layer neurons to compute attention weights. Further work includes
many extensions to the encoder-decoder architecture or training objective to
improve the quality of generated headlines or summaries. Shen et al. (2016)
and Paulus et al. (2017) develop methods for optimizing ROUGE directly and
to overcome the disparity between training and generation in conventional
maximum likelihood optimized encoder-decoder models. Shen et al. (2016)
use sentence-wise optimization with minimum risk training that enables
optimizing ROUGE directly. Paulus et al. (2017) combine conventional
maximum likelihood objective with reinforcement learning based objective
to optimize ROUGE and language modeling loss simultaneously. They also
propose intra-attention mechanisms in both encoder and decoder to ensure
that different parts of the document are used and to reduce repeated phrases
in the generated summary. Repetition problem is also explored by Suzuki
and Nagata (2017). Another direction of research deals with improving
the handling of out-of-vocabulary and rare words during generation by
giving the models the ability to extract words from the source document
in addition to generating new words from the limited decoder vocabulary.
Gulcehre et al. (2016) create an extension for neural machine translation and
summarization models to solve the problem of generating out-of-vocabulary
words. The method uses a special submodel to switch between generating
words from a shortlist vocabulary or copying them from the input based on
attention weights (or location softmax in case the model does not use the
attention mechanism). A very similar method by Gu et al. (2016), that is
not limited to copying out-of-vocabulary words, uses a shared normalization
term between extractive and generative output layer instead of the switching
component. See et al. (2017) propose another similar solution for multi-
sentence abstractive summaries with a switching mechanism like Gulcehre
et al. (2016), but not restricted to out-of-vocabulary words and the generative
and extractive probabilities are mixed. They also propose simple method to
improve the summarization coverage by summing past attention weights and
feeding the resulting vector as additional input to the attention component
and adding coverage loss to the primary objective. Summarization coverage
problem is also explored by Chen et al. (2016) who abstractively summarize
documents with up to thousands of words. They use several distraction
mechanisms to encourage the model to cover more content of the document.
Several means to control the output length in encoder-decoder models,
including automatically generated summaries, is proposed by Kikuchi et al.
(2016). Ma et al. (2017) improve the quality of abstractive summaries by
encouraging semantic similarity between the document and summary by

72



adding an additional loss term to the training objective. The additional loss
term is based on cosine distance between the semantic representations of the
document and summary (based on last states of encoder and decoder RNNs
respectively). Some work focused on providing the model with additional
information about the source document by either using additional features
on the encoder side or utilizing the general topic of the document. Xu
et al. (2016b) experiment with guiding the headline generation process with
information about the topic of the document, by assigning each document
into a topic using latent Dirichlet allocation and adapting most of the
model for each topic. Takase et al. (2016) explore incorporating additional
syntactic and semantic features into a neural headline generation model by
the means of abstract meaning representation. Nallapati et al. (2016) enrich
embeddings on the encoder side with part-of-speech and named entity tags,
and TF-IDF statistics to better detect key entities in the document. They
additionally extend the base model with the large vocabulary trick (Jean
et al., 2015) where each mini-batch has a custom vocabulary based mostly on
source document words extended with their 1-nearest-neighbors in the word
embedding space and a hierarchical encoder and attention that operates both
at the word and sentence level. A specific problem in generating headlines
for ASR output where word errors in the source document can degrade the
quality of generated headlines is explored by Yu et al. (2016). They extend
their model with an error estimation submodel that enables the model to
pay less attention to erroneous words in the input.

While state-of-the art results have been obtained by training NHG models
on large datasets like Gigaword, access to such resources is often not possible,
especially when it comes to low-resource languages. In this work we focus
on maximizing performance on smaller datasets with different pre-training
methods.

One of the reasons to expect pre-training to be an effective way to improve
performance on small datasets, is that NHG models are generally trained to
generate headlines based on just a few first sentences of the documents (Rush
et al., 2015; Shen et al., 2016; Chopra et al., 2016; Nallapati et al., 2016).
This leaves the rest of the text unutilized, which can be alleviated by pre-
training subsets of the model on full documents. Additionally, the decoder
component of NHG models can be regarded as a LM whose predictions are
biased by the external information from the encoder. As a LM it sees only
headlines during training, which is a small fraction of text compared to the
documents. Supplementing the training data of the decoder with documents
via pre-training might enable it to learn more about words and language
structure.

Although, some of the previous work has used pre-training before (Nalla-
pati et al., 2016; Paulus et al., 2017; Gulcehre et al., 2016), it is not fully

73



explored how much pre-training helps and what is the optimal way to do
it. Another problem is, that in previous work only a subset of parameters
(usually just embeddings) is pre-trained leaving the rest of the parameters
randomly initialized.

The main contributions of this work are: LM pre-training for fully
initializing the encoder and decoder (sections 4.2.1 and 4.2.2); combining
LM pre-training with distant supervision (Mintz et al., 2009) pre-training
using filtered sentences of the documents as noisy targets (i.e. predicting one
sentence given the rest) to maximally utilize the entire available dataset and
pre-train all the parameters of the NHG model (section 4.2.3); and analysis
of the effect of pre-training different components of the NHG model (section
4.3.3).

4.2 Methods

The model that we use follows the architecture described by Bahdanau et al.
(2015). Although originally created for neural machine translation, this
architecture has been successfully used for NHG (e.g., by Shen et al. (2016);
Nallapati et al. (2016) and in a simplified form by Chopra et al. (2016)).

The NHG model consists of:

• A bidirectional (Schuster and Paliwal, 1997) encoder with GRUs (Cho
et al., 2014).

• A unidirectional GRU decoder with a deep output layer (Pascanu et al.,
2014) using maxout units (Goodfellow et al., 2013).

• An attention mechanism and a decoder initialization layer that connect
the encoder and decoder (Bahdanau et al., 2015).

During headline generation, the encoder reads and encodes the words of
the document. Initialized by the encoder, the decoder then starts generating
the headline one word at a time, attending to relevant parts in the document
using the attention mechanism (Figure 4.1). During training the parameters
are optimized to maximize the probabilities of reference headlines.

While generally at the start of training either the parameters of all the
components are randomly initialized or only pre-trained embeddings (with
dashed outline in Figure 4.1) are used (Nallapati et al., 2016; Paulus et al.,
2017; Gulcehre et al., 2016), we propose pre-training methods for more
extensive initialization. The general idea is to train simpler submodels of
complex models on tasks that match the goals of these subnetworks and use
the parameters of the trained submodels to initialize the parameters of the
complex model before fine-tuning on the final task.

74



x1 . . . xN

Enc. emb.

Encoder Attention

Init.

y1 . . . yt−1

Dec. emb.

Decoder

yt

Figure 4.1: A high level description of the NHG model. The model predicts the next
headline word yt given the words in the document x1 . . . xN and already generated
headline words y1 . . . yt−1.

4.2.1 Encoder Pre-Training

When training a NHG model, most approaches generally use a limited
number of first sentences or tokens of the document. For example Rush et al.
(2015); Shen et al. (2016); Chopra et al. (2016) use only the first sentence of
the document and Nallapati et al. (2016) use up to 2 first sentences. While
efficient (training is faster and takes less memory as the input sequences
are shorter) and effective (the most informative content tends to be at the
beginning of the document (Nallapati et al., 2016)), this leaves the rest of
the sentences in the document unused. Better understanding of words and
their context can be learned if all sentences are used, especially on small
training sets.

To utilize the entire training set, we pre-train the encoder on all the
sentences of the training set documents. Since the encoder consists of two
recurrent components – a forward and backward GRU – we pre-train them
separately. First we add a softmax output layer to the forward GRU and
train it on the sentences to predict the next word given the previous ones
(i.e. we train it as a LM). After convergence on the validation set sentences,
we take the embedding weights of the forward GRU and use them as fixed
parameters for the backward GRU. Then we train the backwards GRU
following the same procedure as with the forward GRU, with the exception
of processing the sentences in a reverse order. When both models are fully
trained, we remove the softmax output layers and initialize the encoder of
the NHG model with the embeddings and GRU parameters of the trained
LMs (highlighted with gray background in Figure 4.1).

A very similar encoder pre-training has also been proposed by Ramachan-
dran et al. (2017) for neural machine translation and summarization. Besides
the difference in the task, there are several other differences between their
approach and ours. First, they leave all recurrent layers except for the

75



lowest one randomly initialized while we aim to pre-train all the parameters.
Secondly, their method is designed for uni-directional encoders while we
propose a method for bi-directional encoders. Finally, they propose using
an additional language modeling loss during final training or fine tuning
while our method leaves the loss function unchanged throughout all stages
of training.

4.2.2 Decoder Pre-Training

Pre-training the decoder as a LM seems natural, since it is essentially a
conditional LM. During NHG model training the decoder is fed only headline
words, which is relatively little data compared to the document contents.
To improve the quality of the headlines it is essential to have high quality
embeddings that are a good semantic representation of the input words and
to have a well trained recurrent and output layer to predict sensible words
that make up coherent sentences. When it comes to statistical models, the
simplest way to improve the quality of the parameters is to train the model
on more data, but it also has to be the right kind of data (Moore and Lewis,
2010).

To increase the amount of suitable training data for the decoder we use
LM pre-training on filtered sentences of the training set documents. For
filtering we use the XenC tool by Rousseau (2013) with the cross-entropy
difference filtering (Moore and Lewis, 2010). In our case the in-domain data
is training set headlines, out-domain data is the sentences from training set
documents, and the best cut-off point is evaluated on validation set headlines.
The careful selection of sentences is mostly motivated by preventing the
pre-trained decoder from deviating too much from Headlinese, but it also
reduces training time.

Before pre-training we initialize the input and output embeddings of the
LM for words that are common in both encoder and decoder vocabulary
with the corresponding pre-trained encoder embeddings. We train the LM
on the selected sentences until perplexity on the validation set headlines
stops improving and then use it to initialize the decoder parameters of the
NHG model (highlighted with dotted background in Figure 4.1).

A similar approach, without data selection and embedding initialization,
has also been proposed by Ramachandran et al. (2017) and as possible future
research by Alifimoff (2015). The method by Ramachandran et al. (2017)
additionally differs from ours in the extent of pre-trained parameters — it
leaves all recurrent layers except for the lowest one randomly initialized, so
the problem of randomized inputs to the pre-trained output layer is alleviated
with a residual connection (He et al., 2016) from the first recurrent layer
to the output layer. Our method does not leave any parameters randomly
initialized. Another difference is in the loss function during fine-tuning

76



— Ramachandran et al. (2017) add a language modeling loss to the main
objective.

4.2.3 Distant Supervision Pre-Training

Approaches described in sections 4.2.1 and 4.2.2 enable full pre-training of
the encoder and decoder, but this still leaves the connecting parameters
(with white background in Figure 4.1) untrained.

As results in language modeling suggest, surrounding sentences contain
useful information to predict words in the current sentence (Wang and Cho,
2016). This implies that other sentences contain informative sections that
the attention mechanism can learn to attend to and general context that
the initialization component can learn to extract.

To utilize this phenomenon, we propose using carefully picked sentences
from the documents as pseudo-headlines and pre-train the NHG model to
generate these given the rest of sentences in the document. Our pseudo-
headline picking strategy consists of choosing sentences that occur within 100
first tokens of the document and were retained during cross-entropy filtering
in section 4.2.2. Picking sentences from the beginning of the document
should give us the most informative sentences, and cross-entropy filtering
keeps sentences that most closely resemble headlines.

The pre-training procedure starts with initializing the encoder and de-
coder with LM pre-trained parameters (sections 4.2.1 and 4.2.2). After
that, we continue training the attention and initialization parameters until
perplexity on validation set headlines converges. We then use the trained
parameters to initialize all parameters of the NHG model.

Distant supervision has been also used for multi-document summarization
by Bravo-Marquez and Manriquez (2012).

4.3 Experiments

We evaluate the proposed pre-training methods in terms of ROUGE (Lin,
2004) and perplexity on two relatively small datasets (English and Estonian).

4.3.1 Training Details

All our models use hidden layer sizes of 256 and the weights are initialized
according to Glorot and Bengio (2010). Although we use single recurrent
layer models in our experiments, we see no reason why the applied pre-
training methods should not generalize to multi-layer recurrent models,
by training multi-layer language models during pre-training. The maxout
(Goodfellow et al., 2013) hidden layer in the deep output layer (Pascanu
et al., 2014) of the decoder takes a maximum across k = 2 inputs. The
vocabularies consist of up to 50000 most frequent training set words that
occur at least 3 times (the Estonian vocabulary includes two compound word

77



1 2 3 4

40

60

80

100

120

140

Epoch

P
er

p
le

x
it

y

(a) English

1 2 3

20

30

40

50

Epoch

P
er

p
le

x
it

y

No pre-training
Embeddings

Encoder
Decoder

Enc.+dec.
Distant all

Enc.+dec.+dist.

(b) Estonian

Figure 4.2: (Color online) Validation set perplexities of the NHG model with
different pre-training methods.

concatenation symbols). The model is implemented in Theano (Bergstra
et al., 2010; Bastien et al., 2012) and trained on GPUs using mini-batches of
size 128. During training the weights are updated with Adam (Kingma and
Ba, 2015) (parameters: α=0.001, β1=0.9, β2=0.999, ε=10−8 and λ=1−10−8)
and L2-norm of the gradient is kept within a threshold of 5.0 (Pascanu et al.,
2013). During headline generation we use beam search with beam size 5.
For the Estonian model we postprocess the output by restoring compound
words according to generated compound word concatenation symbols.

4.3.2 Datasets

We use the CNN/Daily Mail dataset (Hermann et al., 2015)1 for experiments
on English (EN). The number of headline-document pairs is 287227, 13368
and 11490 in training, validation and test set correspondingly. To the best
of our knowledge, this is the first published work using the CNN/Daily Mail
dataset for headline generation experiments. The preprocessing consists of
tokenization, lowercasing, replacing numeric characters with #, and removing
irrelevant parts (editor notes, timestamps etc.) from the beginning of the
document with heuristic rules.

For Estonian (ET) experiments we use a similarly sized (341607, 18979
and 18977 training, validation and test split) dataset that also consist of
news from two sources. During preprocessing, compound words are split,
words are truecased and numbers are written out as words. We used Estnltk
(Orasmaa et al., 2016) stemmer for ROUGE evaluations.

Both datasets can be considered small compared to commonly used

1http://cs.nyu.edu/~kcho/DMQA/

78



Table 4.1: Proportion of pre-trained parameters, amount of text from documents
utilized and distance of closest pre-trained parameters from the output in the
pre-training experiments.

% pre-trained % text Distance
Model EN ET EN ET EN & ET

No pre-training 0 0 12.2 40.9 -

Embeddings 64.6 62.4 100 100 2
Encoder 38.9 33.1 100 100 2
Decoder 57.9 64.1 27.4 50.1 0
Enc.+dec. 96.8 97.3 100 100 0
Distant all 100 100 5.5 24.1 0
Enc.+dec.+dist. 100 100 100 100 0

Gigaword dataset (Graff et al., 2003) which consists of 9.5M document-
headline pairs out of which 4 million are generally used due to filtering.

4.3.3 Results and Analysis

Models are evaluated in terms of PPL and full length ROUGE (Lin, 2004).
2 In addition to pre-training methods described in sections 4.2.1-4.2.3, we
also test: initializing only the embeddings using parameters from the LM
pre-trained encoder and decoder (Embeddings); initializing the encoder and
decoder, but leaving connecting parameters randomized (Enc.+dec.); pre-
training the whole model from random initialization with distant supervision
only (Distant all); and a baseline that is not pre-trained at all (No pre-
training).

The statistics of all pre-training experiments are shown in Table 4.1. The
table shows:

• The amount of parameters that are initialized with pre-trained values
before training for the final task.

• The amount of words from the training set documents that are used for
pre-training (No pre-training row shows the amount of text used during
final training). 100% corresponds to full documents that have passed
through a filtering of small amount of sentences in a pre-processing
stage.

• The number of weight matrices between the output and the pre-trained
parameters closest to it.

2We use ROUGE package with options: -n 2 -m for EN and -n 2 for ET

79



Table 4.2: Perplexities on the test set with a 95% confidence interval (Klakow
and Peters, 2002). All pre-trained models are significantly better than the No
pre-training baseline.

Model PPL (EN) PPL (ET)

No pre-training 65.1 ±1.0 25.9 ±0.4

Embeddings 51.8 ±0.7 20.7 ±0.3
Encoder 4.2.1 59.3 ±0.9 23.5 ±0.4
Decoder 4.2.2 48.3 ±0.7 18.8 ±0.3
Enc.+dec. 46.2 ±0.7 17.7 ±0.3
Distant all 58.6 ±0.9 21.3 ±0.3
Enc.+dec.+dist. 4.2.3 45.8 ±0.7 17.5 ±0.3

All pre-training methods gave significant improvements in PPL (Ta-
ble 4.2). The best method (Enc.+dec.+dist.) improved the test set PPL by
29.6-32.4% relative. Pre-trained NHG models also converged faster during
training (Figure 4.2) and most of them beat the final PPL of the baseline
already after the first epoch. General trend is that pre-training a larger
amount of parameters and the parameters closer to the outputs of the NHG
model improves the PPL more. Distant all is an exception to that observa-
tion as it used much less pre-training data (less than the No pre-training
baseline during training) than other methods. Utilizing more text from the
documents during pre-training does not show a very strong effect for PPL.

For ROUGE evaluations, we report ROUGE-1 and ROUGE-L (Ta-
bles 4.3a and 4.3b). In contrast with PPL evaluations, some pre-training
methods either don’t improve significantly or even worsen ROUGE mea-
sures. Another difference compared to PPL evaluations is that for ROUGE,
pre-training parameters that reside further from outputs (embeddings and
encoder) seems more beneficial. This might imply that a better document
representation is more important to stay on topic during beam search while
it is less important during PPL evaluation where predicting next target
headline word with high confidence is rewarded and the process is aided
by previous target headline words that are fed to the decoder as inputs. It
is also possible, that a well trained decoder becomes too reliant on expect-
ing correct words as inputs making it sensitive to errors during generation
which would somewhat explain why Enc.+dec. performs worse than Encoder
alone. This hypothesis can be checked in further work by experimenting with
methods like scheduled sampling (Bengio et al., 2015) that should increase
the robustness to mistakes during generation or by forcing the dynamics of
the model to be more similar during training and sampling with Professor

80



Table 4.3: Recall, precision and F-score of ROUGE-1 and ROUGE-L on the English
CNN/Daily Mail test sets. Best scores in bold. Results with statistically significant
differences (95% confidence) compared to No pre-training underlined.

(a) English CNN/Daily Mail

Model R1R R1P R1F RLR RLP RLF
No pre-training 20.36 33.51 24.04 17.68 29.03 20.84

Embeddings 21.09 33.36 24.62 18.23 28.72 21.2
Encoder 21.25 34.1 24.97 18.45 29.5 21.61
Decoder 20.11 31.1 23.23 17.43 26.87 20.08
Enc.+Dec. 20.72 33.93 24.47 18.04 29.43 21.24
Distant all 20.32 31.54 23.49 17.59 27.25 20.29
Enc.+dec.+dist. 21.34 34.81 25.19 18.53 30.14 21.82

(b) Estonian news

Model R1R R1P R1F RLR RLP RLF
No pre-training 26.44 34.23 29.05 25.31 32.74 27.79

Embeddings 28.42 35.94 30.92 27.02 34.16 29.38
Encoder 29.28 37.04 31.88 27.88 35.24 30.35
Decoder 25.12 32.6 27.62 23.89 30.99 26.26
Enc.+dec. 27.18 34.58 29.64 25.79 32.78 28.11
Distant all 26.17 34.49 28.99 24.96 32.87 27.63
Enc.+dec.+dist. 27.74 35.46 30.32 26.35 33.67 28.79

81



Table 4.4: Successful examples of generated headlines on the CNN/Daily Mail
dataset.

Document a democratic congressman is at the head of a group
of representatives trying to help undocumented immi-
grants avoid deportations with what they have called
the family defender toolkit . the informational pam-
phlet includes a bilingual card - that some are calling
a get out of deportation free card - that lists reasons
a person should not be deported under expanded .

Reference congressman is developing a get out of deportation
toolkit to help undocumented immigrants if they are
detained

No pre-training congressman calls for undocumented immigrants
Embeddings congressman calls for help from immigrants trying to

help immigrants avoiding deportation
Encoder republican congressman calls for immigrants trying

to avoid deportation
Decoder congressman who tried to stop deportations of immi-

grants
Enc.+Dec. immigration congressman at the head of the head of

the group who tries to avoid deportation
Distant all congressman calls for deportation to immigrants who

stay in the country
Enc.+dec.+dist. congressman tries to help undocumented immigrants

avoid deportation

Forcing (Goyal et al., 2016). Another option is to directly optimize ROUGE
with minimum risk training (Shen et al., 2016) or reinforcement learning
(Paulus et al., 2017). Unlike PPL, ROUGE tends to improve with fully
utilizing the text from the documents during pre-training. Pre-training all
parameters on all available text (Enc.+dec.+dist.) gives the best result on
English and quite decent results on Estonian. Best models improve ROUGE
by 0.85-2.84 points.

4.3.4 Examples

Some examples of the generated headlines on the CNN/Daily Mail dataset
are shown in Tables 4.4 and 4.5.

Table 4.4 shows an example where the reference headline is an abstractive
summary of the document. All pre-trained models also produce abstractive

82



Table 4.5: Unsuccessful examples of generated headlines on the CNN/Daily Mail
dataset.

Document a chihuahua and a bearded dragon showed off their
interspecies friendship when they embarked upon a
game of tag together . videoed in their front room ,
the dog named foxxy cleopatra and the reptile called
ryuu can be seen chasing after one another around
a coffee table . standing perfectly still while looking
in the other direction , the bearded dragon initially
appears disinterested as the chihuahua jumps around
excitedly .

Reference you re it!
No pre-training is this the creepiest crawly?
Embeddings meet the poodle!
Encoder it’s a knockout!
Decoder the bearded dragon lizard: the bearded dragon lizard

spotted in the middle of the street
Enc.+Dec. oh, this is a lion!
Distant all meet the dragon dragon: meet the dragon dragon
Enc.+dec.+dist. is this the world’s youngest lion?

summaries as headlines with varying quality. The model pre-trained to
the largest extent (Enc.+dec.+dist) produces the best headline that is
grammatically and factually correct, almost extractively summarizes the
document, and is in Headlinese. Other models produce headlines that also
at least get the topic right and include the relevant keywords, but fail to
produce coherent sentences (e.g., Enc.+Dec.) or introduce errors that make
the headline factually incorrect (e.g., Distant all).

Table 4.5 illustrates an example with a more creative reference headline.
The reference headline is very short and consists entirely of stop words. This
kind of headlines are often removed from the training and test sets. For
example, Rush et al. (2015) remove all headline-document pairs where the
headline has no non-stop-words in common with the document or contains
a byline, colon or question mark. We do not filter any headline-document
pairs as we expect our model to be able to generate all types of headlines.
From the examples in Table 4.5 it is evident that most models are able to
recognize based on the contents of the document that the reference headline
is creative and also try to generate creative headlines. Unfortunately almost
all generated headlines are either grammatically or factually incorrect. The

83



No pre-training model generates the only headline that can be regarded as
correct (or not wrong) and as good as the reference headline. The Decoder
and Distant all generate headlines that contain relevant keywords, but repeat
themselves or get the facts wrong. This example illustrates a case where
ROUGE and other automatic measures do not provide a good headline
quality estimate and human evaluation is more appropriate.

4.4 Conclusions

We proposed three new NHG model pre-training methods that in combination
enable utilizing the entire dataset and initializing all parameters of the NHG
model. We also evaluated and analyzed pre-training methods and their
combinations in terms of PPL and ROUGE on two languages.

The results revealed that better PPL does not necessarily translate to
better ROUGE – PPL tends to benefit from pre-training parameters that
are closer to outputs, but for ROUGE it is generally the opposite. Also, PPL
benefited from pre-training more parameters while for ROUGE it was not
always the case. Utilizing more text from the documents during pre-training
generated larger gains in ROUGE than in PPL. Pre-training in general
proved to be useful – our best results improved PPL by 29.6-32.4% relative
and ROUGE F-scores by 0.98-2.83 points compared to a NHG model without
pre-training.

These findings are similar to the ones from Ramachandran et al. (2017)
for neural summarization where partial encoder pre-training turned out to
be more effective than decoder pre-training and the achieved improvement
with pre-training is even larger than ours (over 4.5 ROUGE points). A
method similar to the distant supervision pre-training (without the data
selection) was also shown to be helpful in a simultaneously published work
on abstractive summarization by Hua and Wang (2017).

One problem with the proposed decoder pre-training method is the fact
that it optimizes the maximum-likelihood objective which can make the
model too sensitive to mistakes during generation as it was not exposed to
them during pre-training and training. This explains why all pre-training
methods reliably improved PPL but the decoder pre-training degraded
the ROUGE score. Better training techniques such as scheduled sampling
(Bengio et al., 2015) during maximum-likelihood optimization or better
training objectives like minimum risk training (Shen et al., 2016), Professor
Forcing (Goyal et al., 2016) or reinforcement learning (Paulus et al., 2017)
can be explored for better decoder pre-training and final model training.

Our pre-training method for the encoder was based on training it as a
language models. Previous work on LSTM RNN pre-training methods for
sequence classification tasks has shown that in some cases initializing the
embeddings and recurrent layers with autoencoder pre-training (encoding

84



the sequence into a vector with a RNN and decoding the same sequence with
the same RNN from that vector) can be more effective than language model
pre-training (Dai and Le, 2015). Autoencoder pre-training has also been
effective in LSTM RNN sentence compression models (Sakti et al., 2015).

Current work focused on maximally utilizing available headlined corpora.
One interesting future direction would be to additionally utilize potentially
much more abundant corpora of documents without headlines for pre-training.
Using large unlabeled corpora was also proposed by Shen et al. (2016) and
experimented with by Ramachandran et al. (2017) for neural summarization.
Although Ramachandran et al. (2017) showed that in summarization the
gap between pre-training on the large unlabeled corpus and smaller labeled
corpus is almost nonexistent, they only partially pre-trained the encoder
and the decoder and the attention component was not pre-trained at all.
Therefore the question whether using a larger unlabeled corpus for attention
component distant supervision pre-training and full encoder-decoder pre-
training improves the quality of generated headlines is still open. Another
open question is the relationship between the dataset size and the effect
of pre-training for neural headline generation. Ramachandran et al. (2017)
showed that pre-trained neural machine translation models degrade less with
reduced amount of labeled data.

In this work we used a data selection method for generating pseudo-
headlines for distant pre-training. An alternative is to use extractive sum-
marization (e.g. Lin et al., 2009; K̊agebäck et al., 2014). The data selection
method picked sentences that were a better match for Headlinese, but did
not necessarily summarize the document. Although not all the headlines
in the corpora were summarizing, the ability to summarize the content is
probably much harder to learn than the ability to generate text in Headlinese.
Abstractive summarization pseudo-headlines could potentially enable the
model to learn to generate better headlines that summarize the document
without much paraphrasing. The data selection and abstractive summariza-
tion method are not mutually exclusive and could be combined to use the
benefits of both.

Since we did not exclude any headline-document pairs there were many
headlines that were very abstractive, paraphrased a lot and sometimes did not
have any words in common with the document. A human evaluation of the
generated headlines could give a more accurate estimate of the effectiveness
of the methods. An automatic metric that is less biased towards lexical
similarity than ROUGE (e.g. Ng and Abrecht, 2015) can be considered as a
simpler and faster alternative.

There are many recent developments in the field of neural summarization
and headline generation that try to solve the problems with the quality of
the generated output. For example, there are extensions that try to reduce

85



the number of factual errors and repetitions (See et al., 2017; Suzuki and
Nagata, 2017) and give the model the ability to output out-of-vocabulary
words (Nallapati et al., 2016; See et al., 2017; Gulcehre et al., 2016). Using
and pre-training these extensions could help improve low-resource neural
headline generation even further.

86



Chapter 5

Conclusions

This dissertation presented neural networks based methods and models for
low-resource language modeling problems. The presented work can improve
the quality of many systems that depend on language models, but need to
function on low-resource languages or domains.

In Chapter 2 we presented two methods to improve language modeling
on small domains or languages. The first method was an adaptation of an
existing FFNN LM multi-domain component (Alumäe, 2013) for RNN LMs.
The original multi-domain component turned out to be incompatible with
the sequential processing in RNNs, but after analysis we were able to come
up with a simple modification and obtain a 16% relative improvement in
PPL on a medical domain corpus. The multi-domain component allowed us
to train a joint model for all 10 domains instead of separate models. The
second method allowed using the multi-domain component for adapting a
neural network LM to a very small target domain, utilizing the same subset
of data for both validation and adaptation. The adaptation method gave
consistent improvements in PPL (2.2–3.3% relative), although it made no
significant difference in WER.

Chapter 3 presented two RNN based punctuation restoration models
that can be viewed as replacements for the n-gram based hidden event LMs.
Both the unidirectional LSTM RNN and the more advanced bidirectional
RNN with an attention mechanism gave a large improvement over the n-
gram baseline in our experiments on an Estonian corpus. Experiments
on an English corpus showed that the bidirectional model is also a huge
improvement over the previous state of the art models based on deep and
convolutional neural networks. To utilize prosodic features in addition to
the textual features, the chapter presented a two-stage training method that
replaces the output layer of a trained textual model with a new RNN which
is trained on a much smaller prosody annotated dataset to utilize prosodic

87



features in conjunction with textual features computed by the first stage
model. An additional benefit of two-stage training was the adaptation to
target domain. The two-stage method significantly improved the performance
of both models using interword pause duration feature alone, most noticeably
in detecting sentence boundaries.

Chapter 4 proposed three pre-training methods for neural headline gen-
eration models to improve the performance on small datasets. The methods
were each designed to pre-train a different component of the final model.
Two methods were based on pre-training the encoder and decoder compo-
nent as language models, while the third method used distant-supervision
to pre-train the attention mechanism and other parameters connecting the
encoder and decoder. When combined, the proposed methods enabled full
utilization of the training data and useful initialization of all parameters of
the model. Experiments on relatively low-resource Estonian and English
datasets showed that all pre-training methods, either separately or in con-
junction, significantly improved PPL. On the other hand, some methods and
their combinations, that pre-trained the parameters closest to the output
layer, degraded the performance in terms of ROUGE. However, the best
results by a significant margin were still obtained with pre-trained models —
a combination of all methods performed best on English and the encoder
pre-training method on Estonian.

In the following sections we will determine the validity of the claims from
the introduction and discuss some potential future research directions.

5.1 Validation of claims

Claim 1 proposed that when the dataset consists of texts from multiple
small domains the performance of RNN LMs can be improved by using a
multi-domain component (Alumäe, 2013) that was initially proposed for
FFNN LMs. When it comes to the performance in terms of PPL the Claim
1 is clearly valid as can be seen from the experimental results in Chapter 2.
However, to assess the practical usefulness of the multi-domain component
in RNN LMs, integration into an ASR system and evaluation in terms of
WER is required.

Claim 2 asserted that the multi-domain component is also a good fit for
adapting neural network LMs to small domains. Chapter 2 supported this
claim with consistent PPL improvements and showed that the small amount
of domain-specific parameters is resistant to overfitting during adaptation
even when we utilize the validation data for adaptation. On the other hand,
the PPL improvements were small and did not translate into a reduction
in WER. This does not automatically entail that the method would not be
practical on other datasets or for other tasks, but further experimentation is
needed. Also, a comparison with other adaptation methods instead of just

88



an unadapted baseline would help to better asses the effectiveness of the
method.

Claim 3 stated that RNNs are an improvement over conventional hidden
event LMs and can be used for training a joint model on both text and
prosody annotated data that potentially have very different sizes. Chapter 3
presented two RNN text based models along with a two-stage training method
to utilize prosody annotated data. Punctuation restoration experiments on
Estonian demonstrated a large improvement over conventional hidden event
LMs and both RNN models gained a significant additional improvement
with the two-stage training method. These results provide a strong support
for Claim 3.

Claim 4 proposed that pre-training all parameters of neural headline
generation models improves the quality of generated headlines on small
datasets and facilitates full utilization of training data. The combination
of three pre-training methods proposed in Chapter 4 enabled pre-training
the entire neural headline generation model, utilized all available training
data and gave significant improvements in both PPL and ROUGE on two
languages. However, the best results in terms of ROUGE on Estonian were
achieved with the encoder pre-training alone, which initialized only 1/3 of
the parameters, but still utilized all of the training data. Although this
indicates that sometimes pre-training the entire model is not the best choice,
it does not invalidate the Claim 4 as the fully pre-trained model gave the
best results on English and significant improvements on Estonian.

5.2 Further work

The presented work leaves several potential directions for further research in
addition to the ones stated in Section 5.1.

The multi-domain RNN LM proposed in Chapter 2 used a simple re-
current layer with logistic sigmoid units. Simple RNNs have been shown
to have difficulty learning long-range dependencies (Bengio et al., 1994)
even with tanh units, so logistic sigmoid units should be even less effective
in that aspect. This brings up a question whether using more advanced
units that are better at long-range dependencies like LSTM (Hochreiter and
Schmidhuber, 1997) or GRU (Cho et al., 2014) would eliminate the need for
a multi-domain component as the model may infer the domain from the long
context. Another option, if the multi-domain component turns out to be
useful in advanced RNN LMs, is do design a component that can be trained
in a supervised manner, but can detect the domain automatically during
test time (Shi et al., 2014) unlike our current version.

The multi-domain architecture based low-resource adaptation method
can be further tested out on unsupervised or online adaptation (Souvignier
and Kellner, 1998) where its resistance to overfitting can be useful.

89



The two RNN punctuation restoration models and the two-stage training
method presented in Chapter 3 have room for improvements that can be
addressed in further work. First and most important problem was the
sensitivity to word errors in the ASR output. Training more robust models
would greatly improve the practical value of the models for ASR. Using a
larger variety of prosodic features or training the model to pay less attention
to incorrectly recognized words (e.g. Yu et al., 2016) may reduce the reliance
on the correctness of text. Another shortcoming was that the models had a
limited input vocabulary and all out-of-vocabulary words were mapped to
a shared token. One way to reduce the loss of information is to augment
the models with a character based submodel (Rei et al., 2016). Next open
problem is utilization of previous punctuation decisions. The proposed
models do not use previous decisions as our preliminary experiments showed
that wrong past decisions cause more wrong decisions in the future. Perhaps
scheduled sampling (Bengio et al., 2015) and similar methods can reduce
the accumulation of errors and make past predictions useful for the models.
Finally, there are opportunities for additional experiments like restoring a
larger variety of punctuation marks, analyzing the resulting word embeddings
and applying the models to other hidden event language modeling problems.

Finally, the analysis of the pre-training methods for neural headline
generation models in Chapter 4 revealed some areas for further improvement.
First, the decoder pre-training method improved PPL but degraded the
ROUGE scores. We believe that this happens due to the fact that during
pre-training and training the next word is predicted based on correct word
history while during generation at test time the decoder has to deal with its
own previous outputs which may contain mistakes. Thus pre-training may
make the model even more reliant on the correctness of word history. This
problem has been recognized by others and several solutions such as scheduled
sampling (Bengio et al., 2015), minimum risk training (Shen et al., 2016),
Professor Forcing (Goyal et al., 2016) and reinforcement learning (Paulus
et al., 2017) have been proposed. These methods may be a key to making
decoder pre-training more effective. Next, the simple language modeling
based pre-training of the encoder turned out to be consistently effective, but
it has been shown that in some cases autoencoder based pre-training may
produce better results (Dai and Le, 2015). Autoencoder pre-training would
also eliminate the need to pre-train the bidirectional encoder as two separate
language models. The distant-supervision based pre-training method for
connecting components can also be improved. For a start, much more
data from unlabeled sources can be utilized and different pseudo-headline
selection methods (e.g., extractive summarization) can be experimented
with. Also, like the decoder pre-training, the distant-supervision method
can benefit from better training techniques or objectives. To get a more

90



accurate assessment of the effectiveness of pre-training a human evaluation
is required. Reference headlines sometimes have no overlapping words with
content and there are many correct ways to write headlines which makes
the automatic scoring approximate.

91





References

Alifimoff, A. (2015). Abstractive sentence summarization with attentive deep
recurrent neural networks. https://cs224d.stanford.edu/reports/

aja2015.pdf.

Alumäe, T. (2007). Automatic compound word reconstruction for speech
recognition of compounding languages. In Proceedings of the 16th Nordic
Conference of Computational Linguistics (NODALIDA 2007), pages 5–
12. University of Tartu, Estonia, http://www.aclweb.org/anthology/
W07-2403.

Alumäe, T. (2013). Multi-domain neural network language model. In
Interspeech 2013, pages 2182–2186.

Alumäe, T. (2014). Recent improvements in Estonian LVCSR. In Spoken
Language Technologies for Under-Resourced Languages (SLTU 2014), Saint
Petersburg, Russia.

Alumäe, T. and Kurimo, M. (2010). Domain adaptation of maximum
entropy language models. In Proceedings of the ACL 2010 Conference
Short Papers, pages 301–306. Association for Computational Linguistics,
http://www.aclweb.org/anthology/P10-2056.

Alumäe, T. and Tilk, O. (2016). Automatic speech recognition system for
lithuanian broadcast audio. In Human Language Technologies – The Baltic
Perspective, volume 289, pages 39–45. DOI: 10.3233/978-1-61499-701-6-39.

Bacchiani, M. and Roark, B. (2003). Unsupervised language model adap-
tation. In Acoustics, Speech, and Signal Processing, 2003. Proceedings.
(ICASSP ’03). 2003 IEEE International Conference on, volume 1, pages
I–224–I–227 vol.1. ISSN: 1520-6149, DOI: 10.1109/ICASSP.2003.1198758.

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation
by jointly learning to align and translate. ICLR’2015, arXiv:1409.0473.

93



Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I. J., Berg-
eron, A., Bouchard, N., and Bengio, Y. (2012). Theano: new features
and speed improvements. In Deep Learning and Unsupervised Feature
Learning NIPS 2012 Workshop.

Batista, F., Caseiro, D., Mamede, N., and Trancoso, I. (2007). Recovering
punctuation marks for automatic speech recognition. In Interspeech 2007,
Antwerp, Belgium.

Batista, F., Caseiro, D., Mamede, N., and Trancoso, I. (2008). Recover-
ing capitalization and punctuation marks for automatic speech recogni-
tion: Case study for portuguese broadcast news. Speech Communication,
50(10):847–862.

Batista, F., Moniz, H., Trancoso, I., and Mamede, N. (2012). Bilin-
gual experiments on automatic recovery of capitalization and punctu-
ation of automatic speech transcripts. IEEE Transactions on Audio,
Speech, and Language Processing, 20(2):474–485, ISSN: 1558-7916, DOI:
10.1109/TASL.2011.2159594.

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. (2015). Scheduled
sampling for sequence prediction with recurrent neural networks. In
Advances in Neural Information Processing Systems, pages 1171–1179.

Bengio, Y., Ducharme, R., and Vincent, P. (2001). A neural prob-
abilistic language model. In Leen, T. K., Dietterich, T. G., and
Tresp, V., editors, Advances in Neural Information Processing Sys-
tems 13, pages 932–938. MIT Press, http://papers.nips.cc/paper/

1839-a-neural-probabilistic-language-model.pdf.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term depen-
dencies with gradient descent is difficult. IEEE Transactions on Neural
Networks, 5(2):157–166, ISSN: 1045-9227, DOI: 10.1109/72.279181.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins,
G., Turian, J., Warde-Farley, D., and Bengio, Y. (2010). Theano: a CPU
and GPU math expression compiler. In Proceedings of the Python for
Scientific Computing Conference (SciPy). Oral Presentation.

Bravo-Marquez, F. and Manriquez, M. (2012). A zipf-like distant supervision
approach for multi-document summarization using wikinews articles. In
Calderón-Benavides, L., González-Caro, C., Chávez, E., and Ziviani,
N., editors, String Processing and Information Retrieval, pages 143–154,
Berlin, Heidelberg. Springer Berlin Heidelberg, ISBN: 978-3-642-34109-0.

94



Broman, S. and Kurimo, M. (2005). Methods for combining language
models in speech recognition. In Ninth European Conference on Speech
Communication and Technology.

Brown, P. F., deSouza, P. V., Mercer, R. L., Pietra, V. J. D., and Lai, J. C.
(1992). Class-based n-gram models of natural language. Comput. Linguist.,
18(4):467–479, ISSN: 0891-2017, http://dl.acm.org/citation.cfm?id=
176313.176316.

Che, X., Wang, C., Yang, H., and Meinel, C. (2016). Punctuation prediction
for unsegmented transcript based on word vector. In The 10th International
Conference on Language Resources and Evaluation (LREC).

Chen, Q., Zhu, X., Ling, Z., Wei, S., and Jiang, H. (2016). Distraction-
based neural networks for modeling documents. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence,
IJCAI’16, pages 2754–2760. AAAI Press, ISBN: 978-1-57735-770-4, http:
//dl.acm.org/citation.cfm?id=3060832.3061006.

Chen, X., Wang, Y., Liu, X., Gales, M. J., and Woodland, P. C. (2014).
Efficient gpu-based training of recurrent neural network language models
using spliced sentence bunch. In Interspeech 2014.

Cho, E., Kilgour, K., Niehues, J., and Waibel, A. (2015a). Combination of
NN and CRF models for joint detection of punctuation and disfluencies.
In Interspeech 2015.

Cho, E., Niehues, J., Kilgour, K., and Waibel, A. (2015b). Punctuation
insertion for real-time spoken language translation. Proceedings of the
Eleventh International Workshop on Spoken Language Translation.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H., and Bengio, Y. (2014). Learning phrase representations using
rnn encoder–decoder for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1724–1734. Association for Computational Linguistics,
DOI: 10.3115/v1/D14-1179.

Chopra, S., Auli, M., and Rush, M. A. (2016). Abstractive sentence summa-
rization with attentive recurrent neural networks. In Proceedings of the
2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 93–98.
Association for Computational Linguistics, DOI: 10.18653/v1/N16-1012.

Christensen, H., Gotoh, Y., and Renals, S. (2001). Punctuation annotation
using statistical prosody models. In ISCA Tutorial and Research Workshop
(ITRW) on Prosody in Speech Recognition and Understanding.

95



Dai, A. M. and Le, Q. V. (2015). Semi-supervised sequence learning.
In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., and Gar-
nett, R., editors, Advances in Neural Information Processing Systems
28, pages 3079–3087. Curran Associates, Inc., http://papers.nips.cc/
paper/5949-semi-supervised-sequence-learning.pdf.

Darroch, J. N. and Ratcliff, D. (1972). Generalized iterative scaling for
log-linear models. The annals of mathematical statistics, 43(5):1470–1480.

Daume III, H. (2007). Frustratingly easy domain adaptation. In Proceedings
of the 45th Annual Meeting of the Association of Computational Linguistics,
pages 256–263. Association for Computational Linguistics, http://www.
aclweb.org/anthology/P07-1033.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods
for online learning and stochastic optimization. The Journal of Machine
Learning Research, 12:2121–2159.

Elman, J. L. (1989). Representation and structure in connectionist models.
Technical report, CALIFORNIA UNIV SAN DIEGO LA JOLLA CENTER
FOR RESEARCH IN LANGUAGE.

Elman, J. L. (1993). Learning and development in neural networks: The
importance of starting small. Cognition, 48(1):71–99.

Gandhe, A., Metze, F., and Lane, I. (2014). Neural network language models
for low resource languages. In Interspeech 2014.

Gers, F. A., Schmidhuber, J. A., and Cummins, F. A. (2000). Learning to
forget: Continual prediction with lstm. Neural Comput., 12(10):2451–2471,
ISSN: 0899-7667, DOI: 10.1162/089976600300015015.

Gers, F. A., Schraudolph, N. N., and Schmidhuber, J. (2003). Learning
precise timing with LSTM recurrent networks. J. Mach. Learn. Res.,
3:115–143, ISSN: 1532-4435, DOI: 10.1162/153244303768966139.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training
deep feedforward neural networks. In Teh, Y. W. and Titterington,
M., editors, Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine
Learning Research, pages 249–256, Chia Laguna Resort, Sardinia, Italy.
PMLR, http://proceedings.mlr.press/v9/glorot10a.html.

96



Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural
networks. In Gordon, G., Dunson, D., and Dud́ık, M., editors, Proceedings
of the Fourteenth International Conference on Artificial Intelligence and
Statistics, volume 15 of Proceedings of Machine Learning Research, pages
315–323, Fort Lauderdale, FL, USA. PMLR, http://proceedings.mlr.
press/v15/glorot11a.html.

Good, I. J. (1953). The population frequencies of species and the esti-
mation of population parameters. Biometrika, 40(3-4):237–264, DOI:
10.1093/biomet/40.3-4.237.

Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., and Bengio,
Y. (2013). Maxout networks. In Proceedings of the 30th International
Conference on International Conference on Machine Learning - Volume
28, ICML’13, pages III–1319–III–1327. JMLR.org, http://dl.acm.org/
citation.cfm?id=3042817.3043084.

Goyal, A., Lamb, A., Zhang, Y., Zhang, S., Courville, A., and Bengio,
Y. (2016). Professor forcing: A new algorithm for training recurrent
networks. In Lee, D. D., Luxburg, U. V., Guyon, I., and Garnett, R.,
editors, Advances in Neural Information Processing Systems 29 (NIPS
2016), pages 4601–4609. Curran Associates, Inc.

Graff, D., Kong, J., Chen, K., and Maeda, K. (2003). English gigaword.
Linguistic Data Consortium, Philadelphia, 4:1.

Gravano, A., Jansche, M., and Bacchiani, M. (2009). Restoring punctuation
and capitalization in transcribed speech. In 2009 IEEE International
Conference on Acoustics, Speech and Signal Processing, pages 4741–4744.
ISSN: 1520-6149, DOI: 10.1109/ICASSP.2009.4960690.

Gu, J., Lu, Z., Li, H., and Li, V. O. (2016). Incorporating copying mechanism
in sequence-to-sequence learning. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 1631–1640. Association for Computational Linguistics, DOI:
10.18653/v1/P16-1154.

Gulcehre, C., Ahn, S., Nallapati, R., Zhou, B., and Bengio, Y. (2016).
Pointing the unknown words. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 140–149. Association for Computational Linguistics, DOI:
10.18653/v1/P16-1014.

Hasan, M., Doddipatla, R., and Hain, T. (2014). Multi-pass sentence-end
detection of lecture speech. In Interspeech 2014, pages 2902–2906.

97



He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for
image recognition. In 2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 770–778. DOI: 10.1109/CVPR.2016.90.

Hermann, K. M., Kočiský, T., Grefenstette, E., Espeholt, L., Kay, W.,
Suleyman, M., and Blunsom, P. (2015). Teaching machines to read and
comprehend. In Proceedings of the 28th International Conference on
Neural Information Processing Systems - Volume 1, NIPS’15, pages 1693–
1701, Cambridge, MA, USA. MIT Press, http://dl.acm.org/citation.
cfm?id=2969239.2969428.

Hinton, G. E. (1986). Learning distributed representations of concepts. In
Proceedings of the eighth annual conference of the cognitive science society,
volume 1, page 12. Amherst, MA.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
Computation, 9(8):1735–1780, DOI: 10.1162/neco.1997.9.8.1735.

Hua, X. and Wang, L. (2017). A pilot study of domain adaptation effect for
neural abstractive summarization. In Proceedings of the Workshop on New
Frontiers in Summarization, pages 100–106. Association for Computational
Linguistics, http://aclweb.org/anthology/W17-4513.

Huang, J. and Zweig, G. (2002). Maximum entropy model for punctuation
annotation from speech. In Proceedings of the International Conference
on Spoken Language Processing, pages 917–920, Denver, CO, USA.

Jean, S., Cho, K., Memisevic, R., and Bengio, Y. (2015). On using very large
target vocabulary for neural machine translation. In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1–10. Association for Computational
Linguistics, DOI: 10.3115/v1/P15-1001.

K̊agebäck, M., Mogren, O., Tahmasebi, N., and Dubhashi, D. (2014). Extrac-
tive summarization using continuous vector space models. In Proceedings of
the 2nd Workshop on Continuous Vector Space Models and their Composi-
tionality (CVSC), pages 31–39. Association for Computational Linguistics,
DOI: 10.3115/v1/W14-1504.

Katz, S. (1987). Estimation of probabilities from sparse data for the language
model component of a speech recognizer. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 35(3):400–401, ISSN: 0096-3518, DOI:
10.1109/TASSP.1987.1165125.

98



Khomitsevich, O., Chistikov, P., Krivosheeva, T., Epimakhova, N., and
Chernykh, I. (2015). Combining prosodic and lexical classifiers for two-
pass punctuation detection in a russian asr system. In Ronzhin, A.,
Potapova, R., and Fakotakis, N., editors, Speech and Computer, pages 161–
169, Cham. Springer International Publishing, ISBN: 978-3-319-23132-7.

Kikuchi, Y., Neubig, G., Sasano, R., Takamura, H., and Okumura, M. (2016).
Controlling output length in neural encoder-decoders. In Proceedings of
the 2016 Conference on Empirical Methods in Natural Language Process-
ing, pages 1328–1338. Association for Computational Linguistics, DOI:
10.18653/v1/D16-1140.

Kingma, D. and Ba, J. (2015). Adam: A method for stochastic optimization.
International Conference on Learning Representations (ICLR).

Klakow, D. (1998). Log-linear interpolation of language models. In ICSLP,
volume 5, pages 1695–1698. Australian Speech Science and Technology
Association.

Klakow, D. and Peters, J. (2002). Testing the correlation of word error rate
and perplexity. Speech Commun., 38(1):19–28, ISSN: 0167-6393, DOI:
10.1016/S0167-6393(01)00041-3.

Kneser, R. and Ney, H. (1995). Improved backing-off for m-gram language
modeling. In 1995 International Conference on Acoustics, Speech, and
Signal Processing, volume 1, pages 181–184 vol.1. ISSN: 1520-6149, DOI:
10.1109/ICASSP.1995.479394.

Kolár, J. and Lamel, L. (2012). Development and evaluation of automatic
punctuation for French and English speech-to-text. In Interspeech 2012,
Portland, OR, USA.

Kolář, J., Shriberg, E., and Liu, Y. (2006). Using prosody for automatic
sentence segmentation of multi-party meetings. In Sojka, P., Kopeček, I.,
and Pala, K., editors, Text, Speech and Dialogue, pages 629–636, Berlin,
Heidelberg. Springer Berlin Heidelberg, ISBN: 978-3-540-39091-6.

Kolář, J., Švec, J., and Psutka, J. (2004). Automatic punctuation annotation
in Czech broadcast news speech. In SPECOM 2004, Saint Petersburg,
Russia.

Kombrink, S., Mikolov, T., Karafiát, M., and Burget, L. (2011). Recurrent
neural network based language modeling in meeting recognition. In
Interspeech 2011.

99



Kuhn, R. and Mori, R. D. (1990). A cache-based natural language model for
speech recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12(6):570–583, ISSN: 0162-8828, DOI: 10.1109/34.56193.

Kurimo, M., Enarvi, S., Tilk, O., Varjokallio, M., Mansikkaniemi, A., and
Alumäe, T. (2017). Modeling under-resourced languages for speech recogni-
tion. Language Resources and Evaluation, 51(4):961–987, ISSN: 1574-0218,
DOI: 10.1007/s10579-016-9336-9.

Levy, T., Silber-Varod, V., and Moyal, A. (2012). The effect of pitch,
intensity and pause duration in punctuation detection. In 2012 IEEE 27th
Convention of Electrical and Electronics Engineers in Israel, pages 1–4.
DOI: 10.1109/EEEI.2012.6376934.

Lin, C.-Y. (2004). Text Summarization Branches Out, chapter ROUGE: A
Package for Automatic Evaluation of Summaries. http://aclweb.org/

anthology/W04-1013.

Lin, H., Bilmes, J., and Xie, S. (2009). Graph-based submodular se-
lection for extractive summarization. In 2009 IEEE Workshop on
Automatic Speech Recognition Understanding, pages 381–386. DOI:
10.1109/ASRU.2009.5373486.

Lohk, A., Tilk, O., and Võhandu, L. (2013). How to create order in large
closed subsets of wordnet-type dictionaries. Eesti Rakenduslingvistika
Ühingu aastaraamat, 9:149–160, DOI: 10.5128/erya9.10.

Lopyrev, K. (2015). Generating news headlines with recurrent neural net-
works. arXiv preprint arXiv:1512.01712.

Lu, W. and Ng, H. T. (2010). Better punctuation prediction with dy-
namic conditional random fields. In Proceedings of the 2010 Confer-
ence on Empirical Methods in Natural Language Processing, pages 177–
186. Association for Computational Linguistics, http://www.aclweb.org/
anthology/D10-1018.

Ma, S., Sun, X., Xu, J., Wang, H., Li, W., and Su, Q. (2017). Improving
semantic relevance for sequence-to-sequence learning of chinese social
media text summarization. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 2: Short Pa-
pers), pages 635–640. Association for Computational Linguistics, DOI:
10.18653/v1/P17-2100.

Makhoul, J., Kubala, F., Schwartz, R., and Weischedel, R. (1999). Perfor-
mance measures for information extraction. In Proceedings of DARPA
broadcast news workshop, pages 249–252.

100



Mardh, I. (1980). Headlinese : on the grammar of English front page headlines
/ by Ingrid Mardh. Liberlaromedel/Gleerup Lund, ISBN: 9140047539.

Matusov, E., Mauser, A., and Ney, H. (2006). Automatic sentence segmen-
tation and punctuation prediction for spoken language translation. In
IWSLT, pages 158–165.

Mikolov, T., Deoras, A., Povey, D., Burget, L., and Černocký, J. (2011a).
Strategies for training large scale neural network language models. In 2011
IEEE Workshop on Automatic Speech Recognition Understanding, pages
196–201. DOI: 10.1109/ASRU.2011.6163930.

Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., and Khudanpur, S.
(2010). Recurrent neural network based language model. In Interspeech
2010, pages 1045–1048.

Mikolov, T., Kombrink, S., Burget, L., Černocký, J., and Khudanpur,
S. (2011b). Extensions of recurrent neural network language model.
In 2011 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 5528–5531. ISSN: 1520-6149, DOI:
10.1109/ICASSP.2011.5947611.

Mikolov, T., Kombrink, S., Deoras, A., Burget, L., and Černocký, J. (2011c).
RNNLM-recurrent neural network language modeling toolkit. In Proc. of
the 2011 ASRU Workshop, pages 196–201.

Mikolov, T., Yih, W.-t., and Zweig, G. (2013). Linguistic regularities
in continuous space word representations. In Proceedings of the 2013
Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pages 746–751.
Association for Computational Linguistics, http://www.aclweb.org/

anthology/N13-1090.

Mintz, M., Bills, S., Snow, R., and Jurafsky, D. (2009). Distant super-
vision for relation extraction without labeled data. In Proceedings of
the Joint Conference of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Language Processing of
the AFNLP, pages 1003–1011. Association for Computational Linguistics,
http://aclweb.org/anthology/P09-1113.

Moore, C. R. and Lewis, W. (2010). Intelligent selection of language
model training data. In Proceedings of the ACL 2010 Conference
Short Papers, pages 220–224. Association for Computational Linguistics,
http://aclweb.org/anthology/P10-2041.

101



Morin, F. and Bengio, Y. (2005). Hierarchical probabilistic neural
network language model. In Cowell, R. G. and Ghahramani, Z.,
editors, Proceedings of the Tenth International Workshop on Arti-
ficial Intelligence and Statistics, pages 246–252. Society for Artifi-
cial Intelligence and Statistics, http://www.iro.umontreal.ca/~lisa/
pointeurs/hierarchical-nnlm-aistats05.pdf.

Nallapati, R., Zhou, B., dos Santos, C., Gulcehre, C., and Xiang, B. (2016).
Abstractive text summarization using sequence-to-sequence rnns and be-
yond. In Proceedings of The 20th SIGNLL Conference on Computational
Natural Language Learning, pages 280–290. Association for Computational
Linguistics, DOI: 10.18653/v1/nallapati2016abstractive.

Ng, J.-P. and Abrecht, V. (2015). Better summarization evaluation with word
embeddings for rouge. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 1925–1930. Association
for Computational Linguistics, DOI: 10.18653/v1/D15-1222.

Orasmaa, S., Petmanson, T., Tkachenko, A., Laur, S., and Kaalep, H.-J.
(2016). Estnltk - nlp toolkit for estonian. In Chair), N. C. C., Choukri,
K., Declerck, T., Grobelnik, M., Maegaard, B., Mariani, J., Moreno, A.,
Odijk, J., and Piperidis, S., editors, Proceedings of the Tenth International
Conference on Language Resources and Evaluation (LREC 2016), Paris,
France. European Language Resources Association (ELRA), ISBN: 978-2-
9517408-9-1.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method
for automatic evaluation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics.
http://www.aclweb.org/anthology/P02-1040.

Park, J., Liu, X., Gales, M. J., and Woodland, P. C. (2010). Improved neural
network based language modelling and adaptation. In Interspeech 2010,
pages 1041–1044.

Pascanu, R., Gülçehre, Ç., Cho, K., and Bengio, Y. (2014). How to construct
deep recurrent neural networks. In International Conference on Learning
Representations 2014 (Conference Track). http://arxiv.org/abs/1312.
6026.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of
training recurrent neural networks. In Proceedings of the 30th International
Conference on International Conference on Machine Learning - Volume
28, ICML’13, pages III–1310–III–1318. JMLR.org, http://dl.acm.org/
citation.cfm?id=3042817.3043083.

102



Paulus, R., Xiong, C., and Socher, R. (2017). A deep reinforced model for
abstractive summarization. arXiv preprint arXiv:1705.04304.

Peitz, S., Freitag, M., Mauser, A., and Ney, H. (2011). Modeling punctuation
prediction as machine translation. In IWSLT, pages 238–245.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K.,
and Zettlemoyer, L. (2018). Deep contextualized word representations.
arXiv preprint arXiv:1802.05365.

Pinter, Y., Guthrie, R., and Eisenstein, J. (2017). Mimicking word
embeddings using subword rnns. In Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language Processing, pages 102–
112, Copenhagen, Denmark. Association for Computational Linguistics,
https://www.aclweb.org/anthology/D17-1010.

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel,
N., Hannemann, M., Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J.,
Stemmer, G., and Vesely, K. (2011). The Kaldi speech recognition toolkit.
In Proc. 2011 IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU). IEEE Signal Processing Society. IEEE Catalog
No.: CFP11SRW-USB.

Povey, D., Kanevsky, D., Kingsbury, B., Ramabhadran, B., Saon, G., and
Visweswariah, K. (2008). Boosted MMI for model and feature-space dis-
criminative training. In 2008 IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 4057–4060. ISSN: 1520-6149, DOI:
10.1109/ICASSP.2008.4518545.

Rabiner, L. and Juang, B. (1986). An introduction to hidden markov
models. IEEE ASSP Magazine, 3(1):4–16, ISSN: 0740-7467, DOI:
10.1109/MASSP.1986.1165342.

Ramachandran, P., Liu, P., and Le, Q. (2017). Unsupervised pretraining for
sequence to sequence learning. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, pages 383–391. Asso-
ciation for Computational Linguistics, http://aclweb.org/anthology/
D17-1039.

Rei, M., Crichton, G., and Pyysalo, S. (2016). Attending to characters in
neural sequence labeling models. In Proceedings of COLING 2016, the
26th International Conference on Computational Linguistics: Technical
Papers, pages 309–318, Osaka, Japan. The COLING 2016 Organizing
Committee, http://aclweb.org/anthology/C16-1030.

Rosenfeld, R. (1994). Adaptive Statistical Language Modeling; A Maximum
Entropy Approach. PhD thesis, Carnegie-Mellon University. Ph.D. thesis.

103



Rousseau, A. (2013). Xenc: An open-source tool for data selection in natural
language processing. The Prague Bulletin of Mathematical Linguistics,
(100):73–82.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learn-
ing representations by back-propagating errors. Nature, 323:9, DOI:
10.1038/323533a0.

Rush, M. A., Chopra, S., and Weston, J. (2015). A neural attention model for
abstractive sentence summarization. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pages 379–389.
Association for Computational Linguistics, DOI: 10.18653/v1/D15-1044.

Sak, H., Senior, A., and Beaufays, F. (2014). Long short-term memory
recurrent neural network architectures for large scale acoustic modeling.
In Interspeech 2014.

Sakti, S., Ilham, F., Neubig, G., Toda, T., Purwarianti, A., and Nakamura, S.
(2015). Incremental sentence compression using lstm recurrent networks. In
2015 IEEE Workshop on Automatic Speech Recognition and Understanding
(ASRU), pages 252–258. DOI: 10.1109/ASRU.2015.7404802.

Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural
networks. IEEE Transactions on Signal Processing, 45(11):2673–2681,
ISSN: 1053-587X, DOI: 10.1109/78.650093.

Schwenk, H., Bougares, F., and Barrault, L. (2014). Efficient training
strategies for deep neural network language models. In NIPS workshop on
Deep Learning and Representation Learning.

Schwenk, H. and Gauvain, J. L. (2002). Connectionist language modeling for
large vocabulary continuous speech recognition. In 2002 IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing, volume 1,
pages I–765–I–768. ISSN: 1520-6149, DOI: 10.1109/ICASSP.2002.5743830.

Schwenk, H. and Gauvain, J.-L. (2005). Training neural network language
models on very large corpora. In Proceedings of Human Language Technol-
ogy Conference and Conference on Empirical Methods in Natural Language
Processing. http://www.aclweb.org/anthology/H05-1026.

See, A., Liu, P. J., and Manning, C. D. (2017). Get to the point: Summariza-
tion with pointer-generator networks. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 1073–1083. Association for Computational Linguistics, DOI:
10.18653/v1/P17-1099.

104



Seide, F., Li, G., Chen, X., and Yu, D. (2011). Feature engineering in context-
dependent deep neural networks for conversational speech transcription.
In 2011 IEEE Workshop on Automatic Speech Recognition Understanding,
pages 24–29. DOI: 10.1109/ASRU.2011.6163899.

Shen, S., Zhao, Y., Liu, Z., Sun, M., et al. (2016). Neural headline generation
with sentence-wise optimization. arXiv preprint arXiv:1604.01904.

Shi, Y., Larson, M., and Jonker, C. M. (2014). Recurrent neural network
language model adaptation with curriculum learning. Computer Speech &
Language, ISSN: 0885-2308, DOI: 10.1016/j.csl.2014.11.004.

Souvignier, B. and Kellner, A. (1998). Online adaptation of language models
in spoken dialogue systems. In Fifth International Conference on Spoken
Language Processing, volume 6, page 2323.

Stolcke, A. (1998). Entropy-based pruning of backoff language models.
Proceedings DARPA Broadcast News Transcription and Understanding
Workshop, pages 270–274.

Stolcke, A. (2002). SRILM – an extensible language modeling toolkit. In
Proceedings International Conference on Spoken Language Processing,
volume 2, pages 901–904.

Stolcke, A. and Shriberg, E. (1996). Automatic linguistic segmentation of
conversational speech. In Spoken Language, 1996. ICSLP 96. Proceedings.,
Fourth International Conference on, volume 2, pages 1005–1008 vol.2.
DOI: 10.1109/ICSLP.1996.607773.

Stolcke, A., Shriberg, E., Bates, R., Ostendorf, M., Hakkani, D., Plauche, M.,
Tur, G., and Lu, Y. (1998). Automatic detection of sentence boundaries and
disfluencies based on recognized words. In Fifth International Conference
on Spoken Language Processing, Sydney, Australia.

Sundermeyer, M., Schlüter, R., and Ney, H. (2012). LSTM neural networks
for language modeling. In Interspeech 2012, pages 194–197.

Suzuki, J. and Nagata, M. (2017). Cutting-off redundant repeating gener-
ations for neural abstractive summarization. In Proceedings of the 15th
Conference of the European Chapter of the Association for Computa-
tional Linguistics: Volume 2, Short Papers, pages 291–297. Association for
Computational Linguistics, http://aclweb.org/anthology/E17-2047.

105



Takase, S., Suzuki, J., Okazaki, N., Hirao, T., and Nagata, M. (2016). Neural
headline generation on abstract meaning representation. In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1054–1059. Association for Computational Linguistics, DOI:
10.18653/v1/D16-1112.

Tilk, O. and Alumäe, T. (2014). Multi-domain recurrent neural network
language model for medical speech recognition. In Human Language
Technologies – The Baltic Perspective, volume 268, pages 149–152. IOS
Press, DOI: 10.3233/978-1-61499-442-8-149.

Tilk, O. and Alumäe, T. (2015). LSTM for punctuation restoration in
speech transcripts. In Interspeech 2015, pages 683–687. ISSN: 1990-9770,
https://www.isca-speech.org/archive/interspeech_2015/i15_

0683.html.

Tilk, O. and Alumäe, T. (2016). Bidirectional recurrent neural network with
attention mechanism for punctuation restoration. In Interspeech 2016,
pages 3047–3051. DOI: 10.21437/Interspeech.2016-1517.

Tilk, O. and Alumäe, T. (2017). Low-resource neural headline generation. In
Proceedings of the Workshop on New Frontiers in Summarization, pages
20–26. Association for Computational Linguistics, DOI: 10.18653/v1/w17-
4503.

Tilk, O., Demberg, V., Sayeed, A., Klakow, D., and Thater, S. (2016). Event
participant modelling with neural networks. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, pages
171–182, Austin, Texas. Association for Computational Linguistics, DOI:
10.18653/v1/d16-1017.

Ueffing, N., Bisani, M., and Vozila, P. (2013). Improved models for automatic
punctuation prediction for spoken and written text. In Interspeech 2013,
Lyon, France.

Wang, T. and Cho, K. (2016). Larger-context language modelling with
recurrent neural network. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1319–1329. Association for Computational Linguistics, DOI:
10.18653/v1/P16-1125.

Wang, X., Ng, H. T., and Sim, K. C. (2012). Dynamic conditional ran-
dom fields for joint sentence boundary and punctuation prediction. In
Interspeech 2012, pages 1384–1387.

106



Wegmann, S., Zhan, P., Carp, I., Newman, M., Yamron, J., and Gillick, L.
(1999). Dragon systems’ 1998 broadcast news transcription system. In
Proc. 1999 DARPA Broadcast News Workshop, pages 277–280.

Xu, C., Xie, L., Huang, G., Xiao, X., Chng, E., and Li, H. (2014). A deep
neural network approach for sentence boundary detection in broadcast
news. In Interspeech 2014, pages 2887–2891.

Xu, K., Xie, L., and Yao, K. (2016a). Investigating LSTM for punctu-
ation prediction. In 2016 10th International Symposium on Chinese
Spoken Language Processing (ISCSLP), pages 1–5. DOI: 10.1109/ISC-
SLP.2016.7918492.

Xu, L., Wang, Z., Liu, Z., Sun, M., et al. (2016b). Topic sensitive neural
headline generation. arXiv preprint arXiv:1608.05777.

Yu, D., Yao, K., Su, H., Li, G., and Seide, F. (2013). KL-divergence
regularized deep neural network adaptation for improved large vocabulary
speech recognition. In 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 7893–7897. ISSN: 1520-6149, DOI:
10.1109/ICASSP.2013.6639201.

Yu, L. C., y. Lee, H., and s. Lee, L. (2016). Abstractive headline generation
for spoken content by attentive recurrent neural networks with ASR error
modeling. In 2016 IEEE Spoken Language Technology Workshop (SLT),
pages 151–157. DOI: 10.1109/SLT.2016.7846258.

Zhang, D., Wu, S., Yang, N., and Li, M. (2013). Punctuation prediction with
transition-based parsing. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
pages 752–760. Association for Computational Linguistics, http://www.
aclweb.org/anthology/P13-1074.

107





Acknowledgments

I feel the greatest gratitude towards my supervisor Tanel Alumäe, who
provided the guidance, constructive feedback and the productive work en-
vironment that allowed me to focus on the studies. I would also like to
thank my second supervisor Leo Võhandu for introducing me to the world
of research and inspiring me to start with the doctoral studies.

I am also grateful to my current and former colleagues at the Department
of Software Science at TTÜ, with special thanks to Kairit Sirts for noticing
my interest in neural networks and bringing me together with the right
people to pursue that direction. Lya and Einar Meister have also been very
supportive throughout the years.

I thank Vera Demberg and her colleagues at Saarland University for the
opportunity to visit and work with them. I definitely learned many things I
would not have learned at home.

Finally, I thank my family and friends for their support, and my partner
Helen for her patience.

Parts of this work were financially supported by: the European Union
through the European Regional Development Fund (project 3.2.1201.13-0010)
and the Centre of Excellence in Estonian Studies; the Estonian Ministry
of Education and Research target-financed research theme No. 0140007s12
and the National Program for Estonian Language Technology funded by
them; and the Tallinn University of Technology project Estonian Speech
Recognition System for Medical Applications.

109





Abstract

Language models encapsulate the knowledge about how smaller elements
like words are strung together to form coherent sentences and texts in a
language. This knowledge is useful in many applications such as automatic
speech recognition, machine translation and predictive keyboards that are
gaining importance in our daily lives at an accelerating pace.

Training good language models requires a lot of data which is usually
limited by factors like the number of speakers of the language, the partic-
ular domain of use or some other aspects of the specific task. When the
amount of data is small the methods for training the models have to become
smarter. Neural networks based language models have been shown to be
one of these smarter methods that generalize well and can be informed by
a wider context than previous approaches. In this work we present and
evaluate additional improvements for neural network language models in
three resource-constrained areas.

First, we explore the problem of modeling language in small domains.
We successfully adapt a FFNN LM multi-domain extension (Alumäe, 2013)
for RNN LMs which enables using a single joint RNN for modeling multiple
target domains that shares knowledge about common language patterns
while also factoring in domain-specific variations. Additionally we show that
the multi-domain component can be used for language model adaptation on
small target domains where the small amount of domain-specific parameters
is beneficial for preventing overfitting. Both methods show improvements
in PPL compared to the unadapted versions, but require further work for
determining whether these improvements translate into better performance
of the system as a whole.

In the second part of the work we focus on detecting hidden events
between words (punctuation in our case) with models that can utilize both
unannotated texts and smaller prosody annotated datasets during training.
We present two RNN models that are trained on unannotated texts — a
unidirectional LSTM model and a bidirectional model with an attention
mechanism — and a two-stage training method that enables adapting the
models on a limited amount of prosody annotated data. The unidirectional

111



model is the first published work on applying RNNs to the punctuation
restoration problem and the bidirectional model surpasses the previous state
of the art model on English. Both models are a huge improvement over
conventional hidden event LMs and the two-stage models with prosodic
features improve the results further.

Lastly, we present and analyze pre-training methods for low-resource
neural headline generation. The three methods we develop can be combined
to fully utilize the text in the training data and pre-train all parameters of
the model, while the previous approaches generally were trained on only a
few first sentences of documents and pre-trained a subset of the parameters
(usually just word embeddings) or used no pre-training at all. Experiments
on two languages show that all pre-training methods reduce PPL, but the
more appropriate ROUGE evaluation scores do not correlate much with
PPL — methods that pre-train parameters close to the output are effective
at reducing PPL but actually degrade the performance in terms of ROUGE.
Nevertheless, pre-training the source side of the model consistently gives
significant improvements over the model that is not pre-trained and the
combination of all methods performs the best on one language.

Overall the results support our claims, although the ones related to the
small domain language models require additional experiments to verify the
practical benefits. We also present several ways to improve the proposed
methods in future work.

112



Kokkuvõte

Keelemudelid peidavad endas infot selle kohta, kuidas sõnadest või muudest
keeleühikutest keeleliselt korrektseid lauseid ja tekste moodustatakse. Selli-
ne info on hädavajalik paljudes igapäevaelus aina tähtsamaks muutuvates
rakendustes nagu automaatne kõnetuvastus, masintõlge ja järgmist sisestust
ennustavad klaviatuurid.

Hea keelemudeli treenimiseks kulub ohtralt treeningandmeid. Paraku on
andmete hulk tihti erinevatel põhjustel piiratud. Piiravateks teguriteks võivad
olla nii keele kõnelejate vähesus, eripärase keelestiiliga kasutusvaldkond kui ka
mõni rakenduse tehniline iseärasus. Kui sobivate andmete juurde hankimine
osutub keeruliseks, siis ei jää muud üle kui kasutada paremaid meetodeid ja
mudeleid. Tehisnärvivõrkudel põhinevad keelemudelid on osutunud edukaks
meetodiks, mis suudavad isegi väheste treeningandmete puhul paremini
üldistada ning on võimelised haarama laiemat konteksti kui varasemad
lähenemised. Käesolevas töös pakume välja mitmeid meetodeid ja mudeleid
koos empiiriliste hinnangutega täiendamaks tehisnärvivõrkudel põhinevaid
keelemudeleid kolmes piiratud ressurssidega valdkonnas.

Esimene uuritav probleem hõlmab eripärase keelestiiliga kasutusvaldkon-
dade (domeenide) keele modelleerimist. Kohandame edukalt pärisuunalistele
närvivõrkudele disainitud mitme domeeni korraga samas mudelis model-
leerimist võimaldava komponendi rekurrentsete närvivõrkude jaoks sobi-
vaks. Komponent võimaldab mudelil jagada infot üldiste keelemustrite ning
sõnatähenduste kohta, olles samaaegselt võimeline modelleerima iga domeeni
iseärasusi. Lisaks töötame välja meetodi, mille abil saab mitme domeeni kom-
ponenti kasutada üldise keelemudeli adapteerimiseks väiksele sihtdomeenile.
Adapteerimisel osutub komponendi vähene domeeni jaoks eraldatud para-
meetrite arv kasulikuks omaduseks vältimaks vähestel andmetel ületreenimist.
Mõlemad meetodid parandavad keelemudeli täpsust entroopias mõõdetuna,
samas rakendusliku väärtuse tõestamine vajab täiendavaid eksperimente.

Teine osa tööst keskendub sõnadevaheliste peidetud sündmuste (antud ju-
hul kirjavahemärkide) tuvastamisele. Töötame välja meetodi, mis võimaldab

113



sama mudelit treenida nii lihttekstide kui ka prosoodiliste tunnustega rikas-
tatud andmete peal. Lihttekstide peal treenimiseks esitleme kahte rekurrent-
setel närvivõrkudel põhinevat mudelit, millest esimene on ühesuunaline ning
teine kahesuunaline koos tähelepanumehhanismiga. Pro-soodiliste tunnus-
tega rikastatud andmete peal adapteerimiseks töötame välja kaheastmelise
treeningmeetodi. Ühesuunalisel rekurrentsel närvivõrgul põhinev mudel on
meile teadaolevalt esimene publitseeritud töö, kus kasutatakse rekurrentset
närvivõrku kirjavahemärkide taastamiseks ning kahesuunaline mudel edes-
tab suure edumaaga eelmist parimat mudelit ingliskeelse andmestiku peal.
Mõlemad mudelid on suur edasiminek võrreldes tavapäraste n-grammidel
põhinevate mudelitega ning kaheastmeline treenimine võimaldab edukalt
prosoodilisi tunnuseid ära kasutada, parandades mõlema mudeli tulemusi
veelgi.

Viimases osas töötame välja ja analüüsime erinevaid meetodeid auto-
maatse pealkirjastamise mudeli eeltreenimiseks, parandamaks genereeritud
pealkirjade kvaliteeti väheste treeningandmetega olukordades. Esitame kolm
meetodit, mille kombineerimisel on võimalik treeningtekstid täies ulatu-
ses ära kasutada ning mudeli kõiki parameetreid eeltreenida. Varasemad
lähenemised piirdusid tavaliselt dokumentide paari esimese lause kasutamise-
ga ning parimal juhul eeltreeniti ainult osa mudeli parameetritest (enamasti
ainult sõnavektorid). Eksperimendid kahes erinevas keeles andmestike peal
näitavad olulisi mudeli entroopia vähenemisi kõigi eeltreenimise meetodite
puhul. Ülesande jaoks sobivamad ROUGE hinnangud aga ei korreleeru ent-
roopiaga ning mõned meetodid, mis eeltreenivad väljundi lähedal paiknevaid
parameetreid, toodavad kehvemaid tulemusi kui eeltreenimata mudel. Sellele
vaatamata osutub eeltreenimine üldiselt efektiivseks meetodiks genereeritud
pealkirjade kvaliteedi parandamisel. Sisendi poolel paiknevate parameetrite
eeltreenimine parandab mõlemal juhul oluliselt tulemuste kvaliteeti ning
kõigi meetodite kombinatsioon annab parimaid tulemusi ühe keele puhul.

Töö tulemused üldiselt toetavad esitatud väiteid, kuigi eripärase keelestii-
liga kasutusvaldkondade keele modelleerimise meetodid vajavad täiendavaid
eksperimente tõestamaks tulemuste praktilist väärtust. Pakume ka välja mit-
meid tuleviku töö jaoks võimalikke suundi parandamaks esitatud meetodite
nõrkusi.

114



Appendix A

Publication I

Tilk, O. and Alumäe, T. (2014). Multi-domain recurrent neural network
language model for medical speech recognition. In Human Language Tech-
nologies – The Baltic Perspective, volume 268, pages 149–152. IOS Press,
DOI: 10.3233/978-1-61499-442-8-149

115





Multi-Domain Recurrent Neural Network
Language Model for Medical Speech

Recognition

Ottokar TILK a,1 and Tanel ALUMÄE a

a Institute of Cybernetics at Tallinn University of Technology, Estonia

Abstract. We evaluate back-off n-gram and recurrent neural network language
models for an automatic speech recognition system for medical applications. We
also propose an effective and simple multi-domain recurrent neural network archi-
tecture which enables training a joint model for all domains. The multi-domain
recurrent neural network model outperforms all other compared models.

Keywords. Language modeling, recurrent neural network language model, multi-
domain language model

Introduction

An important part of any automatic speech recognition (ASR) system is the language
model (LM) which evaluates the probabilities of word sequences. The traditional ap-
proach for language modelling is the back-off n-gram LM which performs well but suf-
fers from data-sparsity problem. Neural network (NN) LMs overcome this problem by
projecting input words into continuous space and estimating word probabilities there [1].
While NN LMs enable larger contexts to be utilized than back-off n-gram LMs, they still
are an n-gram approach (with fixed context length n-1). Recurrent neural network (RNN)
LMs remove the fixed context length limitation and this seems to help as shown in [2]
where RNN LMs outperform the feed-forward NN LMs.

LMs are typically trained on large text corpora of different domains with one or
more of them being the target domain. Often the best model for the target domain is
acquired by exploiting the inter-domain similarities. Back-off n-gram models exploit the
similarities by finding optimal interpolation coefficients for combining all the domain-
specific models into a target domain model. Maximum entropy and NN LMs can use the
adaptation approach where the general model is carefully adjusted for the target domain
[3,4]. Multi-domain NN LMs [5] can be trained for all domains simultaneously which is
convenient if there are multiple target domains.

In this paper we train LMs for a medical ASR system using medical corpora. We
compare n-gram and RNN LMs and propose a method to exploit the inter-domain simi-
larities in the form of a novel multi-domain RNN LM.

1Corresponding Author. E-mail: ottokar.tilk@phon.ioc.ee

Human Language Technologies – The Baltic Perspective
A. Utka et al. (Eds.)
© 2014 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-442-8-149

149



1. About the Medical Corpora

The medical corpora consist of radiology reports from 10 different domains (X-ray, com-
puted tomography, ultrasound, etc.). All 10 domains are considered as target domains.
The training set sizes of the domains vary in the range of 24.0K to 3.6M words with a
total size of 10.8M words.

Our initial experiments with back-off n-gram LMs revealed some interesting prop-
erties of the medical corpora:

1. Including the general (non-medical) text corpora in the training of the medical
LM is not practical;

2. Medical corpora consist of very different domains;
3. Exploiting the inter-domain similarities should give the best results.

Below we elaborate on these points in more detail.
What makes the medical applications model unique and difficult to train is that it

has very specific vocabulary and style which is uncharacteristic to normal speech or text,
thus limiting the usefulness of the general text corpora. This was reflected by the lack
of improvement in terms of perplexity on the test set when we included the general text
corpora in the training of the model.

Another challenge is that the medical dataset consists of texts from several very dif-
ferent domains. The differences are indicated by the very big (usually >0.9) optimal in-
terpolation coefficients for the in-domain models when optimizing for the best combina-
tion of domain-specific n-gram language models for the target domain. For each domain
there is a highly varying amount of training data available. Therefore, it is important for
the method to be able to exploit the little similarities there are between the domains and
to factor in the relatively big inter-domain differences while not overfitting the potentially
small amount of in-domain data.

Our back-off n-gram LM experiments showed that linear interpolation of domain-
specific models outperforms both a general model over all domains and using separate
domain-specific models. This suggests that while the domains are different, they still
share enough similarities to enable training a better model by exploiting the similarities in
the whole set of medical corpora than training a separate model on each domain-specific
corpus.

2. The Multi-Domain RNN LM Architecture

We implemented a multi-domain RNN LM inspired by the multi-domain NN LM from
[5] because of its effectiveness, simplicity and very small number of domain-specific
parameters. Small amount of domain-specific parameters enables the model to adapt to
domains with little training data without the danger of overfitting. The method is also
good at exploiting the similarities between the domains.

This method has not been used with RNN LMs before. Switching from feedforward
to recurrent architecture requires finding a new way to apply the adaptation factors.

The first problem is deciding the location of the adaptation layer. The original multi-
domain NN LM adds the adaptation layer between the projection and the hidden layer
of the feedforward network. Our method puts the adaptation layer between the hidden

O. Tilk and T. Alumäe / Multi-Domain Recurrent Neural Network Language Model150



Figure 1. The Multi-Domain RNN LM.

Table 1. Comparison of models in terms
of perplexity on the test set.

Model PPL
n-gram 22.2
RNN 20.9
MD RNN 17.5
MD RNN + n-gram 15.6

and output layer of the recurrent network. This location requires the least amount of
domain-specific parameters and enables the adaptation layer to double as a compression
layer. Compression layer reduces the computational complexity of the model and was
originally proposed in [6].

The second question is concerned with applying the domain-specific parameters in
the adaptation layer. The multi-domain NN LM uses domain-specific multiplicative fac-
tors on the inputs to the adaptation layer. During experiments on NN LMs we discovered
that this method requires shuffling the training samples to work properly. Using multi-
plicative factors on unshuffled training data was worse than using no adaptation at all.
This seemed to be caused by the model parameters overfitting to the factors of more
recently seen domains and becoming less compatible with domain factors seen earlier.

The shuffling requirement can not be satisfied with RNN LMs. For sequential train-
ing we propose a different method which, though benefits from shuffling, is much less
sensitive to seeing long sequences of samples from the same domain. This method uses
additive factors instead of multiplicative ones and can alternatively be thought of as a
domain input (an idea also considered in [5]) or domain-specific bias to the adaptation
layer. The adaptation layer state a(t) at time step t in our approach is computed according
to the following formula:

a(t) = f
(
s(t)C+d(t)D

)
(1)

where f (z) is the logistic sigmoid activation function; C is the weight matrix between
the hidden state layer s and the adaptation layer a; D is the weight matrix between the
domain input d and the adaptation layer a; s(t) is the state of the hidden state layer and
d(t) is the domain input in the form of a one-of-N coded vector indicating the current
domain (see Figure 1). The rest of the architecture is identical to the one described in [6].

Using addition instead of multiplication when applying the adaptation factors elimi-
nates the adaptation factors from the gradients of the model parameters behind the adap-
tation layer. This way the parameters can fit to prediction error rather than adaptation
parameters. Similar reasoning applies to factor gradients as well.

In our experiments on NN LMs, where we use shuffling of training samples, the
additive factors show similar performance to multiplicative factors.

3. Experimental Results

We use a modified version of Mikolov’s RNN LM toolkit [7] in our experiments. Both the
simple and multi-domain RNN LM use the following set-up: number of classes in out-

O. Tilk and T. Alumäe / Multi-Domain Recurrent Neural Network Language Model 151



put layer: 230; size of vocabulary: 52293; state layer size: 600; compression/adaptation
layer size: 300; number of backpropagation through time steps: 3; learning rate: 0.1; L2
regularization coefficient: 1e-7. Additionally, the multi-domain RNN LM has 10 domain
inputs. We use a single model for all domains in both RNN model experiments.

The baseline back-off n-gram model is a separate linearly interpolated model for
each domain with interpolation weights optimized on the corresponding development
set using the SRILM toolkit [8]. The order of the n-gram models is 4 and we use the
modified Kneser-Ney discounting.

The results of the experiments can be seen in Table 1. A simple RNN LM brings
a 6% relative perplexity improvement over interpolated back-off n-gram models. The
multi-domain RNN LM increases the difference to 21% and linearly combining with the
n-gram model raises it to 30%.

4. Conclusion

We trained and compared different types of LMs out of which the newly proposed multi-
domain RNN LM turned out to be the most effective one in terms of perplexity. An
additional benefit of the multi-domain architecture was the fact that it’s a joint model
for all domains thus enabling simple switching between target domains in contrast to the
n-gram models where we had to use a different model for each domain.

In our future work we plan to perform ASR experiments to see how well the im-
provements in perplexity translate into improvements in word error rate. Testing the
multi-domain RNN LM on other languages and domains is also in our plans.

Acknowledgments

This research was supported by the European Union through the European Regional
Development Fund.

References

[1] Y. Bengio, H. Schwenk, J.-S. Senécal, F. Morin, and J.-L. Gauvain, “Neural probabilistic language mod-
els,” in Innovations in Machine Learning, pp. 137–186, Springer, 2006.

[2] T. Mikolov, A. Deoras, S. Kombrink, L. Burget, and J. Černocký, “Empirical evaluation and combination
of advanced language modeling techniques.,” in INTERSPEECH, pp. 605–608, 2011.

[3] T. Alumäe and M. Kurimo, “Domain adaptation of maximum entropy language models,” in Proceedings
of the ACL 2010 Conference Short Papers, pp. 301–306, Association for Computational Linguistics, 2010.

[4] J. Park, X. Liu, M. J. Gales, and P. C. Woodland, “Improved neural network based language modelling
and adaptation.,” in INTERSPEECH, pp. 1041–1044, 2010.

[5] T. Alumäe, “Multi-domain neural network language model,” in INTERSPEECH, pp. 2182–2186, 2013.
[6] T. Mikolov, S. Kombrink, L. Burget, J. Černocký, and S. Khudanpur, “Extensions of recurrent neural

network language model,” in Proceedings of IEEE International Conference on Acoustic, Speech and
Signal Processing (ICASSP), pp. 5528–5531, 2011.

[7] T. Mikolov, S. Kombrink, A. Deoras, L. Burget, and J. Černocký, “RNNLM-recurrent neural network
language modeling toolkit,” in Proc. of the 2011 ASRU Workshop, pp. 196–201, 2011.

[8] A. Stolcke, “SRILM – an extensible language modeling toolkit.,” in Proc. Intl. Conf. on Spoken Language
Processing, pp. 901–904, 2002.

O. Tilk and T. Alumäe / Multi-Domain Recurrent Neural Network Language Model152



Appendix B

Publication II

Tilk, O. and Alumäe, T. (2015). LSTM for punctuation restoration in speech
transcripts. In Interspeech 2015, pages 683–687. ISSN: 1990-9770, https:
//www.isca-speech.org/archive/interspeech_2015/i15_0683.html

121





LSTM for Punctuation Restoration in Speech Transcripts

Ottokar Tilk, Tanel Alumäe

Institute of Cybernetics
Tallinn University of Technology, Estonia

ottokar.tilk@phon.ioc.ee, tanel.alumae@phon.ioc.ee

Abstract

The output of automatic speech recognition systems is gener-
ally an unpunctuated stream of words which is hard to process
for both humans and machines. We present a two-stage recur-
rent neural network based model using long short-term memory
units to restore punctuation in speech transcripts. In the first
stage, textual features are learned on a large text corpus. The
second stage combines textual features with pause durations and
adapts the model to speech domain. Our approach reduces the
number of punctuation errors by up to 16.9% when compared
to a decision tree that combines hidden-event language model
posteriors with inter-word pause information, having largest im-
provements in period restoration.
Index Terms: neural network, punctuation restoration

1. Introduction
The output of most automatic speech recognition (ASR) sys-
tems consists of raw word sequences, without any punctuation
symbols. While this is sufficient for some tasks, such as index-
ing and retrieval as well as dictation where punctuation symbols
might be entered explicitly by voice, most speech transcrip-
tion applications benefit from automatically inserted punctua-
tion symbols. This serves two purposes. First, it makes the
ASR-based transcripts easier to read and understand for hu-
mans. Second, in many cases, it also makes downstream ma-
chine processing of the generated texts more accurate, as many
natural language processing tools, such as sentiment analyzers,
syntactic parsers, information extraction and machine transla-
tion systems, are trained on written texts that include punctua-
tion, and thus expect them to be present also in the input texts.

There have been many previous studies on automatic punc-
tuation restoration in speech transcripts. Probably the most
widely used approach is based on the so-called hidden event
language model (LM) which uses a traditional N -gram LM
trained on texts that include punctuation tokens [1]. During de-
coding, the LM is used to recover the most probable sequence of
words and hidden punctuation symbols. Punctuation restoration
can also be treated as a sequence labelling task and solved us-
ing conditional random fields (CRFs) [2]. This model allows to
combine various textual features, such as LM scores, token n-
grams, sentence length and syntactic features which is found to
give large improvements over purely lexical features [3]. Many
approaches combine textual information with acoustic/prosodic
features, such as pause length between words, phoneme lengths,
pitch and energy, using a classifier such as decision tree [4] or
maximum entropy model [5]. Often the purely lexical model
trained on large text corpora is combined with a model contain-
ing acoustic features, trained on a smaller speech corpus. This
is usually done using either (log-)linear interpolation of model

predictions [4] or using the posteriors of the lexical model as
additional features to the overall model [6].

This paper describes a punctuation restoration system for
automatically transcribed Estonian broadcast speech that uses
long short-term memory (LSTM)[7]. LSTM, a type of recurrent
neural network (RNN), has been used for a variety of supervised
sequence labelling tasks, including phoneme classification [8]
and spoken language understanding [9]. We are not aware of
any prior work using RNNs for punctuation restoration.

Neural networks provide a flexible architecture for con-
structing and synthesizing complex models. We take advantage
of this flexibility by training a punctuation restoration model in
two phases. First, a large text corpus is used to train a model
that uses only words as features. Then a new model is trained
on a smaller pause annotated corpus, using pause durations and
first phase models uppermost hidden layer outputs as features.
The resulting punctuation system is currently used in our pub-
licly available Estonian speech transcription system1. Its perfor-
mance on automatically transcribed data can be viewed on our
constantly updated archive of Estonian broadcast speech 2[10].
The source code of the model is also publicly available 3.

The following section describes how we use LSTM for
punctuation restoration. Section 3 presents evaluation data,
evaluation metrics and experimental results. Section 4 con-
cludes the paper.

2. Method
We focus on restoring two most important and frequent types of
punctuation — commas and periods. Question marks, exclama-
tion marks, semicolons and colons are mapped to periods and
all other punctuation symbols are removed from the corpora.
The model we use for this task is a LSTM RNN with forget
gates [11] and peephole connections [12] in LSTM layers.

2.1. LSTM vs N -gram

The LSTM RNN has several advantages over the widespread
hidden event N -gram LM.

First, one of the problems with N -gram models is the data
sparsity issue. A better model should to be able to generalize to
contexts that were not seen during training. As it is well known
from language modeling, neural networks are much better at
generalizing to unseen sequences, by learning distributed repre-
sentations of words [13] or entire contexts as it is the case with
RNNs [14]. This suggests that LSTM RNNs should be able to
learn similar representations for contexts around similar punc-
tuations and make accurate predictions even in unseen contexts.

1http://bark.phon.ioc.ee/webtrans/
2http://bark.phon.ioc.ee/tsab
3https://github.com/ottokart/punctuator

Copyright © 2015 ISCA September 6-10, 2015, Dresden, Germany

INTERSPEECH 2015

683



Another weakness of N -gram models is that their context
size is limited to a fixed number of tokens. Although it has been
shown that increasing the context size does not help as much
as getting more data [15], it seems unjustified to expect that the
relevant context size is the same for both types of punctuation
and remains constant across the entire text. Therefore, one of
our requirements is that the model should be able to dynam-
ically decide on how long context is relevant. RNNs fit this
requirement and are able to utilize arbitrary length sequences.
Although in practice non-LSTM RNNs have difficulties in re-
membering long range dependencies due to vanishing gradients
[16], this problem can be alleviated by using LSTM units.

Neural networks are very simple to augment with additional
features, such as those derived from speech prosody, which
gives them another advantage over N -gram models.

The main disadvantage of neural networks is their training
speed, although it is not as huge problem as in language model-
ing as the output layer is small.

2.2. Input features

Our approach to punctuation restoration relies on both textual
information and pause durations between words. Contrary to
many previous works, we don’t use any other prosodic features,
such as F0 contours, phoneme durations and energy values.
This has two reasons: first, previous research [17, 4] has shown
that pause duration is by far the most useful and robust prosodic
feature for predicting punctuation symbols; second, it is easy to
extract pause durations from word-aligned recognition output
that can be generated using any decoder, without the need to re-
analyze the audio signal. We also opted against using other lin-
guistic features, such as part-of-speech tags, because we wanted
our approach to be as portable to other languages as possible.

The textual component of our model decides the suitable
punctuation for a slot based on the word after the slot and the
history of all previously seen words. The word after the slot
is given as one-hot encoded input vector and the information
about preceding words is stored in the LSTM memory units.
The next word is important for predicting both commas and pe-
riods correctly. In Estonian language there are many words that
are almost always preceded by a comma and thus it is essential
to know the following word. Also, in item listings it is indicative
whether the following word is from the same category. For pe-
riods it helps to detect thematic changes and to recognize words
which typically start a new sentence. Since there are many easy
cases for commas, we can expect the textual model to be better
at predicting commas than periods.

Pauses between words are most informative for predicting
periods. This became apparent when we trained a simple model
using a small window of pauses only as input features. The
model achieved an F-score of 0.53 for periods, but was unable
to predict commas. Although, in certain contexts, a small pause
can be good indicator for a comma. Therefore, in conjunction
with word features, the comma annotation performance should
also improve, but we expect periods to benefit the most.

Combining textual and pause duration information should
provide a model with balanced performance across different
punctuations.

2.3. Two-stage model

Since the amount of pause annotated data is relatively small,
we use a two-stage training procedure in which a purely textual
model (T-LSTM) is trained first. The forward pass of the T-

LSTM model is described in the following equations:

y0(t) = tanh
(
W0x0(t)

)

y1(t) = LSTM
(
y0(t)

)

y2(t) = Softmax
(
W2y1(t)

)

where x0 is the one-hot encoded vector representing the input
word following the punctuation slot, y and W are the layer acti-
vation vectors and weight matrices respectively where the sub-
script matches the layer index. The LSTM is defined as in
[18], except biases are omitted because we found they brought
no noticeable improvement.

After obtaining the textual model, the final model utilizing
text and pause duration (TA-LSTM-p) is trained in the second
stage. As proposed in [19], we treat the last hidden layer outputs
of the T-LSTM as high level features learned by the network,
representing everything the model knows about the textual in-
put. TA-LSTM-p then utilizes both pause durations and these
high level features of text to make decisions about punctuations.
To construct a TA-LSTM-p the output layer softmax classifier
of T-LSTM is discarded and its last hidden layer features with
the current slot pause duration are used as inputs to the TA-
LSTM-p. The architecture of the TA-LSTM-p is identical to the
T-LSTM with the exception of inputs and the omitted first hid-
den layer. During the second phase of training the model learns
to use the now available pause duration information in conjunc-
tion with textual features. It also enables the model to adapt to
the style of speech by learning a more suitable classifier for the
target domain. The remaining T-LSTM layers are still used in
the forward pass of the TA-LSTM-p, but are fixed during train-
ing. Stacking a new classifier on top of the T-LSTM features
has two advantages when compared to e.g. adapting the exist-
ing T-LSTM parameters. First, the size of the model trained
on the smaller pause annotated corpus can be easily adjusted to
be optimal for the smaller corpus size — which as a side-effect
can be also faster to train. Second, according to our experi-
ments, stacking a new classifier performs better than adapting
the existing parameters. While in the T-LSTM, the function of
the LSTM layer is to remember the textual context, the LSTM
layer in TA-LSTM-p serves to have information about previous
pauses (e.g. whether the current pause is long enough to in-
dicate punctuation or just characteristic to current context) and
previous T-LSTM features. The forward pass of the TA-LSTM-
p model takes the following form:

x1(t) = [y1(t), p(t)]

y3(t) = LSTM
(
x1(t)

)

y4(t) = Softmax
(
W4y3(t)

)

where x1 is the input to the TA-LSTM-p model, which is ob-
tained by concatenating the second hidden layer activations y1
of T-LSTM and pause duration p of current slot. The out-
put layer y4 represents the probability distribution over possi-
ble punctuations — comma, period or no punctuation. During
punctuation restoration the slot t is filled with the most probable
punctuation according to y4. Both T-LSTM and TA-LSTM-p
are described in Figure 1.

3. Experiments
The LSTM model is trained similarly in both stages. Gradients
are computed with back-propagation through time [20] over 5
time steps and the weights are updated using AdaGrad [21].

684



Figure 1: Description of the T-LSTM and TA-LSTM-p model.
W1 and W3 represent the external input weights (for cell in-
puts and all gates) of the corresponding LSTM layers. The out-
put of the T-LSTM model is a posterior probability distribution
over punctuations punct(t) = {comma, period,∅} for slot
t given word after the slot x0(t) and preceding word history
hx0(t). TA-LSTM-p has a similar output, but is additionally
conditioned on slot pause duration p(t) and pause history hp(t).

Learning rate starts from 0.1 and when there is no sufficient im-
provement on the validation set we start to divide the learning
rate by 2 at each epoch (adopted from [22]). Training is stopped
when the shrinking learning rate no longer yields enough im-
provements or the maximum number of 20 epochs has been
reached. Weights are initialized to random uniform values in
a range of ±0.005 and all hidden states to zeros. To speed up
the training, the dataset is split into 100 sequences and these
sequences are fed to the network in parallel as mini-batches.

The first and second hidden layer of the T-LSTM model
consist of 100 tanh units and 100 single-cell LSTM blocks re-
spectively. Input vocabulary consists of the 100K most frequent
words in the training corpus plus two special symbols for un-
known words and an end of input.

The TA-LSTM-p input size is 101 (T-LSTM features plus
current slot pause duration). Hidden layer has 100 LSTM units.

We use two baselines: a hidden event LM and a decision
tree that combines textual and inter-word pause information.
The 4-gram hidden event LM uses a vocabulary of the same
100K words as the LSTM models plus punctuation symbols.
The model is built by interpolating the models compiled from
the individual text sources using coefficients optimized on the
development set. The model is smoothed using Kneser-Ney
discounting and n-gram probabilities accounting for less than
10−7 training set perplexity improvement are pruned. The sec-
ond baseline is inspired from the models proposed in [4, 6]: a
decision tree (4-gram+DT-p) is trained on the pause annotated
corpus, using pause durations and the posterior probabilities of
the punctuation symbols assigned by the hidden n-gram LM as
features. This allows the decision tree to directly benefit from
both inter-word pause information as well as a large text corpus
which has no corresponding speech data available, similarly to
the TA-LSTM-p model.

For a comparison with the 4-gram model, we also train
a TA-LSTM-p model without pause duration inputs (i.e. just
adapt it on the target domain data). This also helps us to assess
the effectiveness of the TA-LSTM-p in utilizing pause duration

Table 1: Number of tokens of textual data and the amount of
hours of audio data used for training the punctuation model.

Source #Tokens #Hours
Newspapers 203M
Web 74M
Fiction 35M
Magazines 29M
Parliament 15M
Social media 28M
Lecture speech 283K 39.3
Broadcast news 127K 32.1
Broadcast conversations 505K 74.0
Total 386M 145.4

information and compare it to the baselines DT-p approach. We
refer to this adapted, purely textual model as TA-LSTM. We
could have used the T-LSTM model for comparison, but we had
two reasons to not do that — first, the N -gram model is adapted
for target domain, thus for fairness the LSTM model should also
be adapted; second, the T-LSTM model did not perform well on
the speech data as the training data consisted mostly of written
text (this might imply that local contexts don’t vary between
styles as much as longer ones).

To demonstrate the importance of textual features trained
on a large corpus, we train an augmented T-LSTM model with
additional pause duration input on pause annotated text only.
This model is referred to as T-LSTM-p.

All models are evaluated on force-aligned manual transcrip-
tions and the transcripts generated by the ASR system. In order
to insert reference punctuation marks into automatic transcripts,
the manual transcripts were aligned with the ASR output, using
minimum cost edit distance, and the punctuation marks in the
reference texts were propagated to the hypothesized texts.

3.1. Data

Textual and audio data used for training the punctuation model
is summarized in Table 1. The audio data is force-aligned us-
ing the speech recognition system described below. Inter-word
pause durations, used for training the 4-gram+DT-p, TA-LSTM-
p and T-LSTM-p model, are then captured from the alignments.

As development data, we use two hours of broadcast news
and 4.4 hours of broadcast conversations (radio talkshows and
telephone interviews). The test set contains two hours of broad-
cast news and 5.6 hours of broadcast conversations.

3.2. Speech recognition system

The ASR system that is used for aligning punctuation model
training data and producing the ASR hypotheses for the evalu-
ation data is described in [23], although some details have been
improved since then. Speech recognition is implemented using
the Kaldi toolkit [24]. The acoustic models are trained from
around 178 hours of speech from various sources. We use mul-
tisplice DNN-based acoustic models that take an i-vector of the
current speaker as additional input to the DNNs for unsuper-
vised speaker adaptation.

The ASR LM is compiled from the same data that is used
for training the text-based punctuation model (Table 1). A 4-
gram LM is built by interpolating models trained on the individ-
ual sources, using a vocabulary of 200K compound-split words.
The final LM is heavily pruned to be usable for decoding. One-

685



Table 2: Results on manually transcribed reference and ASR output test set.

Reference text ASR output
Model P(C) R(C) F(C) P(P) R(P) F(P) Err P(C) R(C) F(C) P(P) R(P) F(P) Err
4-gram 0.78 0.60 0.68 0.47 0.26 0.33 9.67 0.70 0.54 0.61 0.38 0.19 0.25 11.32
4-gram+DT-p 0.76 0.70 0.73 0.64 0.60 0.62 8.22 0.66 0.62 0.64 0.52 0.48 0.50 10.97
T-LSTM-p 0.79 0.63 0.70 0.69 0.60 0.64 8.24 0.70 0.57 0.63 0.57 0.49 0.53 10.46
TA-LSTM 0.74 0.72 0.73 0.63 0.43 0.51 8.20 0.65 0.65 0.65 0.49 0.32 0.39 11.02
TA-LSTM-p 0.82 0.70 0.76 0.68 0.77 0.72 6.83 0.71 0.62 0.66 0.55 0.61 0.58 10.01

pass recognition is used, followed by rescoring of the lattices
with a larger LM.

The word error rate (WER) of the system is around 17%.

3.3. Metrics

All models are evaluated in terms of four different metrics. First
we give an overall classification error rate Err defined as incor-
rectly punctuated slots divided by the total number of slots. For
a more detailed overview we also report precision, recall and
F-score of commas and periods.

3.4. Results on reference text

Left side of Table 2 shows the results on manually transcribed
reference text. The 4-gram model has decent performance in
restoring commas but fails miserably when it comes to periods
where especially the poor recall of 0.26 stands out. This might
indicate that periods depend on longer context than the 4-gram
model is able to utilize and require better generalization.

The LSTM model trained on purely textual features (TA-
LSTM) achieves a 15.2% relative decrease in error rate over 4-
gram model on reference text. While there are improvements in
comma restoration, most of the gains come from better period
restoration performance. This confirms that longer context and
better generalization of LSTMs is indeed helpful when it comes
to punctuation restoration, particularly for periods. TA-LSTM
performance may be also partially attributed to the superiority
of the adaptation scheme used (the 4-gram model uses linear
interpolation). Just as with the 4-gram model, the TA-LSTM
model is still worse at period restoration than comma restora-
tion, although the difference is noticeably smaller.

Adding pause duration features yields noticeable reductions
in error rate — TA-LSTM-p reduces error by 16.7% relative
over TA-LSTM and 4-gram+DT-p improves by 15.0% relative
over 4-gram model. As expected, the biggest improvement in
TA-LSTM-p performance comes from the large jump in pe-
riod restoration recall, followed by a noticeable rise in comma
restoration precision. The TA-LSTM-p model has a relatively
balanced performance over punctuation marks where both com-
mas and periods have similar F-scores while the precision is
larger for commas but recall is higher for periods. 4-gram+DT-p
compared to 4-gram also mainly improves in period restoration,
but shows a smaller improvement in comma restoration.

When comparing T-LSTM-p, a model trained on the small
pause annotated corpus only, to the TA-LSTM-p model, it be-
comes clear that using textual features trained on a large corpus
helps a lot. Biggest improvement is in period recall, again hint-
ing that good representations of long contexts are important for
period restoration.

The TA-LSTM-p model beats the 4-gram+DT-p baseline by
16.9% relative. It has much higher period recall and higher pre-
cision for both punctuation marks.

3.5. Results on ASR output

Experiments on ASR output (Table 2, right) show similar trends
as the reference text, although the differences between models
are much smaller. TA-LSTM reduces error rate by 2.7% relative
compared to 4-gram. 4-gram+DT-p improves over 4-gram by
3.1% and TA-LSTM-p over TA-LSTM by 9.2%. Comparing
TA-LSTM-p to the 4-gram+DT-p baseline shows relative error
rate reduction of 8.8%.

It is clear that all models suffer from the errors made by
the ASR system. It is also evident that LSTM models suffer
more and period restoration performance declines more than for
commas. This might be another indicator that restoring periods
requires larger context (which LSTM models are able to use)
and as context size grows the more likely it is to encounter errors
made by the ASR system. As LSTM models suffer more from
ASR WER, they also have a higher potential for improvements
when the WER of the ASR systems improves.

Another thing to note is that alignment method used to
propagate reference punctuations to ASR output is not error
free either. Manual inspection of punctuations restored by
TA-LSTM-p model revealed that many decisions made by the
model that were counted as mistakes were actually better than
the expected punctuations. While flawed, our current ASR out-
put test set should still give a rough performance estimate.

4. Conclusions
This paper presented a novel LSTM RNN model for restor-
ing periods and commas in speech transcripts. The model was
trained in two stages where in the first stage textual features
were learned and in the second stage pause durations and textual
features were combined and the model was adapted to the target
domain. Based on experiments with Estonian broadcast speech,
the model showed a balanced performance for both punctuation
types and reduced the number of restoration errors by 16.9%
on reference text and by 8.8% on ASR output when compared
to a decision tree that combines the output of a hidden event
LM with pause durations. Most of the gains came from largely
improved period restoration.

Future research includes other languages, restoring addi-
tional types of punctuation and using larger amount of prosodic
features. Also, current LSTM model only peeked one word
after the punctuation slot. It would be interesting to find out
whether looking further into the future context improves the
performance. Bidirectional models [25] can also be considered.

5. Acknowledgements
The work was supported by the European Union through the
European Regional Development Fund, project 3.2.1201.13-
0010 and by the Estonian Ministry of Education and Research
target-financed research theme No. 0140007s12.

686



6. References
[1] A. Stolcke, E. Shriberg, R. A. Bates, M. Ostendorf, D. Hakkani,

M. Plauch, G. Tr, and Y. Lu, “Automatic detection of sentence
boundaries and disfluencies based on recognized words,” in IC-
SLP 1998, Sydney, Australia, 1998.

[2] W. Lu and H. T. Ng, “Better punctuation prediction with dynamic
conditional random fields,” in EMNLP 2010, Cambridge, MA,
USA, 2010.

[3] N. Ueffing, M. Bisani, and P. Vozila, “Improved models for au-
tomatic punctuation prediction for spoken and written text,” in
Interspeech 2013, Lyon, France, 2013.

[4] J. Kolář, J. Švec, and J. Psutka, “Automatic punctuation annota-
tion in Czech broadcast news speech,” in SPECOM 2004, Saint
Petersburg, Russia, 2004.

[5] J. Huang and G. Zweig, “Maximum entropy model for punctua-
tion annotation from speech,” in ICSLP 2002, Denver, CO, USA,
2002.

[6] J. Kolár and L. Lamel, “Development and evaluation of auto-
matic punctuation for French and English speech-to-text,” in In-
terspeech 2012, Portland, OR, USA, 2012.

[7] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computing, vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[8] A. Graves, A. Mohamed, and G. E. Hinton, “Speech recognition
with deep recurrent neural networks,” in ICASSP 2013, Vancou-
ver, BC, Canada, 2013, pp. 6645–6649.

[9] K. Yao, B. Peng, Y. Zhang, D. Yu, G. Zweig, and Y. Shi, “Spo-
ken language understanding using long short-term memory neural
networks,” in SLT 2014, South Lake Tahoe, NV, USA, 2014.

[10] T. Alumäe and A. Kitsik, “TSAB – web interface for transcribed
speech collections,” in Interspeech 2011, Florence, Italy, 2011,
pp. 3335–3336.

[11] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with LSTM,” Neural computation, vol. 12,
no. 10, pp. 2451–2471, 2000.

[12] F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning
precise timing with LSTM recurrent networks,” The Journal of
Machine Learning Research, vol. 3, pp. 115–143, 2003.

[13] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural
probabilistic language model,” The Journal of Machine Learning
Research, vol. 3, pp. 1137–1155, 2003.

[14] T. Mikolov, S. Kombrink, L. Burget, J. H. Cernocky, and S. Khu-
danpur, “Extensions of recurrent neural network language model,”
in ICASSP 2011, 2011, pp. 5528–5531.

[15] A. Gravano, M. Jansche, and M. Bacchiani, “Restoring punctu-
ation and capitalization in transcribed speech,” in ICASSP 2009,
2009, pp. 4741–4744.

[16] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term de-
pendencies with gradient descent is difficult,” IEEE Transactions
on Neural Networks, vol. 5, no. 2, pp. 157–166, 1994.

[17] H. Christensen, Y. Gotoh, and S. Renals, “Punctuation annotation
using statistical prosody models,” in ISCA Tutorial and Research
Workshop (ITRW) on Prosody in Speech Recognition and Under-
standing, 2001.

[18] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory re-
current neural network architectures for large scale acoustic mod-
eling,” in Interspeech 2014, 2014.

[19] F. Seide, G. Li, X. Chen, and D. Yu, “Feature engineering
in context-dependent deep neural networks for conversational
speech transcription,” in ASRU 2011, 2011, pp. 24–29.

[20] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning rep-
resentations by back-propagating errors,” Nature, vol. 323, p. 9,
1986.

[21] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” The Journal of
Machine Learning Research, vol. 12, pp. 2121–2159, 2011.

[22] T. Mikolov, S. Kombrink, A. Deoras, L. Burget, and J. Cernocky,
“RNNLM – recurrent neural network language modeling toolkit,”
ASRU 2011, pp. 196–201, 2011.

[23] T. Alumäe, “Recent improvements in Estonian LVCSR,” in SLTU
2014, Saint Petersburg, Russia, 2014.

[24] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
J. Silovsky, G. e. Stemmer, and K. Vesely, “The Kaldi speech
recognition toolkit,” in ASRU 2011, Dec. 2011.

[25] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neu-
ral networks,” IEEE Transactions on Signal Processing, vol. 45,
no. 11, pp. 2673–2681, 1997.

687





Appendix C

Publication III

Tilk, O. and Alumäe, T. (2016). Bidirectional recurrent neural network with
attention mechanism for punctuation restoration. In Interspeech 2016, pages
3047–3051. DOI: 10.21437/Interspeech.2016-1517

129





Bidirectional Recurrent Neural Network with Attention Mechanism for
Punctuation Restoration

Ottokar Tilk1, Tanel Alumäe2

1Institute of Cybernetics, Tallinn University of Technology, Estonia
2Raytheon BBN Technologies, Cambridge, MA, USA
ottokar.tilk@phon.ioc.ee, tanel.alumae@phon.ioc.ee

Abstract
Automatic speech recognition systems generally produce un-
punctuated text which is difficult to read for humans and de-
grades the performance of many downstream machine process-
ing tasks. This paper introduces a bidirectional recurrent neu-
ral network model with attention mechanism for punctuation
restoration in unsegmented text. The model can utilize long
contexts in both directions and direct attention where necessary
enabling it to outperform previous state-of-the-art on English
(IWSLT2011) and Estonian datasets by a large margin.
Index Terms: neural network, punctuation restoration

1. Introduction
Most automatic speech recognition (ASR) systems output an
unpunctuated sequence of words. Restoring the punctuation
greatly improves the readability of transcripts and increases the
effectiveness of subsequent processing, like machine transla-
tion, summarization, question answering, sentiment analysis,
syntactic parsing and information extraction.

Punctuation restoration and a related task of segmentation
or sentence boundary detection have been extensively studied.

Some previous approaches have used textual features only,
enabling applications where audio is not available. Various
methods have been used, like n-gram models [1], conditional
random fields (CRFs) [2, 3], transition-based dependency pars-
ing [4], deep and convolutional neural networks [5]. Some have
treated the punctuation restoration as a machine translation task,
translating from unpunctuated text to punctuated text [6, 7].

On the other hand, there are methods that rely entirely on
prosodic or audio based features, such as pause durations be-
tween words, pitch and intensity [8, 9]. For example, a com-
bination of two neural networks has been used, where the first
network classifies input as speech or punctuation and the second
one predicts the punctuation type [9].

Both approaches have benefits — text based approach does
not require audio and has generally shown better results on ref-
erence transcripts, while prosody based models are more robust
to ASR system errors — but the combination of the two brings
further improvements [10, 11]. Pause durations between words
have been shown to be particularly helpful when combined with
textual features [8, 12]. Approaches for combining textual and
prosodic features can be roughly divided into two categories —
a single model that utilizes both types of features, and separate
models that are combined in various ways.

Single model approach has been used, for example, with
maximum entropy model [13, 14, 15, 16], statistical finite state
model [8], boosting-based classifier [10] and long short-term
memory (LSTM) recurrent neural network [17].

A common way to combine models is to pass the outputs
of the textual model along with prosodic features to the main
model that makes the final punctuation decision. For example,
language model posteriors can be treated as features by a deci-
sion tree [18], CRFs [19] or adaptive boosting algorithm [11].
Another option is to use prosodic posteriors as features for a
model that combines them with textual features, like in [20]
where deep neural network based prosodic model posteriors
were used as additional features in a text based CRFs classifier.
Prosodic and textual model posteriors can also be interpolated
[18, 12, 21, 10] or passed to a third model as features [22].

Combination of a separate textual and prosodic component
makes it straightforward to achieve a greater quality textual
model, as it is not limited to the availability of corresponding
audio and can be separately trained on a much larger amount
of text [22]. Single model methods can achieve the same goal
through adaptation or 2-stage training, where the model is ini-
tially trained on a large text corpus using textual features alone,
and then adapted on a smaller corpus where both textual and
prosodic features are available [17].

In [23], a multi-pass approach additionally refined a
prosody and text based CRFs result, by taking into account the
distance from the closest sentence boundary in both directions.

In this work we use two approaches. On the English dataset
we use text only, as prosodic features were unavailable to us
and the previous best result that we compare with. On the Es-
tonian dataset we use textual features in combination with a
prosodic feature. Similarly to the previous best method [17],
the only prosodic feature we use is the pause duration between
words, but other features can also be easily incorporated into
this model. We use a single model that is trained in two stages
to maximally utilize both text and prosody. The two-stage ap-
proach is similar to the one used in [17] where in the first stage
a large written text corpus is utilized for training textual fea-
tures, and then these features are combined with the pause du-
ration feature in the second stage when the model is trained on a
smaller pause annotated corpus. Although some of the previous
work (e.g. [6]) reported results on already segmented text, our
results are achieved on unsegmented text.

The novelty of our approach is that this is, to the best of our
knowledge, the first use of bidirectional recurrent neural net-
works (BRNN) [24] in combination with an attention mecha-
nism [25] for punctuation restoration in unsegmented text. The
source code of the model is publicly available 1.

The next section describes our approach in detail. Section 3
describes training strategies, models, data, metrics and results.
Section 4 concludes the paper.

1https://github.com/ottokart/punctuator2

Copyright © 2016 ISCA

INTERSPEECH 2016

September 8–12, 2016, San Francisco, USA

http://dx.doi.org/10.21437/Interspeech.2016-15173047



2. Method
Our model is a bidirectional recurrent neural network (BRNN)
[24] which enables it to make use of unfixed length contexts
before and after the current position in text.

In the recurrent layers we use gated recurrent units (GRU)
[26] that are well suited for capturing long range dependencies
on multiple time scales. These units have similar benefits as
LSTM [27] units while being simpler.

We incorporated an attention mechanism [25] into our
model to further increase its capacity of finding relevant parts of
the context for punctuation decisions. For example the model
might focus on words that indicate a question, but may be rel-
atively far from the current word, to nudge the model towards
ending the sentence with a question mark instead of a period.

To fuse together the model state at current input word and
the output from the attention mechanism we use a late fusion
approach [28] adapted from LSTM to GRU. This allows the at-
tention model output to directly interact with the recurrent layer
state while not interfering with its memory.

Next we describe in detail how our model processes the in-
puts to produce the outputs. At time step t the model outputs
probabilities for punctuations yt to be placed between the pre-
vious word xt−1 and current input word xt. As there is no
punctuation before the first word x1, the model predicts punc-
tuations only for words x2, . . . ,xT , where xT is a special end-
of-sequence token.

The sequence of one-hot encoded input words X =
(x1, . . . ,xT ) is first processed by a bidirectional layer consist-
ing of two recurrent layers with GRU units, where one recurrent
layer processes the sequence in forward direction and the other
in reverse direction. Both recurrent layers are preceded by a
shared embedding layer with weights W e. The state

−→
h t at

time step t of the forward recurrent layer is

−→
h t = GRU(xtW e,

−→
h t−1) (1)

where GRU is the gated recurrent unit activation function as
described in [26] with the exception of added biases. We use
tanh as the new hidden state nonlinearity φ. The state

←−
h t

of the reverse recurrent layer is computed similarly except the
input word sequence X is processed in reverse order. The bidi-
rectional state ht is then constructed by concatenating the states
of the forward and backward layers at time t:

ht = [
−→
h t,
←−
h t] (2)

So this layer learns representations for each input word xt that
depend on both the preceding and following context, hopefully
helping the model to better identify question indicating words
as this often depends on the context (e. g. ”This is what I do.”
vs. ”What do you do?”). Also, this gives the model more in-
formation to determine whether the current word starts a new
sentence or not.

The bidirectional layer is followed by a unidirectional GRU
layer with an attention mechanism. This layer processes the
bidirectional states sequentially and keeps track of the current
position in text, while the attention mechanism can focus on rel-
evant bidirectional context aware word representations before
and after the current position. The state st of the layer

st = GRU(ht, st−1) (3)

is late fused with the attention model output at which is com-
puted based on the previous state st−1 and bidirectional layer

yt

Late fusion

. . . st−1 st . . .

Attention

−→
h1

. . . −→
ht

. . . −→
hT

←−
h1

. . . ←−
ht

. . . ←−
hT

x1 . . . xt . . . xT

Figure 1: Description of the model predicting punctuation yt at
time step t for the slot before the current input word xt.

states H = (h1, . . . ,hT ) as described in [25]. The late fused
state f t

f t = atW fa ◦ σ(atW faW ff + htW fh + bf ) + ht (4)

is fed to the output layer producing the punctuation probabilities
yt at time step t

yt = Softmax(f tW y + by) (5)

The model described above is used for single stage training and
as the first stage in two-stage training. Graphical description of
the model can be seen in Figure 1.

For two-stage training, to incorporate pause duration and
adapt to target domain, the second stage discards the first stage
output layer and replaces it with a new recurrent GRU layer

zt = GRU([f t, pt],zt−1) (6)

which takes the concatenation of the late fusion state f t and the
pause duration pt before word xt as input. Vector zt is passed
to a newly initialized output layer, similar to 5. Only the newly
added parameters are trained during second stage training while
the first stage parameters are kept fixed. This worked better than
adapting all the parameters. The reason for that might be that as
the second stage training corpus is smaller, it does not contain
all the words that are in the model vocabulary. Therefore some
word embeddings are not updated while the rest of the model
changes, causing these embeddings to become less compatible
with the model.

3. Experiments
3.1. Training details

During training the weights are updated using AdaGrad [29]
with a learning rate of 0.02. The L2-norm of the gradient is
kept within a threshold of 2 by normalizing it every time this
threshold is exceeded [30].

Negative log-likelihood of the punctuation sequence is min-
imized during training. During testing the punctuation with
highest probability according to model output is chosen. We
also experimented with giving the previously predicted punctu-
ations as an input to the model and using beam search to find

3048



the best sequence of predictions, but this caused the model to
accumulate mistakes and performed worse.

The first stage of two-stage training is finished when the
validation perplexity gets worse for the first time. The second
stage of two-stage training and single stage training is com-
pleted when the validation perplexity has not improved in the
last 5 epochs. Weights are initialized according to the normal-
ized initialization from [31] and biases are initialized to zeros.
All hidden layers consist of 256 units.

The models are implemented using Theano [32, 33] and
trained on GPUs. The input sequence is partitioned into 200
word long slices. Each slice always begins with the first word of
a sentence. If a slice ends with an unfinished sentence, then the
unfinished sentence is copied to begin the next slice. The out-
put sequence is one element shorter as no punctuation is placed
before the first word. Slices are also used during testing, but
unlike during training, the sentence boundaries predicted by the
model are used. To reduce training time, the slices are shuffled
before each epoch and arranged into mini-batches of 128 slices.

The Estonian model has an input word vocabulary of 100K
most frequent words in the training corpus, plus the end-of-
sequence and out-of-vocabulary token. The vocabulary of the
English model is constructed by taking all words that occur at
least twice in the training corpus, resulting in a vocabulary of
27 244 words and the 2 special tokens.

The output vocabulary consists of the predicted punctua-
tions (comma, period and question mark) and a no punctuation
token. Other punctuation symbols are either mapped to one of
the punctuations in our output vocabulary or removed from cor-
pora. For Estonian dataset, exclamation marks, semicolons and
colons are mapped to periods and all other punctuation sym-
bols are removed. In the English dataset exclamation marks
and semicolons are mapped to periods, while colons and dashes
are mapped to commas.

3.2. Models

On the English dataset we use the model described in Figure 1
(T-BRNN). Since the models in [5] used pre-trained word vec-
tors, we also train one T-BRNN model with embeddings initial-
ized to the same pre-trained word vectors 2 (T-BRNN-pre) for
comparison.

The Estonian dataset has out-of-domain and pause anno-
tated data available. Therefore we train our model using the
two-stage approach — first training on the large out-of-domain
corpus and then adapting on the pause annotated corpus. We
train the two-stage Estonian model both with (TA-BRNN-p)
and without (TA-BRNN) utilizing pause durations. Analo-
gous models (TA-LSTM-p with pauses and TA-LSTM without
pauses) were also trained in [17].

The model that holds the previous best result on Estonian
has publicly available source code, so we train the first stage
part of it on English for comparison (T-LSTM). We used the
same hyperparameters for T-LSTM that were used in [17]. Two-
stage training requires out-of-domain data which was not used
by [5] and would give our models an unfair advantage.

3.3. Datasets

3.3.1. Estonian

The Estonian dataset we use consists of two parts — a 334M
word out-of-domain written text (e. g. newspapers and WWW)

2http://nlp.stanford.edu/projects/glove/

corpus and a 1M word in-domain pause annotated speech tran-
scripts (broadcast news and conversations, lectures) corpus.
The development and test set consist of 27K and 30K words
respectively. The best result so far on this dataset was obtained
by [17] and the details of the dataset can be found there.

3.3.2. English

Experiments on English are performed on the IWSLT dataset
which consists of TED Talks transcripts. The current best result
on this dataset was achieved by [5]. We use the same train-
ing, development and test set to train and test our models. The
training and development set consist of 2.1M and 296K words
respectively and come from the IWSLT2012 machine transla-
tion track training data. IWSLT2011 reference and ASR test set
are used for testing and contain about 13K words each. More
detailed description of the dataset can be found in [5].

3.4. Metrics and results

All models are evaluated in terms of per punctuation and over-
all precision, recall and F1-score. We also report the overall
slot error rate (SER), as F1-score has been shown to have some
undesirable properties [34]. All comparisons in this section are
in terms of absolute differences.

On the Estonian test sets (Table 1), it is clear that our newly
proposed BRNN models outperform the previous best LSTM
based models despite having to deal with an additional type of
punctuation. Our best model (TA-BRNN-p) achieves an over-
all F1-score improvement by 2.5% on reference text and 1.8%
on ASR output, when compared to the the previous best (TA-
LSTM-p). SER is reduced by 4.4% and 2.6% on reference
and ASR text respectively. The improvements are even larger
and the comparison more fair when we map all question marks
to periods (Q=P). Detailed metrics show that the TA-BRNN-p
model is better than TA-LSTM-p in all aspects except comma
restoration precision, but the difference is small. The gap be-
tween the text-only models (TA-BRNN and TA-LSTM), that
did not use the pause duration information during second stage
training, is even bigger — F1-score improves by 3.8−4.5% and
SER by 3.4− 6.4%. The improvements with the text only TA-
BRNN model seem to mostly come from its much higher recall
for periods (by 18.1 − 21.2% higher than TA-LSTM) without
sacrificing precision. As the previous best model (TA-LSTM-
p) used only the next word and the preceding context and many
commas in Estonian depend on a very local context (the next
word), we conclude that the improved period restoration is the
benefit of our model’s ability to flexibly utilize the entire con-
text in both directions.

The results on English test sets (Table 2) show even larger
differences. The overall F1-score improves by 8.9% on refer-
ence text and by 10.5% on ASR output when comparing our
T-BRNN model to the best baseline (DNN-A). The best base-
line in terms of SER is the DNN model from [5] and the T-
BRNN model reduces it by 11.6% on reference text and by
15.5% on ASR output. The T-BRNN model shows improve-
ments in all metrics for all punctuation types. The biggest
difference is in the question mark restoration performance, as
the models from [5] were unable to restore any question marks
thanks to a limited fixed size context (3 words before and 2
words after the slot) that rarely included the question indicat-
ing words that often are in the beginning of the sentence. Our
newly proposed T-BRNN model and the T-LSTM model from
[17] were both able to restore question marks, as their preced-
ing context length is not limited to a fixed size. The T-LSTM

3049



Table 1: Results on Estonian reference transcripts and ASR output test set. T-LSTM-p, TA-LSTM and TA-LSTM-p are the best models
from [17], TA-BRNN and TA-BRNN-p are our models, and (Q=P) indicates that question marks have been mapped to periods.

Model COMMA PERIOD QUESTION OVERALL
Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 SER

T-LSTM-p [17] 78.5 63.3 70.1 68.9 59.8 64.0 - - - 75.6 62.3 68.3 52.8
TA-LSTM [17] 74.5 72.2 73.3 62.8 42.9 51.0 - - - 71.9 63.9 67.7 52.5
TA-LSTM-p [17] 82.3 69.9 75.6 67.7 76.8 72.0 - - - 77.3 71.9 74.5 43.7

Ref. TA-BRNN 75.1 75.5 75.3 65.6 64.1 64.8 63.6 43.8 51.9 72.5 71.9 72.2 46.1
TA-BRNN-p 81.6 75.4 78.4 72.5 77.0 74.7 59.1 48.7 53.4 78.6 75.4 77.0 39.3
TA-BRNN (Q=P) 75.1 75.5 75.3 67.4 64.7 66.0 - - - 73.0 72.4 72.7 45.6
TA-BRNN-p (Q=P) 81.6 75.4 78.4 73.8 77.3 75.5 - - - 79.2 76.0 77.6 38.7
T-LSTM-p [17] 69.9 57.3 63.0 57.3 49.0 52.8 - - - 66.2 55.0 60.1 68.5
TA-LSTM [17] 64.5 64.6 64.6 48.8 32.2 38.8 - - - 61.3 55.5 58.2 72.1
TA-LSTM-p [17] 71.1 62.5 66.5 54.9 61.2 57.8 - - - 65.7 62.1 63.8 65.5

ASR TA-BRNN 63.9 67.9 65.8 54.0 50.3 52.1 48.8 29.9 37.0 61.3 62.6 62.0 68.7
TA-BRNN-p 69.1 66.8 68.0 59.7 61.5 60.6 51.2 31.3 38.9 66.3 64.9 65.6 62.9
TA-BRNN (Q=P) 63.9 67.9 65.8 54.9 50.2 52.4 - - - 61.6 62.9 62.2 68.4
TA-BRNN-p (Q=P) 69.1 66.8 68.0 60.6 61.1 60.8 - - - 66.6 65.2 65.9 62.6

Table 2: Results on English reference transcripts and ASR output test set. DNN, DNN-A and CNN-2A are the best models from [5],
T-LSTM is first stage model from [17] that we trained on the English dataset, and T-BRNN and T-BRNN-pre are our models.

Model COMMA PERIOD QUESTION OVERALL
Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 SER

DNN [5] 58.2 35.7 44.2 61.6 64.8 63.2 0 0 - 60.3 48.6 53.8 62.9
DNN-A [5] 48.6 42.4 45.3 59.7 68.3 63.7 0 0 - 54.8 53.6 54.2 66.9

Ref. CNN-2A [5] 48.1 44.5 46.2 57.6 69.0 62.8 0 0 - 53.4 55.0 54.2 68.0
T-LSTM [17] 49.6 41.4 45.1 60.2 53.4 56.6 57.1 43.5 49.4 55.0 47.2 50.8 74.0
T-BRNN 64.4 45.2 53.1 72.3 71.5 71.9 67.5 58.7 62.8 68.9 58.1 63.1 51.3
T-BRNN-pre 65.5 47.1 54.8 73.3 72.5 72.9 70.7 63.0 66.7 70.0 59.7 64.4 49.7
DNN [5] 47.2 32.0 38.1 59.0 60.9 60.0 0 0 - 54.4 45.6 49.6 73.3
DNN-A [5] 41.0 40.9 40.9 56.2 64.5 60.1 0 0 - 49.2 51.6 50.4 79.2

ASR CNN-2A [5] 37.3 40.5 38.8 54.6 65.5 59.6 0 0 - 46.4 51.9 49.1 83.6
T-LSTM [17] 41.8 37.8 39.7 56.4 49.3 52.6 55.6 42.9 48.4 49.1 43.6 46.2 83.7
T-BRNN 60.0 45.1 51.5 69.7 69.2 69.4 61.5 45.7 52.5 65.5 57.0 60.9 57.8
T-BRNN-pre 59.6 42.9 49.9 70.7 72.0 71.4 60.7 48.6 54.0 66.0 57.3 61.4 57.0

model showed the lowest period restoration scores, indicating
that looking further than one word into the following context
is important for sentence boundary detection. The T-BRNN
model showed improvements despite the fact that DNN, DNN-
A and CNN-2A used an external source of information in the
form of pre-trained word vectors (trained on 6B tokens). When
we use the same word vectors as an initialization for our word
embeddings, then we get further improvements and achieve our
best result (T-BRNN-pre).

The comparison of the Estonian and English results reveals
that comma restoration is a much more difficult task in English
than it is in Estonian. This does not come as a surprise, as many
commas in Estonian can be restored by following relatively sim-
ple rules based on the next word. Although there is a big dif-
ference in question mark restoration performance as well, it is
hard to make conclusions as they are too rare in both test sets.

To better understand the individual contributions of bidirec-
tionality and attention, we trained additional models on English
with either of the components removed. Bidirectionality turned
out to be the biggest factor, as removing the forward context
caused the performance of all punctuation marks (especially
periods and question marks) to drop. Removing attention had
much smaller effect, hurting mostly question mark restoration.

4. Conclusions
This paper presented a bidirectional recurrent neural network
with attention mechanism for restoring commas, periods and
question marks in unsegmented transcribed speech. Both a
purely textual approach and an approach combining textual fea-
tures with prosodic information were used. Experiments on
Estonian and English showed improvements for all punctua-
tion types compared to the state-of-the-art. The overall F1-
score was improved by 1.8−10.5% absolute and slot error rate
was reduced by 2.6 − 15.5%. The biggest improvements were
achieved when comparing text-only models.

Future research includes the use of a richer set of prosodic
features, training an English model on a larger dataset, and ex-
ploring joint punctuation and capitalization models.

5. Acknowledgements
This study was supported by the National Program for Esto-
nian Language Technology funded by the Estonian Ministry of
Education and Research, and by the European Regional Devel-
opment Fund (Centre of Excellence in Estonian Studies). The
authors would also like to thank Xiaoyin Che and the other au-
thors of [5] for the support with the IWSLT dataset.

3050



6. References
[1] A. Gravano, M. Jansche, and M. Bacchiani, “Restoring punctu-

ation and capitalization in transcribed speech,” in ICASSP 2009,
2009, pp. 4741–4744.

[2] W. Lu and H. T. Ng, “Better punctuation prediction with dynamic
conditional random fields,” in EMNLP 2010, Cambridge, MA,
USA, 2010.

[3] N. Ueffing, M. Bisani, and P. Vozila, “Improved models for au-
tomatic punctuation prediction for spoken and written text,” in
Interspeech 2013, Lyon, France, 2013.

[4] D. Zhang, S. Wu, N. Yang, and M. Li, “Punctuation prediction
with transition-based parsing.” in ACL (1), 2013, pp. 752–760.

[5] X. Che, C. Wang, H. Yang, and C. Meinel, “Punctuation predic-
tion for unsegmented transcript based on word vector,” in The 10th
International Conference on Language Resources and Evaluation
(LREC), 2016.

[6] S. Peitz, M. Freitag, A. Mauser, and H. Ney, “Modeling punc-
tuation prediction as machine translation.” in IWSLT, 2011, pp.
238–245.

[7] E. Cho, J. Niehues, K. Kilgour, and A. Waibel, “Punctuation in-
sertion for real-time spoken language translation,” Proceedings of
the Eleventh International Workshop on Spoken Language Trans-
lation, 2015.

[8] H. Christensen, Y. Gotoh, and S. Renals, “Punctuation annotation
using statistical prosody models,” in ISCA Tutorial and Research
Workshop (ITRW) on Prosody in Speech Recognition and Under-
standing, 2001.

[9] T. Levy, V. Silber-Varod, and A. Moyal, “The effect of pitch, in-
tensity and pause duration in punctuation detection,” in Electrical
& Electronics Engineers in Israel (IEEEI), 2012 IEEE 27th Con-
vention of. IEEE, 2012, pp. 1–4.

[10] J. Kolář, E. Shriberg, and Y. Liu, “Using prosody for automatic
sentence segmentation of multi-party meetings,” in Text, Speech
and Dialogue. Springer, 2006, pp. 629–636.

[11] J. Kolár and L. Lamel, “Development and evaluation of auto-
matic punctuation for French and English speech-to-text,” in In-
terspeech 2012, Portland, OR, USA, 2012.

[12] J. Kolář, J. Švec, and J. Psutka, “Automatic punctuation annota-
tion in Czech broadcast news speech,” in SPECOM 2004, Saint
Petersburg, Russia, 2004.

[13] J. Huang and G. Zweig, “Maximum entropy model for punctua-
tion annotation from speech,” in ICSLP 2002, Denver, CO, USA,
2002.

[14] F. Batista, D. Caseiro, N. Mamede, and I. Trancoso, “Recover-
ing punctuation marks for automatic speech recognition,” in In-
terspeech 2007, Antwerp, Belgium, 2007.

[15] ——, “Recovering capitalization and punctuation marks for au-
tomatic speech recognition: Case study for portuguese broad-
cast news,” Speech Communication, vol. 50, no. 10, pp. 847–862,
2008.

[16] F. Batista, H. Moniz, I. Trancoso, and N. Mamede, “Bilingual ex-
periments on automatic recovery of capitalization and punctuation
of automatic speech transcripts,” Audio, Speech, and Language
Processing, IEEE Transactions on, vol. 20, no. 2, pp. 474–485,
2012.

[17] O. Tilk and T. Alumäe, “LSTM for punctuation restoration in
speech transcripts,” in Interspeech 2015, Dresden, Germany,
2015.

[18] A. Stolcke, E. Shriberg, R. A. Bates, M. Ostendorf, D. Hakkani,
M. Plauch, G. Tr, and Y. Lu, “Automatic detection of sentence
boundaries and disfluencies based on recognized words,” in IC-
SLP 1998, Sydney, Australia, 1998.

[19] X. Wang, H. T. Ng, and K. C. Sim, “Dynamic conditional random
fields for joint sentence boundary and punctuation prediction.” in
INTERSPEECH, 2012, pp. 1384–1387.

[20] C. Xu, L. Xie, G. Huang, X. Xiao, E. Chng, and H. Li, “A
deep neural network approach for sentence boundary detection in
broadcast news.” in INTERSPEECH, 2014, pp. 2887–2891.

[21] E. Matusov, A. Mauser, and H. Ney, “Automatic sentence seg-
mentation and punctuation prediction for spoken language trans-
lation.” in IWSLT. Citeseer, 2006, pp. 158–165.

[22] O. Khomitsevich, P. Chistikov, T. Krivosheeva, N. Epimakhova,
and I. Chernykh, “Combining prosodic and lexical classifiers for
two-pass punctuation detection in a russian asr system,” in Speech
and Computer. Springer, 2015, pp. 161–169.

[23] M. Hasan, R. Doddipatla, and T. Hain, “Multi-pass sentence-end
detection of lecture speech.” in INTERSPEECH, 2014, pp. 2902–
2906.

[24] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neu-
ral networks,” IEEE Transactions on Signal Processing, vol. 45,
no. 11, pp. 2673–2681, 1997.

[25] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine trans-
lation by jointly learning to align and translate,” ICLR2015,
arXiv:1409.0473, 2015.

[26] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase repre-
sentations using rnn encoder-decoder for statistical machine trans-
lation,” arXiv preprint arXiv:1406.1078, 2014.

[27] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computing, vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[28] T. Wang and K. Cho, “Larger-context language modelling,” arXiv
preprint arXiv:1511.03729, 2015.

[29] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” The Journal of
Machine Learning Research, vol. 12, pp. 2121–2159, 2011.

[30] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of train-
ing recurrent neural networks,” Proceedings of the 30th Interna-
tional Conference on Machine Learning (ICML 2013), 2013.

[31] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in International conference
on artificial intelligence and statistics, 2010, pp. 249–256.

[32] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu,
G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio,
“Theano: a CPU and GPU math expression compiler,” in Pro-
ceedings of the Python for Scientific Computing Conference
(SciPy), Jun. 2010, oral Presentation.

[33] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow,
A. Bergeron, N. Bouchard, and Y. Bengio, “Theano: new features
and speed improvements,” Deep Learning and Unsupervised Fea-
ture Learning NIPS 2012 Workshop, 2012.

[34] J. Makhoul, F. Kubala, R. Schwartz, R. Weischedel et al., “Per-
formance measures for information extraction,” in Proceedings of
DARPA broadcast news workshop, 1999, pp. 249–252.

3051





Appendix D

Publication IV

Kurimo, M., Enarvi, S., Tilk, O., Varjokallio, M., Mansikkaniemi, A., and
Alumäe, T. (2017). Modeling under-resourced languages for speech recogni-
tion. Language Resources and Evaluation, 51(4):961–987, ISSN: 1574-0218,
DOI: 10.1007/s10579-016-9336-9

137





ORIGINAL PAPER

Modeling under-resourced languages for speech
recognition

Mikko Kurimo1 • Seppo Enarvi1 •

Ottokar Tilk2 • Matti Varjokallio1 •

André Mansikkaniemi1 • Tanel Alumäe2

Published online: 10 February 2016

� Springer Science+Business Media Dordrecht 2016

Abstract One particular problem in large vocabulary continuous speech recog-

nition for low-resourced languages is finding relevant training data for the statistical

language models. Large amount of data is required, because models should estimate

the probability for all possible word sequences. For Finnish, Estonian and the other

fenno-ugric languages a special problem with the data is the huge amount of dif-

ferent word forms that are common in normal speech. The same problem exists also

in other language technology applications such as machine translation, information

retrieval, and in some extent also in other morphologically rich languages. In this

paper we present methods and evaluations in four recent language modeling topics:

selecting conversational data from the Internet, adapting models for foreign words,

multi-domain and adapted neural network language modeling, and decoding with

subword units. Our evaluations show that the same methods work in more than one

language and that they scale down to smaller data resources.

& Seppo Enarvi

seppo.enarvi@aalto.fi

Mikko Kurimo

mikko.kurimo@aalto.fi

Ottokar Tilk

ottokar.tilk@phon.ioc.ee

Matti Varjokallio

matti.varjokallio@aalto.fi

André Mansikkaniemi

andre.mansikkaniemi@aalto.fi

Tanel Alumäe

tanel.alumae@phon.ioc.ee

1 Department of Signal Processing and Acoustics, Aalto University, Espoo, Finland

2 Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia

123

Lang Resources & Evaluation (2017) 51:961–987

DOI 10.1007/s10579-016-9336-9



Keywords Large vocabulary speech recognition � Statistical language modeling �
Subword units � Data filtering � Adaptation

1 Introduction

In agglutinative languages, for example Finnish and Estonian, the number of

different word forms is huge, because of derivation, inflection and compounding.

This is problematic for statistical language modeling that tries to build probabilistic

models of word sequences. While modeling the morphology in these languages is

complex, modeling the pronunciation of words is rule-based with few exceptions.

Thus, splitting words into subwords, such as morphemes or statistical morphs, is a

viable and useful tool in applications like automatic speech recognition. However,

statistical modeling of morphology, lexicon and word sequences still requires a

considerable amount of relevant training data. For under-resourced agglutinative

languages, such as variations of Sami and other small fenno-ugric languages, the

collection of relevant training data is a significant challenge for language

technology development. In this paper we study this resource problem by

performing simulations in Finnish and Estonian which include similar morpholog-

ical properties, but have sufficient resources for carrying out evaluations.

The technical focus of this paper is in large-vocabulary continuous speech

recognition (LVCSR) that is essential for automatic processing of dictations,

interviews, broadcasts, and all audio-visual recordings. In LVCSR we target on four

language modeling topics where we have recently been able to show significant

progress: selecting conversational language modeling data from the Internet,

adapting pronunciation and language models (LMs) for foreign words, multi-

domain and adapted neural network language modeling for improving performance

in target topic and style, and decoding with subword lexical units.

For many languages today, large amounts of textual material can be extracted from

theWorldWideWeb. These texts, however, generally provide rather poor match to the

targeted style of the language. On the other hand, producing enough accurately

transcribed matching training data is expensive. We have faced this problem when

developing speech recognition systems for conversational Finnish and Estonian. Huge

amounts of Finnish and Estonian data can be crawled from the Internet, but careful

filtering is required to obtain a model that matches spontaneous conversations. Several

methods have been proposed for selecting segments from an inconsistent collection of

texts, so that the selected segments are in some sense similar to in-domain development

data (Klakow 2000; Moore and Lewis 2010; Sethy et al. 2006). However, these

methods rely on proper development data, but for our Finnish and Estonian tasks there

are little carefully transcribed spontaneous conversations available.

A particular problem in lexical modeling is the frequent use of foreign words,

which do not follow the same morphological and pronunciation rules as the native

words. This becomes a major problem for speech recognition, because a single

misrecognized word can severely degrade the modeling of the whole sentence, and

the proper names, in particular, are often the most important key words of the

962 M. Kurimo et al.

123



content. In many automatic speech recognition (ASR) applications the correct

recognition of foreign words relies on hand-made pronunciation rules that are added

to the native lexicon. This is a time-consuming solution. An alternative is to

automatically generate pronunciation rules for foreign words. Data-driven grapheme-

to-phoneme (G2P) converters are often used for this purpose (Bisani and Ney 2008).

Focused pronunciation adaptation for foreign words has been previously imple-

mented by automatically detecting the most likely foreign words with letter n-gram

models and then generating pronunciation rules for them with language-specific G2P

converters (Maison et al. 2003; Lehecka and Svec 2013). Discriminative pruning of

G2P pronunciation variants for foreign proper names has also been applied, to reduce

the effect of lexical confusion (Adde and Svendsen 2011).

The state-of-the-art in statistical language modeling has been pushed forward by the

application of neural networks (Bengio et al. 2003). Neural networkmodels, projecting

word sequences into a continuous space, are capable of modeling more complex

dependencies, and improvegeneralization and discrimination.Neural network language

models (NNLMs) have also been shown to be useful when training data is very limited

(Gandhe et al. 2014). Recently, the methods to improve performance in targeted

speaking styles and topics have improved—starting with weighted sampling (Schwenk

and Gauvain 2005) to more recent work in adaptation (Park et al. 2010), multi-domain

models (Alumäe 2013; Tilk and Alumäe 2014) and curriculum learning (Shi et al.

2014). We put our focus on multi-domain models and adaptation in this article.

Subword LMs have many advantages in agglutinative languages with limited data

resources. A relatively small lexicon can sufficiently cover an almost unlimited

number of words, while still producing models that are capable of accurately

predicting words. However, in some cases, the system can also produce words that are

very rare or even nonsense. To avoid this we have proposed a new decoder

(Varjokallio and Kurimo 2014a), that can efficiently build and use a search network of

millions of acceptable words. Thus, new words can be easily added whenever there is

a need to recognize some important words that do not exist in the training data.

In our work we mainly present LVCSR evaluations in Finnish and Estonian.

Although these two are significantly smaller and less resourced than the main

languages of the world, we have fairly good benchmarking tasks to evaluate. For the

smaller agglutinative languages, such as Northern Sami, we can not provide such

evaluations. However, by artificially reducing Finnish and Estonian training data, we

can make simulations that may reveal useful properties of the language modeling

methods we propose. The evaluation material in both languages can be divided into

broadcast news that suffer from large vocabulary and foreign proper names, and

conversations that suffer from the small amount of relevant training data.

2 Methods

2.1 Methods for segmenting words into subwords

Most of the methods described below rely on segmenting the vocabulary into

subword units, to address the problems originating from the huge number of

Modeling under-resourced languages for speech recognition 963

123



different words in Finnish and Estonian. Unless otherwise stated, we have used

Morfessor (Creutz and Lagus 2002) for deriving these segmentations.

The selection algorithms presented in Sects. 2.2.2 and 2.2.3 need to estimate

models from development data, which is less than 100,000 words. We found a

Morfessor model to be problematic for the selection algorithms, because with so

little training data Morfessor commonly segments unseen words into single letters

that are missing from the LM, which has a significant effect when scoring unseen

sentences.

Therefore, in Sects. 2.2.2 and 2.2.3, we created the subwords using the multigram

training algorithms from the freely available software package (Varjokallio and

Kurimo 2014b), which avoids setting for any fixed segmentation altogether. By

training a multigram model (Deligne and Bimbot 1997) using the forward–

backward estimation procedure, the segmentation of words into subwords is

probabilistic and all segmentation paths are considered in the model. The multigram

formulation is also closely related to Markov models. The model may be written as

a unigram model, where the probabilities correspond to fractional frequencies as

estimated by the forward–backward training. The model can be used for

segmentation of unseen words into subwords, and computation of the probability

of any sentence, eliminating the OOV issue.

It should be noted that Morfessor segmentations can still significantly benefit

automatic speech recognition of agglutinative languages, even when less than

50,000 words of training data is used (Leinonen 2015).

In the decoding experiments in Sect. 3.5, Morfessor was used for the language

models trained on the smaller subset. On the larger subset, the subword vocabulary

was selected to code the training corpus with high unigram likelihood (Varjokallio

et al. 2013). This segmentation approach is suitable for reasonably large text

corpora.

2.2 Methods for selecting conversational data from the Internet

When modeling under-resourced languages, Internet is often the first place to look

for training data. However, the noisy web data requires careful filtering. Several

methods exist for selecting LM training data that matches the targeted style of the

language, but their computational cost can be high, and the sparsity of development

data may pose difficulties especially with agglutinative languages. Furthermore,

conversational Finnish is written down phonetically, meaning that also phonetic

variation increases vocabulary size and data sparsity (Enarvi and Kurimo 2013a).

We have developed tools for effectively applying suitable criteria to select useful

segments for language modeling from large data sets, when working with only a

handful of development data and a morphologically rich language. The source code

is available in GitHub.1 The selection criteria that we have implemented are

summarized below. The first two define a score for a text segment, based on which

the segments are filtered independently of each other. The third one defines a

1 https://github.com/senarvi/senarvi-speech/tree/master/filter-text.

964 M. Kurimo et al.

123



criterion for adding a text segment to current selection set: The data is scanned

sequentially and each segment is selected if it improves the selection set.

• devel-lp A model is estimated from the unfiltered training data, and with a

segment removed. The decrease in development data log probability when a

segment is removed, is the score of the segment. This is the selection criterion

used by Klakow (2000).

• xe-diff A model is estimated from the development data, and from the same

amount of unfiltered training data. The score of a segment is the difference in

cross-entropy given by these two models. This is the selection criterion used by

Moore and Lewis (2010).

• devel-re A text segment is added to the selection set, if including it reduces

relative entropy with respect to the development data. This is the criterion used

by Sethy et al. (2006).

The implementation of each filtering criterion is explained below. In practice,

when the language is agglutinative, the only way is to build the LMs from subword

units, or the high number of out-of-vocabulary (OOV) words makes reliable

estimation of the probabilities impossible (Enarvi and Kurimo 2013a). To make the

implementations as fast as possible, unigram subword models are used. Limiting to

unigrams does not seem to be harmful, since higher-order LMs tend to overlearn

small development sets (Klakow 2000).

2.2.1 Implementation of devel-lp filtering

The filtering method presented by Klakow (2000) optimizes the perplexity (or

equally log probability) of a model computed from the filtered data, on development

data. A naive implementation scores each text segment by removing the text

segment from the training data, training a language model, and computing the log

probability of the development data. This is compared to the log probability given

by an LM trained on all training data, and the difference is the score of the text

segment. Models are estimated only from the training data, which makes this

approach especially suitable for the situation when we have very limited amount of

development data. OOV words or subwords are less of a problem when all the

models are estimated from a large data set. Consequently, this was the only one of

these filtering methods that we applied in Enarvi and Kurimo (2013a).

The naive implementation requires training as many LMs as there are text

segments. Even though the computation can be done in parallel, a number of

optimizations were needed to make the algorithm scale to tens of millions of text

segments. First we note that the log probability given by the LM trained on all

training data is constant, so we can equivalently define the score of a text segment as

the log probability when a text segment is removed from the training data. The only

statistics needed for the computation of unigram probabilities are subword counts.

As we only compute probabilities on the development data, we only need the counts

of the subwords that exist in the development data, fcT1 . . .cTNg;CT , which are

Modeling under-resourced languages for speech recognition 965

123



collected only once. For each text segment, the counts, fcS1. . .cSNg;CS are collected

and the score of the segment is computed as

XN

i¼1

log
cTi � cSi
CT � CS

� �
cDi ; ð1Þ

where cDi is the number of times the subword appears in the development data. Thus

the running time of the algorithm is proportional to the number of text segments

times the number of unique subwords in the development data.

2.2.2 Implementation of xe-diff filtering

In the method proposed by Moore and Lewis (2010), two language models are

estimated, one from the development data and another from the same amount of

unfiltered training data. The score of a text segment is the difference in cross-

entropy given by these two models. The method requires only computation of the

two LM probabilities for each text segment. Thus, the running time is proportional

to the number of words in the unfiltered training data.

2.2.3 Implementation of devel-re filtering

The idea behind the filtering method proposed by Sethy et al. (2006) is to match the

distribution of the filtered data with the distribution of the development data in

terms of relative entropy. First a language model is estimated from the development

data, and the same amount of unfiltered training data is used to initialize a model of

the selection set. Then the text segments are processed sequentially. It is computed

how much relative entropy would change, with respect to the development data

model, if a segment was included in the selection set. If the change is negative, the

text segment is included and the selection set model is updated.

We used the revised version of the algorithm that uses skew divergence in place

of Kullback–Leibler (KL) divergence (Sethy et al. 2009). Skew divergence contains

parameter a, whose value 1 corresponds to KL divergence, and smaller values

smooth the maximum-likelihood model of the selection set. We first select the same

amount of text as there is in the initial model and then recompute the model from

only the selected data.

Sethy et al. present an optimization that runs proportional to the number of words

in the unfiltered training data. However, the sequential algorithm itself cannot be

parallelized. The authors note that the algorithm is greedy and running it several

times with random permutations of the text segments improves the result. They also

suggest skipping sentences that have already been included in more than two passes,

in order to gain new data faster. We did not enforce that requirement, enabling us to

run multiple passes simultaneously. It should be noted that also the generation of a

random permutation can be time consuming and I/O intensive, especially when the

data set is too large to be loaded into memory, and multiple parallel processes access

the same data.

966 M. Kurimo et al.

123



2.3 Methods for adapting models for foreign words

In ASR applications the correct recognition of foreign proper names (FPNs) is a

difficult challenge. The problem of recognizing foreign words is especially a

problem for smaller languages where influence from other languages is bigger and

FPN occurrence more frequent. For Finnish subword-based ASR, foreign names

constitute one of the largest error sources (Hirsimäki and Kurimo 2009).

The challenge in recognizing foreign names stems from a combination of many

factors. The most obvious is pronunciation modeling. Pronunciation rules that cover

native words usually give unreliable results for foreign words. Foreign names are

often rare and topic-specific. Background LMs usually give unreliable estimates for

FPNs. A third factor that is quite specific to subword LMs is oversegmentation (base

form of the word is split into many different parts). Oversegmentation of foreign

words complicates the mapping of non-standard pronunciation rules to separate

subword units.

Previously, FPN recognition for Finnish subword-based speech recognition has

been improved using a two-pass adaptation framework, as illustrated in Fig. 1

(Mansikkaniemi and Kurimo 2013). Based on first-pass ASR output the language

model and lexicon are both adapted in an unsupervised manner. In-domain articles

which best match the first-pass output are selected based on latent semantic indexing

(LSI). From the selected articles an in-domain LM (PI) is trained and adapted with

the background LM (PB). In this work linear interpolation is used with a fixed

interpolation weight (Eq. 2, k ¼ 0:1).

PadapI ðwjhÞ ¼ kPIðwjhÞ þ ð1� kÞPBðwjhÞ ð2Þ

Lexicon adaptation is performed by first screening for foreign word candidates in

the in-domain texts. All words starting with an uppercase letter are selected as

foreign word candidates. From the candidate list, the most likely foreign words are

chosen using the product of two factors, letter n-gram perplexity ppl(word) and

topic similarity sim(word), as a score (Eq. 3). ppl(word) is the perplexity given by

letter n-gram model estimated from a native word list collected beforehand, on word

word in the in-domain article. sim(word) is defined as the cosine similarity between

the first-pass output and the article where word occurs.

scoreðwordÞ ¼ pplðwordÞ � simðwordÞ ð3Þ

The most likely foreign names (with the highest score) are selected and added to

the vocabulary. Adapted pronunciation rules for each FPN are generated using a

data-driven G2P model (Bisani and Ney 2008). Optionally subword restoration is

applied for oversegmented FPN candidate words.

In this work we study how well this adaptation framework can be transferred

from Finnish to a related language, Estonian. The phoneme sets of the two

languages are quite similar. This gives the option of sharing the foreign word G2P

model. The original G2P model was trained on 2000 foreign names retrieved from a

Finnish text corpus. The hand-crafted pronunciation rules were made with a Finnish

Modeling under-resourced languages for speech recognition 967

123



phoneme set and Finnish speakers in mind. The pronunciation rules generated from

the G2P model can with some minor modifications be converted to an Estonian

phoneme set.

A problem with G2P generated pronunciation variants when trying to improve

FPN recognition is that many of the variants actually degrade the recognition of

native words. In combination with the adaptation framework, we will also evaluate a

lattice-based discriminative pronunciation pruning method (Enarvi and Kurimo

2013b). The pruning tools are available in GitHub.2 The algorithm removes those

FPN pronunciation variants from the final adapted dictionary that have a negative

effect on the total word error rate. Pronunciation variants that have a positive effect

on recognition are used to retrain the G2P model by appending them to the foreign

word lexicon. This discriminative training procedure is iterated a number of times

on the development set before a final G2P model and a list of harmful

pronunciations is obtained. The updated G2P model and the list of harmful

pronunciations are then used on the evaluation set.

To the authors’ knowledge no previous work has used this type of lattice-based

discriminative pronunciation pruning for both excluding harmful pronunciation

variants and re-training the G2P model with beneficial pronunciation variants.

Speech

Decoder IR engine

Web

corpus

Matching

documents

LM adap-

tation

Adapted

LM

FPN de-

tection

Subword

adaptation

Pronunciation

adaptation

Adapted

vocab-

ulary

Decoder

Final output

First-pass output

Fig. 1 Adaptation framework for foreign proper name adaptation. Adapted LM and vocabulary are used
in second-pass recognition

2 https://github.com/senarvi/senarvi-speech/tree/master/filter-dictionary.

968 M. Kurimo et al.

123



2.4 Methods for multi-domain and adapted neural network language
modeling

When developing a LM for a specific domain it is often the case that the amount of

available in-domain data (the data belonging to the target domain) is not sufficient

for a good model. This is even more of a problem when dealing with under-

resourced languages. The scarcity of in-domain data makes it necessary to include

out-of-domain sources in the training of the LM. Usually the amount of available

out-of-domain data is much bigger than in-domain data. Therefore the LM needs to

favour the in-domain data somehow to perform well in the target domain.

NNLMs (Bengio et al. 2003) can achieve this goal in several ways:

• Weighted sampling During training the in-domain data is sampled with higher

probability than out-of-domain data [e.g. use all in-domain data and only a

random subset of out-of-domain data in each epoch (Schwenk and Gauvain

2005)].

• Curriculum learning The order in which the training data is presented to the

network is planned in such a way that more general samples are seen in the

beginning of the training while domain-specific samples are kept towards the

end of the training so they have more influence on the final model (Shi et al.

2014).

• Adaptation After training the model on out-of-domain data it is adapted for the

in-domain data. The adaptation can be done, for example, by adding an

adaptation layer and training it on in-domain data while keeping the other

parameters fixed (Park et al. 2010).

• Multi-domain models Most parameters are shared between domains to allow

exploiting the inter-domain similarities. A tiny fraction of parameters is reserved

to be domain-specific and is switched according to the active domain to take into

account the domain-specific differences (Alumäe 2013; Tilk and Alumäe 2014).

Unlike with adaptation, the domain-specific and general parameters are trained

jointly and the same model can be used in all domains.

In this article we use the adaptation and multi-domain approaches.

For multi-domain approach we use a simplified version of the multi-domain

NNLM from Alumäe (2013). The architecture of our model is shown in Fig. 2. It

Fig. 2 Description of the NNLM architecture. Dotted lines stress the parts of the network that are
characteristic only to the multi-domain and adapted models. The inputs (context word indices wt�1, wt�2,
wt�3 and the domain index dt) are one-of-N encoded vectors

Modeling under-resourced languages for speech recognition 969

123



differs from the architecture described in Alumäe (2013) by omitting the extra linear

adaptation layer and applying the multiplicative adaptation factors directly to the

pre-activation signal of the hidden layer rectified linear units (ReLU). The hidden

layer activations are computed as shown in Eq. 4 where y0 and y1 are projection and

hidden layer activations respectively, W1a and b1a are hidden layer and W1b and b1b
are domain adaptation weights and biases respectively. W1b consists of domain-

specific row-vectors (domain vectors) while b1b is shared across domains. To

prevent the adaptation factors from shrinking the inputs to ReLU from the start of

training, the weights W1b or bias b1b can be initialized to ones (we used the latter in

our experiments).

y1 ¼ ReLU y0W1a � ðdtW1b þ b1bÞ þ b1að Þ ð4Þ

This kind of hidden layer enables each domain to influence the structure of

sparsity in the output layer inputs (i.e. which hidden layer units are more or less

likely to be exactly zero for each domain) in addition to modulating the nonzero

outputs. One can consider the NNLM as a log-linear model on top of an

automatically learned feature vector obtained by transforming the input through

nonlinear transformations in lower layers as in Seide et al. (2011). In this

perspective the multi-domain model can influence the relevance of the log-linear

model input features in the context of different domains. Our experience shows that

the simplified model performs just as well or even marginally better than the

original one with an additional layer.

The multi-domain model requires the availability of in-domain data in the

training set. With limited-resource domains it is possible that there is not enough

target domain data for separate training, validation and test set. This means that

there might be no in-domain data left for the training phase. We propose an

adaptation approach which uses exactly the same model architecture as the multi-

domain model to overcome this problem. The advantage of using the multi-domain

architecture for adaptation is its resistance to overfitting due to the very small

amount of domain specific parameters that need to be trained on the target domain

data. The amount of domain-specific parameters is limited to a single vector with a

number of elements equal to the hidden layer size (usually several hundred or

thousand), which is tiny compared to the total amount of parameters in the network

(usually in millions). Thus, the training error on validation data gives a good

estimate of the performance on unseen data and all the available in-domain data

(except the test data) can be used for adaptation.

The adaptation procedure is as follows:

1. Train a general model on out-of-domain training data using the in-domain

validation data for early stopping and hyperparameter selection;

2. After the general model is ready, add the domain-specific parameters W1b, b1b
and modify the hidden layer activation according to Eq. 4;

3. Train only the domain-specific parameters added in the previous step on the in-

domain validation data until convergence, while keeping the rest of the

parameters fixed.

970 M. Kurimo et al.

123



Initially, we believed that to effectively utilize the domain vectors, the network

should have a multi-domain architecture from the start and be trained as such on

non-target domains. However, the preliminary experiments revealed that this is not

true. The adapted model works just as well if all the multi-domain architecture

specific elements are added right before training the target domain parameters.

This procedure raised a question whether the multi-domain model can also be

improved by combining all the in-domain data from both training and validation set

and using it to fine-tune the target domain vector as a final step of training.

Unfortunately, our preliminary experiments showed that this does not significantly

improve the perplexity of the test set.

2.5 Methods for decoding with subword units

The normal approach to language modeling in ASR is to train n-gram LMs over

sequences of words. For morphologically rich languages this is often problematic,

because the number of OOV words may be high. This is especially the case for less-

resourced languages, as considered here. Thus, words are not necessarily the best

units for language modeling. By training the n-gram models over sequences of

subwords, it is possible to assign probabilities to previously unseen word forms. In

our final task we compare different combinations of lexical units and decoders.

A common approach to LVCSR decoding is the dynamic token-passing search

(Young et al. 1989), where tokens are propagated in a graph containing paths for the

allowed recognition output with the corresponding Hidden-Markov-Model (HMM)

state sequences. A token contains at least the accumulated likelihood scores,

information about the current n-gram state and the recognition history. Many

standard techniques (Ney and Ortmanns 2000) like hypothesis recombination, beam

pruning and LM lookahead are needed to make the search efficient. Cross-word

pronunciation modeling (Sixtus and Ney 2002) is also important for the speech

recognition accuracy in tasks dealing with continuous speech. In Fig. 3, the first

*

_Ta
tAl aLo

TALO

lOa

TALOKIN

lO_

*

TALOA

TALOAKIN

oA_

lOk oKi kIn iN_

oAk aKi kIn iN_

*

_Ta
tAl aLo TALO

lO_

lOa

lOk

*
A

oA_

oAk

oKi kIn KIN iN_

aKi kIn KIN iN_

Fig. 3 Example decoding graphs for word n-grams (above) and subword n-grams (below), for the same
4-word recognition vocabulary. Grey nodes depict the n-gram identifiers

Modeling under-resourced languages for speech recognition 971

123



graph is a conceptual example of a standard word decoder utilizing triphone HMMs

and word n-grams. Silence and cross-word modeling is omitted from the image.

In the case of subword n-grams, the same search principles may be applied, but

the graph should be constructed differently. Here we consider subword decoders,

which are general in the sense, that arbitrary segmentations of words to subwords

are allowed. With subword n-grams, it is possible to allow all possible

concatenations of subwords (Pylkkönen 2005), which enables unlimited recognition

vocabulary, as all word forms may be created by concatenating the subwords. The

requirement for this construction is that the pronunciation of each subword is

defined. For the languages considered here, the pronunciation may be easily derived

from the grapheme form of the subword.

Another recently suggested possibility is to use subword n-grams, but still restrict

the recognition vocabulary to the desired set of words (Varjokallio and Kurimo

2014a). In Fig. 3, the second graph is a conceptual example of a decoding graph,

which is constructed in this way. As also in this case the n-gram model has

probabilities for all word forms, unseen words may be segmented with the n-gram

model, and the corresponding paths added to the graph. This opens up new

possibilities for augmenting and adapting the vocabulary, especially in cases, when

the training data does not cover enough word forms. For analysis purposes, the

recognition performance of the word n-gram and the subword n-gram estimates may

be compared for the same recognition vocabulary. This is useful in assessing,

whether the improvement in using subwords models is caused by the better n-gram

estimates or the reduced OOV rate.

Table 1 Finnish speech data

sets
Data set Words Hours

fi-std-train 131,005 31.4

fi-conv-train 200,415 15.2

fi-conv-eval 6268 0.73

fi-news-dev 35,439 5.38

fi-news-eval 37,196 5.58

Table 2 Estonian speech data

sets
Data set Words Hours

ee-conv-train 1,251,638 165

ee-conv-eval 25,942 2.90

ee-news-dev 15,961 2.13

ee-news-eval 15,335 2.03

972 M. Kurimo et al.

123



3 Experiments

3.1 Data

The speech data sets used in our experiments are listed in Tables 1 and 2. Finnish

acoustic models for all experiments (except the conversational speech experiment)

were trained on the Finnish Speecon database (Iskra et al. 2002), from which 31 h of

clean dictated wideband speech from 310 speakers (fi-std-train) was used for training.
Estonian acoustic models for the conversational speech and neural network language

modeling experiments were trained on the full ee-conv-train set. It consists of a small

amount of spontaneous Estonian conversations, but mostly less spontaneous radio

broadcasts and lecture recordings. Estonian acoustic models for the foreign proper

name adaptation and subword decoding experiments were trained on a 30 h subset of

the ee-conv-train set, consisting of only broadcast news recordings.

Finnish conversational speech experiments were carried out on data collected at

Aalto University by recording and transcribing pair-wise conversations between

students. Finnish acoustic models for web text filtering experiments were trained on

the fi-conv-train set. It consists of student conversations, transcribed radio shows,

FinDialogue part of the FinINTAS (Lennes 2009) corpus, and free spontaneous

speech from Finnish SPEECON (Iskra et al. 2002) corpus. The extent to which the

speech is spontaneous varies between the recordings, as well as the dialect and style.

The evaluation set fi-conv-eval consists of transcribed radio conversations and

student conversations from unseen speakers. ee-conv-eval consists of transcribed

conversations from the Phonetic Corpus of Estonian Spontaneous Speech.3

Text data sets are listed in Tables 3 and 4. Training data for conversational LMs

were crawled from four Estonian conversation sites (ee-web-1 to ee-web-4) and six

Finnish sites (fi-web-1 to fi-web-6). These sites contain active discussions in various

topics, such as technology, sports, relationships, and culture. The most important

tool we have used is the Python library Scrapy. The web data filtering experiments

required two development sets for each language. ee-conv-dev1 and ee-conv-dev2
consist of transcripts from the Phonetic Corpus of Estonian Spontaneous Speech. fi-
conv-dev1 and fi-conv-dev2 contain partly the same data that was used in acoustic

model training: student conversations, transcribed radio shows, and FinDialogue.

Foreign proper name adaptation experiments were conducted on broadcast news

data. The development and evaluation sets fi-news-dev and fi-news-eval were used in
the Finnish experiment and the sets ee-news-dev and ee-news-eval in the Estonian

experiment. The fi-general set from the Finnish Text Collection4 corpus was used

for Finnish baseline LM training. It contains texts from books, magazines and

newspapers. For Estonian baseline LM training, the full ee-newspapers and ee-
news-train sets were used, and a random 75 % subset of ee-webnews.

NNLM experiments for Finnish were carried out on the development and

evaluation sets fi-news-dev and fi-news-eval, which consist of Finnish broadcast

news recordings collected in 2011 and 2012. For training the LMs, three data

3 http://www.keel.ut.ee/et/foneetikakorpus.
4 https://research.csc.fi/-/finnish-text-collection.

Modeling under-resourced languages for speech recognition 973

123



sources were used: a random subset of 23 million words from fi-general, a corpus of
texts from Finnish web news portals (fi-webnews), and a corpus of newswire texts

from a Finnish news agency STT (fi-newswire). The Estonian experiment was based

on the development and evaluation sets ee-news-dev and ee-news-eval that contain
broadcast news speech from 2005. For language modeling we used three data

sources: newspaper texts (ee-newspapers), texts from web news portals (ee-
webnews) and broadcast news transcripts (ee-news-train).

Finnish LMs for subword decoding experiments were trained on two subsets

from fi-general. The larger subset contained 50M word tokens with 2.2M distinct

word types and the smaller 10M word tokens with 850k word types. Estonian LMs

were trained on the ee-webnews, ee-newspapers and ee-news-train data sets. A

larger model was trained on all the training data of around 80M words with 1.6M

distinct word types and a smaller model from a 10M word subset with 550k word

types.

Table 3 Sizes of finnish text

data sets after preprocessing
Data set Words

fi-web-1 766,918

fi-web-2 1,035,043

fi-web-3 561,489

fi-web-4 25,175,069

fi-web-5 46,207,390

fi-web-6 2,618,084,259

fi-conv-dev1 98,956

fi-conv-dev2 8,853

fi-general 153,535,459

fi-webnews 12,675,262

fi-newswire 31,809,529

Table 4 Sizes of Estonian text

data sets after preprocessing
Data set Words

ee-web-1 28,490,011

ee-web-2 4,189,681

ee-web-3 273,413,272

ee-web-4 30,599,060

ee-conv-dev1 187,436

ee-conv-dev2 21,202

ee-newspapers 20,423,775

ee-webnews 76,235,530

ee-news-train 133,171

974 M. Kurimo et al.

123



3.2 Experiments in selecting conversational data from the Internet

In this section we experiment how the most important filtering criteria perform

when filtering large amounts of Internet data, when there is only very little in-

domain development data available. Our motivation has been development of

automatic speech recognition for conversational Finnish and Estonian. We have a

small amount of transcribed Finnish and Estonian conversations that are enough for

development and evaluation. For LM training data we crawled large amounts of

multi-domain data from Internet conversation sites. The segments used as the unit of

filtering are conversation site messages.

For the baseline experiments, the sizes of the largest data sets were limited by

random selection. In total the number of words in Finnish training data was reduced

to 9.9 % and in Estonian data to 49 % of the original. devel-lp and xe-diff methods

define a score for each text segment. The filtering threshold is optimized to

minimize the perplexity of a bigram subword model on the second development set

(fi-conv-dev2 or ee-conv-dev2). devel-re does not define a score for each segment.

Instead, whether a segment is included depends on what has been included earlier.

We found running multiple passes with random permutations of the input text

segments to be crucial for collecting enough data. The number of passes is limited

by the high computational cost. We ran 100 passes, but also tried using data from

only so many passes that unigram subword model perplexity on the second

development set was minimized. We selected the value 0.975 for the smoothing

parameter a, based on observations of the original author (Sethy et al. 2009),

without trying to optimize the value.

Filtering was performed, and the filtering threshold and the number of passes was

optimized, on each data set (conversation site) separately. However, sets fi-web-1 to

fi-web-3 were pooled together during filtering, and the set fi-web-6 was split into 48

parts during devel-lp and xe-diff filtering.
The experiments were carried out using Aalto ASR system (Hirsimäki et al.

2009) and GMM-HMM-based acoustic models. Language models were 4-gram

word models interpolated from models of individual data sets. The vocabulary was

created after filtering by selecting 200,000 top words based on weighted word

counts in order to maximize the likelihood of the combined development data. The

number of n-grams in every LM was reduced by pruning all n-grams whose removal

caused less than 5� 10�10 increase in training data perplexity.

3.2.1 Results

Results for web text filtering are shown in Table 5. Large phonetic variation in

conversational Finnish creates challenges when measuring recognition accuracy. As

most of the words can be pronounced in several slightly different ways, and the

words are written out as they are pronounced, it would be harsh to compare

recognition against the verbatim phonetic transcription. Thus word forms that are

simply phonetic variation have been added as alternatives in the reference

transcriptions.

Modeling under-resourced languages for speech recognition 975

123



devel-re selection resulted in the smallest data size. The amount of data that will

be selected depends on the size of the development set. The small development set

used in these experiments caused only a minimal amount of data to be selected

during the first devel-re pass, resulting in poor word error rate. Combining selected

data from 100 passes improved word error rate to 54.2 % with Finnish data. The

other methods gave very similar results in terms of WER, but more than double the

amount of data. However, running 100 passes was computationally very demanding.

Optimizing the number of passes of devel-re filtering, in terms of perplexity on

held-out development data, gave still a slight improvement. The resulting 54.1 %

WER is good, given that only web data was used to build the LM. In our previous

state-of-the-art of conversational Finnish ASR, we obtained 57.5 % WER using

only web data, and 55.6 % when combined with other corpora, while using only

other than web data WER was 59.8 % (Enarvi and Kurimo 2013a). One can

conclude that significant improvement can be gained by using web data, in the

absence of accurately transcribed conversational corpora. However, in this paper we

have also used better acoustic models.

Overall, filtering Estonian data did not improve speech recognition compared to

the baseline as much as with Finnish data. The best result, 52.7 % WER, was given

by devel-lp filtering. Compared to the Finnish language results, the advantage to the

other methods was surprisingly clear. devel-re method gained new data faster than

in the Finnish language experiments, probably due to the larger development set,

and as many passes were not needed. We are not aware of any earlier research on

recognition of spontaneous Estonian conversations.

3.3 Experiments in adapting models for foreign words

Foreign proper name adaptation experiments are conducted with the adaptation

framework described in the methods section (Fig. 1). The occurrence of foreign

names in the data sets is of importance since we are focusing adaptation efforts on

improving their recognition. For Finnish, FPN rate is 4.3 % for the development set

(fi-news-dev) and 3.5 % for the evaluation set (fi-news-eval). For Estonian, FPN rate

Table 5 Filtered data sizes and speech recognition results. The best results in terms of WER are in bold

type

Algorithm Finnish Estonian

Words WER (%) Words WER (%)

Baseline 266M 55.6 167M 53.4

devel-lp 192M 54.3 82.2M 52.7

xe-diff 169M 54.4 38.9M 53.2

devel-re [passes = 1] 5.08M 57.9 13.1M 54.4

devel-re [passes = 50] 53.9M 54.6 93.8M 53.1

devel-re [passes = 100] 79.5M 54.2 125M 53.1

devel-re [optimized] 75.9M 54.1 117M 53.1

976 M. Kurimo et al.

123



is 1.6 % for the development set (ee-news-dev) and 1.7 % for the evaluation set (ee-
news-eval).

Experiments are run on the Aalto ASR system (Hirsimäki et al. 2009) and GMM-

HMM-based acoustic models. For Finnish, a Kneser–Ney smoothed varigram LM

(n = 12) with a 45k subword lexicon was trained on the LM training data using

variKN language modeling toolkit (Siivola et al. 2007) and Morfessor (Creutz and

Lagus 2002). A letter bigram model was trained on the same LM training data for

the foreign name detection algorithm.

A subword-based baseline LM for Estonian was trained, similarly to Finnish

using Morfessor and variKN toolkit. The resulting model was a Kneser–Ney

smoothed varigram LM (n = 8) with a 40k subword lexicon. A letter bigram model

for foreign name detection was trained on a word list extracted from the LM training

data.

First set of experiments are run with the baseline LMs to retrieve the first-pass

ASR output. After that unsupervised LM adaptation experiments are run. The

background LM is adapted with 6000 of the best matching articles compared to the

ASR output. The retrieval corpus is a collection of articles retrieved from the Web.

The Finnish retrieval corpus consists of 44,000 articles (fi-webnews). The Estonian

retrieval corpus consists of 80,000 articles (25 % subset of ee-webnews).
In the third adaptation layer we apply vocabulary adaptation. Foreign proper

name candidates are selected based on the letter-gram perplexity and cosine

similarity score. A threshold is set so that only 30 % of the best scoring FPN

candidates are selected for adaptation. Furthermore an additional constraint is set so

that the number of new words added can not exceed 4 % of the original vocabulary

size. Four new pronunciation rules are generated for each selected FPN candidate

and added to the lexicon. The pronunciation rules are generated with a data-driven

G2P model which has been trained on 2000 foreign names found in Finnish texts.

The same G2P model is used for both Finnish and Estonian. Subword restoration is

applied on oversegmented FPN candidate words to enable one-to-one mapping

between pronunciation rule and vocabulary unit.

In the final adaptation layer we implement discriminative pronunciation pruning

based on the ASR output lattices when using the adapted LM and lexicon. Harmful

FPN pronunciation variants that degrade overall recognition accuracy by five word

errors or more are excluded in the next run. Beneficial FPN pronunciation variants

that decrease word error by one word or more are added to the 2000 word foreign

name lexicon. A new G2P model is re-trained with the updated lexicon. This

procedure is iterated a couple of times on the development set before get a final list

of harmful pronunciation variants and an updated G2P model which are then used

on the evaluation set.

3.3.1 Results

Results of the FPN adaptation experiments are presented in Table 6. Performance is

measured in average word error rate (WER) and foreign proper name error rate

(FER).

Modeling under-resourced languages for speech recognition 977

123



First set of experiments were run on the Finnish development set (fi-news-dev).
Compared to the baseline model, unsupervised LM adaptation reduces average

WER with 3 % and FER with 10 %. Vocabulary adaptation (pronunciation and

subword adaptation) reduces FER with another 7 % but average WER remains

unchanged, compared to only using unsupervised LM adaptation. After three

iterations discriminative pronunciation pruning is able to further reduce WER with

1 % and FER with 2 %. It does seem that pronunciation pruning, in excluding some

of the most harmful pronunciation variants, is able to correct the misrecognition of

some native words.

For the Finnish evaluation set (fi-news-eval) results are similar compared to the

development set, when applying unsupervised LM and vocabulary adaptation.

Average WER is reduced with around 3 % compared to the baseline LM.

Vocabulary adaptation reduces FER with 7 % compared to only using unsupervised

LM adaptation. Discriminative pronunciation pruning was tested with the list of

harmful pronunciation variants and re-trained G2P model obtained after three

iterations on the development set. In terms of average WER, which remains

unchanged, results are not as good as on the development set. There is probably not

enough overlap between harmful pronunciation variants introduced in the devel-

opment set that are also relevant for the evaluation set. We might see a more

significant impact over larger data sets. The re-trained G2P model reduces FER with

around 2 %. The change is small but it does indicate that it is possible to improve

G2P modeling through discriminative pronunciation pruning on development data.

For the Estonian broadcast news development set, unsupervised LM adaptation

reduced average WER with nearly 2 % and FER with under 1 %. Vocabulary

Table 6 FPN adaptation results for Finnish and Estonian. Baseline results are followed by results for

unsupervised LM adaptation (Adapted LM), combination of unsupervised LM and vocabulary adaptation

(Adapted LM ? VOC), and iterations of discriminative pronunciation pruning (Adapted LM ? VOC

[pruned, iter = x]). On the evaluation sets discriminative pronunciation pruning is tested with the pruning

data and models obtained after the third iteration on the development set (Adapted LM ? VOC [pruned,

dev. iter = 3])

Adaptation fi-news-dev ee-news-dev

WER (%) FER (%) WER (%) FER (%)

Baseline 29.6 73.5 19.2 51.8

Adapted LM 28.6 66.4 18.9 51.4

Adapted LM ? VOC 28.6 61.8 19.5 50.7

Adapted LM ? VOC [pruned, iter = 1] 28.5 60.6 19.4 50.0

Adapted LM ? VOC [pruned, iter = 2] 28.4 60.6 19.4 49.3

Adapted LM ? VOC [pruned, iter = 3] 28.4 60.5 19.4 49.3

Baseline 30.5 71.6 19.6 49.3

Adapted LM 29.7 64.8 19.2 47.1

Adapted LM ? VOC 29.6 60.0 19.5 46.0

Adapted LM ? VOC [pruned, dev. iter = 3] 29.6 59.0 19.4 46.0

978 M. Kurimo et al.

123



adaptation increases average WER, but reduces FER with over 1 %, compared to

using only unsupervised LM adaptation. Discriminative pronunciation pruning does

manage to improve recognition of foreign names with almost 3 % but average WER

is still higher than compared to only using unsupervised LM adaptation.

Results for the Estonian evaluation set are quite similar to the development set.

Unsupervised LM adaptation reduces WER with 2 % and FER with 4 %. Again,

vocabulary adaptation degrades recognition of native words. Average WER

increases but FER is reduced with 2 %. Discriminative pronunciation pruning

(data and models obtained from the development set’s third iteration) does lower

average WER slightly but FER is not further improved.

There seems to be more acoustic confusion added to Estonian ASR when

augmenting the lexicon with G2P generated pronunciation variants. It is not clear

whether this is because of the low FPN rate in Estonian speech data or if the Finnish

G2P model has negative effects on the recognition of some native Estonian words.

Discriminative pronunciation pruning is not able to significantly lessen the effect of

lexical confusion.

3.4 Experiments in multi-domain and adapted neural network language
modeling

In multi-domain and adapted NNLM experiments we evaluate the models in terms

of perplexity (PPL) and WER. The models are evaluated on two broadcast news

data sets: a Finnish data set consisting of subwords (morphs) and an Estonian data

set consisting of compound-split words. The PPL scores are calculated on their

respective lexical units, WER scores are computed on words.

Our baseline LM is a back-off 4-gram model with modified Kneser–Ney

discounting constructed over all available training data. Surprisingly, interpolating

domain-specific models results in an inferior model.

It has been recently verified that NNLMs perform better than back-off n-gram

models on under-resourced languages (Gandhe et al. 2014). One of our goals is to

check whether the multi-domain and adapted NNLMs bring additional improve-

ments and what is the relationship between their relative improvement and training

set size.

Four experiments are performed on both languages. We start by training all the

models on all available text data and continue by halving the training data for each

consecutive experiment by taking every second line of the previous data set. NNLM

hidden and projection layer size is divided by
ffiffiffi
2

p
every time the training data is

halved. The initial hidden layer size is 500 for Finnish and 1400 for Estonian

NNLM; initial projection layer size is 3� 100 for Finnish and fixed to 3� 128 for

Estonian. Both Finnish and Estonian models use a shortlist (Schwenk and Gauvain

2004) of 1024 most frequent units (compound-split words or subwords respectively)

plus an additional end of sentence token. The input vocabulary consists of 199,861

most frequent compound-split words and 50,410 most frequent subwords for

Finnish and Estonian data set respectively. Both input vocabularies contain an

additional token for the beginning of sentence and unknown units. When

interpolating the n-gram and NNLM model outputs we use an equal weight of

Modeling under-resourced languages for speech recognition 979

123



0.5 for both models. Out-of-shortlist units are evaluated only by the n-gram model.

All NNLMs are trained with backpropagation and mini-batch stochastic gradient

descent using batch size of 200 samples and learning rate of 0.1 until the best model

according to validation perplexity is not within the last 5 epochs. We use our NNLM

adaptation method on Finnish data set, because there we have no in-domain training

data. Estonian data set has in-domain training data, so we use the multi-domain

NNLM there.

In speech recognition experiments recognition lattices were generated using

systems based on the Kaldi toolkit (Povey et al. 2011), and the lattices were

rescored using the NNLMs. Finnish acoustic models are triphones, built using

fMLLR-based speaker-adaptive training (SAT) and optimized using the boosted

MMI criterion (Povey et al. 2008). Lattices are obtained after two decoding passes:

first pass uses speaker-independent models, and the second pass fMLLR-

transformed features with SAT-based models. Estonian acoustic models are hybrid

deep neural networks based hidden Markov models (DNN-HMMs) that use speaker

identity vectors (i-vectors) as additional input features to the DNNs in parallel with

the regular acoustic features, thus performing unsupervised transcript-free speaker

adaptation (Saon et al. 2013). The output hypotheses of the speech recognition

systems consist of subword units for Finnish and compounds-split words for

Estonian. These were converted to word hypotheses using a hidden event LM that

treats a word break (for Finnish) or an inter-compound unit (for Estonian) as a

hidden word that needs to be recovered. More details about the Estonian system are

available in Alumäe (2014).

3.4.1 Results

The results of PPL and WER evaluations on the test set can be seen in Table 7. All

NNLMs consistently outperform back-off n-gram models in PPL and WER.

Utilizing NNLMs in addition to n-gram models gives a similar effect as using about

twice as much training data: the PPL improves 7.1–17.5 % relative, statistically

significant WER improvement is about 2.1–4.9 % relative. The type of lexical units

used in vocabulary and baseline WER (largely determined by the acoustic model

quality) don’t seem to affect the relative WER improvement brought by NNLMs.

Both, the multi-domain and adapted, NNLMs consistently beat the simple NNLM in

PPL evaluation (0.6–7.1 % relative). Unfortunately this makes no significant

difference in WER for neither case. This holds true for all languages and training set

sizes we tested.

The small PPL gap and no significant WER improvement between the simple and

multi-domain NNLM architecture seems to indicate that the single static domain

vector has too little capacity to alter the model sufficiently to reflect all the domain

differences. This problem can be solved by either reducing the domain sizes—by

clustering them into subdomains for example—or by using adaptation with more

capacity and influence over the model.

980 M. Kurimo et al.

123



3.5 Experiments in decoding with subword units

In this section we experiment with different combinations of lexical units and

decoders. N-gram LMs used modified Kneser–Ney smoothing and were trained

using the VariKN package (Siivola et al. 2007). Maximum order of the n-grams was

3 for word n-grams and 6 for subword n-grams. Relatively large n-gram models

with respect to the corpus sizes were used in all the experiments. Word error rates

for the models trained on the larger training corpora may be found in Table 8 and for

the smaller training corpora in Table 9.

The first observation from the results is that effectively very large vocabularies

are needed to obtain good ASR performance on the broadcast news task for both

languages, irrespective of the way of modeling. If more was known about the topics

to be recognized, more limited vocabularies could be utilized. Accurate topic

modelling, however, would likely require more resources than assumed to be

available here. The results also show, that the standard dynamic token-passing

decoding can effectively operate with very large vocabularies, if care is taken in the

implementation (Soltau and Saon 2009; Varjokallio and Kurimo 2014a).

In terms of error rates, including all the word forms from the LM training data to

the vocabulary seems to give reasonable initial results. In the Finnish experiments,

word n-grams and subword n-grams performed equally well with these very large

vocabularies in both the settings. The OOV-rates were still 3.2 and 5.3 %, indicating

some mismatch between the training corpus and the recognition task. In the

Estonian experiments, the subword n-grams outperformed the word n-grams with

Table 7 LM test set PPL and WER with different sized training sets. Comparison with the n-gram

baseline in parentheses. a-nnlm is the adapted and md-nnlm is the multi-domain NNLM

1 1/2 1/4 1/8

Finnish

PPL n-gram 197 222 256 298

nnlm ? n-gram 183 (�7.1%) 205 (�7.7%) 236 (�7.8%) 274 (�8.1%)

a-nnlm ? n-gram 177 (�10.2%) 200 (�9.9%) 230 (�10.2%) 268 (�10.1%)

WER n-gram 33.3 34.0 34.9 35.7

nnlm ? n-gram 32.3 (�3.0%) 32.9 (�3.2%) 33.4 (�4.3%) 34.3 (�3.9%)

a-nnlm ? n-gram 32.4 (�2.7%) 32.8 (�3.5%) 33.4 (�4.3%) 34.3 (�3.9%)

Estonian

PPL n-gram 223 252 301 366

nnlm ? n-gram 198 (�11.2%) 216 (�14.3%) 257 (�14.6%) 315 (�13.9%)

md-nnlm ? n-gram 184 (�17.5%) 208 (�17.5%) 250 (�16.9%) 313 (�14.5%)

WER n-gram 9.2 9.6 10.3 10.8

nnlm ? n-gram 9.0 (�2.2%) 9.4 (�2.1%) 9.8 (�4.9%) 10.3 (�4.6%)

md-nnlm ? n-gram 9.0 (�2.2%) 9.4 (�2.1%) 9.9 (�3.9%) 10.3 (�4.6%)

Modeling under-resourced languages for speech recognition 981

123



the same vocabulary in both the settings. It thus seems, that subword n-grams

provide better probability estimates in some cases. The OOV-rates in the Estonian

experiments were 1.2 and 2.5 %.

We also experimented with a subword decoder, which enables an unlimited

recognition vocabulary and did simulated experiments, where the recognition

vocabulary was augmented by the remaining OOV words and in the smaller corpus

setting using the vocabulary from the larger corpus instead. The words were

segmented using the n-gram model and added to the decoding graph. The subword

n-gram model was not modified.

In the large corpus setting, the relative error rate reductions for the unlimited

recognition vocabulary were 2.8 and 3.2 %, compared to the best restricted

vocabulary recognizer. The corresponding numbers for the closed vocabulary

experiment were 3.4 and 4.5 %. The results show, that the OOV words were still

causing many recognition errors. In this case opting for unlimited vocabulary

recognition was quite effective in bridging the gap between the initial and the closed

vocabulary.

In the small corpus setting, the relative improvements for unlimited vocabulary

recognition were 4.5 % for Finnish and 5.3 % for Estonian. By using the vocabulary

from the large corpus, the corresponding results were 3.5 % for Finnish and 4.8 %

for Estonian. Adding the remaining OOV-words further improved WER by 3.5 and

3.9 %. In this setting, it may be seen that the OOV-rate had quite a big impact on the

recognition rates. Also, the difference between the unlimited and the closed

vocabulary results increased, indicating that the quality of the n-gram estimates

started to suffer.

Table 9 Word error rates for the models trained on the smaller training corpora

Units Finnish Estonian

Vocabulary size WER (%) Vocabulary size WER (%)

Words 850k 35.2 550k 19.6

Subwords 850k 35.2 550k 18.7

Subwords – 33.6 – 17.7

Subwords 2.2M 34.0 1.6M 17.8

Subwords 2.2M ? OOV 32.8 1.6M ? OOV 17.1

Table 8 Word error rates for the models trained on the larger training corpora

Units Finnish Estonian

Vocabulary size WER (%) Vocabulary size WER (%)

Words 2.2M 32.1 1.6M 16.2

Subwords 2.2M 32.1 1.6M 15.6

Subwords – 31.2 – 15.1

Subwords 2.2M ? OOV 31.0 1.6M ? OOV 14.9

982 M. Kurimo et al.

123



In unlimited vocabulary recognition, also some non-words will be recognized.

This may be an annoyance in some ASR use cases. The rate of the non-words will

depend much on the task at hand. The results further show, that a restricted

vocabulary which is closed or nearly closed, should give the best recognition results.

In this case also non-words will be avoided. The question then becomes, in which

cases is this a realistic goal? The subword n-gram decoder with a restricted

vocabulary opens some new possibilities towards this end, as the vocabulary may be

augmented without having all the word forms in the training text corpus. Other data

sources, like dictionaries and morphological analyzers (generators), can be used to

enrich the vocabulary. This could be especially helpful for less-resourced languages,

for which sufficiently large text corpora are mostly not available. It has been

estimated, that with entry generators (Linden 2009), a native linguist may annotate

300–400 new words in an hour to a morphological analyzer lexicon. For the initial

lexicon, around 5000 annotated words may suffice. Also in use cases, where the

ASR system will be used repeatedly, it may be possible to cover the most important

missing words over time.

4 Conclusion

In this work several recently developed language modeling methods were evaluated

in LVCSR. The evaluations were performed in two agglutinative languages, Finnish

and Estonian. Although language technology in these two languages have not been

very widely developed, most of the benchmarking tasks we used are almost directly

comparable to previous work. For the smaller agglutinative languages that are

extremely under-resourced, such as Northern Sami, proper evaluations are still

impossible. However, by verifying the same evaluations in parallel for both Finnish

and Estonian, and by artificially reducing the training data, we managed to make

simulations that are realistic for less resourced languages. This allows us to

conclude how to collect new data and what methods are suitable for languages with

a limited amount of language model training data.

The first task we evaluated was LM training data collection. Although training

data for planned speech is relatively easy to collect e.g. from news wire,

conversational speech pose a more difficult problem. The best training data would

be real conversations, but they are expensive to transcribe. However, we managed to

demonstrate a reasonable performance by clever filtering of Internet discussion

forums. Reducing data size is essential, not only from the perspective of improving

LM accuracy, but also because it makes modeling easier. The most compact training

set can be obtained by relative entropy minimization based filtering. The vast

reduction in data size may enable new approaches to language modeling, such as

NNLMs.

The second evaluation was dealing with the pronunciation and language

modeling of foreign words. It is very typical for small languages to borrow new

words from English and other large languages. However, the pronunciation of these

words do not usually follow the same pronunciation rules as native words and the

pronunciation used in practice is often unpredictable. Furthermore foreign words are

Modeling under-resourced languages for speech recognition 983

123



often topic-specific and poorly estimated by the baseline LM. Our results indicate

the we can successfully improve recognition of foreign words with unsupervised

LM and vocabulary adaptation. However, generating multiple pronunciation

variants for foreign names negatively affects the recognition of some native words.

Discriminative pronunciation pruning did improve recognition slightly over the

development sets but the pruned models didn’t have as much effect on unseen data

in the form of the evaluation sets. It is possible that discriminative pronunciation

pruning is more effective over larger data sets. We evaluated a shared resource by

using a G2P model originally trained for Finnish on Estonian. Results indicate that

the model does improve recognition of foreign words in Estonian as well but the

added lexical confusion which impacts the recognition of native words seems to be

worse than in Finnish. Improving pruning methods and testing over larger data sets

need to be done in the future to better understand the feasibility of G2P model

sharing between languages.

The results of the third evaluation show that the proposed multi-domain and

adapted NNLMs consistently outperform the n-gram baseline and simple NNLMs in

terms of PPL. The proposed model provides statistically significant WER

improvements compared to the n-gram baseline, but fails to improve upon simple

NNLMs. The results appear to be similar in both multi-domain and adaptation

modes. Finding better and more clever methods, rather than just more data, to

improve the target-domain performance is important for under-resourced languages,

because it is not expected that sufficient amount of in-domain data can be collected

for any particular topic or style alone. In our future work we plan to address the lack

of WER improvements of multi-domain and adapted models over simple NNLMs

by exploring sub-domain level multi-domain models and more powerful adaptation

methods.

The last evaluation concerned the different combinations of lexical units and

decoding approaches. For agglutinative languages, such as Finnish, Estonian and

Sami, subword LMs have many advantages. In the broadcast news experiments, n-

gram models trained over subwords performed equally well or better than word n-

grams with the same recognition vocabulary. Further advantage is that the subword

n-grams are able to assign probabilities to unseen word forms. Decoding with

unlimited vocabulary improved recognition accuracy for both languages. Using

subword n-grams but still opting for a restricted vocabulary is also a viable

alternative, which avoids the recognition of non-sense words. We expect that the

ability of quickly adding new words for the search network may become useful if

there are important OOV words that the system should recognize better. Also, the

results indicated, that in the cases where the recognition vocabulary is closed or

nearly closed, better results will be reached with a restricted vocabulary. Much

depends on the recognition task and the available resources, if this is a realistic goal.

The next step in our project is to gather and build the resources for constructing

and evaluating LVCSR in Northern Sami, where all the results of this paper should

become useful. The word error rates from conversational Finnish and Estonian

speech recognition experiments are still above 50 %. One area where we still clearly

need to improve is acoustic modeling. Accurately transcribed spontaneous

conversations are hard to find, so we have had to combine data from many small

984 M. Kurimo et al.

123



corpora of varying quality. More intelligent combination of these data sources by

model adaptation or neural network models would certainly help, and will be done

in the future.

Acknowledgments This work was partially funded by the Estonian Ministry of Education and Research
target-financed research theme no. 0140007s12, by the Tallinn University of Technology project Estonian
Speech Recognition System for Medical Applications, by the Academy of Finland under the Grant
Number 251170 [Finnish Centre of Excellence Program (2012–2017)], and by Finnish Cultural
Foundation. We acknowledge the computational resources provided by Aalto Science-IT project.

References

Adde, L., & Svendsen, T. (2011). Pronunciation variation modeling of non-native proper names by

discriminative tree search. In Proceedings of the 2011 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (pp. 4928–4931). Prague, Czech Republic.

Alumäe, T. (2013). Multi-domain neural network language model. In Proceedings of the 14th Annual
Conference of the International Speech Communication Association (INTERSPEECH 2013) (pp.
2182–2186).

Alumäe, T. (2014). Recent improvements in Estonian LVCSR. In Spoken Language Technologies for
Under-Resourced Languages. St. Petersburg, Russia.

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic language model.

Journal of Machine Learning Research, 3, 1137–1155.
Bisani, M., & Ney, H. (2008). Joint-sequence models for grapheme-to-phoneme conversion. Speech

Communication, 50(5), 434–451. doi:10.1016/j.specom.2008.01.002.

Creutz, M., & Lagus, K. (2002). Unsupervised discovery of morphemes. In Proceedings of the ACL 2002
workshop on morphological and phonological learning, MPL ’02, Vol. 6 (pp. 21–30). Association

for Computational Linguistics, Stroudsburg, PA, USA. doi:10.3115/1118647.1118650.

Deligne, S., & Bimbot, F. (1997). Inference of variable-length linguistic and acoustic units by

multigrams. Speech Communication, 23(3), 223–241.
Enarvi, S., & Kurimo, M. (2013a). Studies on training text selection for conversational finnish language

modeling. In Proceedings of the 10th International Workshop on Spoken Language Translation
(IWSLT 2013) (pp. 256–263). Heidelberg, Germany.

Enarvi, S., & Kurimo, M. (2013b). A novel discriminative method for pruning pronunciation dictionary

entries. In Proceedings of the 7th International Conference on Speech Technology and Human–
Computer Dialogue (pp. 113–116). Cluj-Napoca, Romania.

Gandhe, A., Metze, F., & Lane, I. (2014). Neural network language models for low resource languages. In

Proceedings of the 15th Annual Conference of the International Speech Communication Association
(INTERSPEECH 2014).

Hirsimäki, T., & Kurimo, M. (2009). Analysing recognition errors in unlimited-vocabulary speech

recognition. In Proceedings of the North American Chapter of the Association for Computational
Linguistics—Human Language Technologies 2009 Conference (NAACL 2009) (pp. 193–196).

Boulder, Colorado, USA.

Hirsimäki, T., Pylkkönen, J., & Kurimo, M. (2009). Importance of high-order n-gram models in morph-

based speech recognition. IEEE Transactions on Audio, Speech & Language Processing, 17(4),
724–732. doi:10.1109/TASL.2008.2012323.

Iskra, D. J., Grosskopf, B., Marasek, K., van den Heuvel, H., Diehl, F., & Kießling, A. (2002).

SPEECON—speech databases for consumer devices: Database specification and validation. In

Proceedings of the Third International Conference on Language Resources and Evaluation (LREC
2002). Canary Islands, Spain.

Klakow, D. (2000). Selecting articles from the language model training corpus. In Proceedings of the
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2000), Vol. 3
(pp. 1695–1698). IEEE Computer Society. doi:10.1109/ICASSP.2000.862077.

Lehecka, J., & Svec, J. (2013). Improving speech recognition by detecting foreign inclusions and

generating pronunciations. Text, Speech, and Dialogue, Lecture Notes in Computer Science, 8082,
295–302.

Modeling under-resourced languages for speech recognition 985

123



Leinonen, J. (2015). Automatic speech recognition for human–robot interaction using an under-resourced

language. Aalto University, School of Electrical Engineering, Department of Signal Processing and

Acoustics, Espoo.

Lennes, M. (2009). Segmental features in spontaneous and read-aloud Finnish. In V. de Silva & R.

Ullakonoja (Eds.), Phonetics of Russian and Finnish. General introduction. Spontaneous and read-
aloud speech (pp. 145–166). Bern: Peter Lang GmbH.

Linden, K. (2009). Entry generation for new words by analogy for morphological lexicons. Northern
European Journal of Language Technology, 1, 1–25.

Maison, B., Chen, S., & Cohen, P. S. (2003). Pronunciation modeling for names of foreign origin. In

Proceedings of the 2003 IEEE Workshop on Automatic Speech Recognition and Understanding
(ASRU) (pp. 429–434).

Mansikkaniemi, A., & Kurimo, M. (2013). Unsupervised topic adaptation for morph-based speech

recognition. In Proceedings of the 14th Annual Conference of the International Speech
Communication Association (INTERSPEECH 2013) (pp. 2693–2697). Lyon, France.

Moore, R. C., & Lewis, W. (2010). Intelligent selection of language model training data. In Proceedings
of the ACL 2010 Conference Short Papers, ACLShort ’10 (pp. 220–224). Association for

Computational Linguistics, Stroudsburg, PA, USA. http://dl.acm.org/citation.cfm?id=1858842.

1858883.

Ney, H., & Ortmanns, S. (2000). Progress in dynamic programming search for LVCSR. Proceedings of
the IEEE, 88(8), 1224–1240.

Park, J., Liu, X., Gales, M. J. F., & Woodland, P. C. (2010). Improved neural network based language

modelling and adaptation. In Proceedings of the 11th Annual Conference of the International Speech
Communication Association (INTERSPEECH 2010) (pp. 1041–1044).

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M., Motlicek, P.,

Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G., & Vesely, K. (2011). The Kaldi speech recognition

toolkit. In Proceedings of the 2011 IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU). Hilton Waikoloa Village, Big Island, Hawaii: IEEE Signal Processing

Society.

Povey, D., Kanevsky, D., Kingsbury, B., Ramabhadran, B., Saon, G., & Visweswariah, K. (2008).

Boosted MMI for model and feature-space discriminative training. In Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2008) (pp. 4057–
4060). IEEE.

Pylkkönen, J. (2005). An efficient one-pass decoder for Finnish large vocabulary continuous speech

recognition. In Proceedings of the 2nd Baltic Conference on Human Language Technologies.
Saon, G., Soltau, H., Nahamoo, D., & Picheny, M. (2013). Speaker adaptation of neural network acoustic

models using i-vectors. In Proceedings of the 2013 IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU) (pp. 55–59). IEEE.

Schwenk, H., & Gauvain, J. L. (2004). Neural network language models for conversational speech

recognition. In Proceedings of the 8th International Conference on Spoken Language Processing
(INTERSPEECH 2004).

Schwenk, H., & Gauvain, J. L. (2005). Training neural network language models on very large corpora. In

Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural
Language Processing (pp. 201–208). Association for Computational Linguistics.

Seide, F., Li, G., Chen, X., & Yu, D. (2011). Feature engineering in context-dependent deep neural

networks for conversational speech transcription. In Proceedings of the 2011 IEEE Workshop on
Automatic Speech Recognition and Understanding (ASRU) (pp. 24–29). IEEE.

Sethy, A., Georgiou, P. G., & Narayanan, S. (2006). Text data acquisition for domain-specific language

models. In Proceedings of the 2006 Conference on Empirical Methods in Natural Language
Processing, EMNLP ’06 (pp. 382–389). Association for Computational Linguistics, Stroudsburg,

PA, USA. http://dl.acm.org/citation.cfm?id=1610075.1610129.

Sethy, A., Georgiou, P. G., Ramabhadran, B., & Narayanan, S. S. (2009). An iterative relative entropy

minimization-based data selection approach for n-gram model adaptation. IEEE Transactions on
Audio, Speech, and Language Processing, 17(1), 13–23.

Shi, Y., Larson, M., & Jonker, C. M. (2014). Recurrent neural network language model adaptation with

curriculum learning. Computer Speech & Language. doi:10.1016/j.csl.2014.11.004.
Siivola, V., Hirsimäki, T., & Virpioja, S. (2007). On growing and pruning Kneser–Ney smoothed N-gram

models. IEEE Transactions on Speech, Audio and Language Processing, 15(5), 1617–1624.

986 M. Kurimo et al.

123



Sixtus, A., & Ney, H. (2002). From within-word model search to across-word model search in large

vocabulary continuous speech recognition. Computer Speech and Language, 16(2), 245–271.
Soltau, H., & Saon, G. (2009). Dynamic network decoding revisited. In Proceedings of the 2009 IEEE

Workshop on Automatic Speech Recognition and Understanding (ASRU) (pp. 276–281).
Tilk, O., & Alumäe, T. (2014). Multi-domain recurrent neural network language model for medical

speech recognition. In Human language technologies—The Baltic perspective, Vol. 268 (pp. 149–

152). Amsterdam: IOS Press.

Varjokallio, M., & Kurimo, M. (2014a). A word-level token-passing decoder for subword n-gram

LVCSR. In Proceedings of the 2014 IEEE Spoken Language Technology Workshop (SLT) (pp. 495–
500). South Lake Tahoe, California and Nevada.

Varjokallio, M., & Kurimo, M. (2014b). A toolkit for efficient learning of lexical units for speech

recognition. In Proceedings of the Ninth International Conference on Language Resources and
Evaluation (LREC 2014). Reykjavik, Iceland.

Varjokallio, M., Kurimo, M., & Virpioja, S. (2013). Learning a subword vocabulary based on unigram

likelihood. In Proceedings of the 2013 IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU). Olomouc, Czech Republic.

Young, S. J., Russell, N. H., & Thornton, J. H. S. (1989). Token passing: A simple conceptual model for
connected speech recognition system. Tech. rep., Cambridge University Engineering Department.

Modeling under-resourced languages for speech recognition 987

123





Appendix E

Publication V

Tilk, O. and Alumäe, T. (2017). Low-resource neural headline generation. In
Proceedings of the Workshop on New Frontiers in Summarization, pages 20–
26. Association for Computational Linguistics, DOI: 10.18653/v1/w17-4503

167





Proceedings of the Workshop on New Frontiers in Summarization, pages 20–26
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics

Low-Resource Neural Headline Generation

Ottokar Tilk and Tanel Alumäe
Department of Software Science, School of Information Technologies,

Tallinn University of Technology, Estonia
ottokar.tilk@ttu.ee, tanel.alumae@ttu.ee

Abstract

Recent neural headline generation models
have shown great results, but are generally
trained on very large datasets. We focus
our efforts on improving headline quality
on smaller datasets by the means of pre-
training. We propose new methods that
enable pre-training all the parameters of
the model and utilize all available text, re-
sulting in improvements by up to 32.4%
relative in perplexity and 2.84 points in
ROUGE.

1 Introduction

Neural headline generation (NHG) is the process
of automatically generating a headline based on
the text of the document using artificial neural net-
works.

Headline generation is a subtask of text sum-
marization. While a summary may cover mul-
tiple documents, generally uses similar style to
the summarized document, and consists of mul-
tiple sentences, headline, in contrast, covers a sin-
gle document, is often written in a different style
(Headlinese (Mårdh, 1980)), and is much shorter
(frequently limited to a single sentence).

Due to shortness and specific style, condensing
the the document into a headline often requires
the ability to paraphrase which makes this task a
good fit for abstractive summarization approaches
where neural networks based attentive encoder-
decoder (Bahdanau et al., 2015) type of models
have recently shown impressive results (e.g., Rush
et al. (2015); Nallapati et al. (2016)).

While state-of-the art results have been obtained
by training NHG models on large datasets like Gi-
gaword, access to such resources is often not pos-
sible, especially when it comes to low-resource

languages. In this work we focus on maximiz-
ing performance on smaller datasets with different
pre-training methods.

One of the reasons to expect pre-training to be
an effective way to improve performance on small
datasets, is that NHG models are generally trained
to generate headlines based on just a few first sen-
tences of the documents (Rush et al., 2015; Shen
et al., 2016; Chopra et al., 2016; Nallapati et al.,
2016). This leaves the rest of the text unutilized,
which can be alleviated by pre-training subsets of
the model on full documents. Additionally, the de-
coder component of NHG models can be regarded
as a language model (LM) whose predictions are
biased by the external information from the en-
coder. As a LM it sees only headlines during train-
ing, which is a small fraction of text compared to
the documents. Supplementing the training data of
the decoder with documents via pre-training might
enable it to learn more about words and language
structure.

Although, some of the previous work has used
pre-training before (Nallapati et al., 2016; Alifi-
moff, 2015), it is not fully explored how much pre-
training helps and what is the optimal way to do it.
Another problem is, that in previous work only a
subset of parameters (usually just embeddings) is
pre-trained leaving the rest of the parameters ran-
domly initialized.

The main contributions of this paper are: LM
pre-training for fully initializing the encoder and
decoder (sections 2.1 and 2.2); combining LM
pre-training with distant supervision (Mintz et al.,
2009) pre-training using filtered sentences of the
documents as noisy targets (i.e. predicting one
sentence given the rest) to maximally utilize
the entire available dataset and pre-train all the
paramters of the NHG model (section 2.3); and
analysis of the effect of pre-training different com-
ponents of the NHG model (section 3.3).

20



x1 . . . xN

Enc. emb.

Encoder Attention

Init.

y1 . . . yt−1

Dec. emb.

Decoder

yt

Figure 1: A high level description of the NHG
model. The model predicts the next headline word
yt given the words in the document x1 . . . xN and
already generated headline words y1 . . . yt−1.

2 Method

The model that we use follows the architecture de-
scribed by Bahdanau et al. (2015). Although orig-
inally created for neural machine translation, this
architecture has been successfully used for NHG
(e.g., by Shen et al. (2016); Nallapati et al. (2016)
and in a simplified form by Chopra et al. (2016)).

The NHG model consists of: a bidirectional
(Schuster and Paliwal, 1997) encoder with gated
recurrent units (GRU) (Cho et al., 2014); a uni-
directional GRU decoder; and an attention mecha-
nism and a decoder initialization layer that connect
the encoder and decoder (Bahdanau et al., 2015).

During headline generation, the encoder reads
and encodes the words of the document. Initial-
ized by the encoder, the decoder then starts gener-
ating the headline one word at a time, attending to
relevant parts in the document using the attention
mechanism (Figure 1). During training the param-
eters are optimized to maximize the probabilities
of reference headlines.

While generally at the start of training either
the parameters of all the components are randomly
initialized or only pre-trained embeddings (with
dashed outline in Figure 1) are used (Nallapati
et al., 2016; Paulus et al., 2017; Gulcehre et al.,
2016), we propose pre-training methods for more
extensive initialization.

2.1 Encoder Pre-Training
When training a NHG model, most approaches
generally use a limited number of first sentences or
tokens of the document. For example Rush et al.
(2015); Shen et al. (2016); Chopra et al. (2016) use
only the first sentence of the document and Nalla-
pati et al. (2016) use up to 2 first sentences. While
efficient (training is faster and takes less memory

as the input sequences are shorter) and effective
(the most informative content tends to be at the be-
ginning of the document (Nallapati et al., 2016)),
this leaves the rest of the sentences in the docu-
ment unused. Better understanding of words and
their context can be learned if all sentences are
used, especially on small training sets.

To utilize the entire training set, we pre-train the
encoder on all the sentences of the training set doc-
uments. Since the encoder consists of two recur-
rent components – a forward and backward GRU
– we pre-train them separately. First we add a soft-
max output layer to the forward GRU and train it
on the sentences to predict the next word given the
previous ones (i.e. we train it as a LM). After
convergence on the validation set sentences, we
take the embedding weights of the forward GRU
and use them as fixed parameters for the backward
GRU. Then we train the backwards GRU follow-
ing the same procedure as with the forward GRU,
with the exception of processing the sentences in a
reverse order. When both models are fully trained,
we remove the softmax output layers and initial-
ize the encoder of the NHG model with the em-
beddings and GRU parameters of the trained LMs
(highlighted with gray background in Figure 1).

2.2 Decoder Pre-Training

Pre-training the decoder as a LM seems natural,
since it is essentially a conditional LM. During
NHG model training the decoder is fed only head-
line words, which is relatively little data compared
to the document contents. To improve the quality
of the headlines it is essential to have high qual-
ity embeddings that are a good semantic repre-
sentation of the input words and to have a well
trained recurrent and output layer to predict sensi-
ble words that make up coherent sentences. When
it comes to statistical models, the simplest way to
improve the quality of the parameters is to train
the model on more data, but it also has to be the
right kind of data (Moore and Lewis, 2010).

To increase the amount of suitable training data
for the decoder we use LM pre-training on filtered
sentences of the training set documents. For filter-
ing we use the XenC tool by Rousseau (2013) with
the cross-entropy difference filtering (Moore and
Lewis, 2010). In our case the in-domain data is
training set headlines, out-domain data is the sen-
tences from training set documents, and the best
cut-off point is evaluated on validation set head-

21



lines. The careful selection of sentences is mostly
motivated by preventing the pre-trained decoder
from deviating too much from Headlinese, but it
also reduces training time.

Before pre-training we initialize the input and
output embeddings of the LM for words that are
common in both encoder and decoder vocabulary
with the corresponding pre-trained encoder em-
beddings. We train the LM on the selected sen-
tences until perplexity on the validation set head-
lines stops improving and then use it to initialize
the decoder parameters of the NHG model (high-
lighted with dotted background in Figure 1).

A similar approach, without data selection and
embedding initialization, has also been used by
Alifimoff (2015).

2.3 Distant Supervision Pre-Training

Approaches described in sections 2.1 and 2.2 en-
able full pre-training of the encoder and decoder,
but this still leaves the connecting parameters
(with white background in Figure 1) untrained.

As results in language modelling suggest, sur-
rounding sentences contain useful information to
predict words in the current sentence (Wang and
Cho, 2016). This implies that other sentences con-
tain informative sections that the attention mecha-
nism can learn to attend to and general context that
the initialization component can learn to extract.

To utilize this phenomenon, we propose using
carefully picked sentences from the documents as
pseudo-headlines and pre-train the NHG model to
generate these given the rest of sentences in the
document. Our pseudo-headline picking strategy
consists of choosing sentences that occur within
100 first tokens of the document and were retained
during cross-entropy filtering in section 2.2. Pick-
ing sentences from the beginning of the document
should give us the most informative sentences, and
cross-entropy filtering keeps sentences that most
closely resemble headlines.

The pre-training procedure starts with initializ-
ing the encoder and decoder with LM pre-trained
parameters (sections 2.1 and 2.2). After that, we
continue training the attention and initialization
parameters until perplexity on validation set head-
lines converges. We then use the trained parame-
ters to initialize all parameters of the NHG model.

Distant supervision has been also used for
multi-document summarization by Bravo-
Marquez and Manriquez (2012).

1 2 3 4
40

60

80

100

120

140

Epoch

Pe
rp

le
xi

ty

No pre-training
Embeddings

Encoder
Decoder

Enc.+dec.
Distant all

Enc.+dec.+dist.

Figure 2: Validation set (EN) perplexities of the
NHG model with different pre-training methods.

Model PPL (EN) PPL (ET)
No pre-training 65.1 ±1.0 25.9 ±0.4
Embeddings 51.8 ±0.7 20.7 ±0.3
Encoder (2.1) 59.3 ±0.9 23.5 ±0.4
Decoder (2.2) 48.3 ±0.7 18.8 ±0.3
Enc.+dec. 46.2 ±0.7 17.7 ±0.3
Distant all 58.6 ±0.9 21.3 ±0.3
Enc.+dec.+dist. (2.3) 45.8 ±0.7 17.5 ±0.3

Table 1: Perplexities on the test set with a 95%
confidence interval (Klakow and Peters, 2002).
All pre-trained models are significantly better than
the No pre-training baseline.

3 Experiments

We evaluate the proposed pre-training methods in
terms of ROUGE and perplexity on two relatively
small datasets (English and Estonian).

3.1 Training Details

All our models use hidden layer sizes of 256 and
the weights are initialized according to Glorot and
Bengio (2010). The vocabularies consist of up to
50000 most frequent training set words that oc-
cur at least 3 times. The model is implemented
in Theano (Bergstra et al., 2010; Bastien et al.,
2012) and trained on GPUs using mini-batches
of size 128. During training the weights are up-
dated with Adam (Kingma and Ba, 2014) (param-
eters: α=0.001, β1=0.9, β2=0.999, ε=10−8 and
λ=1 − 10−8) and L2-norm of the gradient is kept
within a threshold of 5.0 (Pascanu et al., 2013).
During headline generation we use beam search
with beam size 5.

22



EN ET
Model R1R R1P RLR RLP R1R R1P RLR RLP

No pre-training 20.36 33.51 17.68 29.03 26.44 34.23 25.31 32.74
Embeddings 21.09 33.36 18.23 28.72 28.42 35.94 27.02 34.16
Encoder (2.1) 21.25 34.1 18.45 29.5 29.28 37.04 27.88 35.24
Decoder (2.2) 20.11 31.1 17.43 26.87 25.12 32.6 23.89 30.99
Enc.+dec. 20.72 33.93 18.04 29.43 27.18 34.58 25.79 32.78
Distant all 20.32 31.54 17.59 27.25 26.17 34.49 24.96 32.87
Enc.+dec.+dist. (2.3) 21.34 34.81 18.53 30.14 27.74 35.46 26.35 33.67

Table 2: Recall and precision of ROUGE-1 and ROUGE-L on the test sets. Best scores in bold. Results
with statistically significant differences (95% confidence) compared to No pre-training underlined.

3.2 Datasets

We use the CNN/Daily Mail dataset (Her-
mann et al., 2015)1 for experiments on English
(EN). The number of headline-document pairs is
287227, 13368 and 11490 in training, validation
and test set correspondingly. The preprocessing
consists of tokenization, lowercasing, replacing
numeric characters with #, and removing irrele-
vant parts (editor notes, timestamps etc.) from the
beginning of the document with heuristic rules.

For Estonian (ET) experiments we use a sim-
ilarly sized (341607, 18979 and 18977 training,
validation and test split) dataset that also consist
of news from two sources. During preprocess-
ing, compound words are split, words are true-
cased and numbers are written out as words. We
used Estnltk (Orasmaa et al., 2016) stemmer for
ROUGE evaluations.

3.3 Results and Analysis

Models are evaluated in terms of perplexity (PPL)
and full length ROUGE (Lin, 2004). In addi-
tion to pre-training methods described in sections
2.1-2.3, we also test: initializing only the embed-
dings using parameters from the LM pre-trained
encoder and decoder (Embeddings); initializing
the encoder and decoder, but leaving connecting
parameters randomized (Enc.+dec.); pre-training
the whole model from random initialization with
distant supervision only (Distant all); and a base-
line that is not pre-trained at all (No pre-training).

All pre-training methods gave significant im-
provements in PPL (Table 1). The best method
(Enc.+dec.+dist.) improved the test set PPL by
29.6-32.4% relative. Pre-trained NHG models
also converged faster during training (Figure 2)

1http://cs.nyu.edu/˜kcho/DMQA/

and most of them beat the final PPL of the baseline
already after the first epoch. General trend is that
pre-training a larger amount of parameters and the
parameters closer to the outputs of the NHG model
improves the PPL more. Distant all is an excep-
tion to that observation as it used much less train-
ing data (same as baseline) than other methods.

For ROUGE evaluations, we report ROUGE-
1 and ROUGE-L (Table 2). In contrast with
PPL evaluations, some pre-training methods ei-
ther don’t improve significantly or even worsen
ROUGE measures. Another difference com-
pared to PPL evaluations is that for ROUGE, pre-
training parameters that reside further from out-
puts (embeddings and encoder) seems more ben-
eficial. This might imply that a better document
representation is more important to stay on topic
during beam search while it is less important dur-
ing PPL evaluation where predicting next target
headline word with high confidence is rewarded
and the process is aided by previous target head-
line words that are fed to the decoder as inputs.
It is also possible, that a well trained decoder be-
comes too reliant on expecting correct words as in-
puts making it sensitive to errors during generation
which would somewhat explain why Enc.+dec.
performs worse than Encoder alone. This hypoth-
esis can be checked in further work by experiment-
ing with methods like scheduled sampling (Bengio
et al., 2015) that should increase the robustness to
mistakes during generation. Pre-training all pa-
rameters on all available text (Enc.+dec.+dist.)
still gives the best result on English and quite de-
cent results on Estonian. Best models improve
ROUGE by 0.85-2.84 points.

Some examples of the generated headlines on
the CNN/Daily Mail dataset are shown in Table 3.

23



Document a democratic congressman is at the head of a group of representatives trying
to help undocumented immigrants avoid deportations with what they have
called the family defender toolkit . the informational pamphlet includes a
bilingual card - that some are calling a get out of deportation free card - that
lists reasons a person should not be deported under expanded .

Reference headline congressman is developing a get out of deportation toolkit to help undocu-
mented immigrants if they are detained

No pre-training congressman calls for undocumented immigrants
Embeddings congressman calls for help from immigrants trying to help immigrants avoid-

ing deportation
Encoder (2.1) republican congressman calls for immigrants trying to avoid deportation
Decoder (2.2) congressman who tried to stop deportations of immigrants
Enc.+Dec. immigration congressman at the head of the head of the group who tries to

avoid deportation
Distant all congressman calls for deportation to immigrants who stay in the country
Enc.+dec.+dist. (2.3) congressman tries to help undocumented immigrants avoid deportation
Document a chihuahua and a bearded dragon showed off their interspecies friendship

when they embarked upon a game of tag together . videoed in their front
room , the dog named foxxy cleopatra and the reptile called ryuu can be seen
chasing after one another around a coffee table . standing perfectly still while
looking in the other direction , the bearded dragon initially appears disinter-
ested as the chihuahua jumps around excitedly .

Reference headline you re it!
No pre-training is this the creepiest crawly?
Embeddings meet the poodle!
Encoder (2.1) it’s a knockout!
Decoder (2.2) the bearded dragon lizard: the bearded dragon lizard spotted in the middle of

the street
Enc.+Dec. oh, this is a lion!
Distant all meet the dragon dragon: meet the dragon dragon
Enc.+dec.+dist. (2.3) is this the world’s youngest lion?

Table 3: Examples of generated headlines on CNN/Daily Mail dataset.

4 Conclusions

We proposed three new NHG model pre-training
methods that in combination enable utilizing the
entire dataset and initializing all parameters of the
NHG model. We also evaluated and analyzed pre-
training methods and their combinations in terms
of perplexity (PPL) and ROUGE. The results re-
vealed that better PPL doesn’t necessarily trans-
late to better ROUGE – PPL tends to benefit from
pre-training parameters that are closer to outputs,
but for ROUGE it is generally the opposite. Also,
PPL benefited from pre-training more parameters
while for ROUGE it was not always the case. Pre-
training in general proved to be useful – our best
results improved PPL by 29.6-32.4% relative and
ROUGE measures by 0.85-2.84 points compared

to a NHG model without pre-training.
Current work focused on maximally utilizing

available headlined corpora. One interesting fu-
ture direction would be to additionally utilize po-
tentially much more abundant corpora of docu-
ments without headlines (also proposed by Shen
et al. (2016)) for pre-training. Another open ques-
tion is the relationship between the dataset size
and the effect of pre-training.

Acknowledgments

We would like to thank NVIDIA for the donated
GPU, the anonymous reviewers for their valuable
comments, and Kyunghyun Cho for the help with
the CNN/Daily Mail dataset.

24



References
Alex Alifimoff. 2015. Abstractive sentence summa-

rization with attentive deep recurrent neural net-
works.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by
jointly learning to align and translate. ICLR2015,
arXiv:1409.0473.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
James Bergstra, Ian J. Goodfellow, Arnaud Berg-
eron, Nicolas Bouchard, and Yoshua Bengio. 2012.
Theano: new features and speed improvements. In
Deep Learning and Unsupervised Feature Learning
NIPS 2012 Workshop.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. 2015. Scheduled sampling for se-
quence prediction with recurrent neural networks.
In Advances in Neural Information Processing Sys-
tems, pages 1171–1179.

James Bergstra, Olivier Breuleux, Frédéric Bastien,
Pascal Lamblin, Razvan Pascanu, Guillaume Des-
jardins, Joseph Turian, David Warde-Farley, and
Yoshua Bengio. 2010. Theano: a CPU and
GPU math expression compiler. In Proceedings
of the Python for Scientific Computing Conference
(SciPy). Oral Presentation.

Felipe Bravo-Marquez and Manuel Manriquez. 2012.
A zipf-like distant supervision approach for multi-
document summarization using wikinews articles.
In International Symposium on String Processing
and Information Retrieval, pages 143–154. Springer.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734. Association for Computational Linguistics.

Sumit Chopra, Michael Auli, and M. Alexander Rush.
2016. Abstractive sentence summarization with at-
tentive recurrent neural networks. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 93–98. Asso-
ciation for Computational Linguistics.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In International conference on artificial
intelligence and statistics, pages 249–256.

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Pointing
the unknown words. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 140–
149. Association for Computational Linguistics.

Karl Moritz Hermann, Tomáš Kočiský, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems (NIPS).

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Dietrich Klakow and Jochen Peters. 2002. Testing the
correlation of word error rate and perplexity. Speech
Communication, 38(1):19–28.

Chin-Yew Lin. 2004. Text Summarization Branches
Out, chapter ROUGE: A Package for Automatic
Evaluation of Summaries.

Ingrid Mårdh. 1980. Headlinese: On the gram-
mar of English front page headlines, volume 58.
Liberläromedel/Gleerup.

Mike Mintz, Steven Bills, Rion Snow, and Daniel Ju-
rafsky. 2009. Distant supervision for relation ex-
traction without labeled data. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, pages
1003–1011. Association for Computational Linguis-
tics.

C. Robert Moore and William Lewis. 2010. Intelligent
selection of language model training data. In Pro-
ceedings of the ACL 2010 Conference Short Papers,
pages 220–224. Association for Computational Lin-
guistics.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Caglar Gulcehre, and Bing Xiang. 2016. Ab-
stractive text summarization using sequence-to-
sequence rnns and beyond. In Proceedings of The
20th SIGNLL Conference on Computational Natural
Language Learning, pages 280–290. Association for
Computational Linguistics.

Siim Orasmaa, Timo Petmanson, Alexander
Tkachenko, Sven Laur, and Heiki-Jaan Kaalep.
2016. Estnltk - nlp toolkit for estonian. In Pro-
ceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC
2016), Paris, France. European Language Resources
Association (ELRA).

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neu-
ral networks. Proceedings of the 30th International
Conference on Machine Learning (ICML 2013).

Romain Paulus, Caiming Xiong, and Richard Socher.
2017. A deep reinforced model for abstractive sum-
marization. arXiv preprint arXiv:1705.04304.

Anthony Rousseau. 2013. Xenc: An open-source tool
for data selection in natural language processing.
The Prague Bulletin of Mathematical Linguistics,
(100):73–82.

25



M. Alexander Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 379–389. Association for
Computational Linguistics.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681.

Shiqi Shen, Yu Zhao, Zhiyuan Liu, Maosong
Sun, et al. 2016. Neural headline generation
with sentence-wise optimization. arXiv preprint
arXiv:1604.01904.

Tian Wang and Kyunghyun Cho. 2016. Larger-context
language modelling with recurrent neural network.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1319–1329. Association for
Computational Linguistics.

26





Curriculum Vitae

Personal data

Name: Ottokar Tilk
Date of birth: 07.06.1986
Place of birth: Tallinn, Estonia
Citizenship: Estonia

Contact data

Email: ottokart@gmail.com

Education

2012 – ... Tallinn University of Technology,
PhD studies in computer science

2015 – 2015 Saarland University,
visiting fellowship in language science (Feb – May)

2009 – 2012 Tallinn University of Technology,
MSc studies in computer science

2005 – 2008 Estonian Information Technology College,
professional higher education
in IT systems administration

Language competence

Estonian: Native speaker
English: High Level

177



Professional employment

2013 – 2017 Institute of Cybernetics at Tallinn University
of Technology; engineer

2017 – ... Department of Software Science at Tallinn University
of Technology; early stage researcher

2008 – ... Centre of Registers and Information Systems;
application administrator, .NET developer,
technical architect

Summer schools

ESSLLI 2014 European Summer School of Logic, Language
and Information; Tübingen, Germany

ESSCaSS Estonian Summer School on Computer and
Systems Science; 2012, 2013, 2015

EWSCS Estonian Winter School in Computer
Science; 2012 – 2014

Scientific work

[1] Tilk, O. and Alumäe, T. (2017). Low-resource neural headline gener-
ation. In Proceedings of the Workshop on New Frontiers in Summa-
rization, pages 20–26. Association for Computational Linguistics, DOI:
10.18653/v1/w17-4503

[2] Tilk, O., Demberg, V., Sayeed, A., Klakow, D., and Thater, S. (2016).
Event participant modelling with neural networks. In Proceedings of
the 2016 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 171–182, Austin, Texas. Association for Computational
Linguistics, DOI: 10.18653/v1/d16-1017

[3] Alumäe, T. and Tilk, O. (2016). Automatic speech recognition system
for lithuanian broadcast audio. In Human Language Technologies –
The Baltic Perspective, volume 289, pages 39–45. DOI: 10.3233/978-1-
61499-701-6-39

[4] Tilk, O. and Alumäe, T. (2016). Bidirectional recurrent neural network
with attention mechanism for punctuation restoration. In Interspeech
2016, pages 3047–3051. DOI: 10.21437/Interspeech.2016-1517

[5] Kurimo, M., Enarvi, S., Tilk, O., Varjokallio, M., Mansikkaniemi, A.,
and Alumäe, T. (2017). Modeling under-resourced languages for speech
recognition. Language Resources and Evaluation, 51(4):961–987, ISSN:
1574-0218, DOI: 10.1007/s10579-016-9336-9

178



[6] Tilk, O. and Alumäe, T. (2015). LSTM for punctuation restoration in
speech transcripts. In Interspeech 2015, pages 683–687. ISSN: 1990-
9770, https://www.isca-speech.org/archive/interspeech_2015/
i15_0683.html

[7] Tilk, O. and Alumäe, T. (2014). Multi-domain recurrent neural network
language model for medical speech recognition. In Human Language
Technologies – The Baltic Perspective, volume 268, pages 149–152. IOS
Press, DOI: 10.3233/978-1-61499-442-8-149

[8] Lohk, A., Tilk, O., and Võhandu, L. (2013). How to create order in large
closed subsets of wordnet-type dictionaries. Eesti Rakenduslingvistika
Ühingu aastaraamat, 9:149–160, DOI: 10.5128/erya9.10

179





Elulookirjeldus

Isikuandmed

Nimi: Ottokar Tilk
Sünniaeg: 07.06.1986
Sünnikoht: Tallinn, Eesti
Kodakondsus: Eesti

Kontaktandmed

E-post: ottokart@gmail.com

Hariduskäik

2012 – ... Tallinna Tehnikaülikool,
doktoriõpingud informaatikas

2015 – 2015 Saarlandi Ülikool,
külalistudeng keeleteaduses (veebruar – mai)

2009 – 2012 Tallinna Tehnikaülikool,
magistriõpingud informaatikas

2005 – 2008 Eesti Infotehnoloogia Kolledž,
rakenduskõrgharidusõpe
IT süsteemide administreerimises

Keelteoskus

Eesti keel: Emakeel
Inglise keel: Kõrgtase

Töökogemus

2013 – 2017 TTÜ küberneetika instituut; insener

2017 – ... TTÜ tarkvarateaduse instituut; nooremteadur
2008 – ... Registrite ja Infosüsteemide Keskus;

infosüsteemi haldur, .NET programmeerija,
tehniline arhitekt

181



Suvekoolid

ESSLLI 2014 European Summer School of Logic, Language
and Information; Tübingen, Saksamaa

ESSCaSS Estonian Summer School on Computer and
Systems Science; 2012, 2013, 2015

EWSCS Estonian Winter School in Computer
Science; 2012 – 2014

Teadustegevus

[1] Tilk, O. and Alumäe, T. (2017). Low-resource neural headline gener-
ation. In Proceedings of the Workshop on New Frontiers in Summa-
rization, pages 20–26. Association for Computational Linguistics, DOI:
10.18653/v1/w17-4503

[2] Tilk, O., Demberg, V., Sayeed, A., Klakow, D., and Thater, S. (2016).
Event participant modelling with neural networks. In Proceedings of
the 2016 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 171–182, Austin, Texas. Association for Computational
Linguistics, DOI: 10.18653/v1/d16-1017

[3] Alumäe, T. and Tilk, O. (2016). Automatic speech recognition system
for lithuanian broadcast audio. In Human Language Technologies –
The Baltic Perspective, volume 289, pages 39–45. DOI: 10.3233/978-1-
61499-701-6-39

[4] Tilk, O. and Alumäe, T. (2016). Bidirectional recurrent neural network
with attention mechanism for punctuation restoration. In Interspeech
2016, pages 3047–3051. DOI: 10.21437/Interspeech.2016-1517

[5] Kurimo, M., Enarvi, S., Tilk, O., Varjokallio, M., Mansikkaniemi, A.,
and Alumäe, T. (2017). Modeling under-resourced languages for speech
recognition. Language Resources and Evaluation, 51(4):961–987, ISSN:
1574-0218, DOI: 10.1007/s10579-016-9336-9

[6] Tilk, O. and Alumäe, T. (2015). LSTM for punctuation restoration in
speech transcripts. In Interspeech 2015, pages 683–687. ISSN: 1990-
9770, https://www.isca-speech.org/archive/interspeech_2015/
i15_0683.html

[7] Tilk, O. and Alumäe, T. (2014). Multi-domain recurrent neural network
language model for medical speech recognition. In Human Language
Technologies – The Baltic Perspective, volume 268, pages 149–152. IOS
Press, DOI: 10.3233/978-1-61499-442-8-149

182



[8] Lohk, A., Tilk, O., and Võhandu, L. (2013). How to create order in large
closed subsets of wordnet-type dictionaries. Eesti Rakenduslingvistika
Ühingu aastaraamat, 9:149–160, DOI: 10.5128/erya9.10

183


