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Abstract

Diabetes is a chronic disease that can be characterized by an elevated blood glucose
level. A blood glucose level that is elevated for a long period of time can lead to serious
complications. To prevent or postpone such complications, a strict control for blood
glucose level is needed. In these theses glucose-insulin system model was implemented
and tested if it could be used for predicting hypo- and hyperglycemia events. Two
approaches were considered. First approach was to use pure glucose-insulin model output
to predict hypo- and hyperglycemia events. For this purpose the model performed
reasonably well. However it did not detect all the hypoglycemia and hyperglycemia
events and it generated a lot of false alarms. Second approach was to use classification
to predict hypo- and hyperglycemia events and include glucose-insulin model output
into learning data. The classification approach did not generate as many false alarms
like predicting from glucose-insulin model and detection accuracy was higher.

4



Diabeet on krooniline haigus, mida iseloomustab kõrge veresuhkru tase. Veresuhkru
taset, mis on kõrge pikka aega võib põhjustada tõsiseid komplikatsioone. Selleks, et
vältida või edasi lükata sellise komplikatsioone pidev kontrolli veresuhkru taseme üle
on vajalik. Selles töös püütakse glükoosi-insuliini süsteemi mudelit rakendada hüpo-
ja hüperglükeemia sündmuste ennustamiseks. Uuritakse kahete lähenemist. Esimene
lähenemisviis, mida uuritakse, kasutab puhast glükoosi-insuliini mudeli väljundit sell-
eks, et ennustada hüpo- ja hüperglükeemia sündmusi. Selleks töötas mudel suhteliselt
hästi. Samas see ei tuvastatud kõiki hüpoglükeemia ja hüperglükeemia sündmusi ning
mudel andis palju valehäireid. Teine lähenemisviis, mida uuriti, oli kasutades klassifit-
seerimist selleks, et ennustada hüpo- ja hüperglükeemia sündmusi. Selleks, et paran-
dada klassifikaatori õppimise andmeid lisati sinna ka glükoosi-insulini mudeli väljund.
Klassifitseerimise lähenemisviis ei tekita nii palju valehäireid nagu ennustamine puhtalt
glükoosis-insuliinist mudeli väljundilt ning hüpo- ja hüperglükeemia sündmuste avas-
tamise täpsus oli suurem.
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Introduction

Diabetes is a chronic disease that can be characterized by an elevated blood glucose level
which can be caused by a lack of insulin production by the pancreas (type I diabetes)
or by the body’s ineffective use of insulin (type II diabetes). A blood glucose level
that is elevated for a long period of time can lead to vascular, neurological or metabolic
complications, such as kidney failure, blindness and an increased chance of heart attacks.
To prevent or postpone such complications, a strict control for blood glucose level is
needed.

There are several factors that affect the blood glucose level, such as carbohydrates intake,
insulin injections, exercise and the level of stress. Also there are a number of internal
processes, such as absorption and production of glucose by the liver and renal excretion
through urine. The large number of factors makes it difficult to predict how the glucose
level will behave.

There have been several studies about the prediction of glucose concentration in blood for
diabetic patients. There are two main approaches to this problem. First approach is to
use complex mathematical models that simulate glucose-insulin system. [3, 14, 9, 15, 4]
Second approach is to use existing data and build model from it. [11, 2]

The approach taken in this theses is to implement a mathematical glucose-insulin system
model and validate if it could be used for predicting hypo- and hyperglycemia events.
AIDA [8] glucose-insulin model was chosen as model to be implementation because
it is minimal and has few patient specific parameters and those parameters can be
estimated from available data. We investigate, how well the dynamics model of the
glycose-insulin system can directly be used to predict hypo and hyperclycemia. In
addition we investigate whether the modeled dynamics can be used to improve the
outcome of a learning the events from patient specific data.
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1 Diabetes

Diabetes mellitus is, according to [20], a chronic disease caused by inherited and/or
acquired deficiency in production of insulin by the body, or by the resistance to the
insulin produced.

There are two principle forms of diabetes:

• Type 1 diabetes (previously known as insulin-dependent or childhood-onset dia-
betes) is characterized by a lack of insulin production. According to [13], it results
from the autoimmune destruction of the insulin-producing beta cells in the pan-
creas. The subsequent lack of insulin leads to increased blood and urine glucose.

• Type 2 diabetes (formerly called non-insulin-dependent or adult-onset diabetes) is
caused by the body’s ineffective use of insulin. It often results from excess body
weight and physical inactivity.

Impaired glucose tolerance (IGT) and impaired fasting glycaemia (IFG), according to
[19], are intermediate conditions in the transition between normality and diabetes. Peo-
ple with IGT or IFG are at high risk of progressing to type 2 diabetes, although this is
not inevitable.

Hypoglycemia is a medical emergency that involves an abnormally diminished content
of glucose in the blood. Hypoglycemia occurs when blood glucose levels fall below 4
mmol/L [7].

Hyperglycemia is a condition when blood glucose concentration is high. Hyperglycemia
occurs when blood glucose level is greater than 7.0 mmol/l when fasting or 11.0 mmol/l

2 hours after meals [6].

Over time, diabetes leads to complications, in particular: diabetic retinopathy, which
leads to blindness; diabetic neuropathy, which increases of the risk of foot ulceration
and limb loss; and diabetic nephropathy leading to kidney failure. In addition, there is
an increased risk of heart disease and stroke with 50% of people with diabetes dying of
cardiovascular disease and stroke. [4]
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According to [12], globally, as of 2013, an estimated 382 million people have diabetes
worldwide. The number of people with type 2 diabetes is increasing in every country.
80% of people with diabetes live in low- and middle-income countries. The greatest
number of people with diabetes are between 40 and 59 years of age. 175 million people
with diabetes are undiagnosed. Diabetes caused 5.1 million deaths in 2013; every six
seconds a person dies from diabetes.
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2 Glucose-insulin system

Glucose concentration in body is tightly regulated by a complex neuro-hormonal control
system. The main purpose of it is to maintain glucose homeostasis.

Insulin is the primary regulator of glucose concentration in body. It promotes glucose
utilization and inhibits glucose production. There are also many counterregulatory hor-
mones at work (i.e., glucagon, epinephrine, cortisol, and growth hormone). Insulin is
produced by beta cells in the pancreas and it causes cells to absorb glucose from the
blood.

According to [4], the glucose and insulin systems interact by feedback control signals. It
means that if a glucose concentration rises (after a meal), beta-cells secrete more insulin
in response to increased plasma glucose concentration. Insulin in turn promotes glucose
utilization and inhibits glucose production so as to bring plasma glucose concentration
back to normal.

Glucose enters into system by absorption in gastro-instestinal track or by endogenous
production (mainly by the liver). Glucose is utilized, according to [3], in body by
both insulin-independent (e.g., central nervous system and red blood cells) and insulin-
dependent (muscle and adipose tissues) tissues and is peripherally cleared primarily by
the kidneys.

2.1 Glucose-insulin minimal model

Glucose-insulin model, described in [8], contains three compartments. A single glucose
compartment that represents extracellular glucose (including blood glucose) and separate
compartments for plasma and active insulin.

Glucose enters into glucose compartment via intestinal absorption and endogenous glu-
cose production (mainly in liver). Glucose is removed by insulin independent glucose
utilization (in central nervous system and red blood cells) and by insulin-dependent
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glucose utilization (in muscle and adipose tissues). Peripheral and hepatic handling
of glucose are dealt with separately in the model. Glucose handling in liver has been
modeled in terms of the “net hepatic glucose balance” which is computed as the sum of
gluconeogenesis, glycogen breakdown and glycogen synthesis data derived for different
blood glucose and insulin levels (table. 2.2).

Insulin enters into plasma insulin compartment only by absorption from insulin injec-
tion site and is removed by hepatic degradation. Insulin production by beta cells in the
pancreas is assumed to be virtually zero (type 1 diabetes). The activation and deacti-
vation of insulin are assumed to obey first-order kinetics. Active insulin is responsible
for glycaemic control.

Glucose excretion by kidneys has been modeled in terms of two patient specific model
parameters: the renal threshold of glucose and the creatinine clearance rate.
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Figure 2.1: Principal components of the glucose-insulin model for simulation of plasma
insulin and glucose dynamics. Squares are compartments, circles are
actions and arrows indicate interactions.[3]
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2.1.1 Insulin dynamics

Change in plasma insulin concentration is modeled as the result of insulin absorption
from the subcutaneous tissue and insulin elimination from plasma. These formulas and
their descriptions have been taken from [8, 14, 3]. Insulin elimination is assumed to obey
first-order kinetics. The possible effects of insulin antibodies are not taken into account.

The change in the plasma insulin concentration, I, is given by the equation:

dI

dt
= Iabs

Vi

− ke · I (2.1)

where keis the first-order rate constant of insulin elimination, Iabs is the rate of insulin
absorption and VI (table. 2.3) is the volume of insulin distribution.

The rate of insulin absorption is given by the equation:

Iabs(t) = s · ts · T s
50 · D

t · (ts + T s
50)2 (2.2)

wheret is the time elapsed from the insulin injection, T50 is the time at which 50% of
the dose, D, has been absorbed and s is a preparation-specific parameter of insulin type
(table. 2.1).

Linear dependency of T50 on dose is defined as:

T50 = a · D + b (2.3)

where a and b are preparation-specific parameter of the type of insulin (table. 2.1).

Parameter s, a, b define the insulin preparation-specific absorption pattern (see figure
2.5).

Insulin activation and deactivation, Ia, is assumed to obey first-order kinetics.

dIa

dt
= k1 · I − k2 · Ia (2.4)

where k1 and k2 (table. 2.3) are first-order rate constants.
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Figure 2.2: Model components of plasma insulin dynamics.

Insulin type s a (h/U−1) b (h)
Regular 2.0 0.05 1.7
NPH 2.0 0.18 4.9
Lente 2.4 0.15 6.2

Ultralente 2.5 0 13

Table 2.1: Standard insulin action times of insulin types [3]

The steady-state insulin profile, Iss, and steady-state active insulin profile Ia,ss, is given
by equations:

Iss = I(t) + I(t + 24) + I(t + 48) (2.5)

Ia,ss = Ia(t) + Ia(t + 24) + Ia(t + 48) (2.6)

It is assumed that three days is enough to reach steady-state.
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The equilibrated insulin level with the steady-state active insulin is used when computing
the ”net hepatic glucose balance” and peripheral glucose uptake.

I∗
eq = k2 · Ia,ss(t)/k1 (2.7)

I∗
eq is the insulin level in equilibrium with Ia,ss(t).

2.1.2 Glucose dynamics

Plasma glucose concentration is a summation of several distinct processes that include
glucose absorption from the gut, endogenous glucose production, glucose utilization by
various insulin sensitive and insensitive tissues and glucose excretion by kidneys. These
formulas and their descriptions have been taken from [8, 14, 3].

The change in glucose concentration is given by the equation:

dG

dt
= Gin(t) + NHGB(t) − Gout(t) − Gren(t)

VG

(2.8)

where G is the plasma glucose concentration, Gin is the glucose absorption from the gut,
Gout is the glucose utilization, NHGB is the “net hepatic glucose balance”, Gren is the
rate of renal excretion and VG is the volume of distribution for glucose.

Glucose absorption via the gut wall, Gin, is given by the equation:

Gin = kgabs · Ggut (2.9)

where kgabs is the rate constant for glucose absorption from the gut (table. 2.3) and Ggut

is the amount of glucose in gut.

The change of glucose amount in the gut, Ggut, after the ingestion of a meal containing C

millimoles of carbohydrates (glucose equivalent carbohydrates) is given by the equation:

d(Ggut)
dt

= Gempt − kgabs · Ggut (2.10)

where kgabs is rate constant of glucose absorption from the gut and Gempt is the rate of
gastric emptying.
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In the model it is assumed that the rate of gastric emptying has ascending and descending
phases and a maximum, after which gastric emptying remains relatively constant.

The period, Tmax, where gastric emptying is constant and maximum is given by the
equation:

Tmaxge =
C − 1

2Vmaxge · 2(Tascge + Tdesge)
Vmaxge

(2.11)

where Vmax, is the maximum rate of gastric emptying (table. 2.3) and Tascge and Tdesge

are the durations ascending and descending phases of the gastric emptying curve.

However in small quantities of carbohydrates gastric emptying curve never reaches its
maximum. If amount carbohydrates ingested is below critical level, Ccrit, Tascge and
Tdesge are defined by the equation:

Tascge = Tdesge = 2 · C

Vmaxge

(2.12)

The critical level of carbohydrates ingested, Ccrit, is defined as:

Ccrit = (Tascge + Tdesge) · Vmaxge

2 (2.13)

Gastric emptying, Gempt, is given by the equations:

Gempt = (Vmaxge/Tascge)/t; if t < Tascge (2.14)

Gempt = Vmaxge ; if Tascge < t ≤ Tascge + Tmaxge (2.15)

Gemp = Vmaxge − (Vmaxge/Tdesge)(t − Tascge − Tmaxge);

if T + Tmaxge ≤ t < Tmaxge + Tascge + Tgesge (2.16)

Gemp = 0; elsewhere (2.17)
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Glucose utilization, Gout, in the model is defined by equation:

Gout(G, I∗
eq) =

G(c · Sp · I∗
eq + GI)(Km + Gx)

GX · (Km + G) (2.18)

where c is the slope of the peripheral glucose utilization versus insulin line, GI is the
insulin independent glucose utilization, Gx is a reference value for glucose utilization, Km

is Michaelis-Menten constant for enzyme mediated glucose uptake, I∗
eq is the equilibrated

insulin level and Sp is peripheral insulin sensitivity parameter.

The rate of renal glucose excretion, Gren, in the model is defined by equations:

Gren = GFR(G − RTG); if G > RTG (2.19)

Gren = 0; elsewhere (2.20)

where GFR is the glomerular filtration (creatinine clearance) rate and RTG is the renal
threshold of glucose.
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Figure 2.3: Model components of glucose dunamics.

Net hepatic glucose balance, NHGB, is a function of arterial blood glucose concentration
AG and plasma insulin level I. Net hepatic glucose balance values according to current
effective plasma insulin and arterial blood glucose concentration are given in table 2.2.
This table is used when calculating glucose concentration (equation 2.8 ).
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Effective plasma AG ≤ 1.1 mmol l−1 AG = 3.3 mmol l−1 AG ≥ 4.4 mmol l−1

insulin
(Sh · I/Ibasal)

0 291.6 169.0 78.3
1 194.6 114.6 53.3
2 129.3 66.0 -1.7
3 95.7 46.3 -54.3
4 85.0 22.6 -76.0
5 76.3 4.3 85.0
6 69.0 -10.0 -92.0
7 62.0 -25.3 -97.3
8 52.0 -43.3 -101.0
9 48.0 -47.3 -104.0
10 41.7 -49.3 -106.7

Table 2.2: Net hepatic glucose balance (mmol/h) as function of the arterial blood
glucose concentration AG and plasma insulin level I. Sh is a patient-specific
hepatic insulin sensitivity parameter which has normalized value between 0
and 1. [8]

Parameter
VI = 0.142 (l/kg)
Vg = 0.22 (l/kg)

Insulin elimination
ke = 5.4 (h−1)

Insulin action
k1 = 0.025 (h−1)
k2 = 1.25 (h−1)

Glucose absorption
kgabs = 1 (1/h)

Vmaxge = 120 (mmol/h)
Tascge = 0.5 (h)
Tdesge = 0.5 (h)

Glucose utilization
c = 0.015 (mmol · h−1 · mU−1 · l)

Km = 10 (mmol/l)
Gx = 5.3 (mmol/l)

Renal excretion
RTG = 9.0 mmol l−1

GFR= 100 ml min−1

Table 2.3: Patient-independent model parameter values
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2.2 Model implementation

The glucose-insulin minimal model, described earlier, was implemented in the Java pro-
gramming language. “The Apache Commons Mathematics Library[16]” was chosen to
solve first order differential equations describing the model because it is open source
lightweight, self-contained mathematics and statistics library that could be used to
quickly solve differential equations.

The model implementation takes patient body weight, insulin doses (U), carbohydrates
(g), peripheral insulin sensitivity parameter (SP ), hepatic insulin sensitivity parameter
(Sh), simulation start and end time as inputs, and outputs time series of plasma in-
sulin concentration (mU/l), amount of glucose in gut (mmol) and blood glucose level
(mmol/l).
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The inputs and the output of the model are shown in Figure 2.4. The inputs are the
insulin intake (green circles) and glucose intake (blue circles) and the output is the
estimation of blood glucose level (red line).

Figure 2.4: The time course of blood glucose simulation. (Body weight is 70 kg,
SP = 0.5, Sh = 0.5)
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In the Figure 2.5 different insulin types are shown.

Figure 2.5: The time course of absorption for the different types of insulin after
subcutaneous injection of 24 U

Different insulin types have different characteristics:

• Regular or short-acting insulin usually reaches the bloodstream within 30 minutes
after injection, peaks anywhere from 2 to 3 hours after injection, and is effective
for approximately 3 to 6 hours. [1]

• Lente insulin is an intermediate-acting insulin that starts working about 1.5 hours
after it is injected. The effect is maximal between 4 and 8 hours and ends as long
as 24 hours after injection. [17]

• Ultralente insulin is a long acting form of insulin. It has an onset of 4 to 6 hours,
a peak of 14 to 24 hours, and a duration of 28 to 36 hours. [21]

• NPH Human Insulin which has an onset of insulin effect of 1 to 2 hours, a peak
effect of 4 to 6 hours, and duration of action of more than 12 hours. Very small
doses will have an earlier peak effect and shorter duration of action, while higher
doses will have a longer time to peak effect and prolonged duration. [5]
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In the Figure 2.6 comparison of ingested carbohydrates amount is shown. When the
ingested amount is small, the gastric emptying function is triangular, when the amount
is large it is trapezoidal.

Figure 2.6: The time course of glucose amount in the gut for 30 g and 200 g glucose
intake.

2.3 Validating model on collected data

After glucose-insulin model was implemented, it was validated that it could be used for
blood glucose simulation using the data inserted by patient. The data that was used
for validation was collected during diabetes patients self monitoring pilot project called
eMedic [10].

eMedic was a project funded by Central Baltic INTERREG IV A program. The target
of the project was to develop new practices for virtual consultation in medicine. The
focus was on diabetes and pediatric. eMedic project started in 2011 and ended in April
2014. [10]

22
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The collected data consisted of blood sugar measurements, insulin injections and car-
bohydrates intake records. What made using this data set difficult was a lot of missing
values, which meant that in several cases patient data could not be used. However, in
several cases there was sufficient data. Of those patients 4 were chosen.

The first task for simulation was to find values for the patient specific variable SP

(peripheral insulin sensitivity parameter) and Sh(hepatic insulin sensitivity parameter).
To find these parameter values the system iteratively tries different values to find best
fit between model and real data so that the distance between real measurements and
model output is minimal.

The period that was used for simulation was one week. After each simulation error was
calculated.

Root-mean-square error was used as error function.

RMS(G) =
√√√√ n∑

i=1

(Gpi
− Gmi

)2

n
(2.21)

where Gp is model value, Gm is measured value and n is number of data points.

The error function value was minimized during patient specific parameters values search.

2.3.1 Validation results

The found SP and Sh parameter values for each patient are given in table 2.4.

Patient SP Sh Average error (RMS(G))
1 1.0 0.4 4.86
2 0.1 0.8 6.06
3 0.0 0.1 5.95
4 0.6 0.0 5.47

Table 2.4: Found SP and Sh parameter values found for the test patients. (Period:
01.04.2013 - 01.08.2013)

The implemented glucose-insulin model worked using the data inserted by patients and
was able to generate values that corresponded to real measured blood glucose values.
The minimum root-mean-square error was 4.86 and the maximum was 5.95.

In the Figures 2.7, 2.8, 2.9, 2.10, the results of blood glucose concentration change
simulations are shown for each test patient. The simulation period is one week. The
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green circles are insulin intake values, blue circles are carbohydrate ingestion, the purple
line is glucose-insulin model output and red squares are real measured values.

Patient 1

Test patient 1 had very good data. All the blood sugar measurements, carbohydrates
intake and insulin injection records were present and because of that simulations had
lowest average error. In the Figure 2.7, we can see that in several points actual measured
value is very close to the glucose-insulin model output.
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Figure 2.7: The result of simulation of patient 1 blood glucose level.
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Patient 2

Patient 2 had most of the blood sugar measurements, carbohydrates intake and insulin
injection records. However in some periods data was missing. In case of patient 2
simulated blood glucose values mostly stayed below real measured values.

Figure 2.8: The result of simulation of patient 2 blood glucose level.
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Patient 3

Patient 3 had most of the blood sugar measurements, carbohydrates intake and insulin
injection records present. However in some periods carbohydrates intake data was miss-
ing. That meant that simulation failed on those periods. In the Figure 2.9 we can see
that from hour 94 to 156 model does not output anything. Because of missing values
average error was high.

Figure 2.9: The result of simulation of patient 3 blood glucose level.
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Patient 4

Patient 4 had all blood sugar measurements, carbohydrates intake and insulin injection
records present. Because of that simulations had low average error.

Figure 2.10: The result of simulation of patient 4 blood glucose level.
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3 Predicting hypo- and hyperglycemia
events

3.1 Prediction using the glucose-insulin model

The first approach that was used to predict hypoglycemia and hyperglycemia event was
to use implemented glucose-insulin model output.

The prediction results for each of the test patient are given in tables 3.1, 3.2, 3.3,
3.4. Detected events are correct hypo- or hyperglycemia events that model predicted.
Undetected events are hypo- or hyperglycemia events that were not predicted by the
model. False alarms are events when model predicted hypo- or hyperglycemia event,
but blood sugar level was actually in norm.
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Patient 1

In the case of Patient 1, predicting hypoglycemia and hyperglycemia events was success-
ful. Hypoglycemia detection accuracy was 57%, false alarm rate 0.88. Hyperglycemia
detection accuracy was 83%, false alarm rate 0.72

Period
Hypoglycemia predicted Hyperglycemia predicted

Detected Undetected False Detected Undetected False
alarm alarm

01.04 - 07.04 1 0 5 2 0 3
08.04 - 14.04 0 0 2 3 1 2
15.04 - 21.04 0 0 5 1 0 0
22.04 - 28.04 0 0 3 4 0 0
29.04 - 05.05 0 0 1 1 1 3
06.05 - 12.05 1 0 4 3 1 2
13.05 - 19.05 0 0 2 1 1 6
20.05 - 26.05 1 0 0 0 0 7
27.05 - 02.06 0 0 2 1 0 4
03.06 - 09.06 0 1 3 1 0 3
10.6 - 16.06 0 1 1 1 0 4
17.06 - 23.06 0 1 1 1 0 10
24.06 - 30.06 1 0 1 0 0 5

Total 4 3 30 19 4 49

Table 3.1: Patient 1 prediction statistics.
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Patient 2

In the case of Patient 2, predicting hypoglycemia and hyperglycemia events was un-
successful. Hypoglycemia false alarm rate was very high and hyperglycemia detection
accuracy was low. Hypoglycemia detection accuracy was 100% and false alarm rate 1.
Hyperglycemia detection accuracy was 10% and false alarm rate 0.63

Period
Hypoglycemia predicted Hyperglycemia predicted

Detected Undetected False Detected Undetected False
alarm alarm

01.04 - 07.04 0 0 10 0 0 0
08.04 - 14.04 0 0 10 0 3 0
15.04 - 21.04 1 0 11 2 8 0
22.04 - 28.04 0 0 13 0 9 0
29.04 - 05.05 0 0 9 0 0 0
06.05 - 12.05 0 0 13 0 0 0
13.05 - 19.05 0 0 7 0 5 0
20.05 - 26.05 0 0 14 0 0 0
27.05 - 02.06 0 0 13 0 3 0
03.06 - 09.06 0 0 14 0 0 0
10.6 - 16.06 0 0 13 0 0 3
17.06 - 23.06 0 0 12 1 0 1
24.06 - 30.06 0 0 11 0 0 1

Total 1 0 150 3 28 5

Table 3.2: Patient 2 prediction statistic

Patient 3

In the case of Patient 3, hypoglycemia detection accuracy was 72% and false alarm rate
was 0.62. Hyperglycemia detection accuracy was 34% and false alarm rate was 0.29
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Period
Hypoglycemia predicted Hyperglycemia predicted

Detected Undetected False Detected Undetected False
alarm alarm

01.04 - 07.04 3 2 1 5 4 1
08.04 - 14.04 2 0 1 3 7 1
15.04 - 21.04 3 1 2 3 2 1
22.04 - 28.04 1 1 6 2 5 0
29.04 - 05.05 1 0 3 3 9 0
06.05 - 12.05 3 0 0 1 6 0
13.05 - 19.05 2 1 1 3 2 6
20.05 - 26.05 2 0 4 2 6 0

Total 17 5 28 22 41 9

Table 3.3: Patient 3 prediction statistic

Patient 4

In the case of Patient 4, hypoglycemia detection accuracy was 75% and false alarm rate
was 0.37. Hyperglycemia detection accuracy was 39% and false alarm rate was 0.43.

Period
Hypoglycemia predicted Hyperglycemia predicted

Detected Undetected False Detected Undetected False
alarm alarm

01.04 - 07.04 3 0 0 5 4 2
08.04 - 14.04 0 0 1 3 0 4
15.04 - 21.04 2 2 1 3 0 1
22.04 - 28.04 5 1 1 2 3 2
29.04 - 05.05 3 0 1 3 7 1
06.05 - 12.05 1 1 2 4 4 0
13.05 - 19.05 4 2 1 0 3 4
20.05 - 26.05 4 1 2 3 3 0
27.05 - 02.06 2 2 2 3 2 0
03.06 - 09.06 3 0 2 0 3 2
10.6 - 16.06 3 2 3 1 5 0
17.06 - 23.06 3 0 2 0 4 0
24.06 - 30.06 5 2 4 0 4 4

Total 38 13 22 27 42 20

Table 3.4: Patient 4 prediction statistic

For this purpose glucose-insulin model performed reasonably well. However it did not
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detect all the hypoglycemia and hyperglycemia events and it generated a lot of false
alarms. This approach seems to work well, if the patient is good at taking notes, e.g.
patient 1. When the quality of the data is low, e.g. it has lots of missing values, the
error is high. In our experiments periods of missing data where not eliminated because
we set up the experiment in such a way that we use all the realistic data during some
specific period.

3.2 Predicting using classification

The second approach was to learn from patient previous data and glucose-insulin model
output, and use classification to predict hypoglycemia and hyperglycemia events.

The first job was to somehow handle time series. In the given data, the measurements are
not aligned in time and there are gaps in measurements. To cope with the misalignment
and gaps in the data, the developed system first divides data into samples. Each data
sample consists of blood sugar measurement, carbohydrates intake or insulin injection
record and next blood sugar measurement. From these samples the system created the
learning data set. The first two months of the data were used for training data.

To improve the learning data set, the glucose-insulin model simulation results are in-
cluded into the learning data set.

We also experimented without including model results into the learning data set. How-
ever, since the classifier performed significantly better with the glucose-insulin model
results added, here we bring out only the results we got by using the improved learning
data set.

For classification K* classification algorithm was used from Weka[18] data mining li-
brary. K* classification algorithm was chosen because it performed best of the algo-
rithms tried. We also tried classification algorithms like, e.g. Naïve Bayes, DTNB (a
decision table/naive bayes hybrid classifier), J48 (a decision tree classifier), SMO (a
support vector classifier), and used cross-validation to assess their performance.

Implementation of the solution described in [11, 2] was not evaluated within the current
MSc thesis because of the extended development effort required.

The prediction results for each of the test patient are given in tables 3.5, 3.6, 3.7,
3.8. Detected events are correct hypo- or hyperglycemia events that model predicted.
Undetected events are hypo- or hyperglycemia events that were not predicted by the
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model. False alarms are events when model predicted hypo- or hyperglycemia event,
but blood sugar level was actually in norm. In the brackets is the result of predicting
using glucose-insulin model.

Patient 1

In the case of Patient 1, hypoglycemia detection accuracy was 17%, false alarm rate 0.5.
Hyperglycemia detection accuracy was 78%, false alarm rate 0.22.

Period
Hypoglycemia Hyperglycemia

Detected Undetected False Detected Undetected False
alarm alarm

06.05 - 12.05 0 (1) 1 (0) 0 (4) 2 (3) 2 (1) 0 (2)
13.05 - 19.05 0 (0) 0 (0) 0 (2) 1 (1) 1 (1) 0 (6)
20.05 - 26.05 0 (1) 1 (0) 0 (0) 0 (0) 0 (0) 1 (7)
27.05 - 02.06 0 (0) 0 (0) 0 (2) 1 (1) 0 (0) 0 (4)
03.06 - 09.06 0 (0) 1 (1) 0 (3) 1 (1) 0 (0) 0 (3)
10.6 - 16.06 0 (0) 1 (1) 1 (1) 1 (1) 0 (0) 0 (4)
17.06 - 23.06 0 (0) 1 (1) 0 (1) 1 (1) 0 (0) 0 (10)
24.06 - 30.06 1 (1) 0 (0) 0 (1) 0 (0) 0 (0) 1 (5)

Total 1 (3) 5 (3) 1 (14) 7 (8) 3 (2) 2 (41)

Table 3.5: Patient 1 prediction statistic. In the brackets is the result of predicting
using glucose-insulin model.

Patient 2

In the case of Patient 2, hypoglycemia detection accuracy was100%, false alarm rate 0%.
Hyperglycemia detection accuracy was67%, false alarm rate 0.25.
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Period
Hypoglycemia Hyperglycemia

Detected Undetected False Detected Undetected False
alarm alarm

06.05 - 12.05 0 (0) 0 (0) 0 (13) 0 (0) 0 (0) 1 (0)
13.05 - 19.05 0 (0) 0 (0) 0 (7) 3 (0) 2 (5) 0 (0)
20.05 - 26.05 0 (0) 0 (0) 0 (14) 0 (0) 0 (0) 0 (0)
27.05 - 02.06 0 (0) 0 (0) 0 (13) 3 (0) 0 (3) 0 (0)
03.06 - 09.06 0 (0) 0 (0) 0 (14) 0 (0) 0 (0) 1 (0)
10.6 - 16.06 0 (0) 0 (0) 0 (13) 0 (0) 0 (0) 0 (3)
17.06 - 23.06 0 (0) 0 (0) 0 (12) 0 (1) 1 (0) 0 (1)
24.06 - 30.06 0 (0) 0 (0) 0 (11) 0 (0) 0 (0) 0 (1)

Total 0 (0) 0 (0) 0 (97) 6 (1) 3 (8) 2 (5)

Table 3.6: Patient 2 prediction statistic. In the brackets is the result of predicting
using glucose-insulin model.

Patient 3

In the case of Patient 3, hypoglycemia detection accuracy was 14%, false alarm rate 0.
Hyperglycemia detection accuracy was 30%, false alarm rate 0.6.

Period
Hypoglycemia Hyperglycemia

Detected Undetected False Detected Undetected False
alarm alarm

06.05 - 12.05 0 (3) 3 (0) 0 (0) 4 (1) 3 (6) 2 (0)
13.05 - 19.05 0 (2) 3 (1) 0 (1) 2 (3) 3 (2) 5 (6)
20.05 - 26.05 1 (2) 1 (0) 0 (4) 0 (2) 8 (6) 2 (0)

Total 1 (7) 7 (1) 0 (5) 6 (6) 14 (14) 9 (6)

Table 3.7: Patient 3 prediction statistic. In the brackets is the result of predicting
using glucose-insulin model.

Patient 4

In the case of Patient 4, hypoglycemia detection accuracy was 71%, false alarm rate
0.32. Hyperglycemia detection accuracy was 36%, false alarm rate 0.63.

35



Period
Hypoglycemia Hyperglycemia

Detected Undetected False Detected Undetected False
alarm alarm

06.05 - 12.05 2 (1) 0 (1) 0 (2) 2 (4) 6 (4) 3 (0)
13.05 - 19.05 6 (4) 0 (2) 2 (1) 1 (0) 2 (3) 6 (4)
20.05 - 26.05 4 (4) 1 (1) 1 (2) 0 (3) 6 (3) 2 (0)
27.05 - 02.06 3 (2) 1 (2) 1 (2) 4 (3) 1 (2) 0 (0)
03.06 - 09.06 3 (3) 0 (0) 2 (2) 1 (0) 2 (3) 5 (2)
10.6 - 16.06 1 (3) 4 (2) 2 (3) 1 (1) 5 (5) 0 (0)
17.06 - 23.06 0 (3) 3 (0) 4 (2) 1 (0) 3 (4) 2 (0)
24.06 - 30.06 6 (5) 1 (2) 0 (4) 4 (0) 0 (4) 1 (4)

Total 25 (23) 10 (12) 12 (18) 14 (11) 24 (28) 19 (10)

Table 3.8: Patient 4 prediction statistic. In the brackets is the result of predicting
using glucose-insulin model.

The classification approach did not generate as many false alarms like predicting from
the glucose-insulin model did. In the case of patient 3, detection accuracy was lower
compared to predicting from the glucose-insulin model. However in case of patients 1,
2 and 4 the detection accuracy was higher.
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4 Conclusion

In these theses the glucose-insulin system model was implemented and tested if it could
be used for prediction of hypo- and hyperglycemia events. The AIDA [8] glucose-insulin
minimal model was chosen as model to be implementation. The implemented model was
also tested that it could handle the data inserted by real patient.

Two approaches were considered for predicting hypo- and hyperglycemia events.

The first approach was to use the pure glucose-insulin model output for prediction of
hypo- and hyperglycemia events. For this purpose the implemented model performed
reasonably well. However it did not detect all the hypoglycemia and hyperglycemia
events and it generated a lot of false alarms.

The second approach was to use classification to predict hypo- and hyperglycemia events
and include glucose-insulin model results into the learning data. The classification ap-
proach did not generate as many false alarms like predicting from glucose-insulin model
and detection accuracy in some test cases was higher.

Recommendations

Overall, the glucose-insulin system model can be used for prediction of hypo- and hyper-
glycemia events. However some future work is required before it can be used in real life.
The implemented glucose-insulin model does not include process of insulin production
by beta cells in the pancreas and physical activity model. Including those factors could
make model accurate and might bring false alarm rate down.
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Nomenclature

homeostasis Homeostasis is the property of a system in which variables are regulated so
that internal conditions remain stable and relatively constant
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