

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Daniel Tšarin 164648IABB

ANALYSIS AND IMPLEMENTATION OF

METHODS FOR FAKE IP ADDRESS

DETECTION

Bachelor's thesis

Supervisor: Martin Rebane

 MSc

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Daniel Tšarin 164648IABB

VÕLTSITUD IP AADRESSI AVASTAMISE

MEETODITE ANALÜÜS JA RAKENDUS

Bakalaureusetöö

Juhendaja: Martin Rebane

 MSc

3

Author's declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature, and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Daniel Tšarin

3.01.2021

4

Abstract

The purpose of this thesis is to analyze modern methods for fake IP detection and briefly

describe how does each method work. Also, it is planned to create an application that will

show the implementation of each method. Further, the application will be used in

experiments with IP masking tools like proxy and VPN.

To achieve the objective, the author will describe the theoretical side of each method in

the first half of this thesis. In the second half of this thesis, it is planned to present the

application implementation and experiments results, that show the efficiency of selected

fake IP detection methods.

During this research, it has been found that methods based on WebRTC, JS Timezone,

and Geolocation API can effectively detect the fact of IP substitution if proxy is used for

IP masking. However, WebRTC and Geolocation API in most cases cannot detect the

fact of IP substitution if VPN is used for IP masking.

This thesis is written in English and is 24 pages long, including 4 chapters, 15 figures,

and 5 tables.

5

Annotation

Käesoleva lõpputöö eesmärk on analüüsida kaasaegseid võltsitud IP aadressi avastamise

meetodeid ja lühedalt kirjeldada kuidas iga meetod töötab. Samuti on plaanis luua

rakendus mis näitab iga meetodi teostust. Seejärel rakendus kasutatakse eksperimentides

koos erinevatega IP aadressi võltsimise tööriistadega nagu proxy ja VPN.

Eesmärgi saavutamiseks, autor kirjeldab iga meetodi teoreetilist osa esimeses töö pooles.

Teises töö pooles on plaanis esitada rakenduse teostust ja eksperimentide tulemused, mis

näitavad valitud võltsitud IP aadressi avastamise meetodite efektiivsust.

Selle töö käigus oli leitud, et meetodid mis põhinevad WebRTC, JS Timezone ja

Geolocation API baasil võivad efektiivselt avastada IP aadressi asenduse fakti juhul kui

proxy on kasutatud IP maskeerimiseks. Kuid WebRTC ja Geolocation API enamasti ei

saa avastada IP aadressi asenduse fakti juhul kui VPN on kasutatud IP maskeerimiseks.

Lõpputöö on kirjutatud inglise keeles ning sisaldab teksti 24 leheküljel, 4 peatükki, 15

joonist ja 5 tabeleid.

6

List of abbreviations and terms

Geolocation API API used by websites to determine user location

Fake IP IP address substitution with tools like a proxy, VPN, and others

Fingerprinting Techniques that allow websites or applications to identify user's

different device parameters

ICE Interactive Connectivity Establishment, a technology used for

peer-to-peer connection establishment

mDNS Multicast DNS is a simplified version of traditional DNS which

is used by WebRTC

NAT Network Address Translation provides security for private

networks, solves the issue with lack of IPv4 addresses but

complicates peer-to-peer connection establishment

Proxy An intermediary server between a client and target server which

can protect the client from attack and provide anonymity but at

the same time can be used by criminal for IP substitution

P2P Peer-to-peer architecture in which hosts transmit data between

each other directly, without a centralized server

RFC Request for Comments documents that define the Internet

standards

SDP Session Description Protocol used by data streaming protocols

like WebRTC

STUN Session Traversal Utilities for NAT can be used to determine

the IP address and port of host allocated to it by a NAT

TURN Traversal Using Relay NAT is a relay that helps two peers to

establish a peer-to-peer connection

WebRTC Web Real-Time Communication technology which allows

sending audio, video, or arbitrary data via P2P

7

Table of contents

1 Introduction ... 10

1.1 Objective ... 10

2 Theory .. 11

2.1 Overview of fake IP detection methods ... 11

2.2 HTTP headers ... 12

2.3 WebRTC ... 13

2.3.1 NAT problem ... 13

2.3.2 ICE and SDP .. 14

2.3.3 Private IP addresses security leak .. 15

2.4 Timezone .. 16

2.5 Geolocation API ... 16

2.6 TCP/IP fingerprinting ... 17

2.6.1 Active and passive OS fingerprinting .. 17

2.6.2 Nmap ... 18

3 Implementation .. 19

3.1 Application architecture ... 19

3.1.1 Modules ... 19

3.1.2 Sequence .. 20

3.1.3 Conceptual diagrams ... 21

3.2 Fingerprinting methods... 23

3.2.1 HTTP headers .. 24

3.2.2 Timezone implementation ... 24

3.2.3 Geolocation implementation ... 25

3.2.4 WebRTC implementation .. 28

3.2.5 TCP/IP fingerprinting (Nmap) .. 28

4 Experiments with fake IP detection tool.. 30

4.1 Test with proxy ... 30

4.2 Test with VPN .. 31

4.3 Results clarification and methods comparison ... 32

Summary ... 33

References .. 34

8

Appendix 1 – Public IP from WebRTC.. 35

Appendix 2 – FakeIP application sequence diagram.. 36

9

List of figures

Figure 1 Fake IP detection methods (author's diagram) ... 11

Figure 2 STUN/TURN servers use in WebRTC (author's diagram) 14

Figure 3 Example of SDP data (author's code snippet) .. 15

Figure 4 FakeIP package diagram (author’s diagram) ... 20

Figure 5 “Shared” module component diagram (author’s diagram) 22

Figure 6 “Fingerprinting” module component diagram (author’s diagram) 23

Figure 7 Request to get IP data from headers (author's code snippet) 24

Figure 8 IPData class (author's code snippet) ... 24

Figure 9 User's system Timezone value obtaining (author's code snippet) 25

Figure 10 Geolocation obtaining (author's code snippet) ... 26

Figure 11 Geolocation API response example (author’s picture) 26

Figure 12 Geolocation API permissions request (author’s picture) 27

Figure 13 Result of Nmap OS scan (author's code snippet) ... 29

Figure 14 Public IP obtainment through WebRTC (author's code snippet) 35

Figure 15 FakeIP sequence diagram (author's diagram) .. 36

10

1 Introduction

Nowadays, fraudulent payments cause significant damage to the E-commerce business.

Nevertheless, cybercriminals have one thing in common – they use IP address masking

solutions such as proxy, VPN, mobile 3G/4G internet, or SSH tunnels. In fact, a regular

user has no reason for masking his/her real IP address in most of the cases (exceptions

are privacy reasons or desire to get access to restricted resources). So how can we

understand if a user uses any IP address masking solution and recognize the fact of IP

address substitution to prevent illegal activities? At the same time, are there any

mechanisms that may resist fake IP address detection?

An IP address is one of the most important and unique identifiers for worldwide web

users. From the transport layer perspective, the IP address solves the simple issue. It helps

to address networking packets. At the same time, on the application layer, the IP address

helps to uniquely identify users and personalize content, based on their location.

The unique identification part is the most important in the security part of a web

application. Developers can implement different fake IP revealing methods on their

websites to prevent different harmful and illegal activities.

1.1 Objective

The aim of this work is to analyse methods for fake IP detection, assess reliability of each

method and understand wether it might be usefull to use these methods separately or

together in combination. The thesis itself is logically divided into 3 main sections: the

theoretical side of each method, implementation, and the demonstration part with

experiments results. The implementation part will have an architecture description and

code snippets.

As a result, within this project, it is planned to create a web application, which will be

available as an open-source fake IP detection tool. The main purpose of the application -

is to spot mismatches in different parameters that can point to the fact that the IP address

is faked.

11

2 Theory

This part will describe the theoretical part of the fake IP address detection methods.

2.1 Overview of fake IP detection methods

Over the years, quite a big subset of methods for IP address detection have been invented.

Some of the technologies, that allow us to detect the fact of IP address substitution were

created for a different purpose at all. For example, WebRTC’s main purpose is to allow

users to have real-time communications. However, due to technical implementation, it

turned out to be a great tool for real public IP address detection. It was possible due to the

peer-to-peer approach that is used in this communication technology.

Figure 1 shows the diagram with the methods for fake IP detection, that are going to be

considered in this thesis.

Figure 1 Fake IP detection methods (author's diagram)

It is necessary to understand that by the use of methods, mentioned in Figure 1, the fact

of IP address substitution is established indirectly. JS Timezone, Geolocation API,

TCP/IP fingerprint can just point out the discrepancy of some parameters that may

indicate that the IP address is faked. However, WebRTC is an exception because it

directly points to the difference between public IP addresses.

12

The IP address obtained through HTTP headers and it’s parameters (location, local

Timezone, and its TCP/IP fingerprint) are used for comparison with analogical

parameters that were received through corresponding methods. For example, the

Timezone of the IP address obtained through HTTP headers, and Timezone, obtained

through JS Timezone. Table 1 describes mismatches that are going to be detected by each

method.

Table 1 Differences in parameters by method indicating a mismatch

Method Difference indicating mismatch

WebRTC
Public IP from HTTP headers and public IP

from WebRTC

JS Timezone
IP Timezone and System Timezone obtained

by JS

Geolocation API
IP location and location obtained by

Geolocation API

TCP/IP fingerprint
OS declared in User-agent and OS of public

IP host (which might be a proxy server IP)

2.2 HTTP headers

There is a set of headers which provides an opportunity to detect user IP address. IP

address detection by HTTP headers is one of the most common methods. At the same

time, this is the easiest way to get client IP. Nowadays, there are lots of API services, that

provide an opportunity to get a client’s IP address from headers. It makes it easier for the

website developers to get client IP from headers without the implementation of their

HTTP request analysis solution. Examples of such services: www.ipify.org and

www.geojs.io.

“The X-Forwarded-For (XFF) header is a de-facto standard header for identifying the

originating IP address of a client connecting to a web server through an HTTP proxy or a

load balancer” [1]. However, we need to understand that almost all proxies have masked

HTTP headers and in most cases, HTTP headers will not reveal the real IP address of the

client. IP from headers and its parameters can be used as a starting point in comparison

to IP and parameters obtained with other techniques like WebRTC, Geolocation API, and

others.

http://www.ipify.org/

13

2.3 WebRTC

WebRTC is a technology that allows web applications and websites to capture and

optionally stream audio and/or video media, as well as to exchange arbitrary data between

browsers without requiring an intermediary. Connections between two peers are

represented by the RTCPeerConnection interface. Once a connection has been established

and opened using RTCPeerConnection, MediaStreams, or data channels

(RTCDataChannels) can be added to the connection. [2]

2.3.1 NAT problem

NAT (Network Address Translation) is a mechanism that allows hiding hosts within a

local network behind the private IP address. Thereby NAT is an intermediary between

private and public networks.

“Primarily NAT was introduced to the world of IT and networking due to the lack of IP

addresses, or looking at it from another view, due to the vast amount of growing IT

technologies relying on IP addresses. To add to this, NAT adds a layer of security, by

hiding computers, servers, and other IT equipment from the outside world.” [3]

However, NAT brings quite a big problem for peer-to-peer connections, since hosts, that

would like to communicate with each other may not know the IP address of the opponent,

which is hidden behind the NAT. Also, the NAT will act as a firewall, bypassing packets

outside, while denying packets from the outside, which makes peer-to-peer connection

impossible.

As a solution to the NAT problem, WebRTC comes with a solution of NAT traversal,

which uses STUN and TURN servers to detect the real IP of the peer. STUN is a protocol

to discover your public address and determine any restrictions in your router that would

prevent a direct connection with a peer [4].

The client will send a request to a STUN server on the Internet who will reply with the

client’s public address and whether or not the client is accessible behind the router’s NAT.

Figure 2 schematically describes the process of WebRTC peer connection establishment

with the help of the STUN/TURN server.

14

Figure 2 STUN/TURN servers use in WebRTC (author's diagram)

Steps of WebRTC peer connection with STUN/TURN:

1. Host 1 sends a request to the STUN/TURN server

2. STUN/TURN server sends public IP of Host 1, which is the IP address of NAT

router

3. Host 1 passes IP address received in step 2 to Host 2

4. Host 1 and Host 2 establish a direct peer-to-peer connection

2.3.2 ICE and SDP

To further move towards WebRTC IP leak, we need to consider two important concepts

of WebRTC – SDP, and ICE.

SDP describes a multimedia session, which can be audio, video, whiteboards, fax,

modem, and other streams. It provides a general-purpose, standard representation to

describe various aspects of the multimedia session, such as media capabilities, transport

addresses, and related metadata. [5] In our context, the transport addresses part is the most

important since it contains the IP addresses of a peer.

15

ICE is a framework used by WebRTC for connecting two peers, regardless of network

topology. This protocol lets two peers find and establish a connection with one another

even though they may both be using NAT. [6] ICE is an extension to the offer/answer

model and works by including a multiplicity of IP addresses and ports in SDP offers and

answers. The IP addresses and ports included in the SDP and the connectivity checks are

performed using the STUN or TURN servers. [7]

In other words, the SDP contains all the peer-related data to perform the further

connection.

2.3.3 Private IP addresses security leak

In 2014 there was a bug reported to the chromium project which stated that WebRTC

provides quite a severe leak which allows websites to get user private IP address without

notifying the user [8].

v=0

o=mozilla...THIS_IS_SDPARTA-81.0 7322323708244440960 0 IN IP4 0.0.0.0

s=-

t=0 0

a=sendrecv

a=fingerprint:sha-256
77:86:34:AE:EA:79:F6:46:D2:E3:EE:B5:95:DE:74:CF:6A:7D:49:5A:2F:40:1F:24:C6:D8
:5D:E3:85:25:F7:5B

a=group:BUNDLE 0

a=ice-options:trickle

a=msid-semantic:WMS *

m=application 56392 UDP/DTLS/SCTP webrtc-datachannel

c=IN IP4 193.40.250.235

a=candidate:0 1 UDP 2122252543 2f2d895b-7eff-44e5-b81d-aaf14897cd7b.local
56392 typ host

a=candidate:2 1 TCP 2105524479 2f2d895b-7eff-44e5-b81d-aaf14897cd7b.local 9
typ host tcptype active

a=candidate:1 1 UDP 1686052863 193.40.250.235 56392 typ srflx raddr 0.0.0.0
rport 0

a=sendrecv

a=end-of-candidates

a=ice-pwd:4201e5a5e56e5e455bd6d8dbe9c293af

a=ice-ufrag:3ae78d10a=mid:0

a=setup:actpass

a=sctp-port:5000

a=max-message-size:1073741823

Figure 3 Example of SDP data (author's code snippet)

16

Therefore, in 2019 WebRTC changed their approach in ICE candidates gathering

regarding private IP addresses, since it is quite a serious leak, that might be exposed for

fingerprinting or direct attacks:

“As detailed in [IPHandling], exposing client private IP addresses by default to web

applications maximizes the probability of successfully creating direct peer-to-peer

connections between clients, but creates a significant surface for user fingerprinting.” [9]

As a fix to this security leak, there was implemented a solution with the usage of mDNS

and private IP addresses became masked with UUID1. We can see this from the example

of SDP data specified in paragraph 2.3.2, Figure 3.

2.4 Timezone

The Timezone mismatch is quite a trivial solution that allows detecting IP substitution. It

is needed to compare Timezone values of public IP, that was received by request headers

and get system Timezone via browser by executing simple JavaScript code - the creation

of Date instance which will show the real system Timezone.

2.5 Geolocation API

The Geolocation API allows the user to provide their location to web applications if they

so desire. The Geolocation API is accessed via a call to navigator.geolocation; this will

cause the user’s browser to ask them for permission to access their location data. If users

accept it, then the browser will use the best available functionality on the device to access

this information. [10]

The Geolocation API defines a high-level interface to location information associated

only with the device hosting the implementation, such as latitude and longitude. Sources

of location information include Global Positioning System (GPS) and location, inferred

from network signals: such as IP address, RFID WiFi, and Bluetooth MAC addresses,

and GSM/CDMA cell ID’s, as well as user input. [11] However, the location obtained

with Geolocation API might not be entirely accurate and for this additional parameter –

1 UUID - Universally Unique Identifier (https://tools.ietf.org/html/rfc4122)

17

“accuracy” is passed together with latitude and longitude values, which shows the

position accuracy in meters.

2.6 TCP/IP fingerprinting

Network traffic from a computer can be analyzed to detect what operating system it is

running. It is largely due to the differences in how the TCP/IP stack is implemented in

various operating systems. A simple but effective passive method is to inspect the initial

“Time To Live” (TTL) in the IP header and the TCP window size (the size of the receive

window) of the first packet in a TCP session. One reason why the TTL and window size

values vary between different OS - because the RFC’s for TCP and IP do not require

implementations to use any particular default value for these fields. [12]

Most often, users and their proxy server’s operating systems do not match. It is because -

proxy servers are running mostly on Linux, while the highest percentage of users on the

web prefer Windows or macOS as main operating systems. Thus, if a user with macOS

uses a proxy server, running on Linux, using Nmap we can detect this mismatch. It just

needs to perform TCP/IP fingerprint and to compare its result to the operating system

value from the User-agent.

2.6.1 Active and passive OS fingerprinting

Tools for OS fingerprinting are separated into 2 types – active and passive. One of the

best examples of active fingerprinting is Nmap2. The popular port scanner Nmap can

identify the operating system of a remote computer, by sending six packets with specially

crafted option combinations in the TCP layer (for example window scale, NOP, and EOL

options). Nmap then watches how the scanned host responds to these odd packets. [13]

Passive fingerprinting uses most of the same techniques as the active fingerprinting

performed by Nmap. The difference is that a passive system simply sniffs the network,

opportunistically classifying hosts as it observes their traffic. It is more difficult than

active fingerprinting since you have to accept whatever communication happens, rather

than designing your own custom probes. [14] An example of tools that can be used for

2 https://nmap.org/

18

passive fingerprinting is p0f. With passive fingerprinting, we just need a user, somehow,

to send a request to our server with configured p0f.

However, active fingerprinting can bring negative consequences, because port scanning

which is used in active fingerprinting may be illegal in some jurisdictions.

2.6.2 Nmap

“Nmap OS fingerprinting works by sending up to 16 TCP, UDP, and ICMP probes to

known open and closed ports of the target machine. These probes are specially designed

to exploit various ambiguities in the standard protocol RFCs. Then Nmap listens for

responses. Dozens of attributes in those responses are analyzed and combined to generate

a fingerprint.” [13]

Due to the simplicity of the approach, the Nmap and similar tools are used most frequently

for TCP/IP OS fingerprinting.

19

3 Implementation

This part will describe the implementation part of fake IP address detection methods. The

author will use his open-source web application written on Angular, which demonstrates,

how each of the methods works. The website used in testing is available at

http://fakeip.xyz/ and the source code can be found at https://github.com/f1kus97/fake-

ip.

3.1 Application architecture

This section will cover the architectural details of the application.

3.1.1 Modules

The application is separated into two logical modules: “Fingerprinting” and “Shared”.

The main purpose of components in the “Fingerprinting” module is to collect IP address

related fingerprints. The “Shared” module is responsible for the view part of the

application: templates, styles, and responsive grid layout alinement. Furthermore, the

“Shared” module unites all templates of components from the “Fingerprinting” module.

The main purpose of services is to provide access to external API and separate all the

complicated logic related to fingerprints collection. Services are used by components

from the “Fingerprinting” module and return results asynchronously as Observable3 or

Promise4.

Figure 4 shows a package diagram that describes the main application packages and

their components.

3 https://angular.io/guide/observables

4 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

http://fakeip.xyz/
https://github.com/f1kus97/fake-ip
https://github.com/f1kus97/fake-ip

20

Figure 4 FakeIP package diagram (author’s diagram)

3.1.2 Sequence

The sequence diagram (see Figure 15 from Appendix 2) shows the lifecycle of

fingerprinting components.

1. FingerprintsComponent gathers and initializes all fingerprinting components:

MainIpComponent, WebrtcComponent, TimezoneComponent, GeolocationComponent.

Besides, FingerprintsComponent performs mismatch checks for public IP and location.

2. All fingerprinting services perform requests to third party API or perform

fingerprinting logic. Services return results asynchronously as Promise or Observable.

pkg FakeIP

Fingerprinting

+ Components
+ Services

Shared

+ Components

Components

+ GeolocationComponent
+ MainIpComponent
+ TimezoneComponent
+ WebrtcComponent

(from Fingerprinting)

Services

+ GeolocationService
+ IpAddressService
+ WebrtcService

(from Fingerprinting)

Components

+ DataComponent
+ FingerprintsComponent
+ FooterComponent
+ HeaderComponent
+ MainLayoutComponent

(from Shared)

«import»

«import»

«import»

«merge»

21

3. Public IP address mismatch check is performed by FingerprintsComponent. As soon

as FingerprintsComponent got the IP addresses from MainIpComponent and

WebRtcComponent the mismatch check is performed in performIpMismatchCheck().

4. Timezone values mismatch is performed by the TimezoneComponent since local and

system Timezone obtaining is performed by this component and there is no need to pass

local and system values to FingerprintsComponent component.

5. Geolocation mismatch check is performed by the FingerprintsComponent. As soon as

FingerprintsComponent got locations from MainIpComponent and

GeolocationComponent the mismatch check is performed in

performGeoMismatchCheck().

6. updateIP(), updateIpLocation(), updateWebRTCIP() and updateGeoApiLocation()

are event listeners of Fingerprints component that update public IP addresses and

location values in FingerprintsComponent.

3.1.3 Conceptual diagrams

Figure 5 shows the conceptual diagram of the “Shared” module. MainLayoutComponent

includes HeaderComponent, FooterComponent and DataComponent. All components in

this module are responsible for template formation. DataComponent includes

FingerprintsComponent, which binds components from the Fingerprinting module.

22

Figure 5 “Shared” module component diagram (author’s diagram)

Figure 6 shows the conceptual diagram of the “Fingerprinting” module. As stated above,

the Fingerprinting module’s purpose is to collect IP related fingerprints. These

fingerprints are HTTP headers, Geolocation API, Timezone, and WebRTC. All

fingerprinting methods are implemented in the corresponding components.

cmp Shared

Components::
DataComponent

Components::FingerprintsComponent

+ geoApiLocation: LatLngLiteral
+ ip: string
+ ipLocation: LatLngLiteral
+ IPsMatch: boolean
+ locationsMatch: boolean
+ webRTCIP: string

+ ngOnInit(): void
- performGeoMismatchCheck(): void
- performIpMismatchCheck(): void
- updateGeoApiLocation(EventHandler<LatLngLiteral>): void
- updateIP(EventHandler<string>): void
- updateIpLocation(EventHandler<LatLngLiteral>): void
- updateWebRTCIP(EventHandler<string>): void

Components::
FooterComponent

Components::
HeaderComponent

Components::
MainLayoutComponent

«use»«use»«use»

«use»

23

Figure 6 “Fingerprinting” module component diagram (author’s diagram)

3.2 Fingerprinting methods

This part will cover the implementation details of fingerprinting methods that allow

detecting the fact of IP address substitution.

cmp Fingerprinting

Components::GeolocationComponent

+ center: LatLngLiteral
+ lat: int
+ lon: int
+ marker: Marker
+ zoom: int = 12

«@Output»
+ whenGeoApiLocation: EventEmitter<LatLngLiteral>

+ addMarker(): void
+ ngOnInit(): void

Services::GeolocationService

+ getGeolocation(): Observable<any>

Components::MainIpComponent

+ countryFlagSrc: string
+ ipData: IPData

«@Output»
+ whenIP: EventEmitter<string>
+ whenIpLocation: EventEmitter<LatLngLiteral>

Services::IpAddressService

+ getCountryByIP(): Observable<any>
+ getIPData(): Observable<any>

Components::WebrtcComponent

+ country: string = n/a
+ countryFlagSrc: string
+ publicIP: string = n/a

«@Input»
+ IPsMatch: boolean

«@Output»
+ whenWebRTCIP: EventEmitter<string>

- determineCountry(string): void

Services::WebrtcService

+ publicIP: string
+ servers: object

+ extractPublicIP(RTCPeerConnection): void
+ getPublicIP(): Promise<string>
+ performPeerConnection(): void

Components::TimezoneComponent

+ localTZ: string
+ systemTZ: string
+ timezonesMatch: boolean

+ ngOnInit(): void
- performTimezoneMismatchCheck(): void
- setTzValues(string, string): void

«use»

«use»

«use»

«use»

«use»

24

3.2.1 HTTP headers

In FakeIP project, IP from HTTP headers is obtained via third-party API provided by

GeoJS5 . IpAddressService has method getIPData which performs JSONP request to

GeoJS API. JSONP is used for requests to bypass CORS limitations. Figure 7 shows the

code snippet with JSONP request to GeoJS API.

Response from GeoJS returns an object and it is mapped to IPData class. Figure 8 shows

the IPData class structure which represent IP address related data received from GeoJS.

3.2.2 Timezone implementation

Timezone mismatch detection is performed in the following steps:

5 https://www.geojs.io/

getIPData(): Observable<any> {

 return this.http.jsonp('https://get.geojs.io/v1/ip/geo.js', 'callback');

}

Figure 7 Request to get IP data from headers (author's code snippet)

class IPData {

 ip?: string;

 country?: string;

 country_code?: string;

 country_code3?: string;

 continent_code?: string;

 city?: string;

 region?: string;

 latitude?: string;

 longitude?: string;

 accuracy?: number;

 timezone?: string;

 organization?: string;

 asn?: number;

 organization_name?: string;

}

Figure 8 IPData class (author's code snippet)

25

1. Obtaining local Timezone value based on the IP address from HTTP headers (in

our case GeoJS). GeoJS was selected for IP data collection because it already

contains Timezone value in its response.

2. Figure 9 shows the process of the user’s system Timezone obtaining through the

browser:

3. Comparing local and system Timezone values. If values do not match, then this

means that a user might have fake IP.

However, the accuracy of this method is the weakest since it does not necessarily mean

that the user has a fake IP. There might be a case that a user just set the wrong system

Timezone.

Especially it applies to the Timezones with the same offset but different names. For

example, a user can be physically in Tallinn and he/she should have Europe/Tallinn

+02:00 Timezone, however accidentally put Timezone with the same offset but a different

name, for example, Europe/Stockholm +02:00.

Therefore, there are two approaches for comparing Timezone values – comparing just

offsets and offsets together with Timezone names. The second approach is stricter and

may produce false-negative results for normal users without a faked IP address. In the

fake-IP project, the comparison is based on both parameters – offset and Timezone name.

At the same time, a user who uses IP substitution can set manually system Timezone to

the same value as a proxy server to bypass this detection method. However, he/she will

need to perform the system Timezone change each time the country of IP address changes.

3.2.3 Geolocation implementation

Implementation of geolocation is quite trivial task, just need to perform a call to one of

the most popular JavaScript interfaces - Navigator.

const systemTZ = Intl.DateTimeFormat().resolvedOptions().timeZone;

Figure 9 User's system Timezone value obtaining (author's code snippet)

26

Figure 10 shows the code snippet from the GeolocationService, which gets the user's

location coordinates from the Geolocation API.

 First, it verifies that the navigator and geolocation are not null and then calls for the

getCurrentPosition() which returns a callback with coordinates that we then pass as an

observable to the GeolocationComponent.

The getCurrentPosition() method returns a GeolocationPosition object with different

parameters like latitude, longitude, accuracy (measured in meters), and others. Figure 11

shows an example of a GeolocationPosition object, returned from the Geolocation API.

Figure 11 Geolocation API response example (author’s picture)

As soon as coordinates are received from the Geolocation, API comparison can be

performed with the IP address coordinates, obtained previously from request to GeoJS in

a form of an IPData object. Slight inaccuracy might be because of Geolocation API

inaccuracy and because the IP obtained by request headers returns the location of the ISP

provider.

After receiving coordinates from both sources – IPData and Geolocation API, it is needed

to perform a comparison of latitude and longitude values. However, due to the inaccuracy

of both methods, the critical distance difference needs to be defined. Each developer can

select their distance difference, which will be set as critical because there are no official

recommendations for this. The fake-IP project uses 0.5 delta (approx. 55 km) for latitude

if (window.navigator && window.navigator.geolocation) {

 window.navigator.geolocation.getCurrentPosition(

 (position) => observer.next(position),

 (err) => /* Error handling */

 });

}

Figure 10 Geolocation obtaining (author's code snippet)

27

and 1.0 delta (approx. 58 km) for longitude. Table 2 shows the ratio between degrees and

kilometers with different delta values.

Table 2 Latitude/Longitude and distance (km) ratio

Initial value

(lat, lon)

Delta (lat, lon) Result value

(lat, lon)

Approx. difference

(km)

58.37, 26.72 0.1, 0 58.47, 26.72 11

58.37, 26.72 0.5, 0 58.87, 26.72 55

58.37, 26.72 1, 0 59.37, 26.72 111

58.37, 26.72 0, 0.1 58.37, 26.82 5.85

58.37, 26.72 0, 0.5 58.37, 27.22 29.4

58.37, 26.72 0, 1 58.37, 27.72 58

Unlike Timezone, the substitution of Geolocation API coordinates is more difficult to

perform. It is not possible to easily change coordinates via system or browser settings.

However, we need to consider that nowadays, there are applications and browser addons

that allow changing Geolocation API coordinates.

Besides, there is an alternative scenario for Geolocation API – a user can just forbid

access to the location by setting Geolocation API to “Block”. Usually, blocked

Geolocation API should be considered as suspicious from the website perspective. Figure

12 shows an example of the location permission request performed by the Geolocation

API.

Figure 12 Geolocation API permissions request (author’s picture)

28

3.2.4 WebRTC implementation

Figure 14 (see Appendix 1) shows the code snippet from the WebRTCService, which

performs a WebRTC connection and gets the user’s public IP address. To establish a

WebRTC connection and get ICE candidates (public IP address, hashed private IP

address, etc.) following steps need to be performed:

1. Getting RTCPeerConnection from the global object window.

2. Callback function creation that will pass ICE candidates to our extraction function

as soon as we will get any.

3. Empty data channel creation.

4. Creation of offer with SDP data.

After receiving the public IP address from WebRTC, it can be compared to public IP

obtained through HTTP headers. If a mismatch in IP addresses occurs, then most probably

- this particular user uses IP substitution methods.

The WebRTC method is the most accurate since it shows a mismatch of public IP values.

3.2.5 TCP/IP fingerprinting (Nmap)

The TCP/IP fingerprinting itself is not implemented in the project due to legal and ethical

reasons. OS fingerprinting by Nmap implies port scanning of a target machine, which

may not be allowed in different countries’ jurisdictions.

Figure 13 shows the result of Nmap execution on Linux Ubuntu 18 server, which is owned

by the author. Please notice that the author warned system administrators of this machine

before performing the Nmap scan. Parameter -O stands for enabling OS detection.

29

As we can see, Nmap identified the OS as Linux with a 86% probability. In addition to

OS detection, which actually can be done by sending random packets to just one TCP

port, Nmap performed a scan on all ports of the target machine. However, only the first 5

ports are displayed in this code snippet.

$ sudo nmap -O 45.9.190.101

Starting Nmap 7.80 (https://nmap.org) at 2020-10-15 16:08 EEST

Nmap scan report for 45.9.190.101

Host is up (0.075s latency).

Not shown: 981 closed ports

PORT STATE SERVICE

1/tcp open tcpmux

22/tcp open ssh

25/tcp filtered smtp

79/tcp open finger

80/tcp open http

…

Device type: general purpose|specialized

Running (JUST GUESSING): Linux 3.X|4.X (86%), Oracle VM Server 3.X (85%)

OS CPE: cpe:/o:linux:linux_kernel:3 cpe:/o:linux:linux_kernel:4
cpe:/o:oracle:vm_server:3.4.2 cpe:/o:linux:linux_kernel:4.1

Aggressive OS guesses: Linux 3.10 - 4.11 (86%), Oracle VM Server 3.4.2 (Linux
4.1) (85%)

No exact OS matches for host (test conditions non-ideal).

Network Distance: 22 hops

OS detection performed. Please report any incorrect results at
https://nmap.org/submit/.

Nmap done: 1 IP address (1 host up) scanned in 11.13 seconds

Figure 13 Result of Nmap OS scan (author's code snippet)

30

4 Experiments with fake IP detection tool

This part will show the results of proxy and VPN experiments performed on the

http://fakeip.xyz website. All the pictures in the tables are screenshots from the author’s

website and show the results of the corresponding methods. All the results were made

from the same IP address in Estonia. Proxy server from Belgium and Japanese VPN server

were used for IP substitution in experiments.

4.1 Test with proxy

Table 3 IP mismatch results with proxy

Method Result Mismatch?

HTTP headers

-

WebRTC

Present, WebRTC public

IP and public IP from

HTTP headers do not

match.

TimeZone

Present, Timezone

names, and offsets are

different.

Geolocation

Present, the difference of

coordinates is about 9

degrees for latitude and

20 for longitude.

http://fakeip.xyz/

31

According to the test results, all three detection methods pointed to mismatches in

parameters. As a result, we can infer that a proxy used for IP substitution by a user - can

be easily detected by the website, using the methods considered in this thesis.

4.2 Test with VPN

Table 4 IP mismatch results with VPN

Method Result Mismatch?

HTTP headers

-

WebRTC

Absent, WebRTC public

IP and public IP from

HTTP headers match.

TimeZone

Present, Timezone

names, and offsets are

different.

Geolocation

Absent, the difference of

coordinates is within

tolerable limits

(geolocation inaccuracy

applies).

In contrast to a proxy, IP substitution with VPN showed different results. Firstly,

WebRTC public IP is equal to the public IP from HTTP headers. Also, coordinates

mismatch is not detected since the difference between latitude and longitude is not

significant, and this slight difference might be because of Geolocation API inaccuracy.

However, a Timezone mismatch was detected.

32

4.3 Results clarification and methods comparison

The experiment results with VPN showed that WebRTC and Geolocation mismatches

might not be detected. Most probably mismatches are not detected because the VPN

server used in the experiment has corresponding leak protection6.

Difference and ambiguity of results with proxy and VPN lead to the point that none of

the methods can provide 100% accuracy of mismatch determination separately. This leads

to the idea that all three methods need to be used and analyzed together.

Table 5 shows a comparison of methods according to results from the experiment.

Table 5 Methods results comparison

Method Proxy detection VPN detection Complexity of

counterfeiting

WebRTC Yes No, if VPN server

has corresponding

protection

Moderate, by the

aid of third party

browser

extensions

TimeZone Yes Yes Easy,

changeable

through OS

settings

Geolocation Yes No, if VPN server

has corresponding

protection

Moderate, by the

aid of third party

browser

extensions

6 Namely leak of real public IP from WebRTC or leak of real coordinates from Geolocation API.

33

Summary

In this thesis, the author introduced and described methods that can be used for fake IP

detection. These methods are WebRTC leak, JS Timezone, Geolocation API, and TCP/IP

fingerprint. Each method, considered in this thesis has its pros and cons and the author

tried to bring it on.

One of the main purposes of this work was to create an open-source web application,

which demonstrates fake IP detection methods. Application development started from the

design part (UI and architecture design), then the main challenge was to investigate and

implement each method. As a result, the application was deployed to the production

environment and is available by address http://fakeip.xyz/. Also, the revision control was

done with the Github VSC system, so the source code and the history are publicly

available at https://github.com/f1kus97/fake-ip/.

During this research, it was found that some methods are more difficult to bypass. Also,

some of the methods indicate mismatch more explicitly than other methods. Both metrics

show whether these methods can be considered as more trustworthy. The author considers

WebRTC as the most reliable method for fake IP detection since it explicitly indicates

that public IP addresses do not match. The second method by the level of reliability is

Geolocation API because we can detect IP mismatch by the difference of IP location

(obtained through HTTP headers) and location from Geolocation API. The last method is

Timezone since it can be easily changed in the OS settings.

Notwithstanding the different level of trust in each method, the result of the test with VPN

has shown us, that Timezone was the only method which detected the mismatch.

Therefore, it should be concluded, that all methods and their results need to be used and

analyzed together.

Moreover, we need to understand, that today it is possible to bypass each method in some

way and it is just a matter of effort and patience. For example, there are browser addons,

which allow to disable or substitute WebRTC and change coordinates of Geolocation

API. This fact brings us back to the idea that fake IP detection methods need to be used

together in a combination.

http://fakeip.xyz/

34

References

[1] Mozilla Developer Network, "X-Forwarded-For," 23 March 2019. [Online].

Available: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-

Forwarded-For. [Accessed November 2020].

[2] Mozilla Developer Network, "WebRTC API," Mozilla, 1 September 2020.

[Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/API/WebRTC_API. [Accessed October 2020].

[3] Internet-Computer-Security.com, "What is NAT and how does it work tutorial,"

2008. [Online]. Available: http://www.internet-computer-

security.com/Firewall/NAT.html. [Accessed October 2020].

[4] Mozilla Developer Network, "Introduction to WebRTC protocols," 1 July 2019.

[Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/API/WebRTC_API/Protocols.

[5] S. Jennings and C. Nandakumar, "SDP for the WebRTC," Cisco, 23 February 2013.

[Online]. Available: https://tools.ietf.org/id/draft-nandakumar-rtcweb-sdp-

01.html#rfc.section.3. [Accessed October 2020].

[6] Mozilla Developer Network, "ICE," Mozilla, 16 June 2020. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Glossary/ICE. [Accessed October 2020].

[7] J. Rosenberg, "Interactive Connectivity Establishment (ICE)," April 2010. [Online].

Available: https://tools.ietf.org/html/rfc5245#page-7. [Accessed October 2020].

[8] J. K. Singh and C. Wong, "333752 - Google Chrome WebRTC IP Address

Leakage," 13 Januart 2014. [Online]. Available:

https://bugs.chromium.org/p/chromium/issues/detail?id=333752. [Accessed

October 2020].

[9] Y. Fablet, J. de Borst, J. Uberti and Q. Wang, "Using Multicast DNS to protect

privacy when exposing ICE candidates," 16 October 2019. [Online]. Available:

https://tools.ietf.org/html/draft-ietf-rtcweb-mdns-ice-candidates-04. [Accessed

October 2020].

[10] Mozilla Developer Network, "Geolocation API," 24 July 2020. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/API/Geolocation_API. [Accessed

October 2020].

[11] A. Popescu, "Geolocation API Specification 2nd Edition," 8 November 2016.

[Online]. Available: https://www.w3.org/TR/geolocation-API/. [Accessed October

2020].

[12] E. Hjelmvik, "Passive OS Fingerprinting," Netresec, 5 November 2011. [Online].

Available: https://www.netresec.com/index.ashx?page=Blog&month=2011-

11&post=Passive-OS-Fingerprinting. [Accessed October 2020].

[13] G. Lyon, "TCP/IP Fingerprinting Methods Supported by Nmap," 2017. [Online].

Available: https://nmap.org/book/osdetect-methods.html. [Accessed October 2020].

[14] G. Lyon, "Fingerprinting Methods Avoided by Nmap," 2017. [Online]. Available:

https://nmap.org/book/osdetect-other-methods.html. [Accessed October 2020].

35

Appendix 1 – Public IP from WebRTC

private performPeerConnection() {

 let RTCPeerConnection;

 if (window.document.body) {

 RTCPeerConnection = (window as unknown as Window).RTCPeerConnection ||

 (window as unknown as Window).mozRTCPeerConnection ||

 (window as unknown as Window).webkitRTCPeerConnection;

 }

 if (!RTCPeerConnection) {

 const iframe = document.createElement('iframe');

 iframe.setAttribute('id', 'iframe');

 iframe.sandbox.value = 'allow-same-origin';

 iframe.style.display = 'none';

 const win = iframe.contentWindow as Window;

 RTCPeerConnection = win.RTCPeerConnection || win.mozRTCPeerConnection
|| win.webkitRTCPeerConnection;

 }

 const peerConnection = new RTCPeerConnection(this.servers);

 peerConnection.onicecandidate = (ice: RTCPeerConnectionIceEvent) => {

 if (ice.candidate) {

 this.extractPublicIP(peerConnection);

 }

 };

 peerConnection.createDataChannel('');

 peerConnection.createOffer().then(offer => {

 peerConnection.setLocalDescription(new RTCSessionDescription(offer));

 });

 }

/* Function to extract exactly the IP address from incoming ICE candidates */

private extractPublicIP(peerConnection: RTCPeerConnection) {

 console.log(peerConnection.localDescription.sdp);

 const lines = peerConnection.localDescription.sdp.split('\n');

 lines.forEach(line => {

 const exp = new RegExp('(\\d{1,3}\\.){3}(\\d{1,3})');

 if (line.startsWith('a=candidate:') && line.match(exp)) {

 this.publicIP = line.match(exp)[0];

 }

 });

 }

Figure 14 Public IP obtainment through WebRTC (author's code snippet)

36

Appendix 2 – FakeIP application sequence diagram

Figure 15 FakeIP sequence diagram (author's diagram)

sd
 FakeIP

V
isito

r

:Fin
gerp

rin
tsC

o
m

p
o

n
en

t
:M

ain
Ip

C
o

m
p

o
n

en
t

:Ip
A

d
d

ressService
:W

eb
rtcC

o
m

p
o

n
en

t
:W

eb
rtcService

:Tim
ezo

n
eC

o
m

p
o

n
en

t
:G

eo
lo

catio
n

C
o

m
p

o
n

en
t

:G
eo

lo
catio

n
Service

perform
G

eo
M

ism
atchC

heck()

getG
eolocation()

return w
eb

rtc ip(): Prom
ise<string>

init()

return view
()

return IpD
ata(): O

bservable<a
ny>

return geo
location(): O

bservable<a
ny>

return IpD
ata(): O

bservable<a
ny>

open
W

eb
A

pp()

updateW
eb

R
TC

IP(Even
tH

andler<string>)

getIPD
ata()

updateG
eo

A
piLocation(Even

tH
andler<LatLngLiteral>)

getIPD
ata()

updateIpLocation(Even
tH

andler<LatLngLiteral>)

updateIP(Even
tH

andler<string>)

addM
arker()

init()

init()

setTzV
alues(string, string)

init()

perform
Tim

ezoneM
ism

atchC
heck()

getPublicIP()

determ
ineC

ountry(string)

perform
IpM

ism
atchC

heck()

