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Lõputöö on kirjutatud inglise keeles. 

 

Lõputöö põhiülesandeks on 3D kraana matemaatiline modelleerimine ning mudeli 

simuleerimine MATLAB®/Simulink® keskkonnas. Modelleeritud mudelit võrreldakse 

olemasoleva Inteco® mudeliga, mis põhineb kooderitel.  Katsed ja simuleerimine on läbi 

viidud Tallinna Tehnikaülikooli Infotehnoloogia teaduskonnas asuvas automaatika 

laboratooriumis. 3D kraana süsteemi valmistaja on Poola ettevõtte Inteco®.  

 

3D kraana matemaatiliselt kirjeldatud mudel peab asendama kooderitest sõltuva mudeli. 

Kooderid teevad süsteemi kallimaks. Lisaks sellele nõuvada kooderid kalibreerimist ning 

püsivat hooldust. Samuti välistab automatiseeritud 3D kraana süsteemist operaatori. Seega 

vähendatakse õnnetuste riski ning täiustatakse 3D kraana positsioneerimise täpsust. 

Matemaatiliseks modelleerimiseks on teada 3D kraana komponentide massid. 

 

Lõputöö tulemusena projekteeriti 3D kraana juhtimissüsteem nii, et matemaatilise mudeli 

käitumine oleks võimalikult sarnane süsteemi kooderite väljund signaalidega. 

Juhtimissüsteem omab kolme sisendit: telgedele x, y, ja z mõjuvad jõud. Süsteemi väljundis 

on kolm positsiooni kolmemõõtmelises ruumis x, y ja z ning kaks kraanal oleva koormuse 

kaldenurka. 3D kraana positsioon sõltub mõjuvatest jõududest ning on piiratud kraana 

konstruktsiooniga. Juhtimissüsteemi projekteerimiseks kasutati state-space meetodit. 
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Объём диссертации составляет 78 страниц, содержит 4 таблицы, 12 иллюстраций, 8 

графиков, 24 рисунка и 4 приложения. Диссертация написана на английском языке. 

 

Главная задача, поставленная в диссертации - это математическое моделирование 

трехмерного крана и проектирование его управления. Полученная модель 

сравнивается с известными, в частности, с моделью, предоставленной 

производителем Inteco® и основанной на датчиках. Имеющаяся модель предоставлена 

производителем Inteco® и основана на кодерах. Система трехмерного крана 

предоставлена кафедрой информационных технологий Таллиннского технического 

университета. 

 

Благодаря исключению датчиков, разработанная математическая модель 

способствует удешевлению конструкции благодаря исключению расходов на сервис, 

покупку датчиков и исключению оператора. Таким образом, снижается риск 

несчастных случаев и увеличивается точность позиционирования. 

 

Система управляется по трем входным усилиям, трем позициям в трехмерном 

пространстве и двум углам раскачивающегося подвесного груза. Координаты крана 

определены в соответствии со входными усилиями и ограничены размером 

конструкции крана. Для реализации математической модели используется метод 

пространства состояний.  
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The thesis is written on 78 pages, contains 4 tables, 12 illustrations, 8 graphics, 24 pictures 

and 4 annexes. The thesis is written in English language. 

 

The main goal of the thesis is to derive the mathematical model of three-dimensional crane, 

to build the control system, to simulate and compare the obtained results with the model 

provided by the Inteco® 3DCrane manufacturer. The physical model of 3DCrane is provided 

by the Tallinn University of Technology Faculty of Informational Technology.  

 

The derived model must exclude the encoders from the system. It will therefore decrease the 

cost of the services and the system itself. Moreover, the control system design may also be 

useful in industrial overhead cranes. It may replace the operator from the system, minimizing 

the human interface. Thus, it may reduce incidents and accuracy loss. Masses of the 

equipment of 3DCrane for modelling are provided by the manufacturer.   

 

The study object is constructed by the Polish company Inteco®. It is known that the 3DCrane 

operates by three forces inputs. The signals are sent to the DC motors from PC. The system 

has also the feedback. The encoders send the position of the crane and angles of the payload 

back to the user. Moreover the positions are limited by the 3DCrane frame dimension. 

 

The derived model must follow the position control. The idea is to project and tune the 

system output according to the input forces to each axis and, in general, to replace the same 

model that is based on the encoders with the same mathematically derived model. The 

control system method implemented to solve the problem is the state-space method. 
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PREFACE 

 

The thesis is written in co-operation with two departments of Tallinn University of Technology1 

(TUT). The main supervisor is professor Valery Vodovozov, Tallinn University of Technology, 

Faculty of Power Engineering, Department of Electrical Engineering. The second supervisor is 

associate professor Eduard Petlenkov, Tallinn University of Technology, Faculty of 

Information Technology, Department of Compute, Chair of Automatic Control and System 

Analysis. The study equipment 3DCrane was provided by the Alpha Control Lab2 in Tallinn 

University of Technology, Faculty of Informational Technology. The knowledge to complete 

the task was mainly used from the book references listed at the end of the thesis. Moreover, 

many doctoral students of Tallinn University of Technology gave the advises in solving the 

problems related to the thesis: assistant Zoja Raud, associate professor Kristina Vassiljeva, 

engineer Aleksei Tepljakov and many others, who are individually thanked in the 

acknowledgments. 

 

The thesis topic was proposed by the author whose, main goal was to study the control systems 

engineering independently and more deeply. It has been therefore suggested by the professor 

Vodovozov to design the control system, which can exclude the encoders from the system. All 

the explanations introduced in thesis are enough to repeat the experiments independently. 

 

The thesis is logically divided into chapters. Each chapter is then divided into clearly numbered 

and labelled sections. Sections are containing explanations, examples and author’s conclusions 

based on the experiments and the knowledge gain. Each chapter completes with a brief 

summary. The thesis starts with the introduction stating the problem stressed in the thesis and 

therefore summarized with the conclusion. The computer experiments are held using the 

computer-aided software MATLAB®3 and simulation software Simulink®4. The explanations 

are illustrated with Figures. The complete dynamic model derivation is placed in annexes. 

Moreover, all the MATLAB® scripts used for the simulation and computations are also in 

annexes. The annexes are listed at the end of the thesis.  

                                                 
1 www.ttu.ee 
2 Alpha Control Lab (A-lab) – research laboratory within the Department of Computer Control, Tallinn University 

of Technology. 
3 MATLAB – registered trademark of the MathWorks, Inc.  
4 Simulink – registered trademark of the MathWorks, Inc. 
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1. INTRODUCTION 

 

The topic of the thesis has been selected according to the author’s interest in control 

engineering. Many courses have been passed related to this field. Most of the courses were 

passed during the Erasmus exchange study in Politecnico di Milano, Italy. The enrolled 

program was Automation Engineering. Thus most of the courses contents were related to the 

mathematical modelling and system control engineering. Moreover, it has been suggested the 

Alpha Control Lab in the TUT Faculty of Information Technology. The laboratory is perfectly 

equipped for the control engineering study. 

 

The author, within his working experience, has dealt with few industrial three-dimensional 

cranes. Nowadays, cranes are operated mostly by human. This makes the system dangerous, 

because of the numerous accidents and accuracy loss. It has been therefore proposed to build 

the control system to replace the encoder in the real system by the mathematical model. It will 

make the system cheaper and more precise due to the fact that encoders provide and accumulate 

errors. Automation shall also remove the human factor from the system, what makes it safer. 

 

The topicality of the thesis is due to the widely usage of 3D cranes in industry. The problem 

stressed in the present thesis is not new. Many researches have been made in order to find the 

best, cheapest and optimal solution to control 3D cranes. The AutoPilot control algorithm can 

remove the operator from tasks require repetitive motions, what is the cause of fatigue 

depressions and unwanted casualties. 

 

Thus the main tasks intended to be solved in the present thesis are as follows:  

 to derive the mathematical model for the 3DCrane5  

 to find the optimal control system solution for the system based on mathematical model  

 to simulate the model using Simulink environment and to compare it to the existing 

model provided by the crane manufacturer  

 tune the derived model as close as possible to the existing model in order to be able to 

replace the encoder-based model with the mathematical model 

 to use the optimal solution, physical laws and approximations if necessary for deriving 

the mathematical model  

                                                 
5 “3DCrane” fused word here and in the whole thesis is related to the exact equipment.  
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 to use the suitable and cheapest control logic.  

 

In short, provide the sensorless control logic and in the case of fail, to propose another solution 

for the future research. 

 

Researchers from different universities around the world have proposed a lot of solutions to 

model the three-dimensional crane system as well as Cartesian coordinate robots. Some of the 

researchers were also using the small dimension model of 3D crane. Such a research are 

described in articles [1]. 

 

Another article [2], where the researchers used Dymola6 model for the crane behaviour 

simulation.  

 

Moreover article [3] where the authors used the same 3DCrane from Inteco® as in present thesis. 

In sum, many other and different control systems and approaches as well as other different 

mathematical models were submitted in past.  

 

Here only a small part of them are listed. Moreover, Inteco® also provides their own 

mathematical model derivation. However none of the articles were found, where the authors 

use the state-space approach to build the control system for the 3D crane. 

 

A-lab itself has made a sever researches related to the 3DCrane. The Bachelor of Science degree 

[4] thesis has been successfully defended. The research was to create the mobile phone 

application that allows to control the 3DCrane by the Wi-Fi network. The application is used 

indoor close to the controlled subject. Moreover the application should work on iOS system 

and should be uploaded to the Apple iTunes®7. The application displays the information of the 

subject, including the positions and deviation angles. 

 

Another work recently done by Aleksei Tepljakov. The main task was to find an interface 

solution to control the 3DCrane with the joy pad device similar to the ones used in video games 

consoles. The idea is to move the crane along X, Y and Z axis using the dual analog-controller. 

                                                 
6 Dymola – modelling and simulation environment based on the open Modelica modelling language 
7 iTunes – media store application by Apple Inc. 
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The analog-buttons send the signal and the controller moves the 3DCrane according the 

direction and axis was forwarded. The system works successfully.  

 

Unlike the above studies, in my research the methods for solving the tasks are chosen as the 

most appropriate for the highly nonlinear system with multi inputs, multi outputs. First for 

derivation of the simplified model only the Newton’s second law of motion and geometric 

representation of the system was used. The approximation around the angles was also 

implemented.  

 

After that the full model of the system is derived using Lagrange equation for kinetic and 

potential energies. Next, the Euler-Lagrange equations are used to build the final system of 

equations describing the 3DCrane dynamics. The system of equations were again approximated 

around the steady-state operational point. The state-space representation of a physical system 

is used to design the control in both simplified and full models. All the models are compared 

with the encoder-based model by Inteco®. 

 

Obtained results have been analysed. The full model can replace the encoder-based model. They 

are not completely similar as they have errors in outputs between matching each other. 

However, has been suggested that the reason for errors could be the mistakes and 

approximations in modelling. As well as it can be the error accumulated in encoders, as they 

are no information about the calibration of the devices.   

 

Chapter 2 introduces the Control System theory content. Different types of the systems are 

represented and shortly described based on the references. The connection between 

mathematical modelling, simulation and control systems design are also explained in Chapter 

2. 

 

Chapter 3 focuses on the study of the 3D crane small dimensional copy. The chapter consist of 

the description of the object and the components of the system such as encoders and chip for 

the computer interface. The model of the crane provided by the manufacturer is also presented. 

The chapter completes with the analysis and conclusions of the first simulation of the 3DCrane. 
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Chapter 4 is addressed to the mathematical model of 3DCrane. Two different models of the 

3DCrane system are presented. First, the classical block scheme model in Simulink® is built. 

Second, the state-space approach is provided. Both solutions are simulated and analysed. 

 

In Chapter 5 the derived model and the model provided by Inteco® are simulated together. For 

the derived model the state-space representation is used. The results are described and 

presented. Further conclusions and summarizations are given. 

 

Chapter 6 describes the derivation of the full 3DCrane model taking into account the payload 

angle dynamics. Euler-Lagrange equation is used to derive the model. Again, the derived state-

space representation is simulated together with 3DCrane manufacturer model. The obtained 

results are analysed and concluded. Finally, all the results gain in present thesis are shortly 

concluded in the last chapter. 

 

Annexes 1, 2, 4 are containing the MATLAB scripts for the simulations of the derived dynamic 

models. Annex 3 in detail describes the Euler-Lagrange implementation to derive the full 

3DCrane dynamic model. 

 

The thesis is written using the Microsoft Corporation8 licensed operating system Windows 7 

Professional. Additionally, the next software has been used: Microsoft Word, Microsoft Paint, 

MATLAB/Simulink (used at the TUT Faculty of Information Technology laboratory). 

 

  

                                                 
8 Microsoft Corporation – American multinational technology company specializing in develop, manufacture, 

license, support and sell computer software, consumer electronic, personal computers and services. Founded in 

1975. 
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2. CONTROL SYSTEMS 

 

Control systems are integrated part of our society [5]. Numerous applications are all around us: 

satellite antenna control, robotics, metallic part machined in CNC stage, etc. Many companies 

such as Apple Inc.®9 and Google®10 are now working on automated vehicles that can drive on 

the streets without a human interface. Automation is the technique of making a process or 

system work automatically. Nowadays, they are also called smart systems, where the system 

can automatically adapt to the environment giving the best possible solution. All this 

applications are created due to automatically controlled systems. 

 

Human beings are not the only creators of automatically controlled systems, because these 

systems are also exist in nature long time ago. Within our own bodies the numerous control 

systems exist, such as pancreas that regulates the blood sugar [5]. We, however, take the 

examples, ideas and logic from nature. Even feedback control systems are older than humanity. 

Numerous biological control systems were built into the earliest inhabitants of our planet [5]. 

Feedback is the return of a portion of a process or system output to the input, especially when 

used to maintain performance or to control a system or process [6]. 

 

2.1. Control system definition 

 

A control system consists of subsystems and processes (or plants) assembled for the purpose of 

obtaining a desired output with desired performance, given a specified input. The simplest form 

of control system is shown in Figure 2.1 [5]. 

 

 

Fig. 2.1. Simplified description of a control system 

 

                                                 
9 Apple Inc. – American multinational technology company specializing in design, develop and sell consumer 

electronics, computer software and personal computers. Founded in 1976. 
10 Google – American multinational technology company specializing in Internet-related services and product. 

Founded in 1998. 
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There are two major configurations of control systems: open-loop and closed-loop (feedback 

control) [5]. The system has the inputs, the signal provided by the designer. As an output the 

system has an expected behaviour of the system. 

 

2.1.1. Open-loop system 

 

Open-loop system (Figure 2.2) does not correct or monitor the output signal for disturbance. It 

starts with the input that is often called the controllable variable [5]. The input signal passes 

several blocks in order to be controlled.  

 

Open-loop control systems are cheap and simple. However, they cannot compensate 

disturbances or noises. Thus, many corruptions affect the output. It is hard to predict 

disturbances. The output therefore can always vary, what makes the system unstable. 

 

 

Fig. 2.2. Open-loop system 

 

The disadvantage of this system is sensitivity to the disturbance. In order to protect the system 

against the unstable output, it is often added the feedback from the output to the input. This 

technique makes the system closed-loop.   

 

2.1.2. Closed-loop system 

 

The closed-loop system (Figure 2.3) monitors the output and compares it with the input [5]. 

This technique helps to take the disturbance into account and to compensate it. The closed-loop 

systems in comparison with the open-loop ones have a greater accuracy. They are less sensitive 

to noise, disturbance, and changes in the environment. On the other hand, closed-loop systems 

are more complex to design and expansive [5]. 
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Fig. 2.3. Closed-loop system 

 

The compensation of disturbance is not the only problem in control theory. The system must be 

stable in order to produce transient and steady-state response. Transient response is important 

because it affects the speed of the system and influences human patience and comfort, thus 

mitigating mechanical stresses. Steady-state response determines the accuracy of the control 

system. It governs how closely the output matches the desired response [5].  

 

Moreover, it is often important to design the robust system. It means that the system is to be 

non-sensitive to parameter changes due to the fact that the relation between parameters changes 

and their effect on the performance is not linear. 

 

In order to create a control system it is first necessary to create the mathematical model of the 

system to be controlled. In another words, designer must do the modelling task and describe the 

system using physical laws. Kirchhoff’s laws are used in electrical network and Newton’s law 

are used for mechanical systems, along with simplifying assumptions. The Newton’s law will 

be used in current thesis. 

 

2.2. Mathematical modelling 

 

A models are an essential component of simulation [7]. Modelling is a critical issue in rapidly 

developing modern manufacture. Before multimillion-euro project will be build and tested in 

the environment, it is convenient to model and test the system using simulation tools and 

software. It helps to save the cost of the product and to avoid mistakes and accidents.  
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A meteorologist predicts the expected path of a tropical storm using weather models. An 

economist issues a quantitative forecast of the economy predicted on key economic variables. 

Health care professionals have access to a human patient simulator to receive training in the 

recognition and diagnosis of disease [7]. Every human activity can be modelled and therefore 

analysed in order to predict the behaviour. 

 

The word “model” is a generic term referring to a conceptual or physical entity which 

resembles, mimics, describes, predicts, or conveys information about the behaviour of some 

process or system. The benefit from having a model is to be able to explore the intrinsic 

behaviour of a system in an economical and safe manner. In principle, the behaviour of dynamic 

system can be explained by mathematical equations and formulas, which embody either 

scientific principle or empirical observations related to the system [7].  

 

The system’s models consist of coupled algebraic and differential equations, when their 

parameters and variables change continuously over time or space. Partial differential equation 

models appear when a dependent variable is a function of two or more independent variables. 

The mathematical models of dynamic systems where the single independent variable is “time” 

are comprised of ordinary differential equations. The same applies to system with a single 

spatial independent variable [7]. 

 

Mathematical models can be categorized according their purpose: models to assist plant design 

and operation and models to assist control system design and operation [8]. In this work we are 

interested mainly in the second category as we are planning to control the system.  

 

Ordinary differential equation models of dynamic systems are called “lumped parameters” 

(Figure 2.4) models. The spatial variation of the system parameters is negligible or it is being 

approximated by lumped sections with constant parameter values. 

 

 

Fig. 2.4. A system with a lumped parameter model 
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The same system can be represented with different mathematical models. Regardless of the 

detail inherent in a mathematical model, it nevertheless represents an incomplete inexact 

depiction of the system [7]. The reason is refers to the simplifications and approximations used 

in modelling the system. Mathematical modelling relies on a combination of intuition, 

experience, empiricism, and the application of scientific laws of nature [7]. 

 

2.2.1. Simulation 

 

The difference between a mathematical model and a simulation model is open interpretation 

[7]. Some in the simulation community is view the two as one and the same. Simulation refers 

to the solution of the model equation. Simulation is originated from the mathematical methods. 

However, simulation of dynamics system requires a simulation model, different in nature from 

mathematical model. 

 

Moreover, it should be recognized that the “models” used in simulation are ideal and therefore 

may differ slightly from their physical implementations. These differences may lead in unstable 

systems to unexpected bias levels limit cycles [9]. 

 

Simulation models are commonly obtained from discrete-time approximations of continuous-

time mathematical models. More than one simulation model can be developed from a single 

mathematical model of the system [7]. 

 

2.2.2. MATLAB® and Simulink® 

 

MATLAB® (Matrix Laboratory) is the high-level language and interactive environment 

developed by MathWorks® for numerical computation. MATLAB allows matrix 

manipulations, plotting of functions and data, implementation of algorithms, creation of user 

interfaces, and interfacing with programs written in other languages, including C, C++, 

Java, Fortran and Python [10]. 

 

Simulink® is the most popular programming language tool for modelling, simulating and 

analysing dynamic systems developed by MathWorks®. It is integrated with MATLAB, what 

http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Python_(programming_language)
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enables to incorporate MATLAB algorithms into models and export simulation results to 

MATLAB for further analysis. Simulink is a block diagram environment widely used in control 

theory and digital signal processing. 

 

The Simulink library contains blocks for representing the mathematical models of commonly 

occurred components in dynamic systems. Building a Simulink model of a system consist of 

selecting the appropriate blocks and connecting them in a way that represents the mathematical 

model. Simulink offers a variety of numerical integrators to advance the continuous-time state 

vector over an integration step [7]. 

 

2.3. Linear systems 

 

A linear system possesses two properties: superposition 

and homogeneity. The superposition states that the output 

response of a system to the sum of inputs is the sum of 

response to the individual inputs. Homogeneity property 

describes the responses of the system to a multiplication 

of the input by a scalar. Linearity can be visualized in 

Figure 2.5 [5]. 

 

A common engineering practice is to assume that a system can be described by a set of linear 

differential equations for some operating range of interest as follows [11]: 

 

�̇� = 𝐴𝑥 + 𝐵𝑢,                      (2.1) 

where   𝑥(𝑡) – the state of system, 

  𝐴, 𝐵 – time invariant matrices, 

  𝑢(𝑡) – the control input. 

 

When the control input is presented, linear time invariant systems exhibit properties including 

superposition, asymptotic stability of the unforced system ensures bounded-input bounded-

output stability, and a sinesoidal input leads to a sinesoidal output of the same frequency. The 

behaviour of a nonlinear system may be much more complex than a linear model can 

encapsulate [11]. 

Fig. 2.5. Linear system 
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2.4. Nonlinear systems 

 

The definition of linearity cannot not applied to the 

relationship shown in Figure 2.6. Thus types of systems are 

called nonlinear. The designers can often make a linear 

approximation to a nonlinear system. Linearization is done 

for small-signal inputs about the steady-state solution when 

the small-signal input is equal to zero. This steady-state 

solution is called equilibrium [5]. 

 

The nonlinear features of the system may originate inherently or intentionally. Inherent 

nonlinearity is an inseparable characteristic of the laws governing the operation of the process 

to be controlled. Intentional nonlinearity is deliberately introduced into the design of the system 

as the best way to achieve the desired performance, based on both technical and economic 

criteria [11]. 

 

As the nonlinear systems are very hard to control, often they are approximated and replaced 

with a number of linear systems. These techniques are made in the interest of mathematical 

tractability of the model. Each motion in this case is described by linear differential equation. 

  

The model of a system may contain one or more constants. Other coefficients may be constant 

over the whole range of operation of the model and for practical purpose they can also be 

regarded as constants. Some coefficients may be considered constant during any particular run 

of the model. Finally, there are coefficients that need to be modified during the running of the 

model. Current values are determined either from a stored formula or by interpolation in a stored 

table [8]. 

 

A dynamic model in the form of a vector-matrix differential equation has a natural classification 

of variables: 

 

�̇� = 𝐴𝑥 + 𝐵𝑢 

𝑦 = 𝐶𝑥 + 𝐷𝑢,                      (2.2) 

where  𝑥 – 𝑛-dimensional vector of a state variable, where n is the order of the system, 

Fig. 2.6. Nonlinear system 
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 𝑦 – 𝑚-dimensional vector of output variables, 

 𝑢 – 𝑝-dimensional vector of input variable, 

 𝐴 – a matrix of size 𝑛 × 𝑛, 

 𝐵 – a matrix of size 𝑛 × 𝑝, 

 𝐶 – a matrix of size 𝑚 × 𝑛, 

 𝐷 – a matrix of size m× 𝑝. 

 

A state-space representation can be used for a mathematical model of a system with multiple 

inputs and outputs, denoted by MIMO. In this case 𝐴, 𝐵, 𝐶 and 𝐷 will be matrices of appropriate 

dimensions which accounts for the use of capital letters [12]. 

 

In practice each of the elements of 𝑦 must be determined by observation and measurement. 

Also, 𝑢 vector must contain elements representing changing plant inputs, all known external 

disturbances that are to be represented, and control variables [8]. 

 

2.5. Nonlinear Multivariable (MIMO) systems 

 

Multi-Input Multi-Output control 

system (Figure 2.7) is the control 

theory system with more than one 

input and/or more than one output. 

This control system is also frequently 

known by the abbreviation MIMO. Another words, it is multivariable system, where each 

manipulator variable can depend on two or more of the controlled variables.  

 

The control system that has only one input and only one output is called Single-Input Single-

Output (SISO). Comparing to the SISO system, the MIMO is hard to design as it integrates 

multiple sensor data to coordinate multiple actuators [13]. 

 

The mathematical model is nonlinear due to the presence of the nonlinear differential equation 

and nonlinear algebraic equation [7]. Controller-loop interaction exists such that the action of 

one controller affects other loop in a multi-loop system. Depending upon the inter-relationship 

Fig. 2.7. MIMO control scheme 
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of the process variable, tuning each loop for maximum performance may result in system 

instability when operating in a closed-loop mode [14].  

 

Multivariable control is not the only solution to control nonlinear multi-input multi-output 

system. There are several techniques exist to model the control: Predictive Constrain control, 

Model-Based Predictive Control, Dynamic Matrix Control, Statistical Process Control, etc.  

 

2.6. Chapter summary 

 

Control systems contribute to many aspects in our society and are also broadly represented in 

nature. A control system has the inputs, the system body and the outputs. A control system can 

be open loop or close loop. The close loop system monitors the outputs, being more complex 

and more expansive. It can also correct the input to avoid distortions.  

 

The system first must be mathematically modelled, using the physical and mathematical rules. 

Most of the time, they are also approximated to simplify the solution. The approximation is 

necessary, because there are no linear system in nature. The second step is to assemble the 

model. There can be many solutions for the same model. Finally, the results must be simulated, 

studied and analysed.  

 

Linear and nonlinear systems were described. The SISO and MIMO control system were stated 

and compared. The first has only one input and one output, the second respectively can have 

multiple inputs and multiple outputs.  

 

The solution of the highly nonlinear MIMO system will be shown in Chapter 4. The state-space 

representation of the system will be derived, simulated and analysed.  
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3. OBJECT DESCRIPTION 

 

3.1. Industrial 3D crane 

 

3D cranes (Figure 3.1) are widely used in 

industry for vessel loading and unloading, to 

handle full or empty containers and lift up to 

80 tons, automotive lines, ship and airplane 

building, power industry and other heavy 

manufacturing. Different 3D cranes are 

shown in Figures 3.2 and 3.3. As a rule, in 

ports 3D cranes are able to speed up the 

entire shipbuilding process. Nowadays 

cranes are being built with semi- or full-

automation capability. Thus, many 

researches have been made in order to find 

the best, cheapest and optimal solution to 

control cranes. The AutoPilot control 

algorithm can remove the operator from tasks that require repetitive motions. Benefits include 

more precise handling, reduced component wear and greater availability [15].  

 

Fig. 3.2. Outdoor industrial 3D crane 

Fig. 3.1. Gantry crane by Konecranes® 
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Fig. 3.3. Indoor industrial 3D crane 

 

In general, an operator moves the crane in the desired position. The acceleration or deceleration 

of the crane may cause undesirable load swing. The load swing can cause human accidents, can 

damage the crane or the load. To control the swing, the operators need experience in crane 

manoeuvring. Automated systems can help the operator to control the load swing or can even 

replace the operator. They can also achieve precise control and increased load speed 

positioning. 

 

3.2. General description of the studied object 

  

 3D cranes are widely used in industry, construction 

works, ports and manufacturing. The three-

dimensional crane (Figure 3.4) controlled from PC 

is studied in this research using is the laboratory 

model of industrial crane. The model is built for 

control education and research works mostly for 

automation control and information technology 

fields. The model is operated in real-time mode. 

3DCrane is ideal for illustrating complex nonlinear 

MIMO (multi input multi output) control 

algorithms. The 3DCrane workspace can be viewed 

in Figure 3.5.  

Fig. 3.4. Inteco® 3DCrane 
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Fig. 3.5. View of the workspace of 3DCrane 

 

The 3DCrane is a nonlinear MIMO electromechanical 

system having a complex behaviour and creating 

control problems. The system is controlled from PC. 

The mechanical unit is supplied with power and 

interfaced to a PC. The mechanical part is linked with 

A/D, D/A board configured in the Xilinx® 

technology11. The software operates under MS 

Windows® NT using MATLAB® /Simulink® 

environment and RTWT (Real-Time Window 

Target™) toolbox package12. The system, therefore, can 

be easy mounted and installed in a laboratory [16]. 

 

The 3DCrane setup (Figure 3.6) consists of a payload 

hanging on a pendulum-like lift-line wound by a motor 

mounted on a cart. The payload is lifted and lowered in the 𝑧 direction. Both the rail and the 

cart are capable of horizontal motion in the 𝑥 direction. The cart is capable of horizontal motion 

along the rail in the 𝑦 direction. The payload attached to the end of the lift-line can be freely 

moved in three-dimensions. The 3DCrane is driven by the three DC motors [16]. Two motors 

                                                 
11 Xilinx - American technology company producing and developing programmable logical products, including 

integrated circuits, software design tools, predefined system functions delivered as intellectual property cores and 

design services [17]. 

 
12 Real-Time Window Target™ is a real-time engine for Simulink models and blocks connected to a range of I/O 

boards. It enables to create and control the system in real time.  

 

Fig. 3.6. The 3DCrane setup 
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are used to drive the crane in X and Y directions in working space and the last motor is used to 

lift the load.  

 

The DC motors are produced by the Italian 

company Micro Motors S.R.L.13 [18]. In our 

3DCrane system three RH158.24.75 DC motors are 

used (Figure 3.7). The technical data of the motor is 

shown in Table 3.1. The direction of rotation 

depends on polarity. A motor can be mounted in any 

position. The dimensions of the motor are shown in 

Figure 3.8. 

 

Table 3.1. RH158.24.75 DC motors technical data 

Parameter (at ambient temperature +20% - tolerance +/-10%) Value 

Nominal Voltage [𝑉] 24 

L [𝑚𝑚] 66,5 

Ration to:1 76,84 

Nominal torque [𝑁𝑐𝑚] 50 

Speed [𝑚/𝑠] 
No load 81 

At nominal torque 55 

Current [𝑚𝐴] 
No load <70 

At nominal torque 340 

Maximum radial shaft load [𝑁] 50 

Maximum axial shaft load [𝑁] 10 

Temperature range [°𝐶] -20 / 60 

Approximate weight [𝑔] 190 

 

 

                                                 
13 Micro Motors S.R.L - Italian company that produces small gear-motors with different specifications and 

applications. 

Fig. 3.7. RH158.24.75 DC motor 
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Fig. 3.8. The dimensions of the RH158.24.75 DC motor  

 

The Hall-effect switches are used in encoder (Figure 3.9). 

They are highly temperature stable and stress-resistant sensors 

mainly utilized in applications that provide steep magnetic 

slopes and low residual levels of magnetic flux density. Each 

device includes voltage regulator, quadric Hall voltage 

generator, temperature stability circuit, signal Schmitt chopper 

stabilized amplifier, Schmitt trigger and an open drain 

MOSFET on a single silicone chip. The on-board regulator 

permits operation with supply voltages of 3,5 to 24V. The 

output MOSFETs can sink up to 20 mA with suitable output pull up, they can be used directly 

with bipolar or MOS logic circuit [18]. The technical data of the encoder is provided in Table 

3.2. 

 

Table 3.2. Two-phase Hall-effect 90° encoder technical data 

Absolute Maximum Ratings 

Parameter Symbol Value 

Supply voltage [𝑉] VDD 28 

Supply current [𝑚𝐴] IDD 50 

Output voltage [𝑉] VOUT 28 

Output current [𝑚𝐴] IOUT 50 

Storage temperature range [°𝐶] TS -50 to 150 

Maximum junction temperature [°𝐶] TJ 165 

 

Fig. 3.9. Two-phase Hall-

effect 90° encoder 
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The encoders measure movements with a high resolution equal to 4096 pulse per rotation, and 

together with the specialised mechanical solution create a unique measurement unit. The 

deviation of the load is measured with a high accuracy equal to 0,0015 rad [16]. 

 

The power interface amplifies the control signal, which is transmitted from the PC to the DC 

motor. It also converts the encoder pulse signals to the digital 16-bit form to be read by the PC 

[16]. The PC equipped with the RT-DAC/PCI multipurpose digital I/O board communicates 

with the power interface board. The whole logic necessary to activate and read the encoder 

signals and to generate the appropriate sequence of pulses of PWM to control the DC motors is 

configured in the programmable Xilinx® chip of the RT-DAC/PCI board. All functions of the 

board are accessed from the 3DCrane Toolbox, which operates directly in the MATLAB® 

/Simulink® environment [16]. 

 

The whole control logic is presented in Figure 3.10. The Xilinx® chip sends the appropriate 

sequence of pulses to control the voltage of the motor. The voltage therefore rotates the DC 

motor moving the cart to the appropriate position in the workspace. The encoders play the role 

of the feedback information. They show the location of the cart and rail as well as the workspace 

and the angles of the payload in real time.  

  

 

Fig. 3.10. The 3DCrane control components 
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3.3. Object overview 

 

The crane is delivered in partially mounted form. The mounting frame makes a support and a 

flexible construction of the system (Figure 3.11). There is a rigid construction due to the reason 

it is fixed to the floor. The dimensions are both the width and length from 0,9 m to 2,5 m [16]. 

The system parameters of the 3DCrane are shown in Table 3.3. 

 

  Table 3.3. 3DCrane parameters 

Parameter Value 

Maximum speed 𝑣𝑚𝑎𝑥  [𝑚/𝑠] 0,3 

Maximum acceleration 𝑎𝑚𝑎𝑥 [𝑚/𝑠
2] 0,6 

Workspace distance in X-axis direction [𝑚𝑚] 920 

Workspace distance in Y-axis direction [𝑚𝑚] 920 

Core length 𝑙 [𝑚𝑚] 820 

Payload mass 𝑚𝑝 [𝑘𝑔] 1 

Mass of the cart 𝑚𝑐 [𝑘𝑔] 1,16 

Mass of the moving rail 𝑚𝑟 [𝑘𝑔] 2,2 

 

The 3DCrane is also equipped with the safety button. The button is located on the table in front 

of the PC, which is used to control the system. In case of emergency, a user must press the 

button manually, what immediately will stop the current supply to the crane and the system 

stops. Moreover, the crane workspace is located at the corner of the laboratory (Figure 3.11). 

The location is marked with the black-yellow sticker line on the floor. It is strictly forbidden to 

cross the line while the 3DCrane is operated.  

 

The software requirements are as follows: 

 Pentium® or AMD based personal computer 

 Microsoft Windows® XP/7x86 

 MATLAB® version R2009a/b, R2010a/b or R2011a/b with appropriate version of 

Simulink® and RTW toolboxes. 
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Fig. 3.11. 3DCrane workspace in the laboratory 

 

The hardware consists of the following mechanical units: cart, 2D angle measuring unit (Figure 

3.12), 𝑋 axis drive (Figure 3.13). It is also consists of interface and Power Interface Unit and 

RT-DAC/PCI board. 

 

       

  Fig. 3.12. Cart and 2D angle measuring unit      Fig. 3.13. 𝑋 axis drive 
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3.4. Testing the 3DCrane 

 

In order to understand the control system, it is 

necessary to test the model provided by the 

Inteco®. Testing may help to solve the problems 

appeared in assembling the system. In Figure 

3.14 the model of 3DCrane is shown. It is 

important to know, that the outputs are the 

values measured by the encoders. In this type of 

system, the encoders must be calibrated accurately. The calibration must be provided at least 

every half a year. It is noted in encoder provider webpage: “Exposure to all absolute-maximum-

rated conditions for extended period may affect device reliability” [18]. It is not known, if the 

3DCrane was often used in absolute-maximum-rate. 

 

X control, Y control, Z control inputs represent the control signals of the X, Y, Z DC drives 

that may be set. The control values may vary from -1.0 to +1.0. The value of -1, 0.0 and +1 

mean respectively: the maximum control in a given direction defined by +1, zero control and 

the maximum control in the opposite direction to that defined by -1 [16]. 

 

3D Crane Simulink scheme is shown in Figure 3.15. It consist of the Parameters of the system, 

Measurement gain from the encoders and switches and control block that reads information 

from the model code, provided by Inteco®. 

 

 

Fig. 3.15. Simulink Model of the 3D Crane by Inteco® 

Fig. 3.14. Simulation model provided by 

Inteco® 
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The simulation of the model control scheme is shown in Figure 3.16. The scopes are showing 

as the input signal and the position reading from the encoder for X, Y and Z axis in 3DCrane 

workspace. As it is described in [16] the cart of the crane must follow the position according 

the input impulse. Thus the range of the output is -1 to 1. The position must be limited by the 

physical workspace of the crane. The simulation results are shown in Figure 3.17. 

 

 

Fig. 3.16. Inteco® model control scheme 

 

             

(a)       (b) 

Fig. 3.17. The Inteco® model simulation inputs and outputs: (a) one position; (b) two different 

positions in workspace 
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According to the results of the simulation (Figure 3.17), it can be clearly seen that the crane 

does not move to exact position required by the input pulse. Moreover, the behaviour of the 

output looks like the velocity curve. It cannot be therefore conformed that the Inteco® provides 

the position control model. 

 

3.5. Chapter summary 

 

Nowadays, the three-dimensional cranes are widely used in industry. However, the control 

question plays the important role in crane system engineering. Many researches has been 

conducted aiming to improve the accuracy and minimize the system human interface. It is 

necessary to increase the work efficiency provided by the cranes, avoid accidents and minimize 

dependence on the system operator by involving automation control. 

 

The studied object is the small-dimensional copy of the industrial 3D cranes. The control logic 

provides the signal to control three DC motors, moving along X, Y and Z axis. The position of 

the crane as well as the angles of the payload are measured by the encoders in real-time 

simulation. The force input must have an impulse curve in order to obtain required position. 

 

The model control experimentation of the model provided by the manufacturer is shown in 

Figure 3.17. It has been concluded that, the 3DCrane control model does not behave as the 

position control. The output curve looks more like the speed control. 

 

The main reason to build my own mathematical model is to obtain the position control. Because 

it is not easy to control the speed of the crane, comparing to the position in workspace. 

Moreover, the main idea is to avoid sensor feedback as the accuracy is decreasing due to the 

amortisation problem of the encoders. Another reason to avoid encoders is to decrease the cost 

of the service and the system itself.  
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4. THE MODEL DEVELOPMENT AND SIMULATION 

 

As it was mentioned in Chapter 2 the modelling of the mechanical system is one of the most 

important parts in control engineering. Modelling helps to understand physical and theoretical 

behaviour of the system. The chapter outlines the dynamic model derivation of the 3DCrane. 

Derived model will be therefore approximated around the sines and cosines of the payload 

angles. Based on derived dynamic model, two solutions will be provided. Moreover the model 

outputs will be also tuned. 

 

4.1. Dynamic model of the 3DCrane 

 

The schematic drawing of the 3DCrane is shown in Figure 4.1. The schematic drawing of the 

3DCrane workspace is shown in Figure 4.2. All the dynamic parameters presented in the figures 

are described in Table 4.1. There are 5 parameters measured by the encoders: 𝑥𝑤, 𝑦𝑤, 𝑙, 𝛼, 𝛽. 

This parameters are also the outputs of the controlled system. 

 

 

Fig. 4.1. 3DCrane schematic drawing   Fig. 4.2. 3DCrane Workspace schematic drawing 
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Table 4.1. 3DCrane dynamic parameters description 

Symbol Description Symbol Description 

𝑚𝑐 Mass of the cart 𝑔 Gravitational constant 

𝑚𝑙 Mass of the payload 𝐹𝑥 Force driving the rail with the cart 

𝑚𝑟 Mass of the moving rail 𝐹𝑦 Force driving the cart along the rail 

𝑥𝑝 X-axis position of the payload 𝑙 Length of the lifted load 

𝑦𝑝 Y-axis position of the payload 𝑇𝑥 X-axis tension force 

𝑧𝑝 Z-axis position of the payload 𝑇𝑦 Y-axis tension force 

𝑆 Reaction force acting while lift the load 

𝑥𝑤 X-axis position of the cart in workspace 

𝑦𝑤 Y-axis position of the cart in workspace 

𝛼 Angle between the projection of the lift-line on XY plane and the lift-line 

𝛽 
Angle between the negative direction of the Z-axis and projection of the lift-line 

on XY plane 

 

4.1.1. Position of the payload equations 

 

Using the simplified drawing of the position of the payload (Figure 4.3) the trigonometrical 

dependence is obtained. 

 

Fig. 4.3. The drawing of the position of the payload 

 

sin 𝛽 =  
𝑥1

𝑥2
             (4.1) 

sin 𝛼 =  
𝑦1

𝑙
            (4.2) 

cos 𝛼 =  
𝑥2

𝑙
            (4.3) 

cos 𝛽 =  
𝑧1

𝑥2
            (4.4) 

𝑥1 = 𝑙 cos 𝛼 sin 𝛽           (4.5) 

𝑦1 = 𝑙 sin 𝛼            (4.6) 

𝑧1 = 𝑙 cos 𝛼 cos 𝛽           (4.7) 
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The mathematical representation of the payload position can be therefore derived using 

equations (4.5), (4.6) and (4.7): 

 

𝑥𝑝 = 𝑥𝑤 + 𝑙 cos 𝛼 sin 𝛽          (4.8) 

𝑦𝑝 = 𝑦𝑤 + 𝑙 sin 𝛼           (4.9) 

𝑧𝑝 = 𝑙 cos 𝛼 cos𝛽                    (4.10) 

 

4.1.2. Dynamic equations 

 

In order to describe the dynamics of the 3DCrane system (Figure 4.1.) Newton’s14 second law 

of motion is used �⃗� = 𝑚�⃗�: 

 

𝑚𝑙�̈�𝑝 = 𝑆𝑥                     (4.11) 

𝑚𝑙�̈�𝑝 = 𝑆𝑦                     (4.12) 

𝑚𝑙�̈�𝑝 = −𝑆𝑧 −𝑚𝑙𝑔                       (4.13) 

(𝑚𝑐 +𝑚𝑟)�̈�𝑤 = 𝐹𝑥 − 𝑇𝑥 + 𝑆𝑥                  (4.14) 

𝑚𝑐�̈�𝑤 = 𝐹𝑦 − 𝑇𝑦 + 𝑆𝑦                              (4.15) 

 

where the axis components of the vector 𝑆 are as follows: 

 

𝑆𝑥 = 𝑆 sin 𝛼 sin 𝛽                    (4.16) 

𝑆𝑦 = 𝑆 cos 𝛼                     (4.17) 

𝑆𝑧 = 𝑆 sin 𝛼 cos 𝛽                    (4.18) 

 

We now state that the total control forces supplied each axis are equal to 𝑁𝑥, 𝑁𝑦, 𝑁𝑧 accordingly 

and take into account equations (4.16), (4.17) and (4.18). The input force is the total forces 

required for the control system in order to move the crane along the axis. 3DCrane dynamics 

can be therefore rewritten as follows: 

 

                                                 
14 Isaac Newton – English physicist and mathematician (1642 – 1726/7). Widely recognised as one of the most 

influent scientists of all time. 
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�̈�𝑝 =
𝑁𝑧 cos𝛼 sin𝛽

𝑚𝑙
                    (4.19) 

�̈�𝑝 =
𝑁𝑧 sin𝛼

𝑚𝑙
                     (4.20) 

�̈�𝑝 =
−𝑁𝑧 cos𝛼 cos𝛽

𝑚𝑙
                                  (4.21) 

�̈�𝑤 =
𝑁𝑥+𝑁𝑧 cos𝛼 sin𝛽

(𝑚𝑐+𝑚𝑟)
                               (4.22) 

�̈�𝑤 =
𝑁𝑦+𝑁𝑧 sin𝛼

𝑚𝑐
                                          (4.23) 

 

The dynamic model obtained is highly nonlinear differential equations system of second 

order15. 

 

4.1.3. Approximation 

 

 The dynamic model obtained is highly nonlinear multivariable system. Its dynamical equations 

(4.19) to (4.23), no doubt, require the approximations. If assume that the deviation of the 

payload form the z-axis is small, the dynamic model can be then simplified. Assume both angles 

𝛼 and 𝛽 are very small, almost negligible. The trigonometrical approximation rules are used: 

 

cos 𝛼 = cos (
𝜋

2
− (−∆𝛼)) = cos

𝜋

2
∙ cos(−∆𝛼) + sin

𝜋

2
∙ sin(−∆𝛼) = −sin ∆𝛼 ≅ −∆𝛼   (4.24) 

sin 𝛼 = sin (
𝜋

2
+ ∆𝛼) = sin

𝜋

2
∙ cos ∆𝛼 + sin

𝜋

2
∙ sin ∆𝛼 = cos ∆𝛼 ≅ 1             (4.25) 

 

Using the equations (4.24) and (4.25), the angles can be therefore expressed as: 

 

sin 𝛼 ≅  𝛼                     (4.26) 

cos 𝛼 ≅  1                     (4.27) 

cos 𝛽 ≅  1                     (4.28) 

sin 𝛽 ≅  𝛽                     (4.29) 

 

The simplified dynamic model of the 3DCrane is now obtained. The model depends on the total 

input forces on each axis 𝑁𝑥, 𝑁𝑦, 𝑁𝑧. 

                                                 
15 Second order differential equation – equations containing the second derivative. 
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�̈�𝑝 =
𝑁𝑧

𝑚𝑙
𝛽                                (4.30) 

�̈�𝑝 =
𝑁𝑧

𝑚𝑙
𝛼                     (4.31) 

�̈�𝑝 = −
𝑁𝑧

𝑚𝑙
                                              (4.32) 

�̈�𝑤 =
𝑁𝑥+𝑁𝑧𝛽

(𝑚𝑐+𝑚𝑟)
                                           (4.33) 

�̈�𝑤 =
𝑁𝑦+𝑁𝑧𝛼

𝑚𝑐
                                                      (4.34) 

 

Important remark. The model could be modified adding another dynamic effects, such as 

viscous damping coefficient, mass moment of inertia of the gantry and rail motors, gantry 

friction and other. Nevertheless, the addition dynamic effects can be directly cancelled by the 

controller. They are therefore not included and assumed inside of the control forces 𝑁𝑥, 𝑁𝑦, 𝑁𝑧. 

The next step is to assemble the Simulink model using the obtained results of the dynamics. 

 

4.2. Simulation of the dynamic model 

 

As it is said in Section 2.2 it is important to simulate the dynamic model. There might be several 

problems with the simulated model. If the model is assembled correctly, the approximations 

may cause an unexpected behaviour of the model. Subsequent study helps to understand the 

model and subject behaviour more precisely. 

 

The Simulink block diagram of the model is presented in Figure 4.4.  

 

 

Fig. 4.4. The simplified dynamic model Simulink block scheme 
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After double integration of the input forces, the system must have the position as an output for 

each axis. In Figure 4.5 the control scheme of the model is shown. The control logic is to obtain 

the position giving the forces as the inputs. It has been stated in Section 2.4 that many variables 

are often considered as constant values. In this model both angles of the payload α and β are 

assumed constant (Annex 1 lines 8 and 9). However, they may not be completely neglected due 

to the reasons they present in the dynamic model. 

 

 

Fig. 4.5. The Simulink control scheme of the simplified dynamic model 

 

              

   (a)      (b) 

Fig. 4.6. Input (blue) and output (black) signals of the dynamic model: (a) no gain, (b) using 

the gains for each axis 
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The simulation results are presented in Figure 4.6 (a). The black curve represents the position 

output and the blue one shows the input force pulses. It can be clearly seen that the position 

does not go according to the input force (Figure 4.6 (b)). This problem can be solved by adding 

the gain to every axis input (Annex 1). They are also called amplification factors. Gain is the 

proportional value that shows the relation between the input and the output. Nevertheless, 

including the gain is a very dangerous step as it may cause the system instability.  

 

Figure 4.6 (b) shows the correct solution for the model. Now it can be seen when the pulse 

wants the crane to move to 1 the crane goes to the axis position 1 relatively. In Figure 4.7 the 

modified Simulink block scheme is presented. 

 

 

Fig. 4.7. The Simulink control scheme of the simplified dynamic model with the axis gains 

 

Gains improve the system. Theoretically, the cart of the 3DCrane must now move to the 

position in workspace according to the input impulse. 

 

4.3. State-space representation 

 

In order to solve the 3DCrane approximated system, the state-space16 representation is used. It 

is the best solution to highly complicated physical systems. Before deriving a linear 

combination of 𝑛 variables, the dynamic model derived in previous chapter, must be modified. 

First of all, we denote the length of the lifted load 𝑙 as the position of the Z-axis 𝑧𝑤. Using the 

                                                 
16 State-Space – mathematical model of a physical system as a set of input, output and state variables related by 

first-order differential equations. 
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approximations we made in previous chapter the position of the payload equations (4.8), (4.9) 

and (4.10) takes form: 

 

𝑥𝑝 = 𝑥𝑤 + 𝑧𝑤𝛽                    (4.35) 

𝑦𝑝 = 𝑦𝑤 + 𝑧𝑤𝛼                    (4.36) 

𝑧𝑝 = −𝑧𝑤                     (4.37) 

 

The velocity of the payload can be easily found by taking the first derivative of the equations 

(4.35), (4.36) and (4.37): 

 

�̇�𝑝 = �̇�𝑤 + �̇�𝑤𝛽 + 𝑧𝑤�̇�                   (4.38) 

�̇�𝑝 = �̇�𝑤 + �̇�𝑤𝛼 + 𝑧𝑤�̇�                   (4.39) 

�̇�𝑝 = −�̇�𝑤                     (4.40) 

 

The acceleration of the payload is therefore the second derivative of (4.35), (4.36) and (4.37): 

 

�̈�𝑝 = �̈�𝑤 + �̈�𝑤𝛽 + 2�̇�𝑤�̇� + 𝑧𝑤�̈�                  (4.41) 

�̈�𝑝 = �̈�𝑤 + �̈�𝑤𝛼 + 2�̇�𝑤�̇� + 𝑧𝑤�̈�                  (4.42) 

�̈�𝑝 = −�̈�𝑤                               (4.43) 

 

By substituting (4.41) – (4.43) to (4.19) – (4.23) we obtain five nonlinear differential equations 

describing the system. The variables 𝑥𝑤, 𝑦𝑤, 𝑧𝑤, 𝛼, 𝛽 are unknown variables. 

 

�̈�𝑤 + �̈�𝑤𝛽 + 2�̇�𝑤�̇� + 𝑧𝑤�̈� =
𝑁𝑧

𝑚𝑙
𝛽                             (4.44) 

�̈�𝑤 + �̈�𝑤𝛼 + 2�̇�𝑤�̇� + 𝑧𝑤�̈� =
𝑁𝑧

𝑚𝑙
𝛼                  (4.45) 

�̈�𝑤 =
−𝑁𝑧

𝑚𝑙
                                              (4.46) 

�̈�𝑤 =
𝑁𝑥+𝑁𝑧𝛽

(𝑚𝑐+𝑚𝑟)
                                           (4.47) 

�̈�𝑤 =
𝑁𝑦+𝑁𝑧𝛼

𝑚𝑐
                                                      (4.48) 

 

The smallest set of linearly independent system variables such that the values of the members 

of the set at time 𝑡0 along with known forcing functions completely determine the value of all 
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system variables for all 𝑡 ≥ 𝑡0 are called state variables [5]. The linearization of nonlinear 

system in state variable form is presented as follows: 

 

𝑥1 = 𝑥𝑤                     (4.49)  

𝑥2 = �̇�𝑤                      (4.50) 

𝑥3 = 𝑦𝑤                      (4.51) 

𝑥4 = �̇�𝑤                      (4.52) 

𝑥5 = 𝛽                      (4.53) 

𝑥6 = �̇�                      (4.54) 

𝑥7 = 𝛼                      (4.55) 

𝑥8 = �̇�                      (4.56) 

𝑥9 = 𝑧𝑤                      (4.57) 

𝑥10 = �̇�𝑤                      (4.58) 

 

A vector whose elements are state variables is called state vector [5]. It is expressed as the 

𝑛 × 1 vector 𝑥 = [𝑥1 𝑥2…𝑥𝑛]
𝑇. The variables measured by the encoders of the 3DCrane 

form the outputs 𝑚 × 1 vector 𝑦 = [𝑦1 𝑦2…𝑦𝑚]
𝑇. In our case the outputs are known as 

𝑥𝑤, 𝑦𝑤, 𝑧𝑤, 𝛼, 𝛽. Taking into account equations (4.49) – (4.58) the output function can be 

expressed as followed: 

 

𝑦1 = 𝑥𝑤 = 𝑥1                     (4.59)  

𝑦2 = 𝑦𝑤 = 𝑥3                     (4.60) 

𝑦3 = 𝛽 = 𝑥5                                (4.61) 

𝑦4 = 𝛼 = 𝑥7                       (4.62) 

𝑦5 = 𝑧𝑤 = 𝑥9                     (4.63) 

 

The input variables are control forces 𝑁𝑥, 𝑁𝑦, 𝑁𝑧. Together they form 𝑝 × 1 input vector 𝑢 =

[𝑢1 𝑢2…𝑢𝑝]
𝑇
, where p is the number of inputs. A set of n simultaneous, first-order differential 

equations with 𝑛 variables, where the 𝑛 variables to be solved are the state variables called state 

equations [5]. The state derivatives are obtained taking into account (4.44) – (4.48). The 

simplified system of state equations for the 3DCrane is: 
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�̇�1 = �̇�𝑤 = 𝑥2                     (4.64) 

�̇�2 = �̈�𝑤 =
𝑁𝑥+𝑁𝑧𝑥5

(𝑚𝑐+𝑚𝑟)
                      (4.65) 

�̇�3 = �̇�𝑤 = 𝑥4                      (4.66) 

�̇�4 = �̈�𝑤 =
𝑁𝑦+𝑁𝑧𝑥7

𝑚𝑐
                      (4.67) 

�̇�5 = �̇� = 𝑥6                                  (4.68) 

�̇�6 = �̈� =
2
𝑁𝑧
𝑚𝑙
𝑥5−

𝑁𝑥+𝑁𝑧𝑥5
(𝑚𝑐+𝑚𝑟)

−2𝑥10𝑥6

𝑥9
                  (4.69) 

�̇�7 = �̇� = 𝑥8                                  (4.70) 

�̇�8 = �̈� =
2
𝑁𝑧
𝑚𝑙
𝑥7−

𝑁𝑦+𝑁𝑧𝑥7

𝑚𝑐
−2𝑥10𝑥8

𝑥9
                    (4.71) 

�̇�9 = �̇�𝑤 = 𝑥10                      (4.72) 

�̇�10 = �̈�𝑤 = −
𝑁𝑧

𝑚𝑙
                      (4.73) 

 

A system is represented in state-space by the equations (2.2). It is therefore necessary to find 

state matrices 𝐴, 𝐵, 𝐶 and 𝐷. The matrices components are formed with the components 

expressed as followed: 

 

𝑎𝑖𝑗 =
𝜕�̇�𝑖

𝜕𝑥𝑗
, 𝑖 = 1, 2, … , 𝑛,   𝑗 = 1, 2, … , 𝑛                 (4.74) 

𝑏𝑖𝑗 =
𝜕�̇�𝑖

𝜕𝑢𝑗
, 𝑖 = 1, 2, … , 𝑛,   𝑗 = 1, 2, … , 𝑝                 (4.75) 

𝑐𝑖𝑗 =
𝜕𝑦𝑖

𝜕𝑥𝑗
, 𝑖 = 1, 2, … ,𝑚,   𝑗 = 1, 2, … , 𝑛                (4.76) 

𝑑𝑖𝑗 =
𝜕𝑦𝑖

𝜕𝑢𝑗
, 𝑖 = 1, 2, … ,𝑚,   𝑗 = 1, 2, … , 𝑝                (4.77) 

 

All the differential equations for the state-space matrices elements can be easily calculated by 

the MATLAB operation diff (Annex 2). However obtaining the matrices elements does not 

provide the final solution. The 𝐴, 𝐵, 𝐶 and 𝐷 matrices must be represented taking into account 

the steady-state operation point 𝑥0 = [𝑥0 �̇�0 𝑦0 �̇�0 𝛽0 �̇�0 𝛼0 �̇�0 𝑙0 𝑙0̇]
𝑇
=

[0 0 0 0 0 0 0 0 0 0]𝑇 and input 𝑢0 = [0 0 0]𝑇, because all the derivatives of the state variables, 

measured variables and input forces must be equal to 0, when the expected position of the cart 

is obtained. 
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Note that the approximation states that the angles of the payload are very small. Their values 

are therefore taken equal to 0. In simulation they will show no oscillation in output. In real 

system however the output angles must show the nonlinear behaviour: here the oscillation is 

expected. In order to control and simulate the state-space representation of the 3DCrane, the 

obtained solution must be adequate.   

 

4.4. State-space representation simulation 

 

In order to simulate the state-space matrices in Simulink the State-space block can be used. 

Simulink® software converts a matrix containing zeros to a sparse matrix for efficient 

multiplication [19]. The specification of the state matrices inside of the block is necessary. The 

state-space matrix model is presented in Figure 4.8. 

 

 

Fig. 4.8. State-space representation model 

 

 

Fig. 4.9. State-space representation Simulink model 
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The state-space representation of the 3DCrane can be therefore simulated. The control scheme 

is shown in Figure 4.9. The input control forces are taken as described in Section 4.1.4. 

Important to note that there are also gains used in every axis force. However, the gains are 

slightly different from the ones obtained in Section 4.1.4. (Annex 2). 

 

As an output we must have variables as we set in (4.59) – (4.63). The scope therefore compares 

input forces with the output positions. Two different input forces are presented in Figure 4.10. 

The black curve represents the position output and the blue one shows the input force impulse. 

The behaviour in Figure 4.10 (a) describes a single impulse. It is clearly seen that the model 

obtains the necessary position on every axis. Moreover, Z-axis goes in opposite direction, 

because the axis has been chosen up as the positive direction (Figure 4.1). For the simplicity 

the Z-axis gain was multiplied by −1. 

 

  

(a)       (b) 

Fig. 4.10. Inputs (blue) and outputs (black) of the state-space representation: (a) single 

impulse, (b) double impulse 

 

In Figure 4.10 (b) double impulse control is presented. According to this input, the cart must 

move to two different positions during the simulation time. Moreover, it is important to note, 
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the output is absolutely identical to the simplified model simulation result (Figure 4.6 (b)) done 

in Section 4.2. 

  

4.5. Chapter summary 

 

The chapter describes the mathematical modelling of the 3DCrane system. The Newton’s 

second law of motion is used to describe the dynamics and trigonometry representation used to 

state the position of the payload of the system. 

 

Although the system is highly nonlinear MIMO, the trigonometrical approximation (4.26) – 

(4.29) can be used to simplify the model. The obtained dynamic model is a system of nonlinear 

differential equations of second order. Taking the derived equations and approximation into 

account, the Simulink model is therefore built. The simulation results are shown in Figure 4.6. 

In order to stabilize the system an amplification factors were added. 

 

This chapter has also dealt with the state-space representation of the 3DCrane model. The 

dynamic equations and approximation described previously are used. The system has 10 state 

variables, 3 inputs and 5 outputs. The simulation results are presented in Figure 4.10. The 

provided solution makes the system behave as expected. 

 

Both models developed are very similar. Indeed, they were built using the same dynamic 

equations and approximations. Nevertheless, the models cannot completely replace the real 

3DCrane model. Due to the reason, the approximation excludes the angles of the payload. Any 

way, they can be used as the sensorless position control. The next chapter compares derived 

model and the Inteco® original 3DCrane model that depends on the encoders.   
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5. MODELS COMPARISON 

 

The chapter deals with the mathematically obtained model comparison with the 3DCrane 

manufacturer model based on the encoders feedback. It is important to find out, how accurate 

was the model derived comparing to the real system. What is the difference between them and 

if true what cause the difference. The result can therefore exclude the encoders from the system. 

Also, it will provide the sensorless position control of the 3DCrane. 

 

5.1. State-space representation and Inteco® model comparison 

 

As soon as the 3DCrane modelled and the state-space solution are obtained, it is important to 

compare the theoretical model with the real 3DCrane model provided by the Inteco®. Both state-

space and Inteco® models are placed in one Simulink® workspace window (Figure 5.1). The 

same input is given to both models. Three scopes are added to view the input, the Inteco® output 

of the model and the output of the state-space representation. The comparison of the results is 

presented in Figure 5.2. The blue line shows the state-space representation output, the black 

line - Inteco® model output and the red line shows the input force. 

 

 

Fig. 5.1. Inteco® and state-space models in Simulink® workspace window 
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Fig. 5.2. Input forces (red), output of the Inteco® model (black) and stat-space output (blue): 

(a) X-axis, (b) Y-axis, (c) Z-axis 

 

It can be clearly seen that the Inteco® model output slightly differs from the state-space 

representation output. First of all, it does not obtain an expected value of the workspace 

position. Secondly, the output scope in Inteco® model does not behave as the position output 

curve.  

 

The Inteco® model output curve theoretically looks more like a speed curve. Moreover, during 

the experimentation, the 3DCrane trajectory also behaves as the impulse input. It makes the 

cart, rail and the load of the crane move with the speed in workspace, however, not to move to 

expected position. Therefore, it has been concluded that the 3DCrane model provided by the 

Inteco® does not have the position control at the output, as it is said in the model. More likely, 

it gives the speed of the movement along the according axis.  

 

Thus, it is necessary to provide the next experimentations adding the Integrator block to the 

input of the Inteco® model (Figure 5.3). The block must integrate the input acceleration forming 

the speed as the input to the model block. The solution expects the position curve as the output 

of the model.  
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Fig. 5.3. Modified comparison model in Simulink® workspace window 

 

The simulation results are provided in Figure 5.4. Again, the blue line represents the state-space 

representation output, the black line - Inteco® model output and the red line shows the input 

force. Moreover, it has been decided to reduce the input force value due to avoid the crane 

workspace position limitations. 

 

Fig. 5.4. The modified models comparison input force (red), output Inteco® model position 

(black) and output state-space (blue): (a) X-axis, (b) Y-axis, (c) Z-axis 
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According to the results obtained during the last simulation (Figure 5.4), the Inteco® 3DCrane 

model now has a position curve as an output. Moreover in Figure 5.5 it is shown the physical 

positions of the 3DCrane during the experimentation. On the picture (a) the crane cart is in the 

corner of the workspace frame (Home position). The Figure (b) shows the location of the cart 

in XY-axis. It can be seen that the positions are respectively located according to the pulse 

given at the input for X and Y axis. Finally, the Figure (c) shows the position of the crane closer 

to the Home position in both X and Y axis. The second pulses are also lower than the first ones, 

what explains this behaviour. 

 

 

Fig. 5.5. The physical position of the 3DCrane in workspace during the experimentation: (a) 

home position of the crane, (b) first input impulse, (c) second input impulse 

 

The control design logic is easier to obtain having the position as an output. The position is 

visionary easier to imagine comparing to the moving speed of the crane. However, state-space 

output does not match completely the output of the crane obtained from the encoders. Several 

reasons can cause this difference.  
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First of all the workspace is not exactly 1000x1000x1000 mm. According to measurements it 

is 920x920x820mm, the control is however designed in variation from -1 to 1. Secondly, the 

state-space model may not be accurate and causes the error. Nevertheless, it has been stated in 

Section 2.1 of Chapter 2 that the models are always ideal. Thus, it is logic that two model output 

differ one with another. Finally, the encoders may also accumulate the error. The encoder may 

not be properly calibrated by the time the experimentation was held or it has lost its accuracy 

during the exploitation. 

 

5.2. Chapter summary 

 

This chapter concludes the model derivation. The steady-state representation of the 3DCrane 

model was compared with the real model of the 3DCrane provided by the manufacturer Inteco®. 

As a result, the steady-state representation does not behave as a real 3DCrane model. 

Nevertheless, it has been concluded that manufacturer model does not provide the position as 

an output. The output looks more like the speed of the cart and payload along the axis (Figure 

5.2). It has been also stated in Chapter 3. 

 

The second experiment was carried adding the Integrator to every input of the Inteco® model. 

As a result, both models behaviour are similar to each other. It proves again, that manufacturer 

has a speed as an output of the model. Theoretically, by integrating the input force we must 

obtain the speed. 

 

However, the state-space representation and Inteco® model still has the errors. Probable reason 

for the mismatch can be the state-space representation. The solution may be incorrect. The 

model is also ideal and differs from the real behaviour. Furthermore, the workspace is not 

exactly 1000x1000x1000 mm. Finally, it can be explained with the error accumulated in the 

encoders. Still the derived model can be used as a sensorless position control for the 3DCrane. 

As it was stated before, the model, unfortunately, cannot replace the encoder for the payload 

angles. Another solution has to be found due to model and simulate the payload angles respond 

and full dynamic model of the system.  
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6. THE FULL MODEL DEVELOPMENT AND SIMULATION 

 

The full model of the 3DCrane is 5 degree of freedom system. 3 degrees of freedom are related 

to the X, Y and Z axis. Two more degrees of freedom are related to the angles of the payload 

lifting the line α and β (Figure 4.1).  

 

The full model of the system is important in order to observe the behaviour of the payload. If 

the angles of the lift-line is possible to predict, before building the control system, the sensor 

measuring the angles can be removed. In order to obtain the dynamics equations of the system, 

the Lagrangian17 approach for the dynamic system will be used in this chapter.  

 

6.1. Dynamic model of the 3DCrane using the Lagrangian approach 

 

Again as in Chapter 4.1, where the simplified model has been derived, we start with the 

mathematical representation of the payload position (4.8) – (4.10). The dynamic summary of 

the system will be obtained using the Lagrangian approach. In classical mechanics, the natural 

form of the Lagrangian is defined as the kinetic energy K of the system minus its 

gravitational potential energy P [20]: 

 

𝐿 = 𝐾 − 𝑃                       (6.1) 

𝐾 =
1

2
𝑚𝑣2,            (6.2) 

where  𝑚 – mass, 

 𝑣 – speed. 

 

𝑃 = 𝑚𝑔𝑙,            (6.3) 

where  𝑚 – mass, 

 𝑔 – acceleration of gravity, 

𝑙 – length. 

 

                                                 
17 Joseph-Louis Lagrange (1736 - 1813) – Italian mathematician and astronomer. 

http://en.wikipedia.org/wiki/Potential_energy
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In this case K is the kinetic energy of the crane and its load. P defines the potential energy of 

the load. The precise derivation of the kinetic and potential energies as well as the full 

Lagrangian representation of the dynamic system is shown in Annex 3. 

 

If the Lagrangian of a system is known, then the equation of motion of the system may be 

obtained by a direct substitution of the expression for the Lagrangian into the Euler18-Lagrange 

equation [20]. The Euler-Lagrange equation is a second-order partial differential equation, 

whose solutions are the function for which a given function is stationary [21].   

 

The Euler-Lagrange formulation of the dynamic system is as follows: 

 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
= 𝐹𝑖,          (6.4) 

where  𝑖 = 1,2,3,4,5 – degree of freedom,  

𝐿 – the Lagrangian of the dynamic system, 

 𝑞𝑖 – state variable, 

 𝐹𝑖 – force. 

 

Derivation of the Euler-Lagrange formulas for each degree of freedom of the system is 

described as well in Annex 3. The final result of the dynamic system for the 3DCrane is as 

follows: 

 

{
 
 
 

 
 
 
(𝑚𝑐 +𝑚𝑟 +𝑚𝑙 +𝑚𝑙)�̈� + 𝑚𝑙𝑙 ̈ cos 𝛼 sin 𝛽 − 2𝑚𝑙𝑙�̇̇� sin 𝛼 sin 𝛽 + 2𝑚𝑙𝑙�̇̇� cos 𝛼 cos 𝛽 − 𝑚𝑙𝑙�̈� sin 𝛼 sin 𝛽 −

−𝑚𝑙𝑙�̇�
2 cos 𝛼 sin 𝛽 − 2𝑚𝑙𝑙�̇̇��̇� sin 𝛼 cos 𝛽 + 𝑚𝑙𝑙�̈� cos 𝛼 cos 𝛽 − 𝑚𝑙𝑙�̇�

2 cos𝛼 sin 𝛽 = 𝑢𝑥
(𝑚𝑐 +𝑚𝑙 +𝑚𝑙)�̈� + 𝑚𝑙𝑙 ̈ sin 𝛼 + 2𝑚𝑙𝑙�̇̇� cos 𝛼 + 𝑚𝑙𝑙�̈� cos 𝛼 − 𝑚𝑙𝑙�̇�

2 sin 𝛼   = 𝑢𝑦

2𝑚𝑙𝑙 ̈ + 𝑚𝑙�̇� cos 𝛼 sin 𝛽 + 𝑚𝑙�̈� sin 𝛼 −𝑚𝑙𝑙�̇̇�𝑐𝑜𝑠
2𝛼 −𝑚𝑙𝑙�̇̇�

2 −𝑚𝑙𝑔 cos 𝛼 cos 𝛽 = 𝑢𝑧
−𝑚𝑙�̈�𝑙 sin 𝛼 sin 𝛽 + 𝑚𝑙�̈�𝑙 cos 𝛼 + 𝑚𝑙𝑙

2�̈� + 2𝑚𝑙𝑙𝑙�̇̇� + 𝑚𝑙𝑔𝑙 cos𝛼 sin 𝛽 = 0

𝑚𝑙�̈�𝑙 cos 𝛼 cos 𝛽 − 2𝑚𝑙𝑙
2�̇��̇� sin 𝛼 cos𝛼 + 2𝑚𝑙𝑙

2�̈�𝑐𝑜𝑠2𝛼 + 2𝑚𝑙𝑙𝑙�̇̇�𝑐𝑜𝑠
2𝛼 +𝑚𝑙𝑔𝑙 sin 𝛼 cos𝛽 = 0

   (6.5) 

 

Here the input forces for the 3DCrane are stated as 𝑢𝑥, 𝑢𝑦 and 𝑢𝑧. Character 𝑢 is related to the 

input in control system theory. 

 

                                                 
18 Leonhard Euler (1707 - 1783) – Swiss mathematician and physicist. 

http://en.wikipedia.org/wiki/Equation_of_motion
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State-space representation will be used to build the model of the system. Again, the 𝐴, 𝐵, 𝐶 and 

𝐷 matrices must be represented. In order to diminish the dynamic system (6.5), the steady-state 

operation point 𝑥0 = [𝑥0 �̇�0 𝑦0 �̇�0 𝛽0 �̇�0 𝛼0 �̇�0 𝑙0 𝑙0̇]
𝑇
= [0 0 0 0 0 0 0 0 0 0]𝑇 can be used.  

 

In Annex 3 nonlinear differential equations of second order describing the dynamics of the 

system is found. The final model taking into account the steady-state operational point is as 

follows: 

 

{
 
 
 
 

 
 
 
 �̈� =

1

𝑚𝑐+𝑚𝑟+𝑚𝑙
𝑢𝑥 +

𝑚𝑙𝑔

𝑚𝑐+𝑚𝑟+𝑚𝑙
𝛽

�̈� =
1

𝑚𝑐+𝑚𝑙
𝑢𝑦 +

𝑚𝑙𝑔

𝑚𝑐+𝑚𝑙
𝛼

�̈� = −
1

𝑙(𝑚𝑐+𝑚𝑟+𝑚𝑙)
𝑢𝑥 −

𝑔(𝑚𝑐+𝑚𝑟+𝑚𝑙+𝑚𝑙)

𝑙(𝑚𝑐+𝑚𝑟+𝑚𝑙)
𝛽 

�̈� = −
1

𝑙(𝑚𝑐+𝑚𝑙)
𝑢𝑦 −

𝑔(𝑚𝑐+𝑚𝑙+𝑚𝑙)

𝑙(𝑚𝑐+𝑚𝑙)
𝛼

𝑙̈ =
1

2𝑚𝑙
𝑢𝑧

      (6.6) 

 

The linearization of nonlinear system in state variable form is presented in (4.49) – (4.58). The 

output is presented in (4.59) – (4.63). The input of the system is presented as forces vector 𝑢 =

[𝑢𝑥 𝑢𝑦 𝑢𝑧]
𝑇
. Finally, the state derivatives are given by: 

 

�̇�1 = �̇�𝑤 = 𝑥2                       (6.7) 

�̇�2 = �̈�𝑤 =
1

𝑚𝑐+𝑚𝑟+𝑚𝑙
𝑢𝑥 +

𝑚𝑙𝑔

𝑚𝑐+𝑚𝑟+𝑚𝑙
𝛽                     (6.8) 

�̇�3 = �̇�𝑤 = 𝑥4                        (6.9) 

�̇�4 = �̈�𝑤 =
1

𝑚𝑐+𝑚𝑙
𝑢𝑦 +

𝑚𝑙𝑔

𝑚𝑐+𝑚𝑙
𝛼                    (6.10) 

�̇�5 = �̇� = 𝑥6                                  (6.11) 

�̇�6 = �̈� = −
1

𝑙(𝑚𝑐+𝑚𝑟+𝑚𝑙)
𝑢𝑥 −

𝑔(𝑚𝑐+𝑚𝑟+𝑚𝑙+𝑚𝑙)

𝑙(𝑚𝑐+𝑚𝑟+𝑚𝑙)
𝛽                 (6.12) 

�̇�7 = �̇� = 𝑥8                                  (6.13) 

�̇�8 = �̈� = −
1

𝑙(𝑚𝑐+𝑚𝑙)
𝑢𝑦 −

𝑔(𝑚𝑐+𝑚𝑙+𝑚𝑙)

𝑙(𝑚𝑐+𝑚𝑙)
𝛼                    (6.14) 

�̇�9 = �̇�𝑤 = 𝑥10                      (6.15) 

�̇�10 = �̈�𝑤 =
𝑢𝑧

2𝑚𝑙
                      (6.16) 
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Together with the simulation script the state-space 𝐴, 𝐵, 𝐶 and 𝐷 matrices are found in Annex 

4. This model allows observing and studying the full model of the 3DCrane. The angles of the 

payload can be simulated and analysed.  

 

6.2. Model simulation and comparison with the real 3DCrane system 

 

Again as in Chapter 5 Figure 5.1 both the real 3DCrane and state-space representation models 

will be connected in Simulink®. However, this time we are also interested in 𝛼 and 𝛽 angles. 

Thus, the additional scopes will be added to observe and study the inputs and outputs (Figure 

6.1). 

 

 

Fig. 6.1. Inteco® and state-space models in Simulink® workspace window 

 

However, it is important to state that the length of the lift-line 𝑙 must be entered as a constant 

value (Annex 4 line 7). Even if the position of the Z-axis is controlled variable, the other 

dynamic model variables still depend on 𝑙 (6.6). In simulation of the length of the lift-line 𝑙 =

0.6 𝑚𝑚. The value is expected according to the control input. It is assumed that if the input 

force is equal to 0.6 𝑁, the position of the load along the Z-axis should be 0.6 mm as well.  Thus 

the length is also 6 mm. 
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The simulation results are provided in Figures 6.2. and 6.3. Figure 6.2 presents the position 

control along the X, Y and Z-axis. Figure 6.3 shows the angles of the payload encoders and 

model output. It can be clearly seen that the axis control (Figure 6.2) has some small error along 

the X and Y-axis comparing to the encoders output. Z-axis however has a very big error between 

two models. Moreover, it is clear that Z-axis encoder is far from the expected output. 

 

 

 Fig. 6.2. Input forces (red), output of the Inteco® model (black) and stat-space output (blue): 

(a) X-axis, (b) Y-axis, (c) Z-axis   

 

 

(a)        (b) 

Fig. 6.3. Output of the Inteco® model (red) and stat-space output (black): (a) β (b) α  
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In Figure 6.3 α and β outputs are presented. It can be concluded that the state-space model is 

not precise. The periods of load oscillations almost match the encoder values. However, the 

amplitude is different between the practical and theoretical results.  

 

It can be presumed that many dynamics such as viscose friction coefficient and encoder 

dynamic are neglected while modelling the system. Thus, the derived model of the 3DCrane is 

ideal. Moreover, the 3DCrane frame can also be tilted, what may cause the model output errors. 

Finally, it must be also considered the encoder error or the mistakes and approximation in 

modelling the state-space representation. 

 

6.3. Tuning the system 

 

According to the results presented in Figures 6.2 and 6.3 the output respond still has some 

errors. While the output position respond is easy to tune simply dividing the output steady-state 

value by the input force value, the correction gain for the angles is hard to find. Annex 4 line 9 

shows the input matrix calculation. In Figure 6.4 the tuned position responds are presented. 

 

 

Fig. 6.4. Input forces (red), output of the Inteco® model (black) and stat-space output (blue) 

with the correction gain: (a) X-axis, (b) Y-axis, (c) Z-axis   
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The positions along the X, Y and Z-axes are designed to follow according the input force. The 

state-space model is also tuned according to the design. However, it can be seen (Figure 6.4) 

that there is still error between the encoders output and the state-space representation of the 

model. 

 

As for the angles, the input force does not influence the angles outputs. The respond is the same 

as it is shown in Figure 6.3. Nevertheless, as the frequencies of the angles are the same, there 

can be several reasons why the encoders and the state-space representation do not match each 

other in amplitude: 

 

1. The dynamic model is simplified. 

2. Derived model is ideal and exclude much dynamics. 

3. The influence of other components such as encoder attached to the side of the cart 

moving along the Y-axes is neglected in model (Figure 6.5). 

4. The 3DCrane frame can be tilted. 

5. Encoder error. 

6. Other problems. 

 

 

Fig. 6.5. The cart components that might cause an additional dynamic 
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6.4. Chapter summary 

 

The chapter outlines here the full modelling and simulation of the 3DCrane. The Euler-

Lagrange approach was used in order to derive the dynamic model for the system. The full 

derivation is presented in Annex 3. 

 

The state-space representation of gain dynamics are presented and simulated in this chapter. 

The state-space matrices are compared to the real 3D crane behaviour. The state-space model 

can completely replace all the encoders in the system. However, the practical results do not 

completely match the state-space representation output.  

 

We found that there is still small error between derived model and encoder results. There can 

be several reasons for this error. Again the model has been approximated, many dynamics has 

been neglected, and the encoder may not be calibrated by the moment of experimentation. 

Nevertheless, the control system can be still used for the operation of the 3DCrane.  

 

The correction gain used to match the output position respond. The correction gain allows to 

compensate the approximated and neglected dynamics. The correction gain is obtained dividing 

the output respond by the expected respond value. The positioning results are presented in 

Figure 6.4. The respond of the state-space representation obtains the expected output with the 

correction gain. 

 

Notwithstanding, the modelled angles are far from the encode results. Although the amplitude 

is not the same comparing the 3DCrane model and state-space representation, the frequencies 

of the oscillation for both α and β angels are very similar.  
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7. CONCLUSION 

 

Automation industry is not the field, what human has built. We find many automated systems 

around us: in our body, in weather, in nature in general. We try to understand and use the 

knowledge of automation and control design in our everyday life. We want to make our life 

more safe, easy and cheap. Automation and control engineering is all around us. We use devices 

and robots to replace the routine and dangerous work. We cannot imagine our life without a 

number of systems, what are the products of automation. 

 

The study object is small dimension model of 3D crane (also called overhead crane). The 3D 

cranes are widely used in the industry for vessel loading and unloading, to handle full or empty 

containers and lift up to 80 tons, automotive lines, ship and airplane building, power industry 

and other heavy manufacturing. Many researches has been made in order to automate the 3D 

cranes. It will help to avoid accidents and maybe replace the operator. 

 

The provided model of 3D crane is based on the encoders feedback. Encoders due to their 

specification may accumulate errors within exploitation. Encoders must not only be calibrated 

regularly, but also they increase the cost of the system. It has been therefore decided to derive 

the model of 3DCrane in order to replace the encoders with the mathematical model. Several 

advantages may be named with successful solution: the mathematical model is cheaper, it does 

not require calibrations, it is easy to build the automated control system and the system does 

not depend on the feedback.  

 

Brief introduction to the control systems engineering opens the thesis. It presents the theoretical 

implementation of the control and automation engineering. The explanation, how the 

mathematical modelling, simulation and control design are connected between each other in 

automation field is shown. Different control systems are shortly described.  

 

The new solution for modelling the 3D crane presented in thesis is the state-space representation 

of dynamic model of the system. State variables are taken into account while modelling the 

system. Dynamic system is calculated using the Euler-Lagrange formulation for the dynamic 

system. Lagrangian equation is calculated balancing the kinetic and potential energies. 
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Moreover, the final dynamic equations are therefore approximated around the cosines and sines 

of the payload angles. The system of second order differential equations is obtained.  

 

State-space representation in particular consists of specifying the system’s desired poles 

locations, what are represented in matrices depending on the state variables. The controller 

consists of state-variables feeding back to the input (Figure 4.8). One of the biggest advantages 

of applying state-space matrices is that it allows computer simulation. Comparing with many 

other control designs, state-space allows to design automation using the computer.  

 

In present thesis, state-space has three inputs as control forces for each axis and five outputs: 

the position of the crane in three-dimensional space 𝑥, 𝑦, 𝑧 and angles of the payload. First, the 

angle between the projection of the lift-line on XY plane and the lift-line 𝛼. Second, the angle 

between the negative direction of the Z-axis and projection of the lift-line on XY plane 𝛽. The 

z coordinate of the payload was also expressed as the length of the lift-line 𝑙. 

 

First of all, the dynamic model provided by the 3DCrane manufacturer was simulated and 

analysed. It has been concluded regarding the results (Figure 3.17) that the Inteco® model has 

the velocity as an output. Next, the integrator has been added to the input of the system. The 

behaviour of the crane after that was similar to the position scope. When the derived model and 

the model provided by the manufacturer were compared, the last model was simulated together 

with the additional integrator block. 

 

Both derived model outputs are similar to each other due to the reason they are built using the 

same mathematical model. Anyway, these models cannot completely replace the Inteco® model, 

because the angles dynamic has been approximated. The output therefore has no changes in the 

angles output signal. However, the control system may still replace sensorless position control 

in case angle dynamics are not important.  

 

Next, theoretical and practical models were compared. In Figure 5.4 both Inteco® and derived 

models output signals versus the input forces are presented. It has been concluded that model 

does not behave the same, however very close to each other. There can be several reasons for 

these results. Probable reason for the mismatch can be the rough approximation of the 

mathematical model, the workspace of the 3DCrane is not exact. Finally, it could be explained 

by the error accumulated in the encoders.  
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The next task was to derive the full model of the 3DCrane system in order to observe the 

dynamics of the payload angles. Here the Euler-Lagrange approach was used. The full 

explanation of model derivation is outlined in Annex 3. 

 

The simulation results in Figure 6.2 has proven that the full model is close to the real encoder 

output. However, it can be clearly seen that Z-axis has a large error between outputs (Figure 

6.2 (c)). Moreover, the amplitude of the payload angles is not the same comparing to the 

3DCrane model and state-space representation (Figure 6.3). The frequency of the oscillation 

for both α and β angels nevertheless is very similar. 

 

If the angle dynamics is hard to tune, the output position can be tuned with the correction gain 

for every axis. The results are presented in Figure 6.4. With the correction gain the state-space 

behaves as expected: the positions moves according to the value of input force. However, the 

position is limited with the frame dimension and lift-line length. 

 

Several proposals are made to explain the wrong behaviour of the angles dynamics. First, the 

derived model is ideal and simplified around the payload oscillation. Secondly, some other 

components may influence the system. For instance, the encoder attached to the side of the cart 

moving along the Y-axes (Figure 6.5) was neglected in model. The component has the mass 

and theoretically should not be neglected. Third reason, the 3DCrane frame can be tilted. 

Finally, encoder error may appear. Moreover, many other reasons can trouble the correct 

dynamics. 

 

Despite the fact, the real encoder model output is not absolutely the same as in state-space 

representation, the derived model can still be used as the sensorless control logic. Anyway, in 

order to implement the theory in real life, in industrial 3D crane some additional devices must 

be financed. The MATLAB® model must be interfaced with the system due to through the 

hardware. 

 

In industry the mathematical model of 3D crane may have a very useful impact. Even the 

solution presented in this thesis may be very beneficial. It can be used to replace the operator 

in routine tasks. 
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Furthermore, the derived model can be useful in future study. Different controls can be used in 

3DCrane control system before testing it on a real crane. It is always cheaper to predict the 

behaviour of the system before implement it in the real system. For that is important to have 

the mathematical representation as accurate as possible.  

 

The control engineer do not have to design the control system in the laboratory. It can be done 

everywhere, where it is comfortable using only the laptop. Later it can be tested in the 

laboratory. 

 

This model can also be used to improve it even more precise. Other approach is to use it for the 

students’ education. It can be a very good example of modelling of a highly nonlinear 

multivariable system using the state-space representation. 

 

In future author would like to continue working in automation control systems design. There 

are lot of interesting tasks to complete related to the 3DCrane and other multivariable dynamic 

systems. For instance, the fuzzy logic or PID control theory can be tested on 3DCrane to reduce 

the payload oscillations. As for the 3DCrane, the safe control logic can be built in Simulink® or 

any other modelling and simulation environment, if know the exact requirements. 

 

In my opinion, I have done well with the task. Moreover, I have learnt a lot about the modelling 

and control systems design. The language skills have been improved due to the reading many 

references in English language to submit the task. However, there could be another solutions 

simulated, for example, Laplace19 transform or model prediction control based on state-space 

and many more.   

                                                 
19 Pierre-Simon, marquis de Laplace (1749 - 1827) – French mathematician, physicist and astronomer. 
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Annex 1 

MATLAB script for the simplified model of the cart  

 

1. %%   SIMPLIFIED MODEL OF THE CART   %% 

 
2. clear all;          % Clear the Workspace 
3. clc;                % Clear the Command Window 

 
4. %%      Constants 

 
5. mc = 1.155;         % Mass of the cart 
6. ml = 1;             % Mass of the load 
7. mr = 2.2;           % Mass of the rail 

 
8. alpha = 0.5;        % Angle alpha 
9. beta = 1;           % Angle beta 

 
10. %%      Axis Gains 

 
11. Xo = (mc+mr)/11.4;  % Gain for X-axis 
12. Yo = mc/7;          % Gain for Y-axis 
13. Zo = ml/4;          % Gain for Z-axis 

 
14. sim ('Model3');     % Simulate the model  
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Annex 2 

MATLAB script for the state-space representation  

 

1. %%        STATE-SPACE REPRESENTATION         %% 

 
2. clear all;          % Clear the Workspace 
3. clc;                % Clear the Command Window 

 
4. %%      Constants 

 
5. mc = 1.155;         % Mass of the cart 
6. ml = 1;             % Mass of the load 
7. mr = 2.2;           % Mass of the rail 
8. g = 9.81;           % Gravitational acceleration 

 
9. %%      Axis Gains 

 
10. Xo = (mc+mr)/8;     % Gain for X-axis 
11. Yo = mc/4;          % Gain for Y-axis 
12. Zo = ml/4;          % Gain for Z-axis 

 
13. %%      Symbols 

 
14. syms x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 Nx Ny Nz;   % Short-cut for constructing  

% symbolic objects 

 
15. %%      Nonlinear Differential Equations 

 
16. %   State Variables 

 
17. f1 = x2; 
18. f2 = (Nx+Nz*x5)/(mc+mr); 
19. f3 = x4; 
20. f4 = (Ny+Nz*x7)/mc; 
21. f5 = x6; 
22. f6 = ( 2*Nz*x5/ml-(Nx+Nz*x5)/(mc+mr)-2*x10*x6 )/x9; 
23. f7 = x8; 
24. f8 = ( 2*Nz*x7/ml-(Ny+Nz*x7)/mc-2*x10*x8 )/x9; 
25. f9 = x10; 
26. f10 = (-1)*Nz/ml; 

 
27. %   Outputs 

 
28. y1 = x1; 
29. y2 = x3; 
30. y3 = x5; 
31. y4 = x7; 
32. y5 = x9; 

 
33. %%          A 10x10 matrix 

 
34. a11 = diff(f1,x1);          % Difference and approximate derivative 
35. a12 = diff(f1,x2); 
36. a13 = diff(f1,x3); 
37. a14 = diff(f1,x4); 
38. a15 = diff(f1,x5); 
39. a16 = diff(f1,x6); 
40. a17 = diff(f1,x7); 
41. a18 = diff(f1,x8); 
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42. a19 = diff(f1,x9); 
43. a110 = diff(f1,x10); 

 
44. a21 = diff(f2,x1); 
45. a22 = diff(f2,x2); 
46. a23 = diff(f2,x3); 
47. a24 = diff(f2,x4); 
48. a25 = diff(f2,x5); 
49. a26 = diff(f2,x6); 
50. a27 = diff(f2,x7); 
51. a28 = diff(f2,x8); 
52. a29 = diff(f2,x9); 
53. a210 = diff(f2,x10); 

 
54. a31 = diff(f3,x1); 
55. a32 = diff(f3,x2); 
56. a33 = diff(f3,x3); 
57. a34 = diff(f3,x4); 
58. a35 = diff(f3,x5); 
59. a36 = diff(f3,x6); 
60. a37 = diff(f3,x7); 
61. a38 = diff(f3,x8); 
62. a39 = diff(f3,x9); 
63. a310 = diff(f3,x10); 

 
64. a41 = diff(f4,x1); 
65. a42 = diff(f4,x2); 
66. a43 = diff(f4,x3); 
67. a44 = diff(f4,x4); 
68. a45 = diff(f4,x5); 
69. a46 = diff(f4,x6); 
70. a47 = diff(f4,x7); 
71. a48 = diff(f4,x8); 
72. a49 = diff(f4,x9); 
73. a410 = diff(f4,x10); 

 
74. a51 = diff(f5,x1); 
75. a52 = diff(f5,x2); 
76. a53 = diff(f5,x3); 
77. a54 = diff(f5,x4); 
78. a55 = diff(f5,x5); 
79. a56 = diff(f5,x6); 
80. a57 = diff(f5,x7); 
81. a58 = diff(f5,x8); 
82. a59 = diff(f5,x9); 
83. a510 = diff(f5,x10); 

 
84. a61 = diff(f6,x1); 
85. a62 = diff(f6,x2); 
86. a63 = diff(f6,x3); 
87. a64 = diff(f6,x4); 
88. a65 = diff(f6,x5); 
89. a66 = diff(f6,x6); 
90. a67 = diff(f6,x7); 
91. a68 = diff(f6,x8); 
92. a69 = diff(f6,x9); 
93. a610 = diff(f6,x10); 

 
94. a71 = diff(f7,x1); 
95. a72 = diff(f7,x2); 
96. a73 = diff(f7,x3); 
97. a74 = diff(f7,x4); 
98. a75 = diff(f7,x5); 
99. a76 = diff(f7,x6); 
100. a77 = diff(f7,x7); 
101. a78 = diff(f7,x8); 
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102. a79 = diff(f7,x9); 
103. a710 = diff(f7,x10); 

 
104. a81 = diff(f8,x1); 
105. a82 = diff(f8,x2); 
106. a83 = diff(f8,x3); 
107. a84 = diff(f8,x4); 
108. a85 = diff(f8,x5); 
109. a86 = diff(f8,x6); 
110. a87 = diff(f8,x7); 
111. a88 = diff(f8,x8); 
112. a89 = diff(f8,x9); 
113. a810 = diff(f8,x10); 

 
114. a91 = diff(f9,x1); 
115. a92 = diff(f9,x2); 
116. a93 = diff(f9,x3); 
117. a94 = diff(f9,x4); 
118. a95 = diff(f9,x5); 
119. a96 = diff(f9,x6); 
120. a97 = diff(f9,x7); 
121. a98 = diff(f9,x8); 
122. a99 = diff(f9,x9); 
123. a910 = diff(f9,x10); 

 
124. a101 = diff(f10,x1); 
125. a102 = diff(f10,x2); 
126. a103 = diff(f10,x3); 
127. a104 = diff(f10,x4); 
128. a105 = diff(f10,x5); 
129. a106 = diff(f10,x6); 
130. a107 = diff(f10,x7); 
131. a108 = diff(f10,x8); 
132. a109 = diff(f10,x9); 
133. a1010 = diff(f10,x10); 

 
134. %%      State Space A Matrix Calculation 

 
135. A = [a11 a12 a13 a14 a15 a16 a17 a18 a19 a110; 
136. a21 a22 a23 a24 a25 a26 a27 a28 a29 a210; 
137. a31 a32 a33 a34 a35 a36 a37 a38 a39 a310; 
138. a41 a42 a43 a44 a45 a46 a47 a48 a49 a410; 
139. a51 a52 a53 a54 a55 a56 a57 a58 a59 a510; 
140. a61 a62 a63 a64 a65 a66 a67 a68 a69 a610; 
141. a71 a72 a73 a74 a75 a76 a77 a78 a79 a710; 
142. a81 a82 a83 a84 a85 a86 a87 a88 a89 a810; 
143. a91 a92 a93 a94 a95 a96 a97 a98 a99 a910; 
144. a101 a102 a103 a104 a105 a106 a107 a108 a109 a1010]; 

 
145. %%          B 10x3 matrix 

 
146. b11 = diff(f1,Nx); 
147. b12 = diff(f1,Ny); 
148. b13 = diff(f1,Nz); 

 
149. b21 = diff(f2,Nx); 
150. b22 = diff(f2,Ny); 
151. b23 = diff(f2,Nz); 

 
152. b31 = diff(f3,Nx); 
153. b32 = diff(f3,Ny); 
154. b33 = diff(f3,Nz); 

 
155. b41 = diff(f4,Nx); 
156. b42 = diff(f4,Ny); 
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157. b43 = diff(f4,Nz); 

 
158. b51 = diff(f5,Nx); 
159. b52 = diff(f5,Ny); 
160. b53 = diff(f5,Nz); 

 
161. b61 = diff(f6,Nx); 
162. b62 = diff(f6,Ny); 
163. b63 = diff(f6,Nz); 

 
164. b71 = diff(f7,Nx); 
165. b72 = diff(f7,Ny); 
166. b73 = diff(f7,Nz); 

 
167. b81 = diff(f8,Nx); 
168. b82 = diff(f8,Ny); 
169. b83 = diff(f8,Nz); 

 
170. b91 = diff(f9,Nx); 
171. b92 = diff(f9,Ny); 
172. b93 = diff(f9,Nz); 

 
173. b101 = diff(f10,Nx); 
174. b102 = diff(f10,Ny); 
175. b103 = diff(f10,Nz); 

 
176. %%          State Space B Matrix Calculation 

 
177. B = [b11 b12 b13; 
178. b21 b22 b23; 
179. b31 b32 b33; 
180. b41 b42 b43; 
181. b51 b52 b53; 
182. b61 b62 b63; 
183. b71 b72 b73; 
184. b81 b82 b83; 
185. b91 b92 b93; 
186. b101 b102 b103]; 

 
187. %%          C 5x10 matrix 

 
188. c11 = diff(y1,x1); 
189. c12 = diff(y1,x2); 
190. c13 = diff(y1,x3); 
191. c14 = diff(y1,x4); 
192. c15 = diff(y1,x5); 
193. c16 = diff(y1,x6); 
194. c17 = diff(y1,x7); 
195. c18 = diff(y1,x8); 
196. c19 = diff(y1,x9); 
197. c110 = diff(y1,x10); 

 
198. c21 = diff(y2,x1); 
199. c22 = diff(y2,x2); 
200. c23 = diff(y2,x3); 
201. c24 = diff(y2,x4); 
202. c25 = diff(y2,x5); 
203. c26 = diff(y2,x6); 
204. c27 = diff(y2,x7); 
205. c28 = diff(y2,x8); 
206. c29 = diff(y2,x9); 
207. c210 = diff(y2,x10); 

 
208. c31 = diff(y3,x1); 
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209. c32 = diff(y3,x2); 
210. c33 = diff(y3,x3); 
211. c34 = diff(y3,x4); 
212. c35 = diff(y3,x5); 
213. c36 = diff(y3,x6); 
214. c37 = diff(y3,x7); 
215. c38 = diff(y3,x8); 
216. c39 = diff(y3,x9); 
217. c310 = diff(y3,x10); 

 
218. c41 = diff(y4,x1); 
219. c42 = diff(y4,x2); 
220. c43 = diff(y4,x3); 
221. c44 = diff(y4,x4); 
222. c45 = diff(y4,x5); 
223. c46 = diff(y4,x6); 
224. c47 = diff(y4,x7); 
225. c48 = diff(y4,x8); 
226. c49 = diff(y4,x9); 
227. c410 = diff(y4,x10); 

 
228. c51 = diff(y5,x1); 
229. c52 = diff(y5,x2); 
230. c53 = diff(y5,x3); 
231. c54 = diff(y5,x4); 
232. c55 = diff(y5,x5); 
233. c56 = diff(y5,x6); 
234. c57 = diff(y5,x7); 
235. c58 = diff(y5,x8); 
236. c59 = diff(y5,x9); 
237. c510 = diff(y5,x10); 

 
238. %%      State Space C Matrix Calculation 

 
239. C = [c11 c12 c13 c14 c15 c16 c17 c18 c19 c110; 
240. c21 c22 c23 c24 c25 c26 c27 c28 c29 c210; 
241. c31 c32 c33 c34 c35 c36 c37 c38 c39 c310; 
242. c41 c42 c43 c44 c45 c46 c47 c48 c49 c410; 
243. c51 c52 c53 c54 c55 c56 c57 c58 c59 c510;]; 

 
244. %%          D 5x3 matrix 

 
245. d11 = diff(y1,Nx); 
246. d12 = diff(y1,Ny); 
247. d13 = diff(y1,Nz); 

 
248. d21 = diff(y2,Nx); 
249. d22 = diff(y2,Ny); 
250. d23 = diff(y2,Nz); 

 
251. d31 = diff(y3,Nx); 
252. d32 = diff(y3,Ny); 
253. d33 = diff(y3,Nz); 

 
254. d41 = diff(y4,Nx); 
255. d42 = diff(y4,Ny); 
256. d43 = diff(y4,Nz); 

 
257. d51 = diff(y5,Nx); 
258. d52 = diff(y5,Ny); 
259. d53 = diff(y5,Nz); 

 
260. %%          State Space D Matrix Calculation 
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261. D = [d11 d12 d13; 
262. d21 d22 d23; 
263. d31 d32 d33; 
264. d41 d42 d43; 
265. d51 d52 d53]; 

 

 
266. %%         Steady State Solution 

 
267. A = [0 1 0 0 0 0 0 0 0 0; 
268. 0 0 0 0 0 0 0 0 0 0; 
269. 0 0 0 1 0 0 0 0 0 0; 
270. 0 0 0 0 0 0 0 0 0 0; 
271. 0 0 0 0 0 1 0 0 0 0; 
272. 0 0 0 0 0 0 0 0 0 0; 
273. 0 0 0 0 0 0 0 1 0 0; 
274. 0 0 0 0 0 0 0 0 0 0; 
275. 0 0 0 0 0 0 0 0 0 1; 
276. 0 0 0 0 0 0 0 0 0 0]; 

 
277. B = [0 0 0; 
278. 200/671 0 0; 
279. 0 0 0; 
280. 0 200/231 0; 
281. 0 0 0; 
282. 0 0 0; 
283. 0 0 0; 
284. 0 0 0; 
285. 0 0 0; 
286. 0 0 -1]; 

 
287. C = [1 0 0 0 0 0 0 0 0 0; 
288. 0 0 1 0 0 0 0 0 0 0; 
289. 0 0 0 0 1 0 0 0 0 0; 
290. 0 0 0 0 0 0 1 0 0 0; 
291. 0 0 0 0 0 0 0 0 1 0]; 

 
292. D = zeros(5,3); 

 
293. isstable (ss)             % Stability check 

 
294. sim ('StateSpace4sim')    % SimuLink Simulation 

 
295. %%          Transfer Function 

 
296. [num, den] = ss2tf (A,B,C,D,1);   % State-space   to transfer function  

% conversion: numerator & 
% denominator 

297. F= ss(A, B, C, D);                % Converts model to state space 
298. T = tf (F);                       % Transfer Function 
299. I = sym(eye(10)); 
300. I1= C*inv(sym('s')*I-A)*B;        % Laplace transform 
301. pretty (I1);                      % Pretty print a symbolic expression 
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Annex 3 

Full 3DCrane full dynamic model derivation  

 

𝑥𝑤 = 𝑥  

𝑦𝑤 = 𝑦  

𝑥𝑝 = 𝑥 + 𝑙 cos 𝛼 sin 𝛽  

𝑦𝑝 = 𝑦 + 𝑙 sin 𝛼  

𝑧𝑝 = −𝑙 cos 𝛼 cos 𝛽  

 

�̇�𝑝 = �̇� + 𝑙̇ cos 𝛼 sin 𝛽 − 𝑙�̇� sin 𝛼 sin 𝛽 + 𝑙�̇� cos 𝛼 cos 𝛽  

�̇�𝑝 = �̇� + 𝑙̇ sin 𝛼 − 𝑙�̇� cos 𝛼  

�̇�𝑝 = −𝑙̇ cos 𝛼 cos 𝛽 + 𝑙�̇� sin 𝛼 cos 𝛽 + 𝑙�̇� cos 𝛼 sin 𝛽  

 

The speed of the load: 

𝑣2 = �̇�𝑝
2 + �̇�𝑝

2 + �̇�𝑝
2  

𝑣2 = �̇�2 + 2�̇�𝑙̇ cos 𝛼 sin 𝛽 − 2𝑙�̇��̇� sin 𝛼 sin 𝛽 + 2𝑙�̇��̇� cos 𝛼 cos 𝛽 + 𝑙2̇𝑐𝑜𝑠2𝛼 𝑠𝑖𝑛2𝛽 −

2𝑙𝑙�̇̇� sin 𝛼 cos 𝛼 𝑠𝑖𝑛2𝛽 + 2𝑙𝑙�̇̇�𝑐𝑜𝑠2𝛼 sin 𝛽 cos 𝛽 + 𝑙2�̇�2𝑠𝑖𝑛2𝛼 𝑠𝑖𝑛2𝛽 −

2𝑙2�̇��̇� sin 𝛼 cos 𝛼 sin 𝛽 cos 𝛽 + 𝑙2�̇�2𝑐𝑜𝑠2𝛼 𝑐𝑜𝑠2𝛽 + �̇�2 + 2�̇�𝑙̇ sin 𝛼 + 2𝑙�̇��̇� cos 𝛼 +

𝑙2̇𝑠𝑖𝑛2𝛼 + 2𝑙𝑙�̇̇� sin 𝛼 cos 𝛼 + 𝑙2�̇�2𝑐𝑜𝑠2𝛼 + 𝑙2̇𝑐𝑜𝑠2𝛼 𝑐𝑜𝑠2𝛽 − 2𝑙𝑙�̇̇� sin 𝛼 cos 𝛼 𝑐𝑜𝑠2𝛽 −

2𝑙𝑙�̇̇�𝑐𝑜𝑠2𝛼 sin 𝛽 cos 𝛽 + 𝑙2�̇�2𝑠𝑖𝑛2𝛼 𝑐𝑜𝑠2𝛽 + 2𝑙2�̇��̇� sin 𝛼 cos 𝛼 sin 𝛽 cos 𝛽 +

𝑙2�̇�2𝑐𝑜𝑠2𝛼 𝑠𝑖𝑛2𝛽  

 

𝑣2 = �̇�2 + �̇�2 + 𝑙2̇ + 2�̇�(𝑙̇ cos 𝛼 sin 𝛽 − 𝑙�̇� sin 𝛼 sin 𝛽 + 𝑙�̇� cos 𝛼 cos 𝛽) + 2�̇�(𝑙̇ sin 𝛼 +

𝑙�̇� cos 𝛼) + 𝑙2�̇�2 + 𝑙2�̇�2𝑐𝑜𝑠2𝛼  

 

Total kinetic energy of the crane: 

𝐾 =
1

2
((𝑚𝑐 +𝑚𝑟 +𝑚𝑙)�̇�

2 + (𝑚𝑐 +𝑚𝑙)�̇�
2 +𝑚𝑙𝑙

2̇) +
1

2
𝑚𝑙𝑣

2  

𝐾 =
1

2
((𝑚𝑐 +𝑚𝑟 +𝑚𝑙 +𝑚𝑙)�̇�

2 + (𝑚𝑐 +𝑚𝑙 +𝑚𝑙)�̇�
2 + 2𝑚𝑙𝑙

2̇) + 𝑚𝑙�̇�(𝑙̇ cos 𝛼 sin 𝛽 −

𝑙�̇� sin 𝛼 sin 𝛽 + 𝑙�̇� cos 𝛼 cos 𝛽) + 𝑚𝑙�̇�(𝑙̇ sin 𝛼 + 𝑙�̇� cos 𝛼) +
1

2
𝑚𝑙𝑙

2�̇�2 +
1

2
𝑚𝑙𝑙

2�̇�2𝑐𝑜𝑠2𝛼  
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Total potential energy of the system: 

𝑃 = 𝑚𝑙𝑔𝑙 + 𝑚𝑙𝑔𝑙 cos 𝛼 cos 𝛽  

 

The Lagrangian of the dynamic system (6.1): 

𝐿 = 𝐾 − 𝑃  

𝐿 =
1

2
((𝑚𝑐 +𝑚𝑟 +𝑚𝑙 +𝑚𝑙)�̇�

2 + (𝑚𝑐 +𝑚𝑙 +𝑚𝑙)�̇�
2 + 2𝑚𝑙𝑙

2̇) + 𝑚𝑙�̇�(𝑙̇ cos 𝛼 sin 𝛽 −

𝑙�̇� sin 𝛼 sin 𝛽 + 𝑙�̇� cos 𝛼 cos 𝛽) + 𝑚𝑙�̇�(𝑙̇ sin 𝛼 + 𝑙�̇� cos 𝛼) +
1

2
𝑚𝑙𝑙

2�̇�2 +
1

2
𝑚𝑙𝑙

2�̇�2𝑐𝑜𝑠2𝛼 −

𝑚𝑙𝑔𝑙 −𝑚𝑙𝑔𝑙 cos 𝛼 cos 𝛽  

 

The Euler-Lagrange formulation of the dynamic system (6.4): 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
= 𝐹𝑖,  where 𝑖 = 1,2,3,4,5 

 

{
 
 
 
 

 
 
 
 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�𝑖
) −

𝜕𝐿

𝜕𝑥𝑖
= 𝑢𝑥

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�𝑖
) −

𝜕𝐿

𝜕𝑦𝑖
= 𝑢𝑦

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�𝑖
) −

𝜕𝐿

𝜕𝑧𝑖
= 𝑢𝑧

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�𝑖
) −

𝜕𝐿

𝜕𝛼𝑖
= 0

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�𝑖
) −

𝜕𝐿

𝜕𝛽𝑖
= 0

  

 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝑥
= (𝑚𝑐 +𝑚𝑟 +𝑚𝑙 +𝑚𝑙)�̈� + 𝑚𝑙𝑙̈ cos 𝛼 sin 𝛽 − 𝑚𝑙𝑙�̇̇� sin 𝛼 sin 𝛽 +

𝑚𝑙𝑙�̇̇� cos 𝛼 cos 𝛽 −𝑚𝑙𝑙�̇̇� sin 𝛼 sin 𝛽 − 𝑚𝑙𝑙�̈� sin 𝛼 sin 𝛽 − 𝑚𝑙𝑙�̇�
2 cos 𝛼 sin 𝛽 −

𝑚𝑙𝑙�̇̇��̇� sin 𝛼 cos 𝛽 + 𝑚𝑙𝑙�̇̇� cos 𝛼 cos 𝛽 + 𝑚𝑙𝑙�̈� cos 𝛼 cos 𝛽 − 𝑚𝑙𝑙�̇��̇� sin 𝛼 cos 𝛽 −

𝑚𝑙𝑙�̇�
2 cos 𝛼 sin 𝛽  

 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝑦
= (𝑚𝑐 +𝑚𝑙 +𝑚𝑙)�̈� + 𝑚𝑙𝑙̈ sin 𝛼 + 𝑚𝑙𝑙�̇̇� cos 𝛼 + 𝑚𝑙𝑙�̇̇� cos 𝛼 + 𝑚𝑙𝑙�̈� cos 𝛼 −

𝑚𝑙𝑙�̇�
2 sin 𝛼   

 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑙̇
) −

𝜕𝐿

𝜕𝑙
= 2𝑚𝑙𝑙̈ + 𝑚𝑙�̇� cos 𝛼 sin 𝛽 − 𝑚𝑙�̇��̇� sin 𝛼 sin 𝛽 + 𝑚𝑙�̇��̇� cos 𝛼 cos 𝛽 +

𝑚𝑙�̈� sin 𝛼 + 𝑚𝑙�̇��̇� cos 𝛼 − (−𝑚𝑙�̇��̇� sin 𝛼 sin 𝛽 + 𝑚𝑙�̇��̇� cos 𝛼 cos 𝛽 +𝑚𝑙�̇��̇� cos 𝛼 +

𝑚𝑙𝑙�̇̇�𝑐𝑜𝑠
2𝛼 +𝑚𝑙𝑙�̇̇�

2) − 𝑚𝑙𝑔 cos 𝛼 cos 𝛽  
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𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝛼
= −𝑚𝑙�̈�𝑙 sin 𝛼 sin 𝛽 − 𝑚𝑙�̇�𝑙 ̇ sin 𝛼 sin 𝛽 − 𝑚𝑙𝑙�̇��̇� cos 𝛼 sin 𝛽 −

𝑚𝑙𝑙�̇��̇� sin 𝛼 cos𝛽 + 𝑚𝑙�̈�𝑙 cos 𝛼 + 𝑚𝑙�̇�𝑙̇ cos 𝛼 − 𝑚𝑙𝑙�̇��̇� sin 𝛼 + 𝑚𝑙𝑙
2�̈� + 2𝑚𝑙𝑙𝑙�̇̇� −

(−𝑚𝑙�̇�𝑙 ̇ sin 𝛼 sin 𝛽 − 𝑚𝑙𝑙�̇��̇� cos 𝛼 sin 𝛽 − 𝑚𝑙𝑙�̇��̇� sin 𝛼 cos𝛽 + 𝑚𝑙�̇�𝑙̇ cos 𝛼 − 𝑚𝑙𝑙�̇��̇� sin 𝛼 −

𝑚𝑙𝑙
2�̇�2 sin 𝛼 cos𝛼) +𝑚𝑙𝑔𝑙 cos 𝛼 sin 𝛽  

 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝛽
= 𝑚𝑙�̈�𝑙 cos 𝛼 cos 𝛽 +𝑚𝑙�̇�𝑙 ̇ cos 𝛼 cos 𝛽 − 𝑚𝑙𝑙�̇��̇� sin 𝛼 cos 𝛽 −

𝑚𝑙𝑙�̇��̇� cos 𝛼 sin 𝛽 + 𝑚𝑙𝑙
2̇�̇�𝑐𝑜𝑠2𝛼 − 2𝑚𝑙𝑙

2�̇��̇� sin 𝛼 cos 𝛼 + 2𝑚𝑙𝑙
2�̈�𝑐𝑜𝑠2𝛼 +

2𝑚𝑙𝑙𝑙�̇̇�𝑐𝑜𝑠
2𝛼 − (𝑚𝑙�̇�𝑙 ̇ cos 𝛼 cos 𝛽 − 𝑚𝑙𝑙�̇��̇� sin 𝛼 cos 𝛽 − 𝑚𝑙𝑙�̇��̇� cos 𝛼 sin 𝛽) +

𝑚𝑙𝑔𝑙 sin 𝛼 cos 𝛽  

 

{
 
 
 

 
 
 
(𝒎𝒄 +𝒎𝒓 +𝒎𝒍 +𝒎𝒍)�̈� + 𝒎𝒍�̈� 𝐜𝐨𝐬𝜶 𝐬𝐢𝐧𝜷 − 𝟐𝒎𝒍�̇��̇� 𝐬𝐢𝐧𝜶 𝐬𝐢𝐧𝜷 + 𝟐𝒎𝒍�̇��̇� 𝐜𝐨𝐬𝜶 𝐜𝐨𝐬𝜷 −𝒎𝒍𝒍�̈� 𝐬𝐢𝐧𝜶 𝐬𝐢𝐧𝜷 −

−𝒎𝒍𝒍�̇�
𝟐 𝐜𝐨𝐬𝜶 𝐬𝐢𝐧𝜷 − 𝟐𝒎𝒍�̇��̇��̇� 𝐬𝐢𝐧𝜶 𝐜𝐨𝐬𝜷 +𝒎𝒍𝒍�̈� 𝐜𝐨𝐬𝜶 𝐜𝐨𝐬𝜷 −𝒎𝒍𝒍�̇�

𝟐 𝐜𝐨𝐬𝜶 𝐬𝐢𝐧𝜷 = 𝒖𝒙
(𝒎𝒄 +𝒎𝒍 +𝒎𝒍)�̈� +𝒎𝒍�̈� 𝐬𝐢𝐧𝜶 + 𝟐𝒎𝒍�̇��̇� 𝐜𝐨𝐬𝜶 +𝒎𝒍𝒍�̈� 𝐜𝐨𝐬𝜶 −𝒎𝒍𝒍�̇�

𝟐 𝐬𝐢𝐧𝜶   = 𝒖𝒚

𝟐𝒎𝒍�̈� + 𝒎𝒍�̇� 𝐜𝐨𝐬 𝜶 𝐬𝐢𝐧𝜷 +𝒎𝒍�̈� 𝐬𝐢𝐧𝜶 −𝒎𝒍�̇��̇�𝒄𝒐𝒔
𝟐𝜶 −𝒎𝒍�̇��̇�

𝟐 −𝒎𝒍𝒈𝐜𝐨𝐬𝜶𝐜𝐨𝐬𝜷 = 𝒖𝒛
−𝒎𝒍�̈�𝒍 𝐬𝐢𝐧𝜶 𝐬𝐢𝐧𝜷 +𝒎𝒍�̈�𝒍 𝐜𝐨𝐬𝜶 +𝒎𝒍𝒍

𝟐�̈� + 𝟐𝒎𝒍𝒍�̇��̇� + 𝒎𝒍𝒈𝒍 𝐜𝐨𝐬𝜶 𝐬𝐢𝐧𝜷 = 𝟎

𝒎𝒍�̈�𝒍 𝐜𝐨𝐬𝜶 𝐜𝐨𝐬𝜷 − 𝟐𝒎𝒍𝒍
𝟐�̇��̇� 𝐬𝐢𝐧𝜶 𝐜𝐨𝐬𝜶 + 𝟐𝒎𝒍𝒍

𝟐�̈�𝒄𝒐𝒔𝟐𝜶+ 𝟐𝒎𝒍𝒍�̇��̇�𝒄𝒐𝒔
𝟐𝜶+𝒎𝒍𝒈𝒍 𝐬𝐢𝐧𝜶 𝐜𝐨𝐬𝜷 = 𝟎

  

 

{
 
 

 
 
(𝑚𝑐 +𝑚𝑟 +𝑚𝑙 +𝑚𝑙)�̈� + 𝑚𝑙𝑙�̈� − 𝑢𝑥 = 0
(𝑚𝑐 +𝑚𝑙 +𝑚𝑙)�̈� + 𝑚𝑙𝑙�̈� − 𝑢𝑦 = 0

2𝑚𝑙𝑙̈ − 𝑚𝑙𝑔 − 𝑢𝑧 = 0
�̈� + 𝑙�̈� + 𝑔𝛼 = 0

�̈� + 𝑙�̈� + 𝑔𝛽 = 0

  

 

The steady-state operation point 𝑥0 = [𝑥0 �̇�0 𝑦0 �̇�0 𝛽0 �̇�0 𝛼0 �̇�0 𝑙0 𝑙0̇]
𝑇
=

[0 0 0 0 0 0 0 0 0 0]𝑇 gives the final result for the full dynamic model of the 3DCrane: 

 

{
 
 
 
 

 
 
 
 �̈� =

𝟏

𝒎𝒄+𝒎𝒓+𝒎𝒍
𝒖𝒙 +

𝒎𝒍𝒈

𝒎𝒄+𝒎𝒓+𝒎𝒍
𝜷

�̈� =
𝟏

𝒎𝒄+𝒎𝒍
𝒖𝒚 +

𝒎𝒍𝒈

𝒎𝒄+𝒎𝒍
𝜶

�̈� = −
𝟏

𝒍(𝒎𝒄+𝒎𝒓+𝒎𝒍)
𝒖𝒙 −

𝒈(𝒎𝒄+𝒎𝒓+𝒎𝒍+𝒎𝒍)

𝒍(𝒎𝒄+𝒎𝒓+𝒎𝒍)
𝜷 

�̈� = −
𝟏

𝒍(𝒎𝒄+𝒎𝒍)
𝒖𝒚 −

𝒈(𝒎𝒄+𝒎𝒍+𝒎𝒍)

𝒍(𝒎𝒄+𝒎𝒍)
𝜶

�̈� =
𝟏

𝟐𝒎𝒍
𝒖𝒛
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Annex 4 

 

MATLAB script for the state-space representation of the full dynamic 

model  

 
1. clear all;          % Clear the Workspace 
2. clc;                % Clear the Command Wind0w 

 
3. %%      Constants 

 
4. mc = 1.155;         % Mass of the cart 
5. ml = 1;             % Mass of the load 
6. mr = 2.2;           % Mass of the rail 

 
7. l = 0.6;            % Length of lift-line 

 
8. g = 9.81;           % Gravitational acceleration 

 
9. Gain = [4/3 4/5 6/12];     % Input Correction Gain 

 
10. %%        State-State representation of the full dynamic model 

 
11. A = [0 1 0 0 0 0 0 0 0 0; 
12.      0 0 0 0 ml*g/(mc+mr+ml) 0 0 0 0 0; 
13.      0 0 0 1 0 0 0 0 0 0; 
14.      0 0 0 0 0 0 ml*g/(mc+ml) 0 0 0; 
15.      0 0 0 0 0 1 0 0 0 0; 
16.      0 0 0 0 -g*(ml+mc+mr+ml)/((mc+mr+ml)*l) 0 0 0 0 0; 
17.      0 0 0 0 0 0 0 1 0 0; 
18.      0 0 0 0 0 0 -g*(ml+mc+ml)/((mc+ml)*l) 0 0 0; 
19.      0 0 0 0 0 0 0 0 0 1; 
20.      0 0 0 0 0 0 0 0 0 0]; 

 
21. B = [0 0 0; 
22.      1/(mc+mr+ml) 0 0; 
23.      0 0 0; 
24.      0 1/(mc+ml) 0; 
25.      0 0 0; 
26.      -1/((mc+mr+ml)*l) 0 0; 
27.      0 0 0; 
28.      0 -1/((mc+ml)*l) 0; 
29.      0 0 0; 
30.      0 0 1/(ml+ml)]; 

 
31. C = [1 0 0 0 0 0 0 0 0 0; 
32.      0 0 1 0 0 0 0 0 0 0; 
33.      0 0 0 0 1 0 0 0 0 0; 
34.      0 0 0 0 0 0 1 0 0 0; 
35.      0 0 0 0 0 0 0 0 1 0]; 

 
36. D = zeros(5,3); 

 
37. isstable (ss)           % Stability check 

 
38. sim ('StateSpaceFull')  % SimuLink Simulation 

 
 


