
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Igor Podgainõi 192469IAPM

A Unified Framework for Peer­to­Peer
Applications

Master’s thesis

Supervisor: Toomas Klementi

PhD student

Co­supervisor: Gunnar Piho

PhD

Tallinn 2022

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Igor Podgainõi 192469IAPM

Ühtlustatud raamistik peer­to­peer
rakendustele

Magistritöö

Juhendaja: Toomas Klementi

Doktorant

Kaasjuhendaja: Gunnar Piho

Doktorikraad

Tallinn 2022

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Igor Podgainõi

13.05.2022

i

Abstract

Bringing peer­to­peer applications to life can involve many difficulties. Usually, a devel­

oper needs to figure out which network architecture will work best for the software being

designed, which technologies to use to traverse the NAT and how to make sure that the

node is always accessible, no matter which network it is currently connected to. This is

because the current Internet architecture has long moved away from being simple enough

to allow uncontrolled and unrestricted communication between all nodes of the network.

However, by abstracting an essential set of technologies into a unified structure and cre­

ating virtual layers on top of the Internet, it is possible to provide a compatible solution

that would work automatically as if no obstacles had existed in the first place. The sys­

tem in the Unified Framework lets the developer not care about how exactly to adapt to

certain network situations, but simply write peer­to­peer applications as normal, and let

the Unified Framework handle the background work, while at the same time maintaining

compatibility with standard OS APIs and multiple programming languages.

This thesis is written in English and is 64 pages long, including 5 chapters, 15 figures and

2 tables.

ii

Annotatsioon
Ühtlustatud raamistik peer­to­peer rakendustele

Peer­to­peer rakenduste loomine kätkeb endas mitmeid keerukusi. Tavaliselt peab aren­

daja selgeks tegema missugune võrguarhitektuur sobib kõige paremini loodava tarkvara

jaoks, missuguseid tehnoloogiaid kasutada NATi ületamiseks ja kuidas tagada, et võr­

gusõlm oleks alati kättesaadav sõltumata sellest, missuguse võrguga ta parajasti ühendatud

on. Selle põhjuseks on tõsiasi, et kaasaegse interneti arhitektuur on ammu lakanud olemast

piisavalt lihtne tagamaks kontrollimatut ja piiramatut ühendust kõikide võrgusõlmede va­

hel. Abstraheerides põhilised tehnoloogiad ühetaolisse struktuuri ja luues interneti peale

virtuaalsed kihid, on siiski võimalik välja pakkuda ühilduv lahendus, mis töötab automaat­

selt nagu mingisuguseid takistusi ei eksisteerikski. Ühtlustatud Raamistiku poolt paku­

tud süsteem vabastab arendaja kohustusest kohaneda konkreetse võrgusituatsiooniga ja

lihtsalt kirjutada peer­to­peer rakendust tavaliselt, lastes Ühtlustatud Raamistikul teha

taustatöö ning säilitades samal ajal ühilduvuse standardse operatsioonisüsteemi API­ga

ja paljude programmeerimiskeeltega.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 64 leheküljel, 5 peatükki, 15 joo­

nist, 2 tabelit.

iii

List of abbreviations and terms

AES Advanced Encryption Standard

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

CA Certificate Authority

CPU Central Processing Unit

DAT Distributed Address Table

DER Distinguished Encoding Rules

DNS Domain Name System

DDNS Dynamic DNS

DHT Distributed Hash Table

DLL Dynamic­link Library

DTO Data Transfer Object

E2EE End­to­End Encryption

FFI Foreign Function Interface

GCM Galois/Counter Mode

GPIO General­Purpose Input/Output

GRASP General Responsibility Assignment Software Patterns

GUI Graphical User Interface

GoF Gang of Four

HMAC Hash­based Message Authentication Code

HTTP HyperText Transfer Protocol

IANA Internet Assigned Numbers Authority

ID IDentifier

IDE Integrated Development Environment

IP Internet Protocol

IPv4 IP version 4

IPv6 IP version 6

ISP Internet Service Provider

iv

IV Initialization Vector

IoT Internet of Things

JSON JavaScript Object Notation

LAN Local Area Network

mDNS Multicast DNS

MIT Massachusetts Institute of Technology

NAT Network Address Translation

NAT­PMP NAT Port Mapping Protocol

NAT66 NAT IPv6­to­IPv6

OOP Object­Orinted Programming

OS Operating System

OSI Open Systems Interconnection

P2P Peer­to­Peer

POSIX Portable Operating System Interface

RAM Random Access Memory

RNG Random Number Generator

RSA Rivest­Shamir­Adleman

SBC Single­Board Computer

SHA1 Secure Hash Algorithm 1

SPoF Single Point of Failure

STUN Session Traversal Utilities for NAT

TCP Transmission Control Protocol

TLS Transport Layer Security

TODO To Do

TURN Traversal Using Relays around NAT

UDP User Datagram Protocol

UPnP Universal Plug and Play

URL Uniform Resource Locator

WAN Wide Area Network

WebRTC Web Real­Time Communication

WinAPI Windows API

XML eXtensible Markup Language

XMPP eXtensible Messaging and Presence Protocol

XOR eXclusive OR

v

Table of contents

1 Introduction.. 1

1.1 Issues... 3

1.2 Aims of the thesis.. 3

1.3 Structure of the thesis.. 5

2 Methodology .. 6

2.1 Background ... 6

2.1.1 OSI model ... 6

2.1.2 IP addresses, ports and IPv6 ... 7

2.1.3 NAT and NAT traversal .. 8

2.1.4 POSIX networking API .. 10

2.1.5 Machine code and the bridge library .. 11

2.2 Literature review... 12

2.2.1 The first work.. 12

2.2.2 The second work ... 13

2.2.3 The third work... 14

2.2.4 The fourth work .. 14

2.2.5 Conclusion .. 15

2.3 Overview... 15

2.4 Tools and technologies.. 16

2.5 Work procedure... 17

3 Main outcomes... 18

3.1 Designing the Framework... 18

3.1.1 Classes... 18

3.1.2 POSIX­like interface... 18

3.1.3 Data encryption... 20

3.1.4 Node identifiers... 22

3.1.5 DHT .. 22

3.1.6 UPnP port forwarding ... 23

3.1.7 Rendezvous ... 24

vi

3.2 Implementation details.. 24

3.2.1 Node roles and prefixes .. 24

3.2.2 DHT bootstrap process ... 25

3.2.3 Establishing private communication... 25

3.2.4 Inner workings of the bridge library ... 26

3.3 Network architecture... 27

3.4 Testing the Framework ... 30

3.4.1 ChatApp .. 30

3.4.2 Python demos.. 31

3.5 Using the Framework.. 32

3.5.1 Dynamic linking.. 33

3.5.2 Injection .. 36

4 Evaluation of the Framework... 37

4.1 Software engineering principles ... 37

4.1.1 GRASP.. 37

4.1.2 Clean Code.. 42

4.1.3 SOLID... 55

4.1.4 GoF ... 55

4.2 Use cases of the Framework ... 57

4.3 Overview of similar frameworks .. 58

4.3.1 JXTA ... 58

4.3.2 freedom.js.. 59

4.3.3 libp2p .. 60

4.3.4 Summary ... 61

4.4 Future developments... 61

5 Conclusion ... 64

References.. 65

Appendix 1 – Non­exclusive licence for reproduction and publication of a gradua­

tion thesis ... 73

vii

List of figures

Figure 1. Example connection code via the Unified Framework. 4

Figure 2. The OSI communication model. .. 6

Figure 3. NAT device on a network with port forwarding. ... 9

Figure 4. Example of NAT traversal via TCP hole punching...................................... 10

Figure 5. GUI dialog box provided by the Framework. .. 26

Figure 6. Unified Framework’s layers in relation to OSI. ... 27

Figure 7. Example of simple network topology. ... 28

Figure 8. Example of complex network topology. .. 29

Figure 9. Example of another complex network topology. ... 29

Figure 10. The main screen of ChatApp.. 31

Figure 11. Short application that generates a new application key. 33

Figure 12. Server application via Unified Framework. ... 34

Figure 13. Client application via Unified Framework... 35

Figure 14. Application example that calculates the private node ID............................. 35

Figure 15. Application that hosts a Rendezvous node... 36

viii

List of tables

Table 1. Class listing of the Unified Framework’s codebase. 19

Table 2. Evaluation of Unified Framework classes according to GRASP..................... 37

ix

1 Introduction

There are currently a lot of obstacles when trying to establish direct communication be­

tween two remote devices over the Internet. In the early days, it was possible to run a

P2P (peer­to­peer) network effortlessly [1]. But today, developers of P2P applications

may have problems. A P2P application can be defined as networked software, that in a

technical sense does not care whether it acts as a server or a client [2], meaning, it would

need to accept incoming connections from arbitrary locations when running on home and

other restricted networks. When developing such software, a developer needs to either

integrate all the necessary technologies that adapt to a specific network situation or let the

user configure his network by himself in a way that would be accepted by the application

[3]. These technologies need to be tightly intertwined with the networking code of the app,

and all possible scenarios need to be taken into account. This is necessary because of the

advent of NAT (Network Address Translation) which can prevent incoming connections

from being accepted in some cases, as well as the need to rely on DNS (Domain Name

System) to group IP addresses under a domain name [4].

A direct ”telephone line”­style channel should instantly be opened upon connection us­

ing the TCP protocol and its underlying IP protocol by routing it to the desired location

designated by an IP address and port. With the Internet constantly evolving and having

the structure that it does today, it is not possible to establish such a connection with all

kinds of device combinations, just a limited set [5]. NAT­enabled networks combine sev­

eral devices under one IP address, thus making it impossible for the networking hardware

on the other end to know where exactly to connect, without explicit port forwarding on

the source. Firewalls outside of the target device’s control can also exist along the way

that would block the connection outright. Furthermore, assuming the ports are correctly

forwarded, the IP address might change at some point due to it being dynamic, therefore,

the same connection settings cannot simply be reused for an indefinite amount of time [4].

A typical scenario of the obstacles present during communication when hosting a service

on today’s Internet can be described. In it, it is first necessary to find out the IP address that

1

devices on the other end will see. It may not necessarily be known beforehand, because

a NAT device may be present on the network that splits it into a private segment and the

rest of the Internet, LAN (Local Area Network) and WAN (Wide Area Network), where

the former indicates all devices within the NAT. To discover the WAN­facing IP address,

one can either refer to the status page of the NAT device via a web interface [6] or use the

help of special services on the Internet that simply report the WAN IP address back to the

sender [7], which they can do because they would have the knowledge of it as recipients.

Next, the port number that the service is hosted on must be routed to a correct LAN IP

address in the NAT device’s configuration page, which due to ambiguity is not done auto­

matically by the NAT device. This kind of routing is known as port forwarding [8]. Such

a port must also not be blocked by additional firewalls that may be present on the network.

Once these prerequisites are met, it is now possible for other devices on the Internet to

connect successfully to the host, however, its WAN IP address may still change as time

passes, due to the phenomenon of dynamic IPs [4], so it may no longer be possible to

establish new connections in the future. Typically what can be done to bypass this prob­

lem is to register a DNS hostname and set the A record to the currently used IP address.

However, the usage of DNS can be problematic as well, as one would need to have the

permission of the owner of the previous domain in the hierarchy to create domain names

[9]. Even with this permission available, it may not always be possible as domain names

can expire, which can cause hijacking [10], and changes do not always propagate instantly

to users [11].

The final obstacle concerns ease of use. Many P2P frameworks that exist today have been

implemented in a variety of programming languages. But they do not have a common

structure or API, not to mention that they contribute towards a ”lock­in” effect to a specific

language [12]. It is necessary to have a framework that is truly ”unified” in terms of its

architecture and compatibility.

All these difficulties present a challenge for software developers that want to create a

general­purpose P2P application.

2

1.1 Issues

Based on this, the specific set of issues that can arise during the development of P2P

applications can be defined:

– The presence of NATs and firewalls on the network can prevent a direct connec­

tion from being established. No network should be excluded from being able to

communicate directly, as long as it is connected to the global Internet.

– The impermanence or the lack of immediate knowledge of IP addresses used to

identify a device on the Internet. This can lead to confusion and unavailability of

services.

– The need to rely on centralized third­parties that report back the public (WAN­

facing) IP or set up DNS hostnames. This can introduce unnecessary SPOFs (single

points of failure).

– A lack of standards or compatibility between different existing P2P frameworks.

This can make developers hesitate about which programming language to use for

their application because of that factor.

1.2 Aims of the thesis

I propose the creation of a Unified Framework that would provide virtualization of OSI

layers starting from the Network layer and up to the Presentation layer to abstract away all

the technologies and details when developing P2P applications. With this system, it should

be possible to solve the aforementioned issues while not requiring any major intervention

by the target application developer, and being compatible with the standard POSIX­like

networking API that is present in many popular operating systems today.

The Unified Framework should be portable to various platforms, including Unix­based.

In this thesis, however, the focus will be on the Desktop platform running the Windows

OS, due to its ubiquity [13] and ease of development. Also, the support for various pro­

gramming languages should be included, including those targetingmachine code [14] and

not. This way, the Framework can be run on a wide range of devices. To achieve support

for non­native programs (using higher­level languages), a ”bridge library” will be addi­

3

tionally created. The implementation given will allow the Python 3 interpreter to use the

Unified Framework code successfully.

After the project has been completed, it will be tested using demonstration software and

scripts that closely resemble real­world use cases.

There should be a number of different kinds of use cases for P2P applications and services

that would be able to utilize the Framework. For example, as a developer of a document

collaboration application, I want its user to be able to share his or her document pub­

licly, so that other people can join in, read it and propose changes, without allocating any

server storage space for that document. In another case, one might have developed a new

machine­learning algorithm that takes up a lot of storage space, requires high­end hard­

ware to run it and is currently proprietary. That developer can then host it in a distributed

fashion (from multiple computers), where users can connect to the service, input the data

that they want processed and get the output back. Finally, a developer wants to provide

the users of Internet of Things (IoT) thermostat devices a way to connect to them on the

go and adjust the temperature of the house while not being home.

Software of such kind [15] should be able to be developed without needing to take into

account how the backend communication should function exactly, as if it is using the

traditional client­server architecture [16], in any programming language of the developer’s

choice.

As the main result of the work done in this thesis, one should be able to use a fully­featured

Unified Framework that is compiled in the form of a DLL file in a POSIX­compatible

manner, such as in the example given in figure 1, or via the ”bridge library”.

UFNetwork::POSIX socket(AF_INET, SOCK_STREAM, 0);

struct sockaddr_in addr;
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; // IP not used
addr.sin_port = 0; // port not used
socket.connect((struct sockaddr*)&addr, sizeof(addr));

socket.send(buffer, BUFFER_SIZE, 0);

Figure 1. Example connection code via the Unified Framework.

4

1.3 Structure of the thesis

This thesis is structured in 5 sections:

Section 1 introduces the problems as well as the goals of the thesis by proposing a solution.

Section 2 discusses various technical aspects before the work can begin, specifies the

review of relevant literature, explains the basics of the Unified Framework’s design, as

well as which technologies should be used during development and the work procedure.

Section 3 describes in what form exactly has the result been achieved, as well as tells how

to test and use the Framework. Section 4 evaluates the Unified Framework and outlines

the developments for the future. The last section concludes the thesis.

The source code for the Unified Framework, demo applications, as well as various code

examples, are available in the main project repository on GitLab1.

1 https://gitlab.cs.ttu.ee/igpodg/thesis­iapm

5

https://gitlab.cs.ttu.ee/igpodg/thesis-iapm

2 Methodology

This section explains the theory that is needed to be understood in the context of the

project, reviews the relevant literature, as well as talks about with which paradigms and

tools the final result will be created.

2.1 Background

Some concepts and technologies may need to be clarified before starting work on the

project.

2.1.1 OSI model

The OSI model [17] [18] describes the separation of a communication system into seven

distinct layers, where each is responsible for processing the data flow end­to­end from

one device to another in terms of a specific context. The following paragraph provides an

interpretation variant of this theoretical model applied to the Internet architecture so that

its communication process can be inspected in detail, as it is complex. The diagram in

figure 2 shows the model at a glance.

Physical

Data link

Network

Transport

Session

Presentation

Application

1.

2.

3.

4.

5.

6.

7.

Figure 2. The OSI communication model.

6

The bottommost layer labeled as Physical deals with the processing of the data, including

its re­encoding when needed, between hardware components, for them to properly ”un­

derstand” each other. The Data link layer deals with algorithms that allow the data to be

transmitted and received by the hardware error­free and without collisions. The next layer,

Network, is concerned with data routing in a logical space of locations represented by IP

addresses. It also encapsulates data into packets for use by the packet switching system.

The next layer, Transport, determines the ”nature” and various properties of communi­

cation to be used and agreed upon, for example, if it should be connectionless (UDP) or

connection­oriented (TCP). This is also the lowermost layer that is accessible to applica­

tion developers in common operating systems. The Session layer deals with multiplexing

data addressed to the same device but meant for different applications. The differentiation

is done with the help of port numbers. The Presentation layer encodes and decodes the

data before the control over it is passed to the application, which can include encryption

and decryption, for example. The final layer, Application, deals with the layout of the data

in the context of the application itself. The application should know how to interpret the

data at this level and what to do with it.

It is important to note that the OSI model was not used as a reference when the Internet

architecture was first developed [19], as it did not yet exist, however, this fact does not

affect the ability to apply this model to it. Also, the OSI model dissects the communication

process between two devices into separate abstraction levels, where these levels are all

active at the same time per unit of data, and different hardware or software components

of the network are processing the same data differently.

2.1.2 IP addresses, ports and IPv6

There exist two common systems for addressing network devices: IPv4 and IPv6. IPv4

is the more widely used one of the two [20]. It allows to address 232 = 4, 294, 967, 296

separate devices in theory, however, the amount of devices connected to the Internet today

is a lot larger. Network Address Translation (NAT) is the technology that was used to

mitigate this shortage. IPv6 on the other hand has a larger address space of approximately

18 quintillion devices. Due to this reason, IPv6 does not require NAT, so theoretically its

usage can solve one of the issues posed by this thesis. However, Internet Service Providers

(ISPs) and enterprises still prefer to use NAT with IPv6 to simplify routing and for other

reasons [21]. For example, NAT66 (meaning, when both LAN and WAN IP addresses are

7

IPv6­based) can be used formulti­homing [22] so that one device can be connected to two

or more networks simultaneously.

IPv6 will not be used within the Unified Framework due to its current lack of popularity

with only approximately 40% of all devices globally using it1.

Starting from this paragraph, the term IP address will refer exclusively to IPv4 addresses.

IP addresses in the IPv4 system are 32­bit integer numbers that are typically represented in

the dot­decimal notation, where every 8 bits are split using the ”dot” character and written

out in the decimal form.

Various ranges or blocks of IP addresses are allocated to ISPs to give out to their customers.

Some of them, however, are either reserved or have a special meaning rendering them

unusable for addressing [23].

Port numbers are designed to identify a specific application on a device. They are 16­bit

integers that are usually represented as a decimal number from 0 to 65535. Likewise, not

all port numbers can be used for addressing [24].

The combination of IP address and port together describes the location of the remote de­

vice that one wishes to communicate with. This type of addressing will be defined as

location­based addressing.

2.1.3 NAT and NAT traversal

As the amount of devices connected to the Internet is larger than the range of all available

IP addresses, this technology effectively splits the network into two segments to bypass

the problem. The Local Area Network (LAN) segment combines all devices that com­

municate with each other via the local NAT device, and the Wide Area Network (WAN)

represents the rest of the network, in the context of which the entire LAN is visible only

as one virtual device. The term NAT can also be used to mean a network that is currently

using the NAT technology.

The LAN uses the samemethod of addressing as the rest of the Internet with the use of IPs,

however, there is no one­to­one correlation between LAN and WAN IPs. The translation

algorithm depends on the inherent type of NAT used: Full Cone, Restricted Cone, Port

1 As of May 2022. More information: https://www.google.com/intl/en/ipv6/statistics.html

8

https://www.google.com/intl/en/ipv6/statistics.html

Restricted Cone or Symmetric [25] [26].

Typically, LAN IPs only span across ranges marked by IANA for Private­Use [27].

The use of Network Address Translation allows the ISP to only give out one IP address

per customer, thus slowing down the resource exhaustion of IPs in the blocks available

to them. To resolve ambiguity when it comes to knowing which LAN IP addresses of a

specific device a certainWAN packet is intended for in case of client connections, the local

NAT device keeps track of these mappings internally by maintaining a special table. A

new entry gets added to the table whenever the first packet related to a certain connection

gets sent from the LAN to the WAN. When the time comes to receive the response, the

table entry of the neededmapping can be looked up [28]. However, this presents a problem

with incoming packets that are received for the first time from the WAN in the connection

context, since the required table entry would not yet exist.

WAN

LAN (internal) IP:

WAN IP:

192.168.1.1

1.2.3.4

NAT device

ports: 80, 443,

1234, 9999

Home PC

Home

laptop

Home

server

ports: 80,

1234

port: 443

port: 9999

LAN IP:

192.168.1.102

LAN IP:

192.168.1.101

LAN IP:

192.168.1.100

Figure 3. NAT device on a network with port forwarding.

The solution that was chosen for this is to provide a manual procedure known as port

forwarding. Contrary to the naming used, this process concerns not just ports, but also

LAN IPs. To use it, a user needs to visit the configuration page of the NAT device and

input the desired LAN IP and port number, which would define an override NATmapping

based on that port. Some devices also provide a feature known as UPnP, which is a set of

APIs designed for applications to communicate with the local network device [29]. UPnP

includes an API allowing port forwarding as well via theAddPortMapping command [30].

From here on, the automatic port forwarding method using the UPnP API will simply be

defined as UPnP.

9

It may not always be possible to access the configuration page of a NAT device due to

the lack of privileges, and UPnP might not be available in the first place. In this case, the

only other way to establish a direct connection where the initiator is connecting to a device

within NAT is to employ NAT traversal. It is a set of techniques available for TCP and

UDP Transport layer protocols that let two nodes ”trick” one or more NAT devices into

allowing them to communicate directly with each other. The downside of this is that an

extra device acting as a mediator between them would be needed. Such a device is known

as a Rendezvous server or node [31].

The diagram in figure 4 shows an example of packets sent and received during a TCP

connection that is traversed via NAT.

Rendezvous node

Server Client

REGISTER

SYN

CONNECT

SYN

SYN ACK

SYN ACK

NAT

Figure 4. Example of NAT traversal via TCP hole punching.

2.1.4 POSIX networking API

Many operating systems nowadays, such as Windows [32], MacOS [33] or Linux [34],

use a specific POSIX­compatible API as their primary one for networking operations. It

is commonly known as POSIX sockets or Berkeley sockets [35]. The term socket refers to

the context that describes a specific network connection.

A developer needs to follow a specific pattern of function calls to establish a connection

and afterward to send and receive data. For TCP connections, it may look like the follow­

10

ing: first, the socket(...) call is performed. Here is where it is possible to set parameters

and flags that describe the type of the connection. The return value is a special handle that

identifies a specific socket within the application. Next, a structure describing the parame­

ters for outgoing connections may need to be initialized with the appropriate information.

This is usually only used for server connections.

In this structure, the IP address field is set to a generic value to hint the operating system

as to which networking interfaces such a connection should be ”listened” on. Typically,

this is set to the constant INADDR_ANY, which is equal to the IP value of 0.0.0.0. For

debugging purposes, the IP value of 127.0.0.1 is also often used, indicating the need to

”listen” only on the virtual loopback network interface, that is accessible only for connec­

tions across the same device. This value should be specified as a 32­bit big­endian integer.

To apply the structure to the socket, the bind(...) call is used.

Afterwards, the listen(...) call can be used to switch the socket into server mode that would

accept new incoming connections from yet unknown sources.

Finally, the accept(...) call is used for servers and connect(...) for clients to synchronously

initialize a TCP connection. These two calls have differences in parameters required and

the return values. The former returns a new socket handle and the structure describing the

network location of the socket and doesn’t require any parameters, while the latter simply

returns 0 in case of success, but requires that structure as an input.

As long as these requirements are met, it should be possible to implement a pseudo­socket

system and API that mimics the standard one to maintain compatibility.

2.1.5 Machine code and the bridge library

Machine code, also known as native code, represents a program that runs directly using the

instruction set of a computer CPU. C and C++ are examples of programming languages

that compile directly down to native code. Languages such as JavaScript and Python are

interpreted (at least to an extent), meaning they do not use native code for the execution

of the application­specific code written in them [36]. Since the POSIX networking API in

common operating systems does use it, these languages must invoke a compatibility layer

known as a Foreign Function Interface (FFI) [37] between the OS and the interpreter to

be able to call into it. This is where this phenomenon can be taken advantage of, where

11

the Unified Framework can be inserted in­between this compatibility layer replacing the

real API.

A special bridge library, also defined in this thesis using the term shim, can be created

and injected into the process of the interpreter before any code begins execution, and all

related functions hooked in order to redirect them to the Unified Framework [38]. Since

the Framework is already compatible with the POSIX networking API, most functions

inside the bridge library can be simply wrapped around. Hooking is complicated due to

its technical methods, so projects exist that make it easier. For Windows, one such library

is Microsoft Detours, which is available on GitHub and is licensed under theMIT license1.

2.2 Literature review

It is also worth taking a look at some academic works that describe similar problems.

I have discovered four such works that I would like to discuss.

2.2.1 The first work

The first one [39] talks about the ubiquity of IPv4 and the need of using NAT traversal

under IPv4 due to the prevalence of NAT. Also, it admits that not always is NAT traversal

possible due to ”a probability of failure”. In some cases, the usage of relaying might be

necessary which is slower and the connection is no longer direct. Another way is to use

UPnP or NAT­PMP for port forwarding. The Unified Framework will not use relaying

due to it requiring additional indirection and having performance issues, but support for it

can be technically added. UPnP will be provided as an option for port forwarding in the

Framework.

The work references literature that describes three different ways that NAT traversal has

been achieved in the past. The first one is considered by the authors as a centralized

model, where the address of the Rendezvous server is known beforehand, so the nodes

simply use it for traversal. The second method is dubbed as ”hybrid”, which seems to

involve putting Rendezvous functionality onto standard nodes instead of having a separate

node, as well as it requires the need to use public proxy servers. This approach seems

to be infeasible for the Unified Framework again due to increased indirection. The third

technique uses the Ethereum blockchain to distribute locations of nodes, instead of storing

1 https://github.com/microsoft/Detours

12

https://github.com/microsoft/Detours

them on Rendezvous servers. This would not be viable in the project present in this thesis

due to the cost requirements.

The solution of the authors however is different from the three methods that they have

referenced and is designed to be optimized for devices with low processing capabilities

and power requirements, more precisely, for IoT (Internet of Things) devices. It involves

putting Rendezvous functionality on ”gateway” nodes, which are network routers or sim­

ilar equipment. They are calling their method DAT, which stands for Distributed Address

Table, and is based on DHT (Distributed Hash Table). Additionally, encryption seems

to take place in the DAT. The advantage of their method is that it optimizes for the rate

of churn. If one ”gateway” node was to leave the DAT network, it would not affect the

availability of stored node locations, but would only increase the latency.

This work seems interesting in that it proposes to move the use of Rendezvous functional­

ity to ”gateways”, as well as that it uses amodified DHT. However, this method is probably

infeasible practically due to network routers having firmware that restricts modification.

But through cooperation with manufacturers, it may be a good idea to explore further.

2.2.2 The second work

The second work [40] tackles a data storage problem. Since data on the blockchain is not

distributed but shared among all nodes, the authors propose using DHT instead. After they

have finished developing the storage system, they propose applying it as an alternative

to DNS for name resolution. The domain names would be stored in the DHT as data.

Additionally, to prevent domain squatting they imply the necessity of fees. The idea is

similar to the one proposed in this thesis for the Unified Framework. But instead of using

domain names and storing them as data, arbitrary 160­bit identifiers will be used which

represent entries in Mainline DHT.

The theory about various blockchains and DHT protocols is also included. Since the con­

cept of a blockchain is not relevant to the Unified Framework, it will not be discussed. One

of the mentioned projects is Handshake1. It seems to be an alternative to DNS, but instead

of replacing it, it aims to coexist with it. The benefits are that domain names would not

be removed by third parties and that it also provides some security features by ”avoiding

poisoning risks”. This could be a project that is worth exploring.

1 https://handshake.org/

13

https://handshake.org/

The main part of the work talks about the network architecture, where blocks can be

”mined” on the DHT similar to a traditional blockchain. Again, the discussion of these

parts is skipped because it is not relevant. At the same time, it is of interest to take a look

at the Simulation part. The authors’ DHT­based name system estimates the time complex­

ity compared to traditional DNS to be O(2log2N), where N is the number of currently

available DHT nodes in the network, while DNS is defined to have the time complexity of

O(n), where n is the level of the hierarchy of a domain name. While this would indicate

a generally slower performance of DHT­based lookup compared to DNS, it still confirms

both the feasibility of such a system, as well as its relevance.

2.2.3 The third work

The third work [41] compares different symmetric and asymmetric encryption algorithms

using benchmarking to determine the best combination. As a foreword, it acknowledges

the need for E2EE (End­to­End Encryption) in modern communication contexts. Various

messaging applications today utilize E2EE. In the Review section, this work lists some sta­

tistical analyses between users and concludes with the fact that many had been positively

impacted after getting to know E2EE better.

Afterwards, the benchmarking results are outlined. It can be seen that AES performs best

on different parameters such as encryption and decryption time, RAM (memory) and CPU

utilization. The addition of asymmetric encryption in the form of RSA for the initial key

exchange is negligible and does not affect the parameters to a significant extent. The

Unified Framework uses a TLS­like protocol for key exchange during data encryption,

which in turn uses AES in conjunction with RSA.

2.2.4 The fourth work

The final work [42] tackles the problem of home appliance system availability.

The work mentions related literature that proposes the usage of ”control systems”, mean­

ing centralized devices. It also mentions that due to physical length constraints of cables

it may be difficult to place such devices in a certain area.

It is important to note that the equipment owned by the authors, in this case, is located on

a home network that uses dynamic IPs, meaning the WAN IP address given away by the

ISP can vary per each renewal. The costs can seemingly increase in case one wishes to

14

acquire a static IP. This is the reason why the authors acknowledge the issue and try to

resolve it.

The work describes the physical layout of the equipment: a Raspberry Pi SBC (Single­

Board Computer) and an actual appliance control circuit connected to it via GPIO pins.

This combination is replicated several times across the suites of the building. The different

Raspberry Pi devices seem to also connect in a mesh­like network, but only one of them

is used as an exit node to the WAN.

This describes a scenario of the need to use DDNS on a low­powered device. The method

works, and the authors note that it is inexpensive, however it relies on a specific DDNS

service, which can be a single point of failure. In case something goes wrong with it, the

entire management of the house can be inaccessible remotely.

2.2.5 Conclusion

To conclude, these works demonstrate the relevance of the problems, as well as the so­

lutions that they proposed. NAT traversal may still be needed even though IPv6 exists

since it is not common enough yet. Also, it is technically possible to use DHT instead of

DNS to address devices based on an identifier. End­to­end encryption is prevalent and

does not consume an exorbitant amount of computing resources. There exist scenarios in

which servers are located in home networks and may need remote access functionality.

Finally, IoT (Internet of Things) devices are prevalent nowadays, so having the Unified

Framework be compatible with native code comes hand in hand with this trend.

2.3 Overview

With the relevant theory explained, it is now possible to define how theUnified Framework

should function.

The core part of the Framework is the class that is centered around the POSIX networking

API. The methods should have a similar or same interface as well as functionality to it.

This is needed to provide compatibility for various programming languages and familiarity

for developers, and also because the rest of the Framework’s code would then be able to

reuse it for its own needs. In terms of the Framework’s location according to the OSI

model, it should span across the Session and Presentation layers and replace the concept

15

of network location determined by an IP address and port with a single identifier to achieve

identity­based addressing without the use of DNS. This means that some identifier is used

to pinpoint a specific device instead of its location.

Another vital component would be the various NAT traversal methods that allow direct

communication to take place no matter which network each of the devices is currently lo­

cated on. Finally, data encryption should be performed at all times during communication

no matter which Application layer protocols devices use to ensure adequate privacy.

To summarize, the Framework’s functionality can be divided into four parts: the facilita­

tion of direct connections between Internet devices by means of traversing the NAT, the

substitution of location­based addressing with identity­based addressing, using cryptogra­

phy and encryption to achieve confidentiality of data and the maintenance of compatibility

with the POSIX networking API and multiple programming languages.

2.4 Tools and technologies

The technologies that were used during development are listed as follows:

• Mainline DHT, also known as BitTorrent DHT [43], is a public service that provides

a simple distributed database for key­value pairs, where the key is some 160­bit in­

teger identifier and the value is a network location represented by an IP address

and port. The distribution of the key range using XOR distance allows for a dele­

gation of responsibilities among participating nodes in a simple way to achieve its

distribution.

• UPnP, more specifically UPnP port forwarding [30], is a standard API included in

many NAT devices that allows developers to automate the process of forwarding

LAN IP addresses and ports for a device to be able to accept arbitrary incoming

remote connections for the first time.

• TCP hole punching [31] is a method to achieve NAT traversal over TCP.

Likewise, a list of tools is specified as follows:

16

• OpenSSL1 is a popular cryptographic library. In the Unified Framework, it will be

used to provide symmetric encryption using the AES­192­GCM algorithm, asym­

metric encryption using the RSA­2048 algorithm, as well as to generate 160­bit

codes using the HMAC­SHA1 function.

• pugixml2 is an XML processing library for C++. It will be used for interaction with

the UPnP API on NAT devices. It is licensed under the MIT license.

• WinAPI3, the main API of the Windows operating system, will be used for its net­

working features, random number generation, GUI capabilities and injection of code

into processes.

• wxWidgets4 is an advanced GUI framework. Its extended capabilities will be used

during the creation of demonstration applications.

• Microsoft Detours is a library designed for redirecting functions inside a running

process. It will be used in the project for the Unified Framework shim.

The Unified Framework itself is developed in the C++ programming language because it

is compiled down to machine code, which means it can be made to work with both native

and non­native applications.

2.5 Work procedure

The software design and development techniques chosen for the Unified Framework were

modular programming [44] and the bottom­up approach [45].

The entire project is divided into modules. As soon as one module has been developed

and tested, the development then took focus on another part, until the whole project could

be brought to life by connecting the pieces.

The current implementation has been developed in Visual Studio for the Windows plat­

form. The source code is structured in an Object­Oriented Programming (OOP) style with

inner classes. The end result is compiled down to a DLL file named uf.dll.

1 https://www.openssl.org/
2 https://pugixml.org/
3 https://docs.microsoft.com/en­us/windows/win32/apiindex/windows­api­list
4 https://www.wxwidgets.org/

17

https://www.openssl.org/
https://pugixml.org/
https://docs.microsoft.com/en-us/windows/win32/apiindex/windows-api-list
https://www.wxwidgets.org/

3 Main outcomes

This section describes the technical aspects of the project, namely its design, the various

implementation details, network architecture as well as examples of use. Also, demon­

stration applications will be presented for testing purposes.

3.1 Designing the Framework

This section outlines the different modules and components that are integral to the core

functionality of the Unified Framework.

3.1.1 Classes

The functionality of the codebase is split across multiple classes, several of which are

nested. Table 1 lists the few key classes that influence the Framework’s behavior as well

as describes their purpose. The dot character indicates a nesting hierarchy, meaning that

the class on the right side of the dot is a part of the class to the left of it.

3.1.2 POSIX­like interface

The UFNetwork.POSIX class provides the familiar POSIX­like networking interface with

the following methods: htons(...), ntohs(...), getsockopt(...), setsockopt(...), ioctl(...),

getsockname(...), inet_pton(...), inet_ntop(...), bind(...), listen(...), accept(...), connect(...),

send(...), recv(...), shutdown(...), close(). They are available in OOP and non­OOP form,

so it is possible to initialize the class not only using a constructor, but also to get the socket

handle directly using the socket(...) method. It is also possible to get the socket handle

later from the class instance using the getSocket() method.

Most of these methods simply wrap around the existing networking APIs that are pro­

vided by the OS, but there is one major difference. The socket handle values no longer

correspond to the system ones. Instead, the Unified Framework manages its own socket

handles along with an additional context, which is defined by the Context structure inside

the class.

18

Table 1. Class listing of the Unified Framework’s codebase.

UFCrypto This class is responsible for cryptographic operations.

UFNetwork This class contains functionality to process network­

related tasks. Excluding its inner classes, it only contains

a few base variables and methods, such as the ones in­

tended to initialize buffers and the OS’s networking API.

UFNetwork.Node This base class defines a network node to be used within

the Unified Framework. It is in charge of maintaining

the storage and loading of cryptographic keys, setting the

base node parameters and initializing the node.

UFNetwork.UPnP This class manages the API built into NAT devices that

is designed to forward LAN IPs and ports to the WAN.

UFNetwork.DHT This class implements the client for the Mainline DHT

network that is normally used by BitTorrent. It can ini­

tialize the node cache, as well as find a location value

from a specified key (node ID).

UFNetwork.DHTAnnounce An extension of the previous class that can write (an­

nounce) data to the DHT.

UFNetwork.Rendezvous This class provides a Rendezvous node for others in case

they require one as part of a NAT traversal protocol.

UFNetwork.POSIX The primary class of the Framework that provides a

POSIX­like API for direct use by shims or developers.

UFUtil.DebugProcessor An abstract class that is intended to define the procedure

of how the debugging output should be processed.

UFUtil.DebugLogger A class that implements logging of the debugging output

to the console.

The constructor as well as the socket(...) function contains some additional non­standard

optional arguments. The first one defines the connection behavior of the node. The pur­

pose of this argument is explained further below. The second parameter allows one to

specify an existing instance of the UFNetwork.Node class, since its features are provided

in UFNetwork.POSIX not via inheritance, but with the use of composition.

19

The connection behavior of a POSIX server or POSIX client node determines the method

to be used when establishing a direct connection. Three different methods are available:

TRAVERSE_USING_RENDEZVOUS specifies that the connection should always be per­

formed usingNAT traversal via any available Rendezvous nodes. ASSUME_PORT_OPEN

is a method that always assumes that a direct connection is possible by default. Finally,

FORWARD_USING_UPNP first forwards LAN IPs and ports before establishing any con­

nections.

In the current version of the implementation, the connection behavior variable is ignored

and the TRAVERSE_USING_RENDEZVOUS value is always assumed.

The methods accept(...) and connect(...) can be considered special in that they perform

additional operations as part of their execution. First, the initializeNode() method of the

UFNetwork.Node class is called, which loads and generates the required cryptographic

keys, as well as bootstraps and announces the node to the DHT. Then, depending on the

current connection behavior, additional initialization is performed before the control is

passed back to the application.

The methods send(...) and recv(...) also perform encryption and decryption along with the

standard processes.

3.1.3 Data encryption

Two sets of keys are defined as part of the data encryption engine in the Unified Frame­

work: the AES­192 application key and the secret key, which internally is an RSA­2048

keypair. Most cryptographic features are provided by the OpenSSL version 3 library, ex­

cept ones such as random number generation, which is achieved using the WinAPI func­

tion named RtlGenRandom(...) (a pseudo­RNG).

The application key can be of an arbitrary value, so the output of the pseudo­RNG is

simply used for its initialization. Since RSA keys need special formatting, the secret key

is created using OpenSSL and stored inside a binary buffer in the ASN.1 DER format.

Whenever a call to the send(...) function is made within the UFNetwork.POSIX class,

the packet is encrypted using a specific key with the AES­192­GCM algorithm before it

gets sent to the destination. The header of the encrypted packet includes the size of the

encrypted data and the initialization vector. Likewise, at the invocation of recv(...), the

20

packet is first decrypted before it is passed back to the application. In case the packet is

found to be corrupted, then an exception is generated, which is considered to be a ”socket

error”.

These keys also have a secondary purpose: the application key is used to provide a shared

application context, as in, anyone who has access to the application can read that context’s

data and find its nodes, and the secret key is used to establish a private context, where only

two parties are supposed to be aware or access its data.

Since the secret key does not have an AES­192 form, a temporary key needs to be agreed

upon between two parties using the provided RSA­2048 pair. This is known as key ex­

change, and the protocol for it in the Unified Framework is similar to TLS [46] and looks

like the following:

• The client sends its public component of the secret key to the server. It is no problem

if it does not change and is shared with multiple parties, as it is intentionally public.

• The server generates a new temporary AES­192 key and encrypts it using that public

key then sets it as the one to be used for the current TCP connection.

• The client node receives the data back and decrypts it using its own private key to

retrieve the AES­192 key that is ”wrapped” inside.

• An encrypted communication channel has now been established. The socket han­

dles are given back to the application code and execution can continue.

One difference between TLS and this protocol is that Certificate Authorities (CAs) are not

used. This is due to the requirement of not relying on a centralized third party.

To facilitate the generation of keys by a developer, a static method is available in the

UFCrypto class named generateKeysToDisk(...). After the execution of this method, the

necessary encryption keys are stored on disk with the filenames app.key and secret.key.

The former contains the aforementioned application key, which should be the same be­

tween all instances of the application across the network, and is required for the Frame­

work to function under all circumstances. The second file is optional and is only needed

to establish potential private communication with another node.

21

The encryption features are provided by the OpenSSL 3 library.

3.1.4 Node identifiers

As it was mentioned previously, the encryption keys are also secondarily used in the Uni­

fied Framework to establish various contexts. This is implemented using the HMAC­

SHA1 [47] [48] function, which takes two parameters, a key and a message, and produces

a message authentication code. This code is only used in the Framework to substitute a

node ID for the DHT, and it is used instead of a hash function because it has two inputs

instead of one.

Only two types of node IDs exist within the Framework: public and private. The public

node ID is derived from the application key using HMAC­SHA1(k, m), where k = the

application key itself andm = the prefix that describes a specific node role.

The output value is 160 bits, the same length also used for entries in the Mainline DHT, so

it suits it well. The private node ID is similarly a derivative of the application key using

HMAC­SHA1, but here the prefix is not used anymore and the m variable contents are

replaced with the public component of the secret key. As it is not possible to calculate

the private node ID value without having access to a specific public key, which should

be different between all instances of the application, it can simply be given away in some

manner to another party that wishes to establish a two­way connection, for example, via

a third­party messaging channel or in person.

Similarly to data encryption, HMAC­SHA1 operations are performed with the help of the

OpenSSL 3 library.

3.1.5 DHT

The used variant of DHT is a distributed table of key­value pairs, where the key is some

160­bit identifier and the value is a location represented by some IP address and port of

a service. It is an essential part of the Framework and is a starting point for beginning

any kind of network communication via the Unified Framework. The DHT is being used,

as the key goal of the Unified Framework is to replace location­based addressing with

identity­based addressing, but since it is merely an abstraction, the location still needs to

be known by the application eventually.

22

The classes UFNetwork.DHT and UFNetwork.DHTAnnounce represent a Mainline DHT

client. When the node is initialized using the initializeNode() method of the UFNet­

work.Node class, the node IDs are first generated from the files app.key and secret.key,

then stored in memory. Since the private node ID is optional (not always there is a need

for private communication contexts), it will not be set in case the file secret.key is not

currently present on the file system. Afterwards, the DHT is bootstrapped, as in, prepared

for functioning, then if the current node has server­like characteristics, meaning it needs

to be found by others, the available node IDs along with the current WAN IP address and

a random port are announced (written) to the DHT.

In order to interact with and bootstrap the DHT in the first place, it is necessary to use an

initialization node with an already known location. Such a node is provided publicly by

Rainberry Inc.1: router.bittorrent.com at UDP port 6881. This value is hardcoded into the

Framework and can introduce a single point of failure. However, since a list of random

DHT nodes is generated during the bootstrap process, it should be possible to supply it

with the application distribution package or cache it on the device. This is not done in the

current implementation.

Finding a node by ID is done similarly to announcing, but in this case, an extra parameter

is needed that determines the ID of the node to be looked up.

All nodes of the same role are considered to be equivalent, so they are represented by the

same public node ID in the DHT. Private node IDs do not make a distinction between node

roles.

3.1.6 UPnP port forwarding

The UFNetwork.UPnP class provides automatic port forwarding via NAT devices. This

private class does not represent a node, and it is only meant to be used internally by other

components of the Framework, such as, when the FORWARD_USING_UPNP connection

behavior is set.

The interface of the class is quite straightforward. It allows for enumeration of available

network cards on a computer and performing UPnP port forwarding in case a NAT device

is present under that network card. It is possible to forward any port for the TCP and UDP

1 The company responsible for developing μTorrent. More information: https://rainberry.com/

23

protocols. The LAN IP is calculated by the NAT device automatically, it is the IP address

that the current device uses to connect to the network.

3.1.7 Rendezvous

Rendezvous is a helper node that is meant to always be active on the network within

a certain application context defined by the application key. If at least one such node

is present, that means NAT traversal will be possible for nodes within such a context.

This node is meant to be active for as much time as possible to increase availability. The

prerequisite for hosting is that it should not be under NAT by itself.

The UFNetwork.Rendezvous class internally calls UFNetwork.POSIX methods, because

it needs to support encryption during communication as well.

The node only has two commands to complete its operations correctly: REGISTER and

CONNECT. The REGISTER command is meant for registering or announcing a server

node that intends to accept new incoming connections, so the server sends a message to

all Rendezvous nodes currently present in the context containing the node ID of the server

and its listening port number. Later, when a client node wishes to connect to the server,

it queries these Rendezvous nodes using the CONNECT command, where it specifies the

server’s node ID and the source port bound to the client using the bind(...) call, as per

the TCP hole punching algorithm. In the case of matching values, the Rendezvous node

produces a successful scenario that allows the server and the client to directly connect.

To launch a Rendezvous node in code, it is sufficient to simply initialize the class and call

the blocking runServer() method.

3.2 Implementation details

Some details of the Framework’s design should also be clarified. This section lists the

ones that can be considered the most important.

3.2.1 Node roles and prefixes

The previously mentioned prefixes of a node are arbitrary values that are only used for

node ID generation. They are 32­bit values that all nodes of a certain type have. The role

determines the purpose of the node in relation to the network architecture, of which there

24

are currently three: Rendezvous, POSIX server and POSIX client.

In the implementation, these values have been randomly generated and are located in the

UFNetwork.Node class as static constants.

3.2.2 DHT bootstrap process

As mentioned before, in the Unified Framework the DHT client provided by the UFNet­

work.DHT class has a bootstrap process. During it, a list of random DHT nodes is col­

lected into a list using a randomly generated DHT ”node ID”, and only using these nodes

are other operations done. This is implemented in this way to increase anonymity, but

also because such a list of random nodes can technically be saved into a file or cached in

memory for later use.

There is also a difference between the bootstrap initialization node and bootstrap nodes

in general. The initialization node is a hardcoded value that always points to the same

location. It is not possible to connect to the DHT without it unless the locations of other

nodes are known beforehand.

The class UFNetwork.DHTAnnounce is a subclass of UFNetwork.DHT. In addition to

the bootstrapping process and the ability to find locations by node ID, it provides the

extra feature of announcing a new entry into the distributed table. For this, a secondary

bootstrap operation is needed in the current implementation.

Also, there is an overlap between the terms used within the Unified Framework andMain­

line DHT. The latter uses the terms ”node ID” and ”info hash”. The info hash corresponds

to public and private node IDs in the context of the Framework.

3.2.3 Establishing private communication

All data transmission is end­to­end encrypted between the different nodes in the network

architecture of the Unified Framework. By default, the shared AES application key is used

for this purpose. To switch to private communication using the secret key, a combination

of a few steps needs to be performed first.

Firstly, the values s_addr and sin_port of the sockaddr_in structure need to be set to hex­

adecimal values 0xFFFFFFFF and 0xFFFF respectively (representing a fake IP

255.255.255.255 and port 65535). These dummy values indicate to the Framework in

25

a POSIX­compatible way that further communication with the current socket should be

private. In order to connect to another private node, one would need to know its pri­

vate node ID. Since there is no compatible way to specify it, a small GUI dialog box

shows up for POSIX client nodes as soon as the connect(...) function is called. For server

nodes, the private node ID is generated automatically from the app.key and secret.key

files that should be present on the file system. It is possible to use the static method

calculatePrivateNodeIdFromKeyFiles(...) in the UFCrypto class to get the private node

ID for the current node from the files.

Figure 5. GUI dialog box provided by the Framework.

An improvement to the Framework would be to let the developer use a method that would

attach the private node ID that he wishes to connect directly to the socket instance. How­

ever, this may undermine the maintenance of POSIX compatibility.

If the private communication mode is enabled, the key exchange protocol is performed

after the TCP channel has been established, but before the function returns control to the

application.

3.2.4 Inner workings of the bridge library

The process of the bridge library’s functioning can be divided into two parts: injection

and function hooking (redirection).

The injection part is responsible for making sure that custom code can be run in an appli­

cation of choice. To achieve this, a special injector program is used. It uses a combination

of WinAPI functions (known as the CreateRemoteThread method) to start a process with

the desired command­line arguments with the bridge library performing whatever its op­

erations are before the application­specific code begins executing.

The redirection part takes place in the DLL file (ufshim.dll) that has been injected. It uses

the various API calls provided by the Microsoft Detours library to redirect all invocations

26

of the POSIX networking API inside the application to the Unified Framework’s virtual

POSIX­like API instead. After that, the application should be able to continue its work

not suspecting anything different. Due to the UFNetwork.POSIX class in the Unified

Framework already being similar enough to the real POSIX networking API by design,

most hooked functions are simply wrappers around that class.

The bridge library is intended to be universal and support different kinds of applications.

However, since some of them may use system APIs in an unconventional way, the library

may need additional patches over time.

The source code for the bridge library and the injector program are available in this repos­

itory on the university GitLab1 and is licensed under the MIT license.

3.3 Network architecture

Figure 6 shows the placement of virtual layers provided by the Unified Framework in

relation to the theoretical OSI model.

Physical

Data link

Network

Transport

Session

Presentation

Application

1.

2.

3.

4.

5.

6.

7.

Network

Transport

Session

Presentation

Virtualized

Framework layers

Figure 6. Unified Framework’s layers in relation to OSI.

To explain in more detail the meaning of this placement, the description of each virtual

layer in this context can be described. The virtual Network layer provides identity­based

1 https://gitlab.cs.ttu.ee/igpodg/detours­example/­/tree/ufshim

27

https://gitlab.cs.ttu.ee/igpodg/detours-example/-/tree/ufshim

addressing using public and private IDs between nodes. The virtual Transport layer per­

forms NAT traversal or UPnP port forwarding (if necessary), then simply passes through

to the real Transport layer, which in this context is TCP communication. The virtual Ses­

sion layer maps dummy port numbers to real ones that are written to the DHT, as well as

provides a POSIX­compatible networking API. Finally, the virtual Presentation layer pro­

vides data encryption and decryption capabilities. Afterwards, it is up to the application

how to handle the remaining high­level layer.

It is also possible to outline the network architecture as a topology. Various scenarios of

network layouts will be presented.

The most simple topology shown in figure 7 of a network of an application using the Uni­

fied Framework has a total amount of two unique nodes: one POSIX server and one POSIX

client node. This configuration can be achieved in case neither of the nodes requires NAT

traversal. The nodes can then communicate privately using either the application or secret

key. However, their privacy may be undermined if a new node joins the network later if

the application key is used. Since it is shared, all the information communicated between

the first two nodes will be easily accessible by the newly joined node.

unrelated

nodes

Application context

Server Client

Figure 7. Example of simple network topology.

A more complex topology scenario takes the previous one as a base and introduces one

additional Rendezvous node.

In the example in figure 8, the POSIX server requires NAT traversal due to network re­

strictions, while the POSIX client does not. In order to begin communication, the client

connects first to the Rendezvous node, and only then to the server node. Both of these

nodes will still have to rely on the help of the Rendezvous node anyway because the server

is the one that needs to accept arbitrary new incoming connections. If the requirements

were reversed, however, then using the Rendezvous node would not be needed.

28

unrelated

nodes

Application context

Server Client

Rendezvous

node

REGISTER

CONNECT

Figure 8. Example of complex network topology.

The final scenario in figure 9 shows the presence of three Rendezvous nodes, two POSIX

server nodes and one POSIX client node. All POSIX nodes in this case require NAT

traversal. Since there is more than one Rendezvous node, the servers have to register

themselves with all such nodes they can discover. Afterwards, the client then has to query

all Rendezvous nodes until it finds a match. By having three of such nodes, it is possible to

avoid single points of failure, but this procedure can, unfortunately, introduce bottlenecks

and the overload of traffic.

unrelated

nodes

Application context

Server #1Client

Rendezvous #1

REGISTER...

CONNECT

Rendezvous #2

Rendezvous #3 Server #2

Figure 9. Example of another complex network topology.

The sudden unavailability of all Rendezvous nodes at once would allow existing NAT­

traversed connections to continue operating, but no new such connections will be able to

be made until another node becomes online.

In the current implementation, only registration with the first Rendezvous node that has

been found is performed.

29

3.4 Testing the Framework

To test the correctness of all parts concentrated in the design of the Unified Framework, as

well as proper operation of the implementation developed in C++, a few demo applications

have been created. This method is similar to integration testing [49], and it was chosen

because the structure of the Framework is complex and intertwined, so unit tests would

not have worked as ideally for this purpose.

3.4.1 ChatApp

The first demo is a messenger application named ChatApp that closely simulates real­

world chat software. While it has no special parts in it, other than the inclusion of the

Unified Framework, it can demonstrate the complete behavior of the Framework from

beginning to end. The part that is used is the UFNetwork.POSIX class from the Unified

Framework. Both POSIX server and POSIX client functionality is present. Additionally,

it includes a few other required methods, such as the one to retrieve the private node ID

from local key files.

ChatApp is written in the C++ language, which targets native code, thus demonstrating

the ability of the Unified Framework to get integrated into the software of such kind.

ChatApp does not have any knowledge of the virtualized communication layers provided

by the Unified Framework, and it believes that it is either listening on a certain IP address

and port to accept incoming connections or connects to another device directly via raw

TCP and exchanges plain text packets, which is not actually the case.

The application is GUI­based and has two views: the initialization screen and the main

screen. The former is needed because the Framework needs to initialize before allowing

the software to establish any kind of network communication. This can be seen as a down­

side. A command­line window is also open for debugging purposes. If a Rendezvous node

is not present on the network and is not using the same application key as ChatApp, then

the initialization will fail and report a ”socket error”.

On the main screen, the User ID can be seen, which is internally a private node ID of the

POSIX server component inside the application. This ID is calculated automatically from

the app.key and secret.key files. The Add... button will invoke the connect(...) method

immediately. However, because the private communication mode is used, a GUI window

30

Figure 10. The main screen of ChatApp.

supplied by the Framework will first ask the user for the target ID to connect to.

The following scenario can be set up to test the Unified Framework via this demo applica­

tion: one Rendezvous node with debugging output enabled and located on a network that

does not use NAT, as well as two ChatApp instances on separate networks that each use

NAT. Two unique secret keys should be located in the respective directories of ChatApp.

If one of the instances can successfully connect to the other via the user ID, and both of

them can send messages to each other, then it means that the communication has been

successful.

The debug command line window of ChatApp should also not show any errors and the

debugging output of the Rendezvous node should indicate a successful traversal. In this

case, the test can be considered ”passed”.

To further verify that the encryption methods are valid, it is possible to use software such

as Wireshark1 to dump the packets going back and forth and attempting to decrypt them

using the appropriate keys.

3.4.2 Python demos

To perform further additional testing with a different programming language that does not

use native code, Python 3 was chosen due to its quite standard internal use of the POSIX

networking API.

1 https://www.wireshark.org/

31

https://www.wireshark.org/

Unlike the previous demo, it is not sufficient anymore to simply import the Unified Frame­

work DLL file and interface into the code. While there are ways to execute DLL functions

within Python code, this would require a heavy modification of the code layout. Instead,

the Framework can be embedded through the use of a bridge DLL file, while maintaining

the same kind of API virtualization.

To inject the Unified Framework into a Python script, the following four files should be

present in the path of execution: inject.exe, ufshim.dll, uf.dll (the Framework DLL it­

self) and app.key (the shared application key). Then, the keyword inject can simply be

prepended in a command­line window to whatever is the program to be launched, for

example, in this way: inject python script.py.

Three different Python scripts are presented for demonstration. The first one named chat­

app_send.py is intended to confirm that it is possible to connect to a ChatApp instance

within Python. While the previous demo is still running, the script should be executed

with the following command line: inject.exe python chatapp_send.py. After the input

of the target ID and the initialization, the GUI window of ChatApp should display the

message ”Hello from Python!” from a new pseudo­user.

The other two scripts represent a tiny Flask microservice [50] and an HTTP client that

connects to it. In this scenario, a Rendezvous node is also present in the network.

On two remote devices at different locations, the scripts server.py and client.py should be

run through the injector one after another. The test can be considered ”passed” if the client

shows a JSON object on the screen containing the server’s local time. No additional GUI

windows should show up in the process, since compared to the previous demo, this one

uses public communication via the application key.

Using these demonstrations, it is possible to confirm the successful integration of the Uni­

fied Framework into Python code for compatibility. The current implementation of the

Framework has been tested with Python version 3.10.2.

3.5 Using the Framework

The Framework is designed to be used in two ways: being dynamically linked directly

into a native code application or injected via the bridge library.

32

3.5.1 Dynamic linking

For the first approach, the target application needs to support linking to C++­style symbols

(names). The usage in C++ applications will be explained.

First, the Unified Framework needs to be compiled from source code. Currently, it is

a Visual Studio­based project, so one needs to be able to use this IDE for compilation.

Upon opening the file uf.sln, the subproject uf, which represents the Framework, can be

built for x86 or x64 architectures. Support for ARM64 has not been added to the current

implementation.

This produces the necessary files uf.dll and uf.lib for subsequent dynamic linking. Next,

the appropriate project for the desired C++ application should be configured to link to these

files during compilation. In Visual Studio this can be done by navigating to ”Properties”,

”Configuration Properties”, then ”Linker”, ”Input” and ”Additional Dependencies”. Here

is where it is possible to specify the location of the uf.lib file.

Now it is necessary to include the uf.h header file into the source code. This file is available

in the repository in the ”uf_test” folder. After this, it should be possible to use the API

of the Framework. The static method UFCrypto::generateKeysToDisk(...) should first be

called to generate the new application key and optionally, the secret key. The arguments

of the method determine which keys need to be created. Finally, the appropriate code

depending on the node type needed can be inserted into the application.

#include "uf.h"

int main() {
// generate the application key and output the file to disk
UFCrypto::generateKeysToDisk(true, false);
return 0;

}

Figure 11. Short application that generates a new application key.

The subproject uf_test in uf.sln provides an example C++ application that imports the

Unified Framework.

There are not many differences in the actual usage of the Framework compared to the

POSIX networking API, since it was intentionally designed to be compatible with it. Here

are some examples of code that can be used by developers:

33

The code snippet in figure 12 shows the creation of a new socket in the object­oriented

style, the addition of a debug logger, the population of the sockaddr_in structure, and

finally the acceptance of new connections as a server.

#include "uf.h"

#include <iostream>
#include <cstdio>
#include <stdexcept>

char buffer[8192];

int main() {
UFNetwork::POSIX ufSocket(AF_INET, SOCK_STREAM, 0, FORWARD_USING_UPNP);
ufSocket.setDebugProcessor(new UFUtil::DebugLogger);

struct sockaddr_in addr;
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY;
addr.sin_port = 0;
ufSocket.bind((struct sockaddr*)&addr, sizeof(addr));

ufSocket.listen(SOMAXCONN);
struct sockaddr_in incomingAddr;
int incomingSize = sizeof(incomingAddr);

std::cout << "Listening...\n\n";
while (true) {

socket_t incSock;
if ((incSock = ufSocket.accept(

(struct sockaddr*)&incomingAddr, &incomingSize)) == SOCKET_ERROR)
{

throw std::runtime_error("Could not accept new connections.");
}

ufSocket.send(DATA, DATA_LENGTH, 0);
ufSocket.recv(buffer, sizeof(buffer), 0);

}
}

Figure 12. Server application via Unified Framework.

Another example in figure 13 demonstrates client code that is using the non­OOP style.

In this case, the debugging output to the console is turned on automatically.

In both cases, the location can be set to any value for public communication, except for

IP 255.255.255.255 and port 65535, which indicates private communication.

34

#include "uf.h"

#include <iostream>
#include <cstdio>
#include <stdexcept>

char buffer[8192];

int main() {
socket_t socket = UFNetwork::POSIX::socket(AF_INET, SOCK_STREAM, 0);

struct sockaddr_in addr;
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY;
addr.sin_port = 0;
if (UFNetwork::POSIX::connect(socket,

(struct sockaddr*)&addr, sizeof(addr)) == SOCKET_ERROR)
{

throw std::runtime_error("Could not connect to server.");
}

std::cout << "Connected!\n\n";
UFNetwork::POSIX::send(socket, DATA, DATA_LENGTH, 0);
UFNetwork::POSIX::recv(socket, buffer, sizeof(buffer), 0);

}

Figure 13. Client application via Unified Framework.

Additionally, the program in figure 14 can be used to calculate the private node ID.

#include <iostream>
#include "uf.h"

int main() {
uint8_t* privateNodeId = new uint8_t[UFNetwork::Node::NODE_ID_LENGTH];
try {

UFCrypto::calculatePrivateNodeIdFromKeyFiles(privateNodeId);
} catch (const std::exception& e) {

std::cout << "Error occurred: " << e.what() << std::endl;
return 1;

}

return 0;
}

Figure 14. Application example that calculates the private node ID.

To run a Rendezvous node, the following program in figure 15 can be used.

35

#include <iostream>
#include "uf.h"

int main() {
UFNetwork::Rendezvous node;
UFUtil::DebugProcessor* logger = new UFUtil::DebugLogger;
node.setDebugProcessor(logger);

try {
node.runServer();

} catch (const std::exception& e) {
std::cout << "Error occurred: " << e.what() << std::endl;
return 1;

}

return 0;
}

Figure 15. Application that hosts a Rendezvous node.

This is essentially the full extent of the API that should be used directly by application

developers.

3.5.2 Injection

For the method of injection, the injector program, as well as the shim, need to be built from

source code. The Microsoft Detours dependency also needs to be compiled according to

the steps given in the files: detours_build_x86/x64.txt. After this, the detours­example.sln

file can be opened to build the projects. The building may fail the first time since there is

a need to link the shim to the Unified Framework, so the files uf.dll and uf.lib need to be

placed on the appropriate paths according to the error log. After the second build attempt,

the files inject.exe and ufshim.dllwill be produced as a result. Along with the main Frame­

work file uf.dll and the applicable encryption keys in the same directory, it is possible to

now perform the injection. To do that, the keyword inject.exe must be prepended to the

desired command line. For example, if one wants to launch a Python script normally, it

would be enough to launch the following command: python script.py. To pass the script

through an injector, one needs to execute this command: inject.exe python script.py.

Unfortunately, it is not possible to generate application or secret keys using the injection

method, so it would be required to generate them natively beforehand. The same applies

to the ability to calculate the private node ID.

36

4 Evaluation of the Framework

The completed project can now be evaluated using different methods, which include var­

ious software engineering principles, use cases and similar projects. Then developments

for the future will be outlined.

4.1 Software engineering principles

First, the codebase design can be assessed as to whether it follows the reasonable software

engineering principles and patterns, as well as which ones exactly. There are several sets

of principles. The ones chosen here for evaluation are: GRASP (General Responsibility

Assignment Software Patterns) by Craig Larman [51], Clean Code by Robert C. Martin

[52], SOLID by Robert C. Martin and Michael Feathers [53] [54], as well as select ones

from GoF (Gang of Four) by Erich Gamma et al [55].

4.1.1 GRASP

Table 2. Evaluation of Unified Framework classes according to GRASP.

UFCrypto is an Information Expert at:

• updating the IV (Initialization Vector) during en­

cryption and decryption

• storing the temporary AES key during private

communication

has High Cohesion because:

• it manages only cryptographic operations for the

most part (an exception is reading keys from and

saving keys to the file system)

UFNetwork –

37

UFNetwork.Node is the Creator of:

• an object that is the instance of or derives from

UFNetwork.DHT

is an Information Expert at:

• keeping track of whether the current node has been

initialized

• knowing what is the current node’s role

• loading application and secret keys from files on

the file system

has High Cohesion because:

• it is responsible for all operations that initialize a

node

UFNetwork.UPnP is the Creator of:

• the UFNetwork object that contains a temporary

data buffer

is an Information Expert at:

• storing the names of available network cards

• storing the IP addresses of the NAT device behind

network cards

• storing the HTTP URL of the UPnP API of NAT

devices

has High Cohesion because:

• it is responsible only for UPnP­related operations

38

UFNetwork.DHT is the Creator of:

• the UFNetwork object that contains a temporary

data buffer

is an Information Expert at:

• maintaining a list of bootstrap DHT nodes

• storing the last found node ID, in case one has been

found

has High Cohesion because:

• it is responsible only for storing the state and exe­

cuting the code for the DHT client

exhibits Polymorphism because:

• the mergeNodes(...) function is available in multi­

ple forms, depending on the collection type

UFNetwork.DHTAnnounce is the Creator of:

­ (subclass of UFNetwork.DHT)

is an Information Expert at:

­ (subclass of UFNetwork.DHT)

• keeping track of the nodes located within distance

of the node ID that should be announced

• keeping track of the node ID for a started announc­

ing operation

has High Cohesion because:

• it is responsible only for storing the state and ex­

ecuting additional announcing operations for the

DHT client

39

UFNetwork.Rendezvous is the Creator of:

• the UFNetwork object that contains a temporary

data buffer

is an Information Expert at:

• keeping track of node IDs as well as locations of

servers that performed the REGISTER command

has High Cohesion because:

• it only manages the state and code that is related to

a Rendezvous node

UFNetwork.POSIX is the Creator of:

• the UFNetwork object that contains a temporary

data buffer for a socket

• the UFCrypto object that manages cryptographic

information of a socket

is an Information Expert at:

• interacting with virtual socket handles

• keeping track of socket contexts, which include

various information, such as the real socket han­

dle and objects that contain data buffers and cryp­

tographic information

• knowing what is the current connection behavior

of the virtualized socket

has High Cohesion because:

• it is designed to only be a container for virtual

POSIX­like networking API methods

40

UFNetwork.POSIX exhibits Polymorphism because:

• it supports both OOP and non­OOP socket cre­

ation, which produces the same overall result

• different code is being executed depending on the

”connection behavior” currently set

UFUtil.DebugProcessor is an Information Expert at:

• storing the customminimum severity of debugging

logs that should be processed

is a Controller for:

• accepting debugging events and processing them

in some way

has High Cohesion because:

• it is only related to processing debugging events

exhibits Polymorphism because:

• it is an abstract class that allows performing one

abstract operation in different ways

UFUtil.DebugLogger is an Information Expert at:

­ (subclass of UFUtil.DebugProcessor)

is a Controller for:

• accepting debugging events and outputting them to

the console

has High Cohesion because:

• it is only related to logging debugging events

41

Additionally, overloaded constructors in various classes and default arguments manifest

Polymorphism.

The sequence of object interactions for the following public operations constitutes Low

Coupling:

• generation of application and secret keys and saving them to the file system

• calculation of the private node ID based on the app.key and secret.key files

• all operations that virtualize the POSIX networking API except accept(...),

connect(...), send(...), recv(...)

A large number of other operations constitute tight coupling due to the requirement of

interconnecting many components.

The classes UFUtil.HTTPParser and UFUtil.XMLParser (not mentioned in Table 2) ex­

hibit Pure Fabrication or Indirection patterns in relation to the class UFNetwork.UPnP,

because the UPnP API needs to support HTTP and XML parsing.

The class UFUtil.Bencode (not mentioned in Table 2) exhibits Pure Fabrication or Indirec­

tion patterns in relation to the classes UFNetwork.DHT and UFNetwork.DHTAnnounce,

because the Bencode format is used for the Mainline DHT protocol.

The entire codebase is using the Protected Variations pattern due to the requirement of

being portable to various operating systems.

4.1.2 Clean Code

In this section, the code is analyzed according to the Clean Code software engineering

principles.

Meaningful names:

• ”Use Intention­Revealing Names” – YES/NO, when it comes to class instance vari­

ables, the names were indeed chosen such that they reveal intent. However, local

variables inside methods might have been named more arbitrarily in some cases.

42

• ”Avoid Disinformation” – YES/NO, due to the more lax naming of local variables

in methods, they might disinform the reader. Also, the nodeId class variable in

UFNetwork.DHT does not refer to the same kind of ”node ID” as the variable

lastFoundNodeId. In other cases, I have tried to avoid disinformation in class vari­

ables.

• ”Make Meaningful Distinctions” – YES/NO, in some ways, distinctions between

names are made. For example, the variables nonce and throwawayNonce in the

UFNetwork.DHT class. In other places, like the nodes variable of the same class,

the contents of the pair aren’t properly labeled because of the implementation of

the std::pair standard library class. There are, however, ways to make this more

distinctive, but this has not been done.

• ”Use Pronounceable Names” – YES, all the names were chosen specifically so that

they can be pronounced in the English language.

• ”Use Searchable Names” – YES, the names that can be considered important are

well­searchable on the GitLab repository page, for example.

• ”Avoid Encodings” – YES, encodings were not used during the creation of names.

• ”Avoid Mental Mapping” – NO, some mental mappings have been used, for exam­

ple, in the local variables of the methods of the UFNetwork.DHT class. It is worth

refactoring such methods in the future.

• ”Class Names” – YES/NO, for the most part, the class names are nouns that describe

a particular module or technology. In one case, the word Processor is included, in

the class UFUtil.DebugProcessor.

• ”Method Names” – YES/NO, method names start from a verb in most cases. Some

methods that start from ”get” are not accessors (getters), but more complex func­

tions.

• ”Don’t Be Cute” – YES, humorous names are not used within the codebase of the

project.

• ”Pick One Word per Concept” – YES, similar verbs for each concept were used in

function names where applicable.

43

• ”Don’t Pun” – YES/NO, as with the previous principle, the verbs were made con­

sistent. However, in some cases, the verb get means different things, as already

explained. In most cases, they were specifically chosen not to be misleading.

• ”Use Solution Domain Names” – YES, classes and methods are tied to the specific

technologies used, as this was the structure chosen for the design. Hence, the names

used are for the most part solution­specific as well.

• ”Use Problem Domain Names” – YES/NO, problem domain names are used within

the virtual methods of the UFNetwork.POSIX class, but on the other hand, most

other names are focused on the specific solution proposed, not the problem.

• ”Add Meaningful Context” – NO, such context was not in mind during develop­

ment, even though some places would greatly benefit from it. I believe this should

be taken into account when refactoring in the future.

• ”Don’t Add Gratuitous Context” – YES, as was described in the comment of the

previous principle, context was not in mind, which means that there is no gratuitous

context either.

Verdict: The basics have been applied when it comes to properly naming things in the

codebase, but more advanced techniques have not been used. There is definitely refactor­

ing potential when it comes to names.

Functions:

• ”Small!” – YES/NO, most functions and methods are not small in size, with the

exception of some such as calculatePrivateNodeIdFromKeyFiles in UFCrypto, for

example.

• ”Do One Thing” – NO, methods are not split in such a way that they are only de­

signed to do one (small) thing. The strategy was different, to offload technical pro­

cedures to a few functions which can do it well, but that resulted in long functions.

• ”One Level of Abstraction per Function” – NO, methods using different high­level

and low­level procedures are intermixed and not separated. This is partially due

to the initial strategy of having a small number of classes per component of the

Framework.

44

• ”[Avoiding] Switch Statements” – NO, switch statements are used in the code, in­

cluding in the middle of functions. This can probably be minimized with further

refactoring.

• ”Use Descriptive Names” – YES, in some classes such as UFCrypto, method names

are exclusively descriptive, and in other classes, almost all of them are as well.

• ”Function Arguments” – YES/NO, a lot of methods have 2­3 or more arguments,

although some with 0­1 arguments exist too. The solution to this is not immediately

obvious, perhaps if other principles are applied, then this one will become trivial to

apply as well.

• ”Have No Side Effects” – YES/NO, some methods such as bootstrapForAnnounce

in UFNetwork return a value, even though it is optional and can be considered as a

side effect of the method. A large number of other methods do not have any other

effects other than what they were supposed to do.

• ”Command Query Separation” – NO, this principle has not been explicitly used,

and some methods such as generateKeysToDisk in UFCrypto perform multiple­key

generation using boolean flags, which is not the best solution in terms of readability.

The method generateSecretKeys in the same class checks the arguments for null

values to choose which keys to generate, which is not the best design.

• ”Prefer Exceptions to Returning Error Codes” – YES/NO, the codebase uses a mix

of exceptions and return codes. Perhaps it would be better to only use exceptions.

• ”Don’t Repeat Yourself” – YES/NO, even though duplication was meant to be

avoided during the design of themethods, some places such as the UFNetwork.DHT

class contain quite a few duplicated code snippets. This is because I have not found a

reasonable way to split them. With enough refactoring efforts, it should be possible

to get rid of duplication.

• ”Structured Programming” – NO, goto statements are used for optimization pur­

poses. Some methods also use multiple return statements, which means that these

principles of structured programming are not used.

• ”How Do You Write Functions Like This?” – YES/NO, methods were written in

a way to first get the code to work properly, but on the other hand, not enough

refactoring has been done to split them up into smaller functions.

45

Verdict: The code is complete enough to the point where the primary structure of methods

has been defined, and the base implementation is written, but not much more than that.

The existing ”clean” patterns can be used as inspiration for future refactoring.

Comments:

• ”Comments Do Not Make Up for Bad Code” – NO, since comments have been used

for certain parts of the code that are complex. A different strategy should probably

be used to achieve ”cleaner” code.

• ”Explain Yourself in Code” – NO, as with the previous principle, the code was not

necessarily structured in a readable way, but just so that the API makes sense.

• ”Good Comments”

– ”Legal Comments” – NO, such comments have not been used.

– ”Informative Comments” – YES/NO, for example, the comment indicating

the reasons for the marker variable in the initPrivateContextServer method

of UFCrypto can be considered informative. Otherwise, there are simply not

enough comments in the first place to say that this principle has been used

extensively.

– ”Explanation of Intent” – NO, comments explaining intent are not present, but

could be added.

– ”Clarification” – YES/NO, some clarifying comments have been used, for ex­

ample in the socketInternal method of UFNetwork.POSIX, but for the most

part there are not enough comments in the first place to say that this principle

has been used extensively.

– ”Warning of Consequences” – NO, such comments are not present in the code.

– ”TODO Comments” – YES, whenever there are some features that clearly

need to be worked on, some TODO comments have been added.

– ”Amplification” – YES, such comments have been used in the few places that

require them, for example in the acceptTraverseRdvu and connectTraverseRdvu

methods of UFNetwork.POSIX.

– ”Javadocs in Public APIs” – NO, Doxygen comments have not been used any­

where in the codebase.

46

• ”Bad Comments”

– ”Mumbling” – NO, such comments have not been used. The existing com­

ments were meant to point at a specific part of the code and be concrete.

– ”Redundant Comments” – NO, there are no redundant comments, because

there are not many comments in the first place.

– ”Misleading Comments” – NO, the existing comments do match up with the

code.

– ”Mandated Comments” – NO, since the need to use Doxygen comments has

not been mandated by anybody.

– ”Journal Comments” – NO, changelogs are not present in the codebase.

– ”Noise Comments” – YES/NO, such comments are not used in the code, ex­

cept perhaps the generateKeysToDisk function of the UFCrypto class, where

the comments are meant to separate logical pieces of the function.

– ”Scary Noise” – NO, there are no misleading redundant comments.

– ”A Comment When You Can Use a Function or a Variable” – NO, such cases

do not seem to be present.

– ”PositionMarkers” – YES, this style was used in the UFNetwork.POSIX class

implementation due to the need to separate OOP and non­OOP code, but per­

haps there is a better way.

– ”Closing Brace Comments” – NO, closing brace comments are not used.

– ”Attributions and Bylines” – NO, attributions are not used within comments.

– ”Commented­Out Code” – YES, there is some commented out code because

I considered it important.

– ”HTML Comments” – NO, all the comments are in plain text.

– ”Nonlocal Information” – NO, all comments concern local code.

– ”Too Much Information” – NO, all comments are short (maybe too brief).

– ”Inobvious Connection” –YES, some commentsmay needmore in­depth clar­

ification themselves.

– ”Function Headers” – NO, these are not used.

47

– ”Javadocs in Nonpublic Code” – NO, because Doxygen comments are not

used anywhere, let alone in non­public code.

Verdict: There is not a big amount of comments in the Unified Framework’s codebase,

which might be both good and bad in the long term. Also, there are no unnecessary com­

ments which would need to be cleaned up.

Formatting:

• ”Vertical Formatting” – NO, some files contain a large number of lines of code,

so that every class can represent a separate module of the Framework as closely

as possible. Perhaps it is reasonable to split the code definition files (.cpp) even

further.

– ”The Newspaper Metaphor” – YES/NO, some files have been written specif­

ically with this principle in mind. However, in some classes such as UFNet­

work.POSIX, a lot of small wrapper functions are present in the bottom, plus

other similar cases.

– ”Vertical Openness Between Concepts” – YES, vertical spacing is used to sep­

arate blocks of code for a more cohesive understanding.

– ”Vertical Density” – YES/NO, related code is grouped, however not always is

the density so explicit.

– ”Vertical Distance”

• ”Variable Declarations” –YES, variables are declared and defined usually

near the places where some code needs to use them.

• ”Instance variables” – YES, in the header files the instance variables are

separated from methods closer to the top, Java­style.

• ”Dependent Functions” – YES/NO, related functions are usually located

close to each other, where the caller is on the bottom and the callee is on

top (which is the style of the C and C++ languages), however, this is not

always the case.

• ”Conceptual Affinity” – YES, functions that are similar or closely related

are located close to each other in the code.

48

– ”Vertical Ordering” – YES/NO, as with ”Dependent Functions”, the ordering

is for the most part such that the caller is on the bottom and the callee is on

top.

• ”Horizontal Formatting” – YES, most lines are at most 100 characters long. In very

few cases, the maximum width gets to 120.

– ”Horizontal Openness and Density” – YES, this principle has been explicitly

used when writing the code.

– ”Horizontal Alignment” – YES, this principle has been explicitly used when

writing the code.

– ”Indentation” – YES, the code is indented using a specific pattern.

• ”[Avoiding] Breaking Indentation” – YES/NO, as it is possible that in

some small cases the indentation may be inconsistent.

– ”Dummy Scopes” – NO, because, in my opinion, a loop without curly braces

can act as a statement.

• ”Team Rules” – NO, since there were no other developers who would oversee the

project.

Verdict: The code formatting can be considered good enough already, with the only prob­

lem being long classes and functions.

Objects and Data Structures:

• ”Data Abstraction” – YES/NO, most of the public instance variables are abstracted

away, but this is not the case for private classes or variables. However, some public

data is accessible directly and not via getters/setters, so refactoring is needed to fix

this flaw.

• ”Data/Object Anti­Symmetry” –YES, since not everything is an object, even though

the codebase is mainly object­oriented, this principle applies.

• ”The Law of Demeter” – NO, considering that the project uses tight coupling and

some methods are static, so other classes can call them.

49

– ”[Avoiding] TrainWrecks” – YES, it does not seem like chained calls to meth­

ods of different classes grouped using local variables are present.

– ”[Avoiding] Hybrids” – NO, some structures are hybrid, especially if the class

is private. This was done due to ease of use but may need refactoring.

– ”Hiding Structure” – NO, not enough structure is hidden.

• ”Data Transfer Objects” – NO, the DTO pattern is not used.

– ”Active Record [as a Data Structure]” – NO, because Data Transfer Objects

are not used.

Verdict: The idea was to have a separate class per module. This may be what made this

part of the Clean Code principles harder to achieve. It may or may not be worth it to

abstract data away in the private sections in a similar way as it is in the public sections.

Error Handling:

• ”Use Exceptions Rather Than Return Codes” – YES/NO, the codebase uses a mix

of exceptions and return codes. Perhaps it would be better to only use exceptions.

• ”Write Your Try­Catch­Finally Statement First” – YES/NO, this principle is applied

in some places, but not in all.

• ”Use Unchecked Exceptions” – YES, because C++ does not have checked excep­

tions anyway.

• ”Provide Context with Exceptions” –YES, all exceptions that aremeant to be passed

to the target application are meant to be informative.

• ”Define Exception Classes in Terms of a Caller’s Needs” – NO, because the ex­

ception class used is only ”std::runtime_error”. Custom exception classes are not

used.

• ”Define the Normal Flow” – NO, a lot of exceptions in the project require catching.

• ”Don’t Return Null” – NO, in some places nulls are being returned.

• ”Don’t Pass Null” – NO, nulls are extensively used to pass into functions.

50

Verdict: The currently available error handling structures can indicate whether a problem

has occurred and even show where, but there is not really a system designed to process

errors in an advanced way.

Boundaries:

• ”Using Third­Party Code” –YES/NO, some standard library code is wrapped around

in custom interfaces, but not all, so there may be default exceptions from standard

library code.

• ”Exploring and Learning Boundaries” – NO, learning tests are not used, because

the libraries imported into the project have a fairly straightforward API.

• ”Using Code That Does Not Yet Exist” – YES/NO, even though the project used a

bottom­up approach to development, this pattern was still used in some cases, for

example, the UFNetwork.DHT class.

• ”Clean Boundaries” – YES/NO, imported code is wrapped around with separate

classes, for example, UFUtil.XMLParser. However, UFCrypto is quite dependent

on OpenSSL.

Verdict: Many components of the Unified Framework have been written from scratch and

there is not a lot of third­party code. It is not clear if one needs to apply these principles

if the eventual goal is to have a completely self­sustained codebase.

Classes:

• ”Class Organization” – YES/NO, classes are organized such that constants come

first, then instance variables, then methods. This is especially the case for private

blocks.

– ”Encapsulation” – YES, private and public sections in header files are split ac­

cording to the encapsulation principle. In case it is needed, protected sections

are used as well.

• ”Classes Should Be Small!” – YES/NO, most classes are designed to only represent

one module which usually has a set of responsibilities only for its own uses. An

51

exception to this might be the usage of UFNetwork.Node variables in UFCrypto

and possibly some other places.

– ”The Single Responsibility Principle” – NO, classes are for the most part de­

signed to have high cohesion, but the classes are quite large and have many

responsibilities (but still within the realm of the module).

– ”Cohesion” – YES/NO, the methods of classes are usually designed to operate

on the instance variables only of that class, however, some exceptions apply.

– ”Maintaining Cohesion Results in Many Small Classes” – NO, the classes are

quite large and functions can be long and have many local variables, which

means this principle does not apply.

• ”Organizing for Change” – YES/NO, some classes such as UFNetwork.DHT are

complete enough that they do not require changes, so the subclass

UFNetwork.DHTAnnounce uses inheritance instead. However, the project classes

were considered to be predetermined, so the codebase might not be completely or­

ganized for changes.

– ”Isolating from Change” – NO, the codebase was written with specific tech­

nologies in mind, so classes are not isolated from change.

Verdict: The class structure is not well­adapted for big changes. It is also not clear if it

is worth applying the principles above, at least before applying the ones that are more

straightforward for refactoring first.

Systems:

• ”Separate Constructing a System from Using It” – NO, different modules are con­

structed or initialized on­demand, so this principle does not apply. On the other

hand, this may reduce the number of initialized components on startup. But during

runtime, this might lead to slowdowns, so there is work to be done in relation to this

principle.

– ”Separation of Main” – NO, this principle has not been applied, but it is worth

exploring in the future.

52

– ”Factories” – NO, factories are not used in the project, but it does seem like a

good idea to use them.

– ”Dependency Injection” – NO, dependency injection is also not used. The

number of modules or components in the Unified Framework is quite fixed

and tied to its core goals, however, some components are still optional, for

example, UFNetwork.UPnP. It might be worth it to explore Dependency In­

jection.

• ”Scaling Up” – YES/NO, it depends on whether the concerns of the system are sepa­

rated properly. Fromwhat it seems now, the different outer classes like UFNetwork,

UFCrypto and UFUtil can be considered as blocks that separate concerns, while the

inner classes have the actual implementation. On the other hand, the Framework

has tight coupling, so it may depend on the direction of ”scaling up” that determines

whether this principle has been applied.

– ”Cross­CuttingConcerns” –NO, for example, theUFNetwork.DebugProcessor

abstract class is intertwined with the code.

• ”Java Proxies” – YES/NO, the bridge library or shim might be considered as a

certain proxy, but otherwise, this pattern is not used in the main code.

• ”Test Drive the System Architecture” – NO, the code cannot be ”test­driven” by

itself efficiently.

• ”Optimize Decision Making” – YES/NO, it might be possible that there is room for

changes when different decisions need to be made about the Unified Framework in

the future, but on the other hand, the architecture is ”set in stone” and not meant to

be changed heavily.

• ”Use Standards Wisely, When They Add Demonstrable Value” – YES/NO, ”indus­

try” standards have not been heavily used in this project, as it was meant to be a

proof­of­concept of something potentially innovative.

• ”Systems Need Domain­Specific Languages” – NO, domain­specific languages are

not used.

Verdict: The Unified Framework itself can indeed be described as a quite complex system,

53

so it seems like applying these principles would greatly benefit it. For example, using

Factories and initializing all the necessary components on launch.

Emergence:

• ”Simple Design Rule 1: Runs All the Tests” – YES/NO, the project uses tight cou­

pling, so it is hard to test it by unit. Integration testing in the form of demo applica­

tions is available, but unfortunately, while those test most of the code, they do not

test all of the edge cases.

• ”Simple Design Rules 2–4: Refactoring” – YES/NO, the code has been refactored

several times to make its structure easier to understand, however, it is not refactored

to perfection. There is room for improvement and further refactoring.

• ”NoDuplication” – YES/NO, there was an attempt to avoid duplication, however, in

some places such as the UFNetwork.DHT and UFNetwork.DHTAnnounce classes

there is quite a bit of duplication.

• ”Expressive” – NO, the code has not been refactored further after the final proof of

concept has been completed, because the more important point was to confirm that

the design of the API is appropriate, not so much that the implementation is perfect.

• ”Minimal Classes and Methods” – YES/NO, the number of classes is indeed low,

and this is by design. However, it is not simple to avoid having many methods due

to the complexity of the system.

Verdict: The system is indeed using some principles of Emergent/Simple Design, but not

to the fullest extent. It should be easier to continue refactoring to achieve all of them,

even though the project is considered to be finished now. Nonetheless, by this point, it is

possible to confirm that the class structure and implementation of the Framework are at

least somewhat appropriate because the project can be tested and verified that it works.

Concurrency is only used in one place within the codebase in the UFNetwork.Rendezvous

class. It contains a mutex, that represents a synchronized section for closing and reopen­

ing a socket. This implementation can be improved in such a way, that synchronization

is not required in the first place. The UFNetwork.DHT class and its subclasses might re­

54

quire additional improvements in the form of concurrency or threading to speed up the

Framework’s initialization process.

To conclude, there is potential to refactor the codebase of the Unified Framework much

more and it can be one of the future developments. It would probably not be possible to

easily apply all of the principles, because of the established structure of the codebase, but

it is should be possible to apply a large part of them.

4.1.3 SOLID

The evaluation of each of the SOLID principles is given as follows:

Single Responsibility Principle – this principle has not been fulfilled, because the classes

are divided per technology or module used, not per responsibility.

Open­Closed Principle – some classes within the Unified Framework are easily inherited

from and their functionality extended, but some are not, for example,

UFNetwork.Rendezvous or UFNetwork.POSIX. The open­closed principle is only par­

tially fulfilled.

Liskov Substitution Principle – the instances where the class UFNetwork.DHT is used

can be replaced with the UFNetwork.DHTAnnounce class, as well as the instances of

UFUtil.DebugProcessor can be replaced with UFUtil.DebugLogger. These are the only

two instances currently where subclasses are used, thus the Liskov Substitution Principle

has been fulfilled.

Interface Segregation Principle – public interfaces of the classes are designed to be co­

hesive with what they are supposed to do, so the Interface Segregation Principle is being

applied.

Dependency Inversion Principle – the project has been developed with the help of the

bottom­up approach, so a lot of technologies were already in mind before the codebase

design phase. What follows from this is that the Dependency Inversion Principle has not

been fulfilled.

4.1.4 GoF

The following GoF patterns are present in the main codebase of the Unified Framework:

55

Creational Patterns:

• Factory Method, the initializeNode() method in the UFNetwork.Node class can be

considered as a Factory Method because it sets the dhtCache variable to different

instances of either the UFNetwork.DHT class or its descendant. It is being delegated

the creation of a new object with the needed configuration.

• Singleton, this pattern is used in the initChildContext(...) method of the

UFNetwork.POSIX class. In case the contexts list does not exist, it is created. All

subsequent calls to this method reuse the already existing list.

Structural Patterns:

• Adapter, this pattern is used for example by the UFUtil.XMLParser class (not men­

tioned in Table 2). The class wraps around a third­party library pugixml to provide

its own interface, effectively acting as an Adapter to provide the same functionality

in a different way.

• Facade, this pattern is used everywhere throughout the codebase. The class

UFNetwork.Rendezvous uses it with the method runServer(), the class

UFNetwork.DHT with the bootstrap() method, etc. The goal was to simplify the

API for the target developer of an application.

Behavioral Patterns:

• Observer, this pattern is partially used for setting debugging event processors inside

multiple classes. The setDebugProcessor(...)method, as well as some constructors,

allow one to set this to an instance of any descendant of UFUtil.DebugProcessor. If

this has not been done, then event processing does not take place. The reason for

the partial and not full use of this pattern is that only one DebugProcessor can be

set per class. The design could surely be improved by allowing classes to process

events using multiple DebugProcessors.

• Strategy, it is possible to identify the different ”connection behaviors” inside the

UFNetwork.POSIX class as different Strategies, however, these are not separate

56

classes but just a flag inside the class. Therefore, this pattern has only partially

been used.

4.2 Use cases of the Framework

As mentioned previously, the Unified Framework should have a variety of different use

cases. Several target groups of developers who the Unified Framework would be suitable

for have been identified.

The first group is users who may want to set up various services on the Internet right from

their homes. Then, various home servers and network projects can be remotely accessed

from any arbitrary remote device, as long as they are within the same application context.

This allows regular users to effectively contribute computation resources to the Internet.

The second group are developers who deal with the field of real­time communication

between users, for example, to exchange text messages or launch video conferences, and

want the users’ privacy to be preserved.

The third group is IoT developers who would rather not set up Cloud­based infrastructure

to manage customer devices since the user’s home network can take on the burden of

hosting instead.

Another group is people who would like to adapt existing client­server source code or

applications for P2P use cases. This should be trivial with the bridge library that the

Unified Framework provides.

The final group is developers who want to provide services based on a proprietary code­

base to transform it into a public networked ”black box”.

Other target groups may exist. Using the Unified Framework for P2P applications can

cut development time and the need to learn or integrate various P2P technologies since

the Framework is only one single comprehensive implementation. Also, due to it using

native code, performance can be increased compared to non­native solutions. With enough

refactoring, it should be possible to make the Unified Framework lightweight enough to

run successfully on very low­powered embedded devices.

Being able to establish a direct connection between arbitrary devices can be considered

57

essential to moving the Internet in the direction of further decentralization. If such a sce­

nario suddenly became commonplace, it would lead to transformational changes of the

Internet.

Unfortunately, the Unified Framework will not be suitable for those who want to imple­

ment P2P clients inside web browsers, as the support for that has not been added yet.

4.3 Overview of similar frameworks

Similar projects that work on similar layers already exist, so this section lists other related

libraries and compares them to the Unified Framework.

4.3.1 JXTA

The first related project is JXTA, which started development by Sun Microsystems in

2001. It also works on top of the Transport layer like the Unified Framework and provides

some similar features, such as Peer Discovery, data encryption, but also grouping of peers,

relaying, file sharing, authentication, authorization, etc. Metadata is transferred between

peers (nodes) in the form of XML messages [56].

JXTA is designed to be language and platform­independent, as is the Unified Framework,

and is divided into six subprotocols: Peer Discovery Protocol (PDP), Peer Information

Protocol (PIP), Peer Resolver Protocol (PRP), Pipe Binding Protocol (PBP), Endpoint

Routing Protocol (ERP) and Rendezvous Protocol (RVP). The choice of protocols is up

to the developer, and some can be optional [57].

Two main interfaces, JxtaSocket and JxtaBiDiPipe are available through which commu­

nication between the nodes can take place [57], where the former is a subclass of the

java.net.Socket class, at least on its native language Java, and the latter is a more high­

level interface [58].

Like Unified Framework node IDs, JXTA has the concept of ”peer ID”, which seems to

work in a similar way. C and C++ language compatibility is also included.

Node discovery is achieved in JXTA using the Peer Discovery Protocol (PDP), which

should work on LAN by default, but to discover peers on the global Internet, the usage of

additional ”rendezvous peers” is needed (not to be confused with the Rendezvous nodes of

58

the Unified Framework, the terminology varies). There is no DHT­like directory in JXTA,

different nodes just relay information to each other [59]. Some hardcoded ”rendezvous

peers” were provided, but the servers are currently inaccessible [60].

JXSE, the original Java implementation of JXTA [61], did not support NAT traversal as

of 2010, and instead relayed information through other peers, similar to TURN [62] [63].

Also, unlike the Unified Framework, this library was not designed for compatibility with

POSIX sockets in mind, as it includes many more public APIs [64].

Unfortunately, the development was reportedly stopped in 2010 [65] but has continued in

some capacity in 2013 [66].

4.3.2 freedom.js

The second project described is freedom.js. Unlike the Unified Framework, it is a web­

based framework that is meant to be used inside browsers. It completely redefines the

style of how applications should be made with its modular API design [67].

For the transport protocol, it uses WebRTC, which is embedded into many common web

browsers [68]. This technology runs on top of UDP and provides NAT traversal capabili­

ties by default via STUN, as well as relaying via TURN [69].

The primary design choice of freedom.js is modularity. Rather than selecting a few es­

sential technologies that should be used for all applications, the authors made it possible

to interchange modules used for transport, storage and identification. This means that

technically even the WebRTC protocol can be replaced by a developer with another, or

an existing implementation improved, and this would still be possible via the native free­

dom.js API. These modules are meant to be reused across applications, similar to how a

package registry like npm1 provides third­party ready­to­use libraries for developers.

DHT is used in this framework not for node discovery, but for data storage purposes. To

identify other users, it seems that XMPP or OpenID are used, and it is possible to add more

sources using different modules. Data encryption features are provided throughWebRTC,

which is mandatory with that protocol.

1 https://www.npmjs.com/

59

https://www.npmjs.com/

The architecture is different from the one in the Unified Framework, which determines

a preset amount of technologies to be used as a base, and all others are meant to run on

top of those without the intervention of the Framework. This is in contrast to freedom.js,

which allows one to swap out even the essential parts with other ones.

The authors have also introduced a browser extension named ”freedom.jsManager”, which

is designed to bypass restrictions imposed by the web browser’s security model, such as

storage space or computation time. However, it does not seem like this extension is avail­

able in the Google ChromeWeb Store1, the Firefox Add­ons page2 or the project’s GitHub

repository3.

Nevertheless, it may be beneficial to use this project for the development of brand new

browser­based P2P applications, but it is unsuitable for standalone applications which can

run directly on a computer or mobile device.

4.3.3 libp2p

The final related solution is named libp2p, which is described by the authors as a ”modular

peer­to­peer networking stack” [70]. Just like the previous project, this one uses a system

of different components. Here they are divided into groups: Transports, Multiplexers,

Secure Channels, Peer Discovery, Peer Routing, Content Routing, NAT Traversal and

Pubsub. Libp2p is located above the Transport layer of communications, which is the same

placement as in JXTA and theUnified Framework. Peers (nodes) are likewisemarkedwith

an identifier, which is derived from the public key. The public key itself can use a variety

of different asymmetric encryption algorithms [70].

Node discovery is provided either using mDNS for local networks (LAN) or Kademlia

DHT (the same kind that Mainline DHT is based on). NAT Traversal and relaying are

performed via custom protocols that are similar to STUN and TURN respectively.

Libp2p is designed to run both inside standalone applications, as well as in a web browser.

Currently, it supports the following programming languages: JavaScript, Go and Rust,

where the Go implementation is the most complete one [71]. Not all modules have been

1 https://chrome.google.com/webstore/search/freedom.js
2 https://addons.mozilla.org/en­US/firefox/search/?q=freedom.js
3 https://github.com/freedomjs/freedom

60

https://chrome.google.com/webstore/search/freedom.js
https://addons.mozilla.org/en-US/firefox/search/?q=freedom.js
https://github.com/freedomjs/freedom

developed in all languages, so the project can be considered unfinished1.

Unlike the Unified Framework, libp2p requires manual instantiation and usage of the com­

ponents required [72].

4.3.4 Summary

To summarize, even though the Unified Framework has been developed independently, it

inadvertently overlaps with other P2P frameworks using many of the same technologies.

This is probably either because the low­level architecture of P2P applications is pretty

straightforward or this kind of design makes the most sense. The Unified Framework does

however offer some benefits that others don’t, namely, the compatibility with the POSIX

API and the heavy use of the Facade software engineering pattern to abstract away most

underlying details for the application developer, sacrificing modularity and extensibility

that may ultimately not be needed.

4.4 Future developments

Throughout the analysis, multiple points concerning the challenges of the current version

of the Unified Framework have been identified. To address them, the following improve­

ments can be made in the future:

– Right now the Framework only supports the TCP Transport layer protocol, but the

UDP protocol can be added in relatively easily. Using UDP can be more efficient

compared to TCP in some applications, and methods to traverse the NAT with UDP

already exist. One of them is STUN (Session Traversal Utilities for NAT) [73].

– An issue might be related to the usage of Symmetric NATs and VPN services, where

the NAT traversal protocol of the Framework can fail [74]. In this case, it is worth

adding additional traversal algorithms, as well as designing an extra system for re­

laying data efficiently similar to TURN (Traversal Using Relays around NAT) [75],

where no other option is available.

– To increase stability, it is possible to add self­correcting, resilient and robust proto­

cols to recover from non­fatal errors. This includes the creation of a priority system

for ”connection behaviors” in the UFNetwork.POSIX class.

1 As of May 2022.

61

– Since Certificate Authorities (CAs) are not used within the Framework architec­

ture, it might be worth implementing a ”web of trust” [76] instead, which should

strengthen security.

– Adding support for IPv6 can make the Unified Framework more future­proof.

– To avoid congestion of Rendezvous nodes, the DAT system from a reviewed re­

search paper [39] can be applied on top of the existing DHT without the use of

”gateways” to eliminate unnecessary bottlenecks. Also to avoid loss of service due

to the inability of finding a node identifier, a background thread should periodically

reannounce nodes to the DHT.

– Adding distributed storage support can increase the number of use cases for the

Framework and fit in well within the current network architecture. Another node

type can be added, whose responsibility would be to store chunks of data from users

for certain periods of time.

– WebRTC and WebSockets support can be added for web browsers to be able to

connect to servers hosted via the Unified Framework as clients.

– The project should be ported to Unix­based systems including mobile devices to

increase relevance and usability.

– To make sure that the Unified Framework can be used in ”air­gapped” intranets,

another node role ”DHT server” should be added. It would provide services in

place of the public one from BitTorrent.

– Decoupling the Unified Framework from third­party libraries such as OpenSSL and

pugixml can make the project’s code fully independent.

– Refactoring the code further while taking more software engineering principles and

patterns into account can make the code ”cleaner”, more understandable to new

developers.

– The support for an additional automatic port forwarding protocol can be added

alongside UPnP. NAT­PMP [77] is another one that should not take long to im­

plement.

– An alternative for node discovery on local networks (using mDNS or UDP Multi­

cast) can reduce confusion and provide better options for debugging.

62

– Node initialization can be made to perform as soon as the application is launched to

also reduce confusion.

– Node configuration (for example, cached DHT bootstrap nodes or the private node

ID to connect to) can be saved into local files on the file system. This way the GUI

window when communicating privately can be avoided and the number of single

points of failure reduced.

– Debugging flexibility can be increased by allowing multiple DebugProcessors per

class and by defining a structure of event constants.

– Some methods in the UFNetwork.DHT and UFNetwork.DHTAnnounce classes can

be made asynchronous to increase the application initialization speed.

63

5 Conclusion

Before the result as part of this thesis has been achieved, developers of P2P applications

had experienced various problems. For example, they were not able to achieve direct

connections between nodes on the Internet in a compatible way. The Unified Frame­

work has been proposed as a solution that abstracts away all the technologies that are

necessary for direct connections to get successfully established. To begin the work on the

Framework, first, various background concepts have been explained. Additionally, the

relevant literature has been reviewed. Then, the design of the codebase has been estab­

lished. Afterwards, the network architecture has been put in place. It was then possible

to test the Framework whether it works correctly. After the testing has been done, the

Unified Framework has been evaluated according to various software engineering princi­

ples and patterns. Also, it has been explained which target groups can benefit the most

from the Framework. The Framework has then been compared with other similar projects

that already exist. Finally, some suggestions for the future of the Framework in terms of

development have been proposed.

64

References

[1] A. Oram, “Peer­to­peer: Harnessing the power of disruptive technologies,” in, 1st

ed. O’Reilly, 2001, ch. A Network of Peers: Peer­to­Peer Models Through the His­

tory of the Internet, pp. 3–14, ISBN: 978­0­596­00110­0.

[2] K. Aberer andM.Hauswirth, “AnOverview on Peer­to­Peer Information Systems,”

p. 14, 2002.

[3] J. L. Eppinger, “TCP Connections for P2P Apps: A Software Approach to Solving

the NAT Problem,” p. 8, 2005.

[4] P. H. Nguyen, “A Literature Review about Peer to Peer Protocol,” p. 3, 2020.

[5] G. Maier, F. Schneider, and A. Feldmann, “NAT Usage in Residential Broadband

Networks,” in Passive and Active Measurement, N. Spring and G. F. Riley, Eds.,

vol. 6579, Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 32–41, ISBN:

978­3­642­19259­3 978­3­642­19260­9. DOI: 10.1007/978-3-642-19260-9_4.

[6] A. Moallem, “Home Networking: Smart but Complicated,” in Human­Computer

Interaction. Applications and Services, D. Hutchison, T. Kanade, J. Kittler, J. M.

Kleinberg, A. Kobsa, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu

Rangan, B. Steffen, D. Terzopoulos, D. Tygar, G. Weikum, and M. Kurosu, Eds.,

vol. 8512, Cham: Springer International Publishing, 2014, pp. 731–741, ISBN: 978­

3­319­07226­5 978­3­319­07227­2. DOI: 10.1007/978-3-319-07227-2_70.

[7] What Is My IP Address ­ See Your Public Address ­ IPv4 & IPv6, https://whati

smyipaddress.com/, Accessed: 2022­05­08.

[8] S. S. H. Hajjaj and K. S.M. Sahari, “Establishing remote networks for ROS applica­

tions via Port Forwarding: A detailed tutorial,” International Journal of Advanced

Robotic Systems, vol. 14, no. 3, May 2017, ISSN: 1729­8814, 1729­8814. DOI:

10.1177/1729881417703355.

[9] ICANN, Beginner’s Guide to Domain Names, Brochure, 2010. [Online]. Available:

https://www.icann.org/en/system/files/files/domain-names-beginn

ers-guide-06dec10-en.pdf.

65

https://doi.org/10.1007/978-3-642-19260-9_4
https://doi.org/10.1007/978-3-319-07227-2_70
https://whatismyipaddress.com/
https://whatismyipaddress.com/
https://doi.org/10.1177/1729881417703355
https://www.icann.org/en/system/files/files/domain-names-beginners-guide-06dec10-en.pdf
https://www.icann.org/en/system/files/files/domain-names-beginners-guide-06dec10-en.pdf

[10] J. Schlamp, J. Gustafsson, M. Wählisch, T. C. Schmidt, and G. Carle, “The Aban­

doned Side of the Internet: Hijacking Internet Resources When Domain Names

Expire,” in Traffic Monitoring and Analysis, M. Steiner, P. Barlet­Ros, and O.

Bonaventure, Eds., vol. 9053, Cham: Springer International Publishing, 2015, pp. 188–

201, ISBN: 978­3­319­17171­5 978­3­319­17172­2. DOI: 10.1007/978-3-319-

17172-2_13.

[11] M. R. Parwez, M. Akbar, S. Haider, and M. S. Javaid, “DNS propagation delay: An

effective and robust solution using authoritative response from non­authoritative

server,” in 2010 2nd IEEE International Conference on Information Management

and Engineering, Chengdu, China: IEEE, 2010, pp. 150–153, ISBN: 978­1­4244­

5263­7. DOI: 10.1109/ICIME.2010.5477485.

[12] T. Hancock, “Programming languages and ”lock­in”,” Free Software Magazine,

Apr. 18, 2008, Accessed: 2022­05­08. [Online]. Available: http://freesoftwar

emagazine.com/articles/programming_language_lock_in/.

[13] Operating System Market Share Worldwide | Statcounter Global Stats, https://g

s.statcounter.com/os-market-share, Accessed: 2022­05­08.

[14] A. E. Kwame, E. M. Martey, and A. G. Chris, “Qualitative assessment of compiled,

interpreted and hybrid programming languages,”Communications on Applied Elec­

tronics, vol. 7, no. 7, pp. 8–13, 2017, ISSN: 2394­4714.

[15] T. Kawato,M. Higashino, K. Takahashi, and T. Kawamura, “Proposal of e­Learning

System integrated P2P Model with Client­Server Model,” in 2019 International

Conference on Electronics, Information, and Communication (ICEIC), Auckland,

New Zealand: IEEE, Jan. 2019, pp. 1–6. DOI: 10.23919/ELINFOCOM.2019.870

6472.

[16] H. S. Oluwatosin, “Client­server model,” IOSR Journal of Computer Engineering,

vol. 16, no. 1, pp. 67–71, Feb. 2014, ISSN: 2278­8727, 2278­0661. DOI: 10.9790

/0661-16195771.

[17] H. Zimmermann, “OSI Reference Model–The ISOModel of Architecture for Open

Systems Interconnection,” IEEE Transactions on Communications, vol. 28, no. 4,

pp. 425–432, Apr. 1980, ISSN: 0096­2244. DOI: 10.1109/TCOM.1980.1094702.

66

https://doi.org/10.1007/978-3-319-17172-2_13
https://doi.org/10.1007/978-3-319-17172-2_13
https://doi.org/10.1109/ICIME.2010.5477485
http://freesoftwaremagazine.com/articles/programming_language_lock_in/
http://freesoftwaremagazine.com/articles/programming_language_lock_in/
https://gs.statcounter.com/os-market-share
https://gs.statcounter.com/os-market-share
https://doi.org/10.23919/ELINFOCOM.2019.8706472
https://doi.org/10.23919/ELINFOCOM.2019.8706472
https://doi.org/10.9790/0661-16195771
https://doi.org/10.9790/0661-16195771
https://doi.org/10.1109/TCOM.1980.1094702

[18] M. Jahajee, A. Katlana, N. Khare, and P. Diwakar, “OSI Model,” International

Journal of Engineering Sciences &Management Research, Oct. 2015, ISSN: 2349­

6193.

[19] A. L. Russell, “OSI: The Internet That Wasn’t,” IEEE Spectrum, Jul. 29, 2013,

Accessed: 2022­05­08. [Online]. Available: https://spectrum.ieee.org/osi

-the-internet-that-wasnt.

[20] A. N. A. Ali, “Comparison study between IPV4 & IPV6,” International Journal of

Computer Science Issues, vol. 9, no. 3, May 2012, ISSN: 1694­0814.

[21] S. Hogg, “You Thought There Was No NAT for IPv6, But NAT Still Exists,” In­

foblox Blogs, Dec. 28, 2021, Accessed: 2022­05­08. [Online]. Available: https:

//blogs.infoblox.com/ipv6-coe/you-thought-there-was-no-nat-for-

ipv6-but-nat-still-exists/.

[22] Y. Zhangyi, M. Yan, F. Baker, H. Xiaohong, and Z. Xiaodong, “The implementation

of NAT66 and the solutions of multi­homing in NAT66 environment,” in 2009 2nd

IEEE International Conference on Broadband Network & Multimedia Technology,

Beijing, China: IEEE, Oct. 2009, pp. 608–613, ISBN: 978­1­4244­4590­5. DOI:

10.1109/ICBNMT.2009.5347847.

[23] IANA IPv4 Special­Purpose Address Registry, https://www.iana.org/assign

ments/iana-ipv4-special-registry/iana-ipv4-special-registry.xht

ml, Accessed: 2022­05­08.

[24] Service Name and Transport Protocol Port Number Registry, https://www.iana

.org/assignments/service-names-port-numbers/service-names-port-

numbers.xhtml, Accessed: 2022­05­08.

[25] J. Lv, W. Tang, and H. Zhang, “A TCP­based Asymmetric NAT Traversal Model

for P2P Applications,” in 2012 Second International Conference on Instrumen­

tation, Measurement, Computer, Communication and Control, Harbin City, Hei­

longjiang, China: IEEE, Dec. 2012, pp. 883–886, ISBN: 978­1­4673­5034­1 978­

0­7695­4935­4. DOI: 10.1109/IMCCC.2012.212.

[26] Understanding Different NAT Types and Hole­Punching, https://dh2i.com/kb

s/kbs-2961448-understanding-different-nat-types-and-hole-punchi

ng/, Accessed: 2022­05­08.

67

https://spectrum.ieee.org/osi-the-internet-that-wasnt
https://spectrum.ieee.org/osi-the-internet-that-wasnt
https://blogs.infoblox.com/ipv6-coe/you-thought-there-was-no-nat-for-ipv6-but-nat-still-exists/
https://blogs.infoblox.com/ipv6-coe/you-thought-there-was-no-nat-for-ipv6-but-nat-still-exists/
https://blogs.infoblox.com/ipv6-coe/you-thought-there-was-no-nat-for-ipv6-but-nat-still-exists/
https://doi.org/10.1109/ICBNMT.2009.5347847
https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://doi.org/10.1109/IMCCC.2012.212
https://dh2i.com/kbs/kbs-2961448-understanding-different-nat-types-and-hole-punching/
https://dh2i.com/kbs/kbs-2961448-understanding-different-nat-types-and-hole-punching/
https://dh2i.com/kbs/kbs-2961448-understanding-different-nat-types-and-hole-punching/

[27] Private Address Ranges ­ IBM Documentation, https://www.ibm.com/docs/e

n/networkmanager/4.2.0?topic=translation-private-address-ranges,

Accessed: 2022­05­13.

[28] K. Egevang and P. Francis, “The IP Network Address Translator (NAT),” RFC Ed­

itor, Tech. Rep. RFC1631, May 1994. DOI: 10.17487/rfc1631.

[29] B. Cui, Q. Zhang, X. Zhang, and T. Guo, “Research on UPnP Protocol Security

of Gateway Device,” in Advances on Broad­Band Wireless Computing, Communi­

cation and Applications, L. Barolli, F. Xhafa, and J. Conesa, Eds., vol. 12, Cham:

Springer International Publishing, 2018, pp. 450–458, ISBN: 978­3­319­69810­6

978­3­319­69811­3. DOI: 10.1007/978-3-319-69811-3_41.

[30] WANIPConnection:2 Service, UPnP Forum, p. 49, Sep. 2010.

[31] Z. Hu, “NAT traversal techniques and peer­to­peer applications,” inHUT T­110.551

Seminar on Internetworking, Citeseer, 2005, pp. 04–26.

[32] Windows Sockets 2, https://docs.microsoft.com/en-us/windows/win32/w

insock/windows-sockets-start-page-2, Accessed: 2022­05­08.

[33] Using Sockets and Socket Streams, https://developer.apple.com/library

/archive/documentation/NetworkingInternet/Conceptual/Networking

Topics/Articles/UsingSocketsandSocketStreams.html, Accessed: 2022­

05­08.

[34] Socket(7) Linux User’s Manual, Mar. 2021.

[35] L. Besaw, Berkeley UNIX† System Calls and Interprocess Communication, Jan.

1987.

[36] Machine Code, https://icarus.cs.weber.edu/~dab/cs1410/textbook/1

.Basics/machine.html, Accessed: 2022­05­08.

[37] A. Turcotte, E. Arteca, and G. Richards, “Reasoning About Foreign Function In­

terfaces Without Modelling the Foreign Language,” p. 32, 2019. DOI: 10.4230/L

IPICS.ECOOP.2019.16.

[38] J. Berdajs and Z. Bosnić, “Extending applications using an advanced approach to

DLL injection and API hooking,” Software: Practice and Experience, pp. 567–584,

2010, ISSN: 00380644, 1097024X. DOI: 10.1002/spe.973.

68

https://www.ibm.com/docs/en/networkmanager/4.2.0?topic=translation-private-address-ranges
https://www.ibm.com/docs/en/networkmanager/4.2.0?topic=translation-private-address-ranges
https://doi.org/10.17487/rfc1631
https://doi.org/10.1007/978-3-319-69811-3_41
https://docs.microsoft.com/en-us/windows/win32/winsock/windows-sockets-start-page-2
https://docs.microsoft.com/en-us/windows/win32/winsock/windows-sockets-start-page-2
https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/NetworkingTopics/Articles/UsingSocketsandSocketStreams.html
https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/NetworkingTopics/Articles/UsingSocketsandSocketStreams.html
https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/NetworkingTopics/Articles/UsingSocketsandSocketStreams.html
https://icarus.cs.weber.edu/~dab/cs1410/textbook/1.Basics/machine.html
https://icarus.cs.weber.edu/~dab/cs1410/textbook/1.Basics/machine.html
https://doi.org/10.4230/LIPICS.ECOOP.2019.16
https://doi.org/10.4230/LIPICS.ECOOP.2019.16
https://doi.org/10.1002/spe.973

[39] M. B. M. Kamel, P. Ligeti, A. Nagy, and C. Reich, “Distributed Address Table

(DAT): A Decentralized Model for End­to­End Communication in IoT,” Peer­to­

Peer Networking and Applications, vol. 15, no. 1, pp. 178–193, Jan. 2022, ISSN:

1936­6442, 1936­6450. DOI: 10.1007/s12083-021-01221-3.

[40] K. Matsuoka and T. Suzuki, “Blockchain and DHT Based Lookup System Aiming

for Alternative DNS,” in 2020 2nd International Conference on Computer Commu­

nication and the Internet (ICCCI), Nagoya, Japan: IEEE, Jun. 2020, pp. 98–105,

ISBN: 978­1­72815­800­6. DOI: 10.1109/ICCCI49374.2020.9145989.

[41] O. Ohwo, O. Awodele, and O. Yewande, “An Understanding and Perspectives of

End­To­End Encryption,” vol. 08, no. 4, pp. 1086–1094, Apr. 2021, ISSN: 2395­

0056, 2395­0072.

[42] K. Lin and Z. Jiang, “Using a Dynamic Domain Name System (DDNS) Technology

to Remotely Control a Building Appliances Network,” in International MultiCon­

ference of Engineers and Computer Scientists, vol. 1, 2017, ISBN: 978­988­14047­

3­2.

[43] DHT Protocol, http://bittorrent.org/beps/bep_0005.html, Accessed:

2022­05­08.

[44] K. L. Busbee and D. Braunschweig, “Programming Fundamentals – A Modular

Structured Approach, 2nd Edition,” in. Dec. 15, 2018, ch. Modular Programming,

p. 133.

[45] R. Hartson and P. Pyla, “Bottom­Up Versus Top­Down Design,” in The UX Book,

Elsevier, 2019, pp. 279–291, ISBN: 978­0­12­805342­3. DOI: 10.1016/B978-0-

12-805342-3.00013-8.

[46] I. Grigorik, “High Performance Browser Networking: What every web developer

should know about networking and web performance,” in. O’Reilly, Oct. 29, 2013,

ch. Transport Layer Security (TLS), pp. 47–52, ISBN: 978­1­4493­4476­4.

[47] National Institute of Standards and Technology, “The Keyed­Hash Message Au­

thenticationCode (HMAC),”National Institute of Standards and Technology, Gaithers­

burg, MD, Tech. Rep. NIST FIPS 198­1, Jul. 2008, NIST FIPS 198–1. DOI: 10.6

028/NIST.FIPS.198-1.

69

https://doi.org/10.1007/s12083-021-01221-3
https://doi.org/10.1109/ICCCI49374.2020.9145989
http://bittorrent.org/beps/bep_0005.html
https://doi.org/10.1016/B978-0-12-805342-3.00013-8
https://doi.org/10.1016/B978-0-12-805342-3.00013-8
https://doi.org/10.6028/NIST.FIPS.198-1
https://doi.org/10.6028/NIST.FIPS.198-1

[48] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed­Hashing for Message

Authentication,” RFC Editor, Tech. Rep. RFC2104, Feb. 1997. DOI: 10.17487/r

fc2104.

[49] H. Leung and L. White, “A study of integration testing and software regression at

the integration level,” in Proceedings. Conference on Software Maintenance 1990,

San Diego, CA, USA: IEEE Comput. Soc. Press, 1990, pp. 290–301, ISBN: 978­

0­8186­2091­1. DOI: 10.1109/ICSM.1990.131377.

[50] T. Ziadé, “Python microservices development: Build, test, deploy, and scale mi­

croservices in Python,” in. Packt Publishing, Jul. 25, 2017, ch. Discovering Flask,

pp. 33–64, ISBN: 978­1­78588­111­4.

[51] C. Larman, Applying UML and Patterns: An Introduction to Object­Oriented Anal­

ysis and Design and Iterative Development, 3rd ed. Pearson, Oct. 20, 2004, p. 736,

ISBN: 978­0­13­148906­6.

[52] R. C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship, 1st ed.

Pearson, Aug. 1, 2008, ISBN: 978­0­13­235088­4.

[53] R. C. Martin, “Design principles and design patterns,” Object Mentor, p. 34, 2000.

[54] R. C. Martin, Clean Architecture: A Craftsman’s Guide to Software Structure and

Design, 1st ed. Pearson, Sep. 10, 2017, pp. 57–59, ISBN: 978­0­13­449416­6.

[55] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Eds.,Design Patterns: Elements

of Reusable Object­Oriented Software, ser. Addison­Wesley Professional Comput­

ing Series. Addison­Wesley, Nov. 10, 1994, ISBN: 978­0­201­63361­0.

[56] N. Maibaum and T. Mundt, “JXTA: A technology facilitating mobile peer­to­peer

networks,” in International Mobility and Wireless Access Workshop, IEEE, 2002,

ISBN: 978­0­7695­1843­5. DOI: 10.1109/MOBWAC.2002.1166946.

[57] R. Mekki and R. Fezza, “A Sample Chat Application Based on JXTA,” Journal

of Applied Sciences, vol. 9, no. 21, pp. 3912–3916, Oct. 2009, ISSN: 1812­5654.

DOI: 10.3923/jas.2009.3912.3916.

[58] M.Abdelaziz, “Demystifying Pipes, JxtaSockets, JxtaMulticastSocket, and JxtaBiDiP­

ipes,” java.net Weblogs, Aug. 23, 2005, Accessed: 2022­05­13. [Online]. Available:

https://web.archive.org/web/20091106092646/http://weblogs.java

.net/blog/2005/08/23/demystifying-pipes-jxtasockets-jxtamultica

stsocket-and-jxtabidipipes.

70

https://doi.org/10.17487/rfc2104
https://doi.org/10.17487/rfc2104
https://doi.org/10.1109/ICSM.1990.131377
https://doi.org/10.1109/MOBWAC.2002.1166946
https://doi.org/10.3923/jas.2009.3912.3916
https://web.archive.org/web/20091106092646/http://weblogs.java.net/blog/2005/08/23/demystifying-pipes-jxtasockets-jxtamulticastsocket-and-jxtabidipipes
https://web.archive.org/web/20091106092646/http://weblogs.java.net/blog/2005/08/23/demystifying-pipes-jxtasockets-jxtamulticastsocket-and-jxtabidipipes
https://web.archive.org/web/20091106092646/http://weblogs.java.net/blog/2005/08/23/demystifying-pipes-jxtasockets-jxtamulticastsocket-and-jxtabidipipes

[59] J. D. Gradecki, “Mastering JXTA building Java peer­to­peer applications,” in. Wi­

ley Pub., 2002, pp. 31–37, ISBN: 978­0­471­42936­4.

[60] S. Oaks, B. Traversat, and L. Gong, “JXTA in a nutshell,” in. O’Reilly, 2002,

pp. 20–24, ISBN: 978­0­596­00236­7.

[61] The JXTA JXSE Open Source Project on Open Hub, https://www.openhub.net

/p/jxta-jxse, Accessed: 2022­05­13.

[62] I. Neto and F. Reverbel, “Using JXTA for Firewall Traversal in Distributed CORBA

Applications,” in 6th SBC Workshop on Free Software, vol. 5, 2005.

[63] J. Verstrynge, “Practical JXTA II: Cracking the P2P puzzle,” in. DawningStreams,

2010, p. 110, ISBN: 978­1­4461­3956­1.

[64] JXTA Java™ Standard Edition v2.5: Programmers Guide, Sun Microsystems, Inc.,

p. 57, Sep. 10, 2007.

[65] J. Verstrynge, “Latest News,” JXSE Wiki Home Page, Dec. 31, 2010, Accessed:

2022­05­13. [Online]. Available: https://web.archive.org/web/201208201

45752/http://kenai.com/projects/jxse/pages/LatestNews.

[66] P2p ­Why has JXTA been abandoned? Any alternatives out there? ­ Stack Overflow,

https://stackoverflow.com/a/10342234, Accessed: 2022­05­13.

[67] W. Scott, R. Cheng, A. Krishnamurthy, and T. Anderson, “Freedom.js: An Archi­

tecture for Serverless Web Applications,” University of Washington Computer Sci­

ence and Engineering, Seattle, Washington, Tech. Rep. UW­CSE­13­05­03, 2013.

[68] N.M.Al­Fannah, “One leakwill sink a ship:WebRTC IP address leaks,” in 2017 In­

ternational Carnahan Conference on Security Technology (ICCST), Madrid: IEEE,

Oct. 2017, pp. 1–5, ISBN: 978­1­5386­1585­0. DOI: 10.1109/CCST.2017.8167

801.

[69] B. Garcia, F. Gortazar, L. Lopez­Fernandez, M. Gallego, and M. Paris, “WebRTC

Testing: Challenges and Practical Solutions,” IEEECommunications StandardsMag­

azine, vol. 1, no. 2, pp. 36–42, 2017, ISSN: 2471­2825, 2471­2833. DOI: 10.110

9/MCOMSTD.2017.1700005.

[70] Introduction to libp2p, https://max-inden.de/static/introduction-to-l

ibp2p.pdf, Accessed: 2022­05­13.

71

https://www.openhub.net/p/jxta-jxse
https://www.openhub.net/p/jxta-jxse
https://web.archive.org/web/20120820145752/http://kenai.com/projects/jxse/pages/LatestNews
https://web.archive.org/web/20120820145752/http://kenai.com/projects/jxse/pages/LatestNews
https://stackoverflow.com/a/10342234
https://doi.org/10.1109/CCST.2017.8167801
https://doi.org/10.1109/CCST.2017.8167801
https://doi.org/10.1109/MCOMSTD.2017.1700005
https://doi.org/10.1109/MCOMSTD.2017.1700005
https://max-inden.de/static/introduction-to-libp2p.pdf
https://max-inden.de/static/introduction-to-libp2p.pdf

[71] Implementations ­ libp2p, https://libp2p.io/implementations/, Accessed:

2022­05­13.

[72] Go­libp2p/chat.go at master · libp2p/go­libp2p · GitHub, https://github.com

/libp2p/go-libp2p/blob/master/examples/chat-with-rendezvous/cha

t.go, Accessed: 2022­05­13.

[73] M. Petit­Huguenin, G. Salgueiro, J. Rosenberg, D.Wing, R.Mahy, and P.Matthews,

“Session Traversal Utilities for NAT (STUN),” RFC Editor, Tech. Rep. RFC8489,

Feb. 2020. DOI: 10.17487/RFC8489.

[74] Y. Wang, Z. Lu, and J. Gu, “Research on Symmetric NAT Traversal in P2P ap­

plications,” in 2006 International Multi­Conference on Computing in the Global

Information Technology ­ (ICCGI’06), Bucharest: IEEE, Aug. 2006. DOI: 10.110

9/ICCGI.2006.60.

[75] T. Reddy, A. Johnston, P. Matthews, and J. Rosenberg, “Traversal Using Relays

around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT

(STUN),” RFC Editor, Tech. Rep. RFC8656, Feb. 2020. DOI: 10.17487/RFC8

656.

[76] A. Mathew, “Can Security be Decentralised?: The Case of the PGP Web of Trust,”

in Socio­Technical Aspects in Security and Trust: Proceedings of 11th International

Workshop, STAST 2021, ser. Lecture Notes in Computer Science, 2021.

[77] S. Cheshire and M. Krochmal, “NAT Port Mapping Protocol (NAT­PMP),” RFC

Editor, Tech. Rep. RFC6886, Apr. 2013. DOI: 10.17487/rfc6886.

72

https://libp2p.io/implementations/
https://github.com/libp2p/go-libp2p/blob/master/examples/chat-with-rendezvous/chat.go
https://github.com/libp2p/go-libp2p/blob/master/examples/chat-with-rendezvous/chat.go
https://github.com/libp2p/go-libp2p/blob/master/examples/chat-with-rendezvous/chat.go
https://doi.org/10.17487/RFC8489
https://doi.org/10.1109/ICCGI.2006.60
https://doi.org/10.1109/ICCGI.2006.60
https://doi.org/10.17487/RFC8656
https://doi.org/10.17487/RFC8656
https://doi.org/10.17487/rfc6886

Appendix 1 – Non­exclusive licence for reproduction and

publication of a graduation thesis1

I Igor Podgainõi

1. Grant Tallinn University of Technology free licence (non­exclusive licence) for my

thesis "A Unified Framework for Peer­to­Peer Applications", supervised by Toomas

Klementi and Gunnar Piho

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be en­

tered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non­

exclusive licence.

3. I confirm that granting the non­exclusive licence does not infringe other persons’ in­

tellectual property rights, the rights arising from the Personal Data Protection Act or

rights arising from other legislation.

13.05.2022

1 The non­exclusive licence is not valid during the validity of access restriction indicated in the student’s application for restriction on access to the graduation thesis

that has been signed by the school’s dean, except in case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation thesis is

based on the joint creative activity of two or more persons and the co­author(s) has/have not granted, by the set deadline, the student defending his/her graduation

thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non­exclusive licence, the non­exclusive license shall

not be valid for the period.

73

	Introduction
	Issues
	Aims of the thesis
	Structure of the thesis

	Methodology
	Background
	OSI model
	IP addresses, ports and IPv6
	NAT and NAT traversal
	POSIX networking API
	Machine code and the bridge library

	Literature review
	The first work
	The second work
	The third work
	The fourth work
	Conclusion

	Overview
	Tools and technologies
	Work procedure

	Main outcomes
	Designing the Framework
	Classes
	POSIX-like interface
	Data encryption
	Node identifiers
	DHT
	UPnP port forwarding
	Rendezvous

	Implementation details
	Node roles and prefixes
	DHT bootstrap process
	Establishing private communication
	Inner workings of the bridge library

	Network architecture
	Testing the Framework
	ChatApp
	Python demos

	Using the Framework
	Dynamic linking
	Injection

	Evaluation of the Framework
	Software engineering principles
	GRASP
	Clean Code
	SOLID
	GoF

	Use cases of the Framework
	Overview of similar frameworks
	JXTA
	freedom.js
	libp2p
	Summary

	Future developments

	Conclusion
	References
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis

