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The main goal of the thesis is to derive the mathematical model of three-dimensional crane,
to build the control system, to simulate and compare the obtained results with the model
provided by the Inteco® 3DCrane manufacturer. The physical model of 3DCrane is provided
by the Tallinn University of Technology Faculty of Informational Technology.

The derived model must exclude the encoders from the system. It will therefore decrease the
cost of the services and the system itself. Moreover, the control system design may also be
useful in industrial overhead cranes. It may replace the operator from the system, minimizing
the human interface. Thus, it may reduce incidents and accuracy loss. Masses of the

equipment of 3DCrane for modelling are provided by the manufacturer.

The study object is constructed by the Polish company Inteco®. It is known that the 3DCrane
operates by three forces inputs. The signals are sent to the DC motors from PC. The system
has also the feedback. The encoders send the position of the crane and angles of the payload

back to the user. Moreover the positions are limited by the 3DCrane frame dimension.

The derived model must follow the position control. The idea is to project and tune the
system output according to the input forces to each axis and, in general, to replace the same
model that is based on the encoders with the same mathematically derived model. The

control system method implemented to solve the problem is the state-space method.
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PREFACE

The thesis is written in co-operation with two departments of Tallinn University of Technology*
(TUT). The main supervisor is professor Valery Vodovozov, Tallinn University of Technology,
Faculty of Power Engineering, Department of Electrical Engineering. The second supervisor is
associate professor Eduard Petlenkov, Tallinn University of Technology, Faculty of
Information Technology, Department of Compute, Chair of Automatic Control and System
Analysis. The study equipment 3DCrane was provided by the Alpha Control Lab? in Tallinn
University of Technology, Faculty of Informational Technology. The knowledge to complete
the task was mainly used from the book references listed at the end of the thesis. Moreover,
many doctoral students of Tallinn University of Technology gave the advises in solving the
problems related to the thesis: assistant Zoja Raud, associate professor Kristina Vassiljeva,
engineer Aleksei Tepljakov and many others, who are individually thanked in the

acknowledgments.

The thesis topic was proposed by the author whose, main goal was to study the control systems
engineering independently and more deeply. It has been therefore suggested by the professor
VVodovozov to design the control system, which can exclude the encoders from the system. All

the explanations introduced in thesis are enough to repeat the experiments independently.

The thesis is logically divided into chapters. Each chapter is then divided into clearly numbered
and labelled sections. Sections are containing explanations, examples and author’s conclusions
based on the experiments and the knowledge gain. Each chapter completes with a brief
summary. The thesis starts with the introduction stating the problem stressed in the thesis and
therefore summarized with the conclusion. The computer experiments are held using the
computer-aided software MATLAB®? and simulation software Simulink®*. The explanations
are illustrated with Figures. The complete dynamic model derivation is placed in annexes.
Moreover, all the MATLAB® scripts used for the simulation and computations are also in

annexes. The annexes are listed at the end of the thesis.

L www.ttu.ee

2 Alpha Control Lab (A-lab) — research laboratory within the Department of Computer Control, Tallinn University
of Technology.

3 MATLAB - registered trademark of the MathWorks, Inc.

4 Simulink — registered trademark of the MathWorks, Inc.
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1. INTRODUCTION

The topic of the thesis has been selected according to the author’s interest in control
engineering. Many courses have been passed related to this field. Most of the courses were
passed during the Erasmus exchange study in Politecnico di Milano, Italy. The enrolled
program was Automation Engineering. Thus most of the courses contents were related to the
mathematical modelling and system control engineering. Moreover, it has been suggested the
Alpha Control Lab in the TUT Faculty of Information Technology. The laboratory is perfectly
equipped for the control engineering study.

The author, within his working experience, has dealt with few industrial three-dimensional
cranes. Nowadays, cranes are operated mostly by human. This makes the system dangerous,
because of the numerous accidents and accuracy loss. It has been therefore proposed to build
the control system to replace the encoder in the real system by the mathematical model. It will
make the system cheaper and more precise due to the fact that encoders provide and accumulate

errors. Automation shall also remove the human factor from the system, what makes it safer.

The topicality of the thesis is due to the widely usage of 3D cranes in industry. The problem
stressed in the present thesis is not new. Many researches have been made in order to find the
best, cheapest and optimal solution to control 3D cranes. The AutoPilot control algorithm can
remove the operator from tasks require repetitive motions, what is the cause of fatigue

depressions and unwanted casualties.

Thus the main tasks intended to be solved in the present thesis are as follows:

e to derive the mathematical model for the 3DCrane®

e to find the optimal control system solution for the system based on mathematical model

e to simulate the model using Simulink environment and to compare it to the existing
model provided by the crane manufacturer

e tune the derived model as close as possible to the existing model in order to be able to
replace the encoder-based model with the mathematical model

e to use the optimal solution, physical laws and approximations if necessary for deriving

the mathematical model

5 “3DCrane” fused word here and in the whole thesis is related to the exact equipment.

11



e to use the suitable and cheapest control logic.

In short, provide the sensorless control logic and in the case of fail, to propose another solution

for the future research.

Researchers from different universities around the world have proposed a lot of solutions to
model the three-dimensional crane system as well as Cartesian coordinate robots. Some of the
researchers were also using the small dimension model of 3D crane. Such a research are

described in articles [1].

Another article [2], where the researchers used Dymola® model for the crane behaviour

simulation.

Moreover article [3] where the authors used the same 3DCrane from Inteco® as in present thesis.
In sum, many other and different control systems and approaches as well as other different

mathematical models were submitted in past.

Here only a small part of them are listed. Moreover, Inteco® also provides their own
mathematical model derivation. However none of the articles were found, where the authors

use the state-space approach to build the control system for the 3D crane.

A-lab itself has made a sever researches related to the 3DCrane. The Bachelor of Science degree
[4] thesis has been successfully defended. The research was to create the mobile phone
application that allows to control the 3DCrane by the Wi-Fi network. The application is used
indoor close to the controlled subject. Moreover the application should work on iOS system
and should be uploaded to the Apple iTunes®’. The application displays the information of the

subject, including the positions and deviation angles.

Another work recently done by Aleksei Tepljakov. The main task was to find an interface
solution to control the 3DCrane with the joy pad device similar to the ones used in video games

consoles. The idea is to move the crane along X, Y and Z axis using the dual analog-controller.

& Dymola — modelling and simulation environment based on the open Modelica modelling language
" iTunes — media store application by Apple Inc.
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The analog-buttons send the signal and the controller moves the 3DCrane according the

direction and axis was forwarded. The system works successfully.

Unlike the above studies, in my research the methods for solving the tasks are chosen as the
most appropriate for the highly nonlinear system with multi inputs, multi outputs. First for
derivation of the simplified model only the Newton’s second law of motion and geometric
representation of the system was used. The approximation around the angles was also

implemented.

After that the full model of the system is derived using Lagrange equation for kinetic and
potential energies. Next, the Euler-Lagrange equations are used to build the final system of
equations describing the 3DCrane dynamics. The system of equations were again approximated
around the steady-state operational point. The state-space representation of a physical system
is used to design the control in both simplified and full models. All the models are compared
with the encoder-based model by Inteco®.

Obtained results have been analysed. The full model can replace the encoder-based model. They
are not completely similar as they have errors in outputs between matching each other.
However, has been suggested that the reason for errors could be the mistakes and
approximations in modelling. As well as it can be the error accumulated in encoders, as they

are no information about the calibration of the devices.

Chapter 2 introduces the Control System theory content. Different types of the systems are
represented and shortly described based on the references. The connection between
mathematical modelling, simulation and control systems design are also explained in Chapter
2.

Chapter 3 focuses on the study of the 3D crane small dimensional copy. The chapter consist of
the description of the object and the components of the system such as encoders and chip for
the computer interface. The model of the crane provided by the manufacturer is also presented.

The chapter completes with the analysis and conclusions of the first simulation of the 3DCrane.

13



Chapter 4 is addressed to the mathematical model of 3DCrane. Two different models of the
3DCrane system are presented. First, the classical block scheme model in Simulink® is built.
Second, the state-space approach is provided. Both solutions are simulated and analysed.

In Chapter 5 the derived model and the model provided by Inteco® are simulated together. For
the derived model the state-space representation is used. The results are described and

presented. Further conclusions and summarizations are given.

Chapter 6 describes the derivation of the full 3DCrane model taking into account the payload
angle dynamics. Euler-Lagrange equation is used to derive the model. Again, the derived state-
space representation is simulated together with 3DCrane manufacturer model. The obtained
results are analysed and concluded. Finally, all the results gain in present thesis are shortly

concluded in the last chapter.

Annexes 1, 2, 4 are containing the MATLAB scripts for the simulations of the derived dynamic
models. Annex 3 in detail describes the Euler-Lagrange implementation to derive the full

3DCrane dynamic model.

The thesis is written using the Microsoft Corporation® licensed operating system Windows 7
Professional. Additionally, the next software has been used: Microsoft Word, Microsoft Paint,
MATLAB/Simulink (used at the TUT Faculty of Information Technology laboratory).

8 Microsoft Corporation — American multinational technology company specializing in develop, manufacture,
license, support and sell computer software, consumer electronic, personal computers and services. Founded in
1975.
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2. CONTROL SYSTEMS

Control systems are integrated part of our society [5]. Numerous applications are all around us:
satellite antenna control, robotics, metallic part machined in CNC stage, etc. Many companies
such as Apple Inc.®® and Google®!? are now working on automated vehicles that can drive on
the streets without a human interface. Automation is the technique of making a process or
system work automatically. Nowadays, they are also called smart systems, where the system
can automatically adapt to the environment giving the best possible solution. All this
applications are created due to automatically controlled systems.

Human beings are not the only creators of automatically controlled systems, because these
systems are also exist in nature long time ago. Within our own bodies the numerous control
systems exist, such as pancreas that regulates the blood sugar [5]. We, however, take the
examples, ideas and logic from nature. Even feedback control systems are older than humanity.
Numerous biological control systems were built into the earliest inhabitants of our planet [5].
Feedback is the return of a portion of a process or system output to the input, especially when

used to maintain performance or to control a system or process [6].

2.1. Control system definition

A control system consists of subsystems and processes (or plants) assembled for the purpose of
obtaining a desired output with desired performance, given a specified input. The simplest form
of control system is shown in Figure 2.1 [5].

) [nput Control Qutput ()
ult Desired System Actual FAE.
fESpDﬂSE I'ESPGHSE

Fig. 2.1. Simplified description of a control system

® Apple Inc. — American multinational technology company specializing in design, develop and sell consumer
electronics, computer software and personal computers. Founded in 1976.

10 Google — American multinational technology company specializing in Internet-related services and product.
Founded in 1998.
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There are two major configurations of control systems: open-loop and closed-loop (feedback
control) [5]. The system has the inputs, the signal provided by the designer. As an output the
system has an expected behaviour of the system.

2.1.1. Open-loop system

Open-loop system (Figure 2.2) does not correct or monitor the output signal for disturbance. It
starts with the input that is often called the controllable variable [5]. The input signal passes

several blocks in order to be controlled.

Open-loop control systems are cheap and simple. However, they cannot compensate
disturbances or noises. Thus, many corruptions affect the output. It is hard to predict

disturbances. The output therefore can always vary, what makes the system unstable.

Disturbance | Disturbance 2

Output
Input ~ 4.‘ I
' Input e | + Process + or
o= . fucer Controller Pl: ;
transducer or Fiant Controlled

Reference

Summing Summing variable
junction junction

Fig. 2.2. Open-loop system

The disadvantage of this system is sensitivity to the disturbance. In order to protect the system
against the unstable output, it is often added the feedback from the output to the input. This
technique makes the system closed-loop.

2.1.2. Closed-loop system

The closed-loop system (Figure 2.3) monitors the output and compares it with the input [5].
This technique helps to take the disturbance into account and to compensate it. The closed-loop
systems in comparison with the open-loop ones have a greater accuracy. They are less sensitive
to noise, disturbance, and changes in the environment. On the other hand, closed-loop systems

are more complex to design and expansive [5].

16



Error

ot .
Actatin Disturbance | Disturbance 2
ctuating

Input i + - Quitput
' Input + + Process + 3
or ==& 3 Controller | " =0 '
o - transducer or Plant Controlled

Summing Summing variable
junction junction

Summing
junction

Output
transducer |-
or Sensor

Fig. 2.3. Closed-loop system

The compensation of disturbance is not the only problem in control theory. The system must be
stable in order to produce transient and steady-state response. Transient response is important
because it affects the speed of the system and influences human patience and comfort, thus
mitigating mechanical stresses. Steady-state response determines the accuracy of the control

system. It governs how closely the output matches the desired response [5].

Moreover, it is often important to design the robust system. It means that the system is to be
non-sensitive to parameter changes due to the fact that the relation between parameters changes

and their effect on the performance is not linear.

In order to create a control system it is first necessary to create the mathematical model of the
system to be controlled. In another words, designer must do the modelling task and describe the
system using physical laws. Kirchhoff’s laws are used in electrical network and Newton’s law
are used for mechanical systems, along with simplifying assumptions. The Newton’s law will

be used in current thesis.

2.2. Mathematical modelling

A models are an essential component of simulation [7]. Modelling is a critical issue in rapidly
developing modern manufacture. Before multimillion-euro project will be build and tested in
the environment, it is convenient to model and test the system using simulation tools and

software. It helps to save the cost of the product and to avoid mistakes and accidents.

17



A meteorologist predicts the expected path of a tropical storm using weather models. An
economist issues a quantitative forecast of the economy predicted on key economic variables.
Health care professionals have access to a human patient simulator to receive training in the
recognition and diagnosis of disease [7]. Every human activity can be modelled and therefore

analysed in order to predict the behaviour.

The word “model” is a generic term referring to a conceptual or physical entity which
resembles, mimics, describes, predicts, or conveys information about the behaviour of some
process or system. The benefit from having a model is to be able to explore the intrinsic
behaviour of a system in an economical and safe manner. In principle, the behaviour of dynamic
system can be explained by mathematical equations and formulas, which embody either

scientific principle or empirical observations related to the system [7].

The system’s models consist of coupled algebraic and differential equations, when their
parameters and variables change continuously over time or space. Partial differential equation
models appear when a dependent variable is a function of two or more independent variables.
The mathematical models of dynamic systems where the single independent variable is “time”
are comprised of ordinary differential equations. The same applies to system with a single
spatial independent variable [7].

Mathematical models can be categorized according their purpose: models to assist plant design
and operation and models to assist control system design and operation [8]. In this work we are
interested mainly in the second category as we are planning to control the system.

Ordinary differential equation models of dynamic systems are called “lumped parameters”
(Figure 2.4) models. The spatial variation of the system parameters is negligible or it is being

approximated by lumped sections with constant parameter values.

P1 Pz Pm
uy (t) || | vy (t)
u(e) = l”‘ 2o System By = 200
u, (t) i (t)

Fig. 2.4. A system with a lumped parameter model
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The same system can be represented with different mathematical models. Regardless of the
detail inherent in a mathematical model, it nevertheless represents an incomplete inexact
depiction of the system [7]. The reason is refers to the simplifications and approximations used
in modelling the system. Mathematical modelling relies on a combination of intuition,

experience, empiricism, and the application of scientific laws of nature [7].

2.2.1. Simulation

The difference between a mathematical model and a simulation model is open interpretation
[7]. Some in the simulation community is view the two as one and the same. Simulation refers
to the solution of the model equation. Simulation is originated from the mathematical methods.
However, simulation of dynamics system requires a simulation model, different in nature from

mathematical model.

Moreover, it should be recognized that the “models” used in simulation are ideal and therefore
may differ slightly from their physical implementations. These differences may lead in unstable

systems to unexpected bias levels limit cycles [9].

Simulation models are commonly obtained from discrete-time approximations of continuous-
time mathematical models. More than one simulation model can be developed from a single

mathematical model of the system [7].

2.2.2. MATLAB® and Simulink®

MATLAB® (Matrix Laboratory) is the high-level language and interactive environment
developed by MathWorks® for numerical computation. MATLAB allows matrix
manipulations, plotting of functions and data, implementation of algorithms, creation of user
interfaces, and interfacing with programs written in other languages, including C, C++,
Java, Fortran and Python [10].

Simulink® is the most popular programming language tool for modelling, simulating and

analysing dynamic systems developed by MathWorks®. It is integrated with MATLAB, what
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enables to incorporate MATLAB algorithms into models and export simulation results to
MATLAB for further analysis. Simulink is a block diagram environment widely used in control
theory and digital signal processing.

The Simulink library contains blocks for representing the mathematical models of commonly
occurred components in dynamic systems. Building a Simulink model of a system consist of
selecting the appropriate blocks and connecting them in a way that represents the mathematical
model. Simulink offers a variety of numerical integrators to advance the continuous-time state

vector over an integration step [7].

2.3. Linear systems

A linear system possesses two properties: superposition \ i)
and homogeneity. The superposition states that the output ?
response of a system to the sum of inputs is the sum of  Output

response to the individual inputs. Homogeneity property

describes the responses of the system to a multiplication *
of the input by a scalar. Linearity can be visualized in Input
Figure 2.5 [5]. Fig. 2.5. Linear system

A common engineering practice is to assume that a system can be described by a set of linear

differential equations for some operating range of interest as follows [11]:

x = Ax + Bu, (2.1)
where x(t) — the state of system,
A, B — time invariant matrices,

u(t) — the control input.

When the control input is presented, linear time invariant systems exhibit properties including
superposition, asymptotic stability of the unforced system ensures bounded-input bounded-
output stability, and a sinesoidal input leads to a sinesoidal output of the same frequency. The
behaviour of a nonlinear system may be much more complex than a linear model can

encapsulate [11].
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2.4. Nonlinear systems

The definition of linearity cannot not applied to the )
relationship shown in Figure 2.6. Thus types of systems are
called nonlinear. The designers can often make a linear ~ Cutput

approximation to a nonlinear system. Linearization is done

for small-signal inputs about the steady-state solution when *
the small-signal input is equal to zero. This steady-state Input
solution is called equilibrium [5]. Fig. 2.6. Nonlinear system

The nonlinear features of the system may originate inherently or intentionally. Inherent
nonlinearity is an inseparable characteristic of the laws governing the operation of the process
to be controlled. Intentional nonlinearity is deliberately introduced into the design of the system
as the best way to achieve the desired performance, based on both technical and economic
criteria [11].

As the nonlinear systems are very hard to control, often they are approximated and replaced
with a number of linear systems. These techniques are made in the interest of mathematical

tractability of the model. Each motion in this case is described by linear differential equation.

The model of a system may contain one or more constants. Other coefficients may be constant
over the whole range of operation of the model and for practical purpose they can also be
regarded as constants. Some coefficients may be considered constant during any particular run
of the model. Finally, there are coefficients that need to be modified during the running of the
model. Current values are determined either from a stored formula or by interpolation in a stored
table [8].

A dynamic model in the form of a vector-matrix differential equation has a natural classification

of variables:
x = Ax + Bu
y = Cx + Du, (2.2)

where x — n-dimensional vector of a state variable, where n is the order of the system,
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y —m-dimensional vector of output variables,
u — p-dimensional vector of input variable,

A —amatrix of sizen X n,

B —a matrix of size n X p,

C —a matrix of size m X n,

D — a matrix of size mx p.

A state-space representation can be used for a mathematical model of a system with multiple
inputs and outputs, denoted by MIMO. In this case A4, B, C and D will be matrices of appropriate

dimensions which accounts for the use of capital letters [12].
In practice each of the elements of y must be determined by observation and measurement.

Also, u vector must contain elements representing changing plant inputs, all known external

disturbances that are to be represented, and control variables [8].

2.5. Nonlinear Multivariable (MIMO) systems

Multi-Input  Multi-Output  control Input 1 —P» —» Output 1
system (Figure 2.7) is the control Input 2 . Contealli —P» Output 2
theory system with more than one Tnput 3 —P» —» Output 3

input and/or more than one output. )
Fig. 2.7. MIMO control scheme
This control system is also frequently
known by the abbreviation MIMO. Another words, it is multivariable system, where each

manipulator variable can depend on two or more of the controlled variables.

The control system that has only one input and only one output is called Single-Input Single-
Output (SISO). Comparing to the SISO system, the MIMO is hard to design as it integrates
multiple sensor data to coordinate multiple actuators [13].

The mathematical model is nonlinear due to the presence of the nonlinear differential equation

and nonlinear algebraic equation [7]. Controller-loop interaction exists such that the action of

one controller affects other loop in a multi-loop system. Depending upon the inter-relationship
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of the process variable, tuning each loop for maximum performance may result in system

instability when operating in a closed-loop mode [14].

Multivariable control is not the only solution to control nonlinear multi-input multi-output
system. There are several techniques exist to model the control: Predictive Constrain control,

Model-Based Predictive Control, Dynamic Matrix Control, Statistical Process Control, etc.

2.6. Chapter summary

Control systems contribute to many aspects in our society and are also broadly represented in
nature. A control system has the inputs, the system body and the outputs. A control system can
be open loop or close loop. The close loop system monitors the outputs, being more complex

and more expansive. It can also correct the input to avoid distortions.

The system first must be mathematically modelled, using the physical and mathematical rules.
Most of the time, they are also approximated to simplify the solution. The approximation is
necessary, because there are no linear system in nature. The second step is to assemble the
model. There can be many solutions for the same model. Finally, the results must be simulated,

studied and analysed.
Linear and nonlinear systems were described. The SISO and MIMO control system were stated
and compared. The first has only one input and one output, the second respectively can have

multiple inputs and multiple outputs.

The solution of the highly nonlinear MIMO system will be shown in Chapter 4. The state-space

representation of the system will be derived, simulated and analysed.
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3. OBJECT DESCRIPTION

3.1. Industrial 3D crane

3D cranes (Figure 3.1) are widely used in
industry for vessel loading and unloading, to
handle full or empty containers and lift up to
80 tons, automotive lines, ship and airplane
building, power industry and other heavy
manufacturing. Different 3D cranes are
shown in Figures 3.2 and 3.3. As a rule, in
ports 3D cranes are able to speed up the
entire  shipbuilding process. Nowadays
cranes are being built with semi- or full-
automation  capability.  Thus, many

researches have been made in order to find

the best, cheapest and optimal solution to

Fig. 3.1. Gantry crane by Konecranes®

control cranes. The AutoPilot control
algorithm can remove the operator from tasks that require repetitive motions. Benefits include

more precise handling, reduced component wear and greater availability [15].

Fig. 3.2. Outdoor industrial 3D crane
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Fig. 3.3. Indoor industrial 3D crane

In general, an operator moves the crane in the desired position. The acceleration or deceleration

of the crane may cause undesirable load swing. The load swing can cause human accidents, can

damage the crane or the load. To control the swing, the operators need experience in crane

manoeuvring. Automated systems can help the operator to control the load swing or can even

replace the operator. They can also achieve precise control and increased load speed

positioning.

3.2. General description of the studied object

3D cranes are widely used in industry, construction

works, ports and manufacturing. The three-
dimensional crane (Figure 3.4) controlled from PC
is studied in this research using is the laboratory
model of industrial crane. The model is built for
control education and research works mostly for
automation control and information technology
fields. The model is operated in real-time mode.
3DCrane is ideal for illustrating complex nonlinear
MIMO (multi input multi output) control
algorithms. The 3DCrane workspace can be viewed
in Figure 3.5.
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Fig. 3.5. View of the workspace of 3DCrane

The 3DCrane is a nonlinear MIMO electromechanical
system having a complex behaviour and creating

control problems. The system is controlled from PC.

The mechanical unit is supplied with power and
interfaced to a PC. The mechanical part is linked with
A/D, D/A board configured in the Xilinx®
technology!!. The software operates under MS
Windows® NT using MATLAB® /Simulink®
environment and RTWT (Real-Time Window:
Target™) toolbox package'?. The system, therefore, can

be easy mounted and installed in a laboratory [16].

The 3DCrane setup (Figure 3.6) consists of a payload Fig. 3.6. The 3DCrane sétdp _
hanging on a pendulum-like lift-line wound by a motor

mounted on a cart. The payload is lifted and lowered in the z direction. Both the rail and the
cart are capable of horizontal motion in the x direction. The cart is capable of horizontal motion
along the rail in the y direction. The payload attached to the end of the lift-line can be freely

moved in three-dimensions. The 3DCrane is driven by the three DC motors [16]. Two motors

1 Xilinx - American technology company producing and developing programmable logical products, including
integrated circuits, software design tools, predefined system functions delivered as intellectual property cores and

design services [17].

12 Real-Time Window Target™ is a real-time engine for Simulink models and blocks connected to a range of 1/O

boards. It enables to create and control the system in real time.
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are used to drive the crane in X and Y directions in working space and the last motor is used to
lift the load.

The DC motors are produced by the Italian
company Micro Motors S.R.L.** [18]. In our
3DCrane system three RH158.24.75 DC motors are
used (Figure 3.7). The technical data of the motor is

shown in Table 3.1. The direction of rotation

Fig. 3.7. RH158.24.75 DC motor

depends on polarity. A motor can be mounted in any
position. The dimensions of the motor are shown in

Figure 3.8.

Table 3.1. RH158.24.75 DC motors technical data

Parameter (at ambient temperature +20% - tolerance +/-10%) Value

Nominal Voltage [V] 24
L [mm] 66,5
Ration to:1 76,84
Nominal torque [Ncm] 50
No load 81
Speed [m/s] :
At nominal torque 55
No load <70
Current [mA] i
At nominal torque 340
Maximum radial shaft load [N] 50
Maximum axial shaft load [N] 10
Temperature range [°C] -20/ 60
Approximate weight [g] 190

13 Micro Motors S.R.L - Italian company that produces small gear-motors with different specifications and
applications.
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Fig. 3.8. The dimensions of the RH158.24.75 DC motor

The Hall-effect switches are used in encoder (Figure 3.9).

They are highly temperature stable and stress-resistant sensors

mainly utilized in applications that provide steep magnetic

slopes and low residual levels of magnetic flux density. Each

device includes voltage regulator, quadric Hall voltage

generator, temperature stability circuit, signal Schmitt chopper

stabilized amplifier, Schmitt trigger and an open drain

MOSFET on a single silicone chip. The on-board regulator

permits operation with supply voltages of 3,5 to 24V. The

Fig. 3.9. Two-phase Hall-
effect 90° encoder

output MOSFETS can sink up to 20 mA with suitable output pull up, they can be used directly

with bipolar or MOS logic circuit [18]. The technical data of the encoder is provided in Table

3.2.

Table 3.2. Two-phase Hall-effect 90° encoder technical data

Absolute Maximum Ratings

Parameter Symbol Value
Supply voltage [V] VDD 28
Supply current [mA] IDD 50
Output voltage [V] VOUT 28
Output current [mA] IOUT 50
Storage temperature range [°C] TS -50 to 150
Maximum junction temperature [°C] TJ 165
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The encoders measure movements with a high resolution equal to 4096 pulse per rotation, and
together with the specialised mechanical solution create a unique measurement unit. The

deviation of the load is measured with a high accuracy equal to 0,0015 rad [16].

The power interface amplifies the control signal, which is transmitted from the PC to the DC
motor. It also converts the encoder pulse signals to the digital 16-bit form to be read by the PC
[16]. The PC equipped with the RT-DAC/PCI multipurpose digital 1/0 board communicates
with the power interface board. The whole logic necessary to activate and read the encoder
signals and to generate the appropriate sequence of pulses of PWM to control the DC motors is
configured in the programmable Xilinx® chip of the RT-DAC/PCI board. All functions of the
board are accessed from the 3DCrane Toolbox, which operates directly in the MATLAB®

/Simulink® environment [16].

The whole control logic is presented in Figure 3.10. The Xilinx® chip sends the appropriate
sequence of pulses to control the voltage of the motor. The voltage therefore rotates the DC
motor moving the cart to the appropriate position in the workspace. The encoders play the role
of the feedback information. They show the location of the cart and rail as well as the workspace

and the angles of the payload in real time.

PC with MATLAB® /Simulink® RT-DAC/PCI board Xilinx® chip

Two-phase Hall-effect 90° encoder DC motor RH158.24.75

Fig. 3.10. The 3DCrane control components
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3.3. Object overview

The crane is delivered in partially mounted form. The mounting frame makes a support and a
flexible construction of the system (Figure 3.11). There is a rigid construction due to the reason
it is fixed to the floor. The dimensions are both the width and length from 0,9 m to 2,5 m [16].

The system parameters of the 3DCrane are shown in Table 3.3.

Table 3.3. 3DCrane parameters

Parameter Value
Maximum speed v,,,4, [m/s] 0,3
Maximum acceleration a4, [m/s?] 0,6
Workspace distance in X-axis direction [mm] 920
Workspace distance in Y-axis direction [mm] 920
Core length [ [mm] 820
Payload mass m,, [kg] 1
Mass of the cart m. [kg] 1,16
Mass of the moving rail m,. [kg] 2,2

The 3DCrane is also equipped with the safety button. The button is located on the table in front
of the PC, which is used to control the system. In case of emergency, a user must press the
button manually, what immediately will stop the current supply to the crane and the system
stops. Moreover, the crane workspace is located at the corner of the laboratory (Figure 3.11).
The location is marked with the black-yellow sticker line on the floor. It is strictly forbidden to

cross the line while the 3DCrane is operated.

The software requirements are as follows:
e Pentium® or AMD based personal computer
e Microsoft Windows® XP/7x86

e MATLAB® version R2009a/b, R2010a/b or R201la/b with appropriate version of
Simulink® and RTW toolboxes.
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Fig. 3.11. 3DCrane workspace in the laboratory

The hardware consists of the following mechanical units: cart, 2D angle measuring unit (Figure

3.12), X axis drive (Figure 3.13). It is also consists of interface and Power Interface Unit and
RT-DAC/PCI board.

Fig. 3.12. Cart and 2D angle measuring unit Fig. 3.13. X axis drive
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3.4. Testing the 3DCrane

In order to understand the control system, it is e
: i : e

necessary to test the model provided by the — 5
T’El

Inteco®. Testing may help to solve the problems 4*.%
appeared in assembling the system. In Figure |

Crane 2D

3.14 the model of 3DCrane is shown. It is . . . .
Fig. 3.14. Simulation model provided by

important to know, that the outputs are the Inteco®
values measured by the encoders. In this type of

system, the encoders must be calibrated accurately. The calibration must be provided at least
every half a year. It is noted in encoder provider webpage: “Exposure to all absolute-maximum-
rated conditions for extended period may affect device reliability” [18]. It is not known, if the

3DCrane was often used in absolute-maximum-rate.

X control, Y control, Z control inputs represent the control signals of the X, Y, Z DC drives
that may be set. The control values may vary from -1.0 to +1.0. The value of -1, 0.0 and +1
mean respectively: the maximum control in a given direction defined by +1, zero control and

the maximum control in the opposite direction to that defined by -1 [16].

3D Crane Simulink scheme is shown in Figure 3.15. It consist of the Parameters of the system,
Measurement gain from the encoders and switches and control block that reads information
from the model code, provided by Inteco®.

Parameters Measurements

ResetSouce

X Switch
D)
LimitScurce .
N ) ¥ Swich
—— LimitSw ichGain
LimitF lsgSource in
Z Swich
PN MPr es calerSource: P MPrescaler in |3>_’
ThermFlagSource Thamriss ThermFlagGain I>—>
oo S e
RessiSwishFlsgSource R - - :
= .
- - yy Z Pattion
— oo [
XAngleScale  <Angle
Control o ()

YAngle Scale T Angle

G- S

Seturation PO PWMGsin

ZPWM

Fig. 3.15. Simulink Model of the 3D Crane by Inteco®
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The simulation of the model control scheme is shown in Figure 3.16. The scopes are showing
as the input signal and the position reading from the encoder for X, Y and Z axis in 3DCrane
workspace. As it is described in [16] the cart of the crane must follow the position according
the input impulse. Thus the range of the output is -1 to 1. The position must be limited by the

physical workspace of the crane. The simulation results are shown in Figure 3.17.

INTECOMODEL
1 X
X Pagiton =
sgnal 1 1 gL YFostos =
X Fores x | ) I ZPesiton =
Sl | X Asgle 5 3
Yo Y i X Swich “E‘
oncff | Y Y Swirch =
ES set 1 / V ZSwitch _D
=
Zfoom z
wort Grane 30
1
| | -

Fig. 3.16. Inteco® model control scheme

T T =

(a) (b)
Fig. 3.17. The Inteco® model simulation inputs and outputs: (a) one position; (b) two different

positions in workspace
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According to the results of the simulation (Figure 3.17), it can be clearly seen that the crane
does not move to exact position required by the input pulse. Moreover, the behaviour of the
output looks like the velocity curve. It cannot be therefore conformed that the Inteco® provides

the position control model.

3.5. Chapter summary

Nowadays, the three-dimensional cranes are widely used in industry. However, the control
question plays the important role in crane system engineering. Many researches has been
conducted aiming to improve the accuracy and minimize the system human interface. It is
necessary to increase the work efficiency provided by the cranes, avoid accidents and minimize
dependence on the system operator by involving automation control.

The studied object is the small-dimensional copy of the industrial 3D cranes. The control logic
provides the signal to control three DC motors, moving along X, Y and Z axis. The position of
the crane as well as the angles of the payload are measured by the encoders in real-time

simulation. The force input must have an impulse curve in order to obtain required position.

The model control experimentation of the model provided by the manufacturer is shown in
Figure 3.17. It has been concluded that, the 3DCrane control model does not behave as the

position control. The output curve looks more like the speed control.

The main reason to build my own mathematical model is to obtain the position control. Because
it is not easy to control the speed of the crane, comparing to the position in workspace.
Moreover, the main idea is to avoid sensor feedback as the accuracy is decreasing due to the
amortisation problem of the encoders. Another reason to avoid encoders is to decrease the cost

of the service and the system itself.
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4. THE MODEL DEVELOPMENT AND SIMULATION

As it was mentioned in Chapter 2 the modelling of the mechanical system is one of the most
important parts in control engineering. Modelling helps to understand physical and theoretical
behaviour of the system. The chapter outlines the dynamic model derivation of the 3DCrane.
Derived model will be therefore approximated around the sines and cosines of the payload
angles. Based on derived dynamic model, two solutions will be provided. Moreover the model
outputs will be also tuned.

4.1. Dynamic model of the 3DCrane

The schematic drawing of the 3DCrane is shown in Figure 4.1. The schematic drawing of the
3DCrane workspace is shown in Figure 4.2. All the dynamic parameters presented in the figures
are described in Table 4.1. There are 5 parameters measured by the encoders: x,,, yu, [, a, B.

This parameters are also the outputs of the controlled system.

— T
i

F

— Z
_ Ty cart (27 % X X 4
— -
F -
Vo .
e - - Xw
Y B\ =
s . .

-‘f _"_-"-‘.' D
Home
Fig. 4.1. 3DCrane schematic drawing Fig. 4.2. 3DCrane Workspace schematic drawing
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Table 4.1. 3DCrane dynamic parameters description

Symbol | Description Description

me Mass of the cart g Gravitational constant
m; Mass of the payload E, Force driving the rail with the cart
m, Mass of the moving rail E, Force driving the cart along the rail
l
Tx

X-axis position of the payload Length of the lifted load
Vp Y-axis position of the payload X-axis tension force
r Z-axis position of the payload I Y-axis tension force

S Reaction force acting while lift the load
Xy X-axis position of the cart in workspace
Yw Y-axis position of the cart in workspace

a Angle between the projection of the lift-line on XY plane and the lift-line
5 Angle between the negative direction of the Z-axis and projection of the lift-line
on XY plane

4.1.1. Position of the payload equations

Using the simplified drawing of the position of the payload (Figure 4.3) the trigonometrical

dependence is obtained.

z
x1 X
‘./“ ’ & I .
vy //
=
Fig. 4.3. The drawing of the position of the payload
sinf = = (4.1)
sina = % (4.2
cosa = (4.3)
cosf = i—l 4.4
x; = lcosasinf (4.5)
y, =lsina (4.6)
z; = lcosacosf 4.7
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The mathematical representation of the payload position can be therefore derived using
equations (4.5), (4.6) and (4.7):

Xp = Xy + lcosasinf (4.8)
Yp = Yw T Isina (4.9)
Z, = lcosacospf (4.10)

4.1.2. Dynamic equations

In order to describe the dynamics of the 3DCrane system (Figure 4.1.) Newton’s** second law

of motion is used F = ma:

mi, = S, (4.11)
mij, =S, (4.12)
miz, = =S, —myg (4.13)
(m.+m)x, =F, —T,+ S, (4.14)
My = F, — Ty + S, (4.15)

where the axis components of the vector S are as follows:

S, =Ssinasinf (4.16)
Sy, =Scosa (4.17)
S, =Ssinacosf (4.18)

We now state that the total control forces supplied each axis are equal to N, N,,, N, accordingly
and take into account equations (4.16), (4.17) and (4.18). The input force is the total forces
required for the control system in order to move the crane along the axis. 3DCrane dynamics

can be therefore rewritten as follows:

14 1saac Newton — English physicist and mathematician (1642 — 1726/7). Widely recognised as one of the most
influent scientists of all time.
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Ny cosasinf

=~ (4.19)
jp = (4.20)
4, = Nacosacosp o cosh (4.21)
%, = %‘w (4.22)
Yw = W (4.23)

The dynamic model obtained is highly nonlinear differential equations system of second

order?®,

4.1.3. Approximation

The dynamic model obtained is highly nonlinear multivariable system. Its dynamical equations
(4.19) to (4.23), no doubt, require the approximations. If assume that the deviation of the
payload form the z-axis is small, the dynamic model can be then simplified. Assume both angles

a and S are very small, almost negligible. The trigonometrical approximation rules are used:

cos a = cos (g - (—Aa)) = cosg- cos(—Aa) + sin%- sin(—Aa) = —sinAa = —Aa (4.24)

sina = sin (g + Aa) = sin%- cosAa + sin%- sinAa = cosAa =1 (4.25)

Using the equations (4.24) and (4.25), the angles can be therefore expressed as:

sina = «a (4.26)
cosa =1 (4.27)
cosp=1 (4.28)
sinf = f (4.29)

The simplified dynamic model of the 3DCrane is now obtained. The model depends on the total
input forces on each axis Ny, Ny, N,.

15 Second order differential equation — equations containing the second derivative.
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Z — —
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(mc+my)
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w me

(4.30)
(4.31)
(4.32)
(4.33)

(4.34)

Important remark. The model could be modified adding another dynamic effects, such as

viscous damping coefficient, mass moment of inertia of the gantry and rail motors, gantry

friction and other. Nevertheless, the addition dynamic effects can be directly cancelled by the

controller. They are therefore not included and assumed inside of the control forces N, N,,, N,.

The next step is to assemble the Simulink model using the obtained results of the dynamics.

4.2. Simulation of the dynamic model

As it is said in Section 2.2 it is important to simulate the dynamic model. There might be several

problems with the simulated model. If the model is assembled correctly, the approximations

may cause an unexpected behaviour of the model. Subsequent study helps to understand the

model and subject behaviour more precisely.

The Simulink block diagram of the model is presented in Figure 4.4.

Kw . K .
) > D E
3 Contrel —_—— b+ = i
P Xw
Add2 AUfmr+me) Integrator Integrator?
Y R
&> e J T N VD)
Ci
an " L= ] L= ™
Add2 1ime Integrator® Integrators
1 P 1
—®{beta »| 1ml = » 1 » 7
beta 14mil Integrator® Integrator!
G Yp.. e
= qlb NP o T o2 NED
I L L e
alpha 1imit Integrstor2 Integrator2
Zp.. Zp.
..r:;,‘-\ » 1 o 1 NED)
— L= | L=

1/miz Integratord

Integraiors

Fig. 4.4. The simplified dynamic model Simulink block scheme
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After double integration of the input forces, the system must have the position as an output for
each axis. In Figure 4.5 the control scheme of the model is shown. The control logic is to obtain
the position giving the forces as the inputs. It has been stated in Section 2.4 that many variables
are often considered as constant values. In this model both angles of the payload a and f are
assumed constant (Annex 1 lines 8 and 9). However, they may not be completely neglected due

to the reasons they present in the dynamic model.
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Fig. 4.5. The Simulink control scheme of the simplified dynamic model
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Fig. 4.6. Input (blue) and output (black) signals of the dynamic model: (a) no gain, (b) using
the gains for each axis
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The simulation results are presented in Figure 4.6 (a). The black curve represents the position
output and the blue one shows the input force pulses. It can be clearly seen that the position
does not go according to the input force (Figure 4.6 (b)). This problem can be solved by adding
the gain to every axis input (Annex 1). They are also called amplification factors. Gain is the
proportional value that shows the relation between the input and the output. Nevertheless,

including the gain is a very dangerous step as it may cause the system instability.

Figure 4.6 (b) shows the correct solution for the model. Now it can be seen when the pulse
wants the crane to move to 1 the crane goes to the axis position 1 relatively. In Figure 4.7 the

modified Simulink block scheme is presented.
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Fig. 4.7. The Simulink control scheme of the simplified dynamic model with the axis gains

Gains improve the system. Theoretically, the cart of the 3DCrane must now move to the

position in workspace according to the input impulse.

4.3. State-space representation

In order to solve the 3DCrane approximated system, the state-space'® representation is used. It
is the best solution to highly complicated physical systems. Before deriving a linear
combination of n variables, the dynamic model derived in previous chapter, must be modified.

First of all, we denote the length of the lifted load [ as the position of the Z-axis z,,. Using the

16 State-Space — mathematical model of a physical system as a set of input, output and state variables related by
first-order differential equations.
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approximations we made in previous chapter the position of the payload equations (4.8), (4.9)
and (4.10) takes form:

Xp = Xy + 2,0 (4.35)
Yp = Yw T Zpa (4.36)
Zy = —Zy (4.37)

The velocity of the payload can be easily found by taking the first derivative of the equations
(4.35), (4.36) and (4.37):

Xp =Xy + 2B + 2, (4.38)
Yp = Yw T Zya + z,a (4.39)
Iy =—12, (4.40)

The acceleration of the payload is therefore the second derivative of (4.35), (4.36) and (4.37):

Ky = Ey F ZyB + 22,,@ + 2,d (4.41)
Fp = i F Zy @ + 22, + 2,0 (4.42)
2, = —2, (4.43)

By substituting (4.41) — (4.43) to (4.19) — (4.23) we obtain five nonlinear differential equations

describing the system. The variables x,,, y,,, z,,, @, B are unknown variables.

%, + 7,8 + 22,0 + 2,8 = Zl—l i (4.44)
Py + Zt + 22, + 2,0 = :TZI“ (4.45)
Ly =02 (4.46)
%, = (Ijn-:-_l\rlnﬁ) (4.47)
Y = W (4.48)

The smallest set of linearly independent system variables such that the values of the members

of the set at time t,, along with known forcing functions completely determine the value of all
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system variables for all t > t, are called state variables [5]. The linearization of nonlinear

system in state variable form is presented as follows:

X1 = Xy (4.49)
X3 = Y (4.51)
X4 = Vi (4.52)
Xs = (4.53)
xe =p (4.54)
X; =« (4.55)
Xg =0 (4.56)
Xo = Zy (4.57)
X10 = Zw (4.58)

A vector whose elements are state variables is called state vector [5]. It is expressed as the
n X 1vector x = [x; x, ...x,,|7. The variables measured by the encoders of the 3DCrane
form the outputs m x 1 vector y = [y; vy, ...y, ]7. In our case the outputs are known as

Xwr Ywr Zw, @, B. Taking into account equations (4.49) — (4.58) the output function can be

expressed as followed:

Vi=Xw =X (4.59)
Y2 =Y = X3 (4.60)
Y3 =B = x5 (4.61)
Ya =0 =Xy (4.62)
Vs = Zy, = Xg (4.63)

The input variables are control forces N,, N,, N,. Together they form p X 1 input vector u =

T : : . . . .
[u1 U, ... up] , Where p is the number of inputs. A set of n simultaneous, first-order differential
equations with n variables, where the n variables to be solved are the state variables called state
equations [5]. The state derivatives are obtained taking into account (4.44) — (4.48). The

simplified system of state equations for the 3DCrane is:
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o _ _ Nx+Nsz
x2 - w (mC+m‘l") (4.65)
. . Ny+Nzx
ks = Jo = = (4.67)
Xs = = x6 (4.68)
.. 2z —M—Zx X
to = ff = T merm) (4.69)
X9
Xy =d = xg (4.70)
2% 7‘%‘29510958
Xg = @ = ¢ (4.71)
X9
Xg = Zy = X190 (4.72)
. .. Ny
X109 = Zy = —E (473)

A system is represented in state-space by the equations (2.2). It is therefore necessary to find
state matrices 4,B,C and D. The matrices components are formed with the components

expressed as followed:

al] = %, l = 1, 2, e, ny ] = 1; 2) ey (474)
ax]-
9% . .
by=2t  i=12.,n j=12..p (4.75)
Uj
ay; . .
Clj = a_;):j, L= 1, 2, e, M, _] = 1: 2) e, n (4'76)
d; =22 i=12..m j=1,2 (4.77)
U ouy’ =Ls..m j=Ls..,pD '

All the differential equations for the state-space matrices elements can be easily calculated by
the MATLAB operation diff (Annex 2). However obtaining the matrices elements does not
provide the final solution. The 4, B, C and D matrices must be represented taking into account
the steady-state operation point x0 =[x %0 y%y° B0 B0 a® a0 I° ZO]T =
[0000000000]7andinputu® = [0 0 0]7, because all the derivatives of the state variables,
measured variables and input forces must be equal to 0, when the expected position of the cart

is obtained.
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Note that the approximation states that the angles of the payload are very small. Their values

are therefore taken equal to 0. In simulation they will show no oscillation in output. In real

system however the output angles must show the nonlinear behaviour: here the oscillation is

expected. In order to control and simulate the state-space representation of the 3DCrane, the

obtained solution must be adequate.

4.4. State-space representation simulation

In order to simulate the state-space matrices in Simulink the State-space block can be used.

Simulink® software converts a matrix containing zeros to a sparse matrix for efficient

multiplication [19]. The specification of the state matrices inside of the block is necessary. The

state-space matrix model is presented in Figure 4.8.
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Fig. 4.8. State-space representation model
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The state-space representation of the 3DCrane can be therefore simulated. The control scheme
is shown in Figure 4.9. The input control forces are taken as described in Section 4.1.4.
Important to note that there are also gains used in every axis force. However, the gains are
slightly different from the ones obtained in Section 4.1.4. (Annex 2).

As an output we must have variables as we set in (4.59) — (4.63). The scope therefore compares
input forces with the output positions. Two different input forces are presented in Figure 4.10.
The black curve represents the position output and the blue one shows the input force impulse.
The behaviour in Figure 4.10 (a) describes a single impulse. It is clearly seen that the model
obtains the necessary position on every axis. Moreover, Z-axis goes in opposite direction,
because the axis has been chosen up as the positive direction (Figure 4.1). For the simplicity
the Z-axis gain was multiplied by —1.

(a) (b)
Fig. 4.10. Inputs (blue) and outputs (black) of the state-space representation: (a) single

impulse, (b) double impulse

In Figure 4.10 (b) double impulse control is presented. According to this input, the cart must

move to two different positions during the simulation time. Moreover, it is important to note,
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the output is absolutely identical to the simplified model simulation result (Figure 4.6 (b)) done

in Section 4.2.

4.5. Chapter summary

The chapter describes the mathematical modelling of the 3DCrane system. The Newton’s
second law of motion is used to describe the dynamics and trigonometry representation used to

state the position of the payload of the system.

Although the system is highly nonlinear MIMO, the trigonometrical approximation (4.26) —
(4.29) can be used to simplify the model. The obtained dynamic model is a system of nonlinear
differential equations of second order. Taking the derived equations and approximation into
account, the Simulink model is therefore built. The simulation results are shown in Figure 4.6.
In order to stabilize the system an amplification factors were added.

This chapter has also dealt with the state-space representation of the 3DCrane model. The
dynamic equations and approximation described previously are used. The system has 10 state
variables, 3 inputs and 5 outputs. The simulation results are presented in Figure 4.10. The

provided solution makes the system behave as expected.

Both models developed are very similar. Indeed, they were built using the same dynamic
equations and approximations. Nevertheless, the models cannot completely replace the real
3DCrane model. Due to the reason, the approximation excludes the angles of the payload. Any
way, they can be used as the sensorless position control. The next chapter compares derived

model and the Inteco® original 3DCrane model that depends on the encoders.
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5. MODELS COMPARISON

The chapter deals with the mathematically obtained model comparison with the 3DCrane
manufacturer model based on the encoders feedback. It is important to find out, how accurate
was the model derived comparing to the real system. What is the difference between them and
if true what cause the difference. The result can therefore exclude the encoders from the system.

Also, it will provide the sensorless position control of the 3DCrane.

5.1. State-space representation and Inteco® model comparison

As soon as the 3DCrane modelled and the state-space solution are obtained, it is important to
compare the theoretical model with the real 3DCrane model provided by the Inteco®. Both state-
space and Inteco® models are placed in one Simulink® workspace window (Figure 5.1). The
same input is given to both models. Three scopes are added to view the input, the Inteco® output
of the model and the output of the state-space representation. The comparison of the results is
presented in Figure 5.2. The blue line shows the state-space representation output, the black

line - Inteco® model output and the red line shows the input force.

MODEL COMPARISON
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Fig. 5.1. Inteco® and state-space models in Simulink® workspace window
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(a) (®)

(<)
Fig. 5.2. Input forces (red), output of the Inteco® model (black) and stat-space output (blue):
(a) X-axis, (b) Y-axis, (c) Z-axis

It can be clearly seen that the Inteco® model output slightly differs from the state-space
representation output. First of all, it does not obtain an expected value of the workspace
position. Secondly, the output scope in Inteco® model does not behave as the position output

curve.

The Inteco® model output curve theoretically looks more like a speed curve. Moreover, during
the experimentation, the 3DCrane trajectory also behaves as the impulse input. It makes the
cart, rail and the load of the crane move with the speed in workspace, however, not to move to
expected position. Therefore, it has been concluded that the 3DCrane model provided by the
Inteco® does not have the position control at the output, as it is said in the model. More likely,

it gives the speed of the movement along the according axis.

Thus, it is necessary to provide the next experimentations adding the Integrator block to the
input of the Inteco® model (Figure 5.3). The block must integrate the input acceleration forming
the speed as the input to the model block. The solution expects the position curve as the output
of the model.
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Fig. 5.3. Modified comparison model in Simulink® workspace window

The simulation results are provided in Figure 5.4. Again, the blue line represents the state-space
representation output, the black line - Inteco® model output and the red line shows the input

force. Moreover, it has been decided to reduce the input force value due to avoid the crane

workspace position limitations.

(a) (b)

(c)
Fig. 5.4. The modified models comparison input force (red), output Inteco® model position
(black) and output state-space (blue): (a) X-axis, (b) Y-axis, (c) Z-axis
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According to the results obtained during the last simulation (Figure 5.4), the Inteco® 3DCrane
model now has a position curve as an output. Moreover in Figure 5.5 it is shown the physical
positions of the 3DCrane during the experimentation. On the picture (a) the crane cart is in the
corner of the workspace frame (Home position). The Figure (b) shows the location of the cart
in XY-axis. It can be seen that the positions are respectively located according to the pulse
given at the input for X and Y axis. Finally, the Figure (c) shows the position of the crane closer
to the Home position in both X and Y axis. The second pulses are also lower than the first ones,

what explains this behaviour.

Fig. 5.5. The physical position of the 3DCrane in workspace during the experimentation: (a)
home position of the crane, (b) first input impulse, (c) second input impulse

The control design logic is easier to obtain having the position as an output. The position is
visionary easier to imagine comparing to the moving speed of the crane. However, state-space
output does not match completely the output of the crane obtained from the encoders. Several

reasons can cause this difference.

51



First of all the workspace is not exactly 1000x1000x1000 mm. According to measurements it
IS 920x920x820mm, the control is however designed in variation from -1 to 1. Secondly, the
state-space model may not be accurate and causes the error. Nevertheless, it has been stated in
Section 2.1 of Chapter 2 that the models are always ideal. Thus, it is logic that two model output
differ one with another. Finally, the encoders may also accumulate the error. The encoder may
not be properly calibrated by the time the experimentation was held or it has lost its accuracy

during the exploitation.

5.2. Chapter summary

This chapter concludes the model derivation. The steady-state representation of the 3DCrane
model was compared with the real model of the 3DCrane provided by the manufacturer Inteco®.
As a result, the steady-state representation does not behave as a real 3DCrane model.
Nevertheless, it has been concluded that manufacturer model does not provide the position as
an output. The output looks more like the speed of the cart and payload along the axis (Figure
5.2). It has been also stated in Chapter 3.

The second experiment was carried adding the Integrator to every input of the Inteco® model.
As a result, both models behaviour are similar to each other. It proves again, that manufacturer
has a speed as an output of the model. Theoretically, by integrating the input force we must
obtain the speed.

However, the state-space representation and Inteco® model still has the errors. Probable reason
for the mismatch can be the state-space representation. The solution may be incorrect. The
model is also ideal and differs from the real behaviour. Furthermore, the workspace is not
exactly 1000x1000x1000 mm. Finally, it can be explained with the error accumulated in the
encoders. Still the derived model can be used as a sensorless position control for the 3DCrane.
As it was stated before, the model, unfortunately, cannot replace the encoder for the payload
angles. Another solution has to be found due to model and simulate the payload angles respond

and full dynamic model of the system.
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6. THE FULL MODEL DEVELOPMENT AND SIMULATION

The full model of the 3DCrane is 5 degree of freedom system. 3 degrees of freedom are related
to the X, Y and Z axis. Two more degrees of freedom are related to the angles of the payload
lifting the line a and B (Figure 4.1).

The full model of the system is important in order to observe the behaviour of the payload. If
the angles of the lift-line is possible to predict, before building the control system, the sensor

measuring the angles can be removed. In order to obtain the dynamics equations of the system,

the Lagrangian®’ approach for the dynamic system will be used in this chapter.

6.1. Dynamic model of the 3DCrane using the Lagrangian approach

Again as in Chapter 4.1, where the simplified model has been derived, we start with the
mathematical representation of the payload position (4.8) — (4.10). The dynamic summary of
the system will be obtained using the Lagrangian approach. In classical mechanics, the natural
form of the Lagrangian is defined as the kinetic energy K of the system minus its

gravitational potential energy P [20]:

L=K-P (6.1)
K = %mv21 (62)

where m — mass,

v — speed.

P =mgl, (6.3)
where m — mass,
g — acceleration of gravity,

[ — length.

17 Joseph-Louis Lagrange (1736 - 1813) — Italian mathematician and astronomer.
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In this case K is the kinetic energy of the crane and its load. P defines the potential energy of
the load. The precise derivation of the kinetic and potential energies as well as the full
Lagrangian representation of the dynamic system is shown in Annex 3.

If the Lagrangian of a system is known, then the equation of motion of the system may be
obtained by a direct substitution of the expression for the Lagrangian into the Euler®-Lagrange
equation [20]. The Euler-Lagrange equation is a second-order partial differential equation,

whose solutions are the function for which a given function is stationary [21].

The Euler-Lagrange formulation of the dynamic system is as follows:

wG) =", (6.4)

where i = 1,2,3,4,5 — degree of freedom,
L —the Lagrangian of the dynamic system,
q; — state variable,

F; —force.

Derivation of the Euler-Lagrange formulas for each degree of freedom of the system is
described as well in Annex 3. The final result of the dynamic system for the 3DCrane is as

follows:

(me +my +my + m% + myl cosasin B — 2m,ld sin a sin  + 2myif cos a cos B — myld sin a sin f —
—m,ld? cos asin § — 2mylaf sin a cos B + mylf cos a cos B — m;lf% cosasin B = u,
(me + m +m)y + mylsina + 2myld cosa + myléd cosa — myla?sina = u, (6.5)
2myl + myx cos a sin § + myj sin @ — myifcos?a — myid® —m;g cosacos B = u, '
—my¥lsin a sin § + m;yl cosa + m;I%é& + 2mylia + myglcosasinB = 0
m¥l cos a cos B — 2myl2af sin a cos a + 2my12ficos?a + 2mylifcos?a + myglsinacos B = 0

Here the input forces for the 3DCrane are stated as u,, u, and u,. Character u is related to the

input in control system theory.

18 L eonhard Euler (1707 - 1783) — Swiss mathematician and physicist.
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State-space representation will be used to build the model of the system. Again, the A, B, C and

D matrices must be represented. In order to diminish the dynamic system (6.5), the steady-state

operation point x° = [x° %0y y° ° B0 a® ¢° I° l'°]T =[0000000000]" can be used.

In Annex 3 nonlinear differential equations of second order describing the dynamics of the

system is found. The final model taking into account the steady-state operational point is as

follows:
( o 1 myg
X = U, + B
me+my+m Mme+my+m;
o mg
Y= mce+my y mce+my
P 1 gme+me+mp+my)
1= Wmetmp+my) % (me+mp+my) B (6.6)
. 1 g(me+mp+my)
T e Y T mermy)
.o _ 1
. l= Z—quZ

The linearization of nonlinear system in state variable form is presented in (4.49) — (4.58). The

output is presented in (4.59) — (4.63). The input of the system is presented as forces vector u =

[ u, u,]" . Finally, the state derivatives are given by:

561 == xW == xZ (67)
C_ e 1 myg

X2 = XW - me+my+my ux + mc+mr+mlﬁ (68)
X3 = Yw = X4 (6.9)
D 1 mg

Xa = dw = me+my Uy + me+my a (610)
ks =B = xq (6.11)
Y, 1 _ g(metme+my+my)

to =B =~ fnrmrmy Y T gty my P (6.12)
X7 =@ =Xxg (6.13)
T 1 _ g(metmy+my)

Xg = A= l(me+my) Y L(me+my) a (6.14)
*o = Zw = X1 (6.15)
dio = Zy =55 (6.16)
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Together with the simulation script the state-space 4, B, C and D matrices are found in Annex
4. This model allows observing and studying the full model of the 3DCrane. The angles of the

payload can be simulated and analysed.

6.2. Model simulation and comparison with the real 3DCrane system

Again as in Chapter 5 Figure 5.1 both the real 3DCrane and state-space representation models
will be connected in Simulink®. However, this time we are also interested in a and S angles.
Thus, the additional scopes will be added to observe and study the inputs and outputs (Figure
6.1).
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Fig. 6.1. Inteco® and state-space models in Simulink® workspace window

However, it is important to state that the length of the lift-line [ must be entered as a constant
value (Annex 4 line 7). Even if the position of the Z-axis is controlled variable, the other
dynamic model variables still depend on [ (6.6). In simulation of the length of the lift-line [ =
0.6 mm. The value is expected according to the control input. It is assumed that if the input
force is equal to 0.6 N, the position of the load along the Z-axis should be 0.6 mm as well. Thus

the length is also 6 mm.
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The simulation results are provided in Figures 6.2. and 6.3. Figure 6.2 presents the position
control along the X, Y and Z-axis. Figure 6.3 shows the angles of the payload encoders and
model output. It can be clearly seen that the axis control (Figure 6.2) has some small error along
the X and Y-axis comparing to the encoders output. Z-axis however has a very big error between

two models. Moreover, it is clear that Z-axis encoder is far from the expected output.

NN

(e)
Fig. 6.2. Input forces (red), output of the Inteco® model (black) and stat-space output (blue):
(a) X-axis, (b) Y-axis, (c) Z-axis

(@) (b)
Fig. 6.3. Output of the Inteco® model (red) and stat-space output (black): (a) B (b) o
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In Figure 6.3 a and B outputs are presented. It can be concluded that the state-space model is
not precise. The periods of load oscillations almost match the encoder values. However, the

amplitude is different between the practical and theoretical results.

It can be presumed that many dynamics such as viscose friction coefficient and encoder
dynamic are neglected while modelling the system. Thus, the derived model of the 3DCrane is
ideal. Moreover, the 3DCrane frame can also be tilted, what may cause the model output errors.
Finally, it must be also considered the encoder error or the mistakes and approximation in

modelling the state-space representation.

6.3. Tuning the system

According to the results presented in Figures 6.2 and 6.3 the output respond still has some
errors. While the output position respond is easy to tune simply dividing the output steady-state
value by the input force value, the correction gain for the angles is hard to find. Annex 4 line 9

shows the input matrix calculation. In Figure 6.4 the tuned position responds are presented.

(a) (b)

(c)
Fig. 6.4. Input forces (red), output of the Inteco® model (black) and stat-space output (blue)

with the correction gain: (a) X-axis, (b) Y-axis, (c) Z-axis
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The positions along the X, Y and Z-axes are designed to follow according the input force. The
state-space model is also tuned according to the design. However, it can be seen (Figure 6.4)
that there is still error between the encoders output and the state-space representation of the

model.

As for the angles, the input force does not influence the angles outputs. The respond is the same
as it is shown in Figure 6.3. Nevertheless, as the frequencies of the angles are the same, there
can be several reasons why the encoders and the state-space representation do not match each

other in amplitude:

1. The dynamic model is simplified.

2. Derived model is ideal and exclude much dynamics.

3. The influence of other components such as encoder attached to the side of the cart
moving along the Y-axes is neglected in model (Figure 6.5).

4. The 3DCrane frame can be tilted.

5. Encoder error.

6. Other problems.

Fig. 6.5. The cart components that might cause an additional dynamic

59



6.4. Chapter summary

The chapter outlines here the full modelling and simulation of the 3DCrane. The Euler-
Lagrange approach was used in order to derive the dynamic model for the system. The full

derivation is presented in Annex 3.

The state-space representation of gain dynamics are presented and simulated in this chapter.
The state-space matrices are compared to the real 3D crane behaviour. The state-space model
can completely replace all the encoders in the system. However, the practical results do not

completely match the state-space representation output.

We found that there is still small error between derived model and encoder results. There can
be several reasons for this error. Again the model has been approximated, many dynamics has
been neglected, and the encoder may not be calibrated by the moment of experimentation.

Nevertheless, the control system can be still used for the operation of the 3DCrane.

The correction gain used to match the output position respond. The correction gain allows to
compensate the approximated and neglected dynamics. The correction gain is obtained dividing
the output respond by the expected respond value. The positioning results are presented in
Figure 6.4. The respond of the state-space representation obtains the expected output with the

correction gain.
Notwithstanding, the modelled angles are far from the encode results. Although the amplitude

is not the same comparing the 3DCrane model and state-space representation, the frequencies

of the oscillation for both o and B angels are very similar.
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7. CONCLUSION

Automation industry is not the field, what human has built. We find many automated systems
around us: in our body, in weather, in nature in general. We try to understand and use the
knowledge of automation and control design in our everyday life. We want to make our life
more safe, easy and cheap. Automation and control engineering is all around us. We use devices
and robots to replace the routine and dangerous work. We cannot imagine our life without a

number of systems, what are the products of automation.

The study object is small dimension model of 3D crane (also called overhead crane). The 3D
cranes are widely used in the industry for vessel loading and unloading, to handle full or empty
containers and lift up to 80 tons, automotive lines, ship and airplane building, power industry
and other heavy manufacturing. Many researches has been made in order to automate the 3D
cranes. It will help to avoid accidents and maybe replace the operator.

The provided model of 3D crane is based on the encoders feedback. Encoders due to their
specification may accumulate errors within exploitation. Encoders must not only be calibrated
regularly, but also they increase the cost of the system. It has been therefore decided to derive
the model of 3DCrane in order to replace the encoders with the mathematical model. Several
advantages may be named with successful solution: the mathematical model is cheaper, it does
not require calibrations, it is easy to build the automated control system and the system does
not depend on the feedback.

Brief introduction to the control systems engineering opens the thesis. It presents the theoretical
implementation of the control and automation engineering. The explanation, how the
mathematical modelling, simulation and control design are connected between each other in

automation field is shown. Different control systems are shortly described.

The new solution for modelling the 3D crane presented in thesis is the state-space representation
of dynamic model of the system. State variables are taken into account while modelling the
system. Dynamic system is calculated using the Euler-Lagrange formulation for the dynamic

system. Lagrangian equation is calculated balancing the kinetic and potential energies.
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Moreover, the final dynamic equations are therefore approximated around the cosines and sines

of the payload angles. The system of second order differential equations is obtained.

State-space representation in particular consists of specifying the system’s desired poles
locations, what are represented in matrices depending on the state variables. The controller
consists of state-variables feeding back to the input (Figure 4.8). One of the biggest advantages
of applying state-space matrices is that it allows computer simulation. Comparing with many

other control designs, state-space allows to design automation using the computer.

In present thesis, state-space has three inputs as control forces for each axis and five outputs:
the position of the crane in three-dimensional space x, y, z and angles of the payload. First, the
angle between the projection of the lift-line on XY plane and the lift-line . Second, the angle
between the negative direction of the Z-axis and projection of the lift-line on XY plane 8. The

z coordinate of the payload was also expressed as the length of the lift-line L.

First of all, the dynamic model provided by the 3DCrane manufacturer was simulated and
analysed. It has been concluded regarding the results (Figure 3.17) that the Inteco® model has
the velocity as an output. Next, the integrator has been added to the input of the system. The
behaviour of the crane after that was similar to the position scope. When the derived model and
the model provided by the manufacturer were compared, the last model was simulated together

with the additional integrator block.

Both derived model outputs are similar to each other due to the reason they are built using the
same mathematical model. Anyway, these models cannot completely replace the Inteco® model,
because the angles dynamic has been approximated. The output therefore has no changes in the
angles output signal. However, the control system may still replace sensorless position control

in case angle dynamics are not important.

Next, theoretical and practical models were compared. In Figure 5.4 both Inteco® and derived
models output signals versus the input forces are presented. It has been concluded that model
does not behave the same, however very close to each other. There can be several reasons for
these results. Probable reason for the mismatch can be the rough approximation of the
mathematical model, the workspace of the 3DCrane is not exact. Finally, it could be explained

by the error accumulated in the encoders.
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The next task was to derive the full model of the 3DCrane system in order to observe the
dynamics of the payload angles. Here the Euler-Lagrange approach was used. The full

explanation of model derivation is outlined in Annex 3.

The simulation results in Figure 6.2 has proven that the full model is close to the real encoder
output. However, it can be clearly seen that Z-axis has a large error between outputs (Figure
6.2 (c)). Moreover, the amplitude of the payload angles is not the same comparing to the
3DCrane model and state-space representation (Figure 6.3). The frequency of the oscillation

for both a and B angels nevertheless is very similar.

If the angle dynamics is hard to tune, the output position can be tuned with the correction gain
for every axis. The results are presented in Figure 6.4. With the correction gain the state-space
behaves as expected: the positions moves according to the value of input force. However, the

position is limited with the frame dimension and lift-line length.

Several proposals are made to explain the wrong behaviour of the angles dynamics. First, the
derived model is ideal and simplified around the payload oscillation. Secondly, some other
components may influence the system. For instance, the encoder attached to the side of the cart
moving along the Y-axes (Figure 6.5) was neglected in model. The component has the mass
and theoretically should not be neglected. Third reason, the 3DCrane frame can be tilted.
Finally, encoder error may appear. Moreover, many other reasons can trouble the correct

dynamics.

Despite the fact, the real encoder model output is not absolutely the same as in state-space
representation, the derived model can still be used as the sensorless control logic. Anyway, in
order to implement the theory in real life, in industrial 3D crane some additional devices must
be financed. The MATLAB® model must be interfaced with the system due to through the

hardware.
In industry the mathematical model of 3D crane may have a very useful impact. Even the

solution presented in this thesis may be very beneficial. It can be used to replace the operator

in routine tasks.
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Furthermore, the derived model can be useful in future study. Different controls can be used in
3DCrane control system before testing it on a real crane. It is always cheaper to predict the
behaviour of the system before implement it in the real system. For that is important to have

the mathematical representation as accurate as possible.

The control engineer do not have to design the control system in the laboratory. It can be done
everywhere, where it is comfortable using only the laptop. Later it can be tested in the

laboratory.

This model can also be used to improve it even more precise. Other approach is to use it for the
students’ education. It can be a very good example of modelling of a highly nonlinear

multivariable system using the state-space representation.

In future author would like to continue working in automation control systems design. There
are lot of interesting tasks to complete related to the 3DCrane and other multivariable dynamic
systems. For instance, the fuzzy logic or PID control theory can be tested on 3DCrane to reduce
the payload oscillations. As for the 3DCrane, the safe control logic can be built in Simulink® or

any other modelling and simulation environment, if know the exact requirements.

In my opinion, I have done well with the task. Moreover, | have learnt a lot about the modelling
and control systems design. The language skills have been improved due to the reading many
references in English language to submit the task. However, there could be another solutions
simulated, for example, Laplace!® transform or model prediction control based on state-space

and many more.

19 Pierre-Simon, marquis de Laplace (1749 - 1827) — French mathematician, physicist and astronomer.
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Annex 1

MATLAB script for the simplified model of the cart

1. %% SIMPLIFIED MODEL OF THE CART %%

oe

2. clear all; Clear the Workspace

3. clc; % Clear the Command Window
4 %% Constants

5. mc = 1.155; % Mass of the cart

6. ml = 1; % Mass of the load

7 mr = 2.2; % Mass of the rail

8. alpha = 0.5; % Angle alpha

9. beta = 1; % Angle beta

10. %% Axis Gains

11.Xo = (mc+mr)/11.4; % Gain for X-axis

12.Yo = mc/7; % Gain for Y-axis

13.%Z0 = ml/4;

oe

Gain for Z-axis

14. sim ('Model3"');

oe

Simulate the model
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MATLAB script for the state-space representation

=
oe
oe

STATE-SPACE REPRESENTATION

oe
oe

oe

2. clear all; Clear the Workspace

3. clc; % Clear the Command Window
4. % Constants

5. mc = 1.155; % Mass of the cart

6. ml = 1; % Mass of the load

7. mr = 2.2; % Mass of the rail

8. g = 9.81; % Gravitational acceleration
9. %% Axis Gains

10. Xo = (mc+mr)/8; % Gain for X-axis

11.Yo = mc/4; % Gain for Y-axis

12.%0 = ml/4; % Gain for Z-axis

13.%% Symbols

Annex 2

14.syms x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 Nx Ny Nz; % Short-cut for constructing

o)

% symbolic objects

15.

o
oe

Nonlinear Differential Equations

16.

o

State Variables

17.f1 = x2;

18. f2 = (Nx+Nz*x5)/ (mc+mr) ;

19. £3 = x4;

20. f4 = (Ny+Nz*x7) /mc;

21.f5 = x6;

22.f6 = ( 2*Nz*x5/ml- (Nx+Nz*x5) / (mc+mr)-2*x10*x6 ) /x9;
23.f7 = x8;

24.£f8 = ( 2*Nz*x7/ml- (Ny+Nz*x7) /mc-2*x10*%x8 ) /x9;
25.f9 = x10;

26.f10 = (-1)*Nz/ml;

27.% Outputs

28.yl = x1;
29.y2 = x3;
30.y3 = x5;
31.y4 = x7;
32.y5 = x9;

33. %% A 10x10 matrix

o)

34.all = diff % Difference and approximate derivative

35.al2 = diff (f1l,x2
36.al3 = diff (f1,x3);

(f1,x1)
( )
( )
37.al4 = diff(fl,x4);
( )
( )
( )
( )

’
’

’

38.al5 = diff (f1,x5
39.al6 = diff (f1l,x6
40.al7 = diff (f1,x7
41.al8 = diff (f1,x8

’

’

’
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42.al9 = diff (f1,x9);
43.all0 = diff (f1,x10);

44 . a21 = diff(f2,x1);
45, a22 = diff (f2,x2);
46. a23 = diff(f2,x3);
47.a24 = diff (f2,x4);
48.a25 = diff (f2,x5);
49. a26 = diff(f2,x06);
50.a27 = diff(f2,x7);
51.a28 = diff(f2,x8);
52.a29 = diff (f2,x9);
53.a210 = diff (f2,x10);
54.a31 = diff (£3,x1);
55.a32 = diff (f3,x2);
56.a33 = diff (£3,x3);
57.a34 = diff (£3,x4);
58.a35 = diff (£3,x5);
59.a36 = diff (£f3,x6);
60.a37 = diff(£3,x7);
61.a38 = diff (£f3,x8);
62.a39 = diff (£3,x9);
63.a310 = diff (£3,x10);
64.ad4l = diff(f4,x1);
65.a42 = diff (f4,x2);
66.a43 = diff (f4,x3);
67.ad44 = diff (f4,x4);
68.a45 = diff (f4,x5);
69.ad46 = diff (f4,x06);
70.a47 = diff (f4,x7);
71.a48 = diff (f4,x8);
72.a49 = diff (f4,x9);
73.a410 = diff (£4,x10);
74.a51 = diff (£5,x1);
75.a52 = diff (f5,x2);
76.ab53 = diff (£5,x3);
77.a54 = diff (£5,x4);
78.ab5 = diff (£5,x5);
79.a56 = diff (f5,x6);
80.ab7 = diff (£5,x7);
81.ab8 = diff (f5,x8);
82.ab9 = diff (£5,x9);
83.a510 = diff (£5,x10);
84.a61 = diff (f6,x1);
85.a62 = diff (f6,x2);
86.a63 = diff (f6,x3);
87.a64 = diff(fe6,x4);
88.a65 = diff (f6,x5);
89.a66 = diff (f6,x6);
90.a67 = diff(fe,x7);
91.a68 = diff(f6,x8);
92.a69 = diff (f6,x9);
93.a6l10 = diff(fe,x10);

’

94.a71 = diff(f7,x1
95.a72 = diff (£f7,x2);

( )
( )

96.a73 = diff(f7,x3);
( )
( )
(

97.a74 = diff (£f7,x4);
98.a75 = diff (f7,x5);
99.a76 = diff (f7,x6);
100. a7l = diff (£7,x7);

101. a78 = diff (£7,x8);



102.
103.

104.
105.
106.
107.
108.
109.
110.
111.
112.
113.

114.
115.
116.
117.
118.
119.
120.
121.
122.
123.

124.
125.
126.
127.
128.
129.
130.
131.
132.
133.

134.

135.
136.
137.
138.
139.
140.
141.
142.
143.
144.

145.

l46.
147.
148.

149.
150.
151.

152.
153.
154.

155.
156.

a79
a710

agl
agz
a83
ag4
ag8hb
ag8o6
ag’7
ag8s
ag8o
a81l0

agl
agz
ag3
ag%4
ags
ag6
ag’7
aos
ag9
ag910

alll
all2
al03
alo4
al05
alloe
alo?’
alos
al09
aloll

a2l
a3l
adl
abl
a6l
a7l
agl
agl
alll

oo
oS

bll
bl2
bl3

b21
b22
b23

b31
b32
b33

b4l
b42

= diff (£7,x9);
= diff (£7,x10);

= diff
diff
diff
diff
diff
= diff
= diff (£8,x7
diff (£8,x8
diff (£8,x9
= diff(£f8,x

£8,x1)
£8,x2)
£8,x3)
£8,x4)
£8,x5);
£8,x6);

)

)

)

1

’

’

’

’

’

’

0);

diff (£f9,x1
diff (£9,x2
= diff (£9,x3
diff (£9,x4

( .

(

(

(

’

’

’

’

)
)
)
)
diff (£9,x5);
diff (£9,x6);
)
)
)
1

’

diff (£9,x7
diff (£9, %8
= diff (£9,x9
diff (£9,x

’

0);

= diff
= diff
= diff
= diff
= diff
= diff
= diff (£10,x7
= diff (£f10,x8
= diff (£10,x9
0 = diff (£10,x

£10,x1)
£10,x2)
£10,x3)
£10,x4)
£10,x5) ;
£10,x6) ;

)

)

)

1

’
’

’

’

’

4
0);
State Space A Matrix Calculation

[all al2 al3 ald4 al5 al6 al7 al8 al9 allO;

a22 a23 a24 a25 a26 a27 a28 a29 az2l0;

a32 a33 a34 a35 a36 a37 a38 a39 a310;

ad?2 ad3 add adb ado ad7 a4d8 ad9 adlo;

ab52 ab3 ab4 ab55 ab56 ab57 ab58 ab59 ab510;

ab2 a63 abd4 a65 a66 a6b7 a68 ab9 a6lol;

a72 a73 a74 a75 al6 a77 a78 a79 a710;

a82 aB83 a84 aB85 a86 a87 aB88 a89 a8l0;

a92 a9%93 a9%4 a%95 a%6 a97 a98 a99 a91o0;

al02 al03 al04 al05 all06 al07 al08 al09 al010];

B 10x3 matrix

= diff (f1,Nx);
= diff(f1,Ny);
= diff (f1,Nz);

= diff (f2,Nx);
= diff (£2,Ny);
= diff (£f2,Nz);

= diff (£3,Nx);
= diff (£3,Ny);
= diff (£3,Nz);

= diff (f4,Nx);
= diff (£4,Ny);
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157. b43 = diff (£f4,Nz);

158. b51 = diff (£5,Nx);
159. b52 = diff (£5,Ny);
160. b53 = diff (£5,Nz);
16l. b6l = diff (f6,Nx);
162. b62 = diff(fe6,Ny);
163. b63 = diff (f6,Nz);
164. b71 = diff (£f7,Nx);
165. b72 = diff(£7,Ny);
166. b73 = diff (£f7,Nz);
167. b81 = diff (£8,Nx);
168. b82 = diff (£8,Ny);
169. b83 = diff (£8,Nz);
170. b91 = diff (£9,Nx);
171. b92 = diff (£9,Ny);
172. b93 = diff (f9,Nz);
173. b101 = diff (£f10,Nx) ;
174. pl102 = diff (£10,Ny);
175. 103 = diff (£f10,Nz);
176. %% State Space B Matrix Calculation
177. B = [bll bl2 bl3;
178. b21 b22 b23;

179. b31 b32 b33;

180. b4l bd2 b43;

181. b51 b52 b53;

182. b6l b62 b63;

183. b71 b72 b73;

184. b81 b82 b83;

185. b91 b92 b93;

186. p101 bl02 b103];
187. %% C 5x10 matrix
188. cll = diff(yl,x1);
189. cl2 = diff(yl,x2);
190. cl3 = diff(yl,x3);
191. cld = diff(yl,x4);
192. cl5 = diff(yl,x5);
193. cle = diff(yl,x6);
194. cl7 = diff(yl,x7);
195. cl8 = diff(yl,x8);
196. cl9 = diff(yl,x9);
197. cll0 = diff(yl,x10);
198. c2l = diff(y2,x1);
199. c22 = diff(y2,x2);
200. c23 = diff(y2,x3);
201. c24 = diff(y2,x4);
202. c25 = diff(y2,x5);
203. c26 = diff (y2,x6);
204. c27 = diff(y2,x7);
205. c28 = diff(y2,x8);
206. c29 = diff(y2,x9);
207. c210 = diff(y2,x10);
208. c31l = diff(y3,x1);
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’

209. c32 = diff(y3,x2

( )
210. c33 = diff(y3,x3);
211. c34 = diff(y3,x4);
212. c35 = diff(y3,x5);
213. c36 = diff(y3,x6);
214. c37 = diff(y3,x7);
215. c38 = diff(y3,x8);
216. c39 = diff(y3,x9);
217. c310 = diff(y3,x10);
218. cd4l = diff(y4,x1);
219. cd42 = diff(y4,x2);
220. c43 = diff(y4,x3);
221. cd4d = diff(y4d,x4);
222. c45 = diff (y4,x5);
223. cd6 = diff(y4,x6);
224. cd7 = diff(y4,x7);
225. c48 = diff(y4,x8);
226. c49 = diff(y4,x9);
227. c410 = diff(y4,x10);
228. cbl = diff(y5,x1);
229. cb52 = diff(y5,x2);
230. cb3 = diff(y5,x3);
231. c54 = diff(y5,x4);
232. cb5 = diff(y5,x5);
233. cb56 = diff(y5,x6);
234. cb57 = diff(y5,x7);
235. c58 = diff (y5,x8);
236. cb9 = diff(y5,x9);
237. c510 = diff(y5,x10);
238. %% State Space C Matrix Calculation
239. C = [cll cl2 c13 cl14 c15 cl6 cl17 c18 cl19 c110;
240. c2l c22 c23 c24 c25 c26 c27 c28 c29 c210;
241. c31 ¢32 ¢33 ¢34 ¢35 ¢36 ¢37 ¢38 ¢39 ¢310;
242. c4l c42 c43 c44 c45 c46 c47 c48 c49 c410;
243. c51 ¢52 ¢53 ¢54 55 ¢56 ¢57 ¢58 ¢59 ¢510;1];
244, %% D 5x3 matrix
245, dll = diff(yl,Nx);
246. dl2 = diff(yl,Ny);
247. dl3 = diff(yl,Nz);
248. d21 = diff(y2,Nx);
249. dz2z2 = diff (y2,Ny);
250. d23 = diff(y2,Nz);
251. d31 = diff(y3,Nx);
252. d32 = diff (y3,Ny);
253. d33 = diff(y3,Nz);
254, d4l = diff(y4,Nx);
255. d4z2 = diff (y4,Ny);
256. d43 = diff(y4,Nz);
257. d51 = diff (y5,Nx);
258. d52 = diff (y5,Ny);
259. d53 = diff (y5,Nz);
260. %% State Space D Matrix Calculation
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261.
262.
263.
264.
265.

266.

267.
268.
269.
270.
271.
272.
273.
274.
275.
276.

277.
278.
279.
280.
281.
282.
283.
284.
285.
286.

287.
288.
289.
290.
291.

292.

293.

294.

295.

296.

297.
298.
299.
300.
301.

D = [d1l1l dl2 d13;
d21 d22 d23;
d31 d32 d33;
d4l d42 d43;
d51 d52 db53];

oo
oe

01 00O0O0O0O0O0O;

’
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or oo
o o oo
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o o oo

0
0 ;
0 1

@)
1

zeros (5, 3);

isstable (ss)

sim ('StateSpacedsim')

o
oe

Transfer Function

[num, den] = ss2tf (A,B,C,D,1);

F= ss(A, B, C, D);

T = tf (F);

I = sym(eye(10));

I1l= C*inv(sym('s') *I-A) *B;
pretty (I1);
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Steady State Solution

o

°

o

°

oe

oe

oe

oe

Stability check

SimuLink Simulation

State-space to transfer function

% conversion: numerator &
% denominator
Converts model to state space

Transfer Function

Laplace transform
Pretty print a symbolic expression



Annex 3

Full 3DCrane full dynamic model derivation

Xy =X
Yw =Y
Xp =x+ lcosasinf

Yp =Yy +lsina

Z, = —lcosacosf

Xp =%+ lcosasinB — lasinasinB + If cos a cos B
o =y +Iisina —lacosa

Zy = —lcosacosf + lasinacos B + 1B cos asin B

The speed of the load:

v: =5+ v + 25

v? = %2 + 2%l cosa sin B — 2lxa sin a sin § + 21%f cos a cos B + [*cos?a sin?p —
2lid sin a cos a sin?B + 2liBcos?a sin B cos B + [2d?sin®a sin?f —

2126 sin a cos a sin B cos B + 12%cos?a cos?B + y? + 2yisina + 2lya cos a +
[2sin?a + 2lid sin a cos a + [2d?cos?a + [>cos?a cos?B — 2lid sin a cos a cos?f —
21liBcos?a sin B cos B + 12d?sin*a cos?B + 212 sin a cos a sin B cos B +

12B%cos?a sin?B

v2=%2+y2+ 1%+ 2%(icosasinf — lasinasin B + If cosa cos B) + 2y(isina +

lacosa) + 1242 + 12f%cos?a

Total kinetic energy of the crane:
K= %((mc +m, + m)x% + (m. + m)y? + mllz) + %mlvz
K= %((mc +m, +m +m)x* + (me +my +m)y* + Zmliz) +myx(l cos asin g —

lasinasin B + 1B cosa cos B) + my(isina + ld cosa) + %mllzdz + %mllzﬁzcosza
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Total potential energy of the system:

P =m;gl + myglcosacosf

The Lagrangian of the dynamic system (6.1):

L=K-P

L= %((mc +m, + m; + m)x? + (m, +m; + m)y* + Zmllz) +mx(icosasinf —
lasinasin B + 1B cosacos B) + my(isina + ld cosa) + %mllzdz + %mllzﬁzcosza —

m;gl —myglcosacosf

The Euler-Lagrange formulation of the dynamic system (6.4):

d (0L oL P —
. (a_qi) ~ 52 =Fu where i = 1,2,3,4,5

(d(aL) o _ .
dt axi 6xi_ X
d(oLy_ o
dt \dy; y; Y
d (oL aL
s lsn) o= w

dat \oz; 0z;

i(a_L)_ﬁ_

dt \og; da;

d(aL) oL _
\at \ap;) aB;
d

aL\ oL .. o . L :
dt(ﬁ) - = (m.+m, + my + m)¥ + mylcosasinf —mylasinasinf +
m,lB cos a cos B — m;ld sin a sin B — m;Ld sin a sin B — m;ld? cos a sin § —

mylap sin a cos B + myif cos a cos B + m;1f cos a cos f — m;lBa sina cos B —

mylB? cos a sin B

d

" (aL) % (me + my + my)y + mylsina + myid cos a + mylc cos a + myli cos a —

ay dy

mld? sina

d (dL oL _ l . . L. . .

=\~ = 2myl + myx cosa sin f —myxd sina sin § + myxf cosa cos f§ +
m;ysina + m;ya cosa — (—ml)'cd sina sin f + myxf cos a cos f + m;ya cos a +

mylBcos?a + mla?) — myg cosacos B
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d (oL oL o . i . . :
—\5a) 3. = —m;Xlsinasin f —mxlsinasin f — mylxa cosasinff —

mylxf sin a cos f + m; ¥l cos a + m;yl cos @ — mylyd sina + m;1%d + 2mylia —
(—mla'ci sina sin B — mlxa cos a sin B — m;1xf sin & cos B + m;yl cos @ — mylyd sina —

myl2f? sina cos a) + m;gl cos a sin B

d (9L aL . ¥ D
E(ﬁ) % m;Xl cos a cos f + m;xl cosa cos f — mylxa sina cos § —

mylxf cos a sin f + m;i?fcos?a — 2m;1%ap sin a cos a + 2m,l?fcos?a +
2mylifcos?a — (mlfci cos a cos B — mylxa sin a cos f — m;lxf cos a sin B) +

m;glsina cos

((m, + m, + m; + m)x + myl cos asin B — 2mlé sin a sin B + 2m,1f cos a cos B — m,lé sin a sin B —
—mylé? cos asin B — 2mylaf sin a cos B + mlf cos a cos B — m;lB% cos asin B = u,
(m, +m; + m)y + mylsina + 2m;lé cos & + mylic cos @ — myla® sina = u,
2m,l + m;x cos asin B + m,y sina — m,lBcos’*a — m;la* —m,;g cosacos B = u,
—myxlsina sin g + m;ylcos a + m;l?i + 2m,llic + myglcosasinB = 0

m, %l cos a cos B — 2m,l%af sin a cos a + 2m;l?Bcos?a + 2mylifcos?a + myglsinacos f = 0

(me+m, +m; +m)x +mylf —u, =0
(me+my+m)y +mld —u, =0

Zml'l'— mg—u, =0

l y+lad+ga=0
¥+18+gB =0
The  steady-state  operation point  x® = [x0 %00 30 RO O a0 40 10 (0] =

[000000000O0]” gives the final result for the full dynamic model of the 3DCrane:

. 1 m
( X = u, +—29 g
me+m,+m; me+my+my

. m
y = u, + —2

me+my me+my
B _ 1 glme+m+mp+my)

B

Ime+me+my)  * l(mo+m+my)
1 gimc+mp+my)
l(mc+my) Y l(mc+my)
1

L lzz—mluz

i =
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Annex 4

MATLAB script for the state-space representation of the full dynamic

model

11.A
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

31.
32.
33.
34.
35.

36.

clear all;
clc;

g

Gain

oe

o

Constants
1.155; %
1; %
2.2; %

0.6; %
9.81; %

= [4/3 4/5 6/12];

State-State

37.1sstable (ss)

38. sim

Clear the Workspace
Clear the Command WindOw

s Mass of the cart

Mass of the load

5 Mass of the rail

Length of lift-line
Gravitational acceleration

¢ Input Correction Gain

representation of the full dynamic model

[01 000O0O0O0O0 O;
0 00 0 ml*g/(mc+mr+ml) 0 0 0 O O;
0001000O0O0O0;
000O0O0O0MmM*g/(mc+tml) O O O;
000001000 O0;
0 00 0 -g*(ml+mc+mr+ml) / ( (mc+mr+ml)*1) 0 O 0 O O;
0000O0O0O0OT1O0 0;
000O0O0O0 -g*(ml+mc+ml)/ ((mc+ml)*1) O 0 O;
0000O0O0O0OO0O01;
000O0O0O0OOOGOO0];
[0 0 0;
1/ (mc+mr+ml) 0 0;
0 0 0;
0 1/ (mc+ml) O;
0 0 0;
-1/ ((mc+mr+ml) *1) 0 0;
0 0 0;
0 -1/ ((mc+ml)*1) O;
0 0 0;
0 0 1/ (ml4ml)];
[LOOOOOOOO0 O0;
0010000O0O0O0;
00001O0O0O0GO0O0;
0000O0OO0T1IO0O0O0;
0000O0O0OO0OOT1OQO0];
zeros (5,3);
% Stability check
('StateSpaceFull") % SimuLink Simulation
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