TALLINN UNIVERISTY OF TECHNOLOGY
Faculty of Information Technology
Department of Computer Science
Chair of General Informatics

PARALLEL COMPUTATIONS ON
GRAPHICS CARDS USING CUDA

Bachelor final thesis

Student: Erik Soekov

Studentcode: 112153

Supervisor: Marko Kaaramees
Tallinn

2015

Author’s declaration of originality.

| Erik Soekov declare that the following work igtresult of my own effort and has not been
presented for examination anywhere else.

Date: 20.12.2015

Name: Erik Soekov

Abstract

The purpose of this work is to examine if it is gibge to accelerate a scientific computation
100 times when making it parallel and porting ithte GPU. The conditions in which this

result can be achieved and how much effort it taki#salso be examined.

Parallel applications using the CPU are popularteaa helped create things that would be
difficult to manage in a single threaded applicatidowever a CPU does not have as many
cores as a graphics card has, so perhaps it ibf@m&sgain even more performance when the
parallel computation is working on a GPU rathentba a CPU. The choice for implementing
this kind of solution was a technology known as GQUDhe program that contained the

functionality that was optimized was known as Mellekhich is an open source program.

During this work CUDA was used to optimize a congiain that at one point takes 44,664
seconds to complete into a computation that taks®380 seconds to complete in that

same point. This was roughly a 117 time speed-up.

However on a different computer, where there wsisnglar processor, but a card that had 15
times less cores, the computation came down frojf58%econds to 0.830 seconds, which

resulted to a roughly 47 times speed-up.

This leads us to conclude that a programmer wetaadard skillset in CUDA programming
is capable of providing a remarkable performanaeshdowever an expert is probably
capable of providing a lot more. In addition totthe must also take into account the
hardware that the program will run on and the waakll of the computation because this kind
of a speed-up is not possible with every workldadact it decreases as the workload
decreases.

Annotatsioon

Kaesoleva t66 eesmark on uurida, kas on voéimaiikrkilada teaduslikke arvutusi 100 korda,
kui need teha paralleelseks ning programmeeridesjoa graafika kaardi protsessori peal.

Uuriti ka tingimusi milles selline tulemus on Ulde@malik.

Paralleel programmid arvuti kesksel protsessoleimidagi uut ning nad on aidanud luua
voimalusi, mis oleksid rasked teha kasutades dselhgooksvat programmi. Aga kesksel
protsessoril ei ole sellisel arvul tuumasid naglasen graafika kaardil. Siit tekib kiisimus, et
kas oleks vBimalik tdsta programmi vdimekust kida@oksutada arvuti keskse protsessori
asemel graafika kaardi protsessoril. Tehnoloog@arsilleks kasutati kannab nime CUDA
ning on valja tootatud NVIDIA korporatsiooni pooRRrogramm, mida optimiseeriti kannab
nime Molekel ning on avatud lahekoodiga.

Selle t66 kaigus kasutati CUDA tehnoloogiat, eirofgteerida arvutus, mis Gihes punktis
kestab 44,664 sekundit arvutuseks, mis kestab G&88dndit. Sellega saavutati umbes 117
kordne kiirendus.

Teisel arvutil, millel on sarnase viimsusega pisgee muudeti 39,158 sekundit 0.830

sekundiks. Sellega saavuti umbes 47 kordne kiirendu

Saavutatud tulemus annab aimu sellest, et keskoskigsstega CUDA programmeerija on
suuteline andma programmi vdimsusele arvestatavaeritiuse, aga ekspert on tdenaoliselt
suuteline palju enamaks. Sellele lisaks tuleb seatsse votta kasutatud riistvara ning t66
koorem, mida on vajalik kogu arvutuse labimisekst saadud tulemus ei ole vdimalik
igasuguse t66 koormaga. Mida vaiksem on tookoosexta vaiksem on ka saavutatud

kiirendus.

Table of abbreviations and terms

CUDA Compute Unified Device Architecture. A paralb®mputing
platform and application programming interface (Afbdel
created by NVIDIA.

GPU Graphical processing unit. The brain of a giegpbard.

CPU Central Processing Unit. The brain of a compute

TFLOPS 'I(')?Zra floating point operations per secorataTneans a figure of
1

OpenACC Open Acceleration. Is a programming stahdar

OpenGL Open Graphics Library. Is an API for rendgr2D and 3D vector
graphics

API Application Programming Interface. Is a sepodtocols, routines
and tools for building software applications

OpenCL Open Computing Language

I [011 (o Yo [U1 (o] o I T TP RPRPRTR 7

P2 = T= Tox 1o | {01 U1 o o [T RSPPPPPPPPR 9
P2 Y F= L LS O 6 | 5 RPN 9
2.2 ARBINALIVESceeiiiiiieee e emmmmm ettt ettt e e e e e e e e e e e e e s st e et e e e e e e e e e e e e e e e aaaaaas 10

2. 2.1 OPENGL ..t e e e e e e eeaaans 10
2.2.2 OPENCL .. et e e e e e e e e e ra e e e eeraaaans 10
2.2.3 DIr@CICOMPULEcceeeiiieeeeeee e ettt s s e e e e e e e e e e e enaaeeeaaaeeeeeennnnnes 10
2.3 AULNOI'S CROICE... ..ot et e e e e e e 11
2.4 HOW CAN WE USE CUDA? ...ttt ettt e ettt e e e e e ee it eea e e e e e e enenan s 12
2.4.1 Use a Prebuilt HDIAryoooei e e et e e e e e ee e e e e e eeeeeeeees 12
2.4.2 OPENACC DIrECLIVEScciiieeieeeetteeeee ettt e e e e e e e e e e aaaaaaaaeaeaaeees 12
2.4.3 Writing cuStOM CUDA COUEuuemmmmmmeeeeeernnnnnnasseeeeeeesssesssesesssssnennnnensnn 13
2.4.4 The choice fOr thiS WOIKciii oo 13
2.5 How does custom CUDA COUE WOIK?uuuuieeeeeeieiieeeeeiiiiiis e eeeeeee e 13
2.5.1 CUDA Program SITUCKUIEuiiiiuuieeeiiieeeeineeeiie e s eeiseeeei e e esi e ssennsneeeeenns 14
2.5.2 All Kernel instances run in parallelcoooeeeiiiiiieiice e 15
2.5.3 GPU architecture and itS PUIPOSEcoeeeemmniieeieieeieeeiiieeeeiiiii s 16
2.5.4 How threads run 0N the GPU.........cocoiiiiei e 16
2.5.5 GPU MEMOIY TYPES ...oitiiiiiiiieeeei e sttt e e e et e e eai s e e e s e eeeenn e e eennns 17
2.5.6 What can be parallelized? ... 18
2.6 WhaAt IS MOIEKEI?™ ...ttt sttt et e e e e e e e e e e e e eees e eeeaaaaaaaaeeas 18

3. The Problem and SOIULIONu ettt eeee e s 19
G0t R I = o (0] o] [T o o PP 19
I 1=K [V 1o] o I PP TTRPPPPP 20

3.2.1 Challenges before the codingooeeeeieeiiiic e 20
3.2.2 Challenges in analysing the code and plamuomccoeeeeeeiiiiiiiiiiiinin, 21
3.2.3 Challenges in writing the COdE. ... eeiiiiiiiiiiiiiie e 22

4. RESUIS @Nd ANAIYSIS........coeeeveiiiesmmmmmms s ses e s e e e e e e e aaaeeeeeeeeessassss s nnasssnnareaaeeaeaaaaeeees 29
.1 RESUIES ittt 29
4.2 TopICS fOr fUrther STUAYcooii s 33
4.3 The future of CUDA powered MoIEKel? ... 34

S SUMMIATY . et e e et e e et e e e e et e et e e a e e ea s 35

B. RETEIENCES ...ttt e e e e e e e e e e e e e e e e bbb bbb e e 37

1. Introduction

Parallel computing is nothing new. In fact it haeb around for a long time and has helped
create applications that would be very difficulinbiake otherwise. For example we would not
have the web and database servers in the shape lasow them without parallel computing.
Scientific computations which take a long time tonpute are also something that have been
parallelized to the CPU much longer than 10 yeBiswever much less is spoken about

converting the computations to parallel progranas thn on the GPU instead.

The graphics card is a part of the computer thatlles everything visual that the user sees. It
is used for video games, making and watching fiamd for every other graphical program we
can think of. As it turns out a GPU is a powerfatadlel processor and that is the reason why
it is capable of processing all the workload thsual applications require. Due to the fact
that it is possible to write programs to the GPUmight find ourselves asking a question: is
it possible to use it for something other than plgycomputer games? Is it possible to use the
GPU to optimize work intense scientific computas@n

In this work we will be optimizing a certain funatiality in a program known as Molekel.
The computation that this functionality has caretaip to 40 seconds or more to complete.
Due to the fact that Molekel runs in a single thréze easiest way to improve it is to make it
parallel on the CPU which would most likely impropgerformance but probably will not
provide a 100 time speed-up which is the aim o$ thiork. Instead we will be using a
technology known as CUDA which is developed by tR¥IDIA Corporation. This
technology allows us to write programs to the grepbard with relative ease, but only works
on NVIDIA graphics cards which is the downside. Hwer it is expected to deliver the

results we wish to achieve.

It is important to note that GPU computing is ndtSaver Bullet” and it is not capable of

solving all the problems of the field. However theblems that it can solve usually get
solved well, in other words the computations theat be parallelized and ported to the GPU
usually gain a remarkable performance upgradeadtiieen done before and it is exactly what

we will be doing to Molekel.

In chapter 2.1 we will be learning what is CUDA amlere it came from.

In chapter 2.2 we will be viewing the alternatitesCUDA. We will take a brief look at 3
reasonable technologies that could be used inste@d DA.

In chapter 2.3 the author of the work will commehé choice of technology from his

perspective.

In chapter 2.4 we will learn what are the optiohssing CUDA? We will talk about prebuilt
libraries, compiler hints and writing custom codée will also explain why we chose to write

custom code for this work.

In chapter 2.5 we will familiarize ourselves withet most important concepts of writing
custom CUDA code. We will look at how threads arfélGarchitecture works, what types of
memories exist and what can be parallelized and wéwanot. After that we will introduce

Molekel in chapter 2.6.

In chapter 3.1 we will introduce the problem wittolgkel that we will be solving in detail.

There we will be talking about the problematic fumcality and its properties.

In chapter 3.2 we will be presenting the solutiorthie problem both inside and outside the
code. We will learn what it takes to get the basgecof Molekel compiling without problems
and adding CUDA support. After that we will be fallk about the problems in the code and
program architecture and how we solve these.

Chapters 4 and 5 contain the results of the op#tiua and a conclusion of the circumstances

that made those results possible.

2. Background

It is a known fact that it takes a single skilledriker to build a house much longer than 10
workers all possessing the same skill or a lititddwer skill as the first. The 10 workers will
each have to do more work than the single workealse they need to communicate and
make sure that the details they made fit with thiaits that their coworkers made. However
the house is still built in a shorter timeframeisTprinciple has been used throughout history

to make big things happen.

The same principle applies to parallel computirgardless of the device that we are doing it
on. We could be using human beings to compute dontedr a CPU or even a GPU. The
problem with humans is that they are slow when cmeghto a CPU. We could be a using a
group of humans but they will still probably do tt@mputation slower than the CPU even if
the CPU has less cores than the human group h&emgoirhe GPU on the other hand has
many cores to do the work. It might be possiblé dv@n more cores than a human group we
are comparing it to. However each core does thé& Yester than a person and in some cases

perhaps even as fast as a CPU core.

The GPU relies on the principle that we descrilemtier and due to that has attracted our
attention in hopes that we can do something rerbéekaith it. Our choice to program on the
GPU will be a technology known as CUDA.

2.1What is CUDA?

CUDA is an abbreviation that stands for ComputefiddiDevice Architecture. It is a parallel
computation platform that is supported by most NM@raphics cards released after 23rd of
June 2007, which is the official release date efftrst CUDA toolkit. CUDA also stands for
a programming model for writing parallel programs MVIDIA GPUs supporting the said

platform.

The point of CUDA is to make general purpose conmgubn graphics cards simpler and
accessible to a wider audience of developers. Domrmsunderstand this, general purpose
parallel computing on graphics cards has been drdomger than CUDA, however what
CUDA does is provide everything needed in 1 packagewith a simple APl. CUDA works
on Windows, Linux and Mac.

2.2 Alternatives

Now we will present the 3 alternatives that weresidered before the start of this work.
Each of them have their positive and negative saheswe will compare them briefly to the

CUDA technology. After that the author will commehém on his own perspective.

2.2.10penGL

Before CUDA [1], one of the things used to do stifencalculations on GPUs was and still is
OpenGL [2]. However this technology presents alehgk: the developer has to translate the
scientific problem into triangles and pixels ane@rthprogram it using various libraries of
OpenGL. It is important to know that OpenGL is apmics programming tool and it is
designed that way. If we want to program otherdhjrthen we have to be creative with what
we have and we have to understand it well. Howdwee get all of this right then everything
works without problems. On the other hand what &8Urogrammer sees is that it allocates
some memory on the graphics card, copies the neddtd there and then launches the
necessary amount of threads to do the work andighiat Description of this alternative is
based on the author's experiences and on the alfficiges of OpenGL and CUDA. More
about it can be read on the official CUDA websitg 4nd it is also briefly mentioned in the

official parallel programming course by NVIDIA [3].

2.2.20penCL

Another alternative to CUDA is OpenCL [4]. Releadatdr than CUDA toolkit, it provides
parallel computing on a variety of platforms rattigan just NVIDIA GPUs. In fact it does
not focus on only GPUs The performance isn't thii¢ient, however OpenCL is made out of
packets released by different vendors when CUDAurely lead by NVIDIA. This is the
cause of many driver problems with OpenCL, becalifferent vendors tend to interpret
OpenCL specifications differently. This topic isdiussed more in depth in an article written
by Vincent Hindriksen [5].

2.2.3DirectCompute

DirectCompute [6] is a product from Microsoft tmakes use of GPUs supporting DirectX10

or higher. Due to this it is only available on wivwes. However it does not suffer problems

with it's drivers like OpenCL [4] does and works espected. Unfortunately it is missing
10

quite a few features that CUDA [1] and OpenCL hawmest importantly dynamic parallelism
[7]. These topics are covered more in depth irclagi written by Rahul [8] and Vincent
Hindriksen [9].

2.3 Author’s choice

Now it’s time to talk about why | chose CUDA to teaabout the world of parallel computing
on GPUs.

| found out about the technology when | was exangrihe capabilities of my new computer.
At first this technology did not look very temptingut closer examination revealed an
interesting field. | knew that doing time consumisgentific computations on powerful

parallel processing CPUs was nothing new, but enéwught about doing it on the GPUs.

The documentation was easy to read and there wali aourse that explained how the
technology works. Installing and configuring thevel®per tools was rather straight forward
and did not require me to find any extra informatfmm third party sources. It became clear

quickly that it was easy to get into the technolagd the learning curve wasn’t steep either.

After | had learned the basics | started to loakaiternatives, because | was keen to know if
there was something better. | had done OpenGLdrp#st so | knew that | could use that for
these kind of things as well, but it definitely wast going to be easy. OpenGL has a
documentation that | find difficult to process ah@é composed of several packages released
by different vendors. Also | do not know of a f@penGL tutorial that explains most of it and
iIs not deprecated. Setting up your developmentrenmient is also time consuming, so |

decided to avoid that.

OpenCL was something | really considered, but dffeund out that setting it up was similar
to OpenGL, | decided to go down the easy path. Hewd one can get past setting it up,
then it is a considerable alternative to CUDA, hseathe performance doesn’t seem to be
that different and it can run on other GPUs thanDIX GPUs. Just like CUDA it also works

on Windows, Linux and Mac.

DirectCompute made me careful when | found out thawas only for Windows. The
documentation was not exactly tempting. It alsokdéalc a number of features including
dynamic parallelism, which is one of the most iasting features | have found about parallel

computing. This showed that DirectCompute is naiadle choice for this work.
11

To conclude this: | chose CUDA because it is doauetk well and is simple to learn. The
development environment is something that can Begwut of the box and it works. It

enables you to do all the things you want if youehthe graphics card that supports it.

2.4How can we use CUDA?

Now that we know what CUDA is, we will talk aboubw we can use it in our programs to
speed up their performance. We will cover the 3 svthat are introduced in the official
CUDA developer training website [10] and we wiladtwith the easiest and end with the
most difficult way of utilising CUDA.

2.4.1Use a prebuilt library

The easiest and fastest way to get CUDA suppostotar application is to use a prebuilt
library which can be found from NVIDIA'’s officialidt [11] or around the internet. Getting
support this way usually means replacing a singieatdy file in the program. After the
replacement some changes and a recompilation magdmed, but most of the time it is not.
For example when the user has the proper hardvare getting a faster video rendering
speed with Adobe Premiere Pro [12] is just a maifareplacing the correct .dll file. When
provided a system with the specifications thatdescribed in chapter 4 after Table 1, then
the average speedup tends to be 8 times when tle@nGPU. The actual figures from the
experiment were 4 hours rendering when using drdyGPU and 30 minutes rendering when
using help of the GPU.

2.4.20penACC Directives

In cases where the user cannot find the propearibto fit into their application, but when

rewriting the program is out of the question themsipossible to use OpenACC Directives
[13] to achieve GPU acceleration. This method sualputting hints for the compiler around
the program’s code where it is possible to paniakethings. Then the code is compiled with
an NVIDIA’s compiler which uses the hints to make tgiven code GPU accelerated. This

will most likely involve changes to the code besidee compiler hints but those changes are

12

usually minimal. The official OpenACC guide [14]gaest an average of 3 to 6 times speed-
up.

2.4.3Writing custom CUDA code

If the goal of adding CUDA support to the prograno optimize the program as much as
possible, then usually the only way to do so isvtde custom CUDA code. There is no
special language for writing CUDA code, insteadr¢hare libraries for C++, Fortran, Java
and Python. So in order to use this technologyptfogrammer only has to learn to use the
CUDA API, provided that they already know how toeusne of the previously stated
programming languages. To help programmers unaerskee API there is the official CUDA
documentation [15], there is a course that intreduthe concepts of parallel programming
using CUDA [3] and there are various third partyufos and webpages like Stack Overflow
[16] where it is possible to receive help whendffecial sources fall short.

2.4.4The choice for this work

The choice for this work is the third option: toitercustom CUDA code. The reason is that
the aim of this work is to learn if we can achiev&00 time speed-up of the program and in
what cases is that possible. The average speedigs in the first 2 options are clearly not
enough to meet the set criteria, therefore we loahg 1 option left and that is to rewrite a

part of the program that we are trying to optimize.

2.5How does custom CUDA code work?

Before we begin introducing Molekel, it's problerasd solutions to those problems, it is
important that we know how CUDA works. In the fallmg chapters we will briefly look at
the core principles of using CUDA with a small exden However we will only look at the
program structure and some important GPU propertdés will not cover setting up the
development environment. For those details pleafs to the official CUDA documentation
[15].

13

2.5.1CUDA program structure

A typical CUDA program is made out of 5 parts:

1. Allocate memory on the GPU

2.

Copy all necessary data to the GPU
Run the computational program on the GPU
Copy the results from the GPU to the host memory

Free all allocated space on the GPU

An example of how the program looks like in C++ e@@dn be seen in Code Snippet 1:

309 void addwWithCuda (int *c, const int *a, const int *b, unsigned int size)

31i| {

wm
}

wm

m;o;m o n
3

int *dev_a = 0;
int *dev_b = 0;
int *dev_c = 0;

cudaSetDevice (0) ;
cudaMalloc((void**) &dev_c, size * sizeof(int)):;
cudaMalloc ((void**) &dev_a, size * sizeof(int)):;

cudaMalloc((void**) &dev_b, size * sizeof(int)):;

cudaMemcpy (dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice):
cudaMemcpy (dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice):

addKernel<<<1l, size>>>(dev_c, dev_a, dev_b);
cudaDeviceSynchronize ()

cudaMemcpy (c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost): l~1.

cudaFree (dev_c)
cudaFree (dev_a):
cudaFree (dev_b);

Code Snippet 1

In Code Snippet 1 we can see a simple prograntdkes 3 arrays as an input, then sums the

corresponding elements of the last 2 arrays antsvthe results in the first array(See picture

14

2 below for the actual operation). Each of the masly stated CUDA program structure
parts are enumerated to make them stand out. important to note that the actual
computation takes place in part 3 and the otheadspare simply supportive parts. The
amount of the supportive code of the program depemu the complexity of the data
structures that the computation uses. This is chbgehe limited number of ways that we can
move data between the CPU and the GPU. Mostly @uls tare cudaMalloc, cudaMemcpy
and cudaFree. If the given data structure cannotdmed with a single cudaMemcpy
operation then the supportive code will grow raypidl

It is important to know that the shown code onlggwn the CPU. The code that runs on the
GPU is presented on Code Snippet 2, where we @ §8JDA kernel: a function that the
CPU commands the GPU to run.

__global void addKernel (int *c, const int *a, const int *b)

{

int i = threadIdx.x;
c[i]) = a[i] + b[i]):;

Code Snippet 2
As a contrast we can see that the code on the &Ré&ly minimal and reflects the nature of
the operation, which is very trivial. All that i®de here is the thread that runs this kernel
calculates its index and then uses it to find thletrdata to do the calculation and write the
result. It seems strange that we have to do @f brk just for a simple operation. The next
chapter will explain what we gained from this.

2.5.2All Kernel instances run in parallel

The kernel we saw in Code Snippet 2 is launchea st of instances called threads. Each
instance runs independent from the others andralph That is what we will win from this
kind of program. The work we want to do is not damea serial fashion, but in a parallel
fashion. There may not be much gains when we haweafray elements for example 5. But
when we have 1000 elements in each array or lami#lements, then it is already possible to

distinguish the speed-up factor.

The threads are launched in a random order, bytateegathered into blocks, which can hold

a maximum of 1024 threads and have 3 dimensioresbldtks are gathered into grids which
15

can span up to 65535 X 65535 X 65535 blocks onm3edsions. This data is based on
multicompute capability version 2.0 which is theledt supported version. In Code Snippet 1
we launched the kernel in a 1 block grid using alale size to determine the number of

threads in a block.

Each thread always knows where it is located insiddock and where its block is located
inside a grid. This system of indexing is what wd txe using to locate our computational

data.

2.5.3GPU architecture and its purpose

A high end CPU like the Intel i7 4930k has 6 cdtest make up the processing unit. A high
end graphics card like the NVIDIA gtx 780TI has Q8BUDA cores, which are formed into

15 streaming multiprocessors, which in turn makeh@pprocessing unit. It is obvious that the
CUDA cores do not have all the functionality an@exp of a single CPU core, but what they
lack in ability, they make up in numbers. The GFPUnbt designed to process a single
instruction at the fastest speed possible, thdtegob of the CPU. The GPU is designed to
process a group of instructions at the fastestdspessible and it does that by dividing the
workload between the cores and having each patteofvork be processed in parallel. With
that in mind, launching millions of threads is sahneg that we will not do on a CPU, but it is

a perfectly normal thing to do on a GPU.

2.5.4How threads run on the GPU

In chapter 2.5.2 we learned that threads are gobuyie blocks and blocks are grouped into
grids. In chapter 2.5.3 we learned that the GPU &U{dres are grouped into streaming
multiprocessors also known as SMXs and those in taake up the GPU. From this
statement one might assume that the threads ingtedblock run on a single SMX and the
blocks of a grid are distributed among the SMXthef GPU. This is indeed the case and there

are some important facts we must know before pinge

All threads from 1 block run on a single SMX and/éano contact with other SMXs. This

means that threads from different blocks have ng efa&ommunicating with each other even
though it is possible that several blocks may rutha same time on the same SMX if the
GPU can fit them there. However it is possibleyochironize the threads of a single block in

relation to each other and even have them shareongem
16

2.5.5GPU memory types

Individual cores do not have a dedicated cachégaaisthey use the cache of the SMX. This
limits the number of threads and blocks that canon a single SMX because each thread

needs to store indexing and programmer specifietpotational data in the cache.
Furthermore there are 3 different types of memaryhe GPU.

1. The fastest and the smallest is the local memoriglwis a cache in terms of the
hardware. This is the place where the threads shatie private data. That is all the

indexing data and all the instanced variables withe kernel.

2. The second fastest and pretty much the same si#eeishared memory which is
slower than the local memory, but is also cachedbasd allows the threads of a
single block to use it. It is also defined in thegrkel, but has a special tag that makes it

stand out for the compiler.

3. The third memory is the slowest and largest anithesGPU global memory. That is
what we mean when we talk about how much memoryGRIJ has. It may be slower
than the first 2 memory types but it is still reketly faster than the RAM memory
that the CPU has access to. This is the memorycid@Malloc and cudaMemcpy

move data to.

It is possible to access data in the RAM memorymihe kernel is running, but this is a very
costly operation in terms of time. This is one lvé reasons why we copy the data onto the

GPU when we run our computations.

It is important to note that the cores on the GRId do computations at an extremely fast
rate. If we are to use the full power of these sdhen we must constantly feed them data to
work with. The general formula of success is tonspenost of the time computing and
minimal time accessing memory. This does not méanh we have to limit the number of
memory operations, we just have limit the timakds to make those operations. Therefore if
a piece of data is used more than once, then itnhig a good idea to move it from a slower

memory type to a faster memory type.

17

2.5.6What can be parallelized?

We may know how the syntax of CUDA works, but if eue to optimize an existing program
we must also be able to identify code that can &mllelized and code that cannot. The
easiest code to parallelize are loops or nestepslowhose iterations are not dependent on
each other. We just make each iteration a sep#rsgad, write the indexing logic and that
concludes the work.

The second case are loops or nested loops whoatdtes are dependent on another random
iteration. Usually this case is represented by ¢heraatical operation where a set of values
are converted into a single value through an ojmeraivhere the order of operands is
irrelevant like adding or multiplying. This kind obperation usually requires thread
synchronisation and atomic operations. When dealittig more complex parallel algorithms
like sorting, then it is difficult and often evempossible to implement them without any

synchronisation at all.

The algorithms that cannot be parallelized usuapresent a clear serial fashion like loops or

nested loops where every iteration is dependetit@mnesults of its next or previous iteration.

2.6 What is Molekel?”

Molekel [17] is a molecular visualization prograihis used to simulate different kinds of
situations in the field of chemistry and displagrihin a visual fashion to the user. The tools
that the user has available to this task are nunsefdolekel also has an array of options for
processing and saving the experiment data.

Molekel can run on Windows, Linux and Mac and iben source which means that anyone

can contribute to the program and distribute ieliye

The gallery of Molekel [18] demonstrates some efshid possibilities of the program.

18

3. The Problem and Solution

The problem that we will be solving in this workredated to one of the functions in Molekel.
As stated in chapter 2.6 Molekel has a wide varadtyools to manipulate the molecular
simulation. However when the user wants to recexteemely accurate data then simulation
computation speed increases exponentially. It rficoed that some computations can take
up to 40 minutes. The computation that we will baerking with can take up to 44 seconds
and in some cases even more. A single computdieiridng may not be a problem, but when
the user has to make many such computations thevilliremarkably degrade the user

experience of the program.

The solution that we are looking for this problentl Wwe to decrease the calculation time of
the said computation by a factor of 100 times. W# tve examining under which

circumstances it is possible to do this and undgchvit is not.

3.1 The Problem

The function that we will be optimizing and refegito as a problem can be reached in the
program if the user selects Surfaces from the uppstu bar and then Electron Density from
the menu that opened up. This will cause a diakyg to appear that is like the dialog in
Schema 1. The computation is run by selecting a fmm the scroll box and pressing
generate. The rest of the options can be a litdergntating at first, however there are only 4
important variables that we must keep an eye oe. mbst import of them is the Step Size
which is currently 0.80.

The step size variable controls how accuratelysthmulation is run. The smaller the step, the
better. However decreasing the step size incredesalues of Nx, Ny and Nz variables
whose product is the amount of iterations that hesprocessed by an internal algorithm that
computes the required data. Increasing the iteratabviously increases the time it takes to
complete the computation. For example at step 8i2®& we have to complete 786 315

iterations and it takes 44.949 seconds to do ss.i$tour problem.

19

& Molekel =8 R

H#@ X de% @:F e

or
@ Electron Density - input.og

Density Matrix
Map Molecular Electrostatic Potential
Generated Eigenvalue Occupation Type
No -187508 2
No -18.7508

-18.7508

“n e W N e

2

2
-18.7508 2
187507 2
2

z2lz|z|=2
§ & & &

6 -18.7507

inpu Isosurface Value 0,0500
Use both signs Generate Nodal Surface
Step Size 0,80
Bounding Box Steps
At x 0320y 033 [z o000 [2 Nx Ny Nz
N dx: 13,97 |51 dy: 14,28 |3 dz: 13,30 |3 17| 18| |17

Ba| Rendering Style Solid =

+| Transparency + Color
Ref

cd/| Real-time Update

En| Close

Schema 1

3.2 The solution

The solution to our problem is to make all thogeations run in parallel. Due to the fact that
Molekel is entirely a single threaded applicatioe will most likely gain a speed boost,
however implementing the solution is not as straigiward as it might seem. There are
numerous sub problems that need to be solved willéncode and before the coding even

starts.

3.2.1Challenges before the coding

Molekel is an open source program which means ge#ing the code is not a problem.
However what quickly becomes a problem is the @ogs dependencies and their
configurations. Molekel has instructions on hovsétup the work environment to compile the
program, but these instructions are not entirebueate and do not cover everything. Versions
of a few dependencies like Qt were the biggesessbecause there were many versions and
the newest ones did not fit with the program. Bameple Qt 4.4 seems to be the only one that
fits with Molekel without breaking anything. It tk@ long time to get to that version because
the versions that were between 4.4 and the newédsalbhad to be compiled and tested.

Fortunately there was a place where most of thert#gncies were precompiled and properly
20

configured to allow Molekel itself to compile anginrwithout errors. Adding CUDA support
to the project took time as well, but that timensignificant compared to the time it took to
get the base program compiling and running withpyablems. In total it took 8 weekends to
properly setup every single aspect of the workingirenment. That is the price to pay if

there is no previous experience in working withj@cts this size.

3.2.2Challenges in analysing the code and planning work

The challenges in finding the time consuming sedtiof the code were modest. It was clear
that we were looking for loops and possibly nestegbs, so it did not take long to reach the

code that can be seen in Code Snippet 3.

for (i=0, 2z=dim[4]; i<ncub[2]; i++, z += dz) {
for (j=0, y=dim[2]; j<ncub[l]; j++, vy += dy) {
for (k=0, x=dim[0]; k<ncub[0]; k++, X += dx) {
const double s = (*funct) (mol, x, Vv, 2Z)’
if(8 < minValue) minValue = s;
if(8 > maxValue) maxValue s;
image->SetScalarComponentFromDoubkle(k, j, i, O

¢ S)
if(stop == true) goto stopped; // forward jump to stopped label
// Execution will jump to this label iff stop requested
stopped

const int idx = “cub[O] *ncub[1] * (1 + 1),

invoke progress ca back function

lf(progressCBack) progressCBack (ldx, totalSteps, cbackData)

Code Snippet 3
Here we can see 3 nested loops, a call to a fungtmnter that receives its value from a
switch statement that precedes this code, variabie¥alue and maxValue that have nothing
to do with the computation in question and writirggults to an image object, which will
display the data to the user. This is the momemneatize that all the iterations of these loops
are independent which means that we can make #ssaf loops parallel. In our case the
function pointer resolves to function calc_pointiethcan be seen in Code Snippet 4. This

function will make the body of our kernel that wél wwrite.

When looking closely at function calc_point we ca@e that it contains another loop, which

would be the fourth loop of the nest. Unfortunately can not parallelize this loop due to the

21

fact that function calc_chi is a serial functiordan the given circumstances it is wiser code
the adding operation inside calc_chi to make itraggein the local memory rather than write
intermediate results in the global memory. If wargat make it parallel, then at least we can
make it operate in the fastest memory availablastoThis will improve our results. Due to
the fact that calc_chi is a very long function @ncbe reached in the github repository [19]
inside the file src/old/calcdens.cpp. The new GRidntlly function will be in the file
src/CudaCodes/CalcChiCalcPoint.cu which essentiadlgis together the functionalities of

calc_point and calc_chi.

7073 double calc_point (Mol *mol, float x, float y, float 2z)

—— MO R — i wan Aint */
a a -va e - e - /
cal ia ro-vaiue C given point
ne nnerione for aread

O ctions IOoX speed

711 register int 1i;
712 double value, *ao_coeff;

ao_coeff = molOrb->coefficient;
15 calc_chi(mol, x, y, 2):

18 value = 0;
719 for (i=0; i<mol->nBasisFunctions; i++) {
2 value += ao_coeff[i]*chi[i]’

return value;

Code Snippet 4

It is important to note that the given code is tentin a period of 10 years by different
authors, whom all seem to have different stylesiiting and naming code. This makes
orientating in the code difficult. The biggest piehs arise in the older parts of the code
where all the computational logic is located. Thactions and variables are mostly named
using abbreviations which makes understanding thpgse of individual algorithms rather
difficult. It is clear how the algorithms work aribw to optimize them, but it is unknown

why they have the shape that they have.

3.2.3Challenges in writing the code.

The technical debt that Molekel has played a reafdek role when writing the CUDA

extension. It was impractical to rewrite the whplegram, so we had to use what could be

22

used. For example: the general structure of thetimm vtk_process_calc that initiates the

electron density computations in Molekel is asdwf:
1. Initiate variables
2. Check input variable errors
3. Select the appropriate function to do the compaati
4. Do the computation.

Due to the fact that all the calls for electron sign computations end up reaching this
function then it might be a good idea to add amaestep between steps 2 and 3 that call for a
CUDA object that has its own selection of functiolghen it is able to select a function
which can return a proper image object then weiteata the vtk_process_calc function here.
Otherwise we continue with the old program thahas optimized. This is good if we are
actively developing the program while there arepte@lready using it. It also removes the

need for rewriting all the references to this fumrct

The next challenge was getting all the required matational data to the graphics card.
Porting the calc_chi function was one problem, Igdtting structs Molecule and
MolecularOrbital onto the graphics memory in 1 pi@as another.

Amoss basis *add amoss():;
ShellList *get_ Amossbasis (char *basis);

329 MolekelAtomList Atoms;

: AtomTypelList AtomTypes;
331 BondList Bonds;
332 AmossBasisList Amoss;

3 BasisList Basisset;
334 VibrationList vibration;
335 VibrationList::iterator freq_arrow;

Dynamics dynamics;

Surface *firstsurf;
340 Ter *firstter;
341 Residue *firstresidue;
32 Mon dist *firstdist;
Mon_ ang *firstang:

344 Mon tor *firscttor;

Code Snippet 5

23

When we look at a part of struct Molecule in CodépPet 5 then we can see that there are a
number of pointer variables which will be pointiagvarious arrays and linked lists when the
program is running. Normally this will not be a plem because we would be operating in a
single memory chunk. However in this case we neadse cudaMalloc and cudaMemcpy to
move the data to the graphics card and then malketisat all the pointers we access on the
graphics card point to the GPU memories rather thamards the RAM memory. So when we
have a variable atoms, which is a linked list ofeab Atom, then first we must convert the
linked list into an array, copy that array to theyghics card, set the atoms pointer in the
Molecule struct to point to the corresponding grepltard memory address and then copy

the rest of the Molecule object.

This method of working with pointers applies to arject. If there are pointers that belong to
an object, then the data that those pointers poinnhust first be copied to the graphics
memory, then those pointers must be changed td pwithe graphics memory and then the
rest of the object can be copied to the GPU menidrg.real challenge begins when a pointer
points to an object, which in turn has pointerd f@int to other objects which in turn have

pointers and so on.

This brings us to the reason why a linked list mustconverted to an array before a copy
operation is made: it is faster that way. When we @ linked list to an array we must copy
every single element to another location in the oms0 at first sight we might as well do a

cudaMempy operation for each linked list elemermwigver what we might forget is that now

we will have to do 2 additional operations for eaontainer which is setting the pointers of
the previous and next element to point to the spoading elements in the GPU memory.
Suddenly it is clear that trying to move the linket onto the graphics card takes more time
and if the pointers we need to overwrite are ingsitde from outside the object then this
operation cannot be done. Let us not forget thanae start freeing the allocated memory

we need to do an opposite operation.

The problem with pointers lead to the creation ahare “CUDA friendly” version of the
Molecule object that has 2 pointers for each aroang for RAM memory and another for the
graphics memory and that has the methods to maveoiitents to the graphics card. Its

definition can be seen in Code Snippet 6.

24

137 class CudaMolecule: public CudaFriendlyDataObject{
14:| public:

15 CudaMolekelAtom *atoms;

16 CudaMolekelAtom *deviceAtoms;

1 int atomsSize;

18 int nBasisFunctions;

20 ~CudaMolecule();

21 void setProperties (Molecule *molecule):;
22 cudaError_t cpyInternalPointers():

23 void clearCudaData():

Code Snippet 6
Clearly not all variables of Molecule made it intos object. The reason is that we do not
need all of them for this particular functionalityhe object will obviously grow as the

program is further developed, but at this staie &l we need.

Furthermore what we can see from this definitiothet there is a method for setting all the
properties from the original Molecule object, a hwet for copying the internal pointers and
their data to the graphics card and a method fearitig all the copied data from the GPU.
The last 2 methods are overridden from an interfagdaFriendlyDataObject. The methods

themselves are not very complex as we can see@uauhe Snippet 7.

22F cudaError_t CudaMolecule::cpyInternalPointers (void) {

4 cudaError_t status;
int i;

for (i=0; i<atomsSize; i++){
status = atoms[i].cpyInternalPointers():
if (status != cudaSuccess){
return status;

NN NN NN

34 status = cudaMalloc((void*¥*) g&deviceAtoms, sizeof (CudaMolekelAtom) *atomsSize) ;
if (status != cudaSuccess){
return status;

status = cudaMemcpy (deviceAtoms, atoms, sizeof (CudaMolekelAtom)*atomsSize, cudaMemcpyHostToDevice):

40 return status;

Code Snippet 7
However because Molecule has Atoms, Atoms havelsShatl Shells have Gaussians then
we suddenly find ourselves on top of a tree likeaddructure where every branch must be
copied separately. Making all those 4 objects imgaet the CudaFriendlyDataObject

25

interface seems to solve the problem. The objededltarOrbital was solved in an identical

way.

In addition to that we also had to make a smalh getcket to carry the additional variables
and constants which looks rather straight forwardan be seen in Code Snippet 8 . However
what is important to keep in mind with all of theanged or created objects is that every
single variable that was a part of the computatiad to be analysed if it was really necessary
and if so then made CUDA friendly. This took a rekadle amount of time.
3{7 struct CalcDensInternalData{
: int ncub0, ncubl, ncub2:;

float dim0, diml, dim2, dim3, dim4, dim5;

float dx, dy, dz;

double minValue, maxValue;
int datasource;

Code Snippet 8
The CUDA code that orchestrates setting up theutation data and retrieving the results can
be seen in Code Snippet 9. This is the CUDA versiaiihe code we saw in Code Snippet 3.
It is important to note that the error handling bagn removed in this function to provide a
better overview of the actual algorithm. This ig tieason why we are catching status from
every CUDA function we use. However in an actualB2Uprogram error handling should
never be ignored, because mostly CUDA functiond tenswallow the errors when they falil
to carry out their tasks. When the error statusoisexplicitly caught and processed then the

user may never know that the program has failedlaadutput is invalid.

When we analyze Code Snippet 9 we tend to notiedyghical CUDA program structure we
saw in Code Snippet 1. First we send the calculadiata to the graphics card. Here we are
using functions moleculeToDevice and orbitalToDevand a memory allocation operation
for that. Then we activate the kernel function whis calcPoint. Finally we copy back the
results, process them into an ImageData objecigheted by the rest of the program and then
deallocate all the memory space. The ImageDataepsing looks a lot like the old code in
Code Snippet 3. However inserting the results ® dhject is not a very time consuming
operation and due to the fact that the ImageDajecblis a very complex object then it is
perfectly acceptable to do this operation on th& @Rd not implement a GPU friendly object
out of it.

26

46 results = new double[resultslLength];

dim3 blockSize (BLOCK_DIM,BLOCK_DIM,BLOCK DIM):
dim3 gridSize = getGridSize():

status = CalcDensCalcPoint::moleculeToDevice()

status = CalcDensCalcPoint::orbitalToDevice():

status=cudaMalloc((void**) sdeviceResults, sizeof (double)*resultsLength):

calcPoint<<<gridSize, blockSize>>>(deviceMolecule, calcData, deviceOrbital, deviceResults):;
status = cudaDeviceSynchronize():

O W0

status = cudaMemcpy(results, deviceResults, sizeof (double)*resultsLength, cudaMemcpyDeviceToHost):
imageData = initImageData();
counter = 0;
for (i=0; i<calcData.ncub2; i++) {
for (j=0; j<calcData.ncubl; j++) {
for (k=0; k<calcData.ncubO; k++) {
imageData->SetScalarComponentFromDouble(k, j, i, 0, results[counter]):
counter++;

6
6
6

v W N

6
6
6
6

O W0

) =
~

) =)
W N
~

»

CalcDensCalcPoint: :deleteDeviceMoleculeData()
CalcDensCalcPoint: :deleteDeviceOrbitalData();
cudaFree (deviceResults);

delete([] results;

)
o

return imageData;

)
O W W

w
-

Code Snippet 9
After all the required data made it to the grapluaed in one piece then it was time to write
the logic which allowed each kernel to find theuiegd data and write the result to the right

location. How the kernel eventually looked like dsnseen in Code Snippet 10.

__global__ void calcPoint (CudaMolecule *molecule, CalcDensInternalData internalData,
= CudaMolecularOrbital *orbital, double *results) {

0

11 double result = 0;

12 int indexZ = threadIdx.z + (blockDim.z*blockIdx.z):
13 int indexY = threadIdx.y + (blockDim.y*blockIdx.y):
int indexX = threadIdx.x + (blockDim.x*blockIdx.x):
float x,v,2;

1 if (indexX < internalData.ncub0 && indexY < internalData.ncubl && indexZ < internalData.ncub2) {
X = internalData.dim0 + indexX*internalData.dx;

= internalData.dim2 + indexY*internalData.dy;
internalData.dim4 + indexZ*internalData.dz;

N <
o

result = calcChiCalcPoint (orbital, molecule, x, y, 2):

results[indexX + (internalData.ncubO*indexY) + (internalData.ncubO*internalData.ncubl*indexZ)] = result;

Code Snippet 10
Here we can see that the actual result is calaulatéhe function calcChiCalcPoint, which we
talked about earlier in chapter 3.2.2. Every offiece of logic deals with finding the position

of a thread in 3D space. Because the mathematicdllggmn we are solving is in a 3

27

dimensional space then so is our indexing space. i§ithe reason why we have variables
indexX, indexY and indexZ. These tell us exactlyewehwe are in the located in the space of
threads that we launched. After that we need talcliewe are actually in range of the

problem area. It gives faster results to make stahsize blocks of threads and place them in
a grid that covers the problem area rather thanenma&ny different size thread blocks and
launch them separately. We want to leave the CRUcammence our calculations on the
graphics card as fast as possible. So it is bttt each individual thread calculate if they
are in the problem area and then act accordingdigrAhat we locate the proper position in

the results array and write our result there.

After the threads have completed their work we nieedopy the results array back to the
RAM memory and write the results into the imageecbjthat will display them to the user.

This is a fairly fast operation. After that we ndedree all the memory we have allocated.

When keeping all of this in mind then we are qukotice that the amount of work we do in
the CUDA version of the program is substantiallgager than the work we do in the serial

part of the program. This raises the question: allasf this worth it?

28

4. Results and Analysis

The problem that we are trying to solve is thatah take up to 44 seconds to do a certain

computation in a program called Molekel. This isiged by a group of nested loops which

call upon a computation function during each ofrtiterations. That computation function is

expensive in terms of time and the program is mmmn a single thread. Due to the fact that
the loop iterations are independent we are tryingaive this problem by making all of those
iterations run in parallel, in a separate threathenGPU.

4.1 Results

The results that were received on the main testimgputer can be seen in Table 1

Iterations CPU time Total CUDA | Kernel run Speed-up
time time

6498 0,376 0,053 0,002 7,094
7600 0,529 0,055 0,002 9,618
9240 0,549 0,072 0,004 7,625
12144 0,694 0,073 0,005 9,507
15600 1,003 0,074 0,005 13,554
21924 1,330 0,084 0,007 15,833
29760 1,774 0,074 0,009 23,973
41580 2,463 0,085 0,012 28,976
62320 3,612 0,116 0,017 31,138
99264 5,704 0,101 0,025 56,475
169176 9,711 0,151 0,044 64,311
332990 18,750 0,208 0,079 90,144
786315 44,664 0,380 0,180 117,537

Table description:

Table 1

e The iterations column shows how many points werleutated. We use this to

measure the amount of work that was done.

e The CPU time column shows how much time it took mvtiee computation ran on the

CPU.

e The Total CUDA time column shows how long did th&ie CUDA part of the

program ran.

29

e The Kernel run time column shows how long did tletual computation on the

graphics card ran.

e The speed-up column shows how much faster did dked CUDA section of the

program ran in comparison to the CPU section optiogram.
The test was run on a computer with the followingperties:
e Processor: Intel i7 4930k 6 cores 3.4GHz each [20]
e RAM: 16GB DDR3
e Graphics: NVIDIA GeForce gtx 780 Tl [21]
e Storage: Samsung 1TB SSD
e Motherboard: ASUS Rampage 4 Extreme Black Edit#] [

When examining the table it is clear that the suiipg operations that are needed to make
the computations happen take up the bulk of the tivhen running CUDA code. What is
surprising is that even when there are not thatymignations, the GPU can still provide a
performance boost. The execution times are represém plot 3.

50,000
45,000 /

40,000

35,000 /

30,000 /

25,000 / =@=CPU time

20,000 // =fi—Total CUDA time
15,000

10,000

5,000

0,000 — = . B .
0 200000 400000 600000 800000 1000000

plot 1
From the plot we can see that the time it takesx&cute the CPU section scales linearly in

relative to the amount of work done and the GPUi@eseems to be a constant. The second

30

part of that statement is an illusion and thisllissirated by plot 2 which shows that the
execution times on the GPU also scale to a fundtiah grows similar to a linear fashion.
This is not exactly what was expected in the bagmof this experiment, due to the fact that

GPU has many cores and using those should provitier@ exponential growth.

Total CUDA time

0,350 //
0,300 /
0,250

0,200

0,400

==¢==Total CUDA time
0,150

0,100 -

0,050

0,000 .
0 200000 400000 600000 800000 1000000

plot 2
When taking a closer look at the workload it becsrabvious that as the workload increases
so does the gained speed-up, because the CPU lgdls aore that does the work, while GPU

has much more than that. This is represented in3plo

Speed-up

140,000

120,000

100,000 /

80,000 /

60,000 / —— Speed-up
40,000 [

20,000 /
/

0,000 T T T T 1
0 200000 400000 600000 800000 1000000

plot 3

31

It is clear that the speed-up factor will increaspidly as the workload increases, but due to
hardware restrictions it cannot increase to infinNever the less we have fulfilled the goal of
this work which was to gain a speed-up of 100 tirée can now say that this is possible, but
only when there is a sufficient amount of worklcadhilable to GPU and when there is a

proper graphics card available.

However what would the results be if we would chamyr system configuration to the
following:

e Processor: Intel i5 2500 4 cores 3.6GHz each [20]
e RAM: 8GB DDR3

e NVIDIA GeForce gtx 550 Tl [24]

e Storage 500GB HDD

e Motherboard: GIGABYTE Z68P-DS3 [25]

In this case the processor has less cores butafgblem runs at a faster rate which implies
that we should get a faster CPU run time. Howeliergraphics card now has 15 times less
cores totaling 192 cores grouped into 4 SMXs irs@a2880 cores grouped into 15 SMXs.
In addition to that each SMX now has 64kb of castemory instead of the 128kb we had
before and we have gone from a total computing paieé.0 TFLOPS to 0.7 TFLOPS. It
seems that we do not have much to expect, howbkeadtual results can be seen in Table 2.

Iterations CPU time Total CUDA | Kernel run time| Speed-up
time

6498 0,327 0,056 0,007 5,798

7600 0,390 0,044 0,007 8,864

9240 0,484 0,047 0,010 10,298
12144 0,624 0,051 0,011 12,235
15600 0,796 0,053 0,015 15,019
21924 1,107 0,061 0,020 18,148
29760 1,513 0,082 0,029 18,451
41580 2,091 0,082 0,039 25,500
62320 3,136 0,137 0,057 22,891
99264 4,961 0,164 0,090 30,250
169176 8,457 0,230 0,157 36,770
332990 16,616 0,380 0,283 43,726
786315 39,158 0,830 0,649 47,178

32

Table 2
The table columns have the exact same meaninglds Taolumns. The iterations column is
exactly the same, the CPU time column shows theas#tond testing computer really has a
faster core, but the GPU results are disturbing 3jpeed-up results do not differ much from
the beginning and in the end of the experiment thiely differ by a factor of 2.5 which
indicates that we are not using the full powerhad stronger graphics card. Why does this

happen?

It is obvious that the cores do not do as much adains as they could and this is probably
caused by not getting access to the computaticatal fdst enough. Gtx 550TI has 48 cores
and 64kb memory in an SMX. Gtx 780 Tl has 192 camed 128kb of cache in an SMX. So
the slower card has more cache memory per corehwhises the question that perhaps the
problem lies in the shortage of cache memory whiitdlits the computing power. However
we have little idea of how the two cards are bailtl what more structural differences they
have. There are also other factors in GPU compulike temperature which was not
measured but does have an impact to the generfarpance. At the present moment it is
unclear what causes this result, but due to thetfat the programmer was not a CUDA

expert while writing this then most likely the ptetn lies within the code.

However if this problem could be found and corrdctien it is possible that the speed-up

factor may increase even further.

4.2 Topics for further study

This work has solved a problem by making a sinigteaded application faster by porting it to

the GPU, but it has also uncovered topics thahateuite clear and need further study.

e How does the GPU run thread blocks on SMXs? —\ers# blocks may run on a
single SMX at once then the GPU must be playingessart of “Tetris” to place them
there. Uncovering how this works might also be @ teegetting better performance
from the GPU.

33

e Are there any databases that could be poweredd®U? — If the database is properly
built then queries usually do not take much time, what if we absolutely have to do

a full scan on an extremely large table? Can the Gé&lp?

e |Is it possible to optimize computation intensivaetpaof modern games like path

finding and physics calculations using the GPU? W& the obstacles?

e How does intensive computation affect the grapb&sl and how fast? — It is a known
fact that mining Bitcoin [26] for long periods afrte damages the graphics card. Is it
possible to avoid that when writing our own compiotas, but still receive a proper

performance upgrade?

4.3 The future of CUDA powered Molekel?

The development of Molekel to port it to the GPUllvgontinue. The progress can be
observed at the Github repository [19] which camtaihe codebase itself, dependencies and
information on where to get stable compiled versiaich can already be used in everyday

work.

At the present moment the first computation weeeed in this document is complete and
work is focused on optimizing a computation whiakts up to 10 minutes. Bulk of the work

Is complete but certain technical issues still nieeloe addressed.

34

5. Summary

In conclusion we can say that CUDA is a helpfull t@ben it comes to increasing the speed
of time consuming calculations. It is not alonetle field of GPU computing and it has
competitors which can be taken seriously. The godd is that CUDA is easier to setup and

learn but the bad side is that it requires spebiicware to use.

If we are looking to get CUDA support in our apphions it is not necessary to write custom
code. We could use a prebuilt library or compilerthr However these do not provide the

fastest speed-up possible.

However when we are looking for the fastest spgegaossible and when we are writing
custom code then there are materials like the CUbAumentation [15] to which we can
refer to for help. Writing simple CUDA code is natally difficult, but it gets harder as the
amount and complexity of data structures that nedae used in the computations increase.
Furthermore not all data structures are viables® hecause they can be either impossible to
implement or are simply not worth the effort of ilmenting in CUDA code. Linked list is
one of them. In addition to the data structureswust also implement the logic of finding the
correct computational data form the total amourt twe sent to the GPU and using it

correctly.

However when it is possible to get past the problefwriting custom code, then the results
are definitely worth it. The minimum speed-up wengd from our main testing computer
was 7,094 times and the maximum was 117,537 tithe&s clear that the achievable speed-
up was related to the amount of work that the cdatmn involved. As the workload
increased, so did the speed-up factor, but it ies @ear that it cannot go to infinity and
eventually will be limited by the hardware. The et testing computer which had a slightly
stronger processor but a remarkably weaker graptacd performed better than expected.
The minimum speed-up gained was 5,798 times andndgseamum was 47,178 times. It is
unclear why a graphics card with 15 times lessperforms only 2.5 times worse, but most

likely the problem lies within the code.

This brings us to the conclusion that a 100 tinpesed-up for a computation is possible when
porting it to a GPU. However the speed-up is affedby the workload, the hardware and

most importantly the programmer’s skills. On a pdwegraphics card it is possible to
35

achieve the said speed-up with relatively stangills, but much more can be achieved if
the programmer is aware of more complex topicsosf the GPU works.

36

6. References

[1] (2015, December) CUDA Home. [Online].
http://www.nvidia.com/object/cuda_home_new.html
[2] (2015, December) OpenGL Home. [Onlinkdtps://www.opengl.org/
[3] (2015, December) NVIDIA Intro to parallel programmgicourse. [Online].
https://www.udacity.com/course/intro-to-parallebgramming--cs344
[4] (2015, December) OpenCL Home. [Onlineftps://www.khronos.org/opencl/
[5] Vincent Hindriksen. (2011, June) OpenCL VS CUDA gamson. [Online].
http://streamcomputing.eu/blog/2011-06-22/openetwda-misconceptions/
[6] Microsoft Corporation. (2015, December) DirectConepldome. [Online].
https://msdn.microsoft.com/en-us/library/windowskiep/ff476331(v=vs.85).aspx
[7] Andrew Adinetz. (2014, May) Introduction to dynarparallelism. [Online].
http://devblogs.nvidia.com/parallelforall/introdigri-cuda-dynamic-parallelism/
[8] Rahul. (2013, July) DirectCompute from an OpenCd @UDA perspective. [Online].
http://codedivine.org/2013/07/25/directcompute-framropencl-and-cuda-perspective/
[9] Vincent Hindriksen. (2010, December) DirectCompsit@popularity. [Online].
http://streamcomputing.eu/blog/2010-12-28/directpatas-unpopularity/
[10 NVIDIA Corporation. (2015, December) NVIDIA Accebted Computing Training.
] [Online]. https://developer.nvidia.com/accelerated-computia@iing
[11 NVIDIA Corporation. (2015, December) NVIDIA gpu aerated libraries. [Online].
] https://developer.nvidia.com/gpu-accelerated-liesar
[12 Adobe Systems inc. (2015, December) Adobe PrerRieyeéCC home. [Online].
] http://www.adobe.com/products/premiere.htmi
[13 NVIDIA Corporation. (2015, December) OpenACC TooblkDnline].
] https://developer.nvidia.com/openacc
[14 NVIDIA Corporation. (2015, December) OpenACC Guif@nline].
] https://developer.nvidia.com/how-to-openacc
[15 NVIDIA Corporation. (2015, September) CUDA ToolKibcumentation. [Online].
] http://docs.nvidia.com/cuda/index.html#axzz3uaS6¥5M
[16 (2015, December) Stack overflow CUDA tag. [Online].
] http://stackoverflow.com/questions/tagged/cuda
[17 (2010, June) Molekel Home. [Onlindittp://ugovaretto.github.io/molekel/
]

[18 (2010, June) Molekel Gallery. [Online].
] http://ugovaretto.github.io/molekel/wiki/pmwiki.pHain/Gallery.html

[19 Erik Soekov. (2015, December) Molekel CUDA versiepository. [Online].
] https://github.com/erik132/Molekel CUDA
[20 Intel. (2015, December) Intel i7 4930k specificato[Online].
] http://ark.intel.com/products/77780/Intel-Core-i930K-Processor-12M-Cache-up-to-
3_90-GHz
[21 NVIDIA Corporation. (2015, December) NVIDIA GeForgex 780 Tl Specifications.
] [Online]. http://www.geforce.com/hardware/desktop-gpus/gefartx-780-

37

ti/specifications
[22 ASUS. (2015, December) ASUS Rampage 4 Extreme Htalfion Specifications.
] [Online].
https://www.asus.com/Motherboards/RAMPAGE _IV_BLAGKDITION/specifications
/
[23 Intel. (2015, December) Intel i5 2500 specificatiofOnline].
] http://ark.intel.com/products/52209/Intel-Core-iSe®-Processor-6M-Cache-up-to-3_70-
GHz
[24 NVIDIA Corporation. (2015, December) NVIDIA GeForgéx 550 TI specifications.
] [Online]. http://www.geforce.com/hardware/desktop-gpus/gefarix-
550ti/specifications
[25 GIGABYTE. (2015, December) GIGABYTE Z68P-DS3. [Qmdi.
] http://www.gigabyte.com/products/product-page.apmk?3899#sp

[26 Bitcoin Project. (2015, December) Bitcoin home. [i@&). https://bitcoin.org/en/
]

38

