
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Oskar Pihlak 211913IAPM

COOPERATIVE REAL-TIME REINFORCEMENT LEARNING

IN A LIMITED DATA ENVIRONMENT

Master’s Thesis

Supervisor: Gert Kanter
PhD

Co-supervisors: Riivo Kikas
PhD

Ilja Samoilov
MSc

Tallinn 2024

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Oskar Pihlak 211913IAPM

KOOSTÖÖL PÕHINEV REAALAJALINE STIIMULÕPE

PIIRATUD ANDMEKESKKONNAS

Magistritöö

Juhendajad: Gert Kanter
PhD

Kaasjuhendajad: Riivo Kikas
PhD

Ilja Samoilov
MSc

Tallinn 2024

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Oskar Pihlak

23.05.2024

i

Abstract

This thesis investigates methods for optimizing message delivery success rates in telecom-
munication networks and brings examples from short message and multi-media message
routing. It uses reinforcement learning, specifically Multi-Armed Bandit algorithms, to
solve real-time decision-making problems under uncertainty.

The explorable environment introduces challenges such as limited data and non-stationarity
in success rates, as the effectiveness of different message delivery paths can change over
time. The integration of federated learning principles is investigated to enable collaborative
learning among multiple agents.

Various algorithms are designed, implemented, simulated, and novel Multi-Armed Bandit
variants are proposed, termed "Collaborative Memory Sharing UCB" and "UCB Mon-
itored." These variants enhance the adaptability and performance under the described
requirement space.

By constructing a simulation framework and running subsequent experiments using syn-
thetic datasets, the work demonstrates the effectiveness of cooperative strategies in improv-
ing message delivery success rates compared to isolated agent approaches. The findings
have practical implications for optimizing message routing in real-world telecommunica-
tion networks.

The thesis is written in English and is 59 pages long, including 9 chapters, 22 figures, and
16 tables.

ii

Annotatsioon
Koostööl põhinev reaalajaline stiimulõpe piiratud andmekeskkonnas

Magistritöö uurib meetodeid sõnumite edastamise edukuse määra optimeerimiseks
telekommunikatsioonivõrkudes ning toob näiteid lühisõnumite ja multimeediasõnumite
suunamisest. Töö kasutab stiimulõppe alla kuuluvaid Multi-Armed Bandit algoritme, et
lahendada reaalajas otsuste tegemise probleeme.

Uurimiseskkond toob esile väljakutsed nagu piiratud andmed ja edukuse määrade
mittestatsionaarsus, kuna erinevate sõnumite edastamise tõhusus võib aja jooksul muutuda.
Uuritakse föderaalse õppe põhimõtete integreerimist, et võimaldada agentide vahelisel
koostööl põhinevat õpet.

Erinevaid algoritme disainitakse, implementeeritakse ja simuleeritakse. Pakutakse välja
uusi Multi-Armed Bandit variante, mis on nimedega "Collaborative Memory Sharing

UCB" ja "UCB Monitored". Antud variandid suurendavad kohanemisvõimet ja jõudlust
kirjeldatud nõuetes.

Simulatsiooniraamistiku loomise ja sellele järgnevate eksperimentide läbiviimisega
sünteetiliste andmekogumite abil demonstreeritakse koostööstrateegiate tõhusust sõnumite
edastamise edukuse määrade parandamisel võrreldes isoleeritud agentide lähenemisega.
Tulemused omavad praktilisi rakendusi sõnumite suunamise optimeerimisel reaalsetes
telekommunikatsioonivõrkudes.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 59 leheküljel, 9 peatükki, 22
joonist ja 16 tabelit.

iii

List of Abbreviations and Terms

AWS Amazon Web Services
CMAB-DO Contextual Multi-Armed Bandit with a Dominant Objective
CT Control Theory
CxMAB Contextual Multi-Armed bandit
EC2 Elasic Compute Cloud
ETC Explore-then-Commit
FCB Federated Contextual Bandits
FedIGW Federated Inverse Gap Weighing
Fed-PE Federated Phase Elimination
FL Federated Learning
FMAB Federated Multi-Armed Bandit
FS Feedback Supplier
IGW Inverse Gap Weighing
LLM Large Language Model
MAB Multi-Armed Bandit
MDP Markov Decision Process
ML Machine Learning
MMS Multimedia Messaging Service
RL Reinforcement Learning
SL Supervised Learning
SMS Short Message Service
SMPC Secure Multi-Party Computation
TS Thompson Sampling
UCB Upper Confidence Bound
UI User Interface
VFL Vertical Federated Learning

iv

Table of Contents

1 Introduction . 1
1.1 Problem . 2
1.2 Thesis Objectives . 5
1.3 Design Goal and Requirements . 6
1.4 Novelty . 7
1.5 Thesis Outline . 7

2 Background . 8
2.1 Reinforcement Learning . 8

2.1.1 Recommendation Systems . 10
2.1.2 Multi-Armed Bandit . 11
2.1.3 Control Theory . 14
2.1.4 Upper Confidence Bounds . 14
2.1.5 Contextual Multi-Armed Bandit 15

2.2 Federated Learning . 15
2.2.1 Privacy Protection . 16
2.2.2 Data Poisoning . 17
2.2.3 Federated Multi-Armed Bandits 17
2.2.4 Horizontal Federated Learning 18
2.2.5 Vertical Federated Learning . 19

2.3 Prior Work and Literature Review . 20
2.3.1 Multi-Armed Bandits with Cost Subsidy 20
2.3.2 Collaborative Multi-Agent Heterogeneous Multi-Armed Bandits . 20
2.3.3 Multi-Armed Bandit with Budget Constraint and Variable Costs . 21
2.3.4 Multi-objective Contextual Multi-Armed Bandit With a Dominant

Objective . 21
2.3.5 Federated Multi-Armed Bandits 21
2.3.6 Federated Linear Contextual Bandits 22
2.3.7 Harnessing the Power of Federated Learning in Federated Contex-

tual Bandits . 22
2.4 Considered Alternative Approaches . 22

3 Operations . 24
3.1 Infrastructure . 24
3.2 Cold Start and Data Limitations . 25

v

3.3 Data Drift . 25
3.4 Monitoring . 25

3.4.1 Distribution of Arm Pulls . 26
3.4.2 Take Rate . 26

4 Methodology . 27
4.1 Technology . 27
4.2 Simulation Framework . 27
4.3 Federated Learning . 28
4.4 Generating Data Sets . 28

5 Experiments . 32
5.1 Test Cases . 35

6 Results . 38
6.1 Baseline . 38
6.2 Algorithms Considered . 40

6.2.1 Explore then Commit . 40
6.2.2 Thompson Sampling . 41
6.2.3 Softmax . 42

6.3 Upper Confidence Bound Tuned . 43
6.4 Contextual Bandits . 45
6.5 Cooperative Algorithms . 47

6.5.1 Collaborative Bandits . 48

7 Analysis . 52
7.1 Evaluation Criteria . 52
7.2 Base Methods . 53
7.3 Contextual Bandits . 53
7.4 UCB Monitored . 54
7.5 Client-Centric Multi-Armed Bandits . 54
7.6 Collaborative Memory Sharing UCB . 55
7.7 Simulation Setup . 56
7.8 Research Question . 56

8 Future Work . 57

9 Summary . 58
9.1 Objectives . 58
9.2 Contributions . 58
9.3 Conclusion . 59

vi

References . 60

Appendix 1 Non-Exclusive License for Reproduction and Publication of a
Graduation Thesis . 68

Appendix 2 Machine Learning Approaches 69

Appendix 3 Hoeffding Inequality . 70

Appendix 4 Reinforcement Learning Methods 71

Appendix 5 Multi-Armed Bandit and Federated Learning Methods 72

Appendix 6 Reinforcement Learning Algorithm Groupings 73

Appendix 7 Algorithms . 74

Appendix 8 Multi-Armed Bandit System Architecture in the Cloud 76

Appendix 9 Simulator UI . 77

Appendix 10 Hyperparameter Tuning . 78

vii

List of Figures

1 Message sending between entities. 2
2 Success rate connection between providers and clients as a graph. 4

3 The model-environment interactions in reinforcement learning. 8
4 Multi-Armed Bandits. 12
5 Model environment interaction with MAB. 12
6 Generalized Federated Learning setup. 17

7 Theoretical system architecture example of a message route recommender. 24

8 Seasonal data volume with custom algorithm decisions. 30
9 Best provider experiencing an outage. 31

10 Providers behaving in a normal manner. 36
11 Total provider outage with incremental recovery. 36
12 All providers have a small outage. 37

13 Baseline algorithms with test case 5. 39
14 Baseline algorithms with test case 2. 40
15 ETC simulation with test case 2. 41
16 TS simulation on test case 2. 42
17 Tuned Upper Confidence Bound. 43
18 LinUCB with test case 2. 46
19 Contextual bandits handling differing client-specific feedback distribution. 46
20 Bandit Mesh. 47
21 Collaborative Bandits compared to other variants with test case 3. 50
22 Collaborative Bandits and UCB monitored with test case 2. 50

viii

List of Tables

1 Success rate connection between providers and clients. 3

2 Differences Between A/B Testing, MAB, and CxMAB. 15
3 Federated Multi-Armed Bandit learning algorithms 18

4 Pros and Cons of Federated Learning Libraries. 28
5 Data represented from the simulated provider perspective. 30

6 Algorithm decisions on step 5 for client c on time steps T 33

7 Baseline algorithms with test case 5 details. 39
8 Baseline algorithms with test case 2 details. 40
9 ETC simulation metrics compared to UCB1 details. 41
10 TS simulation metrics compared to UCB1 details. 42
11 Tuned Upper Confidence Bound details. 43
12 LinUCB with test case 2 details. 45
13 Contextual bandits handling differing client-specific feedback distribution

details. 46
14 Collaborative Bandits compared to other variants with test case 3 details. . 49
15 Collaborative Bandits and UCB monitored with test case 2 details. 50

16 Algorithm results over the test cases. 52

ix

1 Introduction

Reinforcement learning (RL) is a machine learning (ML) paradigm in which agents learn
and adapt based on their environment’s feedback. The agent is an entity that makes
decisions about what actions to take and is considered real-time if it can immediately react
to any feedback upon its arrival. This thesis focuses on an RL sub-domain where the agents
are primarily algorithmic. Algorithms are instruction sets with predefined steps for solving
a problem.

To make different agent comparisons more accurate, they are run through simulations for
the same period and on the same test cases. The agent aims to make the best possible
decisions and receive the best results. As the same decisions yield varying results over
time in this work, it must continuously update its knowledge of the success rates for all
options to maintain the likelihood of choosing the best option. Achieving the most optimal
result requires balancing exploiting the most effective option to optimize outcomes and
exploring alternative options to ensure the optimal choice is being made.

This thesis investigates optimal decision-making in the telecommunications field. This can
be exemplified by sending a short message (SMS) or multimedia message (MMS), as seen
in Figure 1. The sender sends an SMS to a recipient through a platform like Plivo, Twilio,
Infobip or Sinch. The platform attempts to choose the most optimal path for sending the
message to the destination with the highest likelihood of delivery.

A messaging platform is a service that enables the sending, receiving, and management of
text, voice, and multimedia messages between users or systems across various communica-
tion channels. Messaging aggregators are organizations that use technology to distribute
messages to vendors. It’s possible to send the SMS through different vendors regardless of
the vendor used by the sender.

The goal of the messaging platform is to choose the best vendor at the given moment to
maximize the likelihood of successful message deliveries. In this setting, the receiver is
almost always an individual, while the sender could be either an individual or a business
entity. After the SMS is sent to a vendor, the messaging platform that sent the message can
receive feedback on whether the message was successfully delivered, depending on the
delivery status trustworthiness level, which isn’t discussed in the thesis.

1

Such a platform approach can also be applied to email delivery. The email can be sent to
the recipient via different vendors like Brevo, Hubspot, Mailchimp and Woodpecker. In
this case, the successful feedback signal for a sent-out email would be if the email reached
the inbox in a timely manner and the end-user opened the message.

1. Send

2. Direct to cor rect
processor

Recipient

3. Sent out

4. Feedback

Messaging platform
e.g., aggregators

Message processor
[Tele2]

Message processor
[Elisa]

Message processor
[Telia]

Sender

Figure 1. Message sending between entities.

This thesis will provide an overview of related work and look at possible approaches,
disregarding suboptimal variants. Then, construct a system to compare viable methods and
develop novel variants that better fit the given environment setting if necessary.

The primary challenges encountered include maximizing optimal decision-making over
time, gathering knowledge for options with limited information, handling sudden shifts
in option results throughout time, and sharing correlating information between agents.
These issues highlight the need to investigate approaches that align with the evolving
environment.

Algorithm analysis provides an overview of possible solutions. The proposed algorithms
are more optimal for environments with data characteristics similar to those described in
the work.

The author of this thesis identified and investigated existing solutions and developed a
simulation system to validate the approaches empirically. Although this does not guarantee
optimal performance on an absolute and infinite scale, the empirical results give sufficient
confidence to test these solutions with real traffic.

1.1 Problem

The goal of this thesis is to investigate methods for sending messages to end users via
paths to maximize successful delivery rates. Various options are available for doing this.
Feedback is received on the message delivery results from specific providers known as
feedback suppliers (FS). Continuously adjusting the decisions based on this input ensures

2

a higher quality of message deliveries. The objective is to select the path that provides the
best possible quality at that point in time. However, messages must periodically be sent
through each available path to make the best decision. Certain environmental constraints
include some feedback suppliers not providing data for all paths or not allowing traffic
termination for specific routes.

The trained and evaluated models will be used to improve message routing. The telecommu-
nication context was chosen because it poses a peculiar data environment where message
delivery success rates vary in time. The success rates also depend on the destination
country, network, and telecommunications operator chosen for message delivery. The
problem can be formulated as finding the best single-step path to reach a desired goal.

Table 1 shows the connection between FS requests and the mean success rate for providers
P handling the requests. An FS is a client with requests whose termination statuses can
be accurately determined. For the context of the thesis, the terms FS and client will be
used interchangeably, but in reality, not all clients are FS. Clients whose request statuses
cannot be determined will not be discussed in the thesis; such clients are handled differently
from what the thesis discusses. A provider is an entity that has connections to multiple
Mobile Network Operators (MNO); a provider itself can also be an MNO.

The bottom row of Table 1 shows how many messages clients have sent within an arbitrary
time frame. The table has a cell marked with an ”?” indicating that FS3 requests have not
been sent through provider P2 in the arbitrary time frame or too few requests have been
sent to make value predictions. There could be 0 ≤ N ≤ P × FS connections marked
with ”?”. When a new agent version is deployed, its state starts with all cells P × FS
marked as ”?”. Most of them get replaced relatively quickly with the numerical mean
success rate of the provider as time goes on and possible paths are explored.

Table 1. Success rate connection between providers and clients.

FS1 FS2 FS3 FS4

P1 0.9 0.6 0.7 0.8

P2 0.8 0.57 ? 0.6

P3 0.88 0.55 0.8 0.66

Volume 10k 1k 100 10

In a setting where multiple RL agents are learning from proximally similar datasets and
potentially with differing goals, sharing experiences between the agents should be possible.
This would help solve the data-deprived option marked with ”?”. The table contents can

3

be simplified and represented as the Figure 2 graph.

P1
FS1

FS2

FS3

0.7

0.6
0.9

P2

0.8
0.57

?

Figure 2. Success rate connection between providers and clients as a graph.

Sharing experiences could lead agents to share conflicting data. As seen in row P3,
the mean success rate differs widely per client. This poses the need to check for value
correlation between agents before sharing data and ignore agents whose data dramatically
differs. Despite this, the message request volumes must be considered before disregarding
an agent’s success rates per provider.

Conflicting data can exist for a multitude of reasons. Clients send SMS and other message
requests to the platform with varying levels of quality and content. Covering some
examples, they send requests to numbers without specifying the country prefix (+372
in Estonia) or send message requests with content that gets blocked down the line by a
provider. Contact numbers can go out of use, and as a result, the mobile network where the
message is routed fails to deliver the request. A mobile phone is turned off for a prolonged
period and can’t receive the message. In addition, the providers have differing capabilities
in handling the requests.

In more complex cases, it can be taken into account that a considerable number of providers
operate in a so-called grey area, sometimes engaging in practices such as SIM box routing
or traffic throttling, which can artificially inflate or deflate delivery rates and lead to
significant variance across clients. Some systematically drop messages, creating a situation
where there is a considerable variance of successful deliveries for a provider across clients;
the reasons and further background on this aren’t discussed.

A question might arise about whether it is worth solving an unknown connection "?"
between some P and FS that don’t get enough traffic. Information about all connections
must be available to make an optimal decision. In the event of data drift, knowing the "?"
can be beneficial for maintaining a higher success rate.

4

Training agents to meet specific objectives is important, as different clients have differing
priorities. For example, those sending out high-traffic volumes often prioritize the cost
per message. Meanwhile, the speed of message delivery is necessary for those handling
login and authentication requests. Reliability in message delivery becomes important when
sending order confirmations.

RL systems, such as recommenders [1] can be implemented using Multi-Armed Bandits
(MAB) [2], which have various use cases in Google [3], Meta [4], Microsoft [5] and Netflix
[6], who have also published papers on the topics. Analogous systems apply to multiple
fields.

■ In marketing, ad placement optimization involves continuously testing different ad
creatives to identify and serve effective ads to various segments [7];

■ In e-commerce, product display optimization focuses on testing different product
layouts or features on the website to maximize user engagement and sales [8];

■ For content streaming, content placement optimization entails testing different
content or thumbnails to increase user engagement and viewing times [9];

■ In the gaming industry, feature testing involves testing different game features or
mechanics to determine which ones enhance player engagement and retention [10];

■ Social networks continuously test the placement and type of ads shown in user feeds
to improve ad performance [11];

■ Experimenting with various teaching methods or engagement strategies aims to
enhance student participation and retention [12].

The focus is on optimizing message delivery success rates, considering immediate perfor-
mance and factors such as the potential for changes in provider reliability over time (data
drift).

1.2 Thesis Objectives

The goal of this work is to research and develop algorithms for maximizing successful
message delivery rates in telecommunication networks. The thesis will create a simulator
to explore and implement numerous Multi-Armed Bandit and baseline models described
in the literature. It will then compare the results and conclude.

The research questions that will be tackled in this thesis are the following:

1. Considering the baseline of existing approaches and model designs in the given data
setting, can a novel variant be created that is on par with or exceeds the performance

5

of existing solutions?
(a) How can real-time models improve performance by learning from adjacent

models set in the same data environment but receiving different data chunks?
2. What methods are optimal in the given environment?

(a) What approaches can improve model change detection in negative and positive
cases?

1.3 Design Goal and Requirements

This thesis aims to construct methods that meet the following statements.

1. Convergence in the thesis means reaching the optimal message delivery success rate
value. The goal is to achieve quick convergence to optimal actions within at most 50
sampling rounds or 10.000 samplings;

2. Maintain an overview of the relevant options in a short period, having an overview
of at least the best two arms within a time frame of 5000 samplings and an overview
of all arms within 40.000 samplings;

3. Stable performance on stationary periods, with 6% of the decisions deviating from
the optimal decision over the indefinite timespan. This value is derived from the
quality threshold of 94%, which is based on analysing real data and considering the
expected variance. This value is explicitly stated to give a rationale for exploration
even when the period is more stationary.

4. Ability to make real-time decisions;
(a) Computationally resource-efficient enough to be runnable on a laptop with

some clients with their options and runnable on the cloud with a single machine
that handles the entire client space with option calculations in under 5 minutes;

(b) Quick adaptations to reward variability;
5. Robust enough to handle noise and outliers in the reward signals, ensuring that the

decision-making process is not unduly affected by anomalous data;
6. Configurable and customizable via hyperparameter tuning;
7. Adaptability for different objectives and use cases. For example, adjusting the

algorithm to only look at the reward or also looking and trying to minimize costs;
8. Reward targets;

(a) Success rate maximization;

6

1.4 Novelty

To the author’s best knowledge, no comprehensive approach or solution sufficiently ad-
dresses the problem. This highlights the need for further research and innovation in the
field to address the challenges associated with exploration and exploitation in this setting,
where the agents have to converge with optimal speed while maintaining awareness of
other arms to react to reward distribution changes quickly. In addition, a set of agents
is classified as having limited data and, as such, takes longer to converge and should be
helped out by similar agents with more abundant data.

Furthermore, no suitable simulator exists for running simulations that reflect the thesis
environment. The author introduces an initial simulator for this setting.

1.5 Thesis Outline

Chapter 2 describes the preliminaries. Chapter 3 discusses the operational aspects besides
model simulations and algorithm tests. Chapter 4 covers the methods of how the experi-
ments were done and what was used in the process. Chapter 5 shows the experiment setup
and the test cases. Chapter 6 shows the result. Chapter 7 analyses the work done. Chapter
8 presents possible future work. Chapter 9 concludes the work.

The chapters build upon each other. When reading through the document for the first time,
it is recommended to read it chapter by chapter.

7

2 Background

This chapter covers the two primary paradigms used to implement solutions to the stated
problem.

2.1 Reinforcement Learning

The real-time ML models discussed in the paper are placed in the RL subgroup whose
interactions with the environment are described in Figure 3 [13]. The model chooses an
action from the available actions a ∈ A(s), which results in one state of the available
states s ∈ S with a numerical reward from the possible rewards r ∈ R ∈ R, which are
restricted to problem-specific finite sets. The dynamics of the environment are given by
the probability function p(s′, r|s, a).

The goal is to determine an optimal target policy π∗(a|s) out of all the policies πN(a|s).
In the thesis setting, the RL models can use a subset of data because not all actions give
rewards, which can be used to adjust tuning. Multiple models are run based on context, and
some models get much less data than others, sometimes taking days to converge instead of
minutes or hours optimally. This makes the environment constrained as data flow to some
models is limited. The models are near-real-time, with rewards given at intervals by a
service separate from the models. Appendix 2 shows a general overview of ML paradigms.

Agent

Environment

Action
At

St+1

Rt+1

State
St

Reward
Rt

Figure 3. The model-environment interactions in reinforcement learning.

RL is an ML paradigm in which an agent learns to make decisions by performing actions
and receiving rewards or penalties. Appendix 4 shows a generalised overview of the
methods. It involves learning what to do—how to map situations to actions to maximize
a numerical reward signal [14]. The agent is not told which actions to take but must
discover which actions yield the greatest reward by trying them. Most RL methods are well

8

described with GPI (Generalized Policy Iteration), which aims to find the best policy π∗
and the value function v∗ such that in each iteration the policy is interpreted and evaluated
until the best policy is achieved π0

E−→ vπ0

I−→ π1
E−→ ...

I−→ π∗
E−→ v∗ [15, 13].

Agents can be model-based or model-free. A model is anything the agent uses to predict
the environment’s response to its actions. An example is an estimate of p(s′, r|s, a). Model-
based methods use the model to plan actions before they are taken. Model-free methods
learn action-to-return associations. They evaluate action values q∗ instead of state values
v∗. Given samples under π, estimate qπ. When doing model-free evaluation, it’s possible
to express qπ-estimation as vπ-estimation [16].

Agents can be off-policy or on-policy. Behavioural policies b generate experiences or
samples from the environment. It defines the actions the agent takes while exploring.
Target policies π try to optimize and learn, dictating the agent’s actions to achieve the
highest expected return.

Off-policy methods involve learning a target policy π that is different from the behaviour
policy b used to generate experiences, π ̸= b. This distinction allows off-policy methods
to leverage data collected from various sources or past experiences, enhancing sample
efficiency. They usually experience larger variance in their estimates and can face stability
issues. On-policy methods learn the value of the policy used to make decisions, and the
same policy is used to generate the agent’s behaviour π = b. They are also evaluated and
improved based on the experiences gathered. A function approximation would look like
v̂(s, w)→ q̂(s, a, w) [17]. RL algorithm groupings can be seen in Appendix 6.

The agent interacts with its environment, which is formalized as a Markov decision process
(MDP) and learns a policy to maximize cumulative reward over time. The trade-off
between exploration (of uncharted territory) and exploitation (of current knowledge) is
central to RL. The algorithms include methods like Q-learning, where agents learn the
quality of actions denoting how good an action taken in a particular state will be [18]. RL
methods cannot evaluate the loss function for different hypothesis choices compared to
supervised and unsupervised ML methods.

Non-stationarity is when the environment’s dynamics or the agent’s policies change over
time, making it difficult for the agent to learn stable and optimal strategies. This can arise
from dynamic environments, evolving conditions, or interactions with other learning agents.
Non-stationarity introduces challenges such as convergence issues, increased variance in
value estimates, and a more complex exploration-exploitation trade-off. To address these
challenges, techniques like adaptive learning rates, prioritized experience replay, ensemble

9

methods, and meta-learning could enable the agent to adapt continuously to the changing
conditions and maintain effective learning [19].

2.1.1 Recommendation Systems

Recommender systems are a subclass of information filtering systems that employ algo-
rithms to predict and suggest items a user might like or find relevant [20]. They are used
across various industries and platforms.

Netflix employs a sophisticated recommender system to suggest movies and TV shows
to its users. By analyzing viewing history, ratings, and user interactions, Netflix creates a
personalized profile for each user and recommends content that aligns with their interests
[21].

Amazon’s recommender system focuses on product recommendations. It employs col-
laborative filtering, utilizing purchase history, browsing behaviour, and items in a user’s
wishlist to identify patterns and relationships between products. This allows Amazon to
display relevant recommendations like "Frequently bought together" or "Customers who
viewed this item also viewed." [22]

Other examples of such systems are the music recommender on Spotify and the video
recommender on YouTube. Recommenders can give multiple or no recommendable items
0 ≤ n ≤ N where N is the total item space. The recommendable item count depends on
the system design.

In the thesis work, returning multiple preferred providers ranked by their success rate could
be feasible and prove beneficial in cases where the best provider fails the delivery. The
system can immediately fall back and try the next best provider in line.

This would complicate manners and require careful system design around the recommender
to give correct feedback to the model. The external systems would need to store the
recommended paths with eventual statuses so the recommender would know which paths
were successful. It would also introduce model updates on multiple paths in cases where n
of the best providers fail the message delivery in a given period.

Returning multiple providers doesn’t provide much benefit, as the assumption is that
retries to send the message would once again ask the recommender for a routing decision
with the previous status in mind. The models discussed in the work can be considered
recommenders that return a single decision.

10

Contrary to supervised learning, where a model learns from labelled data, recommender
systems work well with diverse feedback mechanisms to refine their predictions. This
feedback can be explicit, such as user ratings or reviews, or implicit, inferred from user
behaviour like clicks, purchases, or dwell time [23].

Traditional recommender systems are predominantly trained offline and involve a cyclical
process in which a dataset is initially collected, followed by model training. As time
progresses, introducing new items leads to novel user interactions, necessitating periodic
retraining of the model [20]. This approach, however, encounters several challenges:

1. Frequency of Retraining: Determining the optimal frequency for retraining the model
is tricky. It is common practice to repeatedly retrain the model on the entire historical
interaction dataset. However, as the volume of data expands, the computational
resources required for retraining escalate, making the process increasingly resource-
intensive [24].

2. Integration of New Items: A persistent issue with offline recommender systems is
the continuous influx of new items. These items typically lack substantial interaction
data, necessitating a period of exploration to accumulate sufficient information. This
lack of initial data can hinder the system’s ability to effectively incorporate new
items into its recommendations until adequate user interaction data is collected.

2.1.2 Multi-Armed Bandit

The thesis mainly focuses on the near real-time reward category within the exploration vs.
exploitation problem set using Multi-Armed Bandits seen in Figure 4 [25] also known as
k-armed bandits. The estimated value Q of action a at time t is denoted as Qt(a).

They belong to the semi-supervised ML paradigm, modifying their model through en-
vironment interaction rather than training on labelled data. MABs do not directly alter
their environment while making decisions in the thesis setting. However, the choices may
indirectly influence it, depending on the agent’s objective and the environmental properties.
The MAB problem can be viewed as a simplified RL scenario, where the agent itself is the
bandit, as shown in Figure 5.

11

Figure 4. Multi-Armed Bandits.

K-armed bandit

Environment

Action
At

St+1

Rt+1

State
St

Reward
Rt

Figure 5. Model environment interaction with
MAB.

MAB is a classic framework for sequential decision-making in uncertain environments. A
learner repeatedly chooses among a set of arms (options), each associated with an unknown
reward distribution. The goal is to maximize the cumulative reward over time, balancing
exploring new arms with exploiting known, high-reward arms. The learner cannot see
future observations when making current decisions [13]. These algorithms are suitable for
problem cases that:

■ Involve choosing an action from a set of actions;
■ Have a feedback loop that provides a reward for a chosen action;
■ Does not require planning for the future. Available choices and rewards in upcoming

steps are not affected by the decisions that have been made.

The bandit algorithms have a large-scale utilization in practice. Prominent examples
include the following:

■ Online Advertising and Recommendation Systems: Choosing which ad or product
to display to maximize clicks, purchases, or engagement [26];

■ Clinical Trials: Identifying the most effective treatment [27];
■ A/B Testing and Website Optimization: Determining the best website design, layout,

or call-to-action button to improve conversion rates [28];
■ Network Routing and Resource Allocation: Selecting the best path for data packets

or allocating resources among users [29];
■ Adaptive Game AI: Designing non-player characters that learn and adapt their

strategies [30].

The classic Multi-Armed Bandit problems can be viewed as a particular case of an RL
problem with a single state. MABs belong to the general class of MDP with a horizon
H=1 where optimal policy selection is derived from a single-step reward maximization,
π∗(s) = argmaxa∈AQ(s, a).

12

Extended models such as contextual bandits relax these assumptions and involve multiple
states or contexts in their formulation [31]. MABs differ from the complete RL setting
in that the actions taken by the agent do not cause the environment to change the set of
available actions in the future, making the environment seemingly stateless.

They are widely used in online experimentation, recommendation engines, and traffic
routing problems. MABs are often used to explore all options while minimizing suboptimal
decisions [2]. It is an actively researched and continuously evolving field, as the solved
problem sets are foundational solutions to more complicated real-life problems. They
are distilled to a level where relevant features are kept, and the problem is marginally
simplified. Appendix 5 describes a subset of MAB paradigms. MABs consist of the
following:

1. Arms: Each timestep t actions available at are referred to as “arms.” The arms have
differing reward distribution, which are typically unknown to the decision-maker at
the start;

2. Reward Distribution: Arms have unknown reward distributions, which can be for
example stochastic or adversarial. Distribution specifics are usually unknown and
require the decision maker to estimate them by experimentation [32];

3. Decision Strategy: The approach used to decide the next pullable arm, balancing
the trade-off between exploring untested arms to find those with potentially higher
rewards (exploration) and exploiting known arms that have given high rewards in
the past (exploitation) [33];

4. Regret: Quantifies the difference between the rewards obtained by the chosen
strategy and the rewards that would have been obtained by the best possible strategy
in hindsight. The goal is often to minimize this regret over time [34]. r∗ is the
highest possible reward and R(a) is the unknown average reward of a. The expected
cumulative regret for n time steps would be Lossn =

∑n
t=1 loss(at).

The difference between many other RL approaches is that the environment dynam-
ics p(s′, r|s, a) are unknown. Instead, merely interactions of state, action and reward
S0, A0R1S1A1, ..., RT , ST are received after running some policy through the MDP.

The objective is to choose actions that lead to the highest possible cumulative reward in all
n rounds. This task is not an optimization problem mainly because the learner does not
know the distribution for each arm. In other words, the bandit instance v = (Pa : a ∈ A)
is unknown to the learner. Another reason a bandit problem is not an optimization problem
is that the value of n is unknown. This could be, however, overcome by designing a policy
with a fixed horizon and then adapting it for the unknown horizon while proving that the

13

performance loss of this operation is minimal.

2.1.3 Control Theory

Control Theory offers a structured and mathematical framework for managing and guiding
the behaviour of dynamic systems. It provides methodologies for designing and analyzing
algorithms that operate effectively in RL systems operating in limited data environments
[18].

CT offers a framework for directing the behaviour of systems to achieve desired outputs
through feedback loops. It is for systems that perform specific functions under varying
conditions. It is increasingly applied in modern applications [35]. CT and MAB problems
intersect in the domain of decision-making and resource allocation. CT principles, partic-
ularly those concerning feedback and dynamic system behaviour, apply to the strategies
employed in MAB problems.

■ Control theory can inform exploration vs. exploitation strategies in MAB problems
and optimize resource allocation over time for maximum return [36];

■ Multi-Armed Bandit problems are akin to a type of optimal control problem. They
are particularly suited for situations where resources must be allocated under uncer-
tainty, exemplified by clinical trials [37];

■ The concept of regret in MAB problems parallels the conflict in CT between immedi-
ate output and future states, mirroring the trade-off between stability and performance
[16].

2.1.4 Upper Confidence Bounds

Upper Confidence Bound (UCB) is one of the simulation baselines. It refers to a statistical
upper bound on the estimated performance of each strategy. The idea is to construct a
confidence interval around estimating a strategy’s performance and then consider the upper
end of this interval as the optimistic estimate of how well the strategy might perform.
Hoeffding’s inequality, as seen in Appendix 3, is a fundamental result in probability
theory that provides an upper bound on the probability that the sum of random variables
deviates from its expected value by a certain amount. It helps estimate the sum of bounded
independent random variables. Algorithms similar to UCB are described in Appendix 7.

14

2.1.5 Contextual Multi-Armed Bandit

Contextual Multi-Armed Bandit (CxMAB) extends the MAB framework by incorporating
additional information that may affect the expected reward of each action. They are
beneficial in personalized services such as recommendations and online advertising, where
the context includes user preferences or situational variables [38]. CxMABs have gained
significant traction in recent years in the sphere of recommendation systems. Such models
use contextual information to derive the correct data set and decide to obtain the best
results for a given optimization function. Context is represented by feature vectors that are
categorized as follows:

1. Shared: Common across all actions, time, device, location, etc.
2. Action-specific (parametric actions): A feature vector can specify each action.

The reward in CxMAB problems is a function of the chosen arm and the given context.
This complexity adds a layer to the exploration-exploitation dilemma about which arms
to explore and how the context changes the arm’s effectiveness [39]. The value Q now
depends on the context: Q(s, a). As a result, estimating the Q becomes trickier. We can
no longer maintain the mean of rewards we’ve seen. It’s possible to learn a Q model using
online linear regression: Q(s, a) = Q0(s, a) + ϕ(s, a)Tp [32].

Algorithms for CxMAB problems, like contextual UCB and Thompson Sampling (TS),
incorporate context into their learning process to more accurately estimate the value of
each arm and manage the exploration-exploitation trade-off. Some CxMAB variants also
consider objectives beyond reward maximization, such as minimizing regret or achieving
specific goals while respecting resource constraints or fairness [40]. Table 2 describes
some differences between A/B Testing, MAB and CxMAB.

Table 2. Differences Between A/B Testing, MAB, and CxMAB.

A/B Testing MAB CxMAB

Dynamic traffic allocation No Yes Yes

Traffic allocation based on feature vectors No No Yes

2.2 Federated Learning

Federated learning enables multiple agents to benefit from collaborative learning without
exposing themselves to privacy issues. Such a technique provides the user with benefits

15

from the learned experience of other users.

Federated Learning (FL) is generally a privacy-preserving technique that trains ML models
on devices such as mobile phones without transferring personal data to the cloud. It uses a
process in which model updates are shared instead of raw data, maintaining privacy and
utilizing the computational power of individual devices. A classic algorithm is FedAvg [41],
a fundamental algorithm aggregating local updates to improve a global model. QFedAvg
[42] and FedProx [43] are improvements of FedAvg.

FL covers many approaches and research directions. It is an algorithmic setting for
distributed machine learning and analytics without centralized data collection and with
default privacy. It has federated cross-device learning to train global models on the
decentralized data stored across different devices. It also contains local device learning
to train custom models for each user on their own devices. It incorporates federated
analytics to compute statistics from decentralized data and federated computation for
broad-spectrum operations on decentralized data [41].

It is a beneficial technology for personalizing models. Algorithms train a separate model
for each local data set. In FL, a whole network exists with nodes being local datasets,
each node having its own local feature matrix, label vector, and weight vector. These three
can be linked together, forming a network. For the scope of the thesis, we will simulate a
network on a single machine.

The main mathematical object is an undirected empirical graph with nodes indexed by
natural numbers. Nodes have symmetric (non-negatively) weighted relations. The weight
represents the strength of the coupling between nodes. For this to be useful, the edges
reflect the statistics of the data set, so it only makes sense to couple the training of two
personalized models if they are similar [44].

2.2.1 Privacy Protection

Privacy protection can be addressed through differential privacy, which adds noise to
data or gradients to obscure individual contributions and secure multi-party computation,
allowing collective model training without exposing personal data. These methods ensure
that sensitive information remains confidential while benefiting from aggregated insights
during model training [45, 46].

16

2.2.2 Data Poisoning

Data poisoning in FL involves malicious participants manipulating their local data or
model updates to degrade the global model performance [47]. Various strategies exist
for poisoning FL, including model update poisoning and targeted data manipulation [48].
Several defence mechanisms have been made to counter these threats, ranging from
anomaly detection in model updates to sophisticated schemes such as reputation-based
node evaluation and generative adversarial networks to detect poisoned data [49].

2.2.3 Federated Multi-Armed Bandits

Federated MAB (FMAB) systems are a fusion of FL and the MAB framework. This
combination allows for decentralized decision-making across multiple agents or nodes,
each able to learn and adapt based on their local data while contributing to a global model
or strategy. In an FMAB system, multiple agents (each with their local environment) pull
the arms of their local bandits and observe rewards. These agents then share their findings
in a privacy-preserving manner, typically through aggregated updates or a central server
coordinating the learning process. The central server updates the global model or strategy
based on the insights received from all agents and then distributes the updated model or
decision-making strategy back to the agents as seen in Figure 6 [50, 51].

Global Model
(Unknown)

Central Server

Bandit 1 Bandit 2

FL-algorithm
(server)

Arm K

Arm 2

Arm 1

Local model 1 Local model

Local model

FL-algorithm
(client)

Potential
communication

Figure 6. Generalized Federated Learning setup.

FMAB represents an advanced approach in machine learning, balancing the need for
personalized, efficient decision-making with privacy and scalability across distributed
environments. Table 3 shows a set of algorithms.

17

Table 3. Federated Multi-Armed Bandit learning algorithms

Algorithm Description Decision

FedUCB
[52]

Nodes train models on their local data, prioritizing
user privacy. Ensures privacy by incorporating dif-
ferential privacy techniques into how devices share
model updates with a central server.

Custom variant
implemented.

FedTS [53] Ideal for applications where privacy is crucial and
the environment may change over time.

TS will not be
considered in the
FL context

FedLinUCB
[50]

A linear contextual bandit algorithm for federated
learning environments, which incorporates the ben-
efits of UCB in linear settings with federated data

Custom model
building, will be
investigated in
future work.

Fed2-UCB
[54]

Gradually samples new clients while performing
arm sampling, and thus simultaneously explores
and balances both types of uncertainty.

Client sampling
in and out isn’t
suitable for this
setting.

GossipUCB
[55]

FNetwork of agents, where each agent can only
communicate with its neighbours. Agents make
decisions based on local data and share information
with their neighbours to achieve global understand-
ing and reduce overall regret in the system.

Considered, even-
tually disregarded
due to slow learn-
ing and conver-
gence.

Fed-PE
[56]

Federated Phase elimination is proposed to cope
with client heterogeneity without exchanging local
characteristic vectors or raw data. Fed-PE relies on
a novel multi-client G-optimal design and achieves
near-optimal regrets for disjoint and shared param-
eter cases with logarithmic communication costs.

Got implemented;
unfortunately,
performance
was poorer than
expected.

2.2.4 Horizontal Federated Learning

Horizontal FL, often referred to as sample-based federated learning, is a paradigm in which
multiple parties collaborate to train a shared machine-learning model without exchanging
their local data [57, 58]. Each participant has a data set with different samples with the

18

same feature space. The process of horizontal FL can be outlined as follows:

1. Data Distribution: Each participant has its own local data set. These datasets have
the same features but differ in the samples they contain;

2. Local Model Training: Clients independently train models on their local datasets.
This step ensures that raw data remains on the client side, preserving privacy;

3. Model Aggregation: After local training, clients send their model updates to a central
server. Actual data remains local;

4. Central Aggregation: The central server aggregates the updates to produce a new
global model;

5. Global Model Distribution: The updated global model is then distributed back to the
clients for further training or inference;

6. Iterative Process: The cycle of local training, model aggregation, and global model
distribution repeats until the global model achieves the desired performance.

Horizontal FL is particularly beneficial in scenarios where the same type of data is col-
lected across different entities or devices, such as healthcare, finance, or mobile device
applications [59].

2.2.5 Vertical Federated Learning

Vertical federated learning (VFL) is a paradigm in FL where entities collaborate to train a
model by contributing different features for the same set of samples. Unlike horizontal
FL, which integrates data between different entities based on the same characteristics but
different samples, VFL combines data vertically, which means that entities have other
attributes or features for the same data samples [58, 60].

The key characteristics of VFL:

■ Data Structure: Different entities have different feature sets for the same set of
samples. This scenario is common in banking, healthcare, and retail industries,
where various organizations collect different data types on the same individuals.

■ Privacy Preservation: VFL allows participating entities to collaboratively train a
model without sharing their raw data, thus preserving privacy and complying with
data protection regulations [61].

■ Model Training: In VFL, each participant trains a local model on their feature set and
exchanges intermediate computation results rather than raw data, using secure multi-
party computation (SMPC) or other privacy-preserving mechanisms to aggregate the

19

updates.

An example use case of VFL is in the financial sector, where banks and retail companies
can combine their customer data (financial history and purchasing behaviour, respectively)
to build more accurate credit scoring models without compromising customer privacy [60].

2.3 Prior Work and Literature Review

The problem in the Master’s thesis can be categorized as non-stationary stochastic con-
strained reinforcement learning, which is only concerned with the next decision and
balances between exploration and exploitation. To satisfy one of the research questions,
the qualities of making such a solution work in a distributed fashion are examined. The
field of FL is included in the literature review, which looks at distributed variants of
exploration-exploitation. Although FL is a new field, research incorporating MABs with
FL exists.

2.3.1 Multi-Armed Bandits with Cost Subsidy

The paper by Sinha et al. [62] explores a variant of the MAB problem where an agent incurs
costs to play an arm and aims to optimize rewards and costs. The authors demonstrate that
traditional MAB algorithms like UCB and TS do not adapt well to this problem due to their
dual-objective nature, leading to suboptimal cost and reward outcomes. They establish
a fundamental lower bound for online learning algorithms in this context, highlighting
the problem’s complexity compared to classical MAB scenarios. The paper introduces
a novel Explore-Then-Commit (ETC) algorithm, which achieves near-optimal regret
bounds and confirms its effectiveness through numerical simulations. This work broadens
the understanding of MAB problems by incorporating cost considerations, offering new
insights for applications where the balance of cost and reward is important.

2.3.2 Collaborative Multi-Agent Heterogeneous Multi-Armed Bandits

The paper by Chawla et al. [63] investigates a setting where multiple agents collaboratively
learn from different stochastic MABs to minimize group regret. It presents decentralized
algorithms for two scenarios: context-unaware, where agents share information randomly,
and partially context-aware, where each agent knows some peers learning the same bandit.
The study provides theoretical regret bounds, demonstrating the near-optimality of the
algorithms, and validates their performance through simulations. This research contributes
to understanding how agents in varying contexts can improve decision-making through

20

collaboration.

2.3.3 Multi-Armed Bandit with Budget Constraint and Variable Costs

The paper by Ding et al. [64] extends the classical MAB framework, incorporating variable
costs and a budget constraint. In MAB with Budget Constraints and Variable Costs (MAB-
BV), each arm pull yields a random reward and incurs a random cost to maximize the
expected reward within the budget limit. This model is particularly relevant for internet
applications like online advertising and cloud computing, where actions have variable costs
and are budget-constrained. Research in MAB-BV has led to the development of UCB
variants that adapt to these variable costs, optimizing the cost-reward ratio within the given
budget.

2.3.4 Multi-objective Contextual Multi-Armed Bandit With a Domi-
nant Objective

The paper by Tekin and Turgay [40] introduces a novel approach to the MABs by focusing
on scenarios with multiple objectives where one objective is dominant. This approach,
known as the Multi-objective CxMAB With a Dominant Objective (CMAB-DO), aims to
optimize the dominant objective while considering a secondary one. The study proposes
an algorithm and introduces two new performance metrics: 2D regret and Pareto regret,
both showing sublinear growth, which indicates the algorithm’s effectiveness in long-term
learning. The research is pertinent to fields like wireless communication, medical diagnosis,
and recommender systems, where decision-making involves balancing multiple objectives.

2.3.5 Federated Multi-Armed Bandits

Federated Multi-Armed Bandits (FMAB), introduced in a paper by Chengshuai Shi and
Cong Shen [54], adapts the MAB framework to an FL context. This approach incorporates
collaborative learning of a global bandit model among decentralized clients, each with
its bandit problem, without direct data sharing. The study delineates two specific models
within the FMAB framework: the approximate model, dealing with client sampling
uncertainty, and the exact model, which posits the global model as the precise average of
local models. The research proposes the Federated Double UCB (Fed2-UCB) algorithm
to handle uncertainties from both arm and client sampling, advocating a phased client
inclusion strategy to optimize communication costs and achieve an O(log T) regret.

21

2.3.6 Federated Linear Contextual Bandits

The paper by Huang et al. [56] presents a novel approach to addressing the challenges in
FL through the MAB framework. The proposed model allows individual clients to learn
collaboratively without sharing raw data, maintaining privacy and reducing communication
costs. The authors introduce the Federated Phased Elimination (Fed-PE) algorithm, which
achieves near-optimal regret for both disjoint and shared parameter cases, underpinned by
a novel multi-client G-optimal design. Theoretical analysis and experiments validate the
effectiveness of Fed-PE, demonstrating its optimal performance on synthetic and real-world
datasets compared to existing methods. The study also introduces collinearly-dependent
policies, providing a tight minimax regret lower bound for the disjoint parameter case.

2.3.7 Harnessing the Power of Federated Learning in Federated Con-
textual Bandits

The paper by Shi et al. [50] presents Federated Inverse Gap Weighing (FedIGW), a
novel approach for Federated Contextual Bandits (FCB) that integrates FL protocols to
enhance decision-making. Using inverse gap weighting (IGW) for contextual bandit tasks,
FedIGW updates reward function estimates through FL, improving learning efficiency
and adaptability. Theoretical and empirical analyses demonstrate its effectiveness, with
the potential for incorporating advanced FL features like personalization and privacy.
This work advances FCB research, offering a flexible and robust framework for future
developments in FL systems.

2.4 Considered Alternative Approaches

Supervised learning (SL) was considered a viable option to solve the stated problems. Its
goal is to learn a mapping from inputs to outputs based on labelled training data. SL aims
to make accurate predictions based on historical data. Learning occurs primarily in the
training phase. The thesis problem deals with historical data to the extent of maintaining a
trail of historical reward-decision mappings while continuously updating the model with
new decisions and training the model continuously on live data. It does not base the entire
model on historical data to fit a curve. As a metaphor, the curve constantly changes, and the
models must readjust to it as near to real-time as possible. This would make maintaining a
near-real-time SL model computationally much more costly than the MAB approach [65].

Genetic algorithms are good at exploring a vast search space and finding near-optimal
solutions over generations but can be computationally intensive and slow, especially in

22

real-time scenarios [66].

Game theory and Multi-Agent systems can handle competitive and cooperative interactions
systematically but often require comprehensive modelling of other agents, which can be
complex and data-intensive. Such systems may not adapt quickly to real-time changes
without continuous learning mechanisms [67].

Swarm Intelligence is robust and flexible in dynamic and uncertain environments, but
individual agent behaviours can be simple, potentially limiting complex problem-solving
capabilities. Global behaviour can be unpredictable and difficult to control precisely [68].

Bayesian Inference requires careful selection of prior distributions, which can influence
outcomes significantly [69].

Decision Trees and Random Forests are prone to overfitting in complex environments with
noisy data. The lack of continuous learning makes this approach unviable since it is not
inherently designed for real-time updates or exploration [70].

Large Language Models (LLMs) are trained using SL on a large corpus of text data and
are designed to understand, generate, and manipulate human language. They predict the
next word in a sequence, enabling them to create coherent and contextually relevant text
based on the input they receive. The SL-based training invalidates this approach based on
the prior SL analysis [71].

Control theory (CT) was considered as a viable option but is not well suited for dynamic
and non-stationary environments. Since the action space can be regarded as finite, other
approaches, such as MAB, offer a more natural decision-making framework. Furthermore,
alternatives excel in the exploration-exploitation space and are intuitively more straightfor-
ward. In advanced applications, elements of control theory can be integrated. For example,
an algorithm can be used for learning and exploration within a control system designed
using the principles of control theory. This hybrid approach can take advantage of the
strengths of both methodologies to address complex decision-making problems, especially
in adaptive and learning-based control systems [72].

23

3 Operations

This is covered alongside the algorithms to better understand how the methods could be
applied in systems and how they are composed to make real-time decisions based on the
data and requests flowing in.

3.1 Infrastructure

Figure 7 gives a theoretical high-level example of a system where the RL agents can be
placed. Constructing the theoretical architecture falls out of the thesis scope. Notably, the
proposed system is similar to recommendation system architectures. Before designing an
architecture with similar RL agents, it’s necessary to establish how the algorithms operate,
what data is needed, and what the data volume is.

1. Incoming
requests 2. Decisions 3 . Request handled

4. Consume and
aggregate feedback

5. Adds feedback

7. Decision propagation

6. Observes feedback

Decision
f leet

Data store

Sanitization
Feedback
stream

Routing
f leet

Peripheral systems
act based on decision

Figure 7. Theoretical system architecture example of a message route recommender.

The researchable algorithms would be placed within the decision fleet. The decision and
routing fleets could be merged depending on system requirements.

Production-grade Multi-Armed Bandit (MAB) models are run in Docker [73] and deployed
to Amazon Web Services (AWS) Elastic Compute Cloud (EC2) instances. The build
system that packages the models is BuildKite [74].

An alternative serverless variant for running the models is described in Appendix 8.
Amazon SageMaker Pipelines is an AWS service that creates, automates, and manages
end-to-end ML workflows. It covers the entire ML lifecycle, from data preparation and
feature engineering to model training, evaluation, and deployment. SageMaker creates a
directed acyclic graph that customers can visualize in Amazon SageMaker Studio.

24

3.2 Cold Start and Data Limitations

The challenge of making optimal decisions is when there is little or no historical data for
the arms. This situation is prevalent in newly deployed instances where the lack of data
makes estimating the success rates of different actions less accurate. This increases the
odds of making suboptimal decisions for a brief period after a deployment, requiring once
again the exploration phase. At the same time, the previous model already had information
about decision success rates.

This data limitation can also occur when an agent runs into situations where the agent
clears its memory per arm or for all arms. This could happen when the reward distribution
has changed, and the model has difficulty adjusting. One option to address this could
be transferring the instance memory between deployments, as the instance could request
historic batches from a data catalogue [75]. Addressing the cold start problem isn’t the
focus of the thesis.

Data limitations can also arise when the models apply data degradation techniques to
the decision-making process. Doing so will devalue past results, effectively reducing the
number of messages sent through each path as time passes. This technique addresses the
environment’s non-stationarity and should be carefully calibrated if applied.

3.3 Data Drift

Data drift in MAB refers to the phenomenon where the probability distributions of the
rewards change over time. Restless bandits are relevant for adapting to non-stationary or
changing environments. Techniques such as weighted least squares can be employed to
adapt to these changes [76]. Time-varying contextual bandit problem, where the reward
function evolves, requires dynamic models that can track and adapt to these changes [77].

Data drift in the work setting indicates that an arm has variance in the mean reward
distributions per client. In such a case, the relevant MAB agent would ideally identify the
drift and adjust its behaviour depending on the volume each arm gets and the severity of
the variance.

3.4 Monitoring

As the models run, it’s essential to ensure the agents work correctly. The following metrics
can be helpful in addition to A/B test metrics:

25

■ Time to compute the decisions is seconds: measures whether the service compu-
tational speed is fast enough to calculate the decisions for the next iteration. This
would ideally be upper bounded to some threshold, which is not crossed;

■ Success rates per destination: measures how well certain regions perform. Ideally,
this should be partitioned by destination networks and the vendor delivering messages
to that destination;

■ Variance in decision making: in order to track algorithm and environment stability;

In addition to the monitoring solutions, the instances themselves should log down relevant
events to some log store, which can be looked at afterwards for analysis. If the system
starts to perform poorly, it can also be detected through peripheral systems and analytics
down the line, in addition to direct monitoring. That knowledge would arrive with latency,
making reliance on that variant suboptimal for system health.

3.4.1 Distribution of Arm Pulls

It’s beneficial to maintain an overview of agent decision-making within a period. One way
to do this is to examine the difference between exploratory and exploitative metrics. For
instance, if uniform exploration is done, each option should be pulled with equal frequency.
An example of an agent pulling arms over a period is displayed in Figure 8.

3.4.2 Take Rate

The take rate describes the proportion of times an arm is selected by the algorithm in
relation to the total number of trials conducted. This metric determines the frequency with
which an arm is chosen and can indicate the algorithm’s confidence in that arm’s potential
to provide the highest possible reward. Suppose an arm has a higher take rate. In that case,
the bandit algorithm considers it more likely to be optimal based on its past performance
and the exploration-exploitation balance strategy employed.

26

4 Methodology

Methodologies are systems of practices, techniques, procedures, and rules used by those
who work in a discipline. This chapter covers the methods, describing how and with what
the work was done.

4.1 Technology

Python was the main programming language used to implement the different algorithms
during the thesis development. The primary libraries used in the project are the following:

■ Numpy [78]: for scientific computing, especially beneficial when working with
matrices, better performance than Python arrays;

■ Pandas [79]: for high-performance data structures and tools for data analysis, mainly
used for displaying data frames;

■ Matplotlib [80]: for creating static, animated, and interactive visualizations. Used
for plotting algorithm performances in a time series;

■ Streamlit [81]: for building interactive and deployable data applications. Useful for
building an interactive overview dashboard;

4.2 Simulation Framework

The simulator’s User Interface (UI) is built using Streamlit, which was chosen since it
enables fast prototyping and has good developer experience. The webpage is illustrated in
Appendix 9.

Streamlit is an open-source app framework designed for data scientists and engineers to
create interactive, web-based data applications. It allows users to turn data into shareable
web apps using Python scripts [81].

The UI proved useful primarily for debugging algorithms and quickly comparing different
algorithms against each other and with various data. The success rate graphs and algorithm
decisions were displayed since the work can simulate different success rates per provider
per client. The reward and regret graphs with the final results were also shown.

Streamlit runs on a single thread, so eventually, it became slow, running all the algorithms

27

for the entire simulation length. To maintain development speed, a configuration-based
simulator interface was created using Python. Although not as convenient as Streamlit, it
was faster in the end. The next iteration of the UI is considered to be written using Taipy
[82], which claims to be more performant and feature-complete.

4.3 Federated Learning

Table 4 shows common libraries for handling Federated Learning in Python. Although
these libraries offer helpful utility, the simulation problem space doesn’t necessarily
require including a standalone library for FL in the simulator. The libraries will be used as
inspiration to integrate FL functionalities into the currently built simulation system. This
will provide more flexibility in adjusting the functionality as requirements change.

Table 4. Pros and Cons of Federated Learning Libraries.

Library Pros Cons

TensorFlow Fed-
erated (TFF) [83]

Integrates with TensorFlow,
robust and well-supported

It can be complex, steep learn-
ing curve

PySyft [84]
Enhances privacy, supports
PyTorch and TensorFlow

Less mature, can be challeng-
ing to deploy

FATE [85]
Designed for industrial use,
supports secure computing

Primarily used in the financial
sector, less documentation is
available

Flower [86] Framework agnostic, flexible
Still evolving, less established
community

4.4 Generating Data Sets

To successfully run experiment simulations, the agents making decisions need to be put in
a seemingly continuous environment, as in real life. The model decision results are given
as feedback to the model at the end of each timestep so it can readjust for the next step, if
necessary.

The mean success rate µ and cost of sending the messages per timestep are pre-determined
for every option before the simulation run alongside the simulation length. The mean
success rate value is bounded as 0 ≤ µ ≤ 1 and represents the percentage of messages
that successfully terminate. Although cost isn’t discussed further in this section, and the
algorithms do not consider it within the scope of the thesis, it exemplifies an additional
dimension to consider when constructing algorithms.

28

The models are run through many simulations with varying data sets. Each client will have
its probability distribution when pulling from any given arm. This means that multiple
clients sampling the same arm could have varying results. Each client sends a predefined
number of messages in a timestep, which varies.

The work makes a distinction between synthetic and real-world data. Real-world data is
observed and monitored in real-running production systems. Synthetic data is artificially
generated in the simulator based on template cases for every simulation run to test one
or many experiment scenarios that have occurred in reality. All graphs associated with
simulations use synthetic data.

At the time of writing, executing experiment simulations on past real-life data is impossible,
and the only way to truly test on real data is to run the new model live on production traffic.
The live system can only trigger one message-sending path at a time without automated
systems, and the data for all possible paths in that time step is never learned. Learning
based on past real-life data would require constructing a system where the results of all the
possibilities are known, and as such, every option is tried for a single message request.

Running such a system for an extended period is not feasible due to significant cost
increases. In SMS routing, it is also not conceivable that the receiving device receives the
same message 0− n times if sent through n providers when constructing a test data set for
simulations.

The construction of such a data-gathering system is out of the thesis scope, although as a
theoretical proposal, it can be built separate from the main decision flow. Such a system
could be used to construct real-life data sets for simulations and test specific providers
before including them in the decision pool for a destination network. Testing providers
with a standalone system is not discussed further.

Most general-purpose simulations in this thesis use seasonal traffic patterns to more
accurately reflect real-life scenarios. The seasonality looks like a sine function ranging
from 50 to 200, as seen in Figure 8. The figure additionally displays the algorithm’s routing
decisions throughout the simulation and showcases how the best arm decision can change.

In addition, the algorithms were run through, with the volumes kept steady throughout the
simulation episode at around 100 requests per timestep per client. Simulating with steady
volumes is not strictly necessary since the general-purpose data sets provide sufficient
information for the evaluations. Doing so allowed for a more accurate understanding of
algorithm characteristics, such as timesteps needed to converge to an optimal arm at the

29

start or form an outage. The graphs displaying simulation results are still rendered using
seasonal traffic volumes, as seen in Figure 8.

0 250 500 750 1000 1250 1500 1750 2000
Timestep (t)

0

25

50

75

100

125

150

175

200

D
ec

is
io

ns

MemorySharingUcb1
Provider1
Provider2
Provider3
Provider4
Provider5

Figure 8. Seasonal data volume with custom algorithm decisions.

Every client has the same predefined set of selectable arms as providers. The arms will
remain the same within a simulation episode, but the mean reward in a time step µt can
vary between clients. For example, the same arm for client 1, µa1

t,c1 = 0.8 can be degraded
for client 2, µa1

t,c2 = 0.15. The reasons for this can be manifold. The provider might not
just handle a certain region well, a cell tower might be broken, or the client is sending
bad-quality traffic (e.g., numbers are not in use) that doesn’t terminate.

The generatable set for the provider consists of two vectors of length T . One represents the
true mean reward µ of a provider at time steps up to T , and the other depicts the cost of
using the provider at time steps up to T . The resulting values resemble the ones in Table 5,
assuming a reward mean of 0.84 and a mean cost of 0.11.

Table 5. Data represented from the simulated provider perspective.

Step 0 1 2 3 4 5 . . . T

Mean success rate µ 0.87 0.89 0.83 0.81 0.88 0.82 . . . 0.84

Mean cost 0.11 0.11 0.11 0.11 0.11 0.11 . . . 0.11

Figure 9 shows five providers who can be selected to deliver the message. Their mean
success rates are relatively similar, but one performs better than the rest. At one of the
timesteps, the best provider’s mean success rate drops significantly. This is called a
provider outage, which can typically last from a few minutes to multiple hours.

30

Numerous reasons could have caused the outage. It is even possible that the given platform
sends so many messages to the provider that the provider gets congested and stops receiving
traffic altogether after some time. Provider overflow detection is not within the thesis
scope, and it would be challenging to implement reliably since other entities use the same
providers.

0 250 500 750 1000 1250 1500 1750 2000
Timestep (t)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Su
cc

es
s r

at
e

(
)

Provider success rates

P1
P2
P3
P4
P5

Figure 9. Best provider experiencing an outage.

31

5 Experiments

The ML models and parameter configurations are compared and evaluated empirically
through experiments. The process involves training multiple models on datasets and
measuring their performance based on reward and regret.

The reward is a direct measure of algorithm performance, representing the immediate
benefit of selecting an arm [13]. In the thesis, the reward is measured as the number of
successfully delivered messages out of the total volume sent µm

c =
∑T

t=0
successc,t
totalc,t

. The
experiment results are graphed using cumulative reward.

Regret is a measure of performance loss due to suboptimal action selections. It’s defined
as the difference between the expected rewards of pulling the best arm and pulling the
arm decided by the algorithm. µ∗ represents the mean reward of the best arm and µt(at)

is the mean reward of the arm chosen at time t, the regret after T steps is given by
ρ = Tµ∗−

∑T
t=0 µt(at). Minimizing regret is the primary objective in the design of bandit

algorithms, as it quantifies the efficiency and effectiveness of the decision-making process
[87].

The thesis defines regret as the number of undelivered messages due to suboptimal routing
decisions to providers. It is the only regret property applied. It’d be possible to penalise
algorithms further for not making the best decision. In practice, the global best decision
isn’t known, cannot be easily determined and wouldn’t add significant value since it doesn’t
impact algorithm behaviour. Instead, it is an indirect measure reflecting how much worse
an algorithm performs than an optimal strategy that always selects the best arm.

Regret is calculated by comparing the running algorithm results against the results of the
theoretical best algorithm as ρc =

∑T
t=0 π

∗
t,c − πm

t,c. Regret cannot be measured only from
the running algorithm itself ρc =

∑T
t=0 πt,c,total−πt,c,success as it would be its own baseline

and in the analysis, the algorithm would appear to have no regret which would only be
valid if the model is the theoretical best decider.

The aim is to identify models with the highest overall reward across the test cases. This
will give higher confidence that the models perform as desired on real traffic. Experiments
with the same setup are run n times. The cumulative reward and regret are averaged across
simulation episodes to correct for the noise and to have higher confidence in the result.

32

The simulation procedure is the following for all time steps t ∈ T ⊆ Z and T ̸= ∅:

1. An algorithm selects a provider to send messages to for the given step t;
2. The reward is sampled from the provider’s reward distribution by the simulation

framework and revealed to the algorithm at the end of step t.
(a) The success rate of the selected provider p at time t is determined by its mean

µp
t ;

(b) This outcome is revealed after all messages are sent at time t by all clients;
(c) The algorithm uses the feedback to estimate and recalculate the best provider

for the next timestep t+ 1.

During a simulation run, the agent’s timesteps are bounded to T steps
∑T

t=0. In real-life
settings, they are expected to run for as long as a new version is deployed or the process
is shut down. This makes the total number of timesteps T unbounded, and it can be
considered an indefinite process

∑∞
t=0.

Table 6 exemplifies a simplified overview of what information an algorithm operates with
when starting to evaluate timestep 5. The data is represented as a multidimensional matrix.
Row1 shows the decision made on that timestep. Row4 shows the success rate of routing
to that provider Row4 =

Row2

Row3
. Since the algorithms do batch inference, the data amounts

are stored to determine how much data every timestep has. Batch inferencing means that
multiple uniform decisions will be made at every timestep. Row5 displays cost, which is
ignored since the work focuses primarily on quality optimizations. It becomes relevant
when the algorithm’s objective is to optimize cost.

Table 6. Algorithm decisions on step 5 for client c on time steps T .

0 Timestep 0 1 2 3 4 5
∑T−1

t=6 πt,c T

1 Arm pulled 1 2 3 1 2 0 ... 0

2 Total successful 219 233 242 221 320 0 ... 0

3 Total sent 270 274 278 280 400 0 ... 0

4 Mean success rate 0.81 0.85 0.87 0.79 0.8 0 ... 0

5 Mean cost per message 0.11 0.09 0.11 0.11 0.09 0 ... 0

Around 800 - 2000 timesteps are executed per simulation, depending on how many cases
a simulation is testing. This proved to be the optimal horizon to observe algorithm
convergence with sufficient certainty and is relatively quick, assuming a single timestep
lasts a few minutes. The entire 2000 timestep experiment simulates roughly 1.3 − 2.7

days. The MAB simulations do not require vast amounts of data since they have a simpler

33

problem structure than full RL, a more direct feedback loop, and no dependency on future
states compared to the others.

RL models are generally less data efficient. For example, training AlphaGo and AlphaZero
systems to achieve superhuman performance required playing millions of games against
themselves, generating vast amounts of data to learn from. For instance, AlphaGo Zero
required around 4.9 million games over 40 days, while AlphaZero needed about 21 days
of self-play to reach top performance in chess, shogi, and Go [88, 89].

In real cases, these models run for an indeterminate amount of time in a non-stationary
environment. Algorithms must maintain flexibility in decision-making when experiencing
abrupt changes to the mean reward across the model’s life span. Some algorithms, like
UCB, have trouble adjusting to changes down the line as more decisions are made and
samples are gathered. To adapt to this, a set of models is tried with decaying rates.

Decay rates are applicable for balancing exploration and exploitation, adjusting the learning
rate, and implementing temporal discounting. rt is the reward received at time t, and γ is
the discount factor, where 0 ≤ γ ≤ 1, the decay rate γ indicates how quickly the value of
rewards diminishes over time [90].

Contrary to decaying expected future rewards like in temporal difference (TD) [13],
historical data observed by the model can be decayed using an exponential moving average.
This method applies a decay factor γt, where γ is the discount factor and t is the time step.
The decay rate γ ensures that recent data points are weighted more heavily while older
data points are gradually discounted. This helps models adapt to new information while
still learning from past experiences.

In graphs which display simulation results (for example, Figure 13) t0 indicates the time
step in which the figure shows the simulation. This is to narrow down the y-axis values for
a better overview since the y-value can start much lower than the eventual optimal. T is
the total timesteps. c is the client. n amount of executions for each algorithm. For each
execution, the dataset generates new noise, which adds to the variance in the result. The
noise is upper-bounded at 2%. n is upper-bounded at 50 since higher values started to
degrade the document viewing experience.

There is one thick line per algorithm, which is the calculated mean of the execution. Since
the iterations are non-skewed and have equal weight on the average, the mean is also the
mode and the median. The algorithm has a confidence interval around which is bounded
by the min and max results of the total simulation set.

34

Hyperparameter tuning optimizes ML models. With MAB, the tuning affects the
exploration-exploitation balance and, as a result, the algorithm’s overall performance. The
following are examples of tunable parameters:

1. Exploration-Exploitation Trade-off Parameters – ϵ;
2. Learning rate – α and δ;
3. Decay rates – γ.

Examples of some tuning results can be seen in Appendix 10.

5.1 Test Cases

Test cases are built so that experiments can be run based on them. The settings mimic real-
life edge cases or everyday scenarios. The data sets are two-dimensional and hierarchical.
There is a general configuration for the provider and configurations for every client. If the
client configuration is missing, then the simulation sampling defaults to what is configured
on the provider level.

The start of a test case can be imagined as the start of a new model’s successful deployment.
The models do not have prior knowledge at the start of each test case. Theoretically,
transferring history between deployments is possible, but that isn’t discussed in the thesis.
The prior state space is too large for it to be included, and adding this info would disrupt
algorithm performance and analysis.

Five main cases test different scenarios. These will be referred to in the future sections by
their index.

1. Figure 10 displays the normal behaviour of 5 providers. The successful delivery rate
is stable, with minimal noise and no outages during the test case period. This tests
how much exploration the algorithms tend to do when the reward distributions do
not change. There are 2 pairs of providers having similar success rates on different
performance levels. In this case, 2 providers deliver with a success rate of 0.82, and
the other pair with 0.63. Noting this, the test case also tests how the algorithms
choose the best option when there are 2 closely equal decisions, with the best one
changing due to added noise.

35

0 250 500 750 1000 1250 1500 1750 2000
Timestep (t)

0.50

0.55

0.60

0.65

0.70

0.75

0.80
Su

cc
es

s r
at

e
(

)
Provider success rates

HighCostHighQuality
LowCostHighQuality
HighCostLowQuality
LowCostLowQuality
LowQuality

Figure 10. Providers behaving in a normal manner.

2. Figure 9 initially displays the stable behaviour of 5 providers. There are no outages
and the suboptimal provider delivery rates drift in time. At a point, the best provider
has an outage and after recovering is no longer the best.

3. This is similar to test case 1 as success rates are stable throughout the simulation,
and no outages occur. However, there are 3 providers with delivery rates being client
dependent, and provider success rates are not close to each other. This case validates
whether the contextual algorithms consider the context.

4. This case combines all cases as seen in Figure 11 besides the contextuality test case
3. Everything is stable initially, making the comparison of algorithm convergence
more accurate. Then, there is an outage for all options, after which the providers
recover one after another. The recovery is a bit different per client, and one of the
clients will have another outage afterwards on the best arm.

0 250 500 750 1000 1250 1500 1750 2000
Timestep (t)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Su
cc

es
s r

at
e

(
)

Provider success rates

P1
P2
P3
P4
P5

Figure 11. Total provider outage with incremental recovery.

36

5. The start has stable success rates and no outages or data drift. Then, all providers
uniformly have an outage for a short period. There are 3 outage durations tested.
Figure 12 shows the smallest outage window. This tests how much a small outage
disrupts the algorithms’ behaviour.

0 250 500 750 1000 1250 1500 1750 2000
Timestep (t)

0.3

0.4

0.5

0.6

0.7

0.8

Su
cc

es
s r

at
e

(
)

Provider success rates

HighCostHighQuality
LowCostHighQuality
HighCostLowQuality
LowCostLowQuality
LowQuality

Figure 12. All providers have a small outage.

37

6 Results

This chapter presents the results of the experiments with various algorithms. Every graph
has an accompanying table that provides details about the given simulation.

6.1 Baseline

A baseline refers to a benchmark strategy or algorithm against which the performance of
other algorithms gets compared. Baselines are simpler methods that help validate that the
proposed approach is better than something naive or simpler in the given environment. The
following are common baselines:

■ Uniform Sampling: Selects each arm with equal probability, regardless of past
outcomes. It provides a way to measure the performance of algorithms against an
uninformed strategy.

■ ϵ-Greedy Algorithm: Selects the best-known arm with probability 1−ϵ and a random
arm with probability ϵ. Introduces some exploration while still exploiting.

■ Upper Confidence Bound: Samples arms based on the mean reward and the estimates’
variance favouring arms with higher uncertainty to ensure enough exploration.

■ Thompson Sampling: Maintains a probability distribution over the potential reward
of each arm and samples from these distributions to decide which arm to pull.

All of the above algorithms have been implemented. The goal is to demonstrate that new
algorithms perform better than these baselines regarding cumulative reward and regret.
The chosen baseline is UCB with α = 2.

From the base algorithms, it’s best suited for the environment. Other baselines are also
tried for every experiment, but they aren’t rendered in graphs if their performance isn’t
highlightable.

The α parameter was determined empirically via hyperparameter tuning, and the value
is supported by the literature [91] under certain environment assumptions where it gives
theoretical guarantees for the regret bound. However, the paper doesn’t claim to achieve
the best possible regret bound or that α = 2 is optimal for all scenarios. More optimal
variants could be found for large time horizons and non-stationary settings. Given the non-
stationarity to the thesis environment, the alpha parameter could be dynamically adjusted

38

throughout time. This would introduce another dimension that needs to be monitored if
placed to make real decisions.

Figure 13 is run on test case 5, and simulation results are in Table 7. Uniform random is
not added to the graph to give a better view of closely performing algorithms. Executed
algorithms behave similarly. The main observational point here is to determine which
algorithm recovers the quickest. The TS algorithm outperforms UCB by an insignificant
margin, having regret ρ differences under 100, which is a minimal difference in the thesis
context.

Table 7. Baseline algorithms with test case 5 details.

Method Mean % Max % Min % Delivery volume (k)

TS 80.08 80.17 79.99 400.3/500

UCB1 80.03 80.11 79.86 400.3/500

ϵ-greedy 78.62 78.90 78.51 394.5/500

Uniform random 66.57 66.73 66.41 333.5/500

250 500 750 1000 1250 1500 1750 2000
Timestep (t)

0.72

0.74

0.76

0.78

0.80

0.82

0.84

Su
cc

es
s r

at
e

Success rates [n = 50, t0 = 10, T = 2000, msgs = 500k]
Theoretical Best: = 0.807, = 96.3k
TS: = 0.801, = 99.7k
UCB1: = 0.800, = 99.7k
-greedy: = 0.787, = 106.5k

Figure 13. Baseline algorithms with test case 5.

Figure 14 is run on test case 2, and simulation results are in Table 8. The best provider has
an outage. This determines how well the algorithms readjust themselves to the new best
option. UCB1 outperforms others.

39

Table 8. Baseline algorithms with test case 2 details.

Method Mean % Max % Min % Delivery volume (k)

UCB1 84.77 84.93 84.56 424.5/500

TS 83.70 84.68 81.42 423.2/500

ϵ-greedy 83.18 83.59 82.65 417.8/500

250 500 750 1000 1250 1500 1750 2000
Timestep (t)

0.80

0.82

0.84

0.86

0.88

0.90

Su
cc

es
s r

at
e

Success rates [n = 50, t0 = 10, T = 2000, msgs = 500k]

Theoretical Best: = 0.868, = 66.3k
UCB1: = 0.848, = 75.6k
TS: = 0.840, = 79.6k
-greedy: = 0.832, = 82.9k

Figure 14. Baseline algorithms with test case 2.

6.2 Algorithms Considered

The MAB setting has a wide variety of algorithms. This section examines some algorithms,
determines whether to include them in the simulations and gives reasons for the inclusion
or exclusion.

6.2.1 Explore then Commit

Although Explore then Commit (ETC) is a classic category, it will be excluded from further
experiments and will not be investigated very profoundly in the thesis. This is because the
algorithm’s base case halts exploration after the algorithm converges on a single arm. It
would be suboptimal in the non-stationary environment’s indefinite setting since it is not
adaptable to changes in provider success rates down the line. The simulation is run with
test case 2 and seen in Figure 15. Experiment details are in Table 9.

40

Table 9. ETC simulation metrics compared to UCB1 details.

Method Mean % Max % Min % Delivered volume (k)

UCB1 84.72 84.90 84.44 424.6/500

ETC 82.19 82.63 82.09 411/500

250 500 750 1000 1250 1500 1750 2000
Timestep (t)

0.80

0.82

0.84

0.86

0.88

Su
cc

es
s r

at
e

(
)

Success rates [n = 50, t0 = 25, T = 2000, msgs = 500k]
 UCB1: =2.0; ETC: exploration rounds=280

UCB1: = 0.847, = 76.4k
ETC: = 0.823, = 89.0k

Figure 15. ETC simulation with test case 2.

This is a part of the algorithm design and does not mean the algorithm is terrible. Even
in this setting, if ETC were orchestrated carefully, with a change detection system that
re-triggers the exploration phase, it could provide more optimal results. As a standalone
algorithm, it doesn’t suit the environment.

6.2.2 Thompson Sampling

Regarding computational efficiency, while TS’s directed exploration can sometimes lead
to faster convergence in stationary environments, it doesn’t necessarily translate to better
performance in non-stationary settings. Figure 16 and Table 10 show that UCB1 outper-
forms TS in cases where provider success rates change. UCB1’s adaptability is preferred
over TS’s potential conversion speed advantage for the specified environment.

TS may converge faster in stationary environments due to directed exploration based on
posterior probabilities. It can be less adaptable to non-stationary environments, where
reward distributions change, as seen in Figure 16. This can lead to suboptimal performance
when provider success rates fluctuate.

41

UCB was chosen over TS for this thesis primarily due to its better adaptability in non-
stationary environments, ability to recover from provider outages, strong theoretical guar-
antees, and simplicity for real-world implementation. While TS has potential advantages
in stationary settings, UCB’s strengths align more closely with the dynamics and practical
requirements of the SMS routing problem.

Table 10. TS simulation metrics compared to UCB1 details.

Method Mean % Max % Min % Delivered volume (k)

UCB1 84.88 85.06 84.71 424.4/500

TS 82.42 84.88 81.94 412.1/500

250 500 750 1000 1250 1500 1750 2000
Timestep (t)

0.80

0.82

0.84

0.86

0.88

Su
cc

es
s r

at
e

(
)

Success rates [n = 50, t0 = 25, T = 2000, msgs = 500k]
 UCB1: =2.0

UCB1: = 0.849, = 75.6k
TS: = 0.837, = 87.9k

Figure 16. TS simulation on test case 2.

Despite the omission, TS proved to have fast convergence towards the correct arm, which
could prove useful in some settings.

6.2.3 Softmax

Although the Softmax algorithm in Equation 6.1 [92]

π(a) =
e

Q(a)
τ∑

b e
Q(b)
τ

(6.1)

can exhibit fast convergence in stationary environments, its performance is less robust
when arm rewards are closely clustered and in non-stationary settings with changing
provider success rates. This is due to its reliance on accumulated rewards and a tendency to

42

over-explore already favoured arms. These limitations, observed in theoretical analysis and
supported by existing literature [13, 93], show Softmax’s shortcomings in the SMS routing
environment, where adaptability to change is needed. This method was only looked at
theoretically, and no simulations were conducted.

6.3 Upper Confidence Bound Tuned

The tuned UCB algorithm [94] is an enhanced version of the classic UCB1 algorithm. It
adjusts the confidence bounds based on the average reward and the variability of each arm,
potentially leading to more efficient learning and decision-making.

The main drawback of the standard UCB1 approach is that the UCB1 estimate is derived to
be distribution-independent. In our setting, the rewards are from the Bernoulli distribution.
Therefore, adopting UCB for a Bernoulli setting can improve confidence and minimize
regret.

UCB-Tuned is an approach that considers the estimated variance of rewards and is tuned
for Bernoulli MAB problems. UCB-Tuned has been shown to outperform UCB1, but there
is no formal proof of having a smaller regret than UCB [95]. Figure 17 runs the algorithm
with the test case 2 in Figure 9.

Table 11. Tuned Upper Confidence Bound details.

Method Mean % Max % Min % Delivery volume (k)

UCB Monitored 86.36 86.51 86.27 432.3/500

UCB1 84.73 85.01 84.59 424.9/500

250 500 750 1000 1250 1500 1750 2000
Timestep (t)

0.84

0.85

0.86

0.87

0.88

0.89

0.90

Su
cc

es
s r

at
e

(
)

Success rates [n = 50, t0 = 35, T = 2000, msgs = 500k]
 UCB1: =2.0; UCB Monitored: =2.0, ws = 50000

Theoretical Best: = 0.868, = 66.2k
UCB Monitored: = 0.864, = 68.2k
UCB1: = 0.848, = 76.3k

Figure 17. Tuned Upper Confidence Bound.

43

Adding to UCB tuned, we get a custom algorithm termed "UCB Monitored". The simplified
form of this approach is seen in Algorithm 1. It combines multiple methods to improve
change detection and handle outages.

Multiple sliding windows were added to monitor the message request flow. Sliding
windows offer an overview of the determined time window data. This allows to add custom
handling depending on the windows content. For example, there are three windows. Two
windows of the same size next to each other to detect outages and a longer window to
maintain quality over time. The longer window maintains quality since it has a more stable
overview of the options. The values within the smaller windows can deviate a lot more.
There are two ways to configure these windows: the amount of time passed or the volume
passing by. For this algorithm, the latter was chosen.

Memory resetting is also added. A memory reset causes the algorithm to effectively forget
all its observed rewards for all paths or specific paths. In this case, it is done for all arms
to re-explore the changed success rates. This is ideally avoided at all costs since it could
significantly increase regret. The decision to reset memory comes based on the sliding
windows. If the shorter-ranged pair detects an anomaly and it persists in the next window,
then the algorithm wipes out all memory it has, and essentially, cold starts again.

Algorithm 1 Monitored Upper Confidence Bound

Initialize nt(a)← 0 for all a ▷ Counts the number of times action a is taken
Initialize Qt(a)← 0 for all a ▷ Estimated value of action a
Initialize exploration factor: α
Initialize window types and sizes ψ ▷ Largest window is Ψ
Initialize memory reset threshold ω ▷ As a percentage of toleratable difference
Configure memory reset policy ζ ▷ All arms at once or the degraded arm
for each round t ∈ T do

if ∆ψsmall > ω then ▷ ∆ is the success rate difference
Reset arms according to set policy ζ

end if
for each arm a = 1, 2, . . . , K do

if a /∈ Ψ then ▷ Arm not explored in largest window
Increase weights for the arm in selection.

end if
UCBt(a)← Qt(a) +

√
α ln t
nt(a)

▷ Calculate UCB
end for
Choose action At where At = argmaxa UCBt(a) ▷ Adjusted to weights
Observe reward Rt

nt(At)← nt(At) + 1 ▷ Update count of chosen action
Qt(At)← Qt(At) +

1
nt(At)

(Rt −Qt(At)) ▷ Update estimate of action value
end for

44

6.4 Contextual Bandits

In real cases, the mean reward from the providers can depend on the sender. Contextual
MAB introduces additional dimensionality in the context of the sending client. It exposes
this knowledge to the algorithm as a context vector linked to the sending client ID.

For example, consider a client with an ID of 592 who could have a vector mapping of
592 → [32, 190, 1] or 592 → [32]. Different vector values represent specific properties,
such as price preferences or a target destination. Contextual algorithms, like LinUCB,
connect the received rewards with the context vector to provide a more client-oriented
approach than non-contextual variants.

The context vectors can vary in size. It has been observed that longer vectors often give
better results, even if the same vector value is duplicated, such as 592 → [32, 32]. This
observation suggests that including more features, or even reinforcing existing features,
can improve the algorithm’s ability to make accurate predictions.

However, the effectiveness of longer context vectors depends on the quality and relevance
of the additional features. Adding irrelevant or noisy features can degrade performance. In
LinUCB, the algorithm leverages the context vectors to estimate the expected reward for
each action by fitting a linear model. The more informative the context vector, the better
the model can capture the underlying relationships between context and reward. While
longer context vectors can provide better results by offering more information, they must
be carefully constructed to ensure that the additional features contribute positively to the
model’s performance.

To consider this in the simulations, providers can be configured to respond from different
reward distributions. Figure 18 shows the simplest context in which only one sender exists.
Details are seen in Table 12. This makes LinUCB and UCB act similarly. In particular,
LinUCB requires a bigger reward step than just the mean reward float value, i.e. 0.87. To
adjust for this, the reward is multiplied by a coefficient δ, which in this case is 10.

Table 12. LinUCB with test case 2 details.

mean % max % min % Delivered volume (k)

LinUCB 85.37 85.54 85.10 427.5/500

UCB1 84.83 85.05 84.67 425/500

LinTS 84.62 84.74 83.85 423.5/500

45

250 500 750 1000 1250 1500 1750 2000
Timestep (t)

0.83

0.84

0.85

0.86

0.87

0.88

0.89

Su
cc

es
s r

at
e

(
)

Success rates [n = 50, t0 = 25, T = 2000, msgs = 500k]
 LinUCB: =2.0, = 10; LinTS: = 10; UCB1: =2.0

Theoretical Best: = 0.869, = 65.6k
LinUCB: = 0.853, = 73.1k
UCB1: = 0.848, = 75.8k
LinTS: = 0.844, = 76.9k

Figure 18. LinUCB with test case 2.

When the mean reward distribution differs by client, but the sendable providers match, as
seen in Figure 19, the contextual variants significantly outperform UCB1. Details are seen
in Table 13. UCB1 is omitted from the graph to examine contextual performances more
closely for the stationary test case 3.

Table 13. Contextual bandits handling differing client-specific feedback distribution details.

success rate % max % min % Delivered volume (k)

LinUCB 82.02 82.08 81.87 410/500

LinTS 81.94 82.06 81.79 410/500

UCB1 72.50 72.66 72.38 362.5/500

250 500 750 1000 1250 1500 1750 2000
Timestep (t)

0.795

0.800

0.805

0.810

0.815

0.820

0.825

Su
cc

es
s r

at
e

(
)

Success rates [n = 50, t0 = 50, T = 2000, msgs = 500k]
 LinUCB: =2.0, = 10; LinTS: = 10

LinTS: = 0.819, = 90.0k
Theoretical Best: = 0.820, = 90.1k
LinUCB: = 0.820, = 90.9k

Figure 19. Contextual bandits handling differing client-specific feedback distribution.

46

Contextual bandits are a promising approach for future use cases. In the thesis scope, the
main contributor to the context vector is the sending client ID, but further developments
can start to incorporate additional features such as client preferences, regional peculiarities,
or different personalized routing strategies.

6.5 Cooperative Algorithms

Cooperative MAB introduces FL elements to the algorithm, like the central server shown in
Figure 20, which orchestrates MAB instances under its control and averages client results
to give added anonymity. The dotted lines are left for future work to find out ways to make
the edge bandits as autonomous as possible while maintaining the benefits of having a
federated server.

This is similar to the contextual bandit approach in case the partitioning is done on the
client level. Incorporating contextual variants into the mix allows for finer tuning.

Client n

LinUCB

UCB1 Tuned

TS

Monitored UCB

Federated
Server

Client 1

Requests

Figure 20. Bandit Mesh.

It is important to consider network communication constraints when deploying agents.
It depends on whether the algorithms run on separate machines or a single node. In this
work’s setting, the networking cost is negligible and can be ignored. Notably, this is
different from classical FL, where there is a communication cost with the edge devices.

In real-life scenarios, it will be more optimal from a network communications point of
view to host all MAB agents on a single machine and vertically scale the instance until
financially viable; after a single instance stops to meet load requirements, the architecture
becomes distributed and starts to look more like FL.

47

6.5.1 Collaborative Bandits

The custom variant combines many different showcased approaches and adds more to it.
The simplified version is described in Algorithm 2. The simulation results are in Figure 21.
Similarly to the UCB Monitored algorithm, sliding windows are also used here for outage
detection.

Every client has a set of configurable sliding windows covering the observed mean rewards
µ for timesteps t. One set of windows measures provider success rates, and the other
measures volume within the windows. This variant differs from the monitored variant as
window types are temporal instead of volume-based. This is, in part, to experiment further
with temporal windows, but additionally, temporally emptying windows would indicate
that the algorithm arm hasn’t been sampled and should be tested again.

This forces the system to maintain an overview of all arms within a period. It would
be beneficial in very high-volume scenarios since suboptimal arms will get sampled less
over a determined period and limited data settings since all arms are sampled within a
determined window. Both options work; it’s more of a manner of tuning and seeing what
works best.

The algorithm employs three distinct windows to track results, each with a different size
and purpose. The small window is most adaptable in length and focuses on the most recent
data. The medium window is four times larger and serves as a secondary check on the
findings of the small window, capturing a broader perspective to ensure the accuracy and
consistency of the analysis. Lastly, the large window is the most expansive at forty times
the size of the small window and offers the broadest view, providing context and revealing
long-term trends.

The central server ensures that all clients have explored all possible arms within the longest
timeframe. The agent looks at other clients with correlating arm results to optimise out
unnecessary exploring. From these correlating clients, a heuristic function determines how
many will get requested, and the aggregated result is returned to the client result that has
started to age out. A skewed variant of the sampled timestep is also added to the requesting
client’s status matrix.

It seems that this can cause an infinite cascade of borrowing the same data between agents.
This is mitigated as the original request sapling timestep remains in a similar range between
agents. After the timestep exceeds the sample, one of the clients will sample again.

48

The algorithm itself keeps track of how much data each arm has available. And asks the
federated server to add data into the arm from the same arms of other clients if possible.

The algorithms are assumed to run indefinitely, and the environment has success rate drifts.
It is noted that when outages are simulated in the last section, then the algorithms struggle
to adjust to the new values. The algorithms use a degrading function on the historical data
to adjust for this. This means that historical results impact the algorithm decision less. In
the normal status, it is tuned to use γ = 0.999. Minor changes to the degradation number
significantly increase exploration, which would like to be avoided.

An outage is detected when the smallest sliding window observes a degradation of the best
arms that receive traffic. Then, the federated agent enters the outage mode for that client,
which is computationally much more demanding.

The state of arms before the outage is stored. All arms are resampled sequentially, and this
process will continue until all arms have a similar degraded success rate. When an option
improves, it is locked in for a short period to force the algorithm to adjust its state.

The pre-outage two best arms are mandated to have a sample within the medium window.
The best arm in the medium window is pulled with a heuristic probability. The more data
points agree with the value, the higher the likelihood of the arm being pulled.

The degradation factor is changed γ = 0.999→ γ = 0.9. The degraded arm is paused for
n timesteps. Then, the previous best arm is sampled again. This repeats a few times; if
the arm is still experiencing issues, the memory of that arm will be reset. The confidence
bound-based algorithms will start using Lower Confidence Bounds (LCB).

Outages are resolved when all arms have returned to normal status, and the success rates
are similar to those before the outage.

Table 14. Collaborative Bandits compared to other variants with test case 3 details.

Algorithm Mean % Max % Min % Delivery volume (k)

Theoretical Best 77.68 77.74 77.51 388.6/500

MemorySharingUcb1 75.34 75.85 73.41 374.1/500

UCB Monitored 72.98 73.67 72.88 368.2/500

LinUCB 70.30 71.25 67.62 356.1/500

UCB1 57.08 72.42 56.61 362.0/500

49

250 500 750 1000 1250 1500 1750 2000
Timestep (t)

0.5

0.6

0.7

0.8

Su
cc

es
s r

at
e

(
)

Success rates [n = 50, t0 = 10, T = 2000, msgs = 500k]
 LinUCB: =2.0, = 2; UCB1: =2.0; UCB Monitored: =2.0, ws = 50000

Theoretical Best: = 0.776, = 111.6k
MemorySharingUcb1: = 0.743, = 127.7k
UCB Monitored: = 0.734, = 135.0k
LinUCB: = 0.698, = 148.4k
UCB1: = 0.604, = 214.5k

Figure 21. Collaborative Bandits compared to other variants with test case 3.

The collaborative bandits and the UCB monitored are compared against the test case 2
in Figure 22 with details in Table 15. The performance difference is 0.23%, which is
insignificant.

Table 15. Collaborative Bandits and UCB monitored with test case 2 details.

Algorithm Mean % Max % Min % Delivery volume (k)

Theoretical Best 86.81 87.01 86.76 434.1/500

UCB Monitored 86.34 86.51 86.26 431.8/500

MemorySharingUcb1 86.11 86.22 85.97 430.5/500

250 500 750 1000 1250 1500 1750 2000
Timestep (t)

0.80

0.82

0.84

0.86

0.88

0.90

Su
cc

es
s r

at
e

(
)

Success rates [n = 50, t0 = 10, T = 2000, msgs = 500k]
 UCB Monitored: =2.0, ws = 50000

Theoretical Best: = 0.868, = 65.9k
UCB Monitored: = 0.864, = 68.2k
MemorySharingUcb1: = 0.861, = 69.5k

Figure 22. Collaborative Bandits and UCB monitored with test case 2.

50

Algorithm 2 Collaborative Bandit algorithm
1: Initialize agent variables: χµ, χν ▷ client reward and volume
2: Initialize global variables: χG

µ , χ
G
ν ▷ global reward and volume

3: Initialize status board: ξ ▷ keeps global and arms state
4: Initialize window sizes: ψ ▷ Ψ notes the largest window
5: Initialize sensitivity to outages ω. ▷ noted as a percentage
6: Initialize starting pause duration ι
7: for each client c ∈ C do ▷ initialize values in agents
8: Initialize degradation factors γ, γoutage.
9: Initialize exploration factor α.

10: end for
11: for each round t ∈ T do
12: for each window n = 5, 20, . . . , N do
13: ψµ,n ← 1

n

∑t
t=t−n χµ,t ▷ Calculate mean reward of all sliding windows

14: end for
15: Ψν ←

∑t
t=t−n χν,t ▷ Volume sum for largest sliding window

16: ξ ← χµ, χν ▷ Update arms states
17: Check arms needing exploration in similar agents and share insight if allowed.
18: Increase weights for arms needing exploration
19: if Ψ− ψsmall > ω then ▷ ∆ is the success rate difference
20: ξoutage ← true
21: γ ← γoutage
22: ξarmstate = ψ ▷ Snapshot pre outage window values
23: Re-sample all arms.
24: Pause degraded arms for ι timesteps
25: end if
26: if ξoutage = true then
27: Unpause degraded arms and mandate their exploration
28: if Arms still degraded then
29: apaused−until ← ιtimes−attempted−to−recover ▷ Pause length is upper bounded
30: end if
31: end if
32: for each client c ∈ C do ▷ Each client has it own agent
33: Observe context vector η associated with c
34: Ω← Evaluate arms with γ and α applied.
35: Choose action At from allowed arms, where At = argmaxa Ω
36: if a ∈ A has recent data below treshold then
37: Ask the global agent to share memory.
38: end if
39: Send messages to option At

40: end for
41: end for

In general, the collaborative bandit approach is very flexible and can be adjusted in many
ways to suit different settings depending on the environment where it is used.

51

7 Analysis

This chapter evaluates the findings, reviews the experiments, and discusses the methodolo-
gies’ strengths and limitations. Final algorithm performances, executed through all of the
test cases, can be seen in Table 16.

Table 16. Algorithm results over the test cases.

Method Hyperparams Mean
%

Spread
%

Max
%

Min
%

Converted
volume out
of 2500 (k)

Theoretical Best ∅ 82.54 0.25 82.64 82,39 2063

Collaborative
UCB

α = 2;
γ = 0.9999

80.80 0.51 80.97 80.46 2020

UCB Monitored α = 2 79.43 1.15 79.97 78.82 1986

LinUCB α = 2; δ = 10 79.23 0.83 79.53 78.70 1980

LinTS δ = 10 77.22 1.66 77.55 75.89 1930

PF-MAB α = 0, 5 76.22 3.97 78.54 74.57 1905

ϵ-greedy ϵ = 0, 1 75.23 3.07 75.63 72.56 1880

UCB with Cost
Subsidy

α = 2 74.36 4.13 78.02 73.89 1859

UCB1 α = 2 74.09 4.16 77.99 73.83 1852

TS ∅ 73.13 7.61 77.83 70.23 1828

ETC 100 explore
rounds

72.22 1.39 72.49 71.10 1805

DLinUCB δ = 0.01; α = 2;
γ = 0.9999;
σ = 1

67.34 1.15 67.92 66.77 1683

Uniform random ∅ 67.28 0.30 67.43 67.13 1682

7.1 Evaluation Criteria

In addition to the requirements noted in the Goals and Requirements section in Chapter
1, there are specific algorithm criteria. An algorithm or a system of algorithms should
consider client-specific success rates. The performance should approach the theoretical
best option and converge at most on a 5% worse result than the best possible.

52

Currently, all algorithms covered in the thesis have the goal of maximizing the reward.
Hence, that requirement is fulfilled for all cases and will not be looked at separately.

7.2 Base Methods

Base methods mainly behaved as expected. These variants are logically and computation-
ally the easiest and fastest methods. These algorithms are most eligible if speed is critical
and desired over achieving optimal regret. Contextual variants and UCB Monitored also
perform quickly. The most computationally demanding algorithm is the Collaborative
algorithm, but the computational cost can be tuned according to environment dynamics
and resource availability.

Base algorithms optimally converge under the required threshold in a stationary setting;
they converge suboptimally when the success rates largely vary. The models might not
maintain an overview of the 2 best arms during more stationary periods. Applying a
degrading function to the algorithms can improve this.

7.3 Contextual Bandits

Notably, the contextual bandit variants are sensitive to the provided context. The passed
context vectors’ dimensions and numeric values should be carefully considered when
developing the algorithm variant. For example, DLinUCB, LinUCB, and LinTS are all
sensitive to the numeric size of the reward received. It must be large enough for matrix
calculations, having it within the bounds of the success rate values 0 ≤ µ ≤ 1 made
the contextual algorithms perform on the same level with the base algorithms such as
UCB and TS even when the reward distributions varied per client. It was concluded
from hyperparameter tuning that the optimal reward values for contextual algorithms are
µ · (8 ≤ x ≤ 12).

Scalar context vectors filled with zeros [0, . . . , 0] will break contextual algorithm matrix
calculations and, as a result, degrade the algorithm’s ability to explore and exploit possible
paths properly. Furthermore, increasing the feature count inside the LinUCB context
boosted the method’s performance.

Contextual algorithms converge under the required threshold. The models might not
maintain an overview of the 2 best arms during more stationary periods. This can be
improved with degraded linear variants, which require more fine-grain tuning compared
to what was done in this work. Tuning the degraded models too harshly would result in

53

aggressive explorations. Too little degrading would ideally give similar results to LinUCB
or LinTS, depending on the underlying method.

The algorithms have quite a small variance and handle noise well. The reward level
adjustment was introduced as an additional hyperparameter for the contextual algorithms.
UCB algorithms also have the configurable α factor, which satisfies the requirement for
the algorithm to be adjustable to the environment.

7.4 UCB Monitored

The UCB Monitored is the first custom algorithm implemented. It is based on existing
research, combining sliding windows and memory resetting. This algorithm has multi-
objectivity built into it, with the goal of eventually considering cost and additional client
preferences.

This algorithm has had the chance to be run on production traffic. It has shown noticeable
improvement in the regret bounds and has reduced the number of undelivered messages.
Unfortunately, this method has not yet had a live run with the memory sharing setting, and
the memory sharing needs more testing before being released into a live system.

UCB Monitored converges within the required threshold. Sliding windows allow the
algorithm to keep track of all options within a period, sacrificing exploitation rounds and
incurring regret. It has many adjustable parameters, the α factor, window sizes and types,
and memory resetting threshold, to name a few. It outperforms baselines and handles
outages remarkably well. It does more exploration rounds than the collaborative variant,
which is expected.

7.5 Client-Centric Multi-Armed Bandits

Considering client specificity in the algorithms poses an interesting case. Assuming N
clients, it’d be possible to create N agents, each handling a single client’s data. This is
likely to give more optimal results per client, assuming the request volume for the client is
big enough to allow for accurate decision-making.

Isolated algorithm groups per client for every client are suboptimal since request volumes
change in time, and some clients do not send enough requests to calculate their request
volume in an isolated group.

54

Having N client-specific agents is quite similar to the FL paradigm. It likely proves
beneficial since a global model representing the entire data volume would exist and
can be leveraged by the separate agents as different MAB instances could adjust their
models based on that. Since the client cardinality can be quite extensive, to simplify
MAB communications, the agents could be categorized based on their respective objective
function or geographic region, allowing agent communications within a category.

7.6 Collaborative Memory Sharing UCB

The Collaborative Memory Sharing UCB algorithm, will fall under the termed category
of Collaborative Memory Sharing Bandits. Since this class is mostly independent of the
underlying collaborative algorithms, it can be tested with various types of algorithms. The
only thing the algorithms must have in common is the communication interface, initially
with the central collaboration orchestrator.

The collaborating algorithms do not have to be from the same class to communicate.
This enables, for example, choosing underlying algorithms that are even more tunable
depending on the client’s behaviour. This opens the door to more possibilities, like selecting
an underlying algorithm based on what is currently happening in the environment or having
an ensemble of algorithms that all make decisions and propagate the group result. These
options would add to the computational complexity but could prove beneficial in some
cases. The environment this algorithm is placed in allows for 0 collaboration cost, unlike
classic FL cases.

The collaborative UCB converges within the required period and shows to outperform
isolated agents, especially in outage situations. It rigorously keeps an overview of the best
two arms within a specified period and re-explores options if they haven’t been explored
lately to maintain an adequate overview of the possible reward space every action yields.
As such, it is set up so that regret is taken to maintain a better overview of the environment
during the indefinite setting where the algorithms run.

The algorithm is very adjustable for various environments if need be. In addition to tunable
hyperparameters that the underlying algorithms can have, the collaborative orchestration
can adjust its sliding window count and size. Smaller windows and time-frames make
the algorithm more sensitive to changes but are suboptimal in more stationary settings,
suffering more significant regret. The frequency of memory sharing and updating the
global values can also be adjusted, the global model is similar to how FedAvg operated in
FL apart from the fact that there is currently no noise being added to the received values
before aggregating the values. The duration of paused outaged arms can be tuned in cases

55

where exponential backoff with an upper bound isn’t suitable.

The algorithm has quite a small variance and handles noise well. In addition, it can ignore
agents whose data doesn’t match the current clients’ distribution, defending against data
poisoning that can occur within the system due to the environment’s non-stationarity.

7.7 Simulation Setup

The simulation setup was designed to mirror typical scenarios these algorithms might
encounter in operational settings. Parameters like the number of arms, reward variability,
and experiment length were adjusted to assess algorithm responses under diverse conditions.
The simulator, built in Python and using Streamlit as a UI, offered various ways of testing
different cases.

However, it’s important to acknowledge that the evaluation relies solely on synthetic data,
potentially limiting the generalizability of the findings to real-world SMS routing due to
differences between simulated and real-world environments, although this work attempts
to minimize the differences by matching the amount of noise observed in real cases and
incorporating scenarios witnessed in the real live environment.

7.8 Research Question

This section examines the research questions stated in section 1.2 and gives answers.

1. The research question regarding the creation of novel variants outperforming or
being on par with existing solutions is answered. The Collaborative Memory Sharing
UCB and UCB Monitored variants outperform other examined variants in the given
environment. Collaborative Memory Sharing Bandits answer the question of agents
trying to learn from adjacent models;

2. The optimal methods for the given environment are variants which, by nature,
are dynamic and offer adjustability to make them more suitable for any given
environmental peculiarity. Variations of the sliding window can help with abrupt
changes, and degrading the result history could help with slower data drifts. Positive
changes can be leveraged by trying out the latest best-performing arm and, as such,
behaving greedily.

56

8 Future Work

This chapter outlines potential future directions for research and development on the thesis
topic.

1. Improve change detection in general, but focusing on positive changes;
2. Further improve data drift handling primarily for sudden changes;
3. Incorporate more information into the context vector to improve contextual bandit

behaviour;
(a) Test out contextual bandits with various context vector designs.

4. Look into ways that make the edge bandit algorithms autonomous from the central
federated server;

5. Formalize the collaborative memory sharing bandits to be suitable in the federated
learning setting where there are communication constraints;

6. Look into other underlying algorithms for collaborative memory-sharing bandits
like contextual bandits, TS, ETC;

(a) Investigating personalized algorithm selection per client per destination and
considering the current environment setting;

(b) Looking into the viability of ensemble methods.
7. Enhancing the scalability of the proposed algorithms to handle larger datasets and

more complex environments;
(a) Taking the cost of sending messages into consideration as one of the objectives;
(b) Looking further into multi-objective approaches for this setting.

8. Exploring additional applications of the cooperative reinforcement learning frame-
work in other domains, such as e-commerce and healthcare.

Existing research points out possible future works in federated learning. Advances and
Open Problems in Federated Learning [96].

57

9 Summary

This thesis implements and evaluates reinforcement learning methods within a constrained
data environment. It focuses on developing cooperative real-time methods and optimiz-
ing decision-making processes in telecommunication networks, with examples in short
message and multimedia message routing.

A combination of theoretical analysis and practical experimentation explores challenges
and opportunities for using reinforcement learning techniques. The research leverages
Multi-Armed Bandit algorithms and adapts Federated Learning approaches to improve the
cumulative success rate achieved by these methods.

The work examined cooperative learning behaviour among multiple agents to identify
strategies for optimizing performance and overcoming data scarcity barriers.

9.1 Objectives

The work aimed to design, simulate, and evaluate reinforcement learning algorithms that
can operate effectively in non-stationary environments with limited data.

1. Develop novel reinforcement learning variants under Multi-Armed Bandits that
outperform or are on par with existing algorithms;

2. Create a simulator to test the algorithms using synthetic datasets;
3. Demonstrate the benefits of cooperative strategies over isolated approaches regarding

service quality improvement.

9.2 Contributions

The executed experiments showed that cooperative strategies outperform isolated ap-
proaches, particularly in handling environments with limited data or unstable success
rates.

Under the Multi-Armed Bandit class, new reinforcement learning algorithms are introduced.
The first algorithm is termed "Collaborative Memory Sharing UCB". It incorporates
Federated Learning principles with outage and state management.

58

The second algorithm is termed "UCB Monitored." It combines different techniques from
the literature and adjusts the sliding window technique. Compared to base methods, it
handles outages remarkably well. Both methods perform well in the environment and are
optimal candidates for real cases.

A simulator is built to help study the reinforcement learning strategies. In addition,
extensive experimentation and validation of the models are conducted using synthetic data,
and reasoning is given as to why using historical real-life data is not feasible if a dedicated
system is not constructed for that purpose.

9.3 Conclusion

This thesis demonstrates that cooperative real-time reinforcement learning methods, sup-
ported by federated learning principles, offer a robust solution for optimizing decision-
making processes in data-constrained environments. The findings show the potential of
these methods to significantly improve message delivery success rates in the real world.

59

References

[1] Nícollas Silva et al. “Multi-Armed Bandits in Recommendation Systems: A survey
of the state-of-the-art and future directions”. In: Expert Systems with Applications

197 (2022), p. 116669. ISSN: 0957-4174. DOI: https://doi.org/10.1016/
j.eswa.2022.116669. URL: https://www.sciencedirect.com/
science/article/pii/S0957417422001543.

[2] Aditya Mahajan and Demosthenis Teneketzis. “Multi-Armed Bandit Problems”.
In: Oct. 2007, pp. 121–151. ISBN: 978-0-387-27892-6. DOI: 10.1007/978-0-
387-49819-5_6.

[3] Aditya Narayan Ravi, P. Poduval, and Sharayu Moharir. “Unreliable Multi-Armed
Bandits: A Novel Approach to Recommendation Systems”. In: 2020 International

Conference on COMmunication Systems NETworkS (COMSNETS) (2019), pp. 650–
653. DOI: 10.1109/COMSNETS48256.2020.9027470.

[4] James McInerney et al. “Explore, exploit, and explain: personalizing explainable
recommendations with bandits”. In: Proceedings of the 12th ACM Conference on

Recommender Systems (2018). DOI: 10.1145/3240323.3240354.

[5] Dong Woo Kim, T. Lai, and Huanzhong Xu. “MULTI-ARMED BANDITS WITH
COVARIATES:THEORY AND APPLICATIONS”. In: Statistica Sinica (2020).
DOI: 10.5705/ss.202020.0454.

[6] Anne Laura Penning. “Netflix Recommends: Algorithms, Film Choice, and the
History of Taste, by Mattias Frey”. In: Alphaville: Journal of Film and Screen Media

(2022). DOI: 10.33178/alpha.24.18.

[7] Guoju Gao et al. “Combination of Auction Theory and Multi-Armed Bandits:
Model, Algorithm, and Application”. In: IEEE Transactions on Mobile Computing

22 (2023), pp. 6343–6357. DOI: 10.1109/TMC.2022.3197459.

[8] D. I. Mattos, J. Bosch, and H. H. Olsson. “Multi-armed bandits in the wild: Pitfalls
and strategies in online experiments”. In: Inf. Softw. Technol. 113 (2019), pp. 68–81.
DOI: 10.1016/J.INFSOF.2019.05.004.

[9] D. Abensur et al. “Productization Challenges of Contextual Multi-Armed Bandits”.
In: ArXiv abs/1907.04884 (2019).

[10] Robert C. Gray, Jichen Zhu, and Santiago Ontañón. “Multiplayer Modeling via
Multi-Armed Bandits”. In: 2021 IEEE Conference on Games (CoG) (2021), pp. 01–
08. DOI: 10.1109/CoG52621.2021.9618892.

60

https://doi.org/https://doi.org/10.1016/j.eswa.2022.116669
https://doi.org/https://doi.org/10.1016/j.eswa.2022.116669
https://www.sciencedirect.com/science/article/pii/S0957417422001543
https://www.sciencedirect.com/science/article/pii/S0957417422001543
https://doi.org/10.1007/978-0-387-49819-5_6
https://doi.org/10.1007/978-0-387-49819-5_6
https://doi.org/10.1109/COMSNETS48256.2020.9027470
https://doi.org/10.1145/3240323.3240354
https://doi.org/10.5705/ss.202020.0454
https://doi.org/10.33178/alpha.24.18
https://doi.org/10.1109/TMC.2022.3197459
https://doi.org/10.1016/J.INFSOF.2019.05.004
https://doi.org/10.1109/CoG52621.2021.9618892

[11] Guoju Gao et al. “Auction-Based Combinatorial Multi-Armed Bandit Mechanisms
with Strategic Arms”. In: IEEE INFOCOM 2021 - IEEE Conference on Computer

Communications (2021), pp. 1–10. DOI: 10.1109/INFOCOM42981.2021.
9488765.

[12] Chengshuai Shi et al. “Reward Teaching for Federated Multiarmed Bandits”. In:
IEEE Transactions on Signal Processing 71 (2023), pp. 4407–4422. DOI: 10.
1109/TSP.2023.3333658.

[13] R. S. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press,
2018. ISBN: 978-0262039246. URL: https://consensus.app/papers/
reinforcement-learning-introduction-sutton-barto-2nd/

94d8d982a3b52e13392c301982e291a2/?utm_source=chatgpt.

[14] Richard S Sutton and Andrew G Barto. “Reinforcement Learning: An Introduction”.
In: IEEE Trans. Neural Networks 9 (1998), p. 1054. DOI: 10.1109/TNN.1998.
712192.

[15] M Stanković. “Multi-agent reinforcement learning”. In: 2016 24th Telecommunica-

tions Forum (TELFOR). IEEE. 2016, pp. 1–1. DOI: 10.1109/NEUREL.2016.
7800108.

[16] Steven L. Brunton and J. Nathan Kutz. Data-Driven Science and Engineering:

Machine Learning, Dynamical Systems, and Control. 1st ed. Cambridge University
Press, 2019. ISBN: ISBN number. DOI: DOInumberifavailable.

[17] Florentin Wörgötter and Bernd Porr. “Reinforcement learning”. In: Scholarpedia 3
(2019), p. 1448. DOI: 10.4249/scholarpedia.1448.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, et al. “Human-level control
through deep reinforcement learning”. In: Nature 518 (2015), pp. 529–533. DOI:
10.1038/nature14236.

[19] L. N. Alegre, A. Bazzan, and Bruno C. da Silva. “Minimum-Delay Adaptation in
Non-Stationary Reinforcement Learning via Online High-Confidence Change-Point
Detection”. In: (2021), pp. 97–105. DOI: 10.5555/3463952.3463970.

[20] Francesco Ricci, Lior Rokach, and Bracha Shapira. Recommender Systems Hand-

book. Springer, 2015.

[21] Carlos A Gomez-Uribe and Neil Hunt. “The Netflix recommender system: Algo-
rithms, business value, and innovation”. In: ACM Transactions on Management

Information Systems (TMIS). Vol. 6. 4. ACM New York, NY, USA, 2016, pp. 1–19.

[22] Brent Smith and Greg Linden. “Two decades of recommender systems at Ama-
zon.com”. In: IEEE internet computing 21.3 (2017), pp. 12–18.

61

https://doi.org/10.1109/INFOCOM42981.2021.9488765
https://doi.org/10.1109/INFOCOM42981.2021.9488765
https://doi.org/10.1109/TSP.2023.3333658
https://doi.org/10.1109/TSP.2023.3333658
https://consensus.app/papers/reinforcement-learning-introduction-sutton-barto-2nd/94d8d982a3b52e13392c301982e291a2/?utm_source=chatgpt
https://consensus.app/papers/reinforcement-learning-introduction-sutton-barto-2nd/94d8d982a3b52e13392c301982e291a2/?utm_source=chatgpt
https://consensus.app/papers/reinforcement-learning-introduction-sutton-barto-2nd/94d8d982a3b52e13392c301982e291a2/?utm_source=chatgpt
https://doi.org/10.1109/TNN.1998.712192
https://doi.org/10.1109/TNN.1998.712192
https://doi.org/10.1109/NEUREL.2016.7800108
https://doi.org/10.1109/NEUREL.2016.7800108
https://doi.org/DOI number if available
https://doi.org/10.4249/scholarpedia.1448
https://doi.org/10.1038/nature14236
https://doi.org/10.5555/3463952.3463970

[23] James Bennett and Stan Lanning. “The Netflix Prize”. In: Proceedings of KDD Cup

and Workshop. Vol. 2007. 2007, pp. 3–6.

[24] Yang Zhang et al. “How to Retrain Recommender System?: A Sequential Meta-
Learning Method”. In: Proceedings of the 43rd International ACM SIGIR Con-

ference on Research and Development in Information Retrieval (2020). DOI: 10.
1145/3397271.3401167.

[25] James Delorey. The Multi-Armed Bandit Problem. Accessed: 11.05.2024. 2023.
URL: https://people.stfx.ca/jdelamer/courses/csci-531/
topics/multi-armed-bandit/the-problem.html.

[26] Olivier Chapelle and Lihong Li. “An empirical evaluation of thompson sampling”.
In: Advances in neural information processing systems. Vol. 24. 2011.

[27] Sofia S Villar, Jack Bowden, and James Wason. “Multi-armed bandit models for the
optimal design of clinical trials: benefits and challenges”. In: Statistical science: a

review journal of the Institute of Mathematical Statistics 30.2 (2015), p. 199.

[28] Alekh Agarwal et al. “Taming the monster: A fast and simple algorithm for con-
textual bandits”. In: International Conference on Machine Learning. PMLR. 2014,
pp. 1638–1646.

[29] Baruch Awerbuch and Robert D Kleinberg. “Adaptive routing with end-to-end
feedback: Distributed learning and geometric approaches”. In: Proceedings of the

thirty-sixth annual ACM symposium on Theory of computing. 2004, pp. 45–53.

[30] Alain Haurie and Georges Zaccour. Games and dynamic games (Vol. 1). World
Scientific Publishing Company, 2005.

[31] Guojun Xiong, Jian Li, and Rahul Singh. “Reinforcement Learning Augmented
Asymptotically Optimal Index Policy for Finite-Horizon Restless Bandits”. In:
(2022), pp. 8726–8734. DOI: 10.1609/aaai.v36i8.20852.

[32] Sébastien Bubeck and Nicolo Cesa-Bianchi. “Regret Analysis of Stochastic and
Nonstochastic Multi-armed Bandit Problems”. In: (2012).

[33] Keqin Liu and Qing Zhao. “Distributed Learning in Multi-Armed Bandit With
Multiple Players”. In: Signal Processing, IEEE Transactions on 58 (Dec. 2010),
pp. 5667–5681. DOI: 10.1109/TSP.2010.2062509.

[34] Joannès Vermorel and Mehryar Mohri. “Multi-armed Bandit Algorithms and Em-
pirical Evaluation”. In: Oct. 2005. ISBN: 978-3-540-29243-2. DOI: 10.1007/
11564096_42.

[35] Ania-Ariadna Baetica, Alexandra M. Westbrook, and H. El-Samad. “Control theo-
retical concepts for synthetic and systems biology”. In: Current Opinion in Systems

Biology (2019). DOI: 10.1016/J.COISB.2019.02.010.

62

https://doi.org/10.1145/3397271.3401167
https://doi.org/10.1145/3397271.3401167
https://people.stfx.ca/jdelamer/courses/csci-531/topics/multi-armed-bandit/the-problem.html
https://people.stfx.ca/jdelamer/courses/csci-531/topics/multi-armed-bandit/the-problem.html
https://doi.org/10.1609/aaai.v36i8.20852
https://doi.org/10.1109/TSP.2010.2062509
https://doi.org/10.1007/11564096_42
https://doi.org/10.1007/11564096_42
https://doi.org/10.1016/J.COISB.2019.02.010

[36] A. Mandelbaum. “Discrete multi-armed bandits and multi-parameter processes”. In:
Probability Theory and Related Fields 71 (1986), pp. 129–147. DOI: 10.1007/
BF00366276.

[37] S. Villar, J. Bowden, and J. Wason. “Multi-armed Bandit Models for the Optimal
Design of Clinical Trials: Benefits and Challenges”. In: Statistical science: a review

journal of the Institute of Mathematical Statistics 30.2 (2015), pp. 199–215. DOI:
10.1214/14-STS504.

[38] Chunqiu Zeng et al. “Online Context-Aware Recommendation with Time Varying
Multi-Armed Bandit”. In: (2016).

[39] Eric Schulz, E. Konstantinidis, and M. Speekenbrink. “Learning and decisions in
contextual multi-armed bandit tasks”. In: Cognitive Science (2015).

[40] Cem Tekin and E. Turgay. “Multi-objective Contextual Multi-armed Bandit With
a Dominant Objective”. In: IEEE Transactions on Signal Processing 66 (2017),
pp. 3799–3813. DOI: 10.1109/TSP.2018.2841822.

[41] Brendan McMahan et al. “Communication-efficient learning of deep networks from
decentralized data”. In: Artificial Intelligence and Statistics (2017), pp. 1273–1282.

[42] Tian Li, Maziar Sanjabi, and Virginia Smith. “Fair Resource Allocation in Federated
Learning”. In: ArXiv abs/1905.10497 (2019).

[43] Anit Kumar Sahu et al. “Federated Optimization in Heterogeneous Networks”. In:
arXiv: Learning (2018).

[44] Y. Sarcheshmehpour, M. Leinonen, and A. Jung. “Federated Learning from Big
Data Over Networks”. In: ICASSP 2021 - 2021 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP) (2020), pp. 3055–3059. DOI:
10.1109/ICASSP39728.2021.9414903.

[45] Kang Wei et al. “Federated Learning With Differential Privacy: Algorithms and Per-
formance Analysis”. In: IEEE Transactions on Information Forensics and Security

(2019).

[46] Viraaji Mothukuri et al. “A survey on security and privacy of federated learning”.
In: Future Gener. Comput. Syst. (2021).

[47] Vale Tolpegin et al. “Data Poisoning Attacks Against Federated Learning Systems”.
In: (2020).

[48] Lei Shi et al. “Data poisoning attacks on federated learning by using adversarial
samples”. In: 2022.

[49] Jiale Zhang et al. “PoisonGAN: Generative Poisoning Attacks Against Federated
Learning in Edge Computing Systems”. In: IEEE Internet of Things Journal (2021).

63

https://doi.org/10.1007/BF00366276
https://doi.org/10.1007/BF00366276
https://doi.org/10.1214/14-STS504
https://doi.org/10.1109/TSP.2018.2841822
https://doi.org/10.1109/ICASSP39728.2021.9414903

[50] Chengshuai Shi et al. Harnessing the Power of Federated Learning in Federated

Contextual Bandits. 2023. arXiv: 2312.16341 [stat.ML].

[51] Chengshuai Shi and Cong Shen. “Federated Multi-Armed Bandits”. In: Proceedings

of the AAAI Conference on Artificial Intelligence 35.11 (May 2021), pp. 9603–9611.
DOI: 10.1609/aaai.v35i11.17156. URL: https://ojs.aaai.org/
index.php/AAAI/article/view/17156.

[52] Abhimanyu Dubey and A. Pentland. “Differentially-Private Federated Linear Ban-
dits”. In: ArXiv abs/2010.11425 (2020).

[53] Zhongxiang Dai, K. H. Low, and Patrick Jaillet. “Federated Bayesian Optimization
via Thompson Sampling”. In: ArXiv abs/2010.10154 (2020).

[54] Chengshuai Shi and Cong Shen. “Federated Multi-Armed Bandits”. In: (2021). DOI:
10.1609/aaai.v35i11.17156.

[55] Zhaowei Zhu et al. “Federated Bandit: A Gossiping Approach”. In: ACM SIG-

METRICS Performance Evaluation Review 49 (2020), pp. 3–4. DOI: 10.1145/
3543516.3453919.

[56] Ruiquan Huang et al. Federated Linear Contextual Bandits. 2021. arXiv: 2110.
14177 [stat.ML].

[57] Jakub Konečnỳ et al. “Federated optimization: Distributed machine learning for
on-device intelligence”. In: arXiv preprint arXiv:1610.02527 (2016).

[58] Qiang Yang et al. “Federated machine learning: Concept and applications”. In: ACM

Transactions on Intelligent Systems and Technology (TIST) 10.2 (2019), pp. 1–19.

[59] Tao Li et al. “Federated learning: Challenges, methods, and future directions”. In:
IEEE Signal Processing Magazine 37.3 (2020), pp. 50–60.

[60] Stephen Hardy et al. “Private federated learning on vertically partitioned data via en-
tity resolution and additively homomorphic encryption”. In: IEEE 30th International

Conference on Tools with Artificial Intelligence (ICTAI). IEEE. 2017, pp. 447–454.

[61] Kewei Cheng et al. “SecureBoost: A Lossless Federated Learning Framework”. In:
IEEE International Conference on Big Data (Big Data). IEEE. 2019, pp. 2597–
2606.

[62] Deeksha Sinha et al. “Multi-Armed Bandits with Cost Subsidy”. In: Proceedings

of The 24th International Conference on Artificial Intelligence and Statistics. Ed.
by Arindam Banerjee and Kenji Fukumizu. Vol. 130. Proceedings of Machine
Learning Research. PMLR, 13–15 Apr 2021, pp. 3016–3024. URL: https://
proceedings.mlr.press/v130/sinha21a.html.

[63] Ronshee Chawla et al. Collaborative Multi-Agent Heterogeneous Multi-Armed

Bandits. May 2023.

64

https://arxiv.org/abs/2312.16341
https://doi.org/10.1609/aaai.v35i11.17156
https://ojs.aaai.org/index.php/AAAI/article/view/17156
https://ojs.aaai.org/index.php/AAAI/article/view/17156
https://doi.org/10.1609/aaai.v35i11.17156
https://doi.org/10.1145/3543516.3453919
https://doi.org/10.1145/3543516.3453919
https://arxiv.org/abs/2110.14177
https://arxiv.org/abs/2110.14177
https://proceedings.mlr.press/v130/sinha21a.html
https://proceedings.mlr.press/v130/sinha21a.html

[64] Wenkui Ding et al. “Multi-Armed Bandit with Budget Constraint and Variable
Costs”. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2013.
DOI: 10.1609/aaai.v27i1.8637.

[65] Zhixiang (Eddie) Xu. “Supervised Machine Learning Under Test-Time Resource
Constraints: A Trade-off Between Accuracy and Cost”. In: (2014).

[66] Leo Budin, Domagoj Jakobovic, and Marin Golub. “Genetic algorithms in real-time
imprecise computing”. In: 1999.

[67] Xiaosong Wu et al. “Research on Game Learning Model for Multi-agent System”.
In: 2021.

[68] José García-Nieto, Enrique Alba, and Alejandro Olivera. “Swarm intelligence for
traffic light scheduling: Application to real urban areas”. In: (2012).

[69] Vishnu Raj and S. Kalyani. “Taming Non-stationary Bandits: A Bayesian Approach”.
In: ArXiv abs/1707.09727 (2017).

[70] Lior Rokach and Oded Z. Maimon. “Top-down Induction of Decision Trees
Classifiers-A Survey”. In: IEEE Transactions on Systems, Man, and Cybernetics,

Part C (Applications and Reviews) 35.4 (2005), pp. 476–487. DOI: 10.1109/
TSMCC.2004.843247.

[71] Muhammad Usman Hadi et al. Large Language Models: A Comprehensive Survey

of its Applications, Challenges, Limitations, and Future Prospects. July 2023. DOI:
10.36227/techrxiv.23589741.

[72] Guanya Shi. “Reliable Learning and Control in Dynamic Environments: Towards
Unified Theory and Learned Robotic Agility”. PhD thesis. California Institute of
Technology, 2023. DOI: 10.7907/8rz4-7b35. URL: https://resolver.
caltech.edu/CaltechTHESIS:08052022-231458463.

[73] Docker Documentation. https://docs.docker.com/. Accessed: 2024-04-
14.

[74] Buildkite. Accessed: 2024-05-02. URL: https://buildkite.com/.

[75] Bastian Oetomo et al. “Cutting to the Chase with Warm-Start Contextual Bandits”.
In: 2021 IEEE International Conference on Data Mining (ICDM). 2021.

[76] Giuseppe Burtini, Jason L. Loeppky, and Ramon Lawrence. “Improving Online
Marketing Experiments with Drifting Multi-armed Bandits”. In: 2015 International

Conference on Information and Knowledge Management. 2015. DOI: 10.5220/
0005458706300636.

65

https://doi.org/10.1609/aaai.v27i1.8637
https://doi.org/10.1109/TSMCC.2004.843247
https://doi.org/10.1109/TSMCC.2004.843247
https://doi.org/10.36227/techrxiv.23589741
https://doi.org/10.7907/8rz4-7b35
https://resolver.caltech.edu/CaltechTHESIS:08052022-231458463
https://resolver.caltech.edu/CaltechTHESIS:08052022-231458463
https://docs.docker.com/
https://buildkite.com/
https://doi.org/10.5220/0005458706300636
https://doi.org/10.5220/0005458706300636

[77] Chunqiu Zeng et al. “Online Context-Aware Recommendation with Time Varying
Multi-Armed Bandit”. In: Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. 2016. DOI: 10.1145/
2939672.2939878.

[78] Travis Oliphant. Numpy: Library for Large, Multi-Dimensional Arrays and Matrices.
Accessed on April 7, 2024. 2024. URL: https://numpy.org/.

[79] The Pandas Development Team. Pandas: Library for Data Manipulation and Analy-

sis. Accessed on April 7, 2024. 2023. URL: https://pypi.org/project/
pandas/.

[80] Alex Johnson et al. Plotly: Creating Interactive and Visually Appealing Data Visual-

izations and Charts. Accessed on April 7, 2024. 2024. URL: https://plotly.
com/dash/.

[81] Streamlit Documentation. https://docs.streamlit.io/. Accessed on
April 7, 2024.

[82] Taipy. Taipy - Build Python Data & AI Web Applications. Accessed: 2024-05-05.
2024. URL: https://taipy.io/.

[83] TensorFlow Federated: Open Source Framework for Machine Learning and Other

Computations on Decentralized Data. Accessed on April 7, 2024. URL: https:
//www.tensorflow.org/federated.

[84] PySyft: A Python Library for Encrypted, Privacy Preserving Machine Learning. Ac-
cessed on April 7, 2024. URL: https://openmined.github.io/PySyft/
index.html.

[85] FATE: Federated AI Technology Enabler. Accessed on April 7, 2024. URL: https:
//fate.fedai.org/.

[86] Flower: A Friendly Federated Learning Research Framework. Accessed on April 7,
2024. URL: https://flower.ai/.

[87] Yasin Abbasi-Yadkori, A. György, and N. Lazic. “A New Look at Dynamic Regret
for Non-Stationary Stochastic Bandits”. In: ArXiv abs/2201.06532 (2022).

[88] David Silver et al. “Mastering the game of Go without human knowledge”. In:
Nature 550 (2017), pp. 354–359.

[89] David Silver et al. “A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play”. In: Science 362 (2018), pp. 1140–1144. DOI:
10.1126/science.aar6404.

[90] Haoran Wang, T. Zariphopoulou, and X. Zhou. “Reinforcement Learning in Contin-
uous Time and Space: A Stochastic Control Approach”. In: J. Mach. Learn. Res. 21
(2020), 198:1–198:34.

66

https://doi.org/10.1145/2939672.2939878
https://doi.org/10.1145/2939672.2939878
https://numpy.org/
https://pypi.org/project/pandas/
https://pypi.org/project/pandas/
https://plotly.com/dash/
https://plotly.com/dash/
https://docs.streamlit.io/
https://taipy.io/
https://www.tensorflow.org/federated
https://www.tensorflow.org/federated
https://openmined.github.io/PySyft/index.html
https://openmined.github.io/PySyft/index.html
https://fate.fedai.org/
https://fate.fedai.org/
https://flower.ai/
https://doi.org/10.1126/science.aar6404

[91] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. “Finite-time analysis of the
multiarmed bandit problem”. In: Machine learning 47.2 (2002), pp. 235–256.

[92] Yuxi Liu. PyTorch 1.x Reinforcement Learning Cookbook. Accessed: 2024-05-02.
O’Reilly Media, 2020.

[93] Aleksandrs Slivkins. “Introduction to Multi-Armed Bandits”. In: Foundations

and Trends® in Machine Learning 12.1-2 (2019), pp. 1–286. ISSN: 1935-8237.
DOI: 10.1561/2200000068. URL: http://dx.doi.org/10.1561/
2200000068.

[94] Yang Cao et al. Nearly Optimal Adaptive Procedure with Change Detection for

Piecewise-Stationary Bandit. 2019. arXiv: 1802.03692 [stat.ML].

[95] Djallel Bouneffouf and Raphaël Féraud. “Multi-armed bandit problem with known
trend”. In: ArXiv abs/1508.07091 (2015). DOI: 10.1016/j.neucom.2016.02.
052.

[96] Peter Kairouz et al. Advances and Open Problems in Federated Learning. 2021.
arXiv: 1912.04977 [cs.LG].

67

https://doi.org/10.1561/2200000068
http://dx.doi.org/10.1561/2200000068
http://dx.doi.org/10.1561/2200000068
https://arxiv.org/abs/1802.03692
https://doi.org/10.1016/j.neucom.2016.02.052
https://doi.org/10.1016/j.neucom.2016.02.052
https://arxiv.org/abs/1912.04977

Appendix – 1 Non-Exclusive License for Reproduction and
Publication of a Graduation Thesis1

I Oskar Pihlak

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my
thesis “Cooperative real-time reinforcement learning in a limited data environment”,
supervised by Gert Kanter, Riivo Kikas and Ilja Samoilov.
1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library
of Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to
be entered in the digital collection of the library of Tallinn University of
Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection Act
or rights arising from other legislation.

23.05.2024

1The non-exclusive license is not valid during the validity of access restriction indicated in the student’s
application for restriction on access to the graduation thesis that has been signed by the school’s dean, except
in the case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation
thesis is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted,
by the set deadline, the student defending his/her graduation thesis consent to reproduce and publish the
graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive license, the non-exclusive
license shall not be valid for the period.

68

Appendix 2 – Machine Learning Approaches

Figure 2.1. Machine Learning Approaches.

Supervised Learning: Algorithms learn from labeled data, pairing inputs with known
outputs. It excels at tasks like classification and regression, predicting outcomes for new
data. The process involves training the model, and then validating its accuracy on unseen
data.
Unsupervised Learning: This approach works with unlabeled data to uncover hidden
structures. Techniques such as clustering and dimensionality reduction are common,
helping to discover groups or patterns. It’s often used for exploratory data analysis and
understanding complex datasets.
Reinforcement Learning: Agents in this paradigm learn to make decisions by trial and
error, receiving rewards for successful actions. It’s widely used in areas like robotics
and gaming, where the environment provides feedback to the learner. The key goal is to
develop a strategy that maximizes the cumulative reward.
Federated Learning is a machine learning approach that trains algorithms across multiple
decentralized devices or servers holding local data samples, without exchanging or cen-
tralizing the data. It enables collaborative model training while preserving data privacy
and security, as the training data remains on the local devices, and only model updates are
shared. This technique is particularly useful in scenarios where data privacy is paramount.

69

Appendix 3 – Hoeffding Inequality

Figure 3.1. Hoeffding Inequality’s components.

Hoeffding’s Inequality provides a bound on the probability that the sum (or mean) of
independent, bounded random variables deviates from its expected value by a certain
amount. It is a very useful result in statistics and machine learning, particularly for the
analysis of algorithms, as it offers a way to understand the concentration of measure for
random variables. Here is a breakdown of what Hoeffding’s Inequality states:

■ Consider n independent random variables X1, X2, . . . , Xn, each bounded by an
interval [ai, bi].

■ The random variables do not need to be identically distributed, just bounded and
independent.

■ Let X be the sample mean of these random variables, and let µ be the expected value
of X .

■ Hoeffding’s Inequality gives us an upper bound on the probability that X deviates
from µ by more than a specified amount t, regardless of the individual distribu-
tions of the random variables, relying solely on the independence and boundedness
assumptions.

P
(∣∣X̄ − µ∣∣ ≥ t

)
≤ 2 exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
This tells us that the probability of the sample mean being far from the expected mean
decreases exponentially as n increases or as the range bi − ai of the random variables
decreases. In practical terms, Hoeffding’s Inequality gives confidence bounds for the true
mean of a random variable based on empirical observations. It’s widely used in areas
like empirical process theory, statistical learning theory, and in the analysis of random
algorithms where it provides guarantees for the convergence of empirical means to their
true means as more observations are gathered.

70

Appendix 4 – Reinforcement Learning Methods

Figure 4.1. Reinforcement Learning Methods.

71

Appendix 5 – Multi-Armed Bandit and Federated Learn-
ing Methods

Figure 5.1. Multi-Armed Bandit and Federated Learning Methods.

72

Appendix 6 – Reinforcement Learning Algorithm Group-
ings

Figure 6.1. Reinforcement Learning algorithm groupings.

73

Appendix 7 – Algorithms

UCB1 is designed to balance exploration (trying out each arm to gather more information
about its reward distribution) and exploitation (choosing the arm that currently seems to
offer the best reward). Algorithm: It selects the arm with the highest upper confidence
bound, calculated as the sum of the empirical mean of the arm’s reward and a term that
grows with the logarithm of the total number of plays divided by the number of times the
arm has been played. This term ensures that arms not yet explored enough have a higher
chance of being selected.

Algorithm 7.1. Upper Confidence Bound (UCB) Algorithm.

Initialize nt(a)← 0 for all a ▷ Counts the number of times action a is taken
Initialize Qt(a)← 0 for all a ▷ Estimated value of action a
for t = 1, 2, 3, . . . do ▷ Main loop

for each action a do
if nt(a) = 0 then

UCBt(a)←∞ ▷ Ensure all actions are tried at least once
else

UCBt(a)← Qt(a) +
√

2 ln t
nt(a)

▷ Calculate UCB
end if

end for
Choose action At where At = argmaxa UCBt(a)
Observe reward Rt

nt(At)← nt(At) + 1 ▷ Update count of chosen action
Qt(At)← Qt(At) +

1
nt(At)

(Rt −Qt(At)) ▷ Update estimate of action value
end for

UCB2 refines the exploration-exploitation balance by varying the amount of exploration
over time, based on a parameter that controls the degree of exploration. Algorithm: UCB2
introduces a more complex formula for calculating the confidence bounds, including an
exploration parameter that can be adjusted. It uses a mechanism of "epochs" where each
arm, once selected, is played a certain number of times, with this number increasing as the
algorithm progresses.

UCB Tuned adapts its exploration strategy based on the observed variance in rewards,
potentially leading to more efficient exploration than UCB1, which uses a fixed exploration
term. UCB Tuned is more complex than UCB1 because it requires additional compu-
tations to estimate the variance of rewards for each arm. In practice, UCB Tuned can
outperform UCB1, particularly in environments where the reward distributions have signif-

74

icant variance, as it more effectively allocates exploration efforts. UCB Tuned needs to
track the reward variance for each arm, which can increase the storage and computational
requirements compared to UCB1. While UCB Tuned can offer advantages in specific
scenarios, its performance benefit needs to be weighed against the increased complexity
and computational cost, especially in resource-constrained environments.

LinUCB

Algorithm 7.2. Linear Upper Confidence Bound (LinUCB).
Initialize parameters: α (confidence level)
for each arm a = 1, 2, . . . , K do

Initialize Aa ← Id ▷ Id is the d-dimensional identity matrix
Initialize ba ← 0d ▷ 0d is a d-dimensional zero vector

end for
for each round t = 1, 2, 3, . . . do

Receive context xt,a for each arm a
for each arm a = 1, 2, . . . , K do

θa ← A−1
a ba ▷ Compute parameter vector

pt,a ← θ⊤a xt,a + α
√
x⊤t,aA

−1
a xt,a ▷ Compute UCB

end for
Choose arm at = argmaxa pt,a
Observe reward rt
Aat ← Aat + xt,atx

⊤
t,at

bat ← bat + rtxt,at
end for

75

Appendix 8 – Multi-Armed Bandit System Architecture in
the Cloud

Figure 8.1. AWS architecture for RL systems.

To implement the explore-exploit strategy in Amazon SageMaker RL, there is an iterative
training and deployment system that does the following:

1. Presents the recommendations from the currently hosted contextual bandit model to
the user, based on her features (context);

2. Captures the implicit feedback over time;
3. Continuously re-trains the model with incremental interaction data.

76

Appendix 9 – Simulator UI

Figure 9.1. Simulator UI.

77

Appendix 10 – Hyperparameter Tuning

0 250 500 750 1000 1250 1500 1750 2000
Timestep (t)

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

Su
cc

es
s r

at
e

Success rates [t0 = 0, T = 2000, msgs = 330k]

-greedy: 0.05: = 0.795, = 67.6k
-greedy: 0.25: = 0.770, = 76.2k
-greedy: 0.45: = 0.741, = 85.7k
-greedy: 0.65: = 0.715, = 94.0k
-greedy: 0.85: = 0.689, = 102.6k

Figure 10.1. ϵ−greedy tuning.

250 500 750 1000 1250 1500 1750 2000
Timestep (t)

0.80

0.82

0.84

0.86

0.88

0.90

Su
cc

es
s r

at
e

LinUCB Tuning
 Success rates [n = 50, t0 = 25, T = 2000, msgs = 500k]

LinUCB: 2: = 0.856, = 71.1k
LinUCB: 4: = 0.856, = 71.9k
LinUCB: 6: = 0.856, = 71.3k
LinUCB: 8: = 0.856, = 72.1k
LinUCB: 10: = 0.856, = 71.8k
LinUCB: 12: = 0.856, = 72.3k
LinUCB: 14: = 0.855, = 72.0k
LinUCB: 16: = 0.856, = 72.0k
LinUCB: 18: = 0.855, = 72.8k
LinUCB: 20: = 0.852, = 74.2k

Figure 10.2. Performance metrics for LinUCB with different δ.

Table 10.1. Performance metrics for LinUCB with different δ details.

δ Mean Max Min Spread Delivered volume

2 0.857769 0.857973 0.837751 0.020222 428820 / 499806

6 0.857389 0.857459 0.850696 0.006763 428563 / 499806

10 0.856388 0.856926 0.853201 0.003725 428297 / 499806

78

	Introduction
	Problem
	Thesis Objectives
	Design Goal and Requirements
	Novelty
	Thesis Outline

	Background
	Reinforcement Learning
	Recommendation Systems
	Multi-Armed Bandit
	Control Theory
	Upper Confidence Bounds
	Contextual Multi-Armed Bandit

	Federated Learning
	Privacy Protection
	Data Poisoning
	Federated Multi-Armed Bandits
	Horizontal Federated Learning
	Vertical Federated Learning

	Prior Work and Literature Review
	Multi-Armed Bandits with Cost Subsidy
	Collaborative Multi-Agent Heterogeneous Multi-Armed Bandits
	Multi-Armed Bandit with Budget Constraint and Variable Costs
	Multi-objective Contextual Multi-Armed Bandit With a Dominant Objective
	Federated Multi-Armed Bandits
	Federated Linear Contextual Bandits
	Harnessing the Power of Federated Learning in Federated Contextual Bandits

	Considered Alternative Approaches

	Operations
	Infrastructure
	Cold Start and Data Limitations
	Data Drift
	Monitoring
	Distribution of Arm Pulls
	Take Rate

	Methodology
	Technology
	Simulation Framework
	Federated Learning
	Generating Data Sets

	Experiments
	Test Cases

	Results
	Baseline
	Algorithms Considered
	Explore then Commit
	Thompson Sampling
	Softmax

	Upper Confidence Bound Tuned
	Contextual Bandits
	Cooperative Algorithms
	Collaborative Bandits

	Analysis
	Evaluation Criteria
	Base Methods
	Contextual Bandits
	UCB Monitored
	Client-Centric Multi-Armed Bandits
	Collaborative Memory Sharing UCB
	Simulation Setup
	Research Question

	Future Work
	Summary
	Objectives
	Contributions
	Conclusion

	References
	Appendix 1 Non-Exclusive License for Reproduction and Publication of a Graduation Thesis
	Appendix Machine Learning Approaches
	Appendix Hoeffding Inequality
	Appendix Reinforcement Learning Methods
	Appendix Multi-Armed Bandit and Federated Learning Methods
	Appendix Reinforcement Learning Algorithm Groupings
	Appendix Algorithms
	Appendix Multi-Armed Bandit System Architecture in the Cloud
	Appendix Simulator UI
	Appendix Hyperparameter Tuning

