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Abstract
This thesis presents a novel safety architecture that enables combination of

conventional safety procedures with reversibility-based safety assessment as a
backup for unpredicted situations. Within this architecture the thesis presents two
approaches to assess safety using the principle of reversibility – “Don’t Do Things
You Can’t Undo”.

The research is motivated by the fact that robots are entering our life and
safety is now one of the most important aspects of their usage. Robots’ auton-
omy increases rapidly and it is just a matter of time before robots will be making
decisions on their own. The goal of this study is to develop a framework to en-
able future robots to behave safely in a wide variety of situations by combining
extrinsic and intrinsic safety procedures.

Safety in robotics is usually viewed in the context of mechanical safety of
robot’s body and manipulators as well as their conventional control using situa-
tion-specific routines. Alternatively, safety is viewed in the context of ethics, legal
rights and as a responsibility of robots’ designer. The research on autonomous
robot actions, based on intrinsic motivations and abstract principles, is not con-
cerned about safety of resulting behaviors.

In the approach described in this thesis, robot designer supplies safety rules
for known situations, while the reversibility-based safety assessment is applied to
truly autonomous decisions – when no situation-specific logic is applicable. This
way the proposed safety architecture can be integrated into a conventional robot
control system, serving as a backup for unpredicted situations. In such situations
only reversible actions are intrinsically safe and irreversible actions must be sup-
pressed to make the robot behave safely.

This thesis proposes two approaches to assess safety within the proposed
hybrid safety architecture. The world-model-free approach is using distance mea-
sures between the states to find relevant data and to measure action reversibility.
The world-model-based approach proposes to assess action reversibility through
calculation of the predicted cost of undoing the action; robot actions in the en-
vironment are simulated internally to calculate the cost of returning back to the
initial state.

The experiments conducted in simulated environments with two different
robots demonstrate that the robot, governed by the world-model-free reversibility
assessment, exhibits a safe behavior of obstacle avoidance. The simulated ex-
periments with actions of different types and lengths demonstrate that the world-
model-free approach can also be used to identify the pairs of actions that undo
each other. In the experiments conducted in simulated and real environments with
a movable obstacle, the world-model-based approach to assess action reversibil-
ity permits the robot, governed by the hybrid safety architecture, to increase area
coverage using reversible object manipulation.
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1 Introduction

This thesis is addressing the problem of safe autonomous robot decisions.
The goal of this work is to develop a framework that allows the robot to behave
safely by assessing intrinsic safety of autonomous robot decisions using the prin-
ciple of reversibility.

1.1 Motivation

Robotic presence in human households grows every year. Such a trend is espe-
cially noticeable in highly-developed Asian countries like Japan and South Korea.
However, simple household robots like robotic vacuum cleaners and floor washers
have been on the market world-wide for several years already.

Computers’ energy efficiency increases every year and newer robots can be
equipped with more computing power than ever before, with the same power con-
sumption profile. Such an increase in available computer power enables engineers
to implement more sophisticated algorithms allowing more autonomy for a robot.

A multi-purpose robot-assistant is one of the visions of the future. Such a
robot will have to function very close to human beings in their homes and it must
be very flexible and autonomous. This makes solving the issue of robot safety an
important priority in robotics research.

The research, described in this thesis, is concerned with how to make robot
decisions safe, especially when no specific pre-programmed behavior/response
can be selected. It is impossible to prepare robot control system for all possible
scenarios it can encounter, but robot’s behavior must be safe and sound even under
such unforeseen situations. Also, robot tasks are becoming so complex that it can
be hard to define for professional roboticists with absolute precision. It is even
harder to do for advanced users or non-professional technicians.

So far, very few studies deal with high-level safety of robot actions or ground
robot safety rules on abstract principles. The vast majority of robot safety research
deals with protecting human beings from direct injuries as a result of collisions
with robots. To protect humans in case of a collision, robots and their parts can
be covered by soft compliant materials, e.g. [1]. Additionally, situation-specific
collision-avoiding, slowing and stopping functions can be employed to make it
impossible for a robot to collide with a human, e.g. [2, 3, 4, 5, 6].

The vast majority of intrinsic motivation research in robotics deals with how
to motivate a robot to learn new things [7, 8, 9], while disregarding safety concerns
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completely. An exception is the work of Eppendahl and Kruusmaa [10], propos-
ing the use of reversibility principle to ground safe behaviors. Their work was
extended and formalized in [11] and [12], but the approach was focused solely on
application of the reversibility principle, not considering robot control system as
a whole.

The approach in this thesis aims at integrating the procedure of safety assess-
ment through action reversibility into a general safety module to achieve safety-
aware goal-oriented behavior.

1.2 Contributions of the Thesis

The general problem this thesis aims at solving is how to enable a robot to make an
autonomous safe decision when no specific pre-programmed behavior/response
can be selected in an unpredicted situation. Contributions of this thesis are:

• formalization of the safety architecture that combines extrinsic safety pro-
cedures with intrinsic safety assessment (as a backup for situations not cov-
ered by the extrinsic safety procedures)

• formalization of the world-model-free and the world-model-based intrinsic
safety assessment through the analysis of action reversibility

• implementation of the world-model-free safe control system and experi-
ments validating the world-model-free safety assessment

• implementation of the world-model-based safe control system and exper-
iments validating the proposed safety architecture with the world-model-
based safety assessment

1.3 Outline of the thesis

This thesis is organized as follows. Chapter 2 describes the related work in robot
safety, roboethics, machine ethics, intrinsic motivation and reversibility. In Chap-
ter 3 we explain the principle of reversibility, present an architecture of the pro-
posed hybrid safety module and formalize two approaches to assess safety through
action reversibility. Chapter 4 describes the implementation of the architecture to
test the world-model-free safety assessment and the proposed safety module with
the world-model-based safety assessment. Chapter 5 contains summaries of the
contributing publications. Conclusions and directions of future work are presented
in the last chapter.
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2 Related Work

This section defines the context of the thesis by describing the current state-
of-the-art in related research areas.

2.1 Robot Safety

Safety is a very important aspect of robotic research and its primary focus is on
safety of humans surrounding the robot. The recent overview of robot ethics [13]
identified safety & errors and law & ethics as the most urgent categories of safety-
related issues for current and future robotics. Safety & errors category identi-
fies current problems with software and hardware design and implementation of
robots made by human beings, who are prone to errors. Law & ethics category
identifies future legislative problems of introducing robots to general public and
their internal ethics to distinguish right from wrong and keep humans safe.

Atlas of physical human-robot interaction [14] identifies mechanics and ac-
tuation together with control techniques as the most important aspects of human
safety in the close proximity to robots. In robotic surgery, safety is mostly viewed
in the context of additional risks [15] or lowering the risks [16, 17] of robotic
assistance, compared with the conventional surgery and preoperative inspection.

2.2 Safety Standards

Industrial robotics is currently the only kind of robotics with established safety
standards. The latest 2011 revision of the ISO 10218 “Robots and robotic devices
– Safety requirements for industrial robots” standard specifies requirements and
guidelines for the inherent safe design, protective measures and information for
use of industrial robots; it describes basic hazards associated with robots and pro-
vides requirements to eliminate, or adequately reduce, the risks associated with
these hazards [18, 19].

The ISO 10218 standard does not apply directly to non-industrial robots,
but its latest editions now account for collaborative operation with humans, em-
ploying stopping functions, speed, position, power and force controls for such
collaborative modes. The ISO/DIS 13482 “Robots and robotic devices – Safety
requirements for non-industrial robots – Non-medical personal care robot” stan-
dard is currently under formulation [20] and a draft standard (possibly a Part 2 of
the ISO/DIS 13482) is currently in development for robots in medical care [21].
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2.3 Roboethics and Mechanical Safety

Roboethics is mostly concerned with ethics of the robots’ designers, manufactur-
ers and users as well as legal aspects of using robots [22]. Traditionally, the safety
in robotics is viewed as a responsibility of the designer [23] – it should not be
possible to harm a human being by design or the injury must be as light as pos-
sible. For example, by the first rule of IEEE code of ethics, an engineer commits
“to accept responsibility in making decisions consistent with the safety, health,
and welfare of the public, and to disclose promptly factors that might endanger
the public or the environment” [24].

In industrial robotics workspaces of humans and robots are clearly divided
to safeguard humans from injuries – robots are either completely enclosed or
equipped with limited barriers, light curtains or floor mats around them [25]. Sim-
ilarly, in military robotics applications the armed autonomous robot guards only
the demilitarized zone – anyone who appears inside it is considered an enemy and
nobody is shot outside of the zone [26].

In contrast to industrial robotics, in personal and service robotics the physi-
cal barriers are highly inappropriate – on the contrary, interaction, physical contact
and joint work with humans are the primary tasks of such robots. The ISO/DIS
13482 standard identifies a personal care robot as “a service robot with the pur-
pose of either aiding actions or performing actions that contribute towards im-
provement of the quality of life of individuals” and identifies three types of appli-
cations – mobile servant, people carrier and physical assistant [20]. As a measure
to reduce risks, the standard defines a three-step procedure for designing personal
care robots, which encourages developers to reduce risks first by means of inher-
ently safe design of the natural properties of the robot, and then by making use of
protective measures if the former is not possible [21].

The biggest threat for a human is a collision with the robot’s body, manip-
ulator or an item attached to it. The existing methods and tools from automotive
industry, like crash-tests using anthropomorphic robot-dummies cannot be used
directly to assess and enhance the safety performance of robot systems. The as-
sessment scheme for robotics has to be specifically designed for the characteris-
tics of stiffness and impact intervals arising in robot-human crash [27]. In [28] a
standardized crash-testing in robotics, together with suitable models of crash test
dummies, is proposed for blunt collisions of the manipulator with different parts
of a human body.

In the recent overview of possible classes of human injuries from physical
contact [29], blunt head or chest impacts without clamping at typical robot speeds
are identified as not life-threatening. Other quite serious head injuries, such as
fractures of facial and cranial bones, are very likely to occur already at moderate
velocities; however, the appropriate injury indicator for this class of injuries is
related not to head acceleration but to impact forces. Authors showed that even
low-inertia robots can become very dangerous in near-singular manipulator con-
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figurations if clamping occurs.
The need for intrinsically safe mechanical design of robotic arms for do-

mestic robotics has been discussed in [30]; the general framework was set up to
work towards a safety measure, quantifying skin damage injuries as a function of
robotic design parameters.

A mobile manipulator that is designed to be safe and capable in human en-
vironments is presented in [1]. Mechanical design safety includes minimizing
inertia, making appropriate materials selection, providing back-drivability, elimi-
nating pinch points and carefully managing kinetic and potential energies as well
as force output. Software design safety includes mechanical energy limits and
layering of code for sensor and actuator fault tolerance.

A hybrid actuation approach for human-friendly robot design is proposed
in [31], better performance and higher safety are achieved by replacement of the
heavy electrical actuators with pneumatic artificial muscles. Due to the nature of
pneumatic actuation, it generates high force for its size yet achieves low output
impedance and small on-joint electrical motor compensates for the low dynamics
of the pneumatic muscle.

2.4 Control Safety Modules

In addition to mechanical safeguards and intrinsically safe design of robot body
and manipulators, a robot control system must include a safety-specific module
to guarantee safe behavior. For example, a safety module can stop/slow down a
manipulator when a person enters its operating zone or to stop/slow down a robot
if it gets too close or touches a human. The safety module can be independent of
the entire system by limiting its functionality externally, or can act as a part of the
system altering its behavior from within.

One of the earliest of the reported safety sub-systems for industrial robotics
is a “safety computer” [32]. Authors investigated how to reliably detect safety
violations, based on information from ultrasonic, micro-wave, infra-red and ca-
pacitance sensors connected to a single micro-processor. In case a violation is
detected, authors proposed the following sequence: to activate an alarm when the
intruder first enters the outer perimeter, then slow the robot if he enters the outer
workspace, and completely halt the robot if the intruder is in danger of imminent
collision.

A slightly more recent approach is a failure-to-safety system of an industrial
robotic arm [2], which employs the AND gate to gather binary signals from dif-
ferent subsystems into one. Emergency stop procedure is executed if any of the
signals become 0, indicating a failure in a sub-system.

A similar data fusion approach to a safety module is reported in [3], using
fuzzy logic for sensor data fusion. Risk level of human-robot collision for the
system is calculated based on robot-human distance, speed and acceleration. The
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risk level is considerably increased if different measurement systems don’t agree,
causing robot to slow down or to stop.

Another example of robotic safety module is the safety sub-system of the
Lisa mobile platform [4]. It consists of 6 laser range-finders for both 2D and 3D
obstacle avoidance, bumpers, robotic arm-mounted stereo-vision cameras and an
infrared camera for human interaction detection. The robot and its manipulator
stop immediately when a person enters robot’s workspace; robotic arm joints in-
clude electronic torque measurement and contouring error control as additional
safety functions.

A methodology of ensuring safety during human-robot interaction through
multi-level planning and control, based on explicit quantification of the level of
danger to a human, is proposed in [6]. Authors use a hierarchy of three safety
modules: the safe planning module to generate safe plans, the trajectory scaling
module to decelerate to a safe approach speed along the planned path (if needed)
and the reactive control module to evaluate and correct the selected plan at each
control step. The reactive part is a safety module, responsible for moving the
robot/manipulator to a safe location and stopping it afterward to wait for a new
plan; module logic is based on danger index, which depends on the distance be-
tween the robot and the object, their relative velocity, and the effective inertia
[33].

Another example of safety modules in robotic manipulator control is the “im-
pact potential control” scheme for an arbitrary joint torque control algorithm [5].
The scheme ensures that the impact force at any surface point does not exceed
the preset limit and the robot cannot leave the safe region in the state space by
autonomous actions. Such safety module passes the torque vector generated by
the motion control algorithm unchanged to the robot as long as it complies with
the safety constraints. If the desired torque vector does not satisfy these safety
constraints, a clipping function is applied to the torque vector.

2.5 Machine Ethics

The notion of safety module fits well into the more general framework of machine
ethics, which is concerned with ethical behavior of machines (robots and other
artificial intelligent beings) towards humans and other machines. Its purpose is
to find a way to teach robots to behave morally and ethically also from human
point of view, which includes safety and well-being of humans surrounding the
machine.

It is important to distinguish between the “implicit ethical agents” and the
“explicit ethical agents” [34]. An implicit ethical agent is the one that has been
programmed to behave ethically or avoid unethical behavior, without an explicit
description of ethical principles. Its behavior is programmed by its designer
who is following ethical principles. Such ethical agents belong to the realm of
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roboethics, described in Section 2.3.
A machine that is an explicit ethical agent must be able to calculate the best

action using ethical principles. It must “represent ethics explicitly and then oper-
ate effectively on the basis of this knowledge” [34].

The most famous effort of formalizing such ethical rules is the Three Laws
of Robotics by Isaac Asimov [35]. These laws, however, are inapplicable in real
robotics, since they are too vague, as it is shown by many of Asimov’s novels.

Some researchers (e.g. [36]) discuss the possibilities of better formalizing
Asimov’s First Law, which states that “a robot may not injure a human being,
or, through inaction, allow a human being to come to harm”. Others (e.g. [37])
introduce alternatives that are in the realm of roboethics, which applies to the
human creator of a robot.

An example of machine ethics implementation is the combined application
of the teleological (where the rightness of actions is determined entirely by the
consequences of the actions) and the deontological (where the rightness of actions
depends on something other than the consequences) approaches to solve ethical
dilemmas in medical ethics [38].

Another notable example of machine ethics implementation is an effort of
embedding ethical behavior into a military robot in the form of ethical rules [39].
The authors developed an ethical architecture, where the “ethical governor” [40]
ensures that system decisions are within predefined ethical bounds by limiting
actions externally, while the “ethical adaptor” [41] alters ethical constraints and
guides system’s behavior from within. The constraints are specific to Laws of
War and are especially concerned with ethical and legal aspects of armed machine
actions. The ethical governor is similar to the safety modules described in Sec-
tion 2.4, since it also limits or prohibits the actions that don’t satisfy the ethical
constraints.

2.6 Robot Behavior Programming

For the machine ethics rules to be usable on robots, such rules cannot be repre-
sented by a vague description of designer’s will and vision of what is right, wrong,
ethical or unethical. Control systems of robots are currently based on conventional
binary computers, which require creating machine code to be executed in order to
make the robot to do something. Robot programming systems can be divided into
manual and automatic classes of programming [42].

The procedural and behavioral types of manual programming systems, with
both graphical and textual input, represent the class of systems, where the robot
program is created by a human designer. A procedural system uses the tradi-
tional programming language approach and is one of the most common methods,
particularly in industrial environments. In behavior-based programming a human
specifies how the robot should react to different conditions instead of providing a
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procedural description [43].
Automatic programming systems provide very limited or no direct control

over the program code the robot will execute. In contrast to manual programming
approach, robot code is generated or the behavior is derived from information en-
tered into the system or received by it autonomously. Automatic programming by
demonstration is used in industrial [44] and personal [45] robotics in conjunction
with procedural programming. In contrast to industrial robotics, where program-
ming by demonstration serves the purpose of fairly simple and precise recording
of movements, in personal robotics demonstration is often used as an input to
machine learning techniques [46].

General learning techniques, like reinforcement learning [47] or artificial
neural networks [48] can be used for both supervised and unsupervised learning,
with different sources of error/reward signals. The source of such error/reward
signal can be interpreted as robot’s motivation, which can be extrinsic – provided
by sensor values or a supervisor, or intrinsic – provided by some internal drive to
e.g. play, explore, manipulate, learn, etc.[49]

2.7 Intrinsic Motivation

The ethical or safety rules must be sufficiently general in order to be usable by a
robotic system in as many situations as possible. One of the ways to implement
such rules is to express them in general terms, without reference to specific sensor
values, interfaces or situations. In contrast to conventional robot programming,
where responses are pre-programmed on per-situation basis, intrinsic motivation
research proposes to ground robot behavior on top of abstract principles [49]. The
notion of intrinsic motivation comes from psychology: it refers to doing some-
thing because it is inherently interesting or enjoyable, while extrinsic motivation
refers to doing something because it leads to a specific outcome [50].

The vast majority of intrinsic motivation research is focused on learning new
skills. For example, initial implementations of “artificial curiosity” [51, 7] used
learning machines on abstract problems.

In the field of developmental robotics, a number of basic visual behaviors
(tracking of the moving light with exploration for other light sources) are shown
to emerge on a real robot from abstract motivational principles – stability, pre-
dictability and familiarity [52]. Later, authors presented the mechanism of In-
telligent Adaptive Curiosity, an intrinsic motivation system that pushes a robot
towards situations in which it maximizes its learning progress [8].

In the field of reinforcement learning, intrinsic motivation is based on the
concepts of “novelty” and “surprise” to autonomously learn hierarchical collec-
tion of skills [9, 53]. Such simple skills together with intrinsic motivation are used
to learn more complex skills and to enhance goal-oriented learning rate; authors
support their claim with grid-world scenarios.
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As opposed to previously described intrinsic motivation principles, in [10] it
was proposed that the principle “don’t do what you can’t undo” is one of the basic
abstract principles that can be used to ground robot’s behavior. The proposal
is focused on safety of robot actions towards itself and its environment, which
contrasts with the previously described intrinsic motivation approaches focused
on learning of new skills while disregarding safety.

2.8 Reversibility of Robot Actions

The notion of reversibility has been studied in engineering (Tesla principle [54]),
thermochemistry & thermodynamics (Thomsen–Berthelot principle of maximum
work [55]) and developmental psychology (a stage of child development in Jean
Piaget’s theory of cognitive development [56]). In mathematics, and later in com-
puter science, reversibility became a well-studied topic of research. Time revers-
ibility, for example, is an attribute of stochastic and deterministic processes; gen-
erally, such processes can be divided into sub-processes, which undo the effects
of each other.

The ability to undo last action or a sequence of actions is widely used in
user interfaces of computer software to edit texts, pictures, etc. It allows users to
undo undesired actions and get back to the “good” state of their work. A similar
approach to undo the last robot action is also used in robotic user interfaces based
on laser or touch-screen systems [57, 58].

The ability to reverse a plan, when something goes wrong during its execu-
tion is studied in [59], based on the approach of identification of “good” points
in a plan with ways to get back to them if needed. In the work of Thomaz and
Breazeal, hand-crafted UNDO functions are employed to enable undoing of sim-
ple actions [60, 61]; authors report improved reinforcement learning performance
in a grid-world example task.

In [10], authors proposed that obstacle avoidance is a natural consequence
of the principle of reversibility (“don’t do what you can’t undo”) and conducted a
one-dimensional test (the robot moved back and forth between two walls) to back
up their hypothesis.

2.9 Novelty of the Proposed Approach

The main priority of the approach described in this thesis is robot safety, which
is viewed in the context of autonomous decision making in situations, when no
situation-specific logic/rules can be applied. This contrasts with the work de-
scribed in Sections 2.1, 2.2 and 2.3, where safety is viewed in the context of
mechanical safety, barriers and situation-specific stopping/slowing/avoiding func-
tions. The approach, however, does not discard the need for mechanical safety,
but studies the problem of safety in robotics from another point of view. To be
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safe, the robot, whose behavior is bounded by the proposed safety system, must
also conform to all safety standards relevant to mechanical safety.

The safety module proposed in this thesis is based on the assessment of re-
versibility of actions. This contrasts with the modules described in Section 2.4,
which use situation-specific pre-programmed stopping, slowing or avoiding rou-
tines to prevent collisions of robots with any part of a human body. The pro-
posed approach is focused on higher-level safety concerns, such as indirect dan-
gers when a human or a robot is stuck and suffers from hunger or battery depletion.
The abstract nature of reversibility also accounts for other negative consequences,
including the situations where a person is injured or a robot is damaged/destroyed.

The approach also belongs to the research area of machine ethics, described
in Section 2.5. The approach is not trying to implement Asimov’s Laws of
Robotics; it is rather more similar to the ethical governor that ensures that sys-
tem decisions are within predefined ethical bounds [40]. Instead of ethical bounds
specific to Laws of War, the proposed safety module acts as a governor, which
ensures that system decisions are within predefined safety bounds.

The approach presented in this thesis is based on the ideas presented in [10],
where the reversibility principle “don’t do what you can’t undo” is proposed to be
the basic abstract principle to make robot’s behavior safe. This principle is used
as a basis of intrinsic motivation to behave safely by grounding the safety rules
for the proposed safety architecture.
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3 Hybrid Safety Assessment
Using Action Reversibility

This chapter describes the principle of reversibility in general, its application
through the hybrid safety module for a robot control architecture and the two
proposed approaches to assess action reversibility.

3.1 Reversibility of Actions

Traditionally, safety in robotics is concerned mostly with mechanical safety of
robot’s movements. The usual safety measures are separation of robot’s work-
place and implementation of the situation-specific safety procedures, often based
on thresholds expressed in sensor data values. Our idea is to use the principle of
reversibility “Don’t do things you can’t undo” to make the robot behave safely; it
was proposed in [10] and developed further in [11] and [12].

Basis of the approach described in this thesis is the observation that negative
consequences of robot’s actions are also irreversible, which naturally leads to the
idea that reversible actions are intrinsically safe. We argue that a robot, making
reversible actions, will behave inherently safely as it will avoid actions with irre-
versible consequences. Instead of specifying routines such as avoiding obstacles,
falls, traps, risky regions/routes or staying near to some known landmark, it is
rather told not to do things it cannot undo. It explains why a robot should behave
that way and if a new problematic situation occurs, a robot avoiding irreversible
actions will avoid these new dangers by identifying them as irreversible.

For example, damaging a robot is bad, if there is no way to fix it. Locking a
door with no knowledge of how to unlock it is also undesirable, as the robot gets
stuck inside a room and would, eventually, cease functioning when the battery is
depleted. Going too far away from the charging base without the knowledge of
how to get back has the same negative and irreversible consequence as a situation,
where the robot is stuck inside a room.

In contrast to irreversible actions, reversible actions are safe, because it is
possible to return to the initial situation and make another action or repeat the
action again. For example, if a desk with some items on it is being cleaned, it is
safe to lift things up, if the agent has the knowledge how to put them back on the
same place. In another example, when a robot is exploring the area or trying to
find a path form one point to another, it is intrinsically safe to try the paths leading
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to positions from where the initial point is reachable.
It is worth mentioning that not all irreversible actions are unsafe or unwanted.

On the contrary, many useful actions a human (or a robot on his/her behalf) needs
to do are irreversible. There can be irreversible actions that the robot is allowed or
expected to do (e.g. a vacuum cleaning robot cleans a floor irreversibly), but then
the robot is designed for doing those actions, and it is an informed decision of the
user to use this robot for these purposes.

In practice, household and service robots have a goal and they function ac-
cording to the logic specified by designers to fulfill the goal. Thus, the principle of
reversibility alone is not sufficient to control a robot, since the robot guided only
by reversibility does not have a useful purpose. Such a reversibility-only-based
robot would do nothing in most environments, as it is usually the safest way to
exist.

The best way to use principle of reversibility is to apply it in unpredicted
situations or in situations with many equally good or bad options. For example, if
there are several unexplored ways from one point to the other of the same length,
it is safer to use the ones, along which it is always possible to come back. In
an unpredicted situation all options are equal and the most reversible one is the
safest.

In the following sections we present the safety architecture that combines
extrinsic safety procedures with the intrinsic safety assessment; the latter is used
as a backup for situations not covered by the former.

3.2 Hybrid Extrinsic+Intrinsic Safety Module

Our approach to practical safety in robotics is to combine the reversibility-based
intrinsic safety assessment with designer-based safety procedures and goal-orien-
ted intrinsically unsafe overrides. We propose to encapsulate safety-related rules
into a safety module for a robot control architecture. Such a safety module ensures
that system’s decisions are safe and within predefined bounds – similar to the
ethical governor in [40]. Before taking an action, a system checks with the safety
module whether the action is allowed from the safety perspective (see Fig. 3.1 for
the activity diagram). The query to the safety module consists of the state-action
pair (s, a) to be analyzed. The safety module returns a tuple: the boolean value,
whether the action a is allowed in the state s, and the post-action – an optional
sequence of actions to be done after the initial one to ensure safety.

The first stage of safety assessment inside the module is application of the
extrinsic safety rules to permit or prohibit actions. If the specified state-action
pair matches any of the extrinsic rules, the answer is generated based on this
extrinsic knowledge. If no extrinsic rule can be applied, then the reversibility
module is queried to assess safety of making action a in state s. When the action
is prohibited by the safety module, either extrinsically or by reversibility sub-
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Figure 3.1: Activity diagram for the proposed architecture with the safety module
and its reversibility sub-module

module, no post-actions are required, since the initial one was not executed.
The context- and task-specific overrides should be added to the set of ex-

trinsic safety rules. This set represents the designer-based knowledge, mostly
domain-specific or situation-specific. For example, an extrinsic rule can prohibit
pushing any objects – “don’t drive ahead, if there is an obstacle in front”. A rule
can also allow or prohibit all the actions in all states. Also, a pre-programmed
post-action can be associated with a rule, for example “inform the user, if any
object was pushed”.

3.2.1 Reversibility Sub-module

The purpose of the reversibility module is to assess the intrinsic safety of decisions
through the study of their reversibility. When no extrinsic rule can be applied, and
the robot is going to make an autonomous unauthorized decision, the reversibility
module is used to assess intrinsic safety of making the desired action from the
state in question.

Assessment returns a tuple (Irr(s, a) >= 0, Pundo(s, a) = (a1, ..., an)),
where Irr(s, a) is the predicted value of how irreversible is to execute the path
(a, a1, ..., an) from state s, Pundo(s, a) is the undo-path – a sequence of actions
expected to undo the action a in the state s. The Irr(s, a) value can also be
interpreted as a cost of the path Pundo(s, a) alone, or preceded with the action a.

The action is considered safe if it is reversible – Irr(s, a) is less than a pre-
defined threshold. Reversible actions are intrinsically safe and therefore are al-
lowed; irreversible actions are prohibited.

3.2.2 Examples

Consider the situation when a vacuum-cleaning robot is cleaning a floor and the
robot plans to move the chair in front of itself to clean beneath the chair. The
safety module is queried whether it is allowed to push the chair. If the extrinsic
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rules prohibit the robot to push chairs, then the action is not allowed. The action is
allowed with optional post-action if the rules allow pushing chairs. Alternatively,
when no extrinsic rule can be applied, the reversibility of pushing the chair is
analyzed. If the robot has the knowledge and the ability to go around the chair
and push it back to its initial position, then the action is reversible and it is allowed
with a post-action of “go around the chair and push it back”. However, the cycle
of making the action followed by the undo-path can be prone to errors, taking very
long time-wise or requiring too much energy, etc. Such cases are characterized
by a large value of Irr(s, a), therefore the action is deemed irreversible and is
prohibited if Irr(s, a) value exceeds a predefined reversibility threshold.

Consider another simple example, where a robot is moving around without
any goal, model of the environment or extrinsic rules, but it “knows” that action a
(1 meter forward) is undone by action b (1 meter backward). The safety module
is queried whether it is allowed to take action a. If the robot has already tried the
same action a in a similar situation before, followed by b, and the a was undone
by b, then a should also be reversible in the current situation. This way the ex-
perienced reversible movement allows predicting reversible and intrinsically safe
outcome of the same action in the current situation. The experienced irreversible
movement, on the contrary, tells the robot, that taking the same action in a similar
situation is irreversible; thus, it is intrinsically unsafe and must be disallowed.

3.3 Reversibility Assessment

To formalize the process of action reversibility assessment inside the reversibility
module, we use the concept of reversibility model that tells the robot which actions
in which states are reversible and how to reverse them if they are. The reversibility
module encapsulates the reversibility model to be used as a part of the safety
module and, consequently, some robot control architecture.

A reversibility model aims at answering the following question:

How reversible (or irreversible) is action a in state s?

The answer to this question is continuous, since in practice no action is absolutely
reversible. The continuous value of reversibility assessment can be made discrete
(e.g. “yes”/“no”/“unknown” to be used as an answer of the reversibility module)
by mapping continuous values to desired classes of answers using, for example,
thresholds or intervals.

The assessment of action reversibility is viewed best in the context of how
costly it is to reverse the effects of the action. This way the absolutely irreversible
action would have infinite cost and the cost for absolutely reversible one would be
zero.

Generally, there are no strict rules how a reversibility model must be imple-
mented. However, it must answer the question of how reversible (or irreversible)
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is action a in state s in a form of a tuple (Irr(s, a), Pundo(s, a)), as described in
Section 3.2.1.

In this thesis we present two reversibility model approaches that are aimed at
two different levels of behaviors and state-action abstractions. The world-model-
free framework is meant to work directly on sensor data without any knowledge
about the environment and the embodiment, by using distance measures between
the states. This approach has very few prerequisites, but its application is limited
by simple scenarios. The world-model-based framework calculates the predicted
cost of undoing the action by simulating the world and calculating the cost of
returning back to the initial state. It has many prerequisites, including planning,
environment simulation and state/action identification, but its application is lim-
ited mostly by the quality of the external sub-routines.

3.3.1 World-model-free Approach

This section describes the reversibility model approach to assess how reversible
(or irreversible) is action a in state swithout an explicit model of the environment.

Actions are symbolic and the only requirement is that every action must have
a reverse-action – the action that undoes it. An action can be atomic or complex;
it can also be interpreted as a discrete choice, if used by a high-level symbolic
decision maker.

The states are distinct and can represent pure sensor values or symbolic
states. Several distance measures are defined to calculate how similar two states
are or how far one state is from another. It is possible to use straight-forward
metrics like Euclidean or Manhattan distance as well as more complex distance
measures.

The reversibility model is created through the analysis of the state-action
transitions during execution of an action and then its reverse-action. Ideally, the
reverse-action must undo the forward-action and return to the same state. In prac-
tice, the low-level state is never the same and the reversibility-distance measure
drev is used to calculate the distance from the final state of the transition back to
the initial one. The reversibility model consists of a set of such objects of analysis,
called “reversibilities”.

To predict how reversible is action a in state s, the set of experienced re-
versibilities of the reversibility model is filtered using another distance measure.
The similarity-distance measure dorig is used to calculate how similar is the cur-
rent state s to the initial state of the reversibility object. A number of reversibility
assessment objects, most similar to the current state s, are selected and the result
of the assessment is based on how reversible they are.

In the rest of this subsection we present the formalization the world-model-
free approach for assessing reversibility, some explanations and an example.
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Formal Framework

A robot’s world is a labelled transition system (S,Λ,→), where S is a set of
experienced states, Λ is a set of labels (a label contains an action or a sequence of
actions), and→ is a set of labeled transitions between the states. When the result
of an action a in state s is not wholly determined by the robot, multiple transitions
from s are labeled with the same action a and it is the world that determines which
transition actually happens.

A reversibility for a world W is a quintuple of three states and two actions:
(sinit, aforward, sinterim, areverse, sfinal). Generally speaking, a composite ac-
tion aforwardareverse produces a transition from sinit to sfinal through sinterim
in W .

Also, the action sequence aforwardareverse is expected to work for any state
x, if dorig(x, sinit) ≤ εorig, where dorig is a hemimetric (drev(x, y) ≥ 0;
drev(x, x) = 0; drev(x, y) ≤ drev(x, z) + drev(z, y)) on states and εorig is a
pre-defined threshold.

A reversibility (sinit, aforward, sinterim, areverse, sfinal) holds in W , if
drev(sfinal, sinit) ≤ εrev, where drev is a hemimetric on states and εrev is a
threshold; fails otherwise.

An action aforward in an arbitrary state s is expected to be reversible (by ac-
tion areverse), if the reversibility (sinit, aforward, sinterim, areverse, sfinal) holds
and dorig(s, sinit) ≤ εorig.

A reversibility model of the robot is a set of experienced reversibilities.
Using the reversibility model a robot can predict whether the action from

the state is reversible by iterating through its experience and using obtained re-
versibilities to ground the predictions. The dorig hemimetric is used to search for
the reversibilities to ground the predictions. The dorig hemimetric together with
its threshold value εorig are used to filter reversibilities by calculating the distance
between its initial state and the current state. The smaller the distance, the higher
is the probability that the actual outcome of making the same action from the
current state will generate a similar reversibility.

The value vrev of reversibility assessment result is calculated based on how
irreversible the filtered reversibilities are. It can be calculated using different ways
of combining several values into one, like (weighted) average, median, minimum,
maximum, etc. The drev hemimetric is used to calculate how irreversible is the
reversibility in question – the higher the value, the more irreversible it is.

Usage of hemimetrics instead of metrics relaxes the identity and symmetry
conditions to make the approach more general by allowing usage of less strict
measures. For example, with hemimetric it is possible to reward transitions from
“worse” to “better” states in case of a complex biased distance measure.

The value of vrev can also be used as a source for the intrinsic reward signal.
If such signal is counter-proportional to the value of vrev, then it will motivate the
robot to choose the actions that are reversible. The intrinsic reward signal can be
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generated, when a sequence of an action with its reverse-action is observed. In
this case, the reversibility (sinit, aforward, sinterim, areverse, sfinal) is observed
and the value vrev = drev(sfinal, sinit) is calculated. The intrinsic reward can
then be calculated, for example, using the following expression:

r = εrev − vrev .

The value of the reversibility sub-module’s safety assessment can be cal-
culated as follows. The irreversibility value is measured by Irr(s, a) = vrev
and can be transformed into the binary assessment result for the reversibility sub-
module by using the εrev threshold. The post-action is always the undo-action –
Pundo(s, a) = (−a), since the undo action (−a) is expected to always undo the
forward action (a).

Example

It should also be explained how and why a safe behavior would emerge as a result
of avoiding actions, identified as irreversible by the world-model-free approach.
As an example, let’s consider a robot with a proximity sensor in front and the two
actions – “move 10 steps forward” and “move 10 steps backward”. Without loss
of generality, it can be assumed that “steps” and values of proximity sensors are
given in the same units. For simplicity, let’s take εrev = εorig = 0.5 and use the
Manhattan metric for drev and dorig.

The robot tests actions in different situations and checks whether the obtained
reversibilities hold. The ones that fail usually correspond to collisions of some
sort or other negative outcomes. Consider the following 4 cases, where the robot
makes 10 steps forward and then 10 steps back (see Fig. 3.2):

1. If the robot is at least 10 units away from the obstacle, 12 for example, then
it does not touch the obstacle and we obtain the reversibility

((12), [+10], (2), [−10], (12))

that holds, since drev(12, 12) = 0 ≤ εrev.

2. If the robot is less than 10 units away from the wall, 8 for example, then it
touches the wall and its motor stall; the obtained reversibility

((8), [+10], (0), [−10], (10))

does not hold, since drev(10, 8) = 2 > εrev.

3. If the robot touches the wall and its wheels slide on the surface, then we
obtain the same reversibility as in case 2.
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Figure 3.2: Obstacle avoidance as a consequence of suppressing irreversible ac-
tions. In the upper example the reversibility does not hold, in the lower – holds

4. If the robot touches the obstacle, but the obstacle is light enough to be
moved, then the obtained reversibility will also be identical to case 2 from
the robot’s point of view.

This way the robot discovers that running into an obstacle (or pushing it) is
“bad” without even knowing what the “obstacle” or “pushing” is. A reversibility
model with such reversibilities will allow a robot to distinguish those state-action
pairs in which “bad things happen” from those in which they do not. As a result,
by avoiding irreversible state-action pairs, the robot will avoid pushing obstacles
or hitting walls – the obstacle-avoidance behavior will emerge.

If the reversibility of the action [10] in the state (11.5) needs to be predicted,
the reversibility ((12), [+10], (2), [−10], (12)) will be used to ground the predic-
tion, since dorig(11.5, 12) = 0.5 ≤ εorig. The predicted irreversibility value vrev
of the state-action pair is drev(12, 12) = 0. The predicted intrinsic reward signal
for such state-action pair can be calculated as follows:

r(s, a) = εrev − vrev = 0.5− 0 = 0.5 .

3.3.2 World-model-based Approach

This section describes the reversibility model approach to assess how reversible
(or irreversible) is action a in state s using a model of the environment. In this
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approach actions and states are symbolic; they are identified by external identifi-
cation routines.

To predict how reversible is action a in state s, an external planning module
is asked to provide a set of “candidate” paths (sequence of actions) to undo the
action a. The paths in the set are tested, selecting the ones that return robot back
to the state s. The predicted cost is calculated based on the costs of actions in the
selected paths; the lower the cost, the more reversible is the action a in the state s.

Such approach to assess reversibility is motivated by the principle of revers-
ibility itself. It encapsulates what means to be able to undo an action – to return
back to the initial state before making the action. External modules are used in-
stead of an internal logic to make the world-model-based approach more general
and applicable to many real-world problems.

In the rest of this subsection we present the definitions to formalize the world-
model-based approach to assess reversibility. Some explanations and an example
follow.

Formal Framework

Reversibility MDP-Model (RMM) is a finite Markov Decision Process with a re-
versibility function C(s, a) ≤ 0.

MDP is a 4-tuple (S,A., P.(., .), R.(., .)), where S is a finite set of states, As

is a finite set of actions available in state s, Pa(s, s′) is the probability that action
a in state s will lead directly to state s′, Ra(s, s′) is the (expected) immediate cost
of making action a in state s, followed by a transition to state s′ with probability
Pa(s, s′).

The value of C(s, a) is the total expected cost of s → s′ → s transition,
i.e. reversing the action a made in the state s. C(s, a) = −∞ for absolutely
irreversible actions and C(s, a) = 0 for perfectly reversible ones.

To calculate the cost, a path p = (a0, a1, .., an) must be found to make the
s → s′ → s transition. This is done by iterating through the pre-selected set
Ps of candidate paths that have a as a first action. For every candidate path p =
(a0, a1, .., an), the Cp(s, a) value is calculated as follows:

Cp(s, a) = min(
n∑

0

Rai(si, s
′
i) · Pai(si, s

′
i) : s′n = s) .

If none of the possible s′n is equal to s, then Cp(s, a) = −∞.
The C(s, a) cost is the maximum of the analyzed Cp(s, a) values:

C(s, a) = max(Cp(s, a)) .

If there are no candidate paths found, then C(s, a) = −∞.
Action a in state s is reversible if C(s, a) ≥ Crev. If C(s, a) ≥ Cmin ≥

Crev, action a in state s is called super-reversible.
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The rationale behind introduction of the Cmin threshold is to optimize
C(s, a) calculation – search for the maximum can be stopped, if a path with
Cp(s, a) ≥ Cmin is found:

C(s, a) = Cpi(s, a), if Cpi(s, a) ≥ Cmin .

Simply put, a cost of making a sequence of actions p = (a0, a1, .., an) is
predicted withCp(s, a), taking in consideration only the possible outcomes where
the final state is s. A set of paths is analyzed and the Cp(s, a) value is calculated
for each path. A path with the maximal Cp(s, a) or the first path with Cp(s, a) ≥
Cmin is the selected way to take action a in state s and then return back to the
initial state s. The cost of such cycle is the value of C(s, a) and the sub-sequence
of actions pundo = (a1, .., an) is called an undo-path.

In practice, the first candidate path to be tested is the action a itself: if
C(a)(s, a) ≥ Cmin, then C(s, a) = Cp=(a)(s, a). In this case the state s was
not left, thus the action a in the state s is reversible and the undo-path is empty.
Such situation occurs if the action a does not affect the environment or state iden-
tification module decides that changes in the environment are irrelevant for the
context in question.

The value of the reversibility sub-module’s safety assessment can be calcu-
lated as follows. The irreversibility value is measured by Irr(s, a) = −C(s, a)
and can be transformed into the binary assessment result for the reversibility sub-
module by using the −Crev threshold. The post-action is always the undo-path
of the best path p: Pundo(s, a) = pundo, since the undo-path pundo is supposed to
undo the action a.

Example

It should also be explained how and why a safe behavior would emerge as a
result of avoiding actions, identified as irreversible by the world-model-based
approach. For example, let’s consider a robot, moving in an environment with
walls and movable objects, using actions of “move forward/backward” and “ro-
tate left/right”. The walls, the free space and the movable objects are identified by
the external state identification module. Let’s assume that the external simulation
module can correctly simulate effects of the actions and that the external planning
module is able to provide a set of correct action sequences to undo the given action
in the given state.

Consider the robot to be in a state s and willing to make an action a. For
example, the robot is in the center of a room and environment state in this context
is identified by position of movable objects in the room. If the environment simu-
lation module predicts that none of the objects will be moved, then the initial state
is not left and the action is identified as reversible.

If object movement is predicted, then “candidate” paths to undo action a,
provided by the planning module, are simulated to find the ones that can actually
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undo the action. If there exists a path p with high probability of success and
acceptably small cost (Cp(s, a) ≥ Cmin) or cost of the “easiest” path is within
reversibility limits (Cp(s, a) ≥ Crev), then the action a in the state s is identified
as reversible.

3.3.3 Relation Between the Approaches

Despite the fact that the model-free and the model-based approaches assess safety
of the action in different ways, both approaches’ purpose is the same – to “imple-
ment” the reversibility sub-module of the safety module. The world-model-based
approach, together with its prerequisites can be treated as an “implementation” of
the world-model-free approach.

To remind the reader, the world-model-free approach is based on reverse-
action pairs with state similarity measures and the following prerequisites must
be selected/defined:

• Pairs of actions that reverse each other.

• Hemimetrics dorig and drev to filter experienced reversibility objects and
measure their reversibility, respectively.

• Threshold values εorig and εrev to classify the values calculated by the
hemimetrics (to select appropriate reversibilities to ground the prediction
and to distinguish between reversible/irreversible actions, respectively).

• The revesibility model – a set of the experienced reversibilities.

The rest of the subsection describes how these prerequisites can be imple-
mented using the world-model-based approach and its external modules.

Pairs of reverse-actions

The reverse-action pairs can be given by designer in advance. Alternatively, they
can be inferred from the model of the environment or state/action identification
logic.

Hemimetrics

There are multiple ways to calculate the required hemimetrics dorig(x, y) and
drev(x, y), which include, but are not limited to:

• discrete metric on states (by state identification logic):

d(x, y) =

{
0 if x = y
1 if x 6= y

• by taking module of the cost of the x → y transition, calculated similarly
to C(s, a) calculation for s→ s′ → s transition
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Thresholds

The threshold values εorig and εrev can be given by designer in advance or derived
from values of the Crev and the Cmin thresholds. In case of discrete metrics, the
thresholds can be set, for example, to εorig = εrev = 0.5.

Set of Experienced Reversibilities

The experienced reversibilities can be obtained by internal simulation and in the
actual test runs.
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4 Experiments

This chapter describes the implementation of the safety architecture and the
two approaches described in the previous chapter. It also presents the test results
of assessing action reversibility using the proposed safety architecture. Section
4.1 describes two experiments to test the world-model-free approach for assessing
action reversibility. The experiment with the proposed safety architecture using
the world-model-based reversibility assessment is described in Section 4.2.

4.1 World-model-free Reversibility Assessment

4.1.1 Reversible Self-Movement

In this section we describe the experiment, where we create the reversibility model
and test its performance. In the experiment we compare the collision prediction
success rate of the world-model-free approach with performance of a model-free
reinforcement learning algorithm. The experiment is also presented in [62] and
the reader can refer to it for more details.

The experiment consists of two test runs to analyze the performance of the
world-model-free reversibility assessment on two robots of different size with dif-
ferent sensor setup and number of sensors. The first test run is conducted on a
Khepera II mini-robot, simulated with the Gazebo simulator from the Player/Stage
project [63]. In the second test run, the same simulator is used to test the perfor-
mance of a simulated Scitos G5 robot. Each test run is divided into two parts: data
collection (part 1) and simulation (part 2).

In the first part, the robot makes pseudo-random moves and the input data
(sensors data, actions made and outcomes of the actions) is collected and saved
into log files. The predictions are made in the second part using the collected data.
The performance is measured by sampling algorithms’ predictions of whether the
next action will result in collision, followed by calculation of the success rate of
those predictions.

Robots and Environments

Both Khepera II and Scitos G5 are differential drive robots with considerably
different size and slightly different geometry. Khepera II has a circular shape and
the rotation axis is exactly at the center of the circle. Therefore, it can rotate freely
in very close proximity (1-2 mm) to the obstacle without touching it. Scitos G5
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also has a circular shape, but with an additional compartment at the back side
for the passive third wheel, which considerably changes the way it can rotate its
own body. A 360◦ turn can be completed without touching the obstacle, only if
the distance to the obstacle is larger than approximately 200mm (the size of the
passive wheel compartment).

The robots are simulated with the Gazebo simulator (version 0.8-pre3,
OGRE version 1.4.9, ODE version 0.10.1) through the Player control framework
(modified version 2.1.0) [63]. The environment for Scitos G5 is a rectangular box
of size 970 mm by 1500 mm, shown in Fig. 4.1 (on the right). Only 22 of 541
laser rays are simulated to optimize simulation performance. Khepera II’s infra-
red sensors are simulated by 8 short laser rays distributed evenly around the robot
with the maximum measurable distance of 100mm. The environment for Khep-
era II simulated environment is a right-angled triangle box with side lengths of
196 mm, 125 mm and 233 mm, shown in Fig. 4.1 (on the left).

Figure 4.1: Environments for the experiments – simulated Khepera II is on the
left, simulated Scitos G5 is on the right

Robot Movements

In the experiment the state vector is s = (d0, d1, d2, d3), where di are sensor
values for front, back, left and right sensors, accordingly. The robot is given a set
of actions with corresponding reverse-actions: movements forward-backward and
turning left-right of the same length are pair-wise reverse-actions of each other.
The following discrete set of actions is used in the experiments: F – make a step
forward, B – make a step backward, L – rotate counter-clockwise, R – rotate
clockwise , where F = −B, B = −F , L = −R and R = −L.

Actions are defined in terms of commands to move forward/backward or ro-
tate left/right. An action a = [mtrans,mrot] consists of a pair of target movement
deltas, mtrans is measured in meters and mrot is measured in degrees. See Ta-
ble 4.1 for the values selected for the actions F ,B,L and R.
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Action Khepera II movement Scitos G5 movement
F [+0.016,0] [+0.15,0]
B [-0.016,0] [-0.15,0]
L [0,+30] [0,+42]
R [0,-30] [0,-42]

Table 4.1: Values of the actions’ movement commands [mtrans,mrot]

A robot moves using the algorithm described in Fig. 4.2. It makes a ran-
dom action followed by its reverse-action, then makes another random action, but
without a reverse-action, and then repeats the pattern. The purpose of the first
two actions is to generate at least one pair of actions to measure the reversibility,
which can be used as a basis to generate the intrinsic reward signal afterward. The
purpose of the last random action without a matching reverse-action is to make
the robot explore the environment.

1. Record the current state si = (d0, ..., d3).

2. Execute a random action as ai.

3. Record the state si+1 = (d0, ..., d3).

4. Execute the reverse-action of ai: ai+1 = −ai .

5. Record the resulting state as si+2.

6. Execute a random action as ai+2.

7. Add 3 to i and repeat (goto 1).

Figure 4.2: Robot movement algorithm to collect data

Reversibility-based algorithm

The aim of the reversibility-based algorithm is to predict if a certain action from
a certain state is reversible or not. This is done by generating an intrinsic reward
signal based on the distance between the final and the initial states. The algorithm
is described in Fig. 4.3. It takes a sequence of states and actions as an input:
s0, a0, s1, a1, s2, a2, s3, a3, ... .

At every i ≥ 2, if ai−1 = −ai−2, then the reversibility (si−2, ai−2, si−1,
ai−1, si) is added to robot’s reversibility model, which is a set of reversibilities.

To predict the outcome of making the action at from the state st, the intrin-
sic reward is calculated as an expected irreversibility value vrev using a set of
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1. Read the current state si and the next action ai from log.

2. Select a number of reversibilities from the set of experienced ones with
aforward = ai, based on dorig(si, sinit) of the experienced reversibility.

3. If no reversibilities are selected, make no prediction.

4. Calculate the expected irreversibility value vrev using drev(sinit, sfinal)
of the selected reversibilities.

5. If vrev > εrev, then predict negative outcome (collision), otherwise pos-
itive outcome (no collision) is predicted.

6. If i < 2, add 1 to i and repeat (goto 1).

7. Read the last action as ai−1 and the previous action ai−2 from log.

8. If ai−1 is reverse-action of ai−2, add the new obtained reversibility
(si−2, ai−2, si−1, ai−1, si) to the set of experienced reversibilities.

9. Add 1 to i and repeat (goto 1).

Figure 4.3: Reversibility model creation algorithm

reversibilities, selected from the reversibility model.
The selected reversibilities are the ones with the same forward action and

dorig(st, sinit) < εorig, where sinit is the initial state of the reversibility un-
der consideration. In the experiment, the value of vrev is a weighted average
of drev(si, si−2) values of the selected reversibilities. Reversibilities are sorted
by dorig(st, sinit) in an ascending order and their weights are 1/i3 (1, 1/8, 1/27,
1/256, etc) – reversibilities with a “closer” initial state have considerably stronger
influence. The prediction decision is calculated as sign(εrev − vrev) – the nega-
tive value means the negative prediction (collision), the positive value means the
positive prediction (no collision). If no reversibilities could be selected and the
vrev value is undefined, then no prediction is made.

Q-learning algorithm

The main difference between the reversibility-based algorithm and the Q-learning
algorithm [64] is that the latter receives an external reward signal indicating the
outcome of the action. The reversibility-based algorithm, on the other hand, uses
only sensor data to determine whether the irreversible (e.g. collision) will occur or
not. The experimental test runs consist of random movements, therefore, the long-
term reward component of the classical Q-learning update expression is discarded;
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expected reward of the state-action pair is updated using the following expression:

Q(st, at)← Q(st, at) + αt(st, at)[rt −Q(st, at)] .

The prediction decision is calculated as sign(Q(st, at)) – the negative Q
value means the negative prediction (collision), the positive Q value means the
positive prediction (no collision). Initially,Q values are set to 0 and ifQ(st, at) =
0, then no prediction is made.

Implementation details

Sensor values for the Scitos G5 are in meters, therefore they are multiplied by
1000 to be of the similar scale to the ones of the Khepera II. This does not af-
fect the reversibility based algorithm, but makes saving and loading the log files
simpler.

In the experiment the αt(st, at) value of the Q-learning update expression is
constant and is set to 0.01. The Euclidean metric is used to calculate dorig and
drev in the experiment; the values εorig and εrev are finite and selected manually.
Threshold values εorig, εrev and the tile size of discrete state identification for the
Q-learning algorithm are constant:

• εorig = 11000,

• εrev = 10000,

• RLtilesize = 168.

Results

During the test runs the two methods are predicting collisions of simulated robots
with simulated obstacles (walls). Figures 4.4 and 4.5 represent the test results for
the Khepera II and the Scitos G5 respectively.
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Figure 4.4: Results of the prediction performance test with the simulated Khepera
II robot
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Figure 4.5: Results of the prediction performance test with the simulated Scitos
G5 robot

The rate of correct predictions is calculated by sampling how many predic-
tions out of 100 are correct. If no prediction is made, then it counts as incorrect
prediction. The downward spikes in prediction rate graphs are caused by novelty
of the states, since no grounded prediction can be made for such unvisited states.

The rates of correct prediction of both algorithms start at 20–40% and grad-
ually reach the level of 70–90% after 3900 steps. In comparison to the Q-learning
algorithm, the performance of the reversibility-based algorithm is about 10%
lower for Khepera and about 5% lower for Scitos.

The similar performance of the reversibility-based algorithm on two robots
of a different size and sensor setup shows that the motivation to take reversible
actions is abstract and the reward signal is intrinsic. However, the reward signal is
still based on the sensor values, requiring to select the hemimetrics and the thresh-
olds manually, which makes algorithm’s implementation somewhat dependent on
the physical embodiment and the task at hand.

4.1.2 Identification of Reverse-Action Pairs

In this section we describe how reverse-action pairs, used in the experiment de-
scribed in Section 4.1.1, can be identified using the same theoretical framework of
the world-model-free reversibility assessment. The following experiment is also
presented in [65] and the reader can refer to it for more details.

The method for identification of reverse-action pairs is based on analysis
of reversibility of two consecutive actions. It works on a data set of states and
actions, acquired during a test run with randomized selection of actions from the
set of rotational (rotate left/right X radians) and translational (move X meters
forward/backward) actions of different lengths. Reversibility of all consecutive
pairs of actions is calculated and results are divided into different sets. These sets
are then analyzed to identify specific pairs of actions to reverse each other, as well
as a general rule to generate such pairs.
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Experimental Setup

In the experiment the simulated Scitos G5 robot is placed into the big room to
allow collision-free movement (see Fig. 4.6). The environment is simulated using
the Player platform and the Stage multi-robot simulator [63].

Figure 4.6: The simulated environment. Blue figure at (0, 0) is the simulated
Scitos G5 robot at its initial position

The laser rangefinder of the robot is configured to observe the sector of
[−105◦,+105◦] in front of the robot with 0.5◦ precision. The state is identified by
the laser rangefinder data: s = (d0, d1, ..., d420). The action is a two-dimensional
command to move or rotate: a = [mtrans,mrot] , where mtrans is the transla-
tional movement in meters and mrot is the degree of rotation in radians.

The experiment begins with the test run, where the robot moves randomly.
The actions are generated in such a way, that either mtrans or mrot is zero. First,
it is decided, whether the robot moves forward/backward (mrot = 0) or turns
left/right (mtrans = 0) with equal probability. Then, the value of mtrans ∈
[−1.0,+1.0] or mrot ∈ [−1.57,+1.57] is selected randomly from the respec-
tive interval. The laser rangefinder data before and after making every action is
saved to a log-file together with the executed action data.

The acquired data is then analyzed off-line by iterating through the log-file.
There are several sets of data to be analyzed. Each single action is analyzed to
measure how state changes as a result of the action. For this purpose, the drev of
the states after and before the action is calculated for separate sets of translational
and rotational actions.
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Similarly, pairs of consecutive actions are analyzed as reversibility “candi-
dates”, divided into the three different sets:

• “TT” – translational+translational

• “RR” – rotational+rotational

• “RT-TR” – rotational+translational or translational+rotational

Results

The result of the analysis of single actions is shown in Fig. 4.7. The rotational
actions are shown as black triangles, while gray diamonds represent the transla-
tional actions. The horizontal axis is the non-zero component of the action: mrot

for the rotational and mtrans for the translational actions. The vertical axis is the
drev of the states after and before taking the action.

Fig. 4.7 shows that numerical influence of robot’s rotation on the change to
robot’s state is considerably higher than of robot’s translational movement. Rota-
tional movements generate ca 10 times bigger drev than translational ones; there-
fore the two different thresholds are used to interpret the rest of the results. The
first threshold (εrevR = 100) is for sequences with at least one rotational action,
and the second one (εrevT = 10) is for translational-only sequences.
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Figure 4.7: Calculated drev of the states after and before making the action

Figures 4.8, 4.9 and 4.10 visualize the results of analysis of reversibility “can-
didates” for “TT”, “RR” and “RT-TR” data sets respectively. Similarly to Fig. 4.7,
drev of the states after and before the action is on the vertical axis. The difference
is that the action now consists of two consecutive actions p = (ptrans, prot) and
q = (qtrans, qrot). The horizontal axis is the “Manhattan” length of the sum of
action vectors:

dact(0, p+ q) = |ptrans + qtrans|+ |prot + qrot| .

Since one of the components is zero in the “TT” and “RR” data sets, values on the
vertical axis in figures 4.8 and 4.9 are |ptrans+qtrans| and |prot+qrot| respectively.
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Figure 4.8: Calculated drev of the final and the initial states of two consecutive
translational actions (TT)
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Figure 4.9: Calculated drev of the final and the initial states of two consecutive
rotational actions (RR)

Figures 4.8 and 4.9 show that the data sets “TT” and “RR” exhibit strong
dependency of drev from the value of dact(0, p + q). The closer to 0 is the sum
of consecutive rotations or translations, the less is the distance between the states
after and before the action p + q. In other words, irreversibility of the sequence
of actions p + q is proportional to its length. Considering the fact that one of the
action’s components is zero in the “TT” and “RR” data sets, a general rule can be
derived: “if moved/rotated by X, move/rotate by -X to undo”. Further, the actually
experienced pairs of actions can be identified by applying the drevT and the drevR
thresholds to “TT” and “RR” data sets respectively.

The “RT-TR” data sets differs from the “TT” and “RR” data sets by the fact
that the two consecutive actions are of different type and modules of both rota-
tional and translational parts are added during the dact(0, p+ q) calculation. The
analysis of the results for “RT-TR” data set predictably reveals no strong depen-
dency of drev from the value of dact(0, p+q), and no general rules or specific pairs
of actions from this set can be identified as reverse-action pairs. Although, there
are several points below the εrevR threshold, these points represent the actions
with a very small rotational action and a bigger translational action.

The results of the experiment show that it is feasible to use the proposed
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Figure 4.10: Calculated drev of the final and the initial states of consecutive rota-
tional+translational or translational+rotational actions (RT-TR)

world-model-free approach to identify pairs of reverse-actions, based on raw sen-
sor data.

4.2 Safety Module With World-model-based
Reversibility Assessment

4.2.1 Reversible Object Manipulation

In this section we describe the experiment, where the principle of reversibility is
applied to assess intrinsic safety of actions and to adapt robot’s behavior for the
task of covering an area with a movable object inside. The safety module with the
reversibility sub-module is acting as a governor, which allows pushing an object
only if such an action is reversible. The experiment is also presented in [66] and
the reader can refer to it for more details.

The Robot and The Environment

The MetraLabs’ Scitos G5 robot is used in the real-world experiment and its
model is used in the simulated environment, which is a copy of the actual room,
where the real robot is operating (see Fig. 4.11). The robot control framework is
connected to the Player server, which in turn controls either the actual robot or its
model in the Stage simulator [63].

The Task

Robot’s behavior mimics a vacuum cleaner. The task for the robot control algo-
rithm is to cover the area using the “lawnmower” pattern. During the experiment
the covered area is measured together with the difference between the final and the
initial positions of the movable object in the global reference frame. The experi-
ment is conducted with a single object to simplify the setup and make the object
identification more robust.
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Figure 4.11: The physical experimental setup of the real room (on the left) and
the simulation in Player/Stage (on the right); the dotted line and the tape mark the
desired area to be covered

To benchmark the hybrid safety approach with the world-model-based re-
versibility assessment, the experiment consists of three sets of test runs with dif-
ferent modes (sets of extrinsic rules) of the safety module to compare their perfor-
mance:

• “reversibility” – with the empty set of rules, the decision and the post-action
are generated by the reversibility module

• “obstacle avoidance” – the extrinsic rule allows only the actions that don’t
move the object

• “no safety” – the extrinsic rule allows all actions

The experiment starts with the data acquisition part to collect statistical data
about the robot and the environment. It is followed by the data processing part
to calculate statistics and prepare candidate cycles for C(s, a) calculation. When
data is collected and processed, the actual test runs are executed to measure the
covered area and the distance between the initial and the final positions of the
object.

Data Acquisition

In this experiment the robot can choose between the actions described in Table 4.2.
During the data acquisition part of the experiment the robot takes random actions
to collect statistical data about those actions. For every action, the initial and final
coordinates together with orientation of the robot are saved for both local and
global odometry. The object’s movement data in the robot’s reference frame is
also collected to gather statistics on how robot’s actions influence the object.
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Action Description
f move 0.15 meters forward
F move 0.60 meters forward
b move 0.15 meters backward
B move 0.60 meters backward
L rotate 60 degrees counter-clockwise
R rotate 60 degrees clockwise

Table 4.2: Actions used in the experiment

Data Processing

After the data is acquired, it is processed off-line before the test runs. First, for
each of the actions, robot movement statistics is calculated from the collected data
– average and standard deviation of the covered distance along robot’s X and Y
axes together with the angle of rotation. Then, the internal model of the envi-
ronment is created based on the collected data and tweaked manually to simulate
resulting object movements as precisely as possible.

The tweaked model is then used to prepare the candidate cycles for on-line
C(s, a) calculation during the test run. It is done similarly to [67], but in this
experiment hundreds of relative positions of the object in robot’s reference frame
are analyzed. The area around the robot is divided into cells of the size of 0.03
meters. The centers of the cells are the analyzed points, tested for action revers-
ibility with the object in that position. The search for cycles is conducted for those
points where the object position changes as a result of the action; separate sets of
such points are created for every action of the available six. On our test machine
(Intel Core i7-920 CPU, NVIDIA Tesla C1060 GPU, 6GB of RAM) the calcula-
tion takes approximately one hour for the simulated and four hours for the real
environment.

Test Runs

The final part is the actual experiment, which consists of multiple test runs with
different modes of the safety module. In the beginning of each test run, the object
is placed randomly inside the desired area; the covered area together with the
distance between the final and the initial object positions is measured in the end.

The area coverage algorithm for all three “modes” is the same, it covers the
area in the “lawnmower” fashion and queries the safety module before taking an
action. If the action is prohibited, an alternative action is chosen and the query is
repeated. If the new action is allowed, it is executed together with the post-action,
supplied by the safety module.

In the “reversibility” mode no extrinsic safety rules are applied and the re-
versibility module is responsible for safety assessment. The cycles, generated in
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the off-line data processing part of the experiment, are used during the on-line
assessment of action reversibility.

The analyzed point, closest to the current position of the object, is selected
from action’s set of such points. Each analyzed point has a set of the previously
identified cycles associated with it, these “candidate paths” are used to calculate
C(s, a) and select the best cycle as a basis for the post-action.

During the on-line safety assessment, the paths are simulated internally, now
taking possible immovable obstacles into account.

The “obstacle avoidance” mode uses the same internal model of the envi-
ronment to predict collisions. The action is prohibited if a collision is predicted,
allowed otherwise; the post-action is always empty. The “no safety” mode is the
most naive approach – all the actions are allowed and the post-action is always
empty.

Technical Details

The test area is 5 by 4 meters, it is divided into 80 cells of the size of 0.5 meters.
The cell is considered to be covered, if the center of the robot’s round compart-
ment enters it.

Robot coordinates in the global reference frame are provided by the AMCL
driver of the Player/Stage project [63]. The round object’s size and its position
in robot’s coordinates are identified from laser rangefinder scans, filtering out the
occasional “wrong” objects by the radius threshold. State space’s 2D position
component is divided into 0.1 m cells and orientation component is divided into
0.173 rad sectors. The movable object is round; therefore, its orientation is al-
ways 0.

Threshold values are set as follows: Cmin = −2 and Crev = −20. The
search for cycles is a plain iteration over the possible paths with lengths of up
to 14 actions. During the on-line C(s, a) calculation, a maximum of 8192 path
candidates are tried. No run-time limits are enforced, since execution times are
limited appropriately by the previously described parameters.

Results

Fig. 4.12 shows the results of the test runs made in simulation (to the right) as well
as on the real Scitos G5 robot (to the left). Each sub-figure contains the results of
the 5 test runs conducted with the 3 different modes of the safety module.

The red triangles represent the results of the trials, when all the actions are
allowed – the “no safety” mode. It is easy to see that this mode is the least safe
of all the three – in the end the object is on average 1.5-1.9 meters away from
its initial position. As expected, this mode performs very well in terms of area
coverage – all of the 80 cells are visited during both real and simulated test runs. In
the real environment the object is moved further away from its initial position than
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Figure 4.12: Results of the test runs in the real (left) and the simulated (right)
environments

in the simulated environment. This is due to the difference in physical parameters
of robot-object interaction.

The results of the “obstacle-avoidance” strategy, where only the actions that
don’t move the object are allowed, are shown as blue diamonds. This mode is in
many ways the opposite of the “no safety”: it is the safest mode with almost no
object movements, but with incomplete area coverage – at least one and up to four
cells remain unvisited. It is worth noting, the test runs in the real environment
exhibit small movements of the object in this mode due to imperfect collision
prediction and sensor noise.

Green squares represent the test runs in the “reversibility” mode – when deci-
sion about the action and the post-action is made by the reversibility sub-module.
This mode performs on a par with the “no safety” mode in terms of area coverage
– all the 80 cells of the area in question are covered. Also, this mode is safe –
in the end the object is very close to its initial position after both the real and the
simulated test runs.

With respect to the total navigation time, the fastest mode is predictably the
“no safety”, since the robot drives straight through the cells in the “lawnmower”
fashion. The “reversibility” mode is only 3-10% slower than the “no safety” –
the additional time is spent only when driving around the obstacle and pushing it
back. The slowest mode is the “obstacle-avoidance” – it is at least 50% slower
than the “no safety” mode. In this mode the next unvisited cell is tried many times
from different positions, before it is skipped.

Based on the results of the experiment, we conclude that the proposed safety
architecture, consisting of the safety module and its reversibility sub-module, can
be used for practical purposes. The experiment showed that the principle of re-
versibility can be successfully used to ground safe object pushing behavior to
increase covered area without compromising safety.
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5 Summary of Publications

This chapter gives a short review of the publications related to this thesis. The
first three papers in sections 5.1, 5.2 and 5.3 are dedicated to the world-model-free
approach to assess action reversibility. Sections 5.4 and 5.5 describe the papers
dedicated to the world-model-based approach.

5.1 Don’t Do Things You Can’t Undo: Reversibility
Models for Generating Safe Behaviours
(Paper Summary)

In this paper the abstract principle “Don’t Do Things You Can’t Undo” is used to
govern the robot’s behavior and the obstacle avoidance behavior emerges when
robot suppresses irreversible actions. The idea was initially proposed in [10] by
Eppendahl and Kruusmaa and this article extends the idea (by introducing the
initial theoretical framework to assess action reversibility), confirms the reported
results and demonstrates the efficiency of the proposed approach. The test results
are evaluated in a two-dimensional environment on Khepera II mini-robot de-
veloped by K-Team. Performance of the reversibility-based algorithm to predict
collisions is compared to the Q-learning algorithm as a benchmark.

It is argued in the introduction that the principle of reversibility is suitable to
be one of the basic principles to ground robot behavior. It is also argued that the
code based on such principles without reference to the ground meaning of sensor-
motor values should function reliably in a broad range of environments and on
different robots.

Instead of programming a robot with specific routines to avoid collisions,
falls, etc., it is proposed to program a robot with the general principle of avoiding
irreversible actions. This way the robot is told not what to do, but why something
should be done. For example, locking a door without the knowledge how to un-
lock it is intrinsically unsafe, because the robot gets trapped and its batteries are
depleted as a result.

Section 2 presents the reversibility model that tells the robot which actions
are reversible and how to reverse them if they are – an initial formalization of the
proposed ideas about reversibility.

Section 3 describes the experiments with the Khepera II robot moving inside
two different environments – the “easy” rectangular and the “harder” triangular
cardboard boxes. For each environment two sets of reverse-action pairs are used –

45



the one-dimensional experiments use short and long steps forward and backward,
while the two-dimensional experiments also include rotational movements.

In all 4 experimental test runs the robot moves pseudo-randomly by repeat-
edly executing a random action together with the appropriate reverse-action first
and then making another random move to explore the environment. Such action
selection pattern generates at least one reversibility to be added to reversibility
model of the robot. For each first action a in the pattern iteration, the reversibility
together with the dval value (the distance between the initial and the final state
after making actions a and −a) is added to the reversibility model.

This model is then used to predict whether the current action in the current
state will result in collision. Rate of correct predictions for the reversibility-based
algorithm is compared to the Q-learning algorithm, predicting the sign of the re-
ward for making the action a in the state s. The environment-based reward is
calculated as follows: a positive reward is proportional to length of the collision-
free movement and a negative reward is provided for hitting an obstacle.

Section 4 describes test results of the experiments. Performance of the re-
versibility-based algorithm is very close to the Q-learning algorithm for both ex-
periments in the “easier” rectangular environment. In the “harder” triangular en-
vironment with higher probability of collisions, results of both 1D and 2D test
runs show that performance of the reversibility-based algorithm is only 5-10%
lower than of the Q-learning algorithm. The results are interpreted as positive,
since their performance is comparable, but the latter algorithm uses collision sig-
nal to predict collisions, while the former one uses only sensor data to ground its
predictions.

It is concluded that both methods perform more or less equally, converging
to a satisfactory performance. The results suggest that the efficiency of the re-
versibility-based collision predictor is comparable to the reinforcement learning
approach.

This paper is referenced in the thesis as [11] and is included in full as Ap-
pendix A. It was presented by the first author (Maarja Kruusmaa) during the 2007
International Conference on Robotics and Automation (ICRA 2007).

5.2 Emergence of Safe Behaviors with an Intrinsic
Reward (Paper Summary)

In this article the theoretical framework of the approach is finalized and tested
on two simulated robots as well as a real robot pre-loaded with the simulated
experience.

In the introduction, it is argued that it is useful to treat intrinsic motivation
of the robot to reverse actions as an intrinsic reward signal to robot learning. The
rationale for such a motivational system is to teach the robot to behave safely. A
robot governed by such an intrinsic motivation will behave inherently safely as it
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will prefer actions that don’t cause irreversible damage.
Section 2 presents the theoretical framework of the world-model-free ap-

proach. The definition subsection defines a world W as a labeled transition sys-
tem, consisting of the experienced states, actions as labels and the experienced
labeled transitions. A reversibility is defined as a 5-tuple consisting of the initial
state sinit, the forward action aforward, the intermediate state of the transition
sinterim, the reverse-action areverse = −aforward and the final state sfinal. The
reversibility model R is defined as a set of experienced reversibilities in the world
W .

The dorig distance measure with the εorig threshold value are used to se-
lect the reversibilities with similar initial state. The drev distance measure with
the εorig threshold are used to assess if the reversibility holds by calculating the
distance between the initial and the final state.

Section 3 describes the experimental setup with implementation details and
detailed descriptions of the used algorithms. The paper contains three experi-
ments. Tests 1 and 2 are made to analyze the performance of the reversibility-
based assessment on two different robots of different size with different sensor
setup and number of sensors. The purpose of the test 3 is to check the hypothesis
that the real robot can perform comparably to the simulated one, if it starts the test
run pre-loaded with the simulation-based experience. The test 1 is made on the
Khepera II mini-robot, simulated with the Gazebo simulator from the Player/Stage
project. In the test 2, the same simulator is used to test the performance of the
simulated Scitos G5 robot, which is considerably larger than the Khepera and the
field of view of its sensors cover only 270 degrees, while simulated Khepera has
a 360-degree coverage.

Similarly to [11], in all the three tests a robot is moving inside a box us-
ing pairs of reverse-actions – move forward/backward and turn left/right. Each
test run starts with the data-collection part, where a robot is making actions and
data is saved to be analyzed in the data-analysis part. In the first part the robot
moves pseudo-randomly, selecting a random action, executing it together with
an appropriate reverse-action and then making another random move to explore
the environment. As a result of such moving pattern, at least one reversibility is
generated per each iteration.

In the data-analysis part of a test run, saved data is loaded into memory to
assess performance of the collision prediction rates for the reversibility-based and
the Q-learning algorithms. Both algorithms predict the sign of the reward for
making the action a in the state s for every state-action pair in the saved sequence
of experienced states and actions.

The main difference between the Q-learning algorithm and the reversibility-
based algorithm is that the former receives an external reward signal indicating
success of the action. The reversibility-based algorithm, on the other hand, uses
only sensor data to determine success of the action (which may also be interpreted
as an intrinsic reward arising from the similarity of the initial and final states).
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Section 5 describes and discusses the test results. The results of the first
two experiments show that the performance of the reversibility-based algorithm is
about 10% lower for Khepera and about 5% lower for Scitos, than the Q-Learning
algorithm’s results. The results of the test 3 report success rate of 65-70% from the
very beginning of the test run. During the experiment, the performance improves
further reaching to the success rate of the simulated run (ca 80%).

It is concluded that the similar performance of the reversibility-based algo-
rithm on two robots of different size and sensor setup shows that the goal to learn
to reverse actions is abstract and the reward signal is intrinsic. The third experi-
ment showed that the reversibility model can be learned in simulation to increase
the safety of robot learning and then be corrected further within the physical robot.

This paper is referenced in the thesis as [62] and is included in full as Ap-
pendix B. It was presented by the first author (Juri Gavšin) during the 2011 Inter-
national Conference on Adaptive and Intelligent Systems (ICAIS 2011).

5.3 Identification of Reverse-Action Pairs using
Reversibility of Actions (Paper Summary)

This paper describes a method for identification of reverse-action pairs through
analysis of reversibility of two consecutive actions. The method works on a data
set of states and actions acquired during a test run with a randomized action se-
lection. The experiment with a simulated Scitos G5 robot suggests that such pairs
can be identified from a set of rotational (rotate left/right X radians) and transla-
tional (move X meters forward/backward) actions of different lengths. A general
rule to generate such pairs can also be inferred from the experimental data.

The introduction gives motivation for the work by pointing out that the pre-
vious research, including authors’, selected the reverse-actions, or undo-actions,
manually.

Section 2 explains the concept of reversibility and describes the theoretical
framework (as described in Section 5.2) and the approach to identify pairs of
reverse-actions. It is proposed to use a new metric, which determines the differ-
ence between the two actions: dact = drev = dmanhattan , where dmanhattan

is the Manhattan metric. First, a consequence of making every single action
is measured to estimate how much the action alters the environment, using the
dact metric and to select the εrev threshold. Second, each pair of consecutive
actions together with surrounding states is treated as a reversibility “candidate”
and the drev(sfinal, sinit) is calculated for each “candidate”. The approach can
be viewed is a reverse process of checking if reversibility holds for a pair of pre-
defined reverse-actions – “candidates” with low drev(sfinal, sinit) are sampled to
analyze how to derive areverse from aforward, so that areverse = −aforward.

Section 3 describes the experimental setup and details of the experimental
procedure. In the simulated experiment a Scitos G5 robot with a laser rangefinder
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is placed into a collision-free environment of a large room. The experiment begins
with a test run, where the robot is moving randomly. The actions are generated in
such a way, that a single action is either rotational or translational.

Several sets of data with different types of actions are analyzed during the
course of the experiment. Single actions are analyzed to estimate how much the
action alters the environment using the drev metric. Pairs of actions are analyzed
for reversibility using the drev metric, separating pairs of actions with the same
type from the mixed ones.

Section 4 presents the experimental results and Section 5 contains discus-
sion. Analysis of the data sets containing single actions reveals that the numerical
influence of robot rotation on the change to robot’s environment is considerably
higher than of robot’s translational movement. Therefore, two different thresholds
are used for interpretation of the results for pairs of actions.

The data sets containing pairs of actions of the same type exhibit strong de-
pendency of reversibility from the length of sum of actions – the closer it is to 0,
the less is the distance between the states before and after making a pair of ac-
tions. Considering the fact that in these data sets one of the action’s components
is zero, a general rule can be derived as “if moved/rotated by X, move/rotate by
-X to undo”.

Analysis of the data set with pairs of actions of different type reveals no
strong dependency of reversibility from the length of sum of the actions. There-
fore, no general rules or specific pairs of actions can be identified as reverse-
actions using this set.

It is concluded that it is feasible to use the proposed approach to identify
pairs of reverse-action, based on raw sensor data with no prior knowledge about
the environment.

This paper is referenced in the thesis as [65] and is included in full as Ap-
pendix C. It was presented by the first author (Juri Gavšin) during the 2011 Inter-
national Conference on Systems, Man, and Cybernetics (SMC 2011).

5.4 Assessing Safety of Object Pushing Using the
Principle of Reversibility (Paper Summary)

This paper presents a theoretical framework for the world-model-based approach
to reversibility assessment as well as the safety module for robot control archi-
tecture. A practical experiment is conducted to demonstrate that robot control
architecture can develop complex safe behaviors. This is accomplished by appli-
cation of the reversibility assessment, based on external planning, environment
simulation and state/action identification modules. As the result, the robot can
identify, for example, that pushing object into a corner is irreversible and thus
unsafe.

The introduction gives motivation for the work by pointing out that the direct
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sensor-data approach of authors’ previous research limited the applicability of
the world-model-free approach. It is argued that the combination of the abstract
principle of reversibility with human-based knowledge enables development of
smarter behaviors, better applicable to complex scenarios. Abstract principles, on
the other hand, can govern robot behavior in the situations, where no predefined
rules can be applied.

Section 2 describes the control system and its safety module, including the
reversibility-based sub-module to assess action safety. The safety module ensures
that system’s decisions are safe and within predefined bounds. Before making
the action, the system “asks” the safety module whether the decision is allowed
from the safety perspective. If the specified state-action pair matches the extrin-
sic safety rules, then the answer is generated based on this pre-programmed or
learned knowledge. When no rule/pattern can be applied and the robot is going to
make an autonomous unauthorized decision, the world-model-based reversibility
assessment approach is used to predict the intrinsic safety of making the action
from the state in question.

Section 3 contains the theoretical framework of the approach as well as some
implementation details. The Reversibility MDP-Model (RMM) is defined as an
MDP with a function C(s, a) ≤ 0 to assess reversibility of making action a in
state s. C(s, a) is the total expected “cost” of reversing the action a made in the
state s. C(s, a) = −∞ for the absolutely irreversible actions and C(s, a) = 0 for
the perfectly reversible ones. Action a from state s is classified as reversible, if
C(s, a) ≥ Crev, where Crev is a threshold value.

The experimental setup with the implementation details are presented in Sec-
tion 4. In the experiment the analysis is made for the effect of the action “F”
(move 0.6 meters forward) on the object placed directly in front of the robot, at
the distance of 0.5 meters from its center of rotation.

The test runs are made on the actual Scitos G5 robot and in the simulated
environment, which is a copy of the actual “room” of size 3 by 4 meters with some
furniture. In the experimental setup the movable object is the only round item in
the environment and its position in robot’s coordinates is identified from the laser
rangefinder scans. Robot position in the global reference frame is identified using
the Adaptive Monte Carlo localization algorithm.

The experiment begins with a free movement of the robot to collect statistics
about robot’s movements for the actions used. The second part of the experiment
consists of the off-line identification of “cycles” – paths, that would undo the ef-
fect of pushing the object in free space. In the final part of the experiment the
safety module is used to govern behavior of the robot on-line. The previously
identified cycles are simulated internally during the world-model-based revers-
ibility assessment, now taking also the immovable obstacles into account.

In Section 5, the results of the experiment are presented. The procedure
to search for cycles has found many paths to successfully undo the pushing of
the object by the robot: the identified paths go around the object and push it
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from the opposite side. The reversibility of object pushing was analyzed with
the object placed at different positions in robot reference frame. The situations,
where the object is in front of the robot, have been successfully reversed. More
complicated situations, where the robot touches the object with its side and the
object slides away, are harder to undo. However, some lateral positions do allow
to use cycles calculated for a specific central position. The analysis of the safety
module governing the “F” action through C(s, a) function calculation shows that
the irreversible state-action pairs are successfully identified for the situations when
there is no room to maneuver around the object to push it back.

It is concluded that non-trivial and quite complex cycles of actions can be
successfully identified, allowing the robot to manipulate objects in a reversible
manner – pushing them from one side and undoing such action by driving around
the objects and pushing them back from the opposite side. Suppression of the
irreversible actions while taking immovable objects into account results in further
increase of behavioral complexity – robot “understands” that pushing object into
a corner is irreversible and thus unsafe.

This paper is referenced in the thesis as [67] and is included in full as Ap-
pendix D. It was presented by the first author (Juri Gavšin) during the 6th Inter-
national Conference on Hybrid Artificial Intelligence Systems (HAIS 2011).

5.5 Improving Area Coverage by Reversible Object
Pushing (Paper Summary)

This paper applies the principle of reversibility to assess the intrinsic safety of ac-
tions and to adapt robot’s behavior for the task of covering the area with a movable
object inside. A governor, acting upon the principle of action reversibility, allows
pushing only if such an action is reversible. A practical experiment is conducted
to demonstrate the approach and to compare it with the two other governors.

In the introduction, it is argued that in the future the use of robots in our
households will be limited more by social and safety aspects than by price and
functionality. It is also argued that the ability to identify irreversible actions and
undo reversible ones is crucial for truly autonomous decision making, when no
situation-specific rules can be applied.

Sections 2 and 3 describe the theoretical framework of the world-model-
based approach and the safety architecture to apply it (as described in Section 5.4).
It is also noted that the prerequisites must be met for a successful implementation
of the approach and the threshold values together with reversibility and run-time
parameters must be set externally. The external state/action identification, envi-
ronment simulation and path planning modules play very important role in per-
formance of the system as a whole.

Sections 4 and 5 describe the implementation details and the experimental
setup. The procedure of action reversibility assessment, described in Section 5.4,
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is extended to analyze many points in robot’s reference frame, so that the robot
can undo pushing of the object from different relative positions. The sets of cycles
for each analyzed point are used as path candidates during the C(s, a) calculation
– the first action in the cycle is expected to be undone by the rest of the cycle.

The Scitos G5 robot is used for the real-world part of the experiment and its
model is used in the simulated environment, which is a copy of the actual room
for the real robot. The test area is 5 by 4 meters and it is divided into 80 cells of
the size of 0.5 meters. Robot’s behavior mimics a vacuum cleaner, which task is
to cover the area by visiting all the cells in the “lawnmower” fashion.

The experiment starts with the data acquisition part to collect statistical data
about the robot and the environment. It is followed by the data processing part,
when statistics is calculated and candidate cycles for C(s, a) calculation are pre-
pared. When data is collected and processed, the actual test runs with the different
modes of the safety module are executed to measure the covered area and the dis-
tance between the initial and the final positions of the object.

In the “reversibility” mode no explicit safety rules are applied and the re-
versibility module is responsible for safety assessment. The cycles, generated in
the off-line data processing part of the experiment, are used during the on-line
assessment of action reversibility. The “obstacle avoidance” mode uses the same
internal model of the environment to predict collisions. The action is prohibited
if collision is predicted, allowed otherwise; the post-action is always empty. The
“no safety” mode is the most naive approach – all the actions are allowed.

Section 6 presents the experimental results. The “no safety” mode is the
least safe of all the three, however, this mode performs very well in terms of area
coverage – all the 80 cells are visited. The “obstacle-avoidance” mode is the safest
mode with almost no object movements, but with incomplete area coverage. The
“reversibility” mode performs on a par with the “no safety” mode in terms of area
coverage – all the 80 cells of the area in question are covered. Also, this mode is
safe – in the end, the object is very close to its initial position after the real and
the simulated test runs.

It is concluded that the proposed safety architecture, consisting of the safety
module and its reversibility sub-module, can be used for practical purposes. The
experiment showed that the principle of reversibility can be successfully used to
ground safe object pushing behavior to increase covered area without compromis-
ing safety.

This paper is referenced in the thesis as [66] and is included in full as Ap-
pendix E. It was presented by the first author (Juri Gavšin) during the 15th Inter-
national Conference on Advanced Robotics (ICAR 2011).
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6 Conclusions and Future Work

6.1 Conclusions

The goal of this thesis was to develop a framework to enable future robots to be-
have safely in a wide variety of situations by combining extrinsic and intrinsic
safety procedures. The result of this study is a hybrid safety architecture, combin-
ing extrinsic safety rules with the reversibility model to assess intrinsic safety of
decision as a backup for situations, where no situation-specific logic can be ap-
plied. The world-model-free approach employs distance measures on state-space
to assess reversibility of actions, using the given pairs of reverse-actions. The
world-model-based approach employs external modules to translate environment
into symbolic representations. The external planning and environment simulation
modules are used to assess reversibility of actions, using cost of returning back to
the initial state as a measure of irreversibility.

Out of many studies that address safety in robotics, very few are based on in-
trinsic assessment of safety based on abstract principles. Most intrinsic motivation
studies are not concerned about safety and the few that do are very simplistic.

The performance of the world-model-free approach to predict collisions was
evaluated in simulated environments and the test results show that the success rate
of predictions with this approach is similar to the Q-learning algorithm. It is worth
noting that predictions of the reversibility-based algorithm were derived from the
intrinsic reward for taking reversible actions, while the Q-learning algorithm used
an extrinsic collision-aware reward signal.

The world-model-free approach was also tested in the experiment in a simu-
lated environment to identify pairs of reverse-actions from a sequence of randomly
generated actions of different length and type. The test results show that the ap-
proach can be used to identify the pairs of reverse-actions as well as the general
rule to create such pairs.

The performance of the world-model-based approach to enlarge the area cov-
ered by the robot was evaluated in simulated and real environments with a mov-
able object occupying part of the desired area. The test results show that the
performance of this approach, acting as a part of the safety architecture, is able to
increase the covered area without compromising safety by moving the object in a
reversible manner.

The results of the experiments suggest that the assessment of intrinsic safety
of actions is useful for robots making purely autonomous decisions when no
situation-specific logic can be applied. The application of the approach, however,
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is limited by quality of the external state identification, planning and environment
simulation modules. The personal, service and field robotics are the possible areas
of application in the future, when quality of perception and environment modeling
will be acceptable for real-life scenarios.

The contribution of this thesis is a hybrid strategy to combine extrinsic and
intrinsic safety knowledge, as well as the two approaches, aimed at different levels
of abstraction, to assess intrinsic safety through action reversibility.

6.2 Future Work

Our ultimate goal is a multi-purpose autonomous personal robot-assistant acting
intrinsically safely. The approach described in this thesis, as well as its prerequi-
sites, can be improved and extended in many ways.

For example, in the world-model-free approach, instead of a weighted sum
applied to filtered reversibility objects, other algorithms can be used to calculate
the predicted value of irreversibility. The candidate algorithms include, but are
not limited to clustering, division into regions, statistical methods and neural net-
works.

Another promising research direction is to extend and develop further the
prerequisites of the approaches to increase their applicability. The world-model-
free approach would perform even better if the distance measures were accounting
for noise levels and discard absolutely irrelevant components of a state. The most
promising research direction is further improvement of the external state/action
identification, environment simulation and planning modules, required by the
world-model-based approach. However, such effort already faces many prob-
lems like symbol grounding, partial observability, sensor imprecision, conflicting
knowledge (including conflicting sensor readings), etc.
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Don’t Do Things You Can’t Undo:
Reversibility Models for Generating Safe Behaviours

Maarja Kruusmaa, Yuri Gavshin, Adam Eppendahl

Abstract—We argue that an ability to determine the re-
versibility of actions allows a robot to identify safe behaviors
autonomously. We introduce a notion of reversibility model
and give a definition of model refinement. We implement
this on a real robot and observe that, when a reversibility
model is refined by the addition of proximity sensors, obstacle
avoidance emerges as a side-effect of avoiding irreversible
actions. We interpret this as evidence of a deep connection
between reversibility and safe behaviour. We also observe that,
on the real robot, reversiblities are learned as efficiently as
a dedicated reward function. We conclude that reversibility
identification may provide an abstract and yet practical method
of generating a variety of safe behaviours.

I. INTRODUCTION

This paper is concerned with a robot’s ability to undo its
actions. We suggest that reversibility, a necessary condition
of controllability, is a fundamental concept when program-
ming robots to behave safely and reliably. We ask if this
principle can be used to govern the operation of a robot, and
to generate useful behaviour on a real robot and in real time.
We speculate that the most undesirable actions in the real

world, those that damage the robot or the environment, for
example, are characterized by irreversibility. Thus, instead
of programming the robot with specific routines that prevent
collisions, prevent falls, and so on, we program the robot with
a more general principle of avoiding irreversible actions. In
other words, instead of telling the robot what should not be
done, we try to tell it why it should not be done. For example,
falling down stairs is not good because the robot does not
know how to climb back or pushing the door closed is not
good because it does not have knowledge of how to open it.
In this paper, we state the problem of learning a re-

versibility model. The reversibility model represents the
robot’s knowledge of state-action pairs that are reversible
and the ways of reversing them. We go on to demonstrate
how this reversibility model can be established and used to
generate new behaviours. In [1], we showed that by sup-
pressing irreversible actions the robot will develop obstacle
avoidance behaviour. In this paper, we confirm this result
and go on to demonstrate that, as a developmental system,
the efficiency of our abstract approach is comparable to
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ordinary reinforcement learning. The reinforcement learning
algorithm, however, requires a signal that identifies collisions
in specific terms, while the reversibility algorithm identifies
the undesirable behaviours by their abstract properties and
this just happens to result in collision avoidance. Thus we
see a safe, concrete behaviour emerging autonomously and
efficiently from a very abstract principle.

An enormous amount of the robot literature is concerned
with algorithms for avoiding collisions as this is considered
an essential ability for mobile robots. In this literature, the
goal of avoiding collisions is explicitly identified [2], while
the solution may be coded for by hand or obtained indirectly
using learning algorithms [3, 4]. Collision-free navigation
can be learned, for example, by using genetic algorithms
[5], adaptive fitness functions [6], neural networks [7] or Q-
learning [8]. In [9], navigation behaviours are derived by
classifying random sensor data. Our approach is different in
that reliable navigation emerges from an abstract rule. The
rule is not grounded in a specific sensor-motor semantics
that explicitly identifies collisions, and so the resulting de-
velopmental system is insensitive to sensor permutations and
inversions. Indeed, the code can be written without knowing
the location or polarity of sensors and actuators, an odd
sensation after years of reaching for a manual.

The idea of generating behaviours top-down from abstract
principles is an emerging theme in parts of the autonomous
robotics community. In developmental robotics, for example,
relatively abstract emotional and motivational mechanisms
are used to derive behaviours that facilitate social interaction
[10, 11]. Kaplan and Odeyer show that a number of basic
visual behaviours can emerge from abstract motivational
principles based on prediction errors [12]. The general idea is
to identify principles that can be expressed without reference
to the ground meaning of sensor-motor values. Code based
on such principles should function reliably in a broad range
of environments and on different robots or on different parts
of the same robot. Our maxim of avoiding irreversible actions
is just one example of such a principle.

In the following section we present these ideas about
reversibility in a more formal manner. In Section III, we
describe an experimental set-up with a Khepera mini-robot
that tests the reversibility principle. In Section IV, we present
the results and, in the last section, we discuss these results,
draw conclusions and envision possible directions for future
work.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007
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II. REVERSIBILITY MODELS

A reversibility model tells the robot which actions are
reversible and how to reverse them if they are. In a fixed,
known, exact, deterministic world, modelled by a graph G
of states and actions, an action from state s to state s′ is
reversible if there is an action back from s′ to s. If we admit
sequences of actions, by taking G = PathG0, the graph of
paths over G0, where G0 is some graph of atomic actions,
then finding reversibilities in G is equivalent to finding loops
in G0, a standard problem in graph theory.
Real robots, however, face a changing, partially known,

inexact and non-deterministic world. We therefore model
non-determinism using labelled transition systems, we allow
inexactness with a metric on the space of states, and we
define a reversibility model pragmatically to be a set of
expected reversibilities that may grow or shrink as the robot
gains experience.
In addition, the robot may itself be changing as it learns,

reconfigures or develops. In this paper we consider one form
of development, the addition of sensors, and introduce a
notion of refinement that captures the relationship between
the robot’s world before and after this development. In the
learning experiments we describe, a reversibility model for
an unrefined world is adapted to a refined world (with
the interesting side-effect of producing obstacle avoidance
behaviour).
Suppose we have a set S of states given by vectors of

sensor values and a set A of actions given by vectors of
motor commands. If we view the states as the nodes in
a graph and the actions as labels, the robot’s body and
environment determine a labelled transition system which we
refer to as the robot’s world. A labelled transition system is a
standard structure for modelling non-determinitstic systems
and consists of a directed graph with edges, called transitions,
labelled by actions. When the result of an action a in state
s is not wholly determined by the robot, multiple transitions
from s are labelled with the same action a and it is the world
that determines which transition actually happens.
A reversibility for a world W is a state-action pair (s, a),

together with a state-action pair (s′, ā). A reversibility may or
may not hold, in a mathematical sense or in a physical sense.
Generally speaking, ā is expected to produce a transition
from s′ to s, assuming a produces a transition from s to s′ in
W . Because of the non-determinism, even given a perfectly
known worldW , there are different ways to define ‘holding’.
A reversibility ((s, a), (s′, ā)) may hold weakly if there exists
inW a transition from s to s′ labelled a and a transition from
s′ to s labelled a. Or, it may hold strongly if there exists a
transition from s to s′ labelled a and every transition from s′

labelled ā, and at least one, leads to s. In our implementation,
we use the strong definition. In addition, the action ā is
expected to work for any state x with d(x, s′) < ε′ and
is only expected to produce a transition back to a state y
when d(y, s) < ε, where d is a metric on states.
A reversibility model for a world W is a set of re-

versibilities for W that are expected to hold. In practice, a

reversibility model could be given in advance, communicated
to the robot, learned empirically, deduced from knowledge
about the world, or obtained in some other way. In the
experiments described here, the robot is given a model for
one world and uses this to learn a model for a refined world.
A refinement (of states) from a world W to a world W ′

is a pair of functions from the states and transitions of W ′

back to those of W , that respects the graph structure and
labelling and is surjective on states. In other words, every
state in W is the image of one or more states in W ′, which
‘refine’ the state in W , and the action on an edge in W ′ is
given by the action on the edge it is sent to in W .
For any reversibility model R for a world W and for any

refinement from W to W ′, with state function p, there is a
refined set of reversibilites R′ on W ′ defined by

R′ = {((s, a), (s′, ā))|((p(s), a), (p(s′), ā) ∈ R}.

To obtain a reversiblity model for the new worldW ′ we may
form R′ and then remove any pairs that fail in the refined
world. An important aspect of this procedure is that ‘it gives
the robot something to do’: the original model R provides
a specific list of actions together with the circumstances in
which they should be tried.
The kind of refinement we have in mind is produced

by extending a robot’s sensor vector. Suppose we have a
world with states given by pairs of wheel counter values
(w1, w2) and actions given by pairs of wheel displacement
commands (m1, m2). Assuming the robot is able to control
its own wheels, this world is fairly deterministic, all actions
are reversible and a good reversibility model R is given by
taking ā = (−m1,−m2) when a = (m1, m2) (for any s and
s′).
Now suppose we include one proximity value (say, the

front sensor) in the state vector (w1, w2, d1). Assuming the
new sensor does not effect the robot’s environment, we obtain
a refinement of the original world. The state function p is
the projection

p(w1, w2, d1) = (w1, w2).

When the simple model R described above is refined accord-
ing to this new world some of the refined reversibilities hold
and some do not. In our experiments, the robot tests these
refined reversibilities to discover which hold.
The interesting point here is that the ones that fail gen-

erally correspond to collisions of some sort. Consider the
following four cases (in which wheel counts and proximities
are given, without loss of generality, in comparable units).

1) The robot does not touch anything: we obtain, say, the
successful reversiblity

(((0, 0, 15), (10, 10)), ((10, 10, 5), (−10,−10))),

where the robot approaches and retreats from an object
without touching it.

2) The robot touches an object and the object slides: we
obtain a failed reversibility, say

(((0, 0, 8), (10, 10)), ((10, 10, 0), (−10,−10))),
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where the robot runs into an object, pushing it 2 units
forward, and then retreats, only to find that, while its
wheel encoders are back to 0 as expected, its proximity
sensor now reads 10 instead of the original 8.

3) The robot runs into an object and its wheels slide: from
the robots point of view, this is identical to Case 2.

4) The robot runs into an object and its motors stall: if
motor commands time-out and report success, adjust-
ing the wheel encoder counts as necessary, then this
case is again identical to Case 2 (and may be thought
of as a kind of internal sliding).

Not only does the robot discover that it is ‘bad’ to
push things–without ever knowing what pushing is!–but the
refined state allows the robot to distinguish those cases in
which ‘bad things happen’ from those in which they do
not. Once the robot learns a reversibility model, it may
use the model to censor its actions. Because of the non-
determinism, we have a growing choice of definitions. A
state-action pair (a, s) is strongly reversible in world W ,
if there is a reversibility ((s, a), (s′, ā)) that holds in W
for every s′ that can be reached from s by a transition
labelled a. Alternatively, we could ask for just one such s′

to get a definition of weakly reversible. We must also say
if ((s, a), (s′, ā)) holds strongly or weakly in W , for a total
of four definitions. In our experiments, we use, in effect, the
strong-strong definition, but because we pretend the world is
deterministic by ignoring s (by taking ε′ = ∞), there is no
real difference.
Note that it is our method of creating a reversibility model

out of R′ by pruning that creates a pushing-is-bad model.
Alternatively, when a reversibility ((s, a), (s′, ā)) in R′ fails,
we could try replacing the action ā instead of throwing out
the reversibility. For example, we could construct the world
W ′∗ = PathW ′. The transitions in PathW ′ are paths of
transitions in W ′ labelled by sequences of actions from W ′.
The world W ′ embeds in W ′∗, along with R′, but now we
have sequences of actions to play with. In the object pushing
example, a sequence b of actions might cause the robot to
go behind an object, push it back 2 units, and then return to
its original place in front of the object, so that

(((0, 0, 8), (10, 10)), ((10, 10, 0), b)),

holds in W ′∗. Or we could form W ′∗ by adding a gripping
action and simply drag the object back 2 units.

III. EXPERIMENTS

This section describes experiments with two learning
algorithms. In all the experiments, both algorithms learn
from the same sequence of actions and sensor data. One
learns which reversibilities hold or fail. The other one is
a standard reinforcement algorithm that punishes collisions.
We compare the performance of the two algorithms over four
sequences of actions. These were produced by running the
same action generation routine in two test environments, an
easy one and a harder one, and over two sets of actions, 1D
and 2D.

The experiments were conducted on a Khepera II mini-
robot, which is a cylindrical robot about 7 cm in diameter
(see Fig. 1) with differential drive and a ring of eight
proximity sensors. In these experiments, the motor control
parameters were set so that, when the robot runs into a
wall, the motors stall before the wheels slip. This allows
us to detect collisions by watching for stalled motors. When
a collision does happen, the wheel command routine times
out and reports success, up-dating the wheel counters as if
the command had completed. This is equivalent to more a
forceful wheel command that would cause the wheels to slip,
but makes it easier to identify collisions, which is required
for the reinforcement algorithm and used for evaluating both
algorithms.

A. Implementation Details

An action a = (m1, m2) consists of a pair of motor
displacement commands, for left and right wheels, expressed
in native wheel decoder units. A discrete set of actions is
used in the experiments:

a1 = (100, 100) short step forward,

a2 = (300, 300) long step forward,

a3 = (−100,−100) short step backward,

a4 = (−300,−300) long step backward,

a5 = (100,−100) rotate clockwise,

a6 = (−100, 100) rotate conterclockwise.

In the 1D experiments, we take

A = {a1, a2, a3, a4}.

These actions cause the robot to move back and forth in a
straight line. In the 2D experiments, we include the turning
actions,

A = {a1, a2, a3, a4, a5, a6}.

We provide the robot with the initial reversibility model

{((x, a1), (x + (100, 100), a3)),

((y, a2), (y + (300, 300), a4)),

((z, a5), (z + (100,−100), a6))},

where x, y and z are any states (w1, w2), consisting of a
pair of wheel counter values. Because we have fixed things
so that wheel commands always succeed, the reversibili-
ties in this model always hold. We then use (in effect)
a refinement function p, the projection from the set of
states (w1, w2, d1, d2, d3, d4, d5, d6, d7, d8, ), which include
eight proximity values, to the original set of states (w1, w2)
without the proximity values, to induce a new set of refined
reversibilities from the original set. The new set contains, for
example,

((s, a1), (s
′, a3)) =

(((w1, w2, d1, d2, d3, d4, d5, d6, d7, d8), a1),

((w1 + 100, w2 + 100, d′1, d
′

2, d
′

3, d
′

4, d
′

5, d
′

6, d
′

7, d
′

8), a3))
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for any wi, di and d′
i
. The learning algorithm then tests these

to see which hold and which fail.
For our definition of ‘near’, we use the Manhattan metric

defined by

d(s, s′) =

2∑

i=1

|wi − w′

i
| +

b∑

i=1

|di − d′
i
|

(but because our wheel commands always succeed, and the
original model is correct, the wheel value part of this is
always 0).

a) Robot motion: The Khepera runs in a real, physical
environment with motions that test the pairs of the refined
reversibility model. The robot moves according to the fol-
lowing algorithm:

1) Record current state si = (w1, w2, d1, . . . , d8).
2) Choose an arbitrary reversibility from R′ and execute
the forward action as ai.

3) Record the state si+1 = (w′

1, w
′

2, d
′

1, . . . , d
′

8).
4) Execute the reverse action as ai+1.
5) Record the resulting state as si+2.
6) Execute a random action as ai+2.
7) Add 3 to i and repeat.

So the robot performs a random forward action, then the
supposed reverse action, then a random action that goes
unreversed, and then another forward action, and so on.

b) Learning the reversibility model: As the robot moves
about, it notes how well the reversibilities hold using the
Manhattan metric.

For each forward action ai, calculate and store
d(si, si+2).

For the purposes of comparison with the reinforcement
algorithm, the model is also used to predict which actions
will be successfully reversed. When a failure is predicted, we
note whether there is a collision during the action. So we are
judging the reversibility model not by what it is meant to be
learning, but by how well this happens to predict collisions.

1) Get the current state si and the intended action ai

2) From memory, choose a state-action pair (sk, ai) that
minimizes d(sk, si).

3) If we have d(sk, si) > δ, predict randomly. Otherwise,
predict a collision unless d(sk, sk+2) < ε.

4) While executing the command ai check if there is a
collision. Store the predicted and the actual outcome.

c) Reinforcement learning: Reinforcement learning al-
gorithms [13] are commonly used in mobile robotics. The
aim here is to implement a simple version for collision avoid-
ance so that we may compare the ungrounded reversibility
method to a standard, grounded method. We have therefore
implemented the reinforcement learning algorithm so that the
robot is operating under similar conditions. First, the algo-
rithm does not have a terminal state, so collision avoidance is
considered to be a continuous task of reward maximization.
Second, the current version of the reversibility policy is
concerned only with immediate actions and reverse actions
and does not work along the history of action sequences.

Fig. 1. The robot in Environment I and in Environment II.

Therefore we have also implemented the reinforcement al-
gorithm to be concerned only with immediate rewards, thus
with discount rate γ = 0. The initial value of the action value
function is Q(si, ai) = 0. The reward signal is defined by
checking for collisions.

r =
(|w1| + |w2|)/100, if there is no collision
−5, if there is a collision

Thus a successful action is rewarded more if it moves the
robot a greater distance and an unsuccessful action is strongly
penalised. Note that the reinforcement learning algorithm
directly checks for collisions (by watching for stalled motors)
to calculate the reward, while the algorithm learning the
reversibility model only aims at predicting if the robot can
return to the initial state (by watching the proximity sensors).
The reinforcement learning algorithm is the following.

1) Get the current state si and the intended action ai.
2) If the current value of the action value function

Q(si, ai) < 0, predict a collision. If Q(si, ai) =
0 make a random prediction. Otherwise, predict no
collision.

3) After executing ai get the reward signal r.
4) Update the action value function

Q(si, ai) ← αr+Q(si, ai), with learning rate α = 0.1.
5) While executing ai, check for collisions. Store the
predicted and the real outcome.

B. Test Environments

In the experiments we compared the learning of re-
versibility models to the learning of a reward function that
discourages collisions. To find out how sensitive the learning
algorithms are to environmental conditions, the tests are
conducted in two environments. These are shown in Fig. 1.
Environment I is a rectangular space, whereas Environment
II is a smaller, triangular space, only slightly larger than
the robot, in which collisions are more probable. In both
environments the algorithms are run over sequences of 1D
movements and sequences of 2D movements. With 1D
actions, the robot only moves forewards and backwards. With
2D actions, the robot moves in all directions. This was done
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Fig. 2. Experimental results in Environment I, with 1D actions.

Fig. 3. Experimental results in Environment I, with 2D actions.

to get an idea of how the algorithms scale from smaller to
larger, more complex action sets.

IV. RESULTS

As described in the previous section, the robot operates
by executing supposed reversals and random actions. The
reversed actions are determined according to the initial
reversibility model. The goal of the learning algorithms is to
observe and learn to predict the outcomes of actions. These
predictions are then compared to the real outcome of the
action (determined by detecting collisions) and the success
rate of each method is recorded.
Note that although the performance graphs for the two

methods are expressed in the same terms, we are not com-
paring two techniques for solving one learning problem,
but rather two learning problems whose solutions happen
to result in the same behaviour. The reversibility problem is
at a big disadvantage here, because we are evaluating it as
if it was intended to predict collisions, which is in fact just
a fortuitous emergent property.
Moreover, the motion routine, which performs reversals

interleaved with random actions, allows a reversibility to be
tested every third step, while the reinforcement algorithm
gets a feedback signal at every step. Thus the reinforcement
learning algorithm has more experiences to learn from, and

Fig. 4. Experimental results in Environment II, with 1D actions.

Fig. 5. Experimental results in Environment II, with 2D actions.

yet the performance of the two algorithms is seen to be
comparable.
The figures show the performance of the two algorithms

over four sequences of actions and sensor values. All four
graphs show the average correctness of predictions for each
successive 100 actions for both prediction methods. From
Fig. 2 and Fig. 4, we see that with 1D actions the robot
rapidly learns to avoid collisions in both environments. The
rate of successful predictions reaches 80during the first 200–
300 steps, and the learning problem is equally trivial for both
learning algorithms. From Fig. 3 and Fig. 5, we see that with
2D actions the learning problems are more complicated, with
both algorithms converging around 1900–2100 steps.
During the runs in Environment II, the wheels occasionally

got stuck on the uneven surface. These incidents can be seen
on the graphs around 1400–1700 steps in 1D (Fig. 4) and
3700–4100 in 2D (Fig. 5), where there are sharp downward
peaks in the prediction rates. It appears that reinforcement
learning recovers better. However, this is caused more by
the method we use to determine the prediction rate than a
failure to relearn the reversibility model. For the robot with
the blocked wheels, the reversibility of actions is perfect,
since the robot certainly ends up in the same state it starts
from. However, when this is used to predict no collision,
which is to say no motor stall, the prediction is wrong.
In these runs, which consist of thousands of actions, it is
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clear that both learning problems are solved with comparable
speed. The reversibility model is learned with roughly the
same speed as the reward function in Environment I, whereas
in Environment II reinforcement learning happens slightly
faster. Likewise, both approaches scale equally well from a
1D to a 2D environment.

V. CONCLUSIONS

This paper introduces the concept of reversibility for learn-
ing and developing robots. We show that reversibility models
can be used to learn a useful new behaviour. The experiments
verify the performance of the reversibility method against a
well-established learning method commonly used in robotics.
The results show that both of the methods converge to
obstacle avoidance behaviour.
The most general conclusion drawn from the experimental

results is that the efficiency of the policy of reversibility is
comparable to reinforcement learning. Both methods learn
more or less equally, converging to satisfactory performance.
The basic difference of these methods is that the rein-
forcement learning algorithm uses a reward signal explicitly
designed to make the robot avoid obstacles. The policy we
introduce, uses a reversibility measure to learn a reversibility
model, and yet the robot learns the useful behaviour of
collision avoidance.
Based on these experimental results we speculate that the

concept of reversibility could generate a variety of useful
behaviours depending on the properties of the environment.
We surmise, for example, that a robot placed initially close to
an object or wall might, using reversibility models, discover
behaviours like ‘do not leave the territory’ or ‘stay in the
vicinity of guidelines’. Our future experiments are planned
to check this hypothesis and find more evidence concerning
the robustness of this principle.
Another hypothesis we are planning to test is whether

learning algorithms can be accelerated by using reversibility
models. Generally, learning algorithms converge to a stable
behaviour by repeating actions that lead from one state to
another. The problem of how the robot gets back to the state
it wants to repeat, however, is not addressed. Knowing the
reversibility model, it may be easier to guide the learning
algorithm to faster convergence.

We also suggest that reversibility models could be used
in combination with formal reasoning methods, such as
task or path planning, where the plans can be checked for
reversibility. For mobile robots such a reversibility check
could, for example, guarantee safe homing or safe explo-
ration. We suggest that the concepts introduced in this paper
may provide handy and simple guidelines for building safe
and reliable robots.
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Abstract. This paper explores the idea that robots can learn safe be-
haviors without prior knowledge about its environment nor the task at
hand, using intrinsic motivation to reverse actions. Our general idea is
that if the robot learns to reverse its actions, all the behaviors that
emerge from this principle are intrinsically safe. We validate this idea
with experiments to benchmark the performance of obstacle avoidance
behavior. We compare our algorithm based on an abstract intrinsic re-
ward with a Q-learning algorithm for obstacle avoidance based on exter-
nal reward signal. Finally, we demonstrate that safety of learning can be
increased further by first training the robot in the simulator using the
intrinsic reward and then running the test with the real robot in the real
environment.

The experimental results show that the performance of the proposed
algorithm is on average only 5-10% lower than of the Q-Learning algo-
rithm. A physical robot, using the knowledge obtained in simulation, in
real world performs 10% worse than in simulation. However, its perfor-
mance reaches the same success rate with the physically trained robot
after a short learning period. We interpret this as the evidence confirm-
ing the hypothesis that our learning algorithm can be used to teach safe
behaviors to a robot.

1 Introduction

This paper is concerned with applying an intrinsic reward signal to robot learn-
ing. In our case, the intrinsic motivation of the robot is to learn to reverse
actions. The rationale for such a motivational system is to teach the robot to
behave safely. We surmise that a robot governed by such an intrinsic motiva-
tion will behave inherently safely as it will avoid actions that cause irreversible
damage.

Intrinsic motivation is a concept derived from psychology and in its original
meaning refers to an activity done for one’s inherent satisfaction rather than
to achieve some specific external goal [1]. In computer science and robotics in-
trinsic motivation has been studied in developmental robotics and reinforcement
learning. Some models are derived seeking an analogy with neural processes
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in the brain [2]. Schmidhuber’s research ([3],[4]) introduces a system with au-
tonomous and active exploratory behavior motivated by “artificial curiosity”.
Barto et al. [5] and Stout et al. [6] use advanced RL techniques in their research
of robot learning motivated by the concepts of “novelty” and “surprise”. These
approaches are tested in a grid-world abstract agent simulation.

Kaplan and Oudeyer showed that a robot can develop visual competences
from scratch driven only by internal motivations independent of any particular
task: predictability, familiarity and stability [7]. They generalized their approach
further and derived a mechanism of Intelligent Adaptive Curiosity, an intrinsic
motivation system which pushes a robot towards situations in which it maximizes
its learning progress [8]. Experiments by Kaplan and Oudeyer are made with real
robots using real sensor data.

In this paper we derive an intrinsic motivation system that forces the robot
to learn to reverse actions and gives the preference to reversible ones. In the
opposite to [8] where the motivational system encourages robot curiosity, our
system is driven towards stability and safety.

The drive to suppress irreversible actions is thus a kind of an adaptive home-
ostatic predictive motivation according to the classification given in the recent
overview paper of computational approaches to intrinsic motivation [9]. Home-
ostatic systems force the robot to maintain some of their properties (e.g. the
energy level). Another example of a homeostatic system is the motivation to
maintain a comfortable level of social interaction [10]. In our case the homeo-
static system of the robot forces it to build a connected state space where all
other states can always be reached and returned back to.

Our motivation to build a learning system that learns action reversibility is
to build safe autonomous learning robots. We assume that reversible actions are
intrinsically safe because the robot is always able to deal with the consequences.
The abstract intrinsic motivation also makes the goal of the robot independent of
the environment it works in or the task it fulfills (as an external goal). Instead of
specifying routines such as avoiding obstacles, falls, traps, risky regions or routes
or staying near to some known landmark, it is rather told not to do things it
cannot undo. It explains “why” a robot should behave that way and if a new
problematic action/situation occurs, a robot avoiding irreversible actions will
avoid these new dangers after some learning period.

Papers of Kruusmaa and Gavshin have provided an initial evidence that the
principle “Don’t do things you can’t undo” generates a concrete safe behavior
of obstacle avoidance ([11],[12]). This behavior emerges from the intrinsic goal
of the robot to avoid irreversible actions as after bumping to an object/wall
or wheels slippage, a simple robot cannot reverse to the previous state with
the same sensor readings. In this paper we have developed their ideas further,
conducted experiments on simulated Khepera II and Scitos G5 robots as well as
on the real SCITOS G5 robot. With these experiments we aim at investigating:

– How well does our approach compare to some classical benchmark obstacle
avoidance algorithm?
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– Does it increase the safety of robot learning if we first train the robot in a
simulator to avoid irreversible actions and then run the trained robot in a
real environment?

In the following section we present our ideas in a more formal way. In section 3
we describe the experimental setup, the algorithms used, explain the differences
between the physical and simulated robots used in experiments, their test envi-
ronments and specific implementation details. In section 4 we present the results
and discuss them together with general applicability of the approach. Section 5
contains conclusions and possible directions of future work.

2 Theoretical Framework

This section briefly describes the general theoretical framework used to ground
the reversibility based algorithm and to test the robots.

2.1 Definitions

A robot’s world is a labelled transition system (S, Λ,→), where S is a set of
experienced states, Λ is a set of labels (a label contains an action or a sequence
of actions), and → is a set of labelled transitions between the states. When the
result of an action a in state s is not wholly determined by the robot, multiple
transitions from s are labelled with the same action a and it is the world that
determines which transition actually happens.

A reversibility for world W is a quintuple of three states and two actions:
(sinit, aforward, sinterim, areverse, sfinal). Generally speaking, a composite action
aforwardareverse produces a transition from sinit to sfinal through sinterim in
W .

Also, the action sequence aforwardareverse is expected to work for any states
x and y with dorig(x, sinit) ≤ εorig and ddest(y, sinterim) ≤ εdest, where dorig,
ddest are metrics on states and εorig, εdest are their thresholds.

The reversibility (sinit, aforward, sinterim, areverse, sfinal) holds in W if there
exists a transition path from sinit to sfinal through sinterim consisting of two
transitions labelled accordingly aforward and areverse, and drev(sinit, sfinal) ≤
εrev, where drev is a prametric ( drev(x, y) ≥ 0 and drev(x, x) = 0 ) on states
and εrev is a threshold; fails otherwise.

An action aforward in an arbitrary state s is expected to be reversible (by ac-
tion areverse ), if the reversibility (sinit, aforward, sinterim, areverse, sfinal) holds
and dorig(s, sinit) ≤ εorig. A reversibility model of the robot is a set of reversibil-
ities that are expected to hold.

2.2 Explanations

A reversibility model can be given to the robot in advance, transferred from
another robot, extracted by a human from the knowledge about the world or
learned by the robot. Using this model a robot can predict whether the action
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from the state is reversible by iterating through its experience and using obtained
reversibilities to ground the predictions.

The actions used are symbolic actions and it is irrelevant whether they are
atomic or complex actions. These actions can also be interpreted as discrete
choices if used by a high level symbolic decision maker. The only requirement
is that every action must have a reverse action, i.e. the action that undoes
(reverses) it.

States are also discrete but with metrics dorig and ddest defined on the set
of the states. These metrics are used to search for the reversibilities to ground
the predictions. Metric dorig together with its threshold value εorig are used to
filter reversibilities by calculating the distance between its initial state and the
current state. The smaller the distance, the higher is the probability that the
actual outcome of making the same action from the current state will generate a
similar reversibility. In other words, dorig and εorig are used to identify a “region”
or a “cluster” of states.

A prametric drev is used to calculate how strongly the reversibility holds. A
prametric is used instead of a metric to make it possible to reward transitions
from “worse” states to “better” ones (in case of goal-oriented learning); if drev

is a metric, then the calculated number would measure stability.
The intrinsic reward for making an action is counter-proportional to the value

of drev. When applied to our learning algorithm it forces the robot to give higher
weight to the actions that are reversible. The intrinsic reward can be generated,
when a sequence of an action with its reverse-action is observed. In this case, the
reversibility (sinit, aforward, sinterim, areverse, sfinal) is observed and the value of
drev(sinit, sfinal) is calculated. The intrinsic reward can then be calculated, for
example, using the following expression:

r = εrev − drev(sinit, sfinal) .

3 Experimental Setup

The purpose of the experiment is to validate the reversibility-based approach to
safe learning proposed in this paper. The experiment consists of:

– Tests 1 and 2: two test runs of the same length with simulated Khepera II
and Scitos G5 (5200 steps each).

– Test 3: the physical test run (1000 steps long) on Scitos G5 pre-loaded with
simulation data (first 4000 steps from Test 2).

Each test run is divided into two phases: data collection (phase 1) and simulation
(phase 2).

During the first phase the robot (physical or simulated) makes pseudo-random
moves and the input data (sensors data, actions made and outcomes of the
actions) are collected and saved into log files. The predictions are made during
the second phase using the data collected in the first phase. The performance
is measured by sampling algorithms’ predictions of whether the next action will
succeed, followed by calculation of the success rate of those predictions.
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3.1 The Robots

Comparative experiments are conducted on two common research robot plat-
forms, Khepera II by K-Team and Scitos G5 by MetraLabs. For this paper both
robots are tested in the simulator and Scitos G5 robot is tested physically.

Both Khepera II and Scitos G5 are differential drive robots but with different
size and slightly different geometry. Khepera II has a circular shape and the
rotation axis is exactly at the center of the circle. Therefore it can rotate freely
in very close proximity (1-2 mm) to the obstacle without touching it. Scitos G5
also has a circular shape but with an additional compartment at the back side
for the passive third wheel, which considerably changes the way it can rotate its
own body: a 360◦ turn can be completed without touching the obstacle only if
the distance to the obstacle is larger than approximately 200mm (the size of the
passive wheel compartment). The laser range finder is used in the test reported
in this paper.

3.2 The Environments

Both Khepera II and Scitos G5 robots are simulated by Gazebo simulator (ver-
sion 0.8-pre3, OGRE version 1.4.9, ODE version 0.10.1) through Player (modified
version 2.1.0) interface [13].

The physical environment for Scitos G5 is a rectangular box of size 970mm by
1500mm (see Fig. 1). Absolute size for simulated Scitos G5 and its environment
matches closely the real one and the laser rangefinder is located in the correct
position and pose in respect to the robot’s body. However, only 22 of 541 laser
rays were simulated to optimize performance, since only 8 rays were used in the
experiments.

Khepera II infra-red sensors are simulated by 8 short laser rays distributed
evenly around the robot with the maximum measurable distance of 100mm. The
environment for Khepera II simulated environment is a right-angled triangle with
side lengths 196mm, 125mm and 233mm.

3.3 Robot Movements

In the experiments the state vector is s = (d0, d1, d2, d3), where di are sensor
values for front, back, left and right sensors, accordingly. The robot is given a
set of actions with corresponding reverse actions: movements forward-backward
and turning left-right are pair-wise reverse-actions to each other. A discrete set
of actions is used in the experiments: F – make a step forward, B – make a step
backward, L – rotate counter-clockwise, R – rotate clockwise, where F = −B,
B = −F , L = −R, R = −L.

Actions are defined in terms of commands to move forward/backward or ro-
tate. An action a = [mtrans, mrot] consists of a pair of target movement deltas –
mtrans is in metres and , mrot is in degrees. For simulated Khepera II the values
were set as follows:

F = [+0.016, 0] – make a step forward,
B = [−0.016, 0] – make a step backward,
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Fig. 1. Environments for the experiments. Simulated Khepera II is on the left. Simu-
lated Scitos G5 is in the center. Real Scitos G5 is on the right.

1. Record current state si = (d0, ..., d3).
2. Execute a random action as ai.
3. Record the state si+1 = (d0, ..., d3).
4. Execute the reverse action for ai as ai+1 .
5. Record the resulting state as si+2.
6. Execute a random action as ai+2.
7. Add 3 to i and repeat (goto 1).

Fig. 2. Movement algorithm (Phase 1)

L = [0, +30] – rotate counter-clockwise,
R = [0,−30] – rotate clockwise.
For both simulated and real Scitos G5 the values were set as follows:

F = [+0.15, 0] – make a step forward,
B = [−0.15, 0] – make a step backward,
L = [0, +42] – rotate counter-clockwise,
R = [0,−42] – rotate clockwise.

The robot moves using the algorithm described in Fig. 2 – robot makes a random
move followed by its reverse action, then makes another random action, but
without a reverse action, and then repeats the pattern. The purpose of the first
two actions is to generate at least one pair of actions to generate intrinsic reward
signal.The purpose of the next (random) action without a matching reverse
action is to make the robot to explore the environment.

3.4 Software Design

The code consists of the following units:

– an independent agent that generates the sequence of actions to move the
robot during the first phase.

– Q-Learning and reversibility based algorithms running in parallel
– a “switch” to route data between the agent and the algorithms, or to simulate

the test run in the second phase.
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1. Read current state si = (d0, ..., d3) and the next action ai from log.
2. Choose a number of reversibilities from the set of experienced ones with

aforward = ai, based on dorig(si, sinit) of experienced reversibility.
3. If no reversibilities are selected, make no prediction.
4. Calculate the expected irreversibility value (intrinsic reward) vrev using

drev(sinit, sfinal) of experienced reversibilities.
5. If vrev > εrev, then predict negative outcome, positive otherwise.
6. If i < 2, add 1 to i and repeat.
7. Read the last action as ai−1 and the previous action ai−2 from log.
8. If ai−1 is not a reverse-action of ai−2, add 1 to i and repeat.
9. Add the new obtained reversibility as (si−2, ai−2, si−1, ai−1, si) to the set of

experienced reversibilities.
10. Add 1 to i and repeat (goto 1).

Fig. 3. Prediction data collection algorithm (Phase 2)

In the first phase real-world or simulated data is gathered from the test run and
saved into a log file. The file contains sensor readings data, actions made and
the outcomes of the actions. The second phase is a virtual run using collected
data to calculate predictions and can be executed without a robot or a simulator.
The log file from the first phase is loaded into memory, parsed as sensor readings
and actions and then this history is fed to the algorithms, getting predictions of
actions’ successfulness simultaneously.

3.5 Reversibility Based Algorithm

The aim of the reversibility based algorithm is to predict if a certain action from
a certain state is reversible or not. This is done by generating the intrinsic reward
signal based on the distance between the initial and final state representations.
The algorithm is described in Fig. 3. It takes a sequence of states and actions as
an input: s0, a0, s1, a1, s2, a2, s3, ... .

At every i > 1, if ai−1 = −ai−2 then the reversibility (si−2, ai−2, si−1, ai−1, si)
is added to robot’s experience, which is a vector of reversibilities.

To predict the outcome of making action at from state st, an intrinsic reward
is calculated as an expected irreversibility value vrev using a set of reversibilities,
selected from the experience vector. In the experiments we select reversibilities
with the same forward action and dorig(sinit, st) < εorig, where sinit is the initial
state of the reversibility under consideration.

The value of vrev is a weighted average of drev(si−2, si) values of selected
reversibilities. Reversibilities are sorted by dorig(sinit, st) in an ascending order
and their weights are 1/i3 (1, 1/8, 1/27, 1/256, etc), i.e. reversibilities with a
“closer” initial state have considerably stronger influence.

In the experiments we use the Euclidean metric to calculate dorig and drev ;
the values εorig and εrev are finite and selected manually. The metric ddest was
not used in the experiments, i.e. εdest = +∞.
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3.6 Reinforcement Learning Algorithm

Reinforcement learning is a commonly used learning method to learn obsta-
cle avoidance by trial and error ([14],[15],[16]). Therefore we have chosen a Q-
Learning algorithm to compare the performance of the reversibility based learn-
ing to a standard method.

The main difference between reinforcement learning algorithms and the re-
versibility based algorithm is that a reinforcement learning algorithm receives
an external reward signal indicating the success of an action. Reversibility based
algorithm, on the other hand, uses only sensor data to determine the success of
an action (which may also be interpreted as an intrinsic reward rising from the
similarity of the initial and final states).

In the Q-Learning algorithm the expected reward of a state-action pair is
updated using the following expression:

Q(st, at)← Q(st, at) + αt(st, at)[rt + γQ(st+1, at)−Q(st, at)] .

Our experiment consists of random movements, therefore the long-term reward
is irrelevant and only short-term reward should be used, for this reason we take
γ = 0.

The prediction value is calculated as sign(Q(st, at)), i.e. negative Q means a
negative prediction, positive Q means a positive prediction. Initially, Q values
are set to 0 and if Q = 0, then no grounded prediction can be made.

3.7 Other Implementation Details

Real Scitos G5’s default configuration file was altered to set rotational PID
controller’s Kp value to 0.2. Sensor values for Scitos G5 are in metres, therefore
they are multiplied by 1000 to be of similar scale to the ones of Khepera II. This
doesn’t affect the reversibility based algorithm, but makes saving and loading
the log files simpler.

During the experiments αt(st, at) for Q-Learning update expression was set
to 0.01. Threshold values εorig, εrev and the tile size for Reinforcement learning
state identification were constant: εorig = 11000, εrev = 10000, RLtilesize =
168.

4 Results and Discussion

4.1 Results

During the tests 1 and 2 both learning methods are predicting collisions of
simulated robots with simulated obstacles (walls). Fig. 4 and 5 represent the
test results for simulated Khepera II and Scitos G5 environments respectively.
In the test 3, shown in Fig. 6, the reversibility model from simulated test run
is used to predict collisions of the real Scitos G5 robot with walls during the
physical test run.
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Fig. 4. Results of Test1 – simulated Khepera II

Fig. 5. Results of Test2 – simulated Scitos G5

Fig. 6. Results of Test 3 – real Scitos G5 using simulated experience

The rate of correct prediction is calculated by sampling how many predictions
out of a 100 were correct. If no prediction is made, then it counts as incorrect
prediction. Downward spikes in prediction rate graphs are caused by novelty of
the states, since no grounded prediction can be made for such unvisited states.

The rates of correct prediction of both algorithms in simulated environments
start at 20–40% and gradually reach the level of 70–90% after 3900 steps. The
robot with preloaded experience, obtained in simulation, performs quite well
from the beginning. The rates of correct prediction in the real environment start
at 70–75% and reach the level of 80–90% after 900 additional steps.
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4.2 Q-Learning vs. Reversibility-Based Learning

On both simulated robots and the real Scitos G5 robot Q-Learning converges to
a 5-10% higher prediction success rate than the reversibility-based learning. The
Q-Learning algorithm is explicitly designed to avoid obstacles – at every collision
the robot gets a negative reward signal proportional to the size of unfinished
movement. The robot motivated to be able to reverse its actions has no concept
of an obstacle or collision. The reversibility-based algorithm does not use the
external reward signal and merely tries to predict whether the action will be
reversible or not, based on its internal representations of similarities between the
states. Also, the method of measuring the rate of correct predictions works in
advantage of the Q-Learning algorithm, which predicts future rewards based on
the experienced rewards, while the reversibility based algorithm predicts future
rewards based on sensor data alone.

4.3 Real-Life Tests with Preloaded Simulator Data

The aim of the test 3 is to train the robot in the simulator to behave safely
and then test the performance of the real robot in the real environment. The
physical test run with the reversibility model built during the simulation test
run shows success rate 65-70% from the very beginning of the test run. During
the test in the real environment the performance improves further reaching to
the success rate of the simulated run (ca 80%). This is because when put to the
real environment, the robot still first encounters states it has not been trained
for in the simulator. However, it adapts to the changes fairly fast and reaches the
performance of the simulated robot of the test 2. This shows that a reversibility
model can be learned in simulation to increase the safety of robot learning and
then be corrected further on a physical robot.

4.4 Generality of the Approach

In general, we interpret the results as positive, since, indeed, a concrete robot
behavior of obstacle avoidance is observed to emerge from the abstract princi-
ple “Don’t do things you can’t undo”. However, there are problems with this
straight-forward plain-sensor approach: it is influenced by many factors like sen-
sor precision, sensor noise, actions’ precision, etc. Although, this problem belongs
more to the realm of the state identification: Q-Learning algorithm suffers from
the same problems.

It is difficult to distinguish sensors by their importance for the particular
action. Different kinds of sensors can also be a problem, since Euclidean distance
takes all numbers equally into account. Thus, a sensor returning current time
stamp or a sensor returning distance in millimetres and others in metres will be
a problem in this case and will render both algorithms almost useless without
additional tuning. Another problem is to choose threshold values εorig, εdest and
εrev. We chose those values manually using statistical information of the data
from a particular test run.
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We therefore conclude that for the present approach it is not possible to run
the same code absolutely interchangeably on different platforms. Despite that
the goal to learn to reverse actions is purely abstract and the reward signal is
intrinsic, it is still based on the real underlying sensor values, which makes the
algorithm implementation somewhat dependent on the physical embodiment.

5 Conclusions

The aim of these experiments was to validate the concept of learning using an
intrinsic reward signal based on the reversibility of robot’s actions. We argued
that by learning to reverse its actions the robot develops understanding of its
own motion in the surrounding environment. We argued that in contrast with
learning algorithms designed for a special purpose (e.g. obstacle avoidance) the
reversibility based algorithm has an abstract intrinsic goal of being able to reverse
actions. At the same time we aimed at showing that this abstract goal can lead
to concrete safe behaviors, such as obstacle avoidance, when irreversible actions
are suppressed. Our aim was to investigate further if this general idea works on
different robots and how it performed with respect to a benchmark Q-learning
algorithm. Furthermore, we aimed at showing that if such a robot is trained in
simulations and then ran in real life, the performance of the robot is safer.

In general, we interpret the results as positive, since, indeed, a concrete robot
behavior of obstacle avoidance is observed on two different robots to emerge from
the abstract principle “Don’t do things you can’t undo”. We encountered some
problems with this straight-forward plain-sensor approach: it is influenced by
many factors like sensor precision, sensor noise, actions’ precision, etc. However,
such state-identification problems are inherent for any state-based approach.

The experimental data analysis leads to the following conclusions:

1. The Q-learning algorithm based on an external reward signal is 5-10% more
successful than the reversibility based algorithm using an intrinsic reward
signal.

2. The real robot running with simulator pre-loaded data is ca 10% less suc-
cessful than the robot trained in real environment. After additional learning
steps it is able to quickly adjust its performance and measures up to the
results achieved with the robot trained in real life. This suggests that the
algorithms can mostly be learned in a simulator to increase safety of the
robot and its environment.

5.1 Future Work

In the future we will continue testing the same principle in more complicated
scenarios. We are trying to use environment-model-aware state identification,
planning and internal simulation to further increase the complexity of generated
behaviors. Another possible direction is to use the principle of reversibility to
make other learning algorithms learn faster or safer, or both. Our ultimate goal
is a multi-purpose personal robot-assistant with intrinsically safe autonomous
decisions.
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Abstract—This paper presents a practical approach to identi-
fication of reverse-action pairs for reversibility-based learning to
develop safe behaviors. The approach is to analyze reversibility of
consecutive actions by introducing metrics defined on the actions
and the states. The experiment is conducted in the Player/Stage
simulator to test applicability of the approach. The robot is
allowed to move freely in the environment by executing two-
dimensional actions – moving forward/backward or rotating
left/right. Reversibility of a sum of every consecutive pair of
actions is then analyzed to identify the ones that undo each other.
As a result, a set of action pairs are identified with a general rule
“if moved/rotated by X, move/rotate by -X to undo”.

Index Terms—Safety, reversibility, robotics, reverse-action,
undo action

I. INTRODUCTION

This paper is concerned with the reversibility of robot’s
actions to increase the inherent safety of its behavior. A
robot, motivated to suppress irreversible actions, will behave
inherently safely as it will avoid actions that cause irreversible
damage. Such abstract intrinsic motivation makes the goal
of the robot independent of its working environment or the
task it fulfills. Instead of specifying routines such as avoiding
obstacles, falls, traps, risky regions/routes or staying near to
some known landmark, it is rather told not to do things it
cannot undo. It explains “why” a robot should behave that
way and if a new problematic action/situation occurs, a robot
avoiding irreversible actions will avoid these new dangers after
some learning period.

The idea of using an abstract principle to govern robot
behavior is not new. Kaplan and Oudeyer showed that a
robot can develop visual competences from scratch driven only
by internal motivations independent of any particular task:
predictability, familiarity and stability [1]. They generalized
their approach further and derived a mechanism of Intelli-
gent Adaptive Curiosity, an intrinsic motivation system which
pushes a robot towards situations in which it maximizes its
learning progress [2].

In the opposite to work of Kaplan and Oudeyer, where the
motivational system encourages robot curiosity, our system is
driven towards stability and safety. The drive to suppress irre-
versible actions is a kind of an adaptive homeostatic predictive
motivation according to the classification given in the overview
paper of computational approaches to intrinsic motivation [3].

In case of reversibility-based learning the homeostatic system
of the robot forces it to search for a reverse-action to return
back to the initial state and have the ability to repeat the action.

Our motivation to build a system that learns action re-
versibility is to build safe autonomous learning robots. Safety
in robotics has always been an important priority for this
research area. In its traditional formulation, the safety in
robotics is not viewed in the context of decision-making,
but rather as a responsibility of the designer [4]. Possible
hazards of robot bodies and manipulators are analyzed by
many researchers ([5],[6],[7]), but the safety is viewed mostly
in the context of mechanical safety during collisions.

Alternatively, robot safety is considered in a wider philo-
sophical context – the overview of roboethics in [8] identifies
most urgent, evident and sensitive ethical problems related to
several sub-fields of robotics. Although it reports contributions
from dominant moral theories, the overview does not report
any work implementing those principles in practice.

A major effort in bringing theory to implementation is
exploring the idea of embedding ethical behavior into a mil-
itary robot, in the form of ethical rules [9]. In contrast to
such autonomous, but pre-programmed robot control, we use
abstract principles as a basis for safe behavior.

Our underlying idea is that all actions that are reversible,
are also intrinsically safe. Most of the harmful actions the
robot can do (for example, falling down the stairs, breaking
an object, etc.) are also irreversible. There can be irreversible
actions that the robot is allowed or expected to do (e.g. a
vacuum cleaning robot cleans a floor irreversibly) but then the
robot is designed for doing those actions, and it is an informed
decision of the user to use this robot for these purposes.

In work of Thomaz and Breazeal the ability to undo
last action is used to improve reinforcement learning perfor-
mance [10]. However, the set of undo actions is predefined
by a human beforehand. In our previous work ([11],[12]) we
demonstrated the emergence of obstacle avoidance behavior,
based purely on internal drive to suppress irreversible actions,
based on predefined set of reverse-action pairs.

In this paper we are going to present an approach to identify
the action pairs that reverse each other – similar to the ones
already used in our work. The pairs of actions are identified
by analyzing the execution of a sequence of pseudo-continuous
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two-dimensional actions, consisting of a pair of commands to
move or rotate.

In the following section we explain the concept of re-
versibility in detail and describe it in a more formal way. In
section III we describe the experimental setup and specific
implementation details. The experimental results are presented
in section IV and discussed in section V. The last section
contains conclusions with directions for future work.

II. CONCEPT OF REVERSIBILITY

A. Basic Definitions

A robot’s world is a labelled transition system (S,Λ,→),
where S is a set of experienced states, Λ is a set of labels (a
label contains an action or a sequence of actions), and → is a
set of labelled transitions between the states. When the result
of an action a in state s is not wholly determined by the robot,
multiple transitions from s are labelled with the same action
a and it is the world that determines which transition actually
happens.

A reversibility for world W is a quintuple of three states and
two actions: (sinit, aforward, sinterim, areverse, sfinal). Gen-
erally speaking, a composite action aforwardareverse produces
a transition from sinit to sfinal through sinterim in W .

Also, the action sequence aforwardareverse is expected to
work for any states x and y with dorig(x, sinit) ≤ εorig and
ddest(y, sinterim) ≤ εdest, where dorig, ddest are metrics on
states and εorig , εdest are their thresholds.

The reversibility (sinit, aforward, sinterim, areverse, sfinal)
holds in W if there exists a transition path from sinit to sfinal
through sinterim consisting of two transitions labelled accord-
ingly aforward and areverse , and drev(sinit, sfinal) ≤ εrev ,
where drev is a prametric ( drev(x, y) ≥ 0 and drev(x, x) = 0
) on states and εrev is a threshold; fails otherwise.

An action aforward in an arbitrary state s is ex-
pected to be reversible (by action areverse ), if the
reversibility (sinit, aforward, sinterim, areverse, sfinal) holds
and dorig(s, sinit) ≤ εorig. A reversibility model of the robot
is a set of reversibilities that are expected to hold.

B. Explanations

The focus of the current experiment is not on the prediction
of how safety will the action be, but on identification of action-
pairs that undo each other. Although not used directly, the
following explanations are vital for understanding the purpose
of the experiment, presented in this paper.

The actions used are symbolic actions and it is irrelevant
whether they are atomic or complex actions. These actions can
also be interpreted as discrete choices if used by a high level
symbolic decision maker. The only requirement is that every
action must have a reverse action, i.e. the action that undoes
(reverses) it. Selection of such reverse-actions is the aim of
this paper.

States are also discrete but with metrics dorig and ddest
defined on the set of the states. These metrics are used to
search for the reversibilities to ground the predictions. Metric
dorig together with its threshold value εorig are used to filter

Fig. 1. Obstacle avoidance as a consequence of suppressing irreversible
actions. In the upper example the reversibility doesn’t hold, in the lower –
holds.

reversibilities by calculating the distance between its initial
state and the current state. The smaller the distance, the
higher is the probability that the actual outcome of making
the same action from the current state will generate a similar
reversibility. In other words, dorig and εorig are used to identify
a “region” or a “cluster” of states.

A prametric drev is used to calculate how strongly the
reversibility holds by measuring the “distance” between two
states.

C. Emergence of safe behaviors

It should also be explained how and why the obstacle
avoidance behavior emerges as a result of avoiding irreversible
actions. As an example, let’s consider a robot with a proximity
sensor in front and two actions – “move 10 steps forward” and
“move 10 steps backward”. Without loss of generality it can be
assumed that “steps” and values of proximity sensors are given
in the same units. The robot tests these actions in different
situations and checks whether the obtained reversibilities hold.
The ones that fail usually correspond to collisions of some sort
or other negative outcomes. Consider the following 4 cases,
where the robot makes 10 steps forward and then 10 steps
back (see Fig. 1):

1) If the robot is at least 10 units away from the
obstacle, say, 12 then it doesn’t touch the obsta-
cle and we obtain the reversibility which holds:
((12), [+10], (2), [−10], (12)).

2) If the robot is less than 10 units away from the
wall, say, 8 then it touches the wall and its motor
stall, we obtain the reversibility which doesn’t hold:
((8), [+10], (0), [−10], (10)).

3) If the robot touches the wall and its wheels slide on the
surface then we obtain the same reversibility as in case 2.
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4) If the robot touches the obstacle, but the obstacle is light
enough to be moved, then the obtained reversibility will
also be identical to case 2 from the robot’s point of view.

This way the robot discovers that running into or pushing
an obstacle is “bad” without even knowing what the “obstacle”
or “pushing” is. A reversibility model with such reversibilities
will allow a robot to distinguish those state-action pairs in
which “bad things happen” from those in which they do not.
This knowledge is inherently intrinsic to the system as it does
not depend on the task nor the environment, but only on the
robot’s drive to increase its stability.

D. Identification of discrete reverse-action pairs

Throughout the paper, all used metrics are “Manhattan”
metrics:

dmanhattan(p, q) = Σn
i=1|pi − qi| ,

where p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn). For this
experiment we define a new metric

dact = drev = dmanhattan

, which determines the difference between the two actions.
To identify the set of discrete reverse-action pairs, a con-

sequence of making a single action should be measured to
estimate how much the reverse-action “candidate” reverses the
original action. The main part of the experiment is the analysis
of reversibility “candidates” – drev(sinit, sfinal) should be
calculated for all pairs of consecutive actions.

Such analysis can be viewed is a reverse process of
checking if reversibility holds. Consider the reversibility
(sinit, aforward, sinterim, areverse, sfinal) and the value of
drev(sinit, sfinal). In our previous work the areverse was a
reverse-action of the aforward by definition ([11],[12]). In the
current paper, on the contrary, the reversibility “candidates”
with low drev(sinit, sfinal) are sampled to analyze how to
derive areverse from aforward, so that areverse = −aforward.

The next section explains technical details of data acquisi-
tion and analysis for the experiment.

III. EXPERIMENTAL SETUP

A. The Environment

In the experiment a simulated Scitos G5 robot with a laser
rangefinder is placed into a big room to allow collision-free
movement (see Fig. 2). The environment is simulated using the
Player robot platform and the Stage multi-robot simulator [13].
Robot’s model closely resembles the real robot – its size, shape
and sensor positions are the same; this allows to repeat the
experiment on the real robot in the real environment without
any changes.

Laser rangefinder is configured to observe the sector of
[−105◦,+105◦] ahead of the robot with 0.5◦ precision; the
returned distance is in meters. The state is identified solely
by laser rangefinder data: s = (d0, d1, ..., d420). The action
is a two-dimensional command to move or rotate: a =
[mtrans,mrot] , where mtrans is translational movement in
meters and mrot is rotation in radians.

Fig. 2. Simulated environment. Blue figure at (0, 0) is the simulated Scitos
G5 robot in its initial position.

Execution of the action a = [mtrans,mrot] is implemented
as an interactive subroutine, which uses velocity control to
steer the robot and its internal odometry to calculate current
speeds and identify stop conditions.

B. The Experiment

The experiment begins with a test-run, where the robot
is moving randomly. The actions are generated in such a
way, that either mtrans or mrot is zero. First, it is decided,
whether the robot moves forward/backward (mrot = 0) or
turns left/right (mtrans = 0) with equal probability. Then, the
value of mtrans ∈ [−1.0,+1.0] or mrot ∈ [−1.57,+1.57]
is selected randomly from the respective interval. The laser
rangefinder data before and after making an action are saved
to a log-file together with the executed action data.

The acquired data is then analyzed offline by iterating
through the log-file. There are several sets of data to be
analyzed. As described in section II-D, each single action is
analyzed to measure how does the state change as a result
of such an actions. For this purpose the drev of the states
before and after the action is calculated for separate sets of
translational and rotational actions.

Similarly, pairs of consecutive actions are analyzed as
reversibility “candidates”, divided into three different sets:

• “TT” – translational+translational
• “RR” – rotatonal+rotatonal
• “RT-TR” – translational+rotatonal or vice-versa

IV. RESULTS

The result of the analysis of single actions is shown in
Fig. 3. Rotational action points are shown as black triangles
and gray diamonds represent translational action points. The X
axis is a non-zero component of the action: mrot for rotational
and mtrans for translational actions. The drev of the states
before and after the action is on Y axis.
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Fig. 5. Calculated drev of the initial and the final states of two consecutive rotational actions (RR).

It is clear that numerical influence of robot rotation on
the change to robot’s environment is considerably higher,
than of robot’s translational movement. Rotational movements
generate 10 times bigger drev than translational ones; therefore
two different thresholds are used for interpretation of the rest
of the results. The first one, εrevR = 100 is for sequences,
where there is at least one rotational action, and second one,

εrevT = 10 for translational-only sequences.
Figures 4, 5 and 6 visualize the results of analysis of

reversibility “candidates” for “TT”, “RR” and “RT-TR” data
sets respectively . Similarly to Fig. 3, drev of the states
before and after the action is on Y axis. The difference
is that the action now consists of two consecutive actions
p = (ptrans, prot) and q = (qtrans, qrot). The X axis is the
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“Manhattan” length of the sum of action vectors:

dact(0, p + q) = |ptrans + qtrans|+ |prot + qrot| .
Since in the “TT” and “RR” data sets one of the components
is zero, values of X axis in figures 4 and 5 are |ptrans+qtrans|
and |prot + qrot| respectively.

Data sets “TT” and “RR” exhibit strong dependency of drev
from the value of dact(0, p + q) – the closer to 0 is the sum
of consecutive rotations or translations, the less is the distance
between the states before and after action p+q. In other words,
irreversibility of the sequence of actions p+q is proportional to
its length. Considering the the fact that in the “TT” and “RR”
data sets one of the action’s components is zero, a general rule
can be derived: “if moved/rotated by X, move/rotate by -X to
undo”. Further, the actually experienced pairs of actions can
be identified by applying the drevT and drevR to “TT” and
“RR” data sets respectively.

The “RT-TR” differs from mentioned “TT” and “RR” data
sets by the fact that the two consecutive actions are of different
types and modules of both rotational and translational parts are
added during the dact(0, p + q) calculation. The analysis of
the results for “RT-TR” data set predictably reveals no strong
dependency of drev from the value of dact(0, p + q) and no
general rules or specific pairs of actions can be identified as
reverse-action pairs. Although there are several points below
the εrevR threshold, these points represent the the actions
with a very small rotational action and a bigger translational
action. This makes the resultant drev statistically irrelevant,
since the drev of those single translational actions is below
εrevR threshold, applied to mixed sequence of actions.

V. DISCUSSION

The results are extracted from simulated test-runs. The
result of a real test-run might be different due to higher noise
and other factors associated with changing the experimental
setup from simulated to the real-world environment. However,
due to high quality simulation and low noise of the real laser
rangefinders, the correlation between the irreversibility of the
sequence of actions and the length of their sum will not

decrease considerably when the experiments are repeated on
the real robot.

Current state of the approach is still preliminary, but the
initial results of the simple scenario experiment showed that
it is possible to identify reverse-actions pseudo-automatically.
For a useful application of this approach, it must be extended to
be fully automatic and numerical, instead of the visual analysis
and manual threshold selection.

Another obstacle for real-life application of the approach is
how to define metrics on the states and the actions. Metrics
for the low-dimensional states and actions are easy to define –
the experiment, for example, uses the very simple Manhattan
metrics. However, even for such low-dimensional states and
actions, not every action has a trivial undo action – generally,
several actions must be executed to undo the effects of a single
action.

One of the important limitations of the current approach is
that only two-action sequences are analyzed. Another limita-
tion is that it is much harder to define metrics for complex
states and actions, like “door is locked”, “washing machine
is half-full”, “unlock the door”, “use washing-machine”, etc.
Sometimes such states and actions can be transformed into
low-dimensional ones, but even then not all vector elements are
equally important for state and action difference calculation.
Additionally, only a few of such actions have trivial, or even
simple reverse-actions. Thus, the problem of defining metrics
on complex actions and states must be addressed in the future.

Despite the weak points of the approach, its results can be
useful for some researchers. Identified reverse-actions can be
used to make exploration policies safer by trying to undo the
last action with a highly negative reward. Similar approach
can also be used to identify “UNDO” actions for the study in
[10], which also showed that the ability to undo the last action
increases the learning rate of reinforcement learning.

A set of reverse-action pairs is also a vital component of the
reversibility-based learning. In our previous work ([11],[12])
predefined reverse-action pairs were used. This paper partially
solved the problem of identification of such reverse-action
pairs.
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VI. CONCLUSIONS

The aim of this paper was to test the approach to identify
the action pairs that reverse each other through analysis of how
reversible the random pairs of actions are. We interpret the
results as positive, since we were able to identify the general
rule “if moved/rotated by X, move/rotate by -X to undo”,
based on raw sensor data with no prior knowledge about the
environment. The current state of reverse-action identification
research is still preliminary – simple actions/states are used in
a simple environment and the analysis with threshold selection
is manual. The approach must be developed further to be
applicable and useful in more complex scenarios.

A. Future Work

We plan to repeat the experiment on the real Scitos G5
robot in the real room and to make identification of reverse-
action pairs automatic. Further, the approach must be tested in
more complicated scenarios with complex actions and states.
In the future we will continue to apply the principle of
reversibility to develop safe behaviors. Our ultimate goal is
a multi-purpose personal robot-assistant with intrinsically safe
autonomous decisions.
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Abstract. This article presents an implementation of an innovative
safety module for a robot control architecture. It applies the principle of
reversibility to assess intrinsic safety of actions and to adapt robot’s be-
havior. The underlying idea is that all reversible actions are intrinsically
safe. A practical experiment is conducted to demonstrate that a robot
control architecture can develop complex safe behaviors. This is accom-
plished by using the safety module in conjunction with human-based
knowledge and sufficiently high level of perception. A robot is placed in
a room with a movable object while the safety module analyzes move-
ments of the robot and the object. As the result, the robot can identify,
for example, that pushing object into a corner is irreversible and thus
unsafe.

Keywords: Reversibility, safety, abstract principles, roboethics.

1 Introduction

The latest statistical report in [1] shows that the number of autonomous service
robots for home and professional use is growing. A multi-purpose robot-assistant
is the vision for the future. This makes solving the issue of robot safety an im-
portant priority for robotics research. In its traditional formulation, the safety in
robotics is not viewed in the context of autonomous decision-making, but rather
as a responsibility of the designer [2]. Alternatively, robot safety is considered
in a wider philosophical context – the overview of roboethics in [3] identifies
most urgent, evident and sensitive ethical problems related to several sub-fields
of robotics. Although it reports contributions from dominant moral theories, the
overview does not report any work implementing those principles in practice.

A major effort in bringing theory to implementation is exploring the idea of
embedding ethical behavior into a military robot, in the form of ethical rules
[4]. In contrast to such autonomous, but pre-programmed robot control, we use
abstract principles as a basis for safe behavior. Our underlying idea is that all
actions that are reversible, are also intrinsically safe. Most of the harmful actions
the robot can do (for example, falling down the stairs, breaking an object, etc.)
are also irreversible. There can be irreversible actions that the robot is allowed
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or expected to do (e.g. a vacuum cleaning robot cleans a floor irreversibly) but
then the robot is designed for doing those actions, and it is an informed decision
of the user to use this robot for these purposes.

In our previous work ([5],[6]) we used the principle of reversibility to develop
safe behaviors by suppressing irreversible actions. The observed behaviors were
obstacle avoidance and locality. However, further applicability of our approach
was limited by trivial state identification logic – plain sensor data from the
sensors was used. In this paper we are combining this abstract principle with
human-based knowledge. It includes, but not limited to, environment modelling,
model-aware state identification, localization and planning algorithms.

We argue that such a combination enables development of smarter behav-
iors, similar to other hybrid intelligent algorithms and applications [7]. One of
the strongest points of the reversibility principles governing robot behavior is
the abilty to behave safely without any prior knowledge. Scalability and appli-
cability of such pure approach can be extended with human-based knowledge.
Abstract principles, on the other hand, can govern robot behavior in unexpected
situations, where no pre-defined rules can be applied.

In this paper we report results of the experiment where the simulated and
the real robots learn to reversibly manipulate an object by pushing it back and
forth. The principle of action reversibility is used to identify intrinsically-safe de-
cisions. The robot is allowed to make such decisions autonomously, while explicit
authorization is required for irreversible ones. We provide a formal framework
to describe reversible actions and assess safety of system decisions, allowing a
test robot to process its experience with the environment.

Next section describes the control system architecture and its safety module
together with a reversibility-based sub-module to assess decision safety and al-
ter system behavior. Section 3 contains the structure and the theoretical frame-
work. Further, experimental setup with implementation details are presented.
In sections 5 we report results of the experiment and the last section contains
conclusions with plans for the future.

2 Safety Module for Cognitive Robot Control
Architecture

As a testing ground for our research experiments to study the safety module, we
created the PAHPAM system (Programmable Architecture for Hierarchical Per-
ception, Actuation and Modeling). Since this system is not a primary objective
of this article, we will describe only the most relevant of its aspects.

The PAHPAM has three standard levels of a general reactive-deliberative
architecture – reactive, hybrid and deliberative. Hardware-specific functionality
is implemented as a subcomponent of the reactive level, which is located on
the robot, while hybrid and deliberative ones can also run on a separate more
powerful machine. There are quite many assumptions and prerequisites for the
whole system and the safety module to work. We have solved those prerequisites
in a minimalistic fashion by hard-coding the routines we cannot generalize and
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formalize, since most of the problems are difficult research problems by them-
selves and are yet to be solved. We use Monte-Carlo localization algorithm to
solve localization problem. Object identification is simplified by the round shape
of the object and the IAV method [8] is used to identify such circular objects
in laser rangefinder scans. State identification problem is solved by using only
the relevant information with a balanced level of detail. Important part of our
robot control system is a model of the environment for analysis, planning and
learning. The model doesn’t have to be ideal – in case of inconsistencies between
the modeled and the actual movement, the model can be updated and a new
plan can be created.

The safety module ensures that system’s decisions are safe and within prede-
fined bounds – similar to the ethical governor in [9]. Before making decision, the
system checks with the safety module whether the decision is allowed from the
safety perspective (see Fig. 1 for activity diagram). A set of rules/patterns to
explicitly (dis)allow specific decisions in specific states is a first stage of safety
assessment inside the module. If the specified state-action pair matches those
patterns, the answer is generated based on this pre-programmed or learned
knowledge. Context- and task-specific overrides (for example, to enable irre-
versible, but useful actions) should be added to this set of rules/patterns.

When no rule/pattern can be applied and the robot is going to make an au-
tonomous unauthorized decision, a reversibility-based analysis module is used
to assess intrinsic safety of making the action from the state in question. Such
safety architecture allows to make a hybrid system in terms of cooperation be-
tween system’s designer knowledge in form of rules with patterns to apply them
and a reversibility-based logic used as a backup, when no rules can be applied.

Fig. 1. The activity diagram for proposed safety module

3 Reversibility Models for Reversibility Based
Sub-Module

Reversibility MDP-Model (RMM) is a finite Markov Decision Process with
a reversibility function C(s, a) ≤ 0. MDP is a 4-tuple (S, A., P.(., .), R.(., .)),
where S is a finite set of states, As is a finite set of actions available from state
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s, Pa(s, s′) is the probability that action a in state s will lead directly to state
s′, Ra(s, s′) is the (expected) immediate cost of making action a from state s,
followed by a transition to state s′ with probability Pa(s, s′).

C(s, a) is the total expected “cost” of s → s′ → s transition, i.e. reversing an
action a made from state s. C(s, a) = −∞ for absolutely irreversible actions and
C(s, a) = 0 for perfectly reversible ones. To calculate it, we search for a path
p = (a0, a1, .., an), where a0 = a to make the s → s′ → s transition. This is
done by iterating through the set Ps of possible paths; for every candidate path
p = (a0, a1, .., an), the candidate Cp(s, a) value is calculated as follows:

Cp(s, a) = min(

n∑

0

Rai(si, s
′
i) · Pai(si, s

′
i) : s′

n = s) . (1)

If none of the possible s′
n = s, then Cp(s, a) = −∞. If there are no suitable

candidate paths found, C(s, a) = −∞, otherwise the maximum (or “sufficiently
high”) Cp(s, a) value of one of the candidate paths is returned as a result. A value
is “sufficiently high”, when Cp(s, a) ≥ Cmin. For the binary decision, action a
from state s is reversible, if C(s, a) ≥ Crev. Both Cmin and Crev threshold values
are set by a cognitive system or a designer, based on the knowledge about the
context.

In other words, with Cp(s, a) we predict a “cost” of making a sequence of
actions p = (a0, a1, .., an), taking in consideration only the possible outcomes,
where final state is s. Path with the smallest Cp(s, a) is the easiest way to
reverse action a from state s and its cost is returned as C(s, a) assessment value.
A trivial candidate for a path is a single action a itself: if Cp=(a)(s, a) ≥ Cmin,
then Cp=(a)(s, a) is returned as C(s, a) value.

The main purpose of the reversibility-based module is to assess the safety of
intrinsic decisions through the study of their reversibility. This sub-module, as
the safety module in general, uses knowledge from the current context chosen
by a cognitive system. Every context has two reversibility models: RMMi for
internally simulated and RMMa for the actual experience. The purpose of such
internal simulation is to plan robot’s actions and identify (ir)reversible actions
before actually making them for the first time.

RMMi and RMMa share the same sets S and A., generated by state and
action identification modules of a cognitive system. Probability function Pa(s, s′)
is derived from observed actual transitions for RMMa or simulated ones for
RMMi. Similarly, reward function Ra(s, s′) ≤ 0 is derived from the simulated
or actually observed cost (energy, time, damage, etc) of the action.

The on-line nature of assesment considerably limits the number of candidate
paths to try. To overcome this, we use Cmin threshold to stop search process when
at least one Cp(s, a) ≥ Cmin value is found. Additionally, our implementation of
reversibility and C(s, a) calculation is based on cyclical state-action transitions.
Such cycles can be given in advance by a human, deduced theoretically from an
internal model of the environment or identified from statistics of actual state-
action transitions.
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A simple example of such a cycle is a composite action “’go 1 metre forward’,
then ’go 1 metre backward”’, or vice-versa. A set of cycles can be used as candi-
date paths for C(s, a) calculation – the first action of starting sequence of actions
in the cycle is expected to be undone by the rest of the cycle.

4 Experimental Setup

The purpose of the experiment is to demonstrate how the forementioned action
cycles can be identified and then used to assess action safety on-line through
C(s, a) calculation. The main purpose of the experiment is to better explain our
approach and to show how the reversibility principle works in more complex
scenarios than we have previously used. Our experiments in [5] and [6] showed
how a robot can identify irreversible actions in the context of self-movement
and demonstrated safe behaviors by avoiding such actions. In this experiment
we want a robot to be able to undo the change to the environment – a round
movable object. A practical example of such a behavior could be the vacuum
cleaner, which cleans not only the free space, but also under movable objects
placing them back after cleaning the area initially occupied by the object. As
a result, after cleaning the floor, the room layout would stay the same, unless
instructed otherwise.

In our experiment we use MetraLabs’ Scitos G5 robot; test-runs are made
on the actual robot and in a simulated environment, which is a copy of the
actual “room” (see Fig. 2). The robot control framework is connected to Player
server [10], which in turn controls either the actual robot or its model in Stage
simulator [10]. In our setup the “green” object is the only round item in the
environment and its approximate radius is known. The round object’s size and
its position in robot’s coordinates are identified from laser rangefinder scans,
filtering out the occasional “wrong” objects by radius threshold; laser sensor
position and settings are known. In this experiment we use the following set of

Fig. 2. The physical experimental setup of the room (left) and the simulation in
Player/Stage (right); the grid-map is generated from the real room
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actions: “F” – move 0.6 metres forward, “B” – move 0.6 metres backward, “f”
– move 0.15 metres forward, “b” – move 0.15 metres backward, “L” – rotate 60
degrees left and “R” – rotate 60 degrees right. States of the robot and the object
are identified by X and Y coordinates, rounded to the nearest multiple of 0.13
metres and orientation, rounded to the nearest multiple of 0.13 radians; since
the “green” object is round, its orientation is always 0.

We start our experiment with a free movement of the robot to collect statis-
tics (average and standard deviation of covered distance and rotated angle for
both local and global odometry) for the six actions used. If the robot pushes the
“green” object we collect statistics about the initial and final distance between
centers of the robot and the obstacle for the actions that change the state (posi-
tion) of the object. For simplicity, we analyze only the “F” action effect on the
object in this experiment. Additionally, we narrow analysis to specific relative
position of the object in robot internal frame coordinates – when object is placed
directly in front of the robot, 0.5 meters from its center of rotation.

After the data is collected we can use it to simulate different paths internally,
taking only robot and object interaction into account. Next, we search for the
cycles – paths that put the “green” object back to its initial state. This part can
be done offline – search through the space of possible paths is a time-consuming
process. Currently, on our test machine with Radeon HD5770 video, GPU-based
exhaustive analysis of 11-step paths (which gives the first valid cycles) takes
10 seconds. We are searching for cycles by simple iteration over all possible
paths, starting from the shortest ones. We limit the search space by setting the
maximum allowed runtime (10 minutes) and length of the path (20 actions). The
search is executed in a separate thread, which allows to use new path as soon as
it is identified and the search can be stopped, if needed.

In the final part of our experiment the safety module is used to govern be-
havior of a robot on-line. The previously identified cycles that start with “F”
are simulated internally, now taking immovable obstacles into account. Pa(s, s′)
is calculated by executing internal simulation with obtained physical movement
parameters. Possible next states with possibilities are received by analyzing 10
such actions with normally distributed random error, using standard deviation
obtained in the beginning of the experiment. Ra(s, s′) is 0 minus the length of
the movement in meters or rotation angle in radians; if collision is detected by
simulation code, then the Ra(s, s′) is additionally multiplied by 100. Threshold
values were set as follows: Cmin = 2, Crev = 20.

5 Results

The data acquisition part of the experiment revealed virtually no difference be-
tween simulated and real parameteres of physical movements in this task of a
robot moving itself and a round obstacle. Therefore, most robot test-runs were
performed in Player/Stage simulation, where data acquisition is fast and auto-
mated. The experiments showed that many paths can be found to successfully
undo the movement of the “green” object by “F” action of the robot. The paths
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Fig. 3. The result of wall-free trials to reverse “F” action in a robot-centered reference
frame are on the left, grid size is 0.5 metres. The result of the trials in the room with
walls in the global reference frame are on the right.

go around the object and push it from the opposite side, some make “b” action
before going around and some don’t.

Fig. 3 on the left shows the situations learned by the end of the trial. The
picture is drawn in robot-centered coordinates with the black arrow representing
“F” action. The green dots are the positions of the object, from where the push-
ing is considered reversible. Red triangles are positions of objects from where
the pushing of the objects is considered irreversible. It is easy to see that the sit-
uations where the object is in front of the robot have been successfully reversed.
However, more complicated situations, where the robot touches the object with
its side and the objects slides away, are harder to undo. Whereas the two ad-
ditional line-like clusters of green dots are unexpected – the robot pushes the
object away from X axis of initial robot’s pose and then pushing it back while
finishing the path around the object. It shows that the robot is even able to
learn to reverse actions influenced by rather complicated physics of sliding and
friction.

The result of safety module governing the “F” action in the global reference
frame is shown in Fig. 3, on the right – robot’s pose with object position and
action length is overlaid upon the map of the room. Reversible object pushing
poses, identified by the green enlarged dots with arrows are the ones made to-
wards the object near the center of the room while the robot is closer to room’s
walls. The red combinations of enlarged triangles with arrows represent irre-
versible situations and the robot has correctly identified that there is no room
to maneuver around the object to push it back.

6 Conclusions

Based on the results of the experiment we conclude that non-trivial and quite
complex cycles of actions can be successfully identified, allowing the robot to
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manipulate objects in a reversible manner – pushing them from one side and
undoing such action by driving around the objects and pushing them back from
the opposite side. Suppression of the irreversible actions while taking immovable
objects into account results in further increase of behavioral complexity – robot
“understands” that pushing object into a corner is irreversible and thus unsafe.

Future Work. Our short-term plans are to optimize the path search and sim-
ulation algorithms. In the long-term we are going to use the same approach of
using abstract principles to develop safe behaviors, but moving further towards
more complex and real-life problems/scenarios.
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Estonian Information Technology Foundation.
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Abstract— This article presents the implementation of an
innovative safety module for a robot control architecture. It
applies the principle of reversibility to assess intrinsic safety of
actions and to adapt robot’s behavior. The underlying idea is
that all reversible actions are intrinsically safe.

A practical experiment is conducted to demonstrate the
approach. The robot’s task is to cover a given area with a
movable object inside. A governor, acting upon the principle
of action reversibility, allows pushing only if such an action
is reversible. It is compared with two other governors – one
always allows all the actions and the other allows only actions
that will not move the object. The covered area and changes
between initial and final position of the object are measured in
the end of each test run.

The proposed governor allows full area coverage with min-
imal change in object position, while other governors exhibit
either incomplete area coverage or significant change in object
position. This is interpreted as the ability of the proposed
reversibility-based approach to generate both effective and safe
robot behaviors.

I. INTRODUCTION

Robots are a part of our lives. It started with industrial
robotics and now robots are entering our everyday lives – car
driving assistant technologies, autonomous vacuum cleaners,
robotic dogs and other toys for children and adults. This
trend will definitely continue – the number of autonomous
service robots for home and professional use is growing fast
[1]. The robots are becoming increasingly autonomous – vac-
uum cleaners do their job without owner intervention. Also
major car production companies have plans for autonomous
vehicles with an “autopilot”. There already exist several suc-
cessfully working car prototypes with “autonomous driving”
abilities, made by universities in cooperation with private
companies [2]. Governments also support such trends with
funding of competitions and projects.

However, our households are mostly robot-free and there
may be several reasons for that. Robot hardware is expensive
because production volumes are small; however advances in
technology, increasing volumes of production and compe-
tition between companies will lower the prices eventually.
Robot software programming is resource-consuming, but it is
becoming easier to develop robot software due to increasing
on-board computing power, better sensors and a growing
codebase of various robotics algorithms. Also, robot’s feature
set is quite limited – usually a robot does one specific task,

for example, vacuum-cleaning the floor, but not washing it
or ironing your clothes.

We strongly believe that in the future the use of robots
in our households will be limited more by social and safety
aspects, than the price and functionality. The ideal household
robot would be a multi-purpose personal robot-assistant you
can trust, which is autonomous, yet its decisions are safe.
This makes solving the issue of robot safety an important
priority, especially in the context of autonomous decision
making, when robot’s response is not pre-programmed.

Traditionally, the system designer is responsible for safety
in robotic systems. Possible hazards of robot bodies and
manipulators are analyzed by many researchers ([3],[4],[5]),
but the safety is viewed not in the context of autonomous
decision making, but in the context of mechanical safety
during collisions.

Alternatively, robot safety is considered in a wider philo-
sophical context. The overview of roboethics in [6] identi-
fies the most important ethical problems related to several
sub-fields of robotics and reports contributions from moral
theories. However, the overview does not report any work
implementing those principles in practice. A major effort in
implementation of roboethics is embedding ethical behavior
into a military robot in the form of ethical rules [7].

In contrast to such autonomous, but pre-programmed
robot control, we use abstract principles as a basis for safe
behavior. Our underlying idea is that all actions that are
reversible, are also intrinsically safe. The safety comes from
the ability to reverse the effect of the action – return back
to the initial state before making the action. Also, all the
harmful actions the robot can do are irreversible, for example,
falling down the stairs, breaking an object, hurting a human,
etc. However, some allowed and desired robot actions are
irreversible, for example, a vacuum cleaning robot that cleans
floors irreversibly or a military robot that destroys targets.
In these cases such actions are the purpose of the robot
existence. The robot is designed for doing those actions, and
it is an informed decision of the user to use these robots for
such purposes.

In our work we use the principle of reversibility to develop
safe robot behaviors by suppressing irreversible actions. Our
experiments in [8] demonstrated emergence of safe behavior
of obstacle avoidance on two simulated and two real robots,
based purely on actions’ reversibility. We argue that the
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ability to identify irreversible actions and undo reversible
ones is crucial for truly autonomous decision making, when
no pre-programmed rules can be applied.

In this paper we provide a formal framework to describe
reversible actions and assess safety of system decisions,
allowing a test robot to process its experience with the
environment. We are experimenting with a safety module,
which utilizes such a framework as a sub-module. As an
example, we set up an experiment where the robot is given
a task to cover a specific area in its environment, containing
a movable object. The object decreases accessible space and
makes it impossible to cover the entire area without moving
it. The principle of action reversibility is used to identify
intrinsically safe decisions. This way the robot learns to
reversibly manipulate an object – pushing it and placing it
back afterwards. We benchmark our approach by allowing
the robot to make intrinsically safe decisions autonomously
by traversing the area in the “lawnmower” fashion while
measuring the covered area and the difference between initial
and final positions of the object. A comparison is made to
two simpler pre-programmed approaches: (i) all actions are
allowed; (ii) only the actions that don’t change the position
of the object are allowed.

The next section contains the theoretical framework for the
proposed approach. Sections III and IV describe application
details of the proposed approach. Further, experimental setup
with implementation details are presented. In section VI we
report results of the experiment. The last section contains
conclusions with plans for the future.

II. THE APPROACH

This section contains theoretical basis and application
details of the proposed approach to intrinsic safety of robot’s
decisions.

A. Formal framework

Reversibility MDP-Model (RMM) is a finite Markov De-
cision Process with a reversibility function C(s, a) ≤ 0.

MDP is a 4-tuple (S,A., P.(., .), R.(., .)), where S is a
finite set of states, As is a finite set of actions available in
state s, Pa(s, s

′) is the probability that action a in state s will
lead directly to state s′, Ra(s, s

′) is the (expected) immediate
cost of making action a in state s, followed by a transition
to state s′ with probability Pa(s, s

′).
The value of C(s, a) is the total expected cost of s →

s′ → s transition, i.e. reversing an action a made in state
s. C(s, a) = −∞ for absolutely irreversible actions and
C(s, a) = 0 for perfectly reversible ones.

To calculate the cost, a path p = (a0, a1, .., an) must be
found to make the s → s′ → s transition. This is done by
iterating through the pre-selected set Ps of candidate paths
that have a as first action. For every candidate path p =
(a0, a1, .., an), the Cp(s, a) value is calculated as follows:

Cp(s, a) = min(
n∑
0

Rai
(si, s

′
i) · Pai

(si, s
′
i) : s

′
n = s) .

If none of the possible s′n = s, then Cp(s, a) = −∞.

The cost is the maximum of the analyzed Cp(s, a) values:

C(s, a) = max(Cp(s, a)) .

If there are no candidate paths found, then C(s, a) = −∞.
Action a in state s is called reversible if C(s, a) ≥ Crev .

If C(s, a) ≥ Cmin ≥ Crev , action a in state s is called
super-reversible.

The rationale behind introduction of the Cmin threshold
to optimize C(s, a) calculation – search for the maximum
can be stopped, if a path with Cp(s, a) ≥ Cmin is found:

C(s, a) = Cpi(s, a), if Cpi(s, a) ≥ Cmin .

Simply put, with Cp(s, a) a cost of making a sequence of
actions p = (a0, a1, .., an) is predicted, taking in considera-
tion only the possible outcomes where the final state is s. A
set of paths is analyzed and the Cp(s, a) value is calculated
for each path. The first path with Cp(s, a) ≥ Cmin or with
the maximum Cp(s, a) is the selected way to make action a
in state s and then return back to the initial state s. The cost
of such a cycle is the value of C(s, a) and the sub-sequence
of actions pundo = (a1, .., an) is called an undo-path.

The obvious candidate path is the action a itself: if
Cp=(a)(s, a) ≥ Cmin, then C(s, a) = Cp=(a)(s, a). In this
case the action a in state s is reversible and the undo-path
is empty.

B. Dependencies

A number of prerequisites must be met for a successful
implementation. The approach depends on the following
external sub-routines and parameters:

1) reversibility and run-time parameters: The appropriate
values must be set externally by a (cognitive) control system
or a designer, based on the knowledge about the current
context. Crev is used to get binary reversible/irreversible
assessment result. Cmin and maximum numbers of (analyz-
able paths)/(actions per path)/(seconds to run) are used to
optimize assessment time and consumed resources.

2) state/action identification: States and actions are dis-
crete. Details of their identification and implementation are
irrelevant for the approach. Any state identification logic can
be used. Action can be a discrete value of some continuous
action or a decision/sub-program to be executed.

3) environment simulation: It is of a great importance to
simulate dynamics of the environment – execution of thou-
sands and millions of path candidates in a real environment
it simply impossible. The main requirement for simulation
sub-routine is the ability to use states and actions, provided
by state and action identification sub-routines.

4) planning: Candidate path selection for Cp(s, a) calcu-
lation is crucial for the approach – bad planning logic can
miss the possible path to undo the action or provide too
many candidates, making the execution time unacceptably
long. The planning sub-routine must also be able to use states
and actions provided by state and action identification sub-
routines.
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Fig. 1. Activity diagram for the proposed architecture with the safety module and its reversibility sub-module.

III. SAFETY ARCHITECHTURE

This section describes the safety architecture applying
the principle of reversibility for action safety assessment,
integrated into our own robot control architecture.

A. Safety Module

The proposed approach is implemented as the reversibility
sub-module of the safety module for a robot control archi-
tecture. Such a safety module ensures that system’s decisions
are safe and within predefined bounds – similar to the ethical
governor in [9]. Before making the decision, a system checks
with the safety module whether the decision is allowed from
the safety perspective (see Fig. 1 for the activity diagram).
The query to the safety module consists of the state-action
pair (s, a) to be analyzed. The safety module returns a tuple:
the boolean value, whether the action a is allowed in state s,
and the post-action – a sequence of actions to be done after
the initial one to ensure safety.

The first stage of safety assessment inside the module is
application of the explicit safety rules to permit or prohibit
actions. If the specified state-action pair matches any of the
explicit rules, the answer is generated based on this pre-
programmed or learned knowledge. If no explicit rule can
be applied, the reversibility module is queried to get a safety
assessment. When the action is prohibited by the safety
module, either explicitly or by reversibility sub-module, no
post-actions are required, since the initial one is not executed.

Context- and task-specific overrides should be added to
this set of explicit safety rules. For example, an explicit rule
can prohibit to push any objects – “don’t drive ahead, if there
is an obstacle in front”. A rule can also allow or prohibit all
the actions in all states. Also, a pre-programmed post-action
can be associated with a rule, for example “inform a user, if
any object was pushed”.

B. Reversibility module

The main purpose of the reversibility module is to assess
the safety of intrinsic decisions through the study of their
reversibility. When no explicit rule can be applied and the

robot is going to make an autonomous unauthorized decision,
the reversibility module is used to assess intrinsic safety of
making the action from the state in question. The action is
considered safe if it is reversible – the robot knows how to
undo it; unsafe actions are prohibited. The reversibility of the
action a in state s is measured by the value of the C(s, a)
function, described in section II.

The reversibility module can allow an action without post-
action to undo it only if the action does not change the
state and there is no need to undo it. If there is a sequence
of actions to undo the initial one and the initial action is
reversible, the action is allowed and the undo-path pundo is
returned as the post-action.

C. Example
Consider the situation when a vacuum-cleaning robot is

cleaning the floor and plans to move the chair in front of
the robot to clean beneath the chair. The safety module is
queried whether it is allowed to push the chair. If the robot
is explicitly prohibited to push chairs, then the action is not
allowed. The action is allowed with optional post-action if
the rules explicitly allow pushing chairs. Alternatively, when
no explicit rule can be applied, the reversibility of pushing
the chair is analyzed. If the robot has the knowledge and the
ability to go around the chair and push it back to its initial
position, then the action is reversible and it is allowed with
a post-action of “go around the chair and push it back”.
However, the cycle of making the action followed by the
undo-path can be prone to errors, very long or requiring too
much energy, etc.: C(s, a) < Crev . In this case the action is
deemed irreversible and is prohibited.

IV. IMPLEMENTATION DETAILS

This section contains general implementation details of
the approach, while specific technical details can be found
in section V-F.

A. Action and state identification
In the experiment reported in this paper the robot is

moving itself inside a room with unmovable walls and

417



a single movable object. Available actions are: 4 discrete
translational movements forward/backward and 2 discrete
rotations left/right. The specific lengths for the actions are
selected by the authors by hand. A state is identified by
2D object coordinates and orientation in the global reference
frame; the space state is divided into a grid of discrete states.

B. Candidate path selection

Currently the control system doesn’t have a planning
module in a regular sense. Instead, our implementation of
candidate path selection for C(s, a) calculation is based on
the cycles in simulated state-action transitions. The search for
usable cycles was presented in [10]. The cycles were found
to undo the action that pushes the object; a single location
of the object in the robot’s reference frame was analyzed.

In this experiment we extend the search procedure by
analyzing many points in robot’s reference frame, so that the
robot can undo pushing of the object from different relative
positions. As a result, a set of “cycles” is obtained for every
analyzed relative position of the object. These sets are used as
path candidates during C(s, a) calculation – the first action
in the cycle is expected to be undone by the rest of the cycle.

C. MDP for reversibility models

Every context has a RMMai reversibility model for the
C(s, a) calculation. Such reversibility model is a mixture of
the actual (RMMa) and simulated (RMMi) experience.

RMMai, RMMi and RMMa share the same sets S
and A., generated by external state and action identification
modules of a system.

Probability function Pa(s, s
′) is derived from observed

actual transitions for RMMa or simulated ones for RMMi.
Similarly, reward function Ra(s, s

′) ≤ 0 is derived from the
simulated or actually observed cost (energy, time, damage,
etc) of the action.

In this paper the RMMi is used as RMMai. Experienced
transitions are used to update parameters of environment
simulation logic: statistics about changes in robot and object
positions for every action.

V. EXPERIMENTAL SETUP

A. Robot and Environment

The MetraLabs’ Scitos G5 robot is used for the real-world
part of the experiment and its model is used in the simulated
environment, which is a copy of the actual room for the real
robot (see Fig. 2). The robot control framework is connected
to Player server [11], which in turn controls either the actual
robot or its model in Stage simulator [11].

B. The Experiment

Robot’s behavior mimics a vacuum cleaner. The task
for the robot control algorithm is to cover the area in a
“lawnmower” pattern. For an abstract vacuum cleaner robot,
covering the area means cleaning it. During the experiment
the covered area is measured together with the difference be-
tween the initial and the final positions of the visible objects
in the global reference frame. Without loss of generality, the

Fig. 2. The physical experimental setup of the corridor (left) and the
simulation in Player/Stage (right). Dotted line represents the desired area to
be covered.

experiment is conducted with a single object to simplify the
setup and make the object identification more robust.

To benchmark our approach, the experiment consist of
three sets of test runs with different “modes” (sets of explicit
rules) of the safety module to compare their performance:

• “reversibility” – without rules, the decision and a post-
action is generated by reversibility module

• “obstacle avoidance” – rules allow only the actions that
don’t move the object

• “no safety” – all actions are allowed.

The experiment starts with the data acquisition part to col-
lect statistical data about the robot and the environment. It is
followed by the data processing, that calculates statistics and
prepares candidate cycles for C(s, a) calculation. When data
is collected and processed, the actual test-runs are executed
to measure the covered area and the distance between the
initial and the final positions of the object.

C. Data Acquisition

In this experiment the robot can choose between the
following actions:

• “f” – move 0.15 metres forward
• “F” – move 0.60 metres forward
• “b” – move 0.15 metres backward
• “B” – move 0.60 metres backward
• “L” – rotate 60 degrees left
• “R” – rotate 60 degrees right.

During the data acquisition part of the experiment the robot
moves pseudo-randomly to collect statistics for the actions.
For every execution of the action, the initial and final
coordinates and orientation of the robot are saved for both
local and global odometry. The object’s movement data in
the robot reference frame is also collected to gather statistics
on how robot’s actions influence the object.

D. Data Processing

After data is acquired it is processed before the test-runs.
First, for each of the actions, robot movement statistics is
calculated from the collected data – average and standard
deviation of covered distance along robot’s X and Y axises
and rotated angle. Then this data is used to create the internal
model of the environment. This model is then tweaked to
simulate resulting object movements as precisely as possible.
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Experienced pushes of the object are compared with the sim-
ulated ones using different parameters; the best parameters
are chosen.

Afterwards, the tweaked model is used to prepare the
candidate cycles for on-line C(s, a) calculation during the
test run. It is done similarly to [10], but in this experiment
hundreds of relative position of the object in robot reference
frame are analyzed. The area around the robot is divided into
cells of size 0.03 meters and centers of the cells are candidate
points to be analyzed for action reversibility when the object
is at that position. The search for cycles is conducted for
those points where the object position changes as a result
of the action; there are separate sets of such points for
every action. On our test machine (Intel Core i7-920 CPU,
NVIDIA Tesla C1060 GPU, 6GB of RAM) the calculation
takes approximately one hour for the simulated and four
hours for the real environment.

E. Test Runs
The final part is the actual experiment, which consists

of multiple test-runs with different modes of the safety
module. In the beginning of each test run, the object is placed
randomly inside the desired area.

The area coverage algorithm for all three “modes” is the
same, it queries the safety module before each action. If the
action is prohibited, an alternative action is chosen and the
query is repeated. If the new action is allowed, it is executed,
together with the post-action, supplied by the safety module.

In “reversibility” mode no explicit safety rules are applied
and the reversibility module is responsible for safety assess-
ment. The cycles, generated in the off-line data processing
part of the experiment, are used during the on-line assess-
ment of action reversibility.

The analyzed point, closest to the current position of the
object, is selected from action’s set of such points. Each
analyzed point has a set of the previously identified cycles
associated with it. These candidates path are used to calculate
C(s, a) and select the associated cycle as the post-action.

The paths are simulated internally in RMMai, taking
possible immovable obstacles into account. Pa(s, s

′) is cal-
culated by executing the internal simulation of the actions.
Possible next states with probabilities are calculated by
analyzing 10 different outcomes of the actions with normally
distributed random error, using standard deviation obtained
in the data acquisition part of the experiment. Ra(s, s

′)
is calculated as 0 minus the length of the movement in
meters or rotation angle in radians. If collision with a wall
is detected by the simulation code, then the Ra(s, s

′) is
additionally multiplied by 100.

The “obstacle avoidance” mode uses the same internal
model of the environment to predict collisions. The action
is prohibited if collision is predicted, allowed otherwise; the
post-action is always empty. The “no safety” mode is the
most naive approach – all the actions are allowed.

F. Technical Details
The test area is 5 by 4 meters – the dashed rectangle in

Fig. 2 (right). It is divided into 80 cells of size 0.5 metres.

The cell is considered to be covered, if the center of the
robot’s round compartment enters it. The moving algorithm
tries to visit all the cells in a lawnmower fashion. The safety
module is queried each time before the desired action is
executed. If the action is prohibited, a new action is generated
and the process repeats. The experiment stops when all the
cells are visited or manually, if it is clear that no more cells
can be visited.

Robot coordinates in the global reference frame are pro-
vided by AMCL driver of the Player/Stage project [11].
Object identification is simplified by the round shape of the
object and the IAV method [12] is used to identify the object
in laser rangefinder scans.

In our experimental setup the object is the only round
item in the environment and its approximate radius is known
– 0.15 metres. The round object’s size and its position
in robot’s coordinates are identified from laser rangefinder
scans, filtering out the occasional “wrong” objects by radius
threshold; laser sensor position and settings are known.

State space’s 2D position component is divided into 0.1 m
cells and orientation component is divided into 0.173 rad
sectors. Since the object is round, its orientation is always 0.

Threshold values are set as follows: Cmin = −2, Crev =
−20. Maximum number of actions in a path/cycle is set
to 14. The search for cycles is a plain iteration over the
possible paths of given length. During C(s, a) calculation,
a maximum of 8192 path candidates are tried. Run-time
limits are not enforced, since execution times are limited
appropriately by the previously described parameters.

VI. RESULTS

The experiment showed that the ability to undo actions is
very useful for the task at hand. Fig. 3 shows the results of
the test-runs made in simulated environment (on the right)
as well as on the real Scitos G5 robot (on the left). Each
sub-figure contains the results of 5 test-runs made with each
of the 3 different modes of the safety module.

Red triangles represent the results of the trials, when all
the actions are allowed – the “no safety” mode. It is easy
to see that this mode is the least safe of all the three – in
the end the object is in average 1.5-1.9 metres away from its
initial position. As expected, this mode performs very well
in terms of area coverage – all the 80 cells are visited during
both real and simulated test-runs. In the real environment the
object is moved further away from its initial position than in
the simulated environment. This is due to the difference in
physical parameters of robot-object interaction.

The results of the “obstacle-avoidance” strategy, where
only the actions that don’t move the object are allowed, are
shown as blue diamonds. This mode is in many ways the
opposite of the “no safety”: it is the safest mode with almost
no object movements, but with incomplete area coverage –
at least one and up to four cells remain unvisited. It is worth
noting, that real environment exhibits small movements of
the object in this mode. This is due to imperfect obstacle
avoidance prediction and sensor noise.
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Fig. 3. Results of the test-runs in the real (left) and the simulated (right) environments.

Green squares represent the test-runs made in “reversibil-
ity” mode – when decision on the action and the post-action
were generated by the reversibility sub-module. This mode
performs on a par with the “no safety” mode in terms of
area coverage – all the 80 cells of the area in question are
covered. Also, this mode is safe – in the end the object is
very close to its initial position after both real and simulated
test-runs.

With respect to total navigation time, the fastest mode is
predictably the “no safety”, since the robot drives straight
through the cells in the “lawnmower” fashion. The “re-
versibility” mode is only 3-10% slower than the “no safety”
– additional time is spent only when driving around the
obstacle and pushing it back. The slowest mode is the
“obstacle-avoidance” – it is at least 50% slower than the
“no safety” mode, because in this mode the next unvisited
cell is tried many times from different positions, before it is
marked as unvisitable and skipped.

VII. CONCLUSIONS AND FUTURE WORK

A. Conclusions

Based on the results of the experiment we conclude that
the proposed safety architecture, consisting of the safety
module and its reversibility sub-module can be used for
practical purposes. The experiment showed that the principle
of reversibility can be successfully used to ground safe
object pushing behavior to increase covered area without
compromising safety. The task of “robot area coverage with
movable objects inside it” can be identified as one of the
tasks, that benefit from application of such behavior.

Experiments showed that reversibility-based safety module
exhibits better overall performance than the “no safety”
and the “obstacle avoidance” pre-programmed approaches to
cover the desired area. However, the experiment setups are
somewhat idealized and further work must be done to make
the approach applicable to the real-life scenarios.

B. Future Work

Our ultimate goal is a multi-purpose personal robot-
assistant with intrinsically safe autonomous decisions. We
plan to use the same approach of using abstract principles
to develop and ensure safe behaviors, but moving further
towards more complex and real-life problems/scenarios.
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Lühikokkuvõte

Käesolev doktoritöö kirjeldab uudset turvaarhitektuuri, mis võimaldab tradit-
sioonilisi ohutusprotseduure kombineerida tegevuste pööratavusel põhineva ohu-
tuse hindamisega kui varulahendusega ootamatuteks olukordadeks. Selle arhitek-
tuuri raames käsitletakse ohutuse hindamiseks kahte meetodit, mis kasutavad
pööratavuse põhimõtet – “Ära tee asju, mida ei saa olematuks teha”.

Uurimuse ajendiks on robotite sulandumine meie igapäevaellu, mille tõttu
on ohutus muutumas nende kasutamise üheks olulisemaks tahuks. Robotite au-
tonoomia kasvab kiiresti ning on ainult aja küsimus, millal robotid hakkavad ise
otsustama. Uurimustöö eesmärgiks on välja arendada raamistik, mis võimaldaks
tuleviku robotitel suures hulgas erinevates olukordades ohutult käituda, kombi-
neerides kavandatud ja iseeneslikke turvaprotseduure.

Robootikas vaadeldakse ohutust tavaliselt roboti keha ja robotkäte mehhaani-
lise ohutuse ning nende tavapärase, olukorrapõhiste käitumisreeglitega juhtimise
taustal. Teisest küljest vaadeldakse ohutust eetika, seaduslike õiguste ning roboti
projekteerija vastutuse kontekstis. Teadustöö autonoomsete robotite tegevuste
uurimisel, põhinedes sisemistel motiividel ja abstraktsetel põhimõtetel, ei hooli
tekkiva käitumise turvalisusest.

Käesolevas doktoritöös kirjeldatakse lähenemist, kus roboti projekteerija an-
nab ohutusreeglid tuttavate olukordade jaoks ning pööratavusel põhinevat ohu-
tuse hindamist rakendatakse tõeliselt iseseisvatele otsustele – otsustele juhtudel,
kui ükski olukorrapõhine reegel pole kohaldatav. Sel viisil saab kirjeldatud tur-
vaarhitektuuri siduda traditsioonilise roboti juhtsüsteemiga, olles tagavaralahen-
duseks ootamatutes olukordades. Säärastel juhtudel on ainult pööratavad tege-
vused iseeneslikult turvalised ning pöördumatuid tegevusi peab alla suruma, et
sundida robotit ohutult käituma.

Käesolev väitekiri pakub välja kaks meetodit ohutuse hindamiseks kirjel-
datud hübriidses turvaarhitektuuris. Maailmamudelivaba meetod kasutab oleku-
vaheliste kauguste mõõtusid, leidmaks sobivaid andmeid ning mõõtmaks tegevuse
pööratavust. Maailmamudelil põhinev meetod arvutab tegevuse pööratavuse hin-
damiseks tegevuse tagasi võtmise hinna; robot simuleerib enda potentsiaalseid
tegevusi, et arvutada algsesse olekusse naasmise hinda.

Simuleeritud keskkondades erinevate robotitega korraldatud katsed näitavad,
et maailmamudelivaba pööratavuse hindamise meetodil juhitud robot käitub tak-
istuste vältimisel turvaliselt. Erinevat tüüpi ja erinevate pikkustega tegevusi simu-
leerivad katsed näitavad, et maaimamudelivaba meetodit saab kasutada teineteist
tühistavate tegevuste tuvastamiseks.

Simuleeritud ning reaalsetes liigutatava takistusega keskkondades korralda-
tud katsed näitavad, et maailmamudelil põhineva pööratavuse hindamisega hübri-
idne turvaarhitektuur võimaldab robotil suurendada katsepiirkonna kaetust, kasu-
tades ennistatavat objektide manipuleerimist.
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