TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Marten Kask ~ 183000IABM
BLOCKCHAIN-BASED MEMBERS
MANAGEMENT FOR THE UNIFIED EXCHANGE
PLATFORM

Master’s Thesis

Supervisor: Ahto Buldas
PhD
Co-Supervisor: Margus Freudenthal
PhD

Tallinn 2020



TALLINNA TEHNIKAULIKOOL

Infotehnoloogia teaduskond

Marten Kask 183000IABM

UNIFIED EXCHANGE PLATFORMI
PLOKIAHELAL POHINEV LIIKMEHALDUS

magistritdo

Juhendaja: Ahto Buldas
PhD

Kaasjuhendaja: Margus Freudenthal
PhD

Tallinn 2020



Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Marten Kask

17.05.2020



Abstract

The goal of this thesis is to improve the existing model of UXP (Unified eXchange
Platform) Registry to reduce the need to trust to the correct behavior of the Governing
Authority whilst considering the advantages of new technologies. The thesis describes the

blockchain-based solution for the UXP Registry that uses Hyperledger Fabric platform.

UXP Registry is a server that is used to manage security policy of the UXP instance
and distribute global configuration to the security servers of all members. It acts as a
trusted third party: all the members have to trust that it does not abuse its obligations.
One way to reduce the risk that the operation of the UXP instance is interfered because
of the centralized management, is to replace UXP Registry as trusted third party with a

distributed ledger, e.g., blockchain.

Hyperledger Fabric is selected as a platform to develop blockchain-based UXP Registry.
It is described how the smart contracts and other features of the platform can be used to
deploy the current and perspective UXP Registry processes. It is discussed which more
perspective improvements could be implemented when replacing centralized UXP Registry

with a blockchain-based platform.

It can be concluded that the need to trust the correct behavior of the Governing Authority
can be reduced if the blockchain-based UXP Registry is implemented. Mostly because
blockchain helps to increase transparency in the actions accomplished through UXP

Registry.

The thesis is in English and contains 50 pages of text, 5 chapters, 6 figures, 1 tables.



Annotatsioon

Unified eXchange Platformi plokiahelal pohinev liikkmehaldus

Antud magistritdd eesmirk on tdiustada olemasolevat UXP (Unified eXchange Platform)
Registry mudelit, et viahendada usaldust juhtiva asutuse korrektse kéditumise vastu, vottes
arvesse tehnoloogia arengut. To06 kirjeldab plokiahelal pohinevat UXP Registryt, mis
kasutab Hyperledger Fabric platvormi.

UXP Registry on server, mida juhtivad asutused kasutavad UXP instantsi turvapoliitika
haldamiseks ning globaalse konfiguratsiooni jagamiseks koikide liikmete turvaserveritele.
See kditub kui usaldatav kolmas osapool, mis tdhendab, et kdik litkkmed peavad usaldama,
et juhtiv asutus ei kuritarvitaks oma kohustusi. Uks voimalus, kuidas vihendada riski, et
UXP instantsi to0 ei oleks hiiritud keskse juhtimise tdttu, on asendada UXP Registry kui
usaldatav kolmas pool hajusraamatuga.

Uks hajusraamatu tehnoloogiatest on plokiahel - andmestruktuur, mis koosneb jirjestikku
andmeblokkidest, mis luuakse méiratud aja voi siindmuse tagajirel. Selles t60s tutvus-
tatakse plokiahela pohikontseptsioone ning turvaomadusi, samuti analiilisitakse mitmeid
varasemaid plokiahelal pohinevaid lahendusi, mis on registritega seotud. Selleks, et leida

sobivaim plokiahela lahendus, analiiiisitakse ka olemasolevaid UXP Registry protsesse.

Hyperledger Fabric on valitud plokiahelal pohineva UXP Registry vilja tootamiseks. Kir-
jeldatakse, kuidas nutilepinguid ja teisi selle platvormi erisusi saab kasutada, et juurutada
plokiahelal pohinevad olemasolevaid ja perspektiivseid UXP Registry protsesse. Kirjel-
datakse Hyperledger Fabricu komponente ning selgitatakse, kuidas neid kasutatakse vilja
pakutud UXP Registry arhitektuuris. Arutletakse, milliseid perspektiivseid tdiustusi saaks
veel teha, kui asendada keskne UXP Registry plokiahelal pdhineva lahendusega.

Jareldatakse, et usaldust juhtiva asutuse korrektse kditumise vastu saab vihendada, kui
juurutada plokiahelal pohinev UXP Registry. Eelkdige selle tottu, et plokiahel aitab UXP

Registry kaudu tehtavate toimingute ldbipaistvust suurendada.

Loput6o on kirjutatud inglise keeles ning sisaldab teksti 50 lehekiiljel, 5 peatiikki, 6 joonist,
1 tabelit.



List of abbreviations and terms

API Application Programming Interface
DDoS Distributed Denial-of-Service

DSES Decentralized Service Eco-System
FaaS Federation-as-a-Service

GDPR General Data Protection Regulation
IoT Internet-of-Things

NIIS Nordic Institute of Interoperability Solutions
PoW Proof of Work

REST Representational state transfer

SLA Service Level Agreement

SOAP Simple Object Access Protocol

SWIM System Wide Information Management
TLS Transport Layer Security

UXP Unified eXchange Platform

WSDL Web Services Description Language



Table of Contents

I Introduction|
[.1 Background of the X-Road andthe UXP| . . . . . .. ... ..
(I.I.L. UXPConcepty . .. ... ... ... .. ... ....
L2 Research Probleml. . . . .. .. ... ... .. ... .....
1.3 Research Methodology . . . . . ... ... ... .......
(.4 Structure of the 1hesis| . . . . . .. . . .. ... ... .. ..

UXP Registry|

R.1  Trust Services Management|. . . . . . .. ... ... .....

[ZZZ7 Member Managemend . . . . . . . ... .. ... ... ....

R.3  Security Server Management| . . . . . . . . . . . .. ... ..

IZ .4 Configuration Management| ..................

Blockchain lechnology

3.1 General Concepty . . . . . ... ... ... ... ...,
3.2 Blockchain Applications . . . . . . . . . . . ... ... ..
2.1 Blockchain Applications on Registries| . . . . . . . .

Design of the Improved UXP Registryl

4.1 Evaluation of the UXP Registry and Blockchain Overview . . . .. . ..

a1

Deployment and Initialization] . . . . . ... ... ... .....

#.2.2  UXP Registry’s Current Processes in Hyperledger Fabric| . . . . .

K4.2.3  UXP Registry’s Improved Processes in Hyperledger Fabrid . . . .

4.3 _Evaluation

Bibliography/

10
10
11
15
16
17

18
18
19
21
24

27
27
30
31

34
34
35
35
38
41
42
43

45

47



List of Figures

(1 UXP Architecturel . . . . . . . . . . ... 13
[2 Simplified Process of UXP Message Exchangef. . . . . . ... ... ... 14
3 Typical Blockchain Structure [I] . . . . . . ... ... . ... ... ... 29
4 Proposed UXP Architecture Using Hyperledger Fabric Technology| . . . . 37
[5 Sequence Diagram of the Individual and Multi-Party Processes| . . . . . . 40
[6 Sequence Diagram of the Improved Process| . . . . ... ... ... ... 42




List of Tables

I

Implementing Smart Contracts for Existing Use Cases|




1 Introduction

This chapter introduces the concept of this thesis. Research problem is outlined and
research questions formulated, along with, the aim of the research and expected outcomes

are defined with the presentation of the proposed research methodology.

1.1 Background of the X-Road and the UXP

The X-Road project was commenced in Estonia to enable secure data transfer between
different state databases in 2001[2, pp. 572-573]. Estonia had multiple state registers
digitized, but these systems did not have efficient interoperability with each other. Legal
and technical reasons were the main aspects why the registers were not effectively inte-
grated. The biggest challenge in the technical view were that the registers were developed
independently, i.e., different technologies were used. Hence, there existed a need for a
platform which would allow to interconnect different information systems regardless their
technical architecture.

Moreover, state registries often process personal data that might be needed in real time to
make significant decisions, thus, high security requirements had to be taken into account
during the development of the X-Road [2, pp. 572-573]. The initiation of X-Road
also made possible to share obligation of offering public services with private sector,
considering that public sector does not have enough capability to serve the purpose solely
[3, p. 36]. To accomplish the secure technology for data transfers between registries,
distributed architecture is used in the design of X-Road [4, p. 567]. The pattern where
databases are centralized had to be prevented, as the whole X-Road platform might be
affected in case of failure in the central database. High availability and scalability are
another essential properties of X-Road: multiple servers can be used in parallel to distribute

the load between servers and increase the data processing capacity.

The main components of the X-Road are security servers that are associated with various
databases [4), p. 567]. The information systems can exchange data through the security
servers which communicate directly with each other using cryptographically protected
channels [S, p. 2795]. The functionality of X-Road is grounded on the service-based

principle. Hence, services are provided over common standards, e.g., SOAP (Simple

10



Object Access Protocol) and WSDL (Web Services Description Language), to enable data
processing operations, i.e., writing data, reading data and developing other data based
business logic. Security servers are fundamental to allow integration of databases as the
particular servers encrypt and decrypt communication, keep the records of exchanged
messages and authorize organizations access to the data. Registry of certified security
servers is managed and distributed to other security servers by the central server. For

monitoring status of security servers, monitoring servers are used.

The X-Road has been in continuous development. The first version supported exchanging
messages between servers using XML-RPC protocol, but the second version released in
2003 adopted the SOAP protocol [6, pp. 628—629]. One year later, third version was
developed due to need of more advanced user administration system. Fourth version of
X-Road which contained improvements in the security of data exchange was released
in 2006 and remained as the main version of structure in large information systems in
Estonia for around four years. In 2010 fifth version was released as result of developments
in information technology, e.g., the style of WSDL was switched from RPC/Encoded to
Document/Literal wrapped.

In 2012, Cybernetica AS, the creator and maintainer of X-Road versions 1 to 5, started
a product development project with the goal of creating a version of X-Road that could
be deployed outside Estonia [[7]]. Based on the product prototype, Cybernetica created
X-Road version 6 that is the currently active X-Road version used in Estonia and Finland.
Continuing the product development track, the prototype has evolved to Cybernetica UXP®
(Unified eXchange Platform) product that targets export markets. For example, UXP has
been implemented in country level in Greenland and Ukraine [{], but also, the system has
been adapted in an intraorganizaitonal set up in Japanese trust-bank [9]]. In 2018, X-Road
development was taken over by NIIS (Nordic Institute of Interoperability Solutions, a
non-profit established by Estonian and Finnish governments) [[10] whereas Cybernetica
has continued the UXP development and used it as the basis of several e-government
solutions. Although the two systems are developed by separate organizations with separate

requirements, they share the same roots and the same basic working principles.

1.1.1 UXP Concepts

Generally, a installation of UXP system (UXP instance) contains of the following parties

in the broader sense [11]:

» Governing Authority is an organization that administrates the whole UXP instal-

lation, i.e., establishes security policy and provides technical support for UXP

11



members.

m UXP Members are the individuals (e.g., organizations) which would like to ex-
change information with each other. It is assumed that each member has an informa-
tion system (i.e., Subsystem in UXP infrastructure) that is connected with another
member’s information system.

m Trust Services Providers are the entities that supply certification and timestamp-

ing services.
However, in the technical view, the parties consist of the following components [[11]]:

m UXP Registry is a server that is under management of Governing Authority. This
component stores information about UXP Members and their UXP Security Servers.
Moreover, it stores the security policy of the installation and distributes global
configuration to the security servers of all members. Concepts of the UXP Registry
are further examined in the upcoming chapter.

m UXP Security Server is used to connect UXP member’s information systems to the
UXP infrastructure. It is responsible for forwarding the messages securely between
the UXP members. All the messages signed, logged and timestamped by the UXP
security servers to ensure their proof value.

— Management Services’ Security Server is a security server associated with
the UXP Registry that provides management services for the other security
servers in UXP instance.

m UXP Service is a service provided over UXP infrastructure. Communication is
implemented as standardized SOAP or REST (Representational state transfer) web
services. This ensures that organizations do not need extensive software development
to join the UXP platform.

— Service Provider is a UXP member or subsystem that provides service over
UXP infrastructure. Service providers design and implement services and make
them available to service clients.

— Service Client is a UXP member or subsystem that uses services provided by
UXP service providers over UXP infrastructure.

— Management Services are services that are mediated by the UXP Registry
using the Management Services’ Security Server. These services are called by
other security servers in UXP instances to register changes in configuration
made by the security server administrator (e.g., registering new subsystems).

m Subsystem represents a UXP member’s information system that must be declared

by UXP members to consume or provide UXP services.
The components of UXP in an example installation are provided in the Figure

12



Member B ‘

Global
Canfiguratian

((

Subsystem

Member A
. r )
:r _Se-:urlty Server UXP Messages Security Sewer&
e N
0—— —— m0
m! o— O— m
V— «—

Global Configuration

Global
Configuration

Management Requests

((

Subsystem )

Global Configuration

! 5 Management Requests

Timestamping Certification
services services

[=r ] [=: ]
ar., —— Ol
(=1} (=1 ]
Management Services Ul'(F"REgstry
Security Server
[«
V—

Global
Canfiguration

J

Figure 1. UXP Architecture

Governing Authority

The communication is UXP bases on synchronous service calls [L1]]. It is a task of service

providers to design UXP services and grant access rights for the service clients. To make

the service available to the service client, both parties have to enter into agreement that

specifies the following attributes:

= terms of the service;

m SLA (service level agreement) by the provider;

m security requirements that the service client must meet.

UXP allows members to communicate without intermediates [11], that means, all the

information is exchanged directly over encrypted and mutually authenticated channel. It is

important to note that Governing Authority does not participate in the actual information

exchange, 1.e., contents of the messages are not revealed. The TLS (Transport Layer

Security) protocol is used to set up a secure channel between security servers. Mutual

certificate based authentication is used as well, that means, service provider and service

client have to present a valid certificate that is registered by Governing Authority. To

13



illustrate the process of message exchange between members in the initialized UXP
instance, the Figure 2|is presented. In the figure, the steps that require valid information
from the global configuration provided by the UXP Registry are explicitly outlined. In
other words, UXP members are not able to communicate with each other using UXP
infrastructure if the global configuration provided by the UXP Registry is not available

and/or is corrupted.

g
:

Bervice Client's UXF Registry Service Provider's Bervice Provider
Security Server Security Server

2
2

1: Reguest Global Configuration

>
2: Global Cenfiguration

3: Service request

4 Start TLS connection

5: Authenticationl certificate

& Verfy service provider”
authentication ocrt'rﬂcatcl
| 7: Sign request I
i B: Log the request and I
timestamp the log entry |
9 Encrypt request if I
required 10: Scndl UXP request

i1 1: Reguest Global Conﬂguratio?

-—

| 12 Glebal Configuration

13: Verfy service client's
authentication certificate

|

|

I

| | 14: Decrypt request

| if required

: | 15: Log the request and
| timestamp the log entry
| 16: Senice request
! »
|

|

|

|

|

|

|

17: Service repsonse

18: Sign response

19: Log the response and
timestamp the log entry
20: Encrypt response if
required

+
|
required

|

|

23: Log the response I

and timestamp the log ... |

24: Sewice response |
|

|

|

|

~
n
o
El
Fe
[
=
hl
=}
i@
z
El
@
o

Figure 2. Simplified Process of UXP Message Exchange

The UXP provides various supplementary components that support carrying out specific

processes that are out of scope this thesis:

s UXP Monitoring Server collects and presents performance and statistical informa-
tion from security servers. This server is necessary in UXP to discover and debug
problems in the infrastructure. Also, it helps to discover usage that does not follow
usual patterns, i.e., it is possible to discover potential unauthorized use of services
[L1].

14



s UXP Connector is an optional application to ease the implementation of UXP
services. Itis a interface between UXP security server and member’s information
system’s SQL (Structured Query Language) database [[12]. The concept of the
Connector is that security server sends a service request to the Connector where the
request is converted to an SQL statement. Then this request run on a database and
the response forwarded to the Connector. The response is transformed into UXP
message and sent back to the initial security server.

m UXP Portal is an optional component in UXP that provides a universal user interface
for consuming UXP services [12]. The Portal uses UXP security server to download a
list of all UXP members that provide services in the corresponding installation. Then
the services are imported to the Portal using their WSDL (Web Service Description
Language) descriptions. According to the service description, portal dynamically
creates the input form which can be used by users to conveniently consume the
services.

» UXP Directory is an optional component that provides an overview of all UXP
installation’s members, information systems and services [[11]. Similarly to the UXP
Portal; members, information systems and services are downloaded via security
server and provided in a user-friendly web interface or REST API (Application

Programming Interface) .

1.2 Research Problem

The UXP system provides a data exchange infrastructure where instead of a centralized
registry the parties exchange information directly with each other. Although, the man-
agement in the UXP is coordinated centrally by the UXP Registry. The registry server is
maintaining the list of members and distributes it among the members of the infrastructure
[L1]. In every instance of the UXP, there exists one central agency that is responsible for
establishing communication standards and security policies. However, that brings another
challenge that the UXP Registry acts as a trusted third party: all the members have to
trust that the party does not misuse its obligations [13]. Due to centralized data storage,
another issue arises that an attacker may take unauthorized control over the database and
cause damage to the parties that need to access to the valid data. For example, if the
information about valid certification authorities and members stored in the UXP Registry
is tampered with, the invalid data is made available to the security servers and thus, the

secure communication between UXP members will be disturbed.

One way to reduce the risk that the communication between UXP members is interfered
because of the centralized management, is to replace UXP Registry as trusted third party

with a distributed ledger [13]. One of the distributed ledger technologies is blockchain:

15



a data structure consisting of linked records that are generated after designated time or
event [[14]. Despite the popular usage of blockchain in a cryptocurrency, it is further used
in smart contracts as well, i.e., validating other types of contracts. One influential feature
of blockchain is the data integrity [[15] which is well consistent with the concept of the
UXP [11].

According to the need to improve the existing model of UXP Registry to reduce the need
to trust to the correct behavior of the Governing Authority and whilst considering the
advantages of new technologies, the research questions were formulated according to the
Trivium method, i.e., grammar, formal logic and rhetoric [16]. The fundamental question
which is presented below is divided into three sub-questions that are followed with the

grammar questions:

m How to reduce the need to trust the correct behavior of the Governing Authority that
manages the UXP Registry?
— RQ 1: How do the requirements for UXP Registry influence the design of the
improved UXP Registry?
* Q 1.1: What are the existing functions of the UXP Registry?
* Q 1.2: What are the current business processes of the UXP Registry?
% Q 1.3: What kind of data must be stored in the UXP Registry?
— RQ 2: How can blockchain technology reduce the need to trust the correct
behavior of the Governing Authority?
% Q 2.1: What are the attributes of blockchain?
x Q 2.2: What are the features of blockchain that can be used to fulfill the
requirements of the UXP Registry?
% Q 2.3: What are the features of blockchain that can be used to increase the
transparency in UXP management?
— RQ 3: How to design new model of the UXP Registry that uses blockchain
technology?
% Q 3.1: What are the existing blockchain implementations that can be taken
into account when developing new version of the UXP Registry?
* Q 3.2: What is the proposed architecture for improved UXP Registry?
% Q 3.3: What are the prospective disadvantages of the proposed solutions?

1.3 Research Methodology

The aim of this research is to analyze the perspective of the usage of blockchain in UXP
Registry. Further, the aim of this research is to verify whether the application of blockchain

is consistent with the requirements of the UXP Registry and would improve the security

16



properties. Thus, the considered research technique is the design-science methodology.
This is because it meets the corresponding requirements [17, p. 83], e.g., the aim is
to produce a viable artifact, the objective is a technology-based solution to a relevant
business problem and the research is planned to be presented to the technology- and

business-oriented public.

During the study, it is planned to examine the reasons behind of the UXP Registry ar-
chitecture model. That includes analyzing the present documentation of UXP Registry
and processes within the system. In addition, the existing literature of blockchain and its

applications on diverse registries will be evaluated to discover feasible appliances.

1.4 Structure of the Thesis

In the first chapter, introduction to the topic is presented by describing the background of
UXP, research problem and the used methodology. In the second chapter the main concepts
of UXP Registry are analyzed further and its processes and weaknesses are outlined. The
third chapter introduces the main characteristics of the blockchain technology and its
applications with explanations how the features of existing solutions were improved are
summarized. In the fourth chapter, the analysis of UXP Registry and blockchain applica-
tions is evaluated and the appropriate solution to improve UXP Registry is introduced. In

the final chapter, conclusion of the thesis is provided.

17



2 UXP Registry

The purpose of this chapter is to give an overview of the UXP Registry’s role in UXP
instance and describe its use cases in general. The main role of the UXP Registry server is
to manage the lists of UXP members and security servers [11]. Furthermore, it maintains
the list of trusted certification and time-stamping authorities. This info is put together
into global configuration and made available to the security servers. To maintain a high-
availability of the system, UXP Registry can also be installed in cluster to replicate
database between the nodes [18]]. It is expected that the Governing Authority maintains
the appropriate security conditions (e.g., firewall and other inter-organizational measures)

where unauthorized persons cannot access UXP Registry’s database.

2.1 Trust Services Management

In UXP, organizations’ information system exchange data directly with each other [11]. To
ensure that the parties are mutually authenticated and the exchanged messages are usable as
evidence in courts, the qualified certification services are essential to prove the ownership

of a public key. There are three different types of certificates used in UXP infrastructure:

m authentication certificates to establish secure communications channels;

m signing certificates to digitally sign exchanged messages;

m encryption certificates to encrypt exchanged messages in addition to the encryption
provided by the TLS protocol.

Furthermore, timestamping services are used “to prove the existence of certain data before
a certain point of time without the possibility that the owner can backdate the timestamps”
[19]. Certification services and time-stamping services are part of a security policy that is
defined by the Governing Authority and managed using the functionalities provided by the
UXP Registry [11].

Using the web user interface, the administrator who has the access rights performs the

following processes [[19]:

18



Use Case 1: Manage approved certification services

m Actor:
— Registry administrator
m Preconditions: -
m Postconditions:
— Approved certification service is updated.
m Main Success Scenario:
1. Registry administrator whether:
(a) enters new,
(b) edits existing or
(c) deletes the approved certification service.
2. System validates and stores the entered information.

3. System logs the action to the UXP Registry audit log.

Use Case 2: Manage timestamping services

m Actor:
— Registry administrator
m Preconditions: -
m Postconditions:
— Timestamping service is updated.

Main Success Scenario:

1. Registry administrator whether:
(a) enters new,
(b) edits existing or
(c) deletes the timestamping information.
2. System validates and stores the entered information.

3. System logs the action to the UXP Registry audit log.

In addition, supplementary processes can be carried out to view the details of the registered

certification services, timestamping services and their details.

2.2 Member Management

Maintaining the list of organizations that use the UXP infrastructure to communicate with
each other, is a responsibility of the Governing Authority [11]. UXP Registry provides the
following functionalities for administrators to manage the list of members and other UXP

components that are necessary for communication over UXP infrastructure [20], [21].

19



Use Case 3: Manage UXP Members

m Actor:
— Registry administrator
m Preconditions:
— At least one member class has been configured.
m Postconditions:
— Member information is updated.
m Main Success Scenario:
1. Registry administrator whether:
(a) enters new,
(b) edits existing or
(c) deletes the member information.
2. System validates and stores the entered information.
3. System logs the action to the UXP Registry audit log.

To group similar UXP members within UXP instance, member class attribute is imple-
mented in UXP Registry [[11]. For example, in Estonia class “GOV” is used to distinct
public organizations in X-Road instance [22].Thus, UXP Registry supplies the operations
to be carried out by the authorized administrator stated below [21]:

Use Case 4: Manage member classes

m Actor:
— Registry administrator
m Preconditions: -
m Postconditions:
— Member class information is updated.
m Main Success Scenario:
1. Registry administrator whether:
(a) enters new,
(b) edits existing or
(c) deletes the member class information.
2. System validates and stores the entered information.
3. System logs the action to the UXP Registry audit log.

To simplify service access rights in the instance level services, global groups can be set up

to facilitate the management of UXP subsystems that use the same services. Therefore, the

following operation is provided in UXP Registry [23]]:

20



Use Case 5: Manage global groups

m Actor:
— Registry administrator
m Preconditions: -
m Postconditions:
— Global group information is updated.
m Main Success Scenario:
1. Registry administrator whether:
(a) enters new,
(b) edits existing or
(c) deletes the global group information.
2. System validates and stores the entered information.

3. System logs the action to the UXP Registry audit log.

Similarly to the trust services management, details of the registered UXP members, global
groups and member classes can be viewed using the corresponding functions provided by
the UXP Registry.

2.3 Security Server Management

Maintaining the list of UXP Members’ security servers and related components, is another
responsibility of a Governing Authority [[11]. UXP Registry provides the following

functionalities for administrators to manage the list and settings [20], [21]].
Use Case 6: Manage UXP Member’s security servers

m Actor:
— Registry administrator
m Preconditions:
— UXP Member has been registered in UXP Registry.
— Either:
% security server has been registered in UXP instance (in case of editing
existing information or deleting the security server) or
* security server administrator has sent a security server registration request
(in case of registering new security server).
m Postconditions:
— UXP Member’s security server information in UXP instance has been updated.

m Main Success Scenario:

21



1. Registry administrator whether:
(a) enters new,
(b) edits existing or
(c) deletes the security server information.
2. Registry administrator uploads the authentication certificate (in case of regis-
tering new security server).
3. System validates and stores the entered information.

4. System logs the action to the UXP Registry audit log.

Use Case 7: Manage UXP Member’s security server’s authentication and encryption
certificates

m Actor:
— Registry administrator
m Preconditions:
— UXP Member has been registered in UXP Registry.
— Either:
* UXP Member’s security server has been registered in UXP instance; or
* UXP Member’s security server administrator has sent a security server
registration request (in case of registering new security server).
— Security server administrator has sent a certificate registration or deletion
request.
m Postconditions:
— UXP Member’s security server certificate information in UXP instance has
been updated.
m Main Success Scenario:
1. Registry administrator whether:
(a) uploads new
(b) or deletes the existing security server authentication or encryption certifi-
cate.
2. System validates and stores the entered information.

3. System logs the action to the UXP Registry audit log.
Use Case 8: Manage UXP Member’s subsystems
m Actor:
— Registry administrator
m Preconditions:

— UXP Member has been registered in UXP Registry.

22



m Postconditions:
— UXP Member’s subsystem information in UXP instance has been updated.
m Main Success Scenario:
1. Registry administrator whether:
(a) enters new
(b) or deletes the existing UXP Member’s subsystem information (except if
the subsystem is registered as a security server client).
2. System validates and stores the entered information.

3. System logs the action to the UXP Registry audit log.
Use Case 9: Manage UXP Member’s security server client

m Actor:
— Registry administrator
m Preconditions:
— UXP Member has been registered in UXP Registry.
— UXP Member’s security server has been registered in UXP Registry.
— Either:
* security server client has been registered in UXP instance (in case of
editing or deleting existing security server client) or
* security server administrator has sent a security server client registration
request (in case of registering new security server client).
m Postconditions:
— UXP Member’s security server client information in UXP instance has been
updated.
m Main Success Scenario:
1. Registry administrator whether:
(a) enters new
(b) or deletes the existing UXP Member’s security server client information.
2. System validates and stores the entered information.
3. System logs the action to the UXP Registry audit log.

Similarly to the trust services management, details of the registered security servers,

subsystems and their certificates can be viewed using the corresponding functions provided
by the UXP Registry.

23



2.4 Configuration Management

The main role of UXP Registry is to distribute configuration (i.e., approved trust ser-
vices and registered UXP members) to the security servers of all members [24]. After
a designated time, system generates a configuration files that are made available using
configuration anchor, i.e., information that is used by the security servers to access the con-
figuration source and verify the configuration. To ensure that the configuration maintains
its authenticity, it is signed by the private key of UXP Registry. The configuration contains
the information that is required for establishing UXP communication between security

servers, i.e., the information that has been specified in the previous sections[2.1] [2.2] and

2.3l

Besides, as all the information that is necessary to generate the configuration is maintained
centrally in the UXP Registry, backup functionality is provided to ensure that the UXP

Registry could be efficiently restored after malfunctions [20].
Use Case 10: Distribute global configuration

m Actors:
— UXP Registry
— Security server
m Preconditions:
— System configuration contains the necessary data.

Postconditions:

— Security server has received global configuration.
m Main Success Scenario:

1. UXP Registry generates the configuration files from the system configuration.
UXP Registry signs the configuration files with its private key.
Security server requests valid configuration from the UXP Registry.
UXP Registry provides the valid configuration files to the security server.
Security server verifies that the signature of the configuration files is valid.

Security server verifies that the configuration files are valid.

N R wN

Security server stores the configuration files.

Use Case 11: Backup UXP Registry

m Actors:
— Registry administrator

m Preconditions: -

24



m Postconditions:
— Back up file has been created.
m Main Success Scenario:
1. Registry administrator selects to back up the UXP Registry configuration.
2. System creates the backup file that contains the system configuration.
3. System stores the entered information.

4. System logs the action to the UXP Registry audit log.

Use Case 12: Restore UXP Registry

m Actors:
— Registry administrator
m Preconditions:
— Back up file has been created.
m Postconditions:
— UXP Registry configuration has been configured according to the backup file.
m Main Success Scenario:
1. Registry administrator selects to restore the UXP Registry configuration.
2. System validates the backup file.
3. System restores the configuration from the backup file.

4. System logs the action to the UXP Registry audit log.

The processes described in the previous sections present that the UXP Registry has a major
role in maintaining the policy that is agreed by the members of UXP instance, e.g., which
trust services are allowed to be used to assure a secure channel between the members to
exchange UXP messages. That confirms that the UXP Registry upholds a role of the trusted
third party, in other words, all the members have to trust that the party does not misuse its
power and provides its services conscientiously [13]]. Because of this data is maintained
centrally (in the best case scenario, high-availability is used to reduce the accompanying
risks), another issue arises that an attacker may gain control over the central database and

invalidate its assurance to provide the necessary configuration for UXP members.

Currently, the opportunities to control whether the UXP Registry has been behaved ac-
cording to the agreements are limited: although the most actions made by the Registry
administrator are logged in audit log, the access to the logs is not publicly available for
the members. Furthermore, the actions maintained in the audit log do not reflect the
actual reasons behind the actions, rather they simply state the fact of the action. That
means, members would have to request external audit to determine whether the Governing

Authority has been acted according to the agreements. This is why the lack of transparency

25



and the threats that accompany centralized registries has led various registries to imple-
ment distributed ledgers, i.e., blockchain technology to eliminate these issues. The main
difference between using a third party and a distributed ledger system is that the ledger
eliminates the need to trust any particular party [13]].

26



3 Blockchain Technology

3.1 General Concepts

Blockchain is a recent discovery in secure computing that provides decentralized authority
in an open networked system [14]. The main concept of blockchain is to replace the
centralized database with authoritative access control. It is created and maintained as a
hierarchical and chronologically-ordered chain of blocks with timestamp since its inception
in 2009 when the Bitcoin was launched. It allows the communication between untrusted

parties without the existence of a middle man [235].

Blockchain is often defined as a distributed ledger [15]. A ledger is a data structure
where the transactions are formed into an ordered list, e.g., monetary transactions between
multiple financial institutions. In general, blockchain is a distributed database that logs an
evolving list of transaction records by organizing them into a hierarchical chain of blocks.
Each block stores a list of records and is chained to the previous one, by including the hash
value of it [[26]].

There are several attributes that the data layer includes [27]]: block, structure of the chain,
hash function, Merkle tree, timestamp, asymmetric encryption etc. Block, in turn, consists
of head and body. In the block head, the address of the previous block and the target hash
value of the current block, are included. Also, the system encloses all security transaction
records according to security requirements in the block. Every blockchain starts with a
special block, called genesis [26], which does not reference a previous block and must be

known from a start by all the peers.
There are two fundamental building blocks for implementing the blockchain [[14]]:

» Hash pointer is a cryptographic hash of the data that points to the location in which
the data is stored. Therefore, it is possible to use the hash pointer to check whether
the data has been tampered with or not, because they are used to link data blocks
together. In case that an attacker attempts to change data in any block in the whole
chain, the hash pointers of all previous blocks have to be changed. Ultimately, the

adversary has to stop tampering because he will not be able to falsify the genesis

27



that has generated once the system has been constructed.

m Merkle tree is an additional structure used for building blocks. It is a binary search
tree where tree nodes are linked to one another using hash pointers. Nodes are
grouped separate at joints, 1.e., each time two nodes at the lower level are grouped
into one at the higher level. Thus, new data node is created that contains the hash
value of each. This process is repeated until the root of the tree is reached. It prevents
data from tampering by crossing down through the hash pointers to any node in the
tree, i.e., when an attacker tries to tamper data at a leaf node, hash value is changed
in its parent node. That means, all nodes on the path from the bottom to the top need
to be changed, but the initial value of genesis is known to all parties and thus, the
attack will be revealed. Block head must be time-stamped [27] to indicate the time

of this transaction for ensuring the orderly arrangement of security blocks.

A typical blockchain system consists of multiple nodes that do not completely trust each
other [15]]. “Together, the nodes maintain a set of shared, global states and perform trans-
actions modifying the states. All nodes in the system agree on the transactions and their
order.” All nodes maintain an identical chain of blocks at the same time and do not rely on
central authority to keep malicious adversaries from disrupting the coordination process
of reaching consensus [[14]. Once some data has been recorded into the global ledger
blockchain, it is impossible to change the blockchain, and by enforcing the majority agree-
ment of update validity through consensus, it ensures the consistency state. Smart contracts
are typically distributed protocols that execute formalized contract terms autonomously,
therefore, risk of human error and manipulation is reduced [13]]. This always opens an
opportunity to automate processes between two or more participants without trusted third

parties.

The blockchain is maintained by a set of members who participate to the consensus protocol
[26]. The transactions that are not added in a block yet, are collected by members who
eventually construct a new block that may differ for everyone. Usually, when this new
block reaches a predefined maximum size or timer expires, a distributed consensus protocol
starts. That means, as a result, one member is elected as temporary central manager and
decides which block will be added to the blockchain next. The temporary manager signs
the block and broadcasts it to all the parties so they can verify whether the block was
built from valid records or not, and append it to their locally maintained blockchain. The
block header included in this block contains all the information that is needed to verify the
correctness of the executed consensus protocol. When a new block is sent to the network,
each node has the option whether to add that block to their copy of the global ledger or
to ignore it [[14].“The consensus is employed to seek for the majority of the network to

agree upon a single state update in order to secure the expansion of the global ledger (the

28



blockchain) and prevent dishonest attempts or malicious attacks.” The structure of a typical

blockchain is displayed in the Figure 3]

Block i-1 Block i Block i+1
#-|I lash of Previous |i|]:|ck| +|I lash of Previous IiI]n:lck: 5 |I Tash of Previous Block b
| Block Header | | Block Header | | Block Header |
|I"-1crklu: Haszh Tree Huul| |I"-1crklu: Hazh Tree Hm11| |I"-1crkln: Hash Tree Hnul|
A A A
Transaction i-1 Transaction i Transaction i+1
Metadata Metadata Metadata

Figure 3. Typical Blockchain Structure [1]]

Blockchains can be generally divided into two: public (i.e., permissionless) or private
(i.e., permissioned) [[14]], [26]. In private blockchain, records can be written only by single
authorized party, also, a consortium type of blockchain can be distinguished where the
write privilleges have been extended to a group of organizations. This is beneficial when
records contain privacy-sensitive or business-critical information. Maintaining copies
of sensitive data in all the peers involved in a distributed ledger could be highly costly.
Furthermore, peers must be constantly online to perform consensus protocol for each block
of data to be recorded in the ledger. A distributed ledger is maintained in a distributed
fashion, and it does not need for central administration or centralized data storage. A
consortium member can be a client or a peer: the clients can only read and write records
on the ledger, but the peers are in addition in charge of executing the consensus protocol.
A private distributed ledgers can securely carry personal and critical information, since

only the authorized entities can access it.

In contrast to the private, in the public blockchain, all the information related to the
transactions are public to any interested party anywhere [28]. Anyone in the world
can take part in such a system with no restrictions being placed on when users join or
leave the system. These characteristics of public blockchain systems have led to scaling
problems and bad performance compared to traditional transaction processing systems.
It makes it difficult to control information sharing and obey privacy regulations like
GDPR (General Data Protection Regulation). As cryptocurrencies generally use public
blockchains, concomitant anonymity has also led people to various types of illegal activities.

Additional issue is with the anonymous people who started DoS attacks in the network,

29



therefore, consensus protocols like PoW (Proof of Work) that were invented to deal with

such issues.

3.2 Blockchain Applications

In addition to the initial secure properties of blockchain that were addressed in the previous
section, various researches have been conducted to discover and use blockchain attributes

to resolve issues related to centralized databases.

Rouhani and Deters have been analyzing various access control systems where blockchain
was found to be trustable alternative, because the distributed nature of blockchain eliminates
the issue for the single point of failure and other centralized management problems [29].
Also, because third parties are eliminated, there is no need for concern about privacy
leakage from third parties. Also, due to reason that blockchain logs all the transactions,
trustable and unmodifiable history logs are created and can be accessed. By using smart
contracts, access permissions under complex conditions can be enforced. Because of
applied consensus mechanisms, only valid transactions are recorded on blockchain. They
also pointed out that Hyperledger Fabric provides improved lighter consensus mechanism
and efficient transaction processing flow, but generally performance of the blockchain-
based solutions is not comparable with the existing centralized solutions. It was also
recommended that permissioned blockchain platforms should be used in access control
systems, because they support transaction privacy and private data that is not achieved
in public blockchains. It was also detected that blockchain is not a suitable for storing a
big volume of data, therefore, the data must be stored in secure off-chain storage and the
access policies, the hash of the data, and references to the data record on blockchain. The

secure integration between on-chain and off-chain can bring challenges.

Another access control based study was carried out for plant phenotyping system [30].
There was pointed out that blockchain technology could provide provenance data, meaning
that information of every single transaction is recorded in the blockchain network. Also,

the trust in system can be increased because:

m data is replicated towards the blockchain network which makes it available to the
participants even if the network is partially not available;

m and all the transactions are validated by the entire blockchain network.

Du et al. analyzed application of blockchain in the security system and identified that
a blockchain technology makes security data traceable, untouchable and more transpar-

ent [27] because in the centralized management, it is simple to tamper data, hardware

30



technologies solutions are behind time and personnel in responsible for data may be

unreliable.

Zhangm Xue and Liu evaluated various security and privacy attributes on blockchain [14].
For online transactions, it is outlined that blockchain provides consistency - all nodes
have the same ledger at the same time, that makes sure that data of each entry at each
node of the system gets consistent eventually, and thus achieves high availability and low
latency at the risk of returning stale data. What is more, tamper-resistance to any type of
intentional tampering to a data maintained in blockchain has been identified. It means
that any transaction data stored in the blockchain cannot be tampered during and after
the process of block generation, because multiple cryptographic techniques are used [15],
[31]. Resistance to a DDoS (Distributed Denial-of-Service) attack is recognized, because
due the consensus protocol in Bitcoin system, processing of blockchain transactions can
continue even if several blockchain nodes are unavailable. Bitcoin is resistant to double-
spending attack as it evaluates and verifies each transaction using the transaction logs in
its blockchain with a consensus protocol. In addition, transaction are signed by its sender
which ensures that if someone alters the transaction, it can be easily detected. However,
it was outlined that performance cost is too high to be affordable for all cases. High
operations cost was also highlighted by Arena, Perazzo and Dini where it was indicated
that in private distributed ledgers operational cost is generally quite expensive, since all
the peers have to maintain the entire record database [26]. In cryptocurrencies it has to be
taken into account that loss of the private keys has direct and irreversible financial impact
[15].

Abdelhamid and Hassan have addressed that codifying, security, privacy, availability and
performance issues of Smart Contracts need to be addressed in future studies [25]. Lack
of studies on criminal activities and deploying Smart Contracts on different Blockchain
platforms other than Ethereum [25]].

3.2.1 Blockchain Applications on Registries

Because of the attributes of blockchain, several fields can benefit from its merits. “For
example, in healthcare, the blockchain could help to create immutable audit trails, maintain
the reliability of health trials, and uphold the integrity of patient data.” [[14]]. Further,
data insertion has been one of the first valuable applications of the blockchain beyond the

cryptocurrencies [31]].

Several researches have studied how to decentralize registries using distributed ledger

technologies. In Georgia, property registration system was developed with the custom-

31



designed blockchain technology [32, pp. 673-674]. The architecture of the solution
contains of the following steps: at first, application is filed which is followed by the
document generation in the system. Next, using the certificate, document is signed with
a timestamp and a hash of the document is generated. The hash is sent to the Bitcoin
networks which completes the transaction. The status information of the all steps can be

inquired using the designated websites.

In Brazil, development of the SWIM (System Wide Information Management) Registry for
air traffic management with the blockchain support has been presented [33, pp. 35443545,
3549]. The SWIM is a layer-based interoperability framework and an oriented-service
environment which allows to represent and define exchanges of data between authorized
partners. Stakeholders of SWIM publish and expose services for consumers, whereas
the communication is implemented between interconnected registries. The key element
of SWIM is the SWIM Registry which manages the interoperability features with imple-
mentation of access control application. Further, it references to the available services
with their usage conditions and contains other relevant information about the system, e.g.,
models of information exchange, policies and infrastructure. In the research, algorithms
based on blockchain were introduced for SWIM Registry Brazil flight plan service. The
solution demonstrated the beneficial attributes of blockchain such as user verification and
authorized access. Besides, the flight plan service was improved in general as a result of

better access to the information by the users.

Margheri et al. [34, pp. 688—690] have represented the usage of blockchain system for
FaaS (Federation-as-a-Service) infrastructure. The FaaS project was initiated because
of the proposal of concept of cloud federation, i.e., aggregating different services from
various cloud providers in a single pool. Nevertheless, the suggested solution had to take
into account that all the members of the federation should be “a network of peers equally
concurring to their governance”. As blockchain has the appropriate features, the usage
of that technology was commenced using smart-contracts to build the federation registry.
The guarantees of data integrity and service availability were the fundamental advantages
which contributed to the selection of blockchain. The implementation of the following

functionalities were provided:

the storage of business contract and its signature;

snapshots of the federation state;

m administration actions on access control and service level agreement polices;

data sharing services;

m the storage and processing of gathered logs.

32



The architecture of the FaaS infrastructure contains a private blockchain system which
is shared by the other federations. The first implementation of the FaaS registry was
developed on Ethereum. This solution does not need third party for the basis of federation
and democratic control of the business control is maintained. Also, it improves the security
and ensures that the services are available. On the other hand, the potential disadvantages

are outlined as well, e.g., limitations of speed, computing and scalability [34, pp. 690-691].

The application of INK consortium blockchain which is an extension of HyperLedger
Fabric has been inquired by Zhenfeng et al. [, pp. 25-27, 31-32]. They researched
it in a context of DSES (Decentralized Service Eco-System) using the data from Pro-
grammableWeb.com. Trust issues, security control and cost of maintenance were the main
reasons why the option of transformation to the decentralized system was considered. The
results of the study displayed that the INK consortium blockchain covers the requirements
of DSES and network query performance is feasible for practical use. However, the authors
of the research imply that the cost incurred and willingness to adopt the application should

be examined further.

Several researches related to blockchain registries have been conducted in the field of IoT
(Internet-of-Things). Almadhoun et al. [35, pp. 3, 8] have studied a user authentication
scheme using blockchain where Ethereum smart contracts were used for authentication of
IoT devices. The study presents the proposed architecture and testing scenarios. Further-
more, security analysis was carried out which revealed that security goals were achieved
and the solution is resilient against recognized cyberattacks. Hyperledger Fabric was
adopted for the solution proposed by Stanciu [36, pp. 667, 670]. The study acknowledged
that load which can be adequately processed in real time in higher level can have a limi-
tation and thus, the architecture of solution using blockchain has to be well considered.
Another Ethereum based IoT device management analysis was accomplished by Alblooshi
et al. [37, pp. 151, 155-156] which highlighted that the importance of confidentiality
has to be considered while selecting the type of blockchain network, i.e., permissioned or
permissionless. This is because in the public and permissionless networks the confidential-
ity goal is not reached due to clear transactions. When choosing the solution to achieve
security and privacy in blockchain-based system, there is no single technology that has no
imperfections [14]. When a new technology is added to a technology to a complex system,
new forms of attacks may occur. Also, there is always need for a compromise when it

comes to the security, privacy, and efficiency.

33



4 Design of the Improved UXP Registry

4.1 Evaluation of the UXP Registry and Blockchain Overview

After analysis of UXP Registry in the Chapter [2]it was determined that the processes can
be divided into three:

1. Individual processes that are currently carried out solely by the Registry administra-
tor.

2. Multi-party processes that require confirmation and/or initiative from another party,
e.g., security server administrator.

3. General management processes.

In addition, according to the background of UXP described in the Section|1.1} analysis
of the UXP Registry conducted in the Chapter [2]and blockchain and its already deployed
applications outlined in the Chapter [3] the following requirements are formed to select the
appropriate blockchain type for the UXP Registry:

m Requirement 1: There are controller organization (Governing Authority) in the
present UXP instances who are responsible for managing the UXP instance.

— The requirement is derived from the Section [I.1.1] use cases 1-9 and 11-12
presented in the Chapter [2] where Registry administrator initiates changes in
configuration on behalf of the Governing Authority.

» Requirement 2: The Governing Authority has set certain rules who can access and
modify the data necessary for UXP Registry’s functioning.

— The requirement is derived from the Section [I.1.1] use cases 1-9 and 11-12
presented in the Chapter [2] where Registry administrator and/or UXP member’s
security server administrator initiate changes in configuration.

s Requirement 3: The Governing Authority has set rules that must be automatically
validated, i.e., it must be possible to formulate processes and requirements.

— The requirement is derived from the Section[I.1.1] use cases 1-12 presented
in the Chapter 2| where Registry administrator and/or UXP member’s secu-
rity server administrator initiate changes in configuration, whereas, Registry

verifyies that certain preconditions are met before the changes are submitted.

34



m Requirement 4: Data stored in UXP Registry contains business-critical information,
thus, must maintain immutability and authenticity;

— The requirement is derived from the Section|l.1.1} use cases 1-12 presented in
the Chapter [2] where Registry stores and provides global configuration to the
security servers that is necessary for exchanging UXP messages.

m Requirement 5: Joining the UXP instance is generally not available for everybody,
e.g., it is often available on a limited network.

— The requirement is derived from the Section [I.1.T|and Chapter [2| that describe
opposing UXP cross-country (e.g., Ukraine) wide set ups vs. implementation
within one organization (e.g., trust bank in Japan).

m Requirement 6: Economic cost-effectiveness, the hardware cost should not rise
significantly, thus, it is not suitable to adopt the consensus mechanism based on
arithmetic [27]].

— The requirement is derived from the existing set up of the UXP (see the
Section[I.1.T) where UXP members already maintain security servers to enable
access to their subsystems and services. Thus, it is not feasible to impose
additional obligations to UXP members by increasing hardware requirements

considerably.

These requirements are well in line with the attributes of private blockhain types. The
cases related to the registry operations analyzed in the Section [3.2] had implemented
blockchain-based solutions using Hyperledger Fabric and Ethereum platforms. Although
they look similar in their concepts (i.e., both allow permissioned network and implementing
smart contracts), the main difference is the used consensus mechanism. In Ethereum, PoW
algorithm is used in the ledger level [38], whereas Hyperledger Fabric does not require
specific consensus arithmetic, rather transaction level agreement protocols can be developed
[39]]. Based on the used consensus mechanism, Hyperledger Fabric is considered more
viable than Ethereum for implementing UXP Registry processes, thus, the Hyperledger

Fabric platform is selected to implement improved UXP Registry.

4.2 Improved UXP Registry

4.2.1 Deployment and Initialization

To deploy operations currently managed by the UXP Registry using the Hyperledger Fabric
technology, the components provided in the Figure {] need to be implemented. In this
example configuration, it is expected that there are two UXP Members and Governing

Authority who is responsible managing the UXP instance.

35



A blockchain network in the context of Hyperledger Fabric is a “technical infrastructure
that provides ledger and smart contract services to applications” [40]. To form a blockchain
network, an ordering service needs to be started. Ordering service is provided by the or-
derer component that enforces access control for the channel, i.e., manages the peers who
can read and write to the channels [41]]. In the permissionless blockchains (e.g., Ethereum
and Bitcoin), transactions are ordered into blocks using the probabilistic consensus algo-
rithms that guarantee the ledger consistency but where different participants in the network
may have a different view of the accepted order of transactions. However, Hyprledger
Fabric is a permissioned blockchain and uses ordering service that relies on deterministic
consensus algorithms where “any block validated by the peer is guaranteed to be final and
correct”. The network is configured in accordance with the network configuration that
grants the administrative rights to the Governing Authority. However, it is expected that all
the members of the blockchain network need to access the same information, thus only
one consortium that will contain all the UXP instance members (i.e., also the blockchain

network members) is created.

The key part of the Hyperledger Fabric’s blockchain network is a channel which is a main
communication system that the blockchain members use to communicate with each other.
The channel is defined by the channel configuration that defines for example, who can
add new members to the channel. In the first perspective architecture, it is expected that
only Governing Authority can add new members similarly to the current UXP Registry
solution. Each member of the channel will have one peer that is the component where
the copy of ledger is hosted. To support operations in the UXP Registry that are currently
managed centrally (see the Chapter [2)), smart contracts need to be developed for these

functions.

Then, the smart contracts must be installed on peers and defined in the channel — all the
organizations need to approve the definition as well. In this proposition, smart contracts will
be developed that contain transactions needed to provide the functionalities. Hyperledger
Fabric smart contract defines the transaction logic that manages the business object’s
lifecycle [42]. Smart contracts mainly add, get and delete values in the world state,
1.e., current value of the business object’s attributes. Also, with every chaincode, an
endorsement policy is associated to indicate which members in the blockchain network
must sign a valid transaction initiated by the smart contract. Business objects on which the
smart contracts should be developed were identified in the Chapter 2} Smart contracts can
be invoked using client applications, it is anticipated that the security servers and UXP
Registry will act as applications in the context of Hyperledger Fabric. In addition to using
the certification services to authenticate UXP components and sign UXP messages, the

certification services are required in the blockchain network to identify components that

36



belong to UXP Members and Governing Authorities.

Timestamps
Member A Member B
's N
r >
O =ity Server security Server [CXHIID
= Y
ar < 7 0
... Ll -\
AN N
Ledger
Smart V Smart
Contract = Contract

5=

@ ®

Timestamping Certification
services services
Certificates

iiﬂ— ((F

V—

]

: Subsystem

Subsystem: L Peerl )
A - | | S
n —
—
Channel Channel Blockchain UXP messages
Configuration network

-

v

J

Orderer

T i

o [ —
H —
- Smart Contract  Netwark

Caonfiguration

i

'_
by o
= @
=1 — @
@ =
(i

UXP Reqistry

J

Governing Authority

Figure 4. Proposed UXP Architecture Using Hyperledger Fabric Technology

37



4.2.2 UXP Registry’s Current Processes in Hyperledger Fabric

It is expected that the improved UXP Registry, including blockchain network described in

the previous section, has been set up. Using the smart contracts functionality provided by

the Hyperledger Fabric, the processes highlighted in the use cases described in the Chapter

that can be implemented using the smart contracts are described in the Table 1:

Table 1. Implementing Smart Contracts for Existing Use Cases

SErvers

Use| Use case Process to be implemented using smart contract

case

No.

3 | Manage UXP Members Verifying that the precondition has been met: at least
one member class has been configured.

6 | Manage UXP Member’s security Verifying that the precondition has been met:

m whether security server has been registered in
UXP instance;
— or security server administrator has sent a

security server registration request.

Manage UXP Member’s security
server’s authentication and

encryption certificates

Verifying that the preconditions have been met:
m UXP Member has been registered:
s whether UXP Member’s security server has
been registered;

— or UXP Member’s security server
administrator has sent a security server
registration request.

m security server administrator has sent a

certificate registration or deletion request.

Manage UXP Member’s

subsystems

Verifying that the precondition has been met:
s UXP Member has been registered.

38




9 | Manage UXP Member’s security Verifying that the preconditions have been met:
server client m UXP Member has been registered;
s UXP Member’s security server has been
registered in UXP Registry
m Whether security server client has been
registered in UXP instance
— or security server administrator has sent a

security server client registration request.

Steps in the Main Success Scenario that are marked with “*” are initiated only if the

process requires endorsement from another party.
Individual and multi-party processes

m Main Success Scenario:
1. Registry administrator initiates a change in configuration.
2. UXP Registry forwards the request to the Governing Authority’s peer.
3. * UXP Registry forwards the request to the Member A’s peer.
4. Governing Authority’s peer receives the request and constructs a request to
invoke a smart contract.
5. * Member A’s peer receives the request and constructs a request to invoke a
smart contract.
6. Governing Authority’s peer validates and signs the request.
7. * Member A’s peer validates and signs the request.
8. Governing Authority’s peer invokes the smart contract function and sends a
response to the UXP Registry.
9. * Member A’s peer invokes the smart contract and sends a response to the UXP
Registry.
10. UXP Registry validates the responses and broadcasts it to the orderer.
11. Orderer receives the broadcast, orders it chronologically and creates the block
of transactions.
12. Orderer delivers the blocks of transactions to all the peers, i.e., Governing
Authority’s, Member A’s and Member B’s peer.
13. All the peers validate and append the block to the channel’s chain.
14. All the peers notify the UXP Registry that the transaction has been appended
to the chain, i.e., the ledger has been updated.

39



The corresponding sequence diagram is presented in the Figure 5

13: Validate and
append the block
to the chain

14: Notify ledger update

14: Netify ledger update

append the block

|
|
|
13: Validate and I
|
to the chain |

14: Netify ledger update

TTTAAA

UXP Registry Governing Member Member Orderer
Authority's Pear A's paer B's peer
I I I I I
I 2: Forward configuration I I I I
| change request | | i i
| P | | |
| 3:* Forward configuration | | | |
| | | | |
i change request | N | |
| | | | |
| | | | |
| | | | |
| | 4: Construct | | |
I request to invoke I I I
| [ smart contract | 5:* Construct | |
I I request to invoke I I
| i ) | smart contract | |
i 6: Validate and i | |
| ; sign the request | | |
| | | | |
| | 7. * Validate and| |
I I i sign reguest I I
| 8 Invoke the | | |
| ; smart contract | | |
i{ Response I I I I
____________ H | | |
I | Iﬂ’__lg: * Invoke smart I I
| | Response contract | |
E——————————— —-——————————— -+ | |
| | | | |
| ) | | | |
10! Validate | | i |
IH’—_| responses I I I I
| | | |
11: Broadcast responses I I I .{
| | | |
| | | |
I I I 12: Deliver blocks of |

| | | transactions |
o : : :
} } } 12: Deliver blocks of }
| |‘ | transactions |
| } | 12: Deliver blocks of |
| | | transactions |

| |

| |

|

|

13: Validate and |
append the block |
to the chain

11: Order broadcast and
create block of
transactions

Figure 5. Sequence Diagram of the Individual and Multi-Party Processes

40



Configuration Management

In the current UXP Registry, configuration is hosted centrally in UXP Registry and made
available to security servers through global configuration distribution as described in the
Section 2.4 However, with Hyperledger Fabric technology, the configuration in UXP
Registry is decentralized and all the peers keep the copy of the ledger that includes the
most recent data, i.e., currently valid configuration. Thus, there is no explicit need for the

UXP Registry to distribute configuration separately.

When it comes to the backup and restoration, then there is also no specific need to backup
and restore, because in case of failure in a peer, it can be started again from the beginning

and receive the blocks from other peers and orderer.

4.2.3 UXP Registry’s Improved Processes in Hyperledger Fabric

Currently, multiple use cases (6, 7 and 9 described in the Chapter [2)) require that security
server administrator has sent a request and then Registry administrator approves it manually
by initiating a change in configuration. However, if appropriate smart contracts (i.e.,
formalizing the rules that have to be met) are developed, the current processes can be more

automatized. The general use case would look like following:

= Main Success Scenario:

1. Member A initiates a change in configuration.

2. Member A forwards the request to the Member A’s peer.

3. Member A’s peer receives the request and constructs a request to invoke a smart
contract.

4. Member A’s peer validates and signs the request.

5. Member A’s peer invokes the smart contract function and sends a response to
the Member A.

6. Member A validates the response and broadcasts it to the orderer.

7. Orderer receives the broadcast, orders it chronologically and creates the block
of transactions.

8. Orderer delivers the blocks of transactions to all the peers, i.e., Governing
Authority’s, Member A’s and Member B’s peer.

9. All the peers validate and append the block to the channel’s chain.

10. All the peers notify the Member that the transaction has been appended to the

chain, i.e., the ledger has been updated.

The corresponding sequence diagram is presented in the Figure[6] This automation would

41



significantly reduce possible human errors from the Governing Authority’s side, because

the rules have been agreed on and validated accordingly.

Member A

|
8 Deliver blocks of h’_—l

transactions I

4 Validate and

8: Deliver blocks of

transactions

8: Deliver blocks of

transactions

Member A’s Paer Governing Member Orderer
Authority's peer B's paer
I I I I
I 2: Forward configuration I I I
| change request | | |
: Pt | |
| | 3: Construct | |
I request to invoke I I
I [ smart contract | |
| | | |
| 4 Validate and | |
I | sign the request I I
| | | |
| 5 Invoke the | |
I | smart contract I I
| Responze | |
e ———— | |
| | |
o | |
| 6: Validate response I I
6: Broadcast responses I I
T P
| |
|
|
|
|
|
|
|
N
|
|
|
|
|

10: Motify ledger upd ate

to the chain

append the block

tI

§: Validate and
append the block
to the chain

.

Y Y Y Y

|
|
|
|
|
|
|
|
| 10 Motify ledger update
I
|
|
|
|
|
|
|
|

|
|
|
|
|
|
1
| 10: Notify ledger update
[l
|
|
|
|
i

9 Validate and
append the block

i
|
i
|
|
i
1
|
|
|
|
|
|
|
|
I
to the chain |
|
|
|
|
|
|
|
|
i

Figure 6. Sequence Diagram of the Improved Process

4.3 Evaluation

7. Order broadcast and
create block of
transactions

Deploying blockchain-based UXP Registry presents a way how to reduce the need to trust

to the Governing Authority. The proposed solution using the Hyperledger Fabric platform

fulfills the requirements set in the Section[4.1]as follows:

» Requirements 1 & 2: The Governing Authority’s role as controller can be main-

42



tained by granting explicit privileges to its and UXP Members’ peer to initiate
configuration changes using smart contracts.

s Requirement 3: Hyperledger Fabric’s smart contracts allow formalizing rules that
can be validated automatically.

= Requirement 4: Blockchain’s essence that the data is stored as a hierarchical and
chronologically-ordered chain of blocks with timestamp ensures that the configura-
tion maintains its immutability and authenticity.

» Requirement 5: Hyperledger Fabric is a private blockchain, therefore, Governing
Authority can impose regulations who can join the network (and channel) in the
configuration.

m Requirement 6: Hyperledger Fabric provides the pluggable consensus, thus, it is
more cost-effective than its alternatives. However, blockchain requires to conduct
certain processes like validating blocks and maintaining the whole ledger, therefore,

hardware requirements will be increased compared to the existing solution.

Implementing the blockchain-based UXP Registry answers the fundamental question, i.e.,
how to reduce the need to trust the correct behaviour of the Governing Authority that
manages the UXP Registry. This is because blockchain helps to increase transparency in

the actions carried out through UXP Registry by the following means:

m all the UXP Members store an overview of the history of configuration management
by keeping the blockchain ledger;

— therefore, the risk - that exchanging UXP messages is interrupted because
global configuration cannot be received from the UXP Registry - is minimized
as well;

m all the UXP Members have an overview of the configuration management principles

by installing smart contracts.

4.3.1 Future work

By replacing centralized UXP Registry with a blockchain-based technology, even more
perspective improvements could be implemented. For example, Hyperledger Fabric
supports that there are more than one organizations who have the administrative rights, in
other words, it is possible to have more than one Governing Authorities. That would allow
to discover new business opportunities in context where current solution (one Governing

Authority) is not suitable.

Although, federation relationship has been established to allow the interoperability of

two independent UXP infrastructures, thus for example, data exchanges between two

43



different countries can be formed [43]. Nevertheless, implementing federation relationship
can increase bureaucracy if each partner starts establishing an independent Governing
Authority. The reasons behind forming the separate authority could be distrust of the
partner or legal limitations of delegating the governmental tasks. Therefore, instead having
two or more federated instances, but one UXP instance where certain authorities have the
privileged rights could be more convenient for use cases like small island states. Even
more advanced solution would be developing an entirely decentralized blockchain network
where each organization would have equal rights and block validations are enforced using

e.g., 2/3 majority.

Hyperledger Fabric’s elements (i.e., smart contracts, channels and consortiums) should be
examined further as well. Solution presented in this thesis uses only one consortium and
channel where all the peers use to communicate each other, but it can be analyzed whether
there are use cases where adding multiple channels could bring added value. Moreover,

enforced smart contracts shall be thoroughly analyzed and developed to avoid design faults.

Supplementary registration tasks are usually handled using additional means, e.g., in
Estonia management system “RIHA” is used to where additional information has to be
entered to register subsystem or its certificates in X-Road. In 2014, a survey of “RIHA”
[44]] was carried out which identified that the most of the problems are related to the lack
of automation: information is duplicated, applications are processed manually and the
processing takes time. Although the thesis is focused on UXP, the results are applicable
for X-Road as well. Therefore, it can be examined whether these external processes could

be automated and processed within UXP instance using smart contracts.

Nevertheless, as various researches described in the Section@, performance issues have to
be targeted and inspected further. Implementing blockchain introduces additional processes
like validating blocks and storing the ledger. For that reason, it should be additionally
evaluated whether UXP Members have to act as peers for all the processes, or some process
outcomings can be distinguished and transferred to another channel where only certain

UXP Members have to validate the requests.

44



5 Summary

The goal of this thesis is to improve the existing model of UXP Registry to reduce the
need to trust to the correct behavior of the Governing Authority whilst considering the
advantages of new technologies. The thesis describes the blockchain-based solution for

the UXP Registry that uses Hyperledger Fabric platform.

To determine how the requirements for UXP Registry influence the design of the improved
UXP Registry, an analysis of the existing UXP Registry’s processes is conducted. It is
learned that in every instance of the UXP, there exists one central agency that is responsible
for maintaining its policies. UXP Registry is a server that is used to manage these rules:
it stores the security policy of the installation and distributes global configuration to the
security servers of all members. It is discovered that the processes can be divided into
three: individual processes that are accomplished by the Registry administrator; multi-party
processes that require direct input from another party, e.g., security server administrator;
and general management processes. However, that centralized management brings another
challenge of UXP Registry that it acts as a trusted third party: all the members have to
trust that it does not abuse its obligations.

One way to reduce the risk that the operation of the UXP instance is interfered because
of the centralized management, is to replace UXP Registry as trusted third party with a
distributed ledger. One of the distributed ledger technologies is blockchain which is a data
structure that consists of linked records that are generated after designated time or event.
Its data layer includes several attributes, e.g., Merkle tree, timestamp and asymmetric
encryption. Typically in the blockchain system, there are multiple nodes that do not
completely trust each other. All the nodes store an identical chain of blocks at the same time
and do not rely on central authority. An important feature of blockchain is that once there
is data stored into global ledger, the blockchain cannot be changed without an agreement
of update validity. Furthermore, blockchain provides a smart contracts functionality that
allows to reduce the risk of human error and manipulation when executing the formalized
contract terms autonomously. This makes it possible to automate processes between
participants without trusted third parties. These are features can be used to fulfill the

requirements of UXP Registry and increase transparency in its management.

45



To design a new model of the UXP Registry that uses blockchain technology, various
studies related to blockchain applications on the registries are analyzed and described.
The analyzed studies have mostly researched how the blockchain technology is used to
design an access control systems and decentralized registries. These studies can be taken
into when developing new version of UXP Registry because these researches outline
the achieved properties of the research subjects, for example, traceability, transparency,
tamper-resistance and data integrity. The proposed architecture of UXP Registry uses
private blockhain type, because the cases related to the registry operations analyzed in
the thesis have implemented blockchain-based solutions using Hyperledger Fabric and
Ethereum platforms. Although they both allow permissioned network and implementing
smart contracts, the main difference is the used consensus mechanism. Based on that,
Hyperledger Fabric is considered more feasible for implementing processes of UXP

Registry and therefore chosen to implement improved UXP Registry.

The components of Hyperledger Fabric are described and explanation how they can be
used in the proposed UXP Registry architecture is given. Furthermore, it is explained how
the smart contracts and other features can be used to deploy the current and perspective
UXP Registry processes. It is discussed which more perspective improvements could be
implemented when replacing centralized UXP Registry with a blockchain-based platform.
For example, it is possible to have more than one Governing Authorities which would allow
to discover new business opportunities in context where current deployment is not feasible.
However, it is pointed out that similarly to studies analyzed in the thesis, the performance
issues have to be inspected further, because blockchain implementation requires carrying

out supplementary processes.

It can be concluded that the need to trust the correct behavior of the Governing Authority
can be reduced if the blockchain-based UXP Registry is implemented. Mostly because
blockchain helps to increase transparency in the actions accomplished through UXP

Registry.

46



Bibliography

[1] Z. Gao, Y. Fan, C. Wu., J. Zhang, and C. Chen, “DSES: A Blockchain-Powered
Decentralized Service Eco-System,” in 2018 IEEE 11th International Conference on
Cloud Computing. San Francisco: IEEE, 2018, pp. 25-32.

[2] J. Willemson and A. Ansper, “A Secure and Scalable Infrastructure for Inter-
Organizational Data Exchange and eGovernment Applications,” in The Third In-
ternational Conference on Availability, Reliability and Security. Barcelona: IEEE,
2008, pp. 572-5717.

[3] K. Paide, I. Pappel, H. Vainsalu, and D. Draheim, “On the Systematic Exploitation
of the Estonian Data Exchange Layer X-Road for Strengthening Public-Private
Partnerships,” in Proceedings of the 11th International Conference on Theory and
Practice of Electronic Governance. Galway: ACM, 2018, pp. 34-41.

[4] A.Kalja, J. Pold, T. Robal, U. Vallner, and V. Viies, “Estonian eGovernment Services:
Lesson Learned,” in Proceedings of PICMET ’13: Technology Management in the
IT-Driven Service. San Jose: IEEE, 2013, pp. 562-568.

[5] A. Kalja, K. Kindel, R. Kivi, and T. Robal, “eGovernment Services: How to Develop
Them, How to Manage Them?” in Proceedings of PICMET ’07 : Management of
Converging Technologies. Portland: IEEE, 2007, pp. 2795-2798.

[6] A. Kalja, T. Robal, and U. Vallner., “New Generations of Estonian eGovernment
Components,” in Proceedings of PICMET ’15: Management of the Technology Age.
Portland: IEEE, 2015, pp. 625-631.

[7] Riigihangete Register, “Piiriiileseid teenuseid toetava X-tee arendamine,” https://riigihanked.
riik.ee/rhr-web/#/procurement/576227/general-info. [Accessed: 09.05.2020].

[8] Cybernetica AS, “Case Studies,” https://cyber.ee/products/secure-data-exchange/case-studies/.
[Accessed: 13.05.2020].

[9] Cybernetica AS, “Cybernetica launches UXP proof-of-concept with the fifth largest bank in
Japan,” https://cyber.ee/news/2019/05-24/, 2019. [Accessed: 13.05.2020].

[10] Nordic Institute for Interoperability Solutions, “History of NIIS,” https://www.niis.org/history.
[Accessed: 09.05.2020].

47



[11] Cybernetica AS, “Unified eXchange Platform (UXP): White paper.” https://cyber.ee/
products/secure-data-exchange/materials/uxp-technical-whitepaper-2020.pdf. 2020.
[Accessed: 14.05.2020]

[12] R. Mindar, “UXP Portal 2.0 Functional Requirements Specification,” Tartu, 2017.

[13] T. Locher, S. Obermeier, and Y. A. Pignolet, “When Can a Distributed Ledger
Replace a Trusted Third Party?” in 2018 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData). 1EEE, 2018.

[14] R. Zhang, R. Xue, and L. Liu, “Security and Privacy on Blockchain,” in ACM
Computing Surveys. ACM, 2019.

[15] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, and J. Wang, “Untangling
Blockchain: A Data Processing View of Blockchain Systems,” in IEEE Transactions
on Knowledge and Data Engineering. 1EEE, 2018, pp. 1366 — 1385.

[16] “The Trivium method: (pertains to mind) — the elementary three,” http://www.
triviumeducation.com/trivium/, 2019. [Accessed: 08.06.2019].

[17] A.R.Hevner, S. T. March, J. Park, and R. S., “Design Science in Information Systems
Research,” in Management Information Systems Quarterly, 2004, pp. 75-106.

[18] Cybernetica AS, “UXP Registry Server 1.12: Installing and Configuring High Availability,”
2020.

[19] Cybernetica AS, “UXP Member Management: Use Case Model,” 2018.
[20] Cybernetica AS, “UXP Registry Server Management: Use Case Model,” 2017.
[21] Cybernetica AS, “UXP Trust Service Management: Use Case Model,” 2017.

[22] Riigi Infosiisteemi Amet, “X-tee kasutamise juhend,” https://moodle.ria.ee/mod/page/view.php?id=
288, 2020. [Accessed: 07.04.2020].

[23] Cybernetica AS, “UXP Service Management: Use Case Model,” 2017.
[24] Cybernetica AS, “UXP Global Configuration Distribution: Use Case Model,” 2018.

[25] M. Abdelhamid and G. Hassan, “Blockchain and Smart Contracts,” in ICSIE ’19:
Proceedings of the 2019 8th International Conference on Software and Information
Engineering. Cairo: ACM, 2019, pp. 91-95.

48



[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

A. Arena, P. Perazzo, and G. Dini, “Virtual Private Ledgers: Embedding Private
Distributed Ledgers over a Public Blockchain by Cryptography,” in IDEAS ’19:
Proceedings of the 23rd International Database Applications and Engineering Sym-
posium. Athens: ACM, 2019, pp. 1-9.

H. Du, J. Zeng, Y. An, J. Zhang, and J. Zhao, “Exploration on the Application
of Blockchain in the Security System of Smart Park,” in Proceedings of the 2019
International Electronics Communication Conference. Okinawa: ACM, 2019, p.
146-153.

C. Mohan, “State of Public and Private Blockchains: Myths and Reality,” in Proceed-
ings of the 2019 International Conference on Management of Data. Amsterdam:
ACM, 2019, p. 404—411.

S. Rouhani and R. Deters, “Blockchain based access control systems: State of
the art and challenges,” in 2019 IEEE/WIC/ACM International Conference on Web
Intelligence. Thessaloniki: ACM, 2019, pp. 423-428.

M. Samaniego, C. Espana, and R. Deters, “Access Control Management for Plant
Phenotyping Using Integrated Blockchain,” in roceedings of the 2019 ACM Inter-
national Symposium on Blockchain and Secure Critical Infrastructure. Auckland:
ACM, 2019, p. 39-46.

0. Konashevych and M. Poblet, “Blockchain Anchoring of Public Registries: Options
and Challenges,” in Proceedings of the 12th International Conference on Theory and
Practice of Electronic Governance. Melbourne: ACM, 2019, p. 317-323.

N. Goderdzishvili, E. Gordadze, and N. Gagnidze, “Georgia’s Blockchain-powered
Property Registration: Never blocked, Always Secured - Ownership Data Kept Best!”
in Proceedings of the 11 th International Conference on Theory and Practice of
Electronic Governance. Galway: ACM, 2018, pp. 673-675.

I. S. Bonomo, I. R. Barbosa, L. Monteiro, C. Bassetto, A. de Barros Barreto, V. R. P.
Borges, and L. Weigang, “Development of SWIM Registry for Air Traffic Man-
agement with the Blockchain Support,” in 2018 21st International Conference on
Intelligent Transportation Systems. Maui: IEEE, 2018, p. 3544-3549.

A. Margheri, M. S. Ferdous, M. Yang, and V. Sassone, “A Distributed Infrastructure
for Democratic Cloud Federations,” in 2017 IEEE 10th International Conference on
Cloud Computing. Honolulu: IEEE, 2017, pp. 688—691.

R. Almadhoun, M. Kadadha, M. Alhemeiri, M. Alshehhi, and K. Salah, “A User Au-
thentication Scheme of IoT Devices using Blockchain-enabled Fog Nodes,” in 2018

49



IEEE/ACS 15th International Conference on Computer Systems and Applications.
Aqaba: IEEE, 2018, pp. 1-8.

[36] A. Stanciu, “Blockchain based distributed control system for Edge Computing,”

in 2017 21st International Conference on Control Systems and Computer Science.
Bucharest: IEEE, 2017, pp. 667-671.

[37] M. Alblooshi, K. Salah, and Y. Alhammadi, “Blockchain-based Ownership Manage-
ment for Medical IoT (MIoT) Devices,” in 2018 13th International Conference on
Innovations in Information Technology. Al Ain: IEEE, 2018, pp. 151-156.

[38] “A Next-Generation Smart Contract and Decentralized Application Platform: White
Paper,” https://github.com/ethereum/wiki/wiki/White-Paper/. [Accessed: 13.05.2020].

[39] “Hyperledger Fabric: Open, Proven, Enterprise-grade DLT,” https://www.hyperledger.
org/wp-content/uploads/2020/03/hyperledger_fabric_whitepaper.pdf, 2020. [Accessed: 13.05.2020].

[40] “Hyperledger Fabric: Blockchain network,” https://hyperledger-fabric.readthedocs.
io/en/latest/network/network.html, 2020. [Accessed: 13.05.2020].

[41] “Hyperledger Fabric: The Ordering Service,” https://hyperledger-fabric.readthedocs.
io/en/latest/orderer/ordering_service.html, 2020. [Accessed: 13.05.2020].

[42] “Hyperledger Fabric: Smart Contracts and Chaincode,” https://hyperledger-fabric.
readthedocs.io/en/latest/smartcontract/smartcontract.html, 2020. [Accessed: 13.05.2020].

[43] R. Saarmie, “Analysis of Configuration Management in Federated X-Road Systems,”
Tallinn, 2015.

[44] Riigi Infosiisteemi Amet, “RIHA kasutamise uuring 2014,” https://www.ria.ee/sites/default/files/
content-editors/publikatsioonid/riha_kasutamise_uuring_2014.pdf, 2014. [Accessed: 07.04.2020].

50



