TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Leonard Walter 223531

EVALUATING THE USE OF MASQUE PROXIES FOR
ACHIEVING DNS PRIVACY

Master’s Thesis

Supervisor: Shaymaa Mamdouh Khalil
MSec.

Co-supervisor: Silver Saks
MSec.

Tallinn 2024

TALLINNA TEHNIKAULIKOOL

Infotehnoloogia teaduskond

Leonard Walter 223531

MASQUE VAHESERVERITE KASUTAMISE HINDAMINE DNS
PARINGUTE PRIVAATSUSE KAITSEKS

Magistritoo

Juhendaja: Shaymaa Mamdouh Khalil
MSec.

Kaasjuhendaja: Silver Saks
MSec.

Tallinn 2024

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Leonard Walter

12.05.2024

Abstract

The Domain Name System (DNS) is a crucial part of the internet. Current internet
infrastructure relies on unencrypted DNS, exposing user privacy and raising security
concerns. Multiple DNS solutions have been standardized in recent years, that encrypt
DNS messages to hide them from observers on the network. More recently the trend has
also moved towards concealing the user’s IP address to avoid being identifiable by the
resolver. QUIC-based MASQUE proxies were first brought to the spotlight because of
Apple’s Private Relay. Here they were employed to achieve a similar anonymization of
the user. This thesis explores a novel approach utilizing MASQUE proxies to achieve a

balance between strong privacy and security while minimizing performance penalties.

The first part of the thesis evaluates existing encrypted DNS solutions, highlighting the
inherent trade-off between enhanced privacy and security, and the associated performance
impact. Following this, a novel DNS system based on MASQUE proxy technology is
implemented. This system aims to maintain high levels of security and privacy while
achieving better performance compared to existing solutions. The final evaluation con-
firms the feasibility of reducing performance costs in the novel DNS system. However,
maintaining the same level of privacy and security as existing solutions proved challenging

in the current prototype.

The thesis is written in English and is 82 pages long, including 8 chapters, 45 figures and 5
tables.

List of Abbreviations and Terms

ALPN Application Layer Protocol Negotiation
APNIC Asia-Pacific Network Information Centre
AS Autonomous System

CDN Content Delivery Network

CID Connection Identifiers

DHCP Dynamic Host Configuration Protocol
DNS Domain Name System

DoH DNS over HTTPS

DoQ DNS over QUIC

DoT DNS over TLS

ECH Encrypted Client Hello

E2E end-to-end

FEC Forward Error Correction

HoL Head-of-Line

HPKE Hybrid Public Key Encryption

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure
IETF Internet Engineering Task Force

ISP Internet Service Provider

LDNS Local DNS Resolver

MASQUE Multiplexed Application Substrate over QUIC Encryption

NAT Network Address Translation

ODoH Oblivious DNS over HTTPS
RFC Request for Comments

RTT Round-Trip Time

SNI Server Name Indication

TLS Transport Layer Security

VPN Virtual Private Network

Table of Contents

1 Introduction 10
2 Background and Related Technologies 12
2.1 DNS . e 12
2.2 Encrypting DNS 14
2.3 The QUIC Protocol i 16
24 DNSoverQUIC. e 18
25 Client Anonymity Lo 19
2.6 Oblivious DNS over HTTPS 20
2.6.1 Oblivious HTTP 23

27 MASQUE e 23

3 State of the Art and Related Work 26
3.1 DNSoverQUIC. e 26
3.1.1 QUICandO-RTT 27

3.2 ObliviousDoH 28
33 MASQUE e 29
3.3.1 MASQUE Prototype Implementations 30

3.3.2 Commercial applications of MASQUE 30

4 ResearchMethods 33
4.1 Phase 1 - DNS Protocol and Tool Selection. 33
4.1.1 DNS protocol selection 33

4.1.2 EvaluationTools 34

4.2 Phase 2 - Defining Evaluation Metrics 34
4.2.1 Defining Performance Metrics 35

4.2.2 Defining Privacy Metrics L. 36

4.2.3 Defining Security Metricso L 36

4.2.4 Summarizing Metrics for the Evaluation 37

4.3 Phase 3 - Testbed Implementation 37
43.1 TestbedStage 1 38

432 TestbedStage?2 39

4.4 Phase 4 - Evaluation and comparison 39
4.4.1 Evaluating Performance 40

4.4.2 Evaluating Security and Privacy 40

5 Evaluating Existing Encrypted DNS Systems 42

5.1 AnalyzingDoH 42
5.1.1 DoHPerformance 43

5.1.2 DoH Security and Privacy 43

5.2 AnalyzingDoQ 46
5.2.1 O-RTT and Session Resumption for DNS over QUIC 48

5.2.2 Security concerns with O-RTTDoQ 54

5.3 Oblivious DoH evaluation 56
5.3.1 Oblivious DoH performance 57

5.3.2 Oblivious DoH privacy and security 59

6 Implementing a Novel DNS System using MASQUE and DoQ 62
6.1 Masque Proxy implementation 62
6.1.1 MASQUE operationalmodes 62

6.2 Benefits of a custom MASQUE proxy 64

7 Evaluating a Novel DNS System using MASQUE and DoQ 65
7.1 Evaluating MASQUE proxied DoQ performance 65
7.2 Evaluating MASQUE proxied DoQ security 67

7.3 Summary of the Evaluation 67
7.4 Comparison to Oblivious DNS over HTTPS (ODoH) 68
7.5 Future improvements 69

8 Summary 71
References 73

Appendix 1 — Non-Exclusive License for Reproduction and Publication of a
Graduation Thesis L o 78

Appendix 2 — Configuration Files and Code Modifications 79

~N O L AW

10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

List of Figures

Example of DNS traffic intercepted with Wireshark. 13
Example of DNS eavesdropping. 13
Simplified Oblivious DNS Proxy Stream Overview. 21
ODoH HTTP POST message to proxy. oo ... 22
ODoH HTTP POST message toresolver. 22
Stream Nesting for Encapsulation. 24
HTTP CONNECT-UDP message 25
Simplified Private Relay Dual Hop Architecture 31
dig used for DNS lookup on taltech.ee 38
Simplified testbed architecture for testing DNS systems. 39
Simplified testbed architecture for testing DNS systems with a proxy. . . . 40
Wireshark Flow Graph of a DNS requestover UDP. 40
Wireshark capture of a DNS request over UDP with important fields high-

lighted. 41
DoHlookupusing Q. L 42
Flow chart of a DoH request with TLS1.3. 43
Intercepted encrypted DoH request packet. 44
Intercepted encrypted DoH TLS Client Hello packet. 45
Traffic capture of a DNS over QUIC (DoQ) request to nextdns DoQ resolver. 46
Traffic capture of a DoQ request to nextdns DoQ resolver. 47
TLS Client Hello from captured DoQ request to nextdns DoQ resolver. . . 47
Traffic capture of a DoQ request to nextdns DoQ resolver. 48
Protocol stack used for O-RTT testing. 49
Message flow for DNS over HTTP/3 with Routedns as client. 50
Triggering a DoH request manually. 50
Message flow for DNS over HTTP/3 with Chromium as client. 51
O0-RTT flow for DNS over HTTP/3 with the updated Routedns client. . . . 51
Updated setup withdnsproxy., 52
O0-RTT flow for DoQ with the updated Routedns client and dnsproxy resolver. 53
O-RTT rejected by Adguards public resolver. 53
Intercepted O-RTT message. 54
O-RTT replay attack response. 55
Traffic capture during O-RTT replay on the resolver. 55

taltech.ee

33
34
35

36

37
38
39

40

41
42
43
44
45

Simplified Message Flow for an ODoH Request. 56
Console Screenshot of an ODoHrequest. 57
Traffic capture of an oblivious DoH resolution with a loaded certificate,

captured on the ODoH client. 58
Flow graph of an oblivious DoH resolution with a loaded certificate, cap-

tured on the ODoH proxy. 58
Traffic capture of an oblivious DoH resolution captured on the ODoH proxy. 59
Decrypted ODoH query message on the proxy. 60

Traffic capture of Oblivious DoH messages between proxy and target resolver. 60

DNS traffic sent over a MASQUE tunnel captured on the server. 64
DoQ request to nextdns resolver over a MASQUE proxy. 65
Setup for testing oblivious DoQ using a MASQUE proxy. 66
Sending O-RTT DoQ queries over a MASQUE proxy. 66
Traffic capture of a MASQUE tunnel establishment. 67
Traffic capture from the MASQUE proxy filtered to show only the for-

warded DoQ traffic. 68

List of Tables

Defining Evaluation metrics for different DNS protocols. 37
Evaluation metrics for DNS over HTTPS. 45
Evaluation metrics for DNS over QUIC. 53
Evaluation metrics for Oblivious DNS over HTTPS. 61
Evaluation metrics for all evaluated DNS protocols. 68

1. Introduction

The DNS protocol plays a crucial role in the functioning of the internet by facilitating
the resolution of domain names to their corresponding IP addresses. Instead of having to
remember an IP address such as 89.58.42.177, DNS allows users to access webpages based
on user-friendly names like example.com. DNS is almost as old as the internet protocol
itself. In the 1980s, during the initial introduction of DNS [1], security and privacy were
not considered. By default, DNS queries and responses are exchanged without encryption,
and can thus be easily read and/or manipulated by third parties. A disruption can result in
significant costs, and the manipulation of DNS data can serve as a starting point for attacks.
In recent years, there have been multiple pushes to make DNS more secure, mostly by
encrypting the DNS queries. The DNS resolver can still keep track of the user’s requests.

There have been multiple approaches to encrypting DNS. During the late 2010s, a new
combination of technologies was introduced that allowed tunneling DNS messages inside
an HTTP stream called DNS over HTTPS (DoH). In 2022 the Internet Engineering Task
Force (IETF) released an experimental Request for Comments (RFC) [2] that defines how
a proxy can be added between a DoH client and a resolver, aiming to improve the client’s
anonymity level. The protocol is called Oblivious DNS over HTTPS (ODoH). So far
research has shown that this helps with anonymization but adds significant latency to the
DNS resolution [3].

Advancements in the networking sector, mainly through the introduction of the QUIC
protocol, demonstrated that it is possible to achieve faster connections over the traditional
TCP-based internet transport. Kosek et al. [4] identified that QUIC’s performance benefits
also translate to DoQ. Currently, the industry is preparing for the adoption of MASQUE
proxies, for example, Apple’s Private Relay, that offer advantages over conventional VPN
or proxy solutions. Sengupta et al. [S] propose in their work to add a MASQUE proxy to
the DoQ system to tighten the privacy properties, and to counter DNS fingerprinting.

This thesis aims to assess the current landscape of encrypted DNS protocols. Further, we
will take a look at the new MASQUE proxy standard and will evaluate if it can be used to
achieve a setup similar to ODoH in functionality, but using MASQUE and DoQ. Particu-
larly, leveraging the advantages of the QUIC protocol and its latency benefits. Eventually,
the goal is to combine a DoQ prototype with the recently standardized MASQUE proxy

as a proof-of-concept. This demonstration aims to show the potential for a faster, more

10

secure, and privacy-preserving DNS than the currently available options.

The first and main research question is:

m s it possible to build an oblivious DoQ prototype using MASQUE with the current
state of technology?

If it 1s possible to build a testbed, further research will contain a comparison to figure out
if a MASQUE proxy for DNS over QUIC (DoQ)

m can keep up in performance with other encrypted or anonymized DNS solutions?
m can provide the same level of privacy as other encrypted DNS solutions, with a
special focus on comparing it to Oblivious DNS over HTTPS (ODoH)?

If the performance analysis shows better results than regular ODoH, this novel setup could

provide a faster alternative for users who currently use ODoH.

For this thesis, the decision was made to split the background chapter into two. The second
chapter provides an introduction to the network protocols used in this research and gives
some background on currently faced issues with the existing state of the technologies.
In the third chapter, existing implementations of the protocols are showcased and results
from past research on encrypted DNS technologies are evaluated. The fourth chapter
shows what methods were used to answer the research questions and define metrics for
the evaluation. In the fifth chapter, the evaluation of existing DNS protocols takes place.
The sixth chapter details the implementation process for the MASQUE-based proxy setup.
Finally, in the seventh chapter, the novel DNS system is evaluated and compared to the

results from chapter five. In chapter 8 the findings are summarized.

11

2. Background and Related Technologies

This chapter delves into the technologies and protocols that form the foundation of this
thesis. Additionally, it explores the historical evolution of the internet’s approach to privacy,
particularly as it relates to the Domain Name System (DNS). By examining the history of
DNS protocols, we can gain valuable context for understanding the challenges we face

with contemporary DNS security and privacy.

2.1 DNS

The DNS is a crucial part of every connected network and is also sometimes referred to
as the human bridge to the Internet [3]. It serves as a directory that helps users locate
websites and services on the internet, making it easier to access online resources. DNS can
be imagined as the phonebook of the Internet that helps us every time we access an online
service. RFC 1035 [1] describes how the DNS can be used to translate human-readable
domain names (e.g., www.taltech.ee) into IP addresses that are required to build a

network connection between peers.

If someone wants to visit taltech.ee on their devices, the browser or underlying
operating system automatically produces a DNS request to find the associated IP address
of the TalTech infrastructure. The DNS request for taltech.ee is then sent to a DNS
resolver. A DNS resolver maintains a substantial lookup table that allows it to correlate
domain names with their respective IP addresses. If it does not know the IP, it will create a
new recursive request to a DNS resolver which is higher in hierarchy, up to the root server.
With the response from the recursive lookup, it can now answer the request and update
its table, but this process is outside of the scope of this thesis. The focus of this work is

limited to the communication between the client and its immediate peer DNS resolver.

Regular DNS requests that follow RFC 1035 [1] are predominantly transmitted using UDP
(DoUDP) or in some cases also over TCP (DoTCP). Neither of these protocols offers
encryption. RFC 9076 [6] provides an overview on privacy considerations with the DNS
system. The RFC states that the lack of encryption enables manipulation, redirection, and

surveillance.

Figure 1 shows captured DNS traffic from wiretapping and the information that can be

12

udp.stream eq 22

No. Tme Source Destnation Pratacal Length Info

..5.591164 10.20.254.40 1.0.0.1 DNS 7@ Standard query @x3fee A taltech.ee
-5.600091 1.0.0.1 10.20.254..DNS 86 Standard query response Ox3fee A taltech.ee A 81.21.253.51

Frame 462: 86 bytes on wire (688 bits), 86 bytes captured (688 bits) on interface \Device\NPF_{2D66E1DF-A
Ethernet II, Src: Fortinet_9a:6e:2c (e@:23:ff:9a:6e:2c), Dst: Micro-St_48:b6:fd (©4:7c:16:48:b6:+Fd)
Internet Protocol Version 4, Src: 1.0.0.1, Dst: 10.20.254.40
User Datagram Protocol, Src Port: 53, Dst Port: 59006
~ Domain Name System (response)
Transaction ID: @x3fee
Flags: ©x8180 Standard query response, No error
Questions: 1
Answer RRs: 1
Authority RRs: @
Additional RRs: @
v Queries
taltech.ee: type A, class IN
v Answers
taltech.ee: type A, class IN, addr 81.21.253.51

Request In: 455
[Time: ©.008927000 seconds]

Figure 1. Example of DNS traffic intercepted with Wireshark.

openly gathered from it. This information includes the client’s IP address, the DNS

resolver’s address used to resolve the query, and the query itself.

Figure 2 shows how plaintext DNS reveals what websites a user is requesting and how
it allows an attacker to modify the traffic. Any man-in-the-middle between a client and
the DNS resolver can inspect such cleartext DNS traffic. This allows an observer not
only to learn the browsing and application usage behavior but also to identify the types of
devices that are in use. Together this allows creating user profiles solely based on DNS
traffic [7]. Furthermore, manipulation of responses can also be common. A paper from
2011 identified how some Internet Service Providers (ISPs) manipulated DNS responses to
inject advertisements [8]. It can be concluded, that solely relying on cleartext DNS poses a

big threat to one’s privacy.

A
Eavesdropping Spoofing

DNS query for taltech.ee -
>

taltech.ee is at x.y.z.v

<

Alice

Figure 2. Example of DNS eavesdropping.

13

An example from recent history can be shown by how some regimes have used DNS-based
censorship methods to block access to websites that do not align with their preferences.
One example would be how Turkey blocked access to YouTube and Twitter in 2014 after
a video of a confidential conversation leaked that caused nationwide protests [9]. In an
attempt to stop the leaked video from spreading further, DNS requests for YouTube and

Twitter were simply filtered.

DNS filters are also increasingly used to block sites that host copyright-infringing material.
Germany for example has recently started employing DNS filters for internet censorship.
German ISPs were ordered to filter DNS requests from their clients to prevent users from

accessing streaming websites [10].

In the battle against such forms of "light" censorship, one strategy involves the reconfigu-
ration of personal devices to utilize an alternative independent DNS resolver. While it is
indeed possible to manually configure your device to use a specific DNS resolver, most
users typically do not undertake this level of customization. Instead, by default, the DNS
resolver is dynamically assigned by the ISP each time a new IP address is allocated to
the user’s device via the Dynamic Host Configuration Protocol (DHCP) protocol. While
switching to a different DNS resolver may seem like a solution, it doesn’t always guarantee
complete privacy. Authoritarian regimes often implement filtering mechanisms at their
exchange points, allowing them to intercept DNS requests and responses regardless of the

chosen resolver.

So why are we then still mostly using plaintext DNS, one might ask? It is mostly for
practical and performance reasons. DNS resolution times can have a big impact on
the overall responsivity and load times of web services [4]. Slow DNS resolutions can
drastically influence the browsing experience. If DNS resolutions have a high delay, it
becomes a bottleneck, causing delays in loading websites. Latency and load times are
show to have a direct impact on user’s behavior and their retention rate [11]. A study found
that users who were confronted with slow web searches reported feeling significantly more

tensed, tired, terrible, frustrated and sluggish [12].

2.2 Encrypting DNS

It’s been over ten years since Edward Snowden revealed a widespread surveillance initiative
conducted by the US National Security Agency (NSA), which involved the extensive
collection of data via the Internet. This and many other events have accelerated the move
towards encryption. In 2014 the Internet Architecture Board released an open letter[13]

to encourage privacy by design. As encryption technologies have become more prevalent

14

and people have grown increasingly conscious of privacy issues, the demand for encrypted
DNS has surged as well. To safeguard user privacy, the networking community has recently
suggested combining DNS with established encryption technologies like Transport Layer
Security (TLS).

A paper from Lyu, Gharakheili, and Sivaraman [14] provides a great overview of possible
attacks on DNS. Although their main focus lies on detecting malicious encrypted DNS,
which is not directly related to this work, they still provide great insight into the devel-
opment of DNS encryption. They summarized different attacks on plaintext DNS and
highlighted what can be mitigated through the use of encryption.

DNS over TLS (DoT) was published in 2016. It was the first IETF standardized form of
encrypted DNS using a TCP/TLS stack to transport DNS requests [14]. Doan, Tsareva,
and Bajpai [15] conducted a study in which they analyzed DNS lookups over one week
in 2021. From over 90M requests, only 0.4% were encrypted with TLS. They found that
there are also negative effects on performance caused by DoT encryption. Furthermore,
encrypted requests were more likely to fail and had higher latency compared to plaintext
DNS. Failed requests often are caused by hardware that doesn’t support the protocol and
firewalls blocking traffic on the dedicated DoT port [14].

DoH was standardized in 2018 to address the issues with DoT. HTTPS is supported by
almost all devices. Tunneling DNS traffic through it can mask it as HTTPS traffic, and mix
DNS requests with regular web traffic. DoH has seen wider adoption in recent years and is
now supported by most browsers [14]. The performance in comparison to plaintext DNS
is still weaker, as it adds more delay due to the slow TCP/TLS handshake that is part of
HTTPS.

Nevertheless, it is pretty evident that encrypted DNS has not yet replaced the plaintext ver-
sion. A big reason for this is that most private networks stay with the default DNS resolver
provided by the ISP.! In the referenced dataset, "sameas" represents DNS resolutions that
happen in the same Autonomous System (AS), usually though the resolvers provided by
the ISP. ISPs often prioritize raw DNS speed over encryption, reasoning that as long as

traffic stays within their network, security risks are minimal.

Kosek et al. [4] found that both DoT and DoH are limited by the round trips required for
the handshakes of the underlying TCP. Depending on the distance to the DNS resolver,
additional round trips can have a drastic effect on the speed. DNS latency affects page load

times and this in turn influences the user’s behavior and use time on the webpage.

'https://stats.labs.apnic.net/rvrs

15

https://stats.labs.apnic.net/rvrs

According to the Asia-Pacific Network Information Centre (APNIC) DoT and DoH to-
gether make up about 22% of DNS traffic worldwide while in Europe and America, the
number is closer to 15% as of April 2024.2 It has to be added that for some countries
their sample sizes are very small and it is hard to make precise measurements [16]. Some
authoritarian countries such as Belarus or Myanmar show oddly high usage of encrypted
DNS, this is most probably because these countries block DNS messages from leaving
their country. This results in a situation where only encrypted DNS can connect to the
resolvers that conduct the measurements. What supports this theory, is that traffic from
such authoritarian countries is mostly DoH. DoT can be easily blocked because it uses
a non-standard port. DoH on the other hand can be mistaken as regular HTTPS traffic
since it uses port 443. The APNIC measurements from Western nations show that DoT is
more common than DoH. For example, Germany has a 12% DoT share while DoH only

accounts for 4.5%.

Another reason why encrypted DNS is not yet more common is that it often creates a
headache for security professionals. This encryption, while beneficial for user privacy,
allows malware to better mask its activities by hiding the accessed websites [14]. Tradi-
tional security tools that rely on inspecting the content of DNS traffic become much less
effective when faced with this encryption. This is also a reason why many companies
have not yet adopted it in their networks. The same also accounts for home networks, an
example could be if parents want to restrict their kid’s access to age-restricted content.
Most tools that support such filtering are DNS-based and rely on cleartext DNS. Passive
monitoring solutions will not be able to monitor domain names if encrypted DNS is used.
This issue has not yet been properly addressed. On one side standardization is pushing
toward strengthening security and privacy of modern DNS systems. On the other side,
research is increasingly focusing on machine learning and Al-based filtering of encrypted
DNS [17, 18].

2.3 The QUIC Protocol

QUIC is a modern connection-oriented transport protocol built on UDP. It was initially
introduced by Google to address the inherent limitations of TCP [19]. QUIC’s use cases
started as mainly a transport protocol for Hypertext Transfer Protocol Secure (HTTPS) but
over time it evolved to become a general-purpose transport protocol. It was standardized
as such by the IETF in 2021 as RFC 9000 [20].

Since the late 2010s, the QUIC protocol made significant strides, revolutionizing the land-

https://stats.labs.apnic.net/edns

16

https://stats.labs.apnic.net/edns

scape of network protocols with its innovative approaches and substantial enhancements
over TCP, as noted in [5]. This initiative stemmed from the realization that TCP, being
a foundational protocol conceived in the earliest stages of the internet, has encountered

significant challenges in adapting to modern networking demands.

Similar to DNS, security and privacy weren’t primary concerns when early networking
protocols, such as TCP, were designed in the 1980s. Despite its longstanding prominence,
TCP has reached a point where augmenting its capabilities proves as a slow and tedious
process that is in parts also constrained by legacy hardware. As a result, Google initiated
the development of QUIC as a comprehensive substitute, that allows for swift evolution

and seamless integration of novel functionalities [19].

QUIC boasts several key features that enhance security and performance. First, it integrates
built-in TLS encryption, ensuring data privacy throughout the connection. Furthermore,
QUIC minimizes exposed data on sent packets by encrypting most header fields (wire

image in QUIC terminology).

Additionally, TLS 1.3, which is integrated into QUIC, supports new methods for faster
connection establishment. Using Early Data in HTTP is standardized in RFC 8470[21].
These new TLS 1.3 handshakes can already be used with HTTP/2 but they are mostly
associated with QUIC and HTTP/3. Compared to the conventional TCP/TLS stack that
requires multiple exchanges to set up a channel and share cryptographic keys, QUIC
combines communication and encryption handshakes. RFC 9001[22] describes how TLS
is used in QUIC. These new connection establishment methods are also known as 0-RTT
and 1-RTT. Round-Trip Time (RTT) relates to how many trips it takes until data can be

transmitted.

Establishing a QUIC connection with O-RTT allows sending encrypted data in the first
message [20, 21]. This is only possible if the client knows the exchanged parameters such
as keys from a previous connection. It enables clients to reconnect to servers using stored
session information, avoiding the need to renegotiate session parameters and cryptographic
keys. Another speedup is brought by TLS Session Resumption which allows a client and
server to reuse previously established session parameters and cryptographic keys. With
this feature, it is possible to quickly resume a past session without needing to exchange
all parameters again during the handshake, reducing connection setup time and latency.
0-RTT and Session resumption can be combined but even if 0-RTT is not supported, many

servers still support the session resumption feature.

Additional performance improvements in QUIC are made possible by the added support

17

for stream-aware multiplexing which mostly eliminates Head-of-Line (HoL) blocking [23].
In TCP, all data for a connection is treated as a single, ordered sequence. This can lead to
HoL blocking, where a delay in receiving one part of the data stream stalls the delivery of

all subsequent data in that stream, even if other parts have already arrived.

QUIC, on the other hand, allows for multiplexing data streams within a single connection.
Each stream functions independently, carrying its own data and acknowledgments. This
enables parallel processing of data streams. In a web page download scenario: one stream
could carry the HTML content, another the images, and a third JavaScript files. If there’s a
delay in receiving an image (stream 2), it won’t prevent the delivery and rendering of the
HTML content (stream 1) or the execution of JavaScript (stream 3). This stream-aware
multiplexing eliminates HoL blocking in QUIC, leading to potentially faster and more

responsive connections.

QUIC also offers improvements in flexibility and pacing and adds features such as Forward
Error Correction (FEC) and connection migration. This feature allows a QUIC connection
to seamlessly transition between different network environments without disrupting data
transfer. This is particularly valuable for mobile devices that frequently switch between
cellular and Wi-Fi networks. Unlike TCP which uses the IP and Port to identify a connec-
tion, QUIC has unique Connection Identifierss (CIDs). With the CID, the client can inform
the server about a network switch while maintaining the connection. The server recognizes

the CID and updates its records, enabling uninterrupted data flow on the new network.

The QUIC datagram mode is another important feature of the protocol that allows disabling
the reliability and retransmission features for a stream. This mode deviates from the core
QUIC functionality by enabling the transmission of unreliable datagrams over an estab-
lished QUIC connection. With QUIC datagrames, it is possible to serve both static elements
(e.g. images, files) and unreliable content like WebRTC (Real-Time Communication) over

the same QUIC connection.

2.4 DNS over QUIC

HTTP/3 and QUIC’s swift rise to prominence captured much interest and prompted a
movement to extend its advantages to various other technologies [24]. As a result, pro-
viding DNS services over the QUIC transport protocol represents the natural progression.
Currently there exist two different protocol stacks that provide encrypted DNS functionality
with QUIC. Since QUIC’s main use case is HTTP/3, it was easy to adapt DoH to a protocol
stack by swapping out the TCP/TLS-based HTTP/2 with a QUIC-based HTTP/3 stack.

18

A second protocol stack was also introduced to reduce the complexity by not using HTTP.
DoQ as described in RFC 9250 [25] is the latest form of DNS encryption. As mentioned in
section 2.2, encrypted versions of DNS had higher latencies due to the increased complexity
in connection establishment. DoQ facilitates the exchange of encrypted DNS queries and
responses over a QUIC connection to minimize latency while matching the privacy levels
of DoH and DoT.

AdGuard is a company that specializes in privacy-centric DNS solutions. They were among
the pioneers in offering DoQ to customers. In a blog post, they outline a list of advantages
that DoQ has when compared to DoH [26]. According to them, DoQ provides the same
level of encryption as DoH since QUIC also uses TLS 1.3 [25], but boasts significantly
better performance. This stems from QUIC’s latency-reducing features such as O-RTT
connection establishment and elimination of head-of-line blocking [26]. Furthermore,
it offers advantages in the privacy area since it uses less information compared to DoH.
HTTPS always comes with additional headers and cookies that leave traces and allow third

parties to conduct fingerprinting.

O-RTT for DNS requests can also lead to privacy concerns as outlined in the DoQ RFC
[25]. A possible scenario exists, where a man in the middle can replay a O-RTT DoQ
request, which might prompt the recursive resolver to query authoritative resolvers. By
observing the outgoing traffic of the recursive resolver at certain times, adversaries could
determine the queried name from the O-RTT data. The RFC recommends disabling O-RTT
by default and it should only be enabled if the associated risks are understood.

2.5 Client Anonymity

Encrypting DNS can eliminate threats of tampering and eavesdropping by a man-in-the-
middle. Then again, the DNS resolver, which is usually provided by the ISP, is still able to
collect a lot of sensitive data from its clients. They see the decrypted traffic and client IP
addresses which enables them to create profiles based on requests linked to IP addresses.

The profiles could then allow for some degree of inference regarding the client’s identity.

While encrypting DNS requests with DoH, DoQ, or DoT (see section 2.2) offers significant
security benefits, it also concentrates user data with the chosen provider. This, coupled with
the fact that encrypted DNS infrastructure is currently controlled by a few large players,

raises concerns about privacy, competition, and potential single points of failure[5].

So far discussed technologies only covered a threat model of third parties that listen in

on the communication. Recently the network community also moved towards supporting

19

client anonymity by updating the threat model to also include the resolver. The internet
relies on the Internet Protocol for communication. Each device has a unique IP address
that acts like its physical mailing address. This inherent feature allows for efficient routing
of data packets but also presents a privacy concern. Every sent packet has the client’s IP
address on it. Monitoring traffic and analyzing the source IP addresses makes it easy to

track the behavior of users.

Client anonymity in DNS is achieved by keeping the user’s identity separate from the
actual DNS query content. To achieve increased privacy when using the IP protocol, a
common approach is to route traffic through an intermediary or proxy. When a user sends
a request through a proxy, the proxy forwards the request with its own IP address, masking
the user’s identity from the website. This makes it appear as if the user is connecting from
the proxy’s location. However, it’s important to note that proxy servers don’t guarantee
complete anonymity. The proxy still knows the client’s IP address, so there is some trust
involved in the proxy not sharing that information. Furthermore, the user still has to be
careful with sent data, as there could be identifying information in it or attached to the

metadata.

There already exist many well-established technologies that solve this problem. Virtual
Private Network (VPN)’s and proxies are used by many people to conceal their identities
while browsing the internet. These same technologies can also be used to achieve DNS
client anonymity but often lack flexibility and are easy to detect and often blocked by

governments [27].

There also exist methods to hide the query itself from the resolver[28]. Such private
information retrieval techniques offer strong privacy guarantees by hiding the queried
information from the server. However, this often comes at a significant cost in terms of
computational overhead and increased latency. Thus it was considered out of scope for
this thesis.

2.6 Oblivious DNS over HTTPS

Another new and still experimental enhancement to the DNS ecosystem is ODoH, some-
times also referred to as ODNS. Oblivious DoH has been defined in RFC 9230 [2] since
June 2022. The goal of this new protocol is to further enhance the privacy of DNS by
hiding the client’s IP address from the DNS resolver through the use of a proxy.

Tanya Verma from Cloudflare, who is also a co-author on the Oblivious DNS RFC describes

in a blog post in great detail how the technology operates [29]. They claim, that by

20

employing an independent proxy, the DNS resolver exclusively interacts with the proxy’s
IP address, ensuring that the client’s IP address remains undisclosed. Additionally, the
proxy remains uninformed of the requested domains, thereby precluding any possibility
of interference or eavesdropping on DNS requests. Consequently, only the DNS resolver
retains the capability to access and interpret the content of these requests. It is important to
note here that the proxy and resolver have to be two independent entities, if they cooperate

and share their knowledge, the benefits of using the proxy are diminished.

Schmitt, Edmundson, and Feamster [30] showed that using unencrypted DNS exposes a
spectrum of information, encompassing web browsing patterns and the variety of devices
present in a user’s residence. They were the first to recommend using an independent third
party that proxies DNS requests to hide the client’s identity. By employing such a proxy in
front of the recursive resolvers for encrypted DNS queries, they were able to show that it is

possible to hide the IP addresses of the clients that initiated these queries.

ODoH builds upon DoH and extends it by adding another encryption layer to the DNS
query inside the DoH stream. This new encryption of the DNS messages works with the
Hybrid Public Key Encryption (HPKE) scheme defined in RFC 9180[31]. HPKE is a
streamlined encryption method designed for ease of use, adaptability, and long-lasting secu-
rity. It’s more lightweight than using a full end-to-end (E2E) TLS connection. Cloudflare

provides a good overview of its goals, workings, and how it is used in ODoH[32].

The scheme in context with ODoH can be explained as follows: Alice in this case first
needs to know the public key of the DNS resolver. For example, she could randomly
choose a resolver from a big list but such a mechanism is out of scope for this thesis. Alice
then encrypts the URL where she wants to do the DNS query with the DNS resolver’s
public key. She then creates an HTTPS session with the proxy and adds the encrypted
query, as well as the IP address of the DNS resolver to a POST request. Upon reception
of the request, the proxy terminates the first encrypted HTTPS session and forwards the
HPKE encrypted message over a new HTTPS session. The response follows the same
pattern just in reverse. Figure 3 shows a simplified overview of an ODoH connection and

the encryption layers that secure the DNS message exchange.

Proxy

listening on: DoH Resolver

listening on:

/proxy
Client Encrypted
Message /dns-query
TLS Stream TLS Stream

Figure 3. Simplified Oblivious DNS Proxy Stream Overview.

21

Both POST requests can be seen in the following Figure 4 and Figure 5. The first POST
request shows the communication between the client and proxy. The second POST is the
forwarded request from the proxy to the DNS resolver according to the specification [2].

The proxy is listening on https://dnsproxy.example/proxy for HTTP POST requests.

:method = POST

:scheme = https

rauthority = dnsproxy.example

:path = /proxy?targethost=dnstarget.example/dns—-query
accept = application/oblivious-dns-message
content-length = 106

query = dGFsdGVijaC51lZQo=

Figure 4. ODoH HTTP POST message to proxy.

When the proxy receives a request, it will open a new HTTPS session with the specified
target resolver. The query in this case is then forwarded to https://dnstarget.example/dns-
query. Upon reception of a request, the DNS resolver uses his private key to decrypt the
query. A symmetric key is derived from the plaintext DNS query, which is subsequently
used to encrypt the response.

:methed = POST

:scheme = https

rauthority = dnstarget.example
:path = /dns—query

accept = applicaticon/oblivious-dns-message

content—-length = 106
query = dGFsdCGVijaC51ZQo=

Figure 5. ODoH HTTP POST message to resolver.

Cloudflare in their paper from 2020, also conducted tests to measure the performance
impact by adding a proxy to the DNS request [29]. They claim that the performance impact,
that comes from the additional encryption between the client and proxy is marginal. But
they also acknowledge that there is additional latency introduced by the proxy, which can

range between 100 to 200ms compared to regular DoH requests.

To sum it up, with ODoH, users can increase their privacy levels compared to regular
encrypted DNS by adding a proxy to the DNS message flow. The drawback is that this
added complexity impacts the responsiveness and speed of the DNS resolution. Further-
more, there are centralization concerns. If the proxy and resolver cooperate or both their

security is breached, an attacker can trivially link the request to the corresponding client.

22

Achieving the best privacy results with ODoH relies on free choice from a big pool of

openly available proxies.

2.6.1 Oblivious HTTP

ODoH introduced a new form of so-called indirection of traffic. This oblivious idea has
since been extended, not limiting it to DNS. Oblivious HTTP works on the same principle
and allows forwarding anonymized HTTP requests. In January of 2024, the oblivious HTTP
RFC [33] was released by the IETF. The Oblivious HTTP RFC standardizes a mechanism
to send HTTP messages while preserving end-user privacy. The standardization of the

oblivious protocols shows that there is a bigger move towards supporting client anonymity.

2.7 MASQUE

Multiplexed Application Substrate over QUIC Encryption (MASQUE) is the name of a
working group at IETF. They are working on the standardization of mechanism(s) that
allow configuring and concurrently running multiple proxied stream- and datagram-based

flows inside an HTTP connection.

Currently, there exist a variety of different solutions that already offer anonymization
through proxy forwarding, so why is MASQUE needed? Regular TCP/UDP proxies are
limited to a static 5-tuple. Source and destination IP + Port and the protocol. SOCKS
proxies reveal the target address in cleartext and VPN tools often require administrative
privileges. Furthermore, most of the conventional proxy and VPN solutions use protocols

and ports that are easy to detect and block.

The HTTP CONNECT method was already introduced in HTTP/2. An HTTP CONNECT
request contains the address and port of a remote server. It is sent to a proxy and the proxy
then initiates a connection to the specified remote location. All further traffic that is sent
to the proxy will then be immediately forwarded to the remote server. The traffic looks
like regular HTTP traffic to observers and can thus not be easily blocked. In HTTP/2 this

proxy mechanism was limited to TCP traffic.

MASQUE is aiming to extend this by also allowing the proxying of datagrams. To
achieve this a new HTTP method was introduced: CONNECT-UDP. The primary goal of
the MASQUE mechanism(s) is to allow "configuring and concurrently running multiple
proxied stream- and datagram-based flows encapsulated inside an HTTP connection" as
described in the working groups charter [34]. MASQUE builds upon the HTTP CONNECT

23

method and its extensions, that allow for a simple proxy configuration. An overview of all
MASQUE-related technologies can be found on the IETF datatracker [35].

The CONNECT-UDP method initiates an unreliable QUIC datagram connection between
the client and the proxy server, which is crucial for encapsulating a wide variety of protocols
[36]. The stacking of reliable and congestion-controlled protocols leads to suboptimal
behavior and severely affects performance. For example, suppose a packet is lost during
transmission and two reliable streams are stacked. In that case, both streams will trigger a
resend of the lost packet, leading retransmission timeouts to drift apart, which can stall
the entire connection. In TCP this phenomenon is often referred to as TCP Meltdown.

Furthermore, doubled retransmissions send unnecessary duplicate traffic thus increasing

congestion.

Outer QUIC datagram
connection

Figure 6. Stream Nesting for Encapsulation.

MASQUE can avoid such a meltdown by using the QUIC datagram mode [37] as shown
in Figure 6. Here, QUIC datagram frames of the outer MASQUE stream, are sent without
reliability guarantees. This means that if a QUIC sender deems a datagram frame as lost,
it will not be retransmitted. MASQUE is made possible by QUIC datagrams [38] which
lay the base for the CONNECT-UDP method. In Figure 6 the inner stream is marked as
reliable, but this does not necessarily have to be true, as any traffic can be routed through a
MASQUE proxy.

Oblivious DNS terminates the TCP and TLS sessions at the proxy and only forwards the
encrypted ODoH message. In contrast, HTTP Connect-based proxies such as MASQUE
establish an E2E stream between client and target. Such proxies offer more flexibility and

are not limited to a specific application.

The following snippet shows the fields from a CONNECT-UDP HTTP request as specified
in the RFC 9298[36] and RFC 9484, [39]. A client wishing to access a target web server
at 192.0.2.6:443 using MASQUIE first sends a CONNECT request to the MASQUE proxy.

Upon receiving the CONNECT request, the MASQUE proxy responds with a 200 OK

24

:method = CONNECT
:protocol = connect-udp

:scheme = https
:path = /.well-known/masque/udp/192.0.2.6/443/

rauthority = example.org

capsule-protocol = 7?71

Figure 7. HTTP CONNECT-UDP message

message if successful. It then opens a new UDP socket towards the target web server.
With the connection established, the client can now send any UDP-based data, such as an
HTTP/3 GET request, to the MASQUE proxy. The proxy will then forward this data to the
specified target web server (192.0.2.6:443) on behalf of the client.

The MASQUE proxy has also gained some new further extensions with two new methods:
connect-IP (RFC 9484[39]) and connect-ethernet (currently still an IETF draft [35]) that

allow proxying of arbitrary traffic.

In section 2.6 it was already briefly mentioned that Apple uses ODoH in Private Relay.
This raises the question, why are they using two separate systems for HTTP and DNS
traffic, wouldn’t it be possible and beneficial to send DNS traffic over the same MASQUE
relay?

25

3. State of the Art and Related Work

This chapter aims to provide insight into the current state of available technologies and
existing research in the field that are important to answer this thesis’s research questions.
The main focus is examining whether the required technology stack to build an oblivious
version of DoQ using MASQUE exists.

3.1 DNS over QUIC

Despite the publication of the DoQ RFC [25] in 2022, widespread adoption has not yet
happened. Various open-source DNS implementations offer support for DoQ and according
to privacyguides' a few of the big DNS providers already support DoQ. Still, DoQ makes
out a rather small part of all DNS requests. According to Adguard, DoQ traffic only
represents about 1% of the total DNS traffic to their resolvers [40]. None of the big web

browsers support it yet.

Kosek et al. [41] focused in their research on the adoption and performance of DoQ. They
found more than 1000 DoQ resolvers while mapping the entire IP range with ZMAP. Kosek
et al. [41] also analyzed DoQ’s response times in comparison to DoT and DoH. Their
paper is titled with the Question if DoQ is the "One to Rule them All". This emphasizes
how much impact DoQ might have in the future. They focused on a large group of publicly
available DoQ servers and repeatedly sent requests to measure the response time over
an entire week. Approximately 40% of their measurements still experience significantly
slower response times than anticipated. This delay is attributed to the enforcement of
QUIC’s traffic amplification limit and not using O-RTT.

In a follow-up paper, Kosek et al. [4] repeated the measurements. This time with O-
RTT session resumption. It was found that this change was able to significantly boost
DoQ’s speed, outperforming DoT and DoH by 33%. Therefore, DoQ renders encrypted
DNS notably more attractive than DoH. It only lags behind DoUDP by approximately
50%, whereas DoT and DoH exhibit increased delay of around 66% for single queries.
Furthermore, for more complex websites where a multitude of domain names have to
be looked up, DoQ even catches up to regular DNS over UDP. With multiple lookups,
the added latency cost of encryption amortized and DoQ was measured only roughly 2%
slower than DoUDP.

'https://www.privacyguides.org/en/dns/

26

https://www.privacyguides.org/en/dns/

3.1.1 QUIC and 0-RTT

0-RTT is one of the key features of QUIC that allows sending encrypted data in the
first message, thus reducing connection establishment time to zero. Sengupta et al. [5]
did the first extensive analysis on using DoQ with O-RTT. They analyzed cross-layer
interactions of DoQ while web browsing. They evaluated multiple DNS protocols and
their impact on a full web page request from the first DNS lookup up to the moment the
page has finished loading. Their results showed that O-RTT handshakes offer substantial
performance benefits compared to the traditional TCP/TLS stack used in DoH. In their

measurements, O-RTT DoQ was able to half the load times in the best-case scenario.

As mentioned in section 2.4 using the current form of 0-RTT messages unfortunately also
introduces some negative side effects. Encrypted data in QUIC O-RTT packets does not
have forward secrecy. This introduces the risk of potential replay attacks. An attacker
can resend captured O-RTT data to the server, potentially tricking it into performing
unauthorized actions. The RFC provides a good overview [25] on privacy and security

considerations with O-RTT and session resumption.

The DoQ RFC suggests disabling O-RTT data by default and only enabling it for users who
understand the associated risks. This recommendation is further supported by research
by Kosek et al. [4], who found that none of the public DoQ resolvers in 2022 supported
0-RTT.

While 0-Round Trip Time (0-RTT) in QUIC offers faster connection establishment by
reusing session information, it also introduces security concerns to HTTP/3. Since the
server hasn’t fully validated the client yet, sending sensitive data or performing actions that
can modify the server state (like POST, PUT, DELETE) with O-RTT could be exploited by
malicious actors. To mitigate this risk, O-RTT should be restricted to safe HTTP operations
like GET, HEAD, OPTIONS, and TRACE. These methods primarily retrieve information
from the server without modifying its state, reducing the potential for misuse of O-RTT

and ensuring a balance between performance and security.

DNS requests can change the server state, in that they might trigger a recursive lookup, thus
it is recommended to disable it by default and only enable it for clients that are aware of the
associated risks. There is also research in this area to mitigate these risks mentioned above
with 0-RTT. There are multiple approaches to secure O-RTT messages. Goth et al. [42]
show that Bloom-Filter Key Encapsulation Mechanisms can be used to achieve forward
secrecy while keeping added cost from computational complexity to a minimum. They

claim that previous attempts at securing 0-RTT communication were either too slow or not

27

thoroughly tested for real-world use.

3.2 Oblivious DoH

Oblivious DNS has not gained too much attention in the recent past. When the idea was
still developed, around 2020, there was also a lot of research. Since then, the attention on
ODoH has declined.

Singanamalla et al. [3, 29] show the privacy benefits of ODoH. They performed latency
and response time measurements on the technology and compared it to other existing
encrypted DNS solutions. They took wide-scale measurements and collected data from
DNS resolvers on multiple continents. In their testing, they showed that ODoH can
outperform a setup where DNS is tunneled over the Onion Router (TOR) network, but

trails behind regular DoH when it comes to resolve times.

Kumar and Bustamante [43] acknowledges the privacy benefits of ODoH but criticizes its
higher cost and increased chance of client-LDNS mismatch. Local DNS Resolver (LDNS)
mismatch hurts performance by directing users to distant servers. This can happen when
visiting a site hosted by a Content Delivery Network (CDN). The ODoH resolver does not
know the client’s IP and can thus also not make assumptions on its location. Further, he
can not decide which is the closest node of the CDN and might select a long-distance and

high-latency server for the response.

When it comes to software implementations and support, the available open-source ODoH
implementations are currently limited, with many appearing outdated or explicitly labeled
as prototypes. The DNSCrypt project [44] and their implementation supports a wide array
of DNS protocols. They also have support for Oblivious DoH in their client and server, but
they lack the support for ODoH relaying. The Cloudflare ODoH implementation has not

been updated since the release of the corresponding paper [3] in 2020.

Apple offers ODoH support as part of their Private Relay. > Private Relay lets users surf
with increased privacy by routing traffic through two separate internet relays. ODoH
queries are sent encrypted through the first relay, similar to the HTTP requests but are then

routed directly to the resolver. [45]

2https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_
Dec2021.pdf

28

https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf

3.3 MASQUE

Cloudflare provides a comprehensive overview of MASQUE’s goals on their blog page
[46] that is closely tied to a paper by the same authors [47]. The same engineers are also
heavily involved in the standardization process and are part of the MASQUE working
group. In their paper [47], they focus a lot on the performance of tunneled traffic under
various circumstances. They tested reliable and unreliable transmission and evaluated the
effects of nested congestion control. Furthermore, they expect that MASQUE will prove
to be more resilient over time. Connections default through port 443, which for both TCP
and UDP blends in well with general HTTP/3 traffic and is less susceptible to blocking

than other proxying/tunneling solutions.

Since work started on MASQUE standardization, few papers have been published, assess-
ing its benefits. In an early paper from 2021 [47], the researchers used a MASQUE setup
built with aioquic * and tested in a simulated environment. While the setup introduces
overhead and requires careful stream scheduling, it offers potential performance benefits,
especially for mobile networks. However, the researchers pointed out that further research

is needed due to limitations in the current implementation and testing environment.

At the time of writing, work is still ongoing on MASQUE features and some features
are still in the IETF draft phase. Nevertheless, MASQUE is already starting to see some
adoption. Apple introduced 1Cloud private relay, which offers their customers an extra layer
of anonymization while browsing. Other tech companies such as Google*, Cloudflare[48],

or Fastly [49] also work on their MASQUE-based proxying services.

If this positive trend of MASQUE adoption continues, it has the potential to carve out
a significant niche within the privacy tunnel technology field. MASQUE offers similar
benefits to conventional VPN and proxy solutions while offering more flexibility and
stealth. QUIC’s performance benefits make it attractive for many applications and its
share of the internet traffic is steadily increasing. Sooner or later tunneling technologies
will want to adopt this as well and currently MASQUE seems very promising. Similar to
a VPN, MASQUE proxies reduce the network provider’s ability to observe traffic, that

information is transferred to the proxy operator.

Furthermore, the growing prevalence of QUIC, with its inherent performance gains, makes
it an increasingly attractive choice for various applications. It’s only a matter of time before

tunneling technologies embrace this evolution, and MASQUE currently stands out as a

3https://github.com/aiortc/aioquic
“https://github.com/GoogleChrome/ip-protection

29

https://github.com/aiortc/aioquic
https://github.com/GoogleChrome/ip-protection

highly promising candidate to deliver the backbone technology.

3.3.1 MASQUE Prototype Implementations

At the point of writing, most QUIC/HTTP3 implementations don’t yet support the
MASQUE features such as the connect-udp method. Generally, there is a low abun-
dance of open-source implementations of the MASQUE features and not all MASQUE

implementations support all features from the specification.

Google offers a MASQUE prototype that is featured in their QUICHE QUIC chromium
experimental section®. The code can also be viewed on github®. It is one of the more
feature-rich and up-to-date implementations. It supports connect-udp, connect-ip and
connect-ethernet. Generally, it seems well-maintained and receives regular updates as the

standardization progresses.

Other openly available prototypes are INVISV masque 7, masque-go® and masquerade’
which is written in Rust. INVISV only open-sourced their client and is lacking a server
implementation. The latter two implement an early MASQUE version and have not seen
updates in a long time. Work on integrating the MASQUE features to quic-go' just started

in late April of 2024. it currently does not feature a working version.

3.3.2 Commercial applications of MASQUE

Apple is one of the most prominent early MASQUE adopters as of 2024. Apple has
been offering iCloud Private Relay for most of their 10S devices since late 2021. Their
marketing claim says that it prevents websites and network providers from creating detailed
profiles about you while the browsing experience remains fast. iCloud Private Relay is
designed to enhance user privacy and security by encrypting internet traffic and routing it

through two separate internet relays, also known as dual-hop architecture.

These devices are known as ingress relay and egress relay. While the network and ingress
relay can access the client’s IP address, the server name remains encrypted, rendering
it invisible to them. This encrypted information is then transmitted from the ingress to

the egress relay, which must be provided by independent infrastructure partners such as

Shttps://www.chromium.org/quic/playing-with-quic/
Shttps://github.com/google/quiche/tree/main/quiche/quic/masque
"https://github.com/Invisv-Privacy/masque
8https://github.com/marten—-seemann/masque-go
‘nttps://github.com/jromwu/masquerade
Ohttps://github.com/quic-go/masque-go

30

https://www.chromium.org/quic/playing-with-quic/
https://github.com/google/quiche/tree/main/quiche/quic/masque
https://github.com/Invisv-Privacy/masque
https://github.com/marten-seemann/masque-go
https://github.com/jromwu/masquerade
https://github.com/quic-go/masque-go

Fastly, Cloudflare or Akamai. The third party then carries out traffic forwarding to the
designated target server. The egress relay will only be aware that the sender is utilizing
iCloud Private Relay, but it won’t have access to the real client’s IP address. Apple markets
it as an internet privacy service that helps its users conceal their location, IP address, and
DNS records '!. According to Reuters[50], it is not available in Belarus, Colombia, Egypt,
Kazakhstan, Saudi Arabia, South Africa, Turkmenistan, Uganda, and the Philippines [50]

Ingress : Target

lient Devi
Client Device Relay : Service

Source IP Destination IP
is known 1 is known

Figure 8. Simplified Private Relay Dual Hop Architecture

The connection to the ingress proxy defaults to MASQUE, with an HTTP/2 CONNECT
fallback mechanism in case of QUIC failures or blockage. Notably, the handshake employs
raw public keys for authentication instead of the standard TLS certificate approach [45].
Interestingly, Apple claims that for connections to websites supporting TLS or QUIC,
the initial handshake messages are bundled with the proxy request, eliminating the need
for separate responses from the proxies. This approach minimizes additional latency
introduced by the private relay. Apple most likely achieves this by establishing a permanent

MASQUE tunnel between user end devices and the private relay network.

Apple’s iCloud Private Relay leverages a proprietary implementation of the MASQUE
framework. While several research papers have analyzed the technology [51, 52], Apple
adheres to its typical closed-source approach, leaving the inner workings largely obscure.
Trevisan et al. [51] evaluated Apple’s iCloud private relay and its effects on web page
load times and download throughput. They found that it limits bandwidth and introduces
increased latency, which negatively affects page load times. Although it has to be noted
that their findings are based on limited results from tests in just three different locations.
[52] Kiesel criticized the node assignment mechanism in a conference talk. Apart from
switching Private Relay on or off, users can only specify a location mode. Users can
select either to maintain their general location or to receive a random location that will be
selected from the same country and timezone. All other variables in the system, such as
the ingress and egress nodes are chosen by Apple. In his talk, he stated that users have to

trust Apple to choose an independent egress node.

Cloudflare is also working on integrating MASQUE into its commercial privacy proxy

11https://www.apple.Com/icloud/docs/iCloud_Private_Relay_Overview_
Dec2021.pdf

31

https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf

implementation called WARP [48]. The first beta version is supposed to be released in the
second quarter of 2024. So far there is not too much known about it. INVISV is another
operator that already today offers a MASQUE-based privacy relay for customers. They
market their privacy relay as a better VPN alternative [53] and offer an app for Android.

32

4. Research Methods

This chapter outlines the methodology employed to evaluate the performance and privacy
characteristics of different DNS protocols. A controlled experimental approach was chosen,

utilizing a dedicated testbed to evaluate various DNS technologies.

These are the primary goals of this thesis:

m Comparative Analysis of Established DNS Technologies: This objective focuses
on comparing the performance and privacy aspects of selected existing encrypted
and anonymized DNS solutions. This analysis will highlight the capabilities and
limitations of these established protocols.

m Exploration of Oblivious DoQ Prototype: It will be attempted to develop a prototype
for an Oblivious DoQ solution utilizing the MASQUE proxy protocol. While
the feasibility of building this prototype is considered promising based on current
technology, its success will be determined during the final stages of the research.
Regardless of the prototype’s development outcome, the core value of this research

lies in the comparative analysis mentioned above.

To achieve the set-out goals, four stages were defined to better structure the research

process. The following sections describe the research progress in each phase.

4.1 Phase 1 - DNS Protocol and Tool Selection

The initial phase of our research focused on selecting the most suitable DNS protocols and

evaluation tools for the investigation.

4.1.1 DNS protocol selection

Existing research was evaluated and the choice was made to restrict the analysis on
DNS over HTTPS (DoH), DNS over QUIC (DoQ), and Oblivious DNS over HTTPS
(ODoH). The selected protocols represent the latest advancements in secure DNS protocols.

Focusing on these ensures that this evaluation reflects the current state-of-the-art.

By focusing on just these three protocols, it is possible to delve deeper into their specific

functionalities, performance characteristics, and security properties. This allows for a more

33

nuanced and informative comparison.

Other candidates that are not considered are DNS over TLS and DNSCrypt. DNS over
TLS was not evaluated because it has similar characteristics to DoH but is more prone to
blocking. DNSCrypt was not evaluated because it lacks official standardization, potentially

hindering widespread adoption.

4.1.2 Evaluation Tools

In parallel with the protocol exploration, potential tools and frameworks were identified
that could aid in the research process. This involved searching relevant research literature
and online resources to understand the tools used in previous studies and the methodologies
employed for DNS protocol evaluation. It was found that many of the DNS client and
resolver implementations used in past research were custom-built for their specific needs.
Most of the time, these custom tools that were published with the associated paper, are left
abandoned and become outdated. Instead, the decision was made to use popular, up-to-date
DNS implementations where possible. The selection of tools was heavily influenced by

the number of features they offered.

The analysis will take place on Linux systems, as these offer the best support for custom
DNS clients and resolvers. The test machine that functions as a client was set up on a
Debian virtual machine. Generally, most tools were installed in docker containers. This
allows an easy way to distribute and host them on a server. Linux networking tools such as

iptables are used to define routing rules and for isolating DNS traffic.

Traffic captures from the DNS systems is done with tcpdump and Wireshark. Both tools
can listen on physical and virtual network interfaces to record data streams. The recordings
are evaluated using Wireshark, which includes many helper tools that assist with the

visualization and packet inspection of captured traffic.
4.2 Phase 2 - Defining Evaluation Metrics
The evaluation of the technologies is split into three segments.

m Performance metrics compare the complexity of the DNS protocols and how they
impact resolution times.
m The privacy metrics aim to determine the amount of information leaked about the

client from a DNS query.

34

m Security metrics help conceal the connection and aim to harden the protocols against

blocking or manipulation.

4.2.1 Defining Performance Metrics

Extensive research and benchmarking tools exist for analyzing DNS server implementa-
tions, including CPU load, scalability, and resistance to Denial-of-Service (DoS) attacks.
Common tool in this category are DNSperf ! or DNS-Shotgun. > However, this work
delves deeper into comparing the underlying protocols while minimizing the influence of

external factors like hardware, software implementation, and network environment.

Time measurements of the duration for DNS lookups will not play a key role in the
evaluation of this thesis. It is influenced by too many factors that are hard to control,
thus it is common practice to measure on a wide scale and over a longer period to get
averaged results. Furthermore, for this thesis, the testing involves many prototypes that
can have different properties varying from implementation to implementation. Instead, it
was decided that the focus is more on evaluating the differences in protocols and not on

comparing the various available DNS implementations.

Another important decision was made to evaluate non-persistent connections. All the
encrypted DNS protocols rely on connection-oriented protocols. An application can keep
a connection open for a long time and reuse the same connection with the same encryption
keys for multiple DNS requests. For example, Firefox operates in this way. It keeps open
the TLS connection to a DoH server and sends a keepalive packet roughly every 50 seconds
if no DNS requests are made. This is so the connection does not time out. Instead, it
was decided to evaluate non-persistent connections to the DNS resolver and focus on the

differences in connection establishment.

When analyzing the protocols, one could also consider accounting for the cryptographic
complexity, for example, if there are multiple TLS sessions. However, according to Tanya

Verma[29] who analyzed ODoH, the impact of TLS encryption on the latency is minimal.
Recursive lookups are out of scope and it is assumed that the resolver already possesses
the answer for the requested domain. Under these conditions, the DNS lookup time is

primarily influenced by three key factors:

The number of round trips it takes for the DNS resolution. Ideally, it only takes a

"https://www.dnsperf.com/
’https://dns-shotgun.readthedocs.io/en/stable/

35

https://www.dnsperf.com/
https://dns-shotgun.readthedocs.io/en/stable/

single request and response, that is also why plaintext DNS over UDP is still so common.
Additional roundtrips might be necessary for certain protocols because encryption keys

need to be exchanged first.

Round-Trip Time (RTT) is affected by the network’s latency, which is mostly influenced
by the physical distance between two computer systems. The RTT describes how long it

takes for data from the client to reach the server and back.

Resolver latency. High volumes of DNS requests can slow down resolvers. This can be

amplified by the hardware, software and protocol’s complexity.

The RTT is largely limited by the physical properties of the network, it can only be lowered
by selecting a resolver that is at a closer distance to the client. The resolver latency is
what makes a fair comparison of measured latencies complicated. It is affected by a lot of

different influences and is often very unpredictable.

Thus, as already mentioned above, the evaluation will only measure the number of round
trips it takes to resolve a query. It is the only metric that is directly impacted by the choice

of protocol.

4.2.2 Defining Privacy Metrics

A full comparison is very hard due to the large amount of properties that can affect the
protocols. Furthermore, one has to take into consideration that there are many different
threat models for the privacy metrics. It was decided to focus on the following questions to

define the privacy metrics:

m Is the client’s identity exposed to the DNS resolver?

m Is the content of the DNS query exposed to observers on the wire?

m Does the connection reveal additional metadata about the client that are unrelated to
the DNS query?

4.2.3 Defining Security Metrics

Encryption plays a crucial role in safeguarding DNS queries. When data is encrypted, it
becomes significantly more difficult to manipulate or tamper with the content. However,
even with encryption, an adversary can still block the DNS messages if he can detect them

as such. The aim is to prevent the message from being identifiable as encrypted DNS. The

36

following properties of encrypted traffic are commonly used for filtering traffic and should
be checked:

m Is the resolvers’s hostname visible?
m [s the resolvers’s IP visible

m [s the protocol visible?

If an attacker can observe the destination IP address and hostname of the resolver in the
network traffic, they could potentially block DNS requests altogether. This scenario is
particularly relevant in certain countries where governments restrict outbound DNS traffic
and limit citizens to using state-controlled resolvers. In such cases, even encrypted DNS
traffic might be identifiable and blocked.

4.2.4 Summarizing Metrics for the Evaluation

The following table will be used to provide a broad overview of the findings for every

analyzed DNS protocol. It features the metrics discussed in this section.

Category Metric
Performance Number of Round Trips
Exposed Client Identity
Privacy Exposed DNS Query

Exposed Metadata

Risk of Tampering

Risk of DNS Server IP Blocking
Risk of Destination Hostname Blocking
Risk of Protocol Blocking

Security

Table 1. Defining Evaluation metrics for different DNS protocols.

4.3 Phase 3 - Testbed Implementation

Building upon the chosen DNS protocols, evaluation tools, and metrics, a dedicated testbed

environment was set up to facilitate the evaluation.

A public server with a static IP was rented from netcup®. This enables conducting perfor-
mance measurements not limited to a simulated environment. Due to the physical distance
between Estonia and the server located in Germany, the RTT was measured to be around
30 milliseconds. This is not a big issue though, as latency measurements don’t play a key

role in this evaluation.

https://www.netcup.de/

37

https://www.netcup.de/

The server functioned as a flexible platform, allowing deployment of proxy implemen-
tations and acting as a DNS resolver in specific test scenarios. This self-hosted server
also facilitated data collection through traffic captures and logs, enriching the evaluation
process. The testbed was grouped into two stages. Stage one of the testbed was used for
testing and evaluating DNS protocols without a proxy, while stage two added a proxy

between client and resolver.

4.3.1 Testbed Stage 1

The following protocols were tested in stage 1:

s DNS over HTTPS (DoH)
m DNS over QUIC (DoQ)

The dig tool can send regular DNS over UDP requests to the local stub resolver. By default,
applications rely on the system configuration to resolve domain names. On Debian-based
Linux systems, the DNS resolver is configured in /etc/resolv.conf. Linux offers
native support for DNS over UDP and TCP, readily facilitating these protocols. With
minimal system configuration adjustments, DNS over TLS can also be integrated. Other

DNS protocols, however, require the installation of a dedicated client.

A typical dig DNS resolution can look as follows: The output of the dig command shown
in Figure 9 reveals the answer for the DNS query but also provides some additional infor-
mation. In the example, it took 27ms to resolve the IP of taltech.ee (81.21.253.51).

Here, it can be seen that Google’s public DNS resolver was used as indicated by the server
IP (8.8.8.8) in the response.

user@debian:~$% dig taltech.ee

; <<>> DiG 9.18.24-1-Debian <<>> taltech.ee

;+ Got answer:

;7 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 6982

;. flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: @, ADDITIONAL: 1

;7 OPT PSEUDOQSECTION:

; EDNS: version: @, flags:; udp: 512

;; QUESTION SECTION:

;taltech.ee. IN A

,» ANSWER SECTION:
kaltech.ee. 60 IN A 81.21.253.51

;;|Query time: 27 msecl

- SERVER:|8>8.8.8F53(8.8.8.8) (UDP)
;7 WHEN: Thu Apr 18 15:50:43 EEST 2024
;. MSG SIZE rcvd: 55

Figure 9. dig used for DNS lookup on taltech.ee

38

taltech.ee
taltech.ee

A stub resolver was used on the host machine for many of the evaluated scenarios. A
DNS stub resolver acts as an intermediary for applications and DNS servers. When an
application needs to translate a domain name into an IP address, it sends the request to
the stub resolver. The stub resolver runs as a separate process on the same machine and
handles all the DNS processing. Stub resolvers can be used to encrypt communication
with DNS servers for added security. Figure 10 shows the topology used for the three DNS
setups that don’t rely on a proxy.

Client Machine Cloudflare /
193.40.148.243 Adguard /
Self hosted

Stub Resolver

DNS resolver }

Figure 10. Simplified testbed architecture for testing DNS systems.

To generate encrypted DNS traffic, a stub resolver such as Routedns* can be set up. It
is an open-source DNS stub resolver and proxy implementation written in go. Routedns
was set up in a docker container listening on port 5355. The dig tool allows specifying
a custom DNS resolver with the following syntax: dig @172.17.0.2 -p 5355
taltech.ee. Here the IP address of the local routedns stub resolver’s docker container

is specified with the @ symbol.

4.3.2 Testbed Stage 2

To have control over the proxy and resolver functionality, a second server was added
for the final testbed. A local client was set up to work with the proxy server for further
measurements. The following DNS protocols rely on a proxy. They were analyzed in the

testbed shown in Figure 11.

m Oblivious DNS over HTTPS (ODoH)
m DoQ over a MASQUE Proxy

4.4 Phase 4 - Evaluation and comparison

This section describes how the evaluation on the captured data from different DNS systems

is done. A single test to gather traffic captures usually consists of the following steps:

“https://github.com/folbricht/routedns

39

taltech.ee
https://github.com/folbricht/routedns

Netcup Server
89.58.42.177

proxy
listener

Client Machine
193.40.148.243

Cloudflare /
Adguard

public resolver

dig DNS local routedns local proxy
client listener client

Figure 11. Simplified testbed architecture for testing DNS systems with a proxy.

Preparing the testbed and setting up Wireshark on one or more interfaces if testing includes
a proxy. On the client machine, the DNS request is triggered with a DNS client, in many
cases the dig tool was used. After receiving the DNS response, the traffic capture is stopped

and can be analyzed with Wireshark.

4.4.1 Evaluating Performance

This section shows how the performance of different DNS protocols is evaluated based on

some examples.

Wireshark flow graphs can be used to figure out the number of handshakes it takes to
resolve a DNS query. Figure 12 shows that it only takes a single round trip to resolve a
DNS query over UDP.

10.0.2.15
1.1.1.1
i |
45330 i Standard query Oxe6f2 A amazon.com OPT =i 53
I |
45730 IEj.alnrdard query response Oxebf2 A amazon.co...i 53
i

Figure 12. Wireshark Flow Graph of a DNS request over UDP.

4.4.2 Evaluating Security and Privacy

Packet capture analysis plays a big role in covering security and privacy metrics. Network
traffic is captured during DNS resolution with different setups. Wireshark is used to

identify exposed data. From the captures, most of the metrics can easily be identified.

40

No. Destination Protocol Length Info

Time Source
-~ 10.00000.. 10.0.2.15 1.1.1.1 DNS 93 Standard query ©x0001 A amazon.com OPT
[« 20.00139.. 1.1.1.1 10.0.2.15 DNS 129 Standard query response ©x0001 A amazon.com A 52.94.236.248 A 5:

» Frame 1: 93 bytes on wire (744 bits), 93 bytes captured (744 bits) on interface enp@s3, id @
» Ethernet II, Src: PCSSystemtec_f9:9b:d@ (08:00:27:f9:9b:d0), Dst: 52:54:00:12:35:02 (52:54:00:12:35:02)
» Internet Protocol Version 4, Src: 10.6.2.15, Dst: 1.1.1.1
» User Datagram Protocol, Src Port:|53024, Dst Port: 53
- Domain Name System (query)
Transaction ID: ©0x0001

» Flags: 0x0120 Standard query
Questions: 1

Answer RRs: @
Authority RRs: @
Additional RRs: 1
- Queries
- amazon.com: type A, class IN
Name: amazon.com
[Name Length: 1]
[Label Count: 2]
Type: A (1) (Host Address)
Class: IN (9x0001)
» Additional records

Figure 13. Wireshark capture of a DNS request over UDP with important fields highlighted.

The information from the highlighted fields in Figure 13 reveals information about the
client’s IP address (1) and the resolver’s IP address (2). The captured traffic can easily
be recognized as DNS (3), this is because Wireshark automatically analyzes the packet’s
contents. In this case, it is also easy to determine the protocol as port 53 (4) is used, which
is the default port for DNS. The queried address and type is shown in the highlighted area
(5). In this case, type A reveals that the query asks for the [Pv4 address of amazon.com.
There is a lot of information revealed from the DNS query, the same is also true for the

DNS response, which is not shown in detailed view in this screenshot.

41

5. Evaluating Existing Encrypted DNS Systems

This chapter delves into the evaluation of the selected protocols based on the metrics
established in section 4.2. A concise overview of the test setup configuration for each
protocol is provided, followed by a comprehensive analysis presented in table format.
These tables summarize the performance of each protocol according to the defined metrics,

allowing for a clear and comparative assessment.

5.1 Analyzing DoH

For analyzing DoH Routedns was first used as a local stub resolver. Unfortunately, it does
not support exporting the TLS secrets, so instead the Q! client was used. Figure 14 shows a
screenshot of a name resolution with Q using Cloudflare resolvers (https://1.1.1.1:443/dns-
query). By specifying the resolver with the @ symbol and providing an HTTPS address, Q

is automatically switching to DoH.

root@dla4d519a0ed: /go# q taltech.ee A @https://1.1.1.1:443/dns-query -S
taltech.ee. 43s A 81.21.253.51

Received 54 B from https://1.1.1.1:443/dns-quexy in 15.3ms (14:52:46 05-02-2024 UTC)
Opcode: QUERY Status: NOERROR ID 54377: Flags: qr xd ra (1 Q 1 A @ N @ E)

Figure 14. DoH lookup using Q.

Q allows specifying a ~t1s-client-key= parameter to store TLS secrets. With
Wireshark, it was then possible to load and decrypt the TLS data packets carrying the
DoH request and response. Depending on the combination of client and server, different
behaviors were observed. Q defaults to the HTTP GET method while the Routedns client
uses the POST method for DoH queries. Both clients can be configured to use a different
HTTP method.

The DNS query in the HTTP GET contains the base64 encoded domain name. In this case
for taltech.ee it looks like this:

GET /dns—query?dns=pEcBAAABAAAAAAAAB3RhbHR1Y2gCZWUAAAEAAQ

After some experimentation with different public resolvers, it was decided to self-host a

Routedns DoH resolver on the rented server. This way, it was possible to analyze resolver

'"https://github.com/natesales/q

42

https://github.com/natesales/q

logs and have full control over the caching mechanism to avoid reverse lookups.

5.1.1 DoH Performance

Figure 15 shows a DoH request triggered with Q to the self-hosted DoH listener with
Routedns. The listener is configured to make recursive lookups but it is equipped with a
cache for DNS responses. The DNS lookup took three round trips, the same behavior was

also observed on other public resolvers.

The first, gray message exchange is the TCP handshake. In the second handshake, the TLS
client hello message is sent. This is part of the TLS handshake and key exchange, to set
up the encrypted channel. Finally, in the third handshake, the green highlighted HTTP

messages indicate the DNS query and response.

Time 17217.0.2
: . 89.58.42.177
0.066291374 5 e ;ww 43
0.094966468 6 e WM a3 1
0.094988689 7 me 59678 — 443 [ACK] Seq=1 Ack=1 Win=64240 Len=0 e
0.095184576 8 sosyp L CientHelo Shi=v. .
0.095258384 E) mEn i MR LTS e RS el 2
0.123779620 1@ cosrs SEverhello, Change Gipher Spec. Encrypted Extensions, Certfic... -
0.123801591 1L coers L 59678 — 443 [ACK] Seq=250 Ack=2760 Win=62780 Len=0 ! , .-
0.130954272 12 ceerg ChengeCioherSpecFnshes .
0.131012287 1 3 50678 GET /dns-gueny?dns=hmEBAAABAAAAAAAABIRhOHRIY2GCE. 43
0131041139 T4 cosrs e 43— 59678 [ACK Seq=0760 Ack=314 Win=65535Len=0 ! , . 3
0.142131133 15 cosrs e 43— 59678 [ACK Seq=0760 Ack=537 Win=65535Len=0 ! , .
0.203877816 N6 cosrs ieStEnoerdguer response 0xB661 Atattech e A 812125351 | .
0.204697491 ST 7 g - EEE BB o= i1l =5 SAl e
0.204793888 18 cosrs e 43— 596T8[ACK] Seq=2051 Ack=538 Win=65535len=0 | .
0.232865340 19 s Adert (Level: Warming, Description: Close Notify) e
0.232870963 20 ooy 359678 [N ACK] Seq=2075 Ack=S38 Win=65535 Len=0 |

Figure 15. Flow chart of a DoH request with TLS1.3.
5.1.2 DoH Security and Privacy

The following screenshot shows the encrypted request packet with the exposed information
highlighted.

The DNS request packet has packet number 13 in the capture also seen in Figure 15.
Without access to the TLS secrets, an observer can only see encrypted application data.
Nevertheless, it is still possible to gather a lot of information from the captured traffic.
The source and target IP are visible. In this scenario, the source IP is a local 1P, because

the traffic was captured on the client machine’s interface. As soon as the packet leaves

43

— 50.06629.. 172.17.0.2 89.58.42.177 TCP 7459678 » 443 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM
60.09496.. 89.58.42.1..172.17.0.2 TCP 58 443 » 59678 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=146(
70.09498.. 172.17.0.2 89.58.42.177 TCP 5459678 » 443 [ACK] Seq=1 Ack=1 Win=64240 Len=0@

80.09518.. 172.17.0.2 89.58.42.177 TLSv1.3 3@3 Client Hello (SNI=v2202403219344260446.goodsrv.de)
90.09525.. 89.58.42.1..172.17.0.2 TCP 54 443 » 59678 [ACK] Seq=1 Ack=250 Win=65535 Len=0
100.12377.. 89.58.42.1..172.17.0.2 TLSvl.3 28..Server Hello, Change Cipher Spec, Application Data, Applici
110.12380.. 172.17.0.2 89.58.42.177 TCP 5459678 » 443 [ACK] Seq=250 Ack=2760 Win=62780 Len=0
120.13095.. 172.17.0.2 89.58.42.177 TLSv1.3 118 Change Cipher Spec, Application Data
2 .177 TLSv1.3 277 Application

140.13104.. 89.58.42.1..172.17.0.2 TCP 54443 » 59678 [ACK] Seq=2760 Ack=314 Win=65535 Len=0
150.14213.. 89.58.42.1..172.17.8.2 TCP 54443 » 59678 [ACK] Seq=2760 Ack=537 Win=65535 Len=0
16 0.20387.. 89.58.42.1..172.17.0.2 TLSv1.3 245Application Data
170.20469.. 172.17.0.2 89.58.42.177 TCP 54 59678 -+ 443 [FIN, ACK] Seq=537 Ack=2951 Win=62780 Len=0
180.20479.. 89.58.42.1..172.17.0.2 TCP 54443 » 59678 [ACK] Seq=2951 Ack=538 Win=65535 Len=0
190.23286.. 89.58.42.1..172.17.0.2 TLSvl.3 78 Application Data

23287.. 89.58.42.1..172.17.0.2 TCP 54 443 » 59678 [FIN, ACK] Seq=2975 Ack=538 Win=65535 Len=0

» Frame 13: 277 bytes on wire (2216 bits), 277 bytes captured (2216 bits) on interface docker®e, id ©
» Ethernet II, Src: 02:42:ac:11:00:02 (02:42:ac:11:00:02), Dst: 02:42:7a:d2:db:2f (02:42:7a:d2:db:2f)
» Internet Protocol Version 4, Src: 172.17.0.2, Dst: 89.58.42.177
» Transmission Control Protocol, Src Port: 59678, Dst Port: 443, Seq: 314, Ack: 2760, Len: 223
- Transport Layer Security
- TLSv1.3 Record Layer: Application Data Protocol: Hypertext Transfer Protocol
Opaque Type: Application Data (23)

Version: TLS 1.2 (0x0303)

Length: 218

Encrypted Application Data [truncated]: b1f5282238f25808cecf@c98580297628ed7d84331446ed1ldd2db22c14ce2dfe
[Application Data Protocol: Hypertext Transfer Protocol]

Figure 16. Intercepted encrypted DoH request packet.

the home network it will pass through a Network Address Translation (NAT) router and

receive a public one.

All DoH messages are transmitted through the TLS session as encrypted data and masked
as HTTP. An observer can only see that HTTPS messages were exchanged over port
443. One downside of TLS is that it exposes extra information. Figure 17 presents a
screenshot of a TLS client hello message captured during session establishment. This
message includes the Server Name Indication Server Name Indication (SNI) extension,
which reveals the intended DNS server in plain text. While not always present, the SNI
extension is frequently used when multiple websites share a single public IP address. As

previously mentioned, this can be exploited for techniques like SNI-based blocking.

44

~ Handshake Protocol: Client Hello
Handshake Type: Client Hello (1)
Length: 240
Version: TLS 1.2 (©x0303)
Random: 1c9e90903992ad4b8689e381c6dc@b59bac9dcl4edf6d52a95761edc75553683
Session ID Length: 32
Session ID: 12977faal7f58feBbdeeb9b39f292dB8ed215e95463dd519892642f9574d6eb66
Cipher Suites Length: 6
Cipher Suites (3 suites)
Compression Methods Length: 1

Compression Methods (1 method)

Extensions Length: 161

Extension: server name (len=36) name=v2202403219344260446.goodsrv.de
Type: server_name (@)
Length: 36

- Server Name Indication extension

Server Name list length: 34

Server Name Type: host_name (@)

Server Name length: 31

Server Name: v2202403219344260446.goodsrv.de

Figure 17. Intercepted encrypted DoH TLS Client Hello packet.

Other metadata that is exposed during the handshake is the supported cipher suites or the
session ID as illustrated. All this information might be used to infer some information
about the client.

Category Metric Result
Performance Round Trips 3
Exposed Client Identity Yes
Privacy Exposed DNS Query No
Exposed Metadata Yes
Risk of Tampering No
. Risk of DNS Server IP Blocking Yes
Security
Risk of Destination Hostname Blocking | Yes
Risk of Protocol Blocking No

Table 2. Evaluation metrics for DNS over HTTPS.

Table 2 provides an overview of the findings for DoH. Figure 15 shows that the DNS
lookup took 3 handshakes. Figure 16 showed that the client’s IP is exposed. The DNS
query is encrypted and can only be seen as Encrypted Application Data. With an encrypted
query, the risk of tampering with the DNS content is also eliminated, as the client won’t
be able to decrypt the response as soon as a single bit is changed. This is because of
the avalanche effect property of TLS encryption. Figure 17 reveals some metadata that
is present in the TLS client hello. In Figure 16, it is highlighted, that the resolver’s IP
address and hostname are visible, which can be used for filtering. The DNS protocol is not

revealed by the intercepted traffic, observers can only see the HTTP protocol.

45

5.2 Analyzing DoQ

The DoQ testing was conducted in a similar setting as for DoH. Again, Q was used as the
DoQ client because it allows exporting the TLS secrets for debugging purposes. Testing
DoQ requires finding a different resolver though, since Cloudflare does not yet support
DoQ on their DNS servers. For the following traffic captures, DNS queries were sent to

nextdns.

g taltech.ee A @qguic://51252d.dns.nextdns.io:853 —-S \

——reuse-conn ——-tls-key-log-file=out.key
. 10.0.2.15
me 185.87.111.218
0.050518308 5 56236 initial, DOID=3b%5a26aa13ef206065aCTf20609. PKN: 0. PADDIN 853
0.250980971 6 sopzg intELDC =
0.251018385 7 con =
0258924454 8 ses CRYPTO = 1
0258924528 9 6236 CRYPTO =
0.258973174 10 cene CRYPTO =
0.258973195 11 see PEN-0, NCL NCL NO =
—
0.259199967 12 seze nitisl DOD=T6725007. PKN: 3 ACK BADDING .
0.259214269 13 56236 Handshake DOID=TEf25007, PKM: 0. ACK g53
0.263052092 14 oo Protecte: iD= 253
0.268065503 15 6236 Protected Py . DOD=F04926c2, PKN: 1. ACK =
0.268076305 16 e 0000 A taitech e - 2
0275720743 17 cens PKN: 1. ACK CRYPTO, DONENT | .
0.286966803 18 Shrap wolEneE sitechee ABI21253.51 | ooy
0.287051874 19 56236 Protected Payload (KPO), DOID=f459a6c2, PKN: 3. ACK 853
0.293071227 29 SEIE Protected Payload (KPOD. PKN: 3, MS g53

Figure 18. Traffic capture of a DoQ request to nextdns DoQ resolver.

Figure 18 shows the flow graph of a DoQ lookup to nextdns. The TLS key from the DoQ
client was added to Wireshark for more insight into the message exchange. With the
decrypted data, it can be seen that the query was resolved in two round trips. Q supports
TLS 1.3 and is using QUIC’s 1-RTT connection setup by default. The TLS handshake
is already done in the first round trip, unlike with DoH which required a separate TCP
handshake first.

The QUIC traffic is mostly encrypted. The recorded traffic in Figure 19 shows details of
packet 16 from the same DNS request seen in Figure 18. From the encrypted DNS request,
it is possible to learn the client’s IP as well as the server’s IP and port. Other than that,

there is not much more information exposed here.

46

X Tme Soure rotocol Length _nfo
 50.050518398 10.0.2.15 185.87.111.. QUIC 12..Initial, DCID=ab95a26aalaef2c6065ac7f2b6@9, PKN: @, PADDING, CRYPTO
60.250980971 10.0.2.15 185.87.111.. QUIC 12..Initial, DCID=ab95a26aalaef2c6065ac7f2b609, PKN: 1, PADDING, CRYPTO
70.251018385 10.0.2.15 185.87.111.. QUIC 12..Initial, DCID=ab95a26aalaef2c6065ac7f2b609, PKN: 2, PADDING, CRYPTO
80.258924454 185.87.111..10.0.2.15 QUIC 12..Handshake, SCID=76f25007
90.258924528 185.87.111..10.0.2.15 QUIC 12..Handshake, SCID=76f25007
100.258973174 185.87.111..10.0.2.15 QUIC 12..Handshake, SCID=76f25007
110.258973195 185.87.111.. 10.0.2.15 QUIC 185Protected Payload (KPQ)
120.259199967 10.0.2.15 185.87.111.. QUIC 12..Initial, DCID=76f25007, PKN: 3, ACK, PADDING
130.259214269 10.0.2.15 185.87.111.. QUIC 78 Handshake, DCID=76f25007
140.268052092 10.0.2.15 185.87.111.. QUIC 142 Protected Payload (KP@)
150.268065503 10.0.2.15 185.87.11 71 Protected Payload (KPO)
16 0.268076305 10. 15 97 Protected Payload (KP@)
170.275720743 185.87.111.. 10. s QUIC 296 Protected Payload (KPO)
180.286966803 185.87.111..10.0.2.15 QUIC 109 Protected Payload (KPQ)
190.287051874 10.0.2.15 185.87.111.. QUIC 70 Protected Payload (KP@)

» Frame 16: 97 bytes on wire (776 bits), 97 bytes captured (776 bits) on interface enp@s3, id @
» Ethernet II, Src: PCSSystemtec f9:9b:d0 (08:00:27:f9:9b:d0), Dst: 52:54:00:12:35:02 (52:54:00:12:35:02)
» Internet Protocol Version 4, Src: 10.0.2.15, Dst: 185.87.111.218
» User Datagram Protocol, Src Port: 56236, Dst Port: 853
- QUIC IETF
BQUIC Connection information
[Packet Length: 55]
- QUIC Short Header
0... = Header Form: Short Header (@)
odbo o = Fixed Bit: True
..0 .. = Spin Bit: False
Remaining Payload: f049a6c20blbaee9d04b07b74614d014d169fbfl6cdbafad695aa446f8cdodeclaeb0152e227fb8cbf2be937df153cab2a48c8bf1226

Figure 19. Traffic capture of a DoQ request to nextdns DoQ resolver.

The protected payload packets do not expose what domain was resolved, but the QUIC
TLS handshake still exposes some information as shown in the following screenshots.
During traffic captures, the name of the DNS server can be seen in the SNI field and the
Application Layer Protocol Negotiation (ALPN) field reveals the protocol, in this case,
DoQ.

- TLSv1.3 Record Layer: Handshake Protocol: Client Hello
- Handshake Protocol: Client Hello
Handshake Type: Client Hello (1)
Length: 267
Version: TLS 1.2 (0x0303)
Random: 30c4d373654cde60fdf450af8afbcO7bfb681f8a94badb2126717fdb64dbd3b7
Session ID Length: @
Cipher Suites Length: 6
» Cipher Suites (3 suites)
Compression Methods Length: 1
» Compression Methods (1 method)
Extensions Length: 220

» Extension: server_name (len=26) name=51252d.dns.nextdns.io

» Extension: status_request (len=5)

» Extension: supported_groups (len=10)

» Extension: ec_point_formats (len=2)

» Extension: signature_algorithms (len=26)

» Extension: renegotiation_info (len=1)

» Extension: extended_master_secret (len=0)

- Extension: application_layer_protocol_negotiation (len=6)
Type: application_layer_protocol_negotiation (16)
Length: 6
ALPN Extension Length: 4

- ALPN Protocol
ALPN string length: 3
ALPN Next Protocol: doq

Figure 20. TLS Client Hello from captured DoQ request to nextdns DoQ resolver.

With this information, an observer can block the traffic by filtering DoQ handshakes or
by blocking based on the nameservers specified in the handshake. Figure 21 shows the
QUIC transport parameters that are also exposed during the initial handshake. This is a lot

of metadata that an observer might use to identify clients.

47

- Extension: quic_transport_parameters (len=55)
Type: quic_transport_parameters (57)
Length: 55
» Parameter: GREASE (len=0)
» Parameter: initial max_stream_data_bidi_local (len=4) 524288
» Parameter: initial max_stream_data_bidi_remote (len=4) 524288
» Parameter: initial_max_stream_data_uni (len=4) 524288
» Parameter: initial max_data (len=4) 786432
» Parameter: initial_max_streams_bidi (len=2) 100
» Parameter: initial max_streams_uni (len=2) 100
» Parameter: max_idle_timeout (len=4) 30000 ms
» Parameter: max_udp_payload_size (len=2) 1452
» Parameter: max_ack_delay (len=1) 26
» Parameter: disable_active_migration (len=0)
» Parameter: active_connection_id_limit (len=1) 4
» Parameter: initial_source_connection_id (len=0)

Figure 21. Traffic capture of a DoQ request to nextdns DoQ resolver.

5.2.1 O0-RTT and Session Resumption for DNS over QUIC

Sengupta et al. [5] showed in their paper that it is possible to drastically speed up the DNS
resolution process for DoQ by employing O-RTT. They used a complex setup to extract
TLS session tickets from a custom Chromium build and then reused them with their DNS
client. They used DNSperf, an open-source tool 2. The tool has not seen any updates
though in the last two years and it had some broken dependencies, thus it was not further

evaluated.

Many different DoQ implementations were evaluated by reviewing their documentation
and code. Most don’t even mention support for O-RTT and don’t use EarlyData structures
in the code. The EarlyData [21] functions enable sending encrypted O-RTT data in the first
TLS message.

Routedns claims to support O-RTT for the QUIC client when paired with a resolver that
also supports 0-RTT. With a code analysis, it was confirmed that indeed the connection
setup is using EarlyData functions. To study the properties of DoQ, a local DNS stub
resolver was set up using Routedns. Routedns is configured to listen locally on UDP port
5355 and to forward DoQ requests to the selected public resolvers. To allow decrypting
the traffic, Routedns’s client code was modified to enable writing the TLS secrets to a file.

In a first experiment, DoQ queries were made to multiple public resolvers. More specifically
nextdns, adguard and freedns. Repeated queries were triggered after 30 seconds of the
initial DoQ query, but no O-RTT packets were detected in Wireshark. This confirms the
findings of Kosek et al. [4] who could not find any public DoQ server that offered support
for O-RTT data.

The next step was to set up a custom server that supports O-RTT. For this, a reverse proxy

’https://github.com/mgranderath/dnsperf

48

https://github.com/mgranderath/dnsperf

is needed that terminates the QUIC session and only forwards the DNS traffic to the
Routedns listener. There are only a few HTTP servers that offer support for 0-RTT packets
in HTTP/3 but this will not work with DoQ since it is not using HTTP. There was no good
candidate found that offers QUIC reverse proxy functionality for other traffic than HTTP.

To not run out of options, it was decided to try to use DNS over HTTP/3. Both Routedns
and Q can use this mode of DoH by changing the client configuration. Caddy is a popular
HTTP server that can also be used as a reverse proxy to handle TLS connections. Since
version v2.7.3 (August 2023) it supports O-RTT for HTTP/3 traffic *. Using the latest
version requires building it from source code. Most Linux packet managers offer an older

version of Caddy.

-~

~

DNS

DNS (DoH3)
Routedns
[DELIE) HTTP3
stub resolver
DIG

TLS TLS
{ DNS } { DNS HTTP/1.1

>
ubpP ubpP ubpP [ubpP TCP

IP/IPv6 IP/IPV6 IP/IPv6
IP/IPv6 IP/IPv6
K Loopback L

Client Server

Caddy

Reverse Proxy
HTTP/3 Routedns
DoH

DNS

DNS

[1
=
S

TCP

A A J

[IP/IPV6

opback y

Q

Figure 22. Protocol stack used for O-RTT testing.

The Routedns listener was configured to DoH over cleartext HTTP. This use case is only
recommended for such reverse-proxy scenarios, where TLS is handled by a different
application. Caddy was set up in reverse proxy mode to forward the DoH3 packets as

cleartext HTTP to the local Routedns listener as shown in Figure 22.

To confirm whether O-RTT EarlyData was used for the exchange, traffic captures were
taken on the servers’s public as well as loopback interface. During the test, multiple queries
were requested, to ensure TLS secrets could be exchanged beforehand. Unfortunately, the

captured results showed that no 0-RTT packets were sent.

In Figure 23 the blue highlighted packet carries the DoH query. The QUIC stream was
decrypted with the TLS secrets from Routedns. There were no O-RTT packets captured.
This was strange because it was previously confirmed that the caddy server supports O-RTT.
A static website was hosted and while repeatedly accessing that website in chromium,
O0-RTT were observed in Wireshark.

Routedns does not have documentation on the O-RTT support and there are also no other

Shttps://github.com/caddyserver/caddy/releases/tag/v2.7.3

49

https://github.com/caddyserver/caddy/releases/tag/v2.7.3

176.7.164.17 127.0.0.1
Time

89.58.42.177

i i i
0.000000 T Er't'z DOD=656612c99a616904139de 345157 Tabd6d53 PKN:,;E 4 E
0.000934 S E Handshake SCID=656b8bct, PKN: 0, CRYPTO E s i
0.000960 T E Handshake, SCID=65608bck PKN: 1. CRYPTO E s i
0.000964 FETET] E. Protected Paykoad (KPO). PKNE 0. Nl NOL NG E FE i
0.001070 = E Protected Payioad (KPO), PKN: 1, STREAM(3), SETTINGS E w2 i
0.117336 T E nitial, DOID=656bBbck PKN: 1. ACK. PADDING 5443 i
0.117337 T E Handshake, DOD=656b8bcr, PKN: 0, ACK E s i
0.117337 = Protected Payload (KPO), DOD=e1487 107, PKN: 0, RC w2
0.117337 = Protected Payboad (KPO), DOD=e 14ETI07, PR LACK ! o
0.117337 tozd (KPO). DCID=21487 107, PKM: 2. STREAMID). H,
0.117838 53724 e Protected Payiosd (KPO). PKN: 2, ACK. CRYPTONT.DONE !, .
0.118164 o —
0.118181 I 5 o
0118181 448 17288
0118443 448 17288
0118486 47288 48
0118499 448 17288
0118503 47288 148
0118684 47288 148
0118704 448 17288
0.119030 3134 fload (KPOJ, PKN: 3, STREAM(D). HEADERS: 2000K.... , .-
0.220312 s | syicas (F0) DOD=s148TIOT PRI S ACK) :
0.220575 3134 E Protected Payload (KPO), PKN: 4, M5 E E i
0.340307 = E Protected Payload (KPO), DOD==1487107, PKN: 4, ACK E oF i

Figure 23. Message flow for DNS over HTTP/3 with Routedns as client.

mentions about 0-RTT on the GitHub page except that one statement. It seems like it either
is not fully supported or some other measures or configuration changes are needed to get
it to work. In the next attempt, Chromium was used as client for DoH/3. DoH requests
can be triggered manually by reusing the HTTP GET requests from a decrypted message.
Chromium does not understand how to handle the response but it works well enough in

triggering a request.

® Hello World!

C R ®

Figure 24. Triggering a DoH request manually.

The following flow graph shows how a successful O-RTT DNS request over HTTP/3 can

return a response in one single round trip.

50

Time

176.7.164.17

127.0.0.1

89.58.42.177
0.000000 ca0g [itial DOD=3ab0TG2G 1aif PKN: 1, PADDING, CRYPTO, BADL! |\)
0.000001 3082 0-RTT, DCID=33b07#4620f11c4f o
0.000001 53062 0-RTT, DOID=33b074620f11c4f o5
0.000710 = ke SOD=7230374 s
0.000730 53062 Protected Payload (KPO) o5
0.000747 53062 Protected Payload (KPD) o
0.001104
0.001130 g
0.001344 P -
0.001357 20668 s
0.070067 -
0.070088 R
0.070563 EEners Protected Payioad (KP0) o5
0.097161 53062 DOD=Te3b3d74 2
0.097161 = Protected Payload (KPO). DOD=72363474 .
0.097652 53062 Protected Payload (KPO} i
0.197184 53062 Protected Paykad (KPO). DOD=7e3b3d74 o
0.197455 ta082 Protected Payload (kPO) a5
0.310150 53062 Protected Payload (KPO), DOD=7e3b3d74 -

Figure 25. Message flow for DNS over HTTP/3 with Chromium as client.

After it was confirmed that O-RTT can work with the server setup, the goal was to also
get the Routedns client to support it as well. This would then allow proper handling of
the query responses. After some debugging and testing, it was found that the client was
missing a TLS session ticket cache and was not using the right HTTP GetORTT method.
These options are necessary for session resumption and O-RTT to work. After some
experimenting, it was possible to modify the client and a pull request was opened on

GitHub to integrate the changes *.

176.5.5.74 127.0.0.1
89.58.42.177
30,304993 564 initisl, DOD=3cB8f5fAcfE6723c7 56560803 1. PKN: 0. PADDING, C.

Time

30304993 sony | O-RTT.DOD-ICBRfsfAcloGT2cTSOSecBOd),

39.395790
30.305822
30.395830
30.396035
39.3960438
39.396058
39.396250
38.396271
39.396307
39.396314
39.396536
39.396553
39.396762

SOD=51e615de, PEN: 0. CRYPTO

5864

. Protected Pylozd (KPO), PKN: 1, ACK

Protected Payload (KPO). PKM: 2 STREAM(3), SETTINGS

5954

= 443
39.521423 . DOD=42:0s867 e
39.521423 o DOD-4250867 o
39.521423 sos rotected Psyiosd (D) s
39.521423 sos rotected Psyiosd (D) s
39.521813 sos rotected Psyiosd (D) s
39.804320 T2 Protected Payioad (KPO) "

Figure 26. 0-RTT flow for DNS over HTTP/3 with the updated Routedns client.

“https://github.com/folbricht/routedns/issues/385

51

https://github.com/folbricht/routedns/issues/385

With the updated client, Routedns can now also use the O-RTT TLS handshake. Unfortu-
nately, the O-RTT packets themselves can not be decrypted with the extracted TLS secrets.
From the captured files it can be observed that the O-RTT is never sent on its own. The
regular handshake "initial" packet is also sent, which contains the full TLS client hello
message. This is done as a fallback mechanism if the server decides to drop or reject
the O-RTT session resumption packet. The O-RTT packet itself is encrypted and does not

reveal information about its contents.

The O-RTT mode analyzed in this section was tested with DNS over HTTP/3. DoQ’s
properties are very similar, it just eliminates the HTTP/3 layer on top of QUIC. The QUIC
and TLS message exchanges are very similar for both protocols.

Due to a coincidence while analyzing the code of Routedns’s DoQ client, it was found, that
Adguard’s dnsproxy client > also supports 0-RTT. It is not mentioned in the documentation,
but there are many functions that handle EarlyData in the tool’s code. dnsproxy is similar
to Routedns in that it supports multiple DNS protocols and can act as client, server, or, as

the name implies, DNS proxy.

Routedns
DoH/3 DNS (DoQ)
stub resolver

DNS (DOQ

DIG QuiC

TLS

[oo
l[IP/IPv6 [IP/IPv6

kl Loopback

ubpr ubP]

L A A J
—

[IP/IPv6

VAN

Client Server

Figure 27. Updated setup with dnsproxy.

The dnsproxy was installed on the proxy server and configured to act as a resolver for
DoQ, similar to Routedns used in the previous sections. With dnsproxy acting as the DoQ
resolver, the setup was simplified a lot. It was equipped with a cache and configured to

forward DNS queries to Cloudflare’s resolvers as shown by the following command.

./dnsproxy -1 0.0.0.0 -g 8853 -u 1.1.1.1:53 -p 0 \
—-—-cache —--cache-min-ttl=600 —--tls-crt=$path.crt \
—-—tls-key=$path.key -v

Shttps://github.com/AdguardTeam/dnsproxy

52

https://github.com/AdguardTeam/dnsproxy

It was then tested with the updated Routedns client and successfully confirmed that O-RTT
was also working for DoQ. Figure 28 shows 0-RTT traffic between a Routedns client
and dnsproxy resolver. The traffic was decrypted with TLS secrets exported from the
client. The O-RTT message can not be decrypted with the secrets, thus only the DNS query

response is shown in the capture file.

Time Source Destination Protocol Info
60.202425475 172.17.0.2 89.58.42.177 QUIC 1294 Initial, DCID=e83ad173780d7832585666, PKN: @, PADDING, CRYPTO
7 0.202453927 172.17.0.2 89.58.42.177 QUIC 1350-RTT, DCID=e83ad173780d7832585666
80.331037317 89.58.42.177 172.17.0.2 QUIC 1294 Handshake, SCID=e5a8e@la, PKN: @, CRYPTO
90.331089436 89.58.42.177 172.17.0.2 QUIC 67 Protected Payload (KP@), PKN: 1, ACK
100.331225014 89.58.42.177 172.17.0.2 DNS 120 Standard query response 0x0000 A taltech.ee A 81.21.253.51 OPT

Figure 28. O-RTT flow for DoQ with the updated Routedns client and dnsproxy resolver.

The updated client was also tested with public DoQ resolvers but it was again confirmed
that none of them support O-RTT. Adguards DoQ server creates and shares session tickets
that can be used for O-RTT requests but even after multiple trials, it was always rejected as

the server responds with a QUIC retry message.

G94,140.14.140

89.58.42.177

T T

1 1

'Initial, DOID=faa0d92 52951 SO0 2687 S 0ocBfc 505 0.}
S7ERE :rt_ DOD=F 02524 68T S0c0cEficS05L, PN & 5853

1 1

1 - D =fz3 020 G0 1 OO s Lo~ CiNE, 1
57686 : 0-RTT, DOD=f2z0d92529515000df 2687 5900cBic505C » 8653

1 1

] g P]
57686 Retry, SOID=68a08c4 | gg53

Figure 29. 0-RTT rejected by Adguards public resolver.

Table 3 provides an overview of the findings for DoQ. 0-RTT introduces some new privacy
concerns that will be analyzed in the next section and that don’t appear in this table. As
shown in this section, DoQ has similar properties to DoH but because it does not rely on

HTTP, its protocol and port are visible to an observer. This makes it easier to block the

protocol.

Category Metric Result

Performance Round Trips 1-2

Exposed Client Identity Yes

Privacy Exposed DNS Query No

Exposed Metadata Yes

Risk of Tampering No

. Risk of DNS Server IP Blocking Yes

Security
Risk of Destination Hostname Blocking | Yes
Risk of Protocol Blocking Yes

Table 3. Evaluation metrics for DNS over QUIC.

53

5.2.2 Security concerns with 0-RTT DoQ

As previously mentioned, there exist some issues with O-RTT messages. They can be
captured and later used for a replay attack. Tools like scapy® can be used to replay

intercepted traffic.

In a small experiment with the O-RTT DoQ setup, it was tried to reproduce the replay
attack, by intercepting 0-RTT traffic. First, a regular DoQ query was sent to the resolver to
establish a TLS session. Then the network interface on the client machine was deactivated
to simulate intercepting traffic. While the network connectivity was down, a new DoQ

request was made to the server and captured with Wireshark.

No. Time Source Destination Protocol Length Info
20.0004.. 172.17.0.2 89.58.42.177 QuUIC 1294 Initial, DCID=702b07190d0a530812505398e8, PKN:
590 Destination unreachable (Network unreachable)

40.0004. 172.17.0.2 89.58.42.177 QUIC 134 0-RTT, DCID=702b07190d0a5308125d5398e8
50.0004.. 172.17.0.2 162 Destination unreachable (Network unreachable)

Figure 30. Intercepted O-RTT message.

The interface was activated again and the capture file was loaded in scapy. The following
Python commands were then used to resend the 0-RTT QUIC packets for the attack.

from scapy.all import =

packets = rdpcap("../test.pcapng")

p = packets[1l] [UDP] .payload

p2 = packets[3] [UDP] .payload

new_p = IP(dst="89.58.42.177") /UDP (sport=36491, dport=8853)/p
new_p2 = IP(dst="89.58.42.177")/UDP (sport=36491, dport=8853)/p2
for packet in [new_p, new_p2]:

send (packet)

The crafted packets can be observed with Wireshark as it is sent to the server. If everything
was done correctly and the O-RTT ticket was still valid, the resolver will send a response
back. Figure 31 shows a capture of the packets sent with scapy and the response by the

server that was sent back.

The attacker in this case has no access to the victim’s TLS secrets, so he can not decrypt
the response from the server to learn what the query was. The problem arises if the attacker

can monitor or infer information from the resolver’s outgoing traffic.

Shttps://github.com/secdev/scapy

54

https://github.com/secdev/scapy

No. Time Source Destination Protocol | Length Info

o - 1294 Initial, DCID=702b07190d0a5308125d5398e8,
40.064617.. 10.0.2.15 89.58.42.177 QuUIC 134 0-RTT, DCID=702b07190d0a5308125d5398e8
50.165827.. 89.58.42.177 10.0.2.15 QUIC 1294 Protected Payload (KPO)
.58.42.177 590 Destination unreachable (Port unreachable)
70.199627.. 89.58.42.177 10.0.2.15 QUIC 66 Protected Payload (KPO)

.0.2.15 89.58.42.177 ICMP 94 Destination unreachable (Port unreachable)

Figure 31. O-RTT replay attack response.

R port==8853 orpsc == 893842177

No. Protocol _ Length info

Time rce o
143492.6739..176.4.146.248 89.58.42.177 QUIC 1294 Initial, DCID=702b07190d0a5308125d5398e8, PKN: ©, PADDING, CRYPTO
143592.6748..89.58.42.177 176.4.146.248 QUIC 1294 Handshake, SCID=d33a5f9f

143792.7062..176.4.146.248 89.58.42.177 QUIC 134 0-RTT, DCID=702b07190d0a5308125d5398e8

1438 92.7065.. 89.58.42.177 176.4.146.248 QUIC 66 Protected Payload (KP@)

143992.7068..89.58.42.177 1.1.1.1 DNS 90 Standard query 0x0000 A test.fi OPT

144292.7913..89.58.42.177 176.4.146.248 QUIC 1294 Initial, SCID=d33a5f9f, PKN: 1, PADDING, CRYPTO

1443 92.7914..89.58.42.177 176.4.146.248 QUIC 1294 Initial, SCID=d33a5f9f, PKN: 2, PADDING, CRYPTO

1447 92.9058.. 89.58.42.177 176.4.146.248 QUIC 237 Handshake, SCID=d33a5f9f

1448 92.9058.. 89.58.42.177 176.4.146.248 QUIC 237 Handshake, SCID=d33a5f9f

Figure 32. Traffic capture during O-RTT replay on the resolver.

In this case, the replay attack triggered the resolver to do a recursive lookup with DNS to
Cloudflare’s resolvers. Of course, real DNS servers that handle encrypted DNS should not
be configured to use cleartext DNS for recursive lookups. For this experiment, it was used

to showcase this one scenario.

The attack is partially mitigated by reducing the observability of this recursive traffic with
encryption. But it is not eliminated. In another attack scenario, if the attacker has access to
the recursive resolver, he could select a time frame with low traffic to isolate the replayed
DoQ query and guarantee a reverse lookup. By controlling the recursive solver, he can
now decrypt the traffic from the original receiving resolver of the 0-RTT request, thus he

can learn the query.

Session ticket linkability with session resumption is another privacy concern. If session
tickets are repeatedly used it can lead to easy fingerprinting for any observer. The DoQ
RFC 9250[25] already specifies recommendations to minimize the risks involved with
session resumption. It is recommended that clients should use resumption tickets only once

and by default, clients should not use session resumption if the IP address has changed.

55

5.3 Oblivious DoH evaluation

To establish a baseline for comparison, an Oblivious DNS setup was additionally deployed
within the testbed. However, similar to the other protocols, the ODoH standard currently
has limited implementation options. The available implementations are also still considered

experimental.

The Cloudflare ODoH relay server’ and client® were installed in the testbed. The open-

source implementation was also used in their paper [3] that focused on ODoH performance.

While the Cloudflare ODoH implementation holds promise, it has not received any updates
since 2021. One key challenge is the confusing mechanism for clients to acquire the
resolver’s keys. In the existing version of the ODoH client, this is by default carried out
through an additional handshake process. The client initiates a handshake with the resolver
to obtain its HPKE public key, before making the ODOH request. This means that the
server is in direct contact with the client in this implementation. This approach is meant to
be used for testing the ODoH mechanism, and a more robust and scalable solution for key

distribution is needed for ODoH to reach its full potential.

Client Server

Get Server Public Key

ﬂ\

Proxy
Encrypted DNS query

Encrypted DNS query

Encrypted DNS response

Encrypted DNS response

Figure 33. Simplified Message Flow for an ODoH Request.

In this scenario, although upstream servers do not directly receive DNS queries from the
client, they still acquire knowledge of the client’s IP address during the preceding key
query. It first shows a connection to the target server for the key exchange and only after
that the connection to the ODoH proxy. Ideally, there should be public servers that collect
public ODoH targets and regularly update their public keys. Users can then get a full list

of available ODoH targets and proxies to choose randomly from.

"https://github.com/cloudflarearchive/odoh-server-go
8https://github.com/cloudflare/odoh-client-go

56

https://github.com/cloudflarearchive/odoh-server-go
https://github.com/cloudflare/odoh-client-go

Only after studying the code of the client implementation, an undocumented "—certificate"
option was discovered that allows skipping the key exchange for every new DNS resolution.
In Figure 33 this translates to decoupling the first transaction from the message exchange.
The public key can be gathered with the odohconfig-fetch functionality of the client.
Gathering the key currently also works with DoH. A DNS request can also request the

server’s TXT records. For ODoH, the resolver shares his public keys this way.

r00t@91€02482a309: /go/odoh-client-go# ./odoh-client odohconfig-fetcn --target odoh.cloudtlare-dns.com > cloudflare.conf
Toot@91e02482a309: /go/odoh-client-go# echo $(< cloudflare.conf)
P02c0Ee10028002000010001002096c1T14851e7f44e2b96c4c0T8398c69aT3727e52a30b9db28ab2de60df79a70

T00t@91e02482a309: /go/odoh-client-go# ./odoh-client odoh --dnstype A --domain taltech.ee --target odoh.cloudflare-dns.com --proxy v22
02403219344260446.goodsrv.de --config $(< cloudflare.conf)

,; opcode: QUERY, status: NOERROR, id: 58863

;i flags: qr xd ra; QUERY: 1, ANSWER: 1, AUTHORITY: @, ADDITIONAL: @

s+ QUESTION SECTION:
;taltech.ee. IN A

;. ANSWER SECTION:
taltech.ee. 60 IN A 81.21.253.51

Resolution time:
149.572983ms
I00t@91€02482a309: /go/odoh-client-go# S

Figure 34. Console Screenshot of an ODoH request.

Figure 34 shows how a domain name query is made with the Cloudflare ODoH client.
Required parameters include the domain and type to look up, the target resolver URL, the

proxy URL, and the target’s public key config.

5.3.1 Oblivious DoH performance

Again, the source code of the client was modified to store the TLS secrets. Figure 35
shows a decrypted traffic capture from the client. There is a big time gap between the green
request and response packets that contain the ODoH query. This is because the traffic in
this capture only shows the communication between the client and proxy. The proxy has

to wait for the resolver’s response.

To get a better picture of what is happening, traffic from the proxy was also evaluated. For
decrypting all ODoH messages, it is necessary to have access to the proxy’s TLS secrets,
since the proxy opens its own TLS session with the target server. The proxy only forwards

the encrypted query string.

The proxy’s source code was also modified to log TLS secrets. With that done, it is now
possible to analyze all the exchanged messages in Wireshark. Traffic captures were taken
on both the client and proxy’s public-facing interface. Figure 36 shows the message flow

graph from the capture on the proxy.

The flow chart illustrates that both connections, client-to-proxy and proxy-to-resolver,

57

10.0.2.15

Time

89.58.42.177

0.002807531

0.031103674
0.031156165 sy [z WE LR e TSl
0.031366782 R : Qiient Hello (SNI=v220240321 de) : w

i 1

Lo 443 —46330 =1 Ack=284 Win=65535 len=0 |
0.031434398 48320 | [ACK] s
0.060161486 B e e R Ay AT

| 46330443 =284 Ack=2021 Win=62780Len=0 |
0.060208100 25320 | [ACK] Seg . a3
0.060257348 46330 = Certificate, Certificate Verify, Finished e
0.060276114 m: 46330 — 443 [ACK] Seq=284 Ack=3271 Win=£2430 Len=0 -:.143
0.067573719 46330 | Change Cipher Spec Finished a3
0.067683129 46330 W 13
0.067720240 16330 _Mwmg
0.067795630 46330 w42 = 46330 [ACK] Seq=3271 Ack=T77 Win=65535 Len. '.ua
0.191943084 T i, HTTP/1.1200 O (appication/obivious-dns-message) | sz

e EE————0

Figure 35. Traffic capture of an oblivious DoH resolution with a loaded certificate, captured
on the ODoH client.

Time 193.40.148.243 172.64.42.1
89.58.42.177
14710777
14.710847
14.737486 o O At AR U = i S i
14737924 = E Client Hello (SNI=v220240321 .de) E . i
14737044 2 52075 e 43 = 52025 [ACK] Seq=1 Ack=284 Win=43008 Len=0 :m E
14.738470 52925 SenverHelo, Estensions : aE i
14738491 s Certificate, Certificate Verify. Finished : s :
14.765215 sa005 52025 — 443 [ACK] Seq=284 Ack=3271 Win=262656 Len=0 ! -1-13 i
14.772403 52075 ¢ Change Gipher Spec, Finished s
14772510 52025 fo_mwm, o
) 1

14.772595 52035 e MS*SM[&CHEMIMc:mWM e i
14774351
14.778323
14.778394 i 37726 7726443 [ACK] Sea=1 Ack=1 Vin=43006 Len=0 TSval-,
14778711 i - Cient Hello (SNizodoh doudfiare-dns.com) ' .
14782606 : 2 [:&g — 37726 [ACK] Seq=1 Ack=2T6 Win=65536 Len=0 — s
14783779 772 SEmerhelo Extensions Certfic..| -
14.783819 7726 31126 — 443 [ACK] Seq=276 Ack=2023 Win=A3008 Len=0TSv .} -
14784427 37726 {Change Gipher Spec Finished - 413
14.784536 i 3 37726 :FOSI'.-’dm-guem HTTR/1.1 [aEEFtaﬁoMobrwbls-dm-%;: a3
14788528 i 37726 443 = 37726 [ACK] Seq=2933 Ack=663 Win=65536 len=0TSv...| -
14.863709 7726 HTTP/1.1 200 OK_(application//obiivious-dns- message) a3
14.864426 52075 HTTP/1.1 200 OK_(application,/oblivious-dns-message) a3

14891744
14291988

14.892035
14.903971 i P 37726-4-13[&0&] =663 Ack=3327 Win=43008 Len={0 T5v. :m
14.918548 529?55 52925 — 443 [ACK] Seq=778 Ack=3575 Win=262400 Len=0 'm i

Figure 36. Flow graph of an oblivious DoH resolution with a loaded certificate, captured
on the ODoH proxy.

58

require a full TCP/TLS 1.3 handshake with two round trips before transmitting the applica-
tion data. This initial handshake secures the channel for the application payload, in this

case, the HPKE encrypted ODoH query.

The ODoH query resolution takes 3 round trips between client and proxy and a further 3
round trips between proxy and target resolver. Furthermore, one has to consider that this is
only possible if the target’s public key is known beforehand. Otherwise, it would require

another 3 round trips to gather the key from a server that lists ODoH public keys.

5.3.2 Oblivious DoH privacy and security

The ODoH protocol is very similar to DoH 1n its properties, with the additional bonus that
it conceals the client’s identity from the target resolver. To analyze the full scope of the
connection, one must consider two observers. One that listens to traffic between the client

and proxy and one that listens to traffic between the proxy and the target resolver.

The observer between the client and proxy can observe a message stream that has identical
properties to DoH. He sees a HTTPS stream to a public IP. From the observed traffic he
can not directly trace back that DNS is tunneled inside the HTTPS stream. Furthermore,
he should not be able to tell if the target IP is functioning as a proxy server or as an HTTPS

SErver.

i Source Destination
314.710777 66 52925 - 443 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM
414.710847 89.58.42.177 193.40.148.. TCP 66 443 » 52925 [SYN, ACK] Seq=0 Ack=1 Win=42340 Len=0 MSS=1460 SACK_PERM I
514.737486 193.40.148.243 89.58.42.177 TCP 56 52925 » 443 [ACK] Seq=1 Ack=1 Win=262656 Len=0
193.40.148.243 89.58.42.177 TLSv1. 337 Client Hello (SNI=v2202403219344260446.goodsrv.de)
714 89.58.42.177 193.40.148.. TCP 54443 > 52925 [ACK] Seq=1 Ack=284 Win=43008 Len=0
814.738470 89.58.42.177 193.40.148.. TLSv1. 29..Server Hello, Change Cipher Spec, Application Data
914.738491 89.58.42.177 193.40.148.. TLSv1. 404 Application Data, Application Data, Application Data
1014.765215 193.40.148.243 89.58.42.177 TCP 56 52925 » 443 [ACK] Seq=284 Ack=3271 Win=262656 Len=0
1114.772403 193.40.148.243 89.58.42.177 TLSv1. 118 Change Cipher Spec, Application Data
1214.772510 193.40.148.243 89.58.42.177 TLSv1. 483 Application Data

Protocol

w w

w w

13 14.772595 89.58.42.177 193.40.148.. TCP 54 443 -» 52925 [ACK] Seq=3271 Ack=777 Win=43008 Len=0
2514.864426 89.58.42.177 193.40.148.. TLSvl.3 333 Application Data

2614.891744 193.40.148.243 89.58.42.177 TCP 56 52925 » 443 [FIN, ACK] Seq=777 Ack=3550 Win=262400 Len=0
27 14.891988 89.58.42.177 193.40.148.. TLSv1.3 78 Application Data

2814.892035 89.58.42.177 193.40.148.. TCP 54443 » 52925 [FIN, ACK] Seq=3574 Ack=778 Win=43008 Len=0
— 3014.918548 193.40.148.243 89.58.42.177 TCP 56 52925 » 443 [ACK] Seq=778 Ack=3575 Win=262400 Len=0

» Transmission Control Protocol, Src Port: 52925, Dst Port: 443, Seq: 1, Ack: 1, Len: 283
- Transport Layer Security
- TLSv1.3 Record Layer: Handshake Protocol: Client Hello
Content Type: Handshake (22)
Version: TLS 1.0 (©x0301)
Length: 278
- Handshake Protocol: Client Hello
Handshake Type: Client Hello (1)
Length: 274
Version: TLS 1.2 (0x0303)
Random: 1e6599c66dedcd4cc181949896cec9e435a2aeb3c2e83a9flaca21326e501327
Session ID Length: 32
Session ID: 7d0466b709674910106168fb8af2f993b433bef129e6574ac170cc3e0cd7820f
Cipher Suites Length: 38
» Cipher Suites (19 suites)
Compression Methods Length: 1
» Compression Methods (1 method)
Extensions Length: 163
» Extension: server_name (len=36) name=v2202403219344260446.goodsrv.de

Figure 37. Traffic capture of an oblivious DoH resolution captured on the ODoH proxy.

59

To the observer, the client hello message provides the largest source of information. Again,
there is a lot of metadata and information such as the SNI, but the vast majority of the

exchanged messages are encrypted, as shown in Figure 37

The TLS stream is terminated at the proxy, thus it is able to read the application data.
Figure 38 shows the decrypted post message, that provides the proxy the forwarding
instructions. The file data that can be seen is the HPKE encrypted DNS query. The proxy
can not decrypt it.

dHypertext Transfer Protocol
BPOST /proxy?targethost=odoh.cloudflare-dns.com&targetpath=%2Fdns-query HTTP/1.1\r\n
Host: v2202403219344260446.goodsrv.de\r\n
User-Agent: Go-http-client/1.1\r\n
» Content-Length: 117\r\n
Accept: application/oblivious-dns-message\r\n
Content-Type: application/oblivious-dns-message\r\n
Accept-Encoding: gzip\r\n
Na\l

[HTTP request 1/1]

File Data: 117 bytes
- Media Type
Media type: application/oblivious-dns-message (117 bytes)

Figure 38. Decrypted ODoH query message on the proxy.

For the second scenario, where an observer listens in on traffic between the proxy and

the target resolver, the following capture file with traffic between proxy and target can be

analyzed.

Destination Protacal Length Infa.

— 1414.774351 89.58.42.177 172.64.42.1 TCP 7437726 » 443 [SYN] Seq=0 Win=42340 Len=0 MSS=1460 SACK_PERM

1514.778323 172.64.42.1 89.58.42.177 TCP 74443 > 37726 [SYN, ACK] Seq=0 Ack=1 Win=65160 Len=0 MSS=1400
.778394 89.58.42.177 172.64.42.1 TCP 66 37726 - 443 [ACK] Seg=1 Ack=1 Win=43008 Len=0 TSval=2587014
89.58.42.177 172.64.42.1 TLSvl.3 341Client Hello 1 SNI=odoh.cloudflare-dns.com
172.64.42.1 89.58.42.177 TCP 66443 - 37726 [ACK] Seg=1 Ack=276 Win=65536 Len=0 TSval=34649

18 14.782606

1914.783779 172.64.42.1 89.58.42.177 TLSv1.3 29..Server Hello, Change Cipher Spec, Application Data
2014.783819 89.58.42.177 172.64.42.1 TCP 66 37726 - 443 [ACK] Seq=276 Ack=2923 Win=43008 Len=0 TSval=25
2114.784427 89.58.42.177 172.64.42.1 TLSvl.3 13@Change Cipher Spec, Application Data

2214.784586 89.58.42.177 172.64.42.1 TLSvl.3 389 Application Data

2314.788528 172.64.42.1 89.58.42.177 TCP 66443 - 37726 [ACK] Seq=2923 Ack=663 Win=65536 Len=0 TSval=34
2414.863709 172.64.42.1 89.58.42.177 TLSvl.3 470 Application Data

.903971 89.58.42.177 172.64.42.1 TCP 66 37726 » 443 [ACK] Seq=663 Ack=3327 Win=43008 Len=0 TSval=25

» Frame 17: 341 bytes on wire (2728 bits), 341 bytes captured (2728 bits)
» Ethernet II, Src: 4a:27:82:43:56:8c (4a:27:82:43:56:8c), Dst: IETF-VRRP-VRID_01 (@0:00:5e€:00:01:01)

» Internet Protocol Version 4, Src: 89.58.42.177, Dst: 172.64.42.1
» Transmission Control Protocol, Src Port: 37726, Dst Port:|443, Seq: 1, Ack: 1, Len: 275
- Transport Layer Security

- TLSv1.3 Record Layer: Handshake Protocol: Client Hello

Figure 39. Traffic capture of Oblivious DoH messages between proxy and target resolver.

An observer can only identify the proxy as the source of the traffic. In this case, the SNI is
hinting that the traffic might be ODoH. The other properties remain the same as for DoH
traffic.

The resolver can decrypt the traffic, as well as the HPKE encrypted ODoH query. He does

not learn any information about the client though as he only learns the proxy’s IP address.

An advantage of this setup is also the elimination of metadata that could reveal the client

60

at the resolver. This is because the TLS session is only affected by the proxy’s properties.
In other words, even if many different clients with various TLS properties use this ODoH
proxy, to the server, all connections will look the same. For maximum privacy, a ODoH

proxy should be used by many different clients, and clients should also rotate the proxies

frequently.
Category Metric Result
Performance Round Trips 3+3

Exposed Client Identity No

Privacy Exposed DNS Query No

Exposed Metadata No

Risk of Tampering No

Security Risk of DNS Server IP Blocking No

Risk of Destination Hostname Blocking | No

Risk of Protocol Blocking No

Table 4. Evaluation metrics for Oblivious DNS over HTTPS.

Table 4 summarizes the findings for the evaluation of Oblivious DoH. In the table, it can
be seen that there are no security or privacy concerns found with the defined metrics. Yet,
the cost for this is that the handshake is long. Figure 36 showed that it takes a total of 3
handshakes between client and proxy and another 3 handshakes to establish the second

TLS session between proxy and ODoH resolver.

With the added proxy the privacy metrics are better, compared to DoH and DoQ. It was
possible to conceal the client’s identity and eliminate any metadata. Furthermore, since
the destination IP is not visible to an observer between client and proxy, the risk of DNS

server IP or hostname-based blocking is also eliminated.

61

6. Implementing a Novel DNS System using MASQUE
and DoQ

This chapter describes the implementation process of a MASQUE proxy and the follow-up

steps required to forward DNS traffic over it.

6.1 Masque Proxy implementation

The go programming language is used for many DNS and QUIC applications. Cloudflares
ODoH implementation uses go, many of the DNS clients and resolvers are written in go,
for example, Adguards dnsproxy, Routedns, q, and also the caddy web server is written in
go. Most of these applications rely on the quic-go' library. It is one of the more feature-rich
implementations of the QUIC and HTTP/3 protocol. Unfortunately, it doesn’t yet support
MASQUE. Work on integrating the MASQUE features to quic-go? just started in late April
of 2024.

Google’s MASQUE implementation currently offers the most features out of the available
implementations. Furthermore, it offers both a client and server implementation. However,
it’s important to note that even this implementation is labeled as a not production-ready

prototype. It was used for further testing.

Installing the tools was not straightforward, since the MASQUE implementation is part of

Chromium, it requires building Chromium from source. *

6.1.1 MASQUE operational modes

Google’s MASQUE implementation features three different HTTP methods: connect-udp,
connect-ip, connect-ethernet. The MASQUE server was set up to listen on port 443. It can
be configured only to allow a specific tunneling mode but the default setting supports all

modes.

The MASQUE client can be operated in three ways making use of the different HTTP

'https://github.com/quic-go/quic—go

https://github.com/quic-go/masque-go

Shttps://chromium.googlesource.com/chromium/src/+/main/docs/linux/
build_instructions.md

62

https://github.com/quic-go/quic-go
https://github.com/quic-go/masque-go
https://chromium.googlesource.com/chromium/src/+/main/docs/linux/build_instructions.md
https://chromium.googlesource.com/chromium/src/+/main/docs/linux/build_instructions.md

methods. The following section will analyze the behavior of the modes.

masque_client myproxy.ee:443 https://quic.nginx.org/

HTTP/3 requests can be made by specifying a target URL. This style of proxying uses
connect-udp to tunnel the requested webpage over HTTP/3. In this mode, the proxy session
will only remain active for the duration it takes to load the target webpage. Because this
mode currently only supports HTTP/3 websites it can not be used for DoQ without some

modifications to the client and server applications.

The second method can be used by setting the -bring_up_tun flag and it doesn’t
require specifying a target. This option makes use of the connect-ip method and creates
a virtual interface TUN device on the host machine. A TUN device is a virtual network

device in the Linux kernel.

masque_client myproxy.ee:443 —--bring_up_tun

> Bringing up tun with address 10.1.1.2

The MASQUE server in this tunnel mode does not forward incoming packets by default.
Routing was configured to allow forwarding and masking traffic from the proxy. Once
established, a simple ping towards the tunnel will confirm the flow of QUIC packets to the
proxy. Figure 40 shows a proxied DNS query to Cloudflare’s DNS resolver. This method
can be used to conceal the source IP of the DNS query, but it doesn’t eliminate the identity
leak entirely. Instead, the trust is now shifted to the proxy as it has the full insight of the

client, the query and the destination.

This method is most likely also what Apple does with their private relays. In subsec-
tion 3.3.2 it was already mentioned that Apple claims to support O-RTT forwarding in
private relay. This raises two possibilities. Either they use a permanent MASQUE tunnel,
that is activated as soon as the private relay service is turned on. Alternatively, Apple
might have implemented its own O-RTT secure authentication method that builds upon the
HTTP CONNECT concept but addresses the security concerns associated with O-RTT in
this context.

The -bring_up_tap mode makes use of the connect-ethernet method. It works similar
to the TUN mode but uses TAP devices that can support ethernet frames. TUN devices
were chosen as the preferred method because all traffic evaluated in this thesis is IP-based
and TUN devices work just fine for that.

63

193.40.148.243 1.1
Time

89.58.42.177

i i i
2475358 gsaso E Protected Paylosd (KPO) E 443 i
2475753 i t1tEn i Standard query 0x0004 A exampie.com OPT i -
2480499 i 3060 i;tsr:sr-: querny response D0l A example com A 93 184 2151 i =3

1 1 1
2480734 65450 E Protected Paylosd (KPO) E 443 i
2.515348 Fraco E Protected Payload (KPO) E 443 E

Figure 40. DNS traffic sent over a MASQUE tunnel captured on the server.

6.2 Benefits of a custom MASQUE proxy

The implementation provided by Google already offers a full IP tunnel. This supports all
DNS protocols, but can also be used for every other type of internet traffic. Modifying the
proxy to only support a specific DNS protocol, for example, DoQ, could limit possible

cases of abuse.
Due to the limited timeframe of this thesis, it was decided to stick to the provided MASQUE

client and server. For future research, it might be interesting to build a custom, encrypted

DNS-only proxy implementation.

64

7. Evaluating a Novel DNS System using MASQUE and
DoQ

In this chapter the prototype built in chapter 6 will be evaluated based on the same

evaluation process that was applied in chapter 5.

7.1 Evaluating MASQUE proxied DoQ performance

Teme 193.40.142.243 194.45.101.249
_ 805842177

0.041017 61097 Protecta: Pa; e W29 w3
0.041490 t7232 nitizl, DOID=£b14dabc 5520885057 ebA0bes, PKN: 0. PADDING. . g53
0.045919 57232 SCID=23324782, PKN: 0. CRYPTO 853
0.045920 57232 Handshake, SCID=2332d782, PKN: 1. CRYPTO 853
0.045968 s723z Handshake SCID=23324782, PKN: 2, CRYPTO 853
0.045975 s723z Protected Payload (KPO). PKN: 0 NCIL NCL NCY 853 1
0.046128 sioo7 e ProwecedPoesd WP0) 4,
0.046274 61097 ‘a—— Protected Pay PO} — a3
0.046350 gi007 e ProtedtesPeread (R0 L5
0.046399 gloo7 e ProwecedPesd WP0) 1,
0.074425 slog7 - ProtectedPajosd KP0) 0,
0.074426 1707 s 7k L TR
0.074897 s7232 initial, DOID=23324782, PKN: 1. ACK, PADDING 53
0.075137 57232 Handshake, DOD=23324782, PKN: 0. ACK 853
0.075910 gig7 b ProweaeiPaieaa iR
0.075910 slog7 - ProtectedPajosd KP0) b,
0.075947 slog7 - ProtectedPajosd KP0) b,
0.076089 t7022 Protected Payload (KPO). DOID=fA179958, PKN: 0. RC 53 2
0.076170 57232 Protected Pay (KPO). DOD=f4179058 PKN: 1. ACK 853
0.076225 57232 cetoe OFT 853
0.080289 s723z Protected Payload (KPO), PKN: 1. ACK, DONE NT, CRYPTO 853
0.080461 I Protected Payload (KPO) 443
0.083749 t7037 4 estde A 1286520028 OPT | .
0.083908 61087 Protectes 443
0110745 51057 e 43
0.111238 57232 Protected Payload (KPO), DOID=f4179958, PKN: 3. ACK 853

Figure 41. DoQ request to nextdns resolver over a MASQUE proxy.

The lessons learned from evaluating DoQ helped while implementing the novel testbed. A
lot of the tools could be reused, but some additions were also required. For the first tests, a

public resolver from nextdns was chosen.

Figure 41 shows DoQ traffic captured on the MASQUE proxy. It can be seen that the

proxy server immediately forwards the received packets.

The DoQ queries then leverage this established connection for resolution, typically re-

quiring two additional handshakes with the DoQ resolver. This answers the first research

65

question. It is possible to effectively anonymize DoQ queries with the use of a MASQUE
proxy.

/ Host Machine \

\
4 DebianVM _ ProxyServer
MSASQUE MASQUE Proxy DoQ
- tream ; Stream
MASQUE Client y _SOlEngy » DNS resolver
Container - = dnsproxy
——
¢ L y
RouteDNS 89.58.42.177 110.239.68.150
Container

S ~)

193.40.148.243

Figure 42. Setup for testing oblivious DoQ using a MASQUE proxy.

Another objective involved exploring the integration of O-RTT functionality with the
MASQUE proxy for DoQ. However, during the evaluation of DoQ solutions, no publicly
available resolvers were identified that supported O-RTT. To address this limitation and
test the interaction between MASQUE and O0-RTT DoQ, a secondary server was set up
utilizing the previously mentioned dnsproxy tool. This time, the physical distance was
bigger, as the DoQ resolver is hosted in Jakarta. Nevertheless, since resolution times are
not evaluated, this does not play a big role. Figure 42 shows the full setup used to proxy
DoQ with MASQUE.

Time 193.40.148.243 110.239.68.150
_ 89.58.42.177

2.565338 £4755 Protected Payload (KPO) o 443

2.565338 64755 Brotected Payiosd (KEO) w43

2.565836 4135 LIniisl DOD=08006325606675b7, PKN: 0, PADDING, CRYPTO! oo -
2.565978 41381 0-RTT. DOID=0ddd32 560667 ScbdT soc3
2573277 s Protected Payiosd (KRD) 443

2911283 21381 e 8853 1
2.911367 41381 PO). PM: 1, ACK 8853
2.911367 49381 Standard query response (0000 A taltech ee A 81.21.253.510... e
2.911606 fa7zs Protected Payioad (KPO) 443

2911752 T Protected Paylozd (KPD) -

2911799 ga7ss e ProtecedPojesd (W0 L,

2.937731 fa7zs Protected Payioad (KPO} 443

2937732 BATES Protected Payioad (KPO) 443

2.938112 41381 initial, DOID=0%ddd325606675chd7, PKN: 1. RADDING, CRYPTC, 2853
2.938235 41381 itis G6d6675cbdT. PKN- 2. PADDING. CRYPTOL 8853

Figure 43. Sending O-RTT DoQ queries over a MASQUE proxy.

Utilizing the self-hosted dnsproxy resolver with O-RTT support significantly reduced the
number of messages exchanged. The DoQ stream only needs one handshake to resolve the
query. This translates to a more efficient process. If a proxy is chosen that can be reached

in low latency, then the additional hop will have close to no effect on the overall latency.

66

7.2 Evaluating MASQUE proxied DoQ security

Similar to the ODoH evaluation, there are also two observers considered here. One that

observes traffic between client and proxy and one between proxy and the target resolver.
The QUIC traffic from Figure 44 shows the MASQUE tunnel establishment from traffic

captures taken in the testbed.

.58.42.177 1392443 Initial, DCID=2d47ad22ff0094d7, PKN: 1, PADDING,

10 6.64256.. 89.58.42.177 10.0.2.15 QUIC 1392 33564 Handshake, SCID=2d47ad22ff@094d7

11 6.64260..89.58.42.177 10.0.2.15 QUIC 37733564 Protected Payload (KP®)

12 6.64387..10.0.2.15 89.58.42.177 QUIC 1392 443 Handshake, DCID=2d47ad22f{0094d7
136.64401..10.0.2.15 89.58.42.177 QUIC 205 443 Protected Payload (KP@), DCID=2d47ad22ff0094d7
146.64443..10.0.2.15 89.58.42.177 QUIC 168 443 Protected Payload (KP@), DCID=2d47ad22ff0094d7
156.64449..10.0.2.15 89.58.42.177 QUIC 75443 Protected Payload (KP@), DCID=2d47ad22ffee94d7
16 6.66106.. 89.58.42.177 10.0.2.15 QUIC 44433564 Protected Payload (KP@)

17 6.67326.. 89.58.42.177 10.0.2.15 QUIC 498 33564 Protected Payload (KP@)

18 6.67359.. 89.58.42.177 10.0.2.15 QUIC 15733564 Protected Payload (KP®)

196.67369..10.0.2.15 89.58.42.177 QUIC 73443 Protected Payload (KP@), DCID=2d47ad22ffee94d7

_67583..89.58.42.177 .0.2.15 116 33564 Protected Pavload

» Extension: quic_transport_parameters (len=85)
» Extension: signature_algorithms (len=20)
» Extension: supported_versions (len=3) TLS 1.3
» Extension: application_settings (len=5)
» Extension: key_share (len=38) x25519
- Extension: application_layer_protocol_negotiation (len=5)
Type: application_layer_protocol_negotiation (16)
Length: 5
ALPN Extension Length: 3
- ALPN Protocol
ALPN string length: 2
ALPN Next Protocol:|h3
» Extension: psk_key_exchange_modes (len=2)
» Extension: server_name (len=36) name=v2202403219344260446.goodsrv.de

Figure 44. Traffic capture of a MASQUE tunnel establishment.

To an observer, it looks similar to HTTP/3 traffic. The traffic is encrypted and doesn’t
reveal much information about what is transmitted. The initial handshake TLS client hello
message is the only cleartext message transmitted. All further data and DNS requests are
fully encrypted. The difference now compared to the DoQ request is that the application
protocol is recognized as h3 in the ALPN field, which is the abbreviation for HTTP/3. This
can avoid blocking based on the application layer protocol field. The proxy’s hostname is

still visible.

The forwarded traffic has all the properties of DoQ as shown in Figure 45. The protocol
can be identified by the port and the ALPN field which are exposed during the client hello.
The destination resolver’s hostname is also visible. The key property introduced by the
MASQUE proxy is that the client’s IP address is replaced with that of the proxy, thus the
resolver will only see the request coming from the proxy. The proxy itself knows the client

and resolver but has no access to the DNS query.

7.3 Summary of the Evaluation

The following table summarizes all evaluated DNS protocols.

67

M ip.addr == 110.239.68.150

No. Time Source Destination Protocol Length Destination Port Info

= 92.565836/89.58.42.177 110.239.68.150| QUIC 12948853 Initial, DCID=09ddd3256d6675cbd7, PKN: @, PADDING, CRYPTO
102.565978 89.58.42.177 110.239.68.150 QUIC 133 8853 ©0-RTT, DCID=09ddd3256d6675cbd7
122.911283 110.239.68.150 89.58.42.177 QUIC 1294 41381 Handshake, SCID=6d@6d4fd
132.911367 110.239.68.1560 89.58.42.177 QUIC 6741381 Protected Payload (KP®)
142.911367 110.239.68.150 89.58.42.177 QUIC 12041381 Protected Payload (KP@)
202.938112 89.58.42.177 110.239.68.150 QUIC 1294 8853 Initial, DCID=09ddd3256d6675cbd7, PKN: 1, PADDING, CRYPTO
212.93823589.58.42.177 110.239.68.150 QUIC 1294 8853 Initial, DCID=09ddd3256d6675cbd7, PKN: 2, PADDING, CRYPTO
252.938816 89.58.42.177 110.239.68.150 QUIC 1294 8853 Handshake, DCID=e610163e

262.93888589.58.42.177 110.239.68.150 QUIC 78 8853 Handshake, DCID=e610163e
272.938934 89.58.42.177 110.239.68.150 QUIC 73 8853 Protected Payload (KP@), DCID=e610163e
302.965171 89.58.42.177 110.239.68.150 QUIC 74 8853 Protected Payload (KP@), DCID=e610163e

323.249632110.239.68.150 89.58.42.177 QUIC 1294 41381 Initial, SCID=6do6d4fd
333.249716 110.239.68.150 89.58.42.177 QUIC 1294 41381 Initial, SCID=6do6d4fd

» Compression Methods (1 method)
Extensions Length: 457

» Extension: server_name (len=26) name=dnsoverquic.gotdns.ch

» Extension: status_request (len=5)

» Extension: supported_groups (len=10)

» Extension: ec_point_formats (len=2)

» Extension: session_ticket (len=0)

» Extension: signature_algorithms (len=26)

» Extension: renegotiation_info (len=1)

» Extension: extended_master_secret (len=0)

- Extension: application_layer_protocol_negotiation (len=6)
Type: application_layer_protocol negotiation (16)
Length: 6
ALPN Extension Length: 4

- ALPN Protocol
ALPN string length: 3
ALPN Next Protocol: doq

Figure 45. Traffic capture from the MASQUE proxy filtered to show only the forwarded
DoQ traffic.

Category Metric DoH | DoQ | ODoH || DoQ+M
Performance Round Trips 3 -2 | 3+3 || 1-2+1-2
Exposed Client Identity Yes | Yes No No
Privacy Exposed DNS Query No No No No
Exposed Metadata Yes | Yes No Yes
Risk of Tampering No No No No
Security Risk of DNS Server IP Blocking Yes | Yes No No
Risk of Destination Hostname Blocking | Yes | Yes No No
Risk of Protocol Blocking No | Yes No No

Table 5. Evaluation metrics for all evaluated DNS protocols.

7.4 Comparison to ODoH

The demonstrated setup has many similarities to ODoH. There is a similar split of
information, the proxy knows the identity and the resolver the query. It also relies on

non-collusion between the proxy and the resolver.

Coupling a MASQUE proxy with DoQ reduces the number of handshakes required to
resolve a DNS query. This optimization can be further enhanced by utilizing O-RTT resume
with DoQ. However, it’s important to note that O-RTT DoQ is susceptible to replay attacks
even if this attack is not straightforward as demonstrated in subsection 5.2.2. Fortunately,
combining 0-RTT DoQ with a MASQUE proxy effectively counters this vulnerability to
a big degree. The MASQUE proxy replaces the client’s IP address in the initial O-RTT

68

DoQ request which prevents attackers from linking the request back to the client and thus
rendering the replay attack ineffective. It has to be noted that with the current state of

technology, the risk of a replay attack by the proxy itself remains.

One downside of this new combination of protocols is that potentially more metadata is
exposed since the QUIC and TLS session is not terminated and exists between the client
and resolver. ODoH streams are not E2E, instead the proxy works on the application
layer and only forwards the encrypted DNS query. MASQUE proxied streams on the
contrary don’t get intercepted. Depending on the specific MASQUE method, the proxy
will forward the full Ethernet, IP, or UDP packet as explained in subsection 6.1.1 which
makes it an E2E stream. Due to this factor, there is an exchange of transport and security
parameters between the client and resolver. This information could potentially be used for
fingerprinting on the resolver. Thus it is recommended to use default TLS settings and

minimize information present in TLS extensions and QUIC transport parameters.

Furthermore, when DoQ is used, it can easily be identified and blocked after the proxy
based on the port and the ALPN header in the TLS handshake. Here, DoH/3 could be used
instead of DoQ. DoH/3 is transmitted over the regular HTTP/3 port and also identifiable as
HTTP/3 from the acALPN header which helps to conceal the DNS query.

7.5 Future improvements

ODoH adoption has been slow so far and the protocol requires a specialized setup.
MASQUE on the contrary has gained a lot of attention recently and is already being
adopted by many of the big players in the tech industry. MASQUE is a more flexible
upcoming technology with a lot of attention focused on it. Many of the big tech companies
are currently working on their own MASQUE-based proxy frameworks. The industry
i1s moving towards MASQUE. Eventually encrypted DNS will also move to MASQUE.
MASQUE can support many different applications, and thus there will probably also be
a large number of MASQUE proxies available. This may also benefit privacy, a bigger
choice of relays allows users to frequently rotate between proxies. This, in turn, makes

consequences less severe in the case of a compromised resolver and proxy.

subsection 5.2.2 explains some of the security concerns with O-RTT. There are already
multiple approaches implemented in TLS [54] to limit the threat of replay attacks. Goth
et al. [42] go even further by proposing new cryptographic methods that can achieve

forward secrecy for O-RTT without adding much additional cost.

Encrypted Client Hello (ECH) is another major advancement for network technology

69

[55]. With ECH the sensitive data in the TLS client hello message can be concealed.
Cloudflare called it the last puzzle piece to privacy [56] in a blog post. ECH is already
part of Chromium ! and Firefox. ECH is made possible by two big new technologies that
have a lot of resemblance to ODoH. It introduces a new method to access and distribute
public keys via DNS [57]. These public keys of the server can then be used with the same
lightweight HPKE encryption scheme that is part of oblivious DNS to encrypt the Client
Hello Messages in new connections. This is an important step for user privacy. With ECH,
fingerprinting, tracking, and SNI based filtering becomes much harder to implement, but it

does change the fact that the target can still see all the information.

Another great feature of MASQUE is that proxies can easily be chained. Adding a second
proxy hop to the DNS resolution request can further split up the trust between parties. This
in turn, makes it harder to reverse the connection from an observer’s perspective. This

dual-hop architecture is also used by Apple in their private relay service.

One MASQUE-related feature which is still actively being worked on in standardization,
proposes optimizations for tunneling QUIC in HTTP/3 [58]. The draft is titled QUIC-aware
proxying using HTTP/3. It proposes adding new signaling so that double encryption can
be avoided. This would simplify the tunneling of encrypted protocols such as QUIC in
HTTP/3 MASQUE. This proposal is still in discussion though as there have been multiple

IETF participants voicing criticism on it.?

'ttps://chromestatus.com/feature/6196703843581952
’https://www.youtube.com/watch?v=pj6ufE9r3Hc

70

https://chromestatus.com/feature/6196703843581952
https://www.youtube.com/watch?v=pj6ufE9r3Hc

8. Summary

The technologies of the internet are evolving towards encrypting all traffic. Sending
cleartext messages that can be deciphered by any man in the middle observer is slowly
being phased out. DNS is currently one of the last major technologies that is still mostly

used in cleartext form.

In this thesis, an analysis of existing DNS protocols was performed. More specific, the
initial handshakes up to the first query resolution were analyzed. An experimental setup
was chosen and metrics were defined for the analysis. Multiple encrypted DNS solutions

were evaluated based on their performance, privacy and security metrics.

From there it was possible to determine the differences between the protocols. The analysis
showed that there is a tradeoff between performance and security + privacy. The ODoH
protocol was shown to provide great privacy to users while the protocol blends in well
with regular HTTP traffic. It introduces a new form of client anonymity at the cost of a

more extensive handshake.

Leveraging recent advancements in internet protocols, this work explores MASQUE, a
novel technology offering client anonymity similar to existing solutions. The implemented
system, combining a MASQUE proxy with DNS over QUIC, achieves similar anonymity
to ODoH while requiring a significantly shorter handshake. However, the impact of this on

the overall DNS query resolution time needs to be analyzed in future research.

One major challenge of this thesis was the limited amount of available implementations.
Moreover, the implementations that exist often lack critical features, are usually poorly
documented, and are often labeled as not production-ready. Another challenge was the
rapid evolution of the technologies and new releases are constantly reshaping the field.
Multiple papers, implementations and standards were released or received big updates

during the writing of this thesis.

In conclusion, this thesis demonstrated that a MASQUE proxy offers vast performance
benefits compared to ODoH while providing a similar level of privacy. The proposed new
combination of protocols can be an option for users who are looking for an upgraded

version of ODoH.

71

One key drawback that stems from MASQUE proxies properties, is that the TLS sessions
are not terminated. This thesis does not provide a deep analysis of the privacy impacts this
can have. Not using an E2E connection is a big feature of ODoH. Thus the logical next
step following this research would be to evaluate an ODoH version that supports HTTP/3
and does proxying on the application layer. As it was discovered that a proxy can mitigate
some of the security concerns with using 0-RTT for DNS, an Oblivious version of DoH/3
should also be analyzed with O-RTT.

72

References

[1]

[9]

[10]

[11]

P. Mockapetris. Domain names - implementation and specification. RFC 1035. Nov.
1987.DO1: 10.17487/RFC1035. URL: https://www.rfc-editor.org/
info/rfcl035.

Eric Kinnear et al. Oblivious DNS over HTTPS. RFC 9230. June 2022. DOI:
10.17487/RFC9230. URL: https://www.rfc-editor.org/info/
rfc9230.

Sudheesh Singanamalla et al. “Oblivious dns over https (odoh): A practical privacy
enhancement to dns”. In: arXiv preprint arXiv:2011.10121 (2020).

Mike Kosek et al. “DNS privacy with speed? Evaluating DNS over QUIC and its im-
pact on web performance”. In: Proceedings of the 22nd ACM Internet Measurement
Conference. 2022, pp. 44-50.

Jayasree Sengupta et al. “On Cross-Layer Interactions of QUIC, Encrypted DNS
and HTTP/3: Design, Evaluation and Dataset”. In: arXiv preprint arXiv:2306.11643
(2023).

Tim Wicinski. DNS Privacy Considerations. RFC 9076. July 2021. DOI: 10 .
17487 /RFC9076. URL: https : / /www . rfc—-editor .org/ info/
rfc9076.

Georgios Kambourakis and Georgios Karopoulos. “Encrypted DNS: The good, the
bad and the moot”. In: Computer Fraud & Security 2022.5 (2022).

Nicholas Weaver, Christian Kreibich, and Vern Paxson. “Redirecting {DNS} for
Ads and Profit”. In: USENIX Workshop on Free and Open Communications on the
Internet (FOCI 11). 2011.

The Guardian. Turkey blocks YouTube amid ’'national security’ concerns. Mar. 27,
2014. URL: https://www.theguardian.com/world/2014/mar/27/
google—-youtube-ban-turkey—-erdogan (visited on 11/04/2023).

Nathalia Sautchuk-Patricio. Content Blocking at the DNS Level in Germany. Nov. 8,
2021. URL: https://circleid.com/posts /20211108~ content -
blocking—at-the-dns—level-in—germany (visited on 11/04/2023).

Miguel Barreda-Angeles et al. “Unconscious physiological effects of search latency
on users and their click behaviour”. In: Proceedings of the 38th International ACM

SIGIR Conference on Research and Development in Information Retrieval. 2015,
pp- 203-212.

73

https://doi.org/10.17487/RFC1035
https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/info/rfc1035
https://doi.org/10.17487/RFC9230
https://www.rfc-editor.org/info/rfc9230
https://www.rfc-editor.org/info/rfc9230
https://doi.org/10.17487/RFC9076
https://doi.org/10.17487/RFC9076
https://www.rfc-editor.org/info/rfc9076
https://www.rfc-editor.org/info/rfc9076
https://www.theguardian.com/world/2014/mar/27/google-youtube-ban-turkey-erdogan
https://www.theguardian.com/world/2014/mar/27/google-youtube-ban-turkey-erdogan
https://circleid.com/posts/20211108-content-blocking-at-the-dns-level-in-germany
https://circleid.com/posts/20211108-content-blocking-at-the-dns-level-in-germany

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Ioannis Arapakis, Souneil Park, and Martin Pielot. “Impact of response latency on
user behaviour in mobile web search”. In: Proceedings of the 2021 Conference on

Human Information Interaction and Retrieval. 2021, pp. 279-283.

Internet Architecture Board. IAB Statement on Internet Confidentiality. Nov. 13,
2014. URL: https://datatracker.ietf.org/doc/statement—-iab-
statement-on-internet—-confidentiality/ (visited on 05/10/2024).

Minzhao Lyu, Hassan Habibi Gharakheili, and Vijay Sivaraman. “A Survey on DNS
Encryption: Current Development, Malware Misuse, and Inference Techniques”.
In: ACM Comput. Surv. 55.8 (2022). 1SSN: 0360-0300. pOI: 10.1145/3547331.
URL: https://doi.org/10.1145/3547331.

Trinh Viet Doan, Irina Tsareva, and Vaibhav Bajpai. “Measuring DNS over TLS
from the edge: adoption, reliability, and response times”. In: Passive and Active
Measurement: 22nd International Conference, PAM 2021, Virtual Event, March
29-April 1, 2021, Proceedings 22. Springer. 2021, pp. 192-209.

Sebastidn Garcia et al. “Large scale measurement on the adoption of encrypted
DNS”. In: arXiv preprint arXiv:2107.04436 (2021).

Guannan Hu and Kensuke Fukuda. “Privacy Leakage of DNS over QUIC: Analysis
and Countermeasure”. In: 2024 International Conference on Artificial Intelligence
in Information and Communication (ICAIIC). IEEE. 2024, pp. 518-523.

Dmitrii Vekshin, Karel Hynek, and Tomas Cejka. “Doh insight: Detecting dns over
https by machine learning”. In: Proceedings of the 15th International Conference
on Availability, Reliability and Security. 2020, pp. 1-8.

Péter Megyesi, Zsolt Kramer, and Sdndor Molnar. “How quick is QUIC?” In: 2016
IEEE International Conference on Communications (ICC). IEEE. 2016, pp. 1-6.

Jana Iyengar and Martin Thomson. QUIC: A UDP-Based Multiplexed and Secure
Transport. RFC 9000. May 2021. DOI: 10.17487 /RFC9000. URL: https:
//www.rfc—editor.org/info/rfc9000.

Martin Thomson, Mark Nottingham, and Willy Tarreau. Using Early Data in HTTP.
RFC 8470. Sept. 2018. DOI: 10.17487/RFC8470. URL: https://www.rfc—
editor.org/info/rfc8470.

Martin Thomson and Sean Turner. Using TLS to Secure QUIC. RFC 9001. May
2021.DOI1: 10.17487/RFC9001. URL: https://www.rfc—editor.org/
info/rfc9001.

Constantin Sander. HTTP/3 and QUIC — prioritization and head-of-line blocking.
Nov. 30, 2022. URL: https://blog.apnic.net/2022/11/30/http-3-

and-quic-prioritization-and-head-of-line-blocking/.

74

https://datatracker.ietf.org/doc/statement-iab-statement-on-internet-confidentiality/
https://datatracker.ietf.org/doc/statement-iab-statement-on-internet-confidentiality/
https://doi.org/10.1145/3547331
https://doi.org/10.1145/3547331
https://doi.org/10.17487/RFC9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://doi.org/10.17487/RFC8470
https://www.rfc-editor.org/info/rfc8470
https://www.rfc-editor.org/info/rfc8470
https://doi.org/10.17487/RFC9001
https://www.rfc-editor.org/info/rfc9001
https://www.rfc-editor.org/info/rfc9001
https://blog.apnic.net/2022/11/30/http-3-and-quic-prioritization-and-head-of-line-blocking/
https://blog.apnic.net/2022/11/30/http-3-and-quic-prioritization-and-head-of-line-blocking/

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Robin Marx. Why HTTP/3 is Eating the World. June 2023. URL: https://
pulse.internetsociety.org/blog/why—-http-3-is—-eating-
the-world.

Christian Huitema, Sara Dickinson, and Allison Mankin. DNS over Dedicated
QUIC Connections. RFC 9250. May 2022. pOI: 10.17487 /RFC9250. URL:
https://www.rfc-editor.org/info/rfc9250.

Vasily Bagirov. AdGuard DNS-over-QUIC. Dec. 15, 2020. URL: https: / /
adguard-dns . io/en/blog/dns - over — quic . html (visited on
11/04/2023).

Aurelija Einoryté. VPN bans: How do they work and who initiates them? Feb. 2024.
URL: https://nordvpn.com/de/blog/vpn-ban/.

Yunming Xiao et al. “PDNS: A Fully Privacy-Preserving DNS”. In: Proceedings of
the ACM SIGCOMM 2023 Conference. 2023, pp. 1182-1184.

Sudheesh Singanamalla Tanya Verma. Improving DNS Privacy with Oblivious
DoH in 1.1.1.1. Dec. 8, 2020. URL: https://blog.cloudflare. com/
oblivious—dns (visited on 11/04/2023).

Paul Schmitt, Anne Edmundson, and Nick Feamster. “Oblivious DNS: Practical
privacy for DNS queries”. In: arXiv preprint arXiv:1806.00276 (2018).

Richard Barnes et al. Hybrid Public Key Encryption. RFC 9180. Feb. 2022. DOTI:
10.17487/RFC9180. URL: https://www.rfc—editor.org/info/
rfc9180.

Christopher Wood. HPKE: Standardizing public-key encryption (finally!) May 25,
2022. URL: https://blog.cloudflare.com/hybrid-public-key-
encryption (visited on 11/04/2023).

Martin Thomson and Christopher A. Wood. Oblivious HTTP. RFC 9458. Jan. 2024.
DOI: 10.17487 /RFC9458. URL: https://www.rfc-editor.org/
info/rfc9458.

Martin Duke. Multiplexed Application Substrate over QUIC Encryption WG. Feb.
2023. URL: https://datatracker.ietf.org/doc/charter—ietf-

masque/.

Alejandro Sedefo. Proxying Ethernet in HTTP. Internet-Draft draft-ietf-masque-
connect-ethernet-02. Work in Progress. Internet Engineering Task Force, Apr. 2024.
14 pp. URL: https://datatracker.ietf.org/doc/draft-ietf-

masque—-connect—ethernet/02/.

David Schinazi. Proxying UDP in HTTP. RFC 9298. Aug. 2022. DO1: 10.17487/
RFC9298. URL: https://www.rfc—editor.org/info/rfc9298.

75

https://pulse.internetsociety.org/blog/why-http-3-is-eating-the-world
https://pulse.internetsociety.org/blog/why-http-3-is-eating-the-world
https://pulse.internetsociety.org/blog/why-http-3-is-eating-the-world
https://doi.org/10.17487/RFC9250
https://www.rfc-editor.org/info/rfc9250
https://adguard-dns.io/en/blog/dns-over-quic.html
https://adguard-dns.io/en/blog/dns-over-quic.html
https://nordvpn.com/de/blog/vpn-ban/
https://blog.cloudflare.com/oblivious-dns
https://blog.cloudflare.com/oblivious-dns
https://doi.org/10.17487/RFC9180
https://www.rfc-editor.org/info/rfc9180
https://www.rfc-editor.org/info/rfc9180
https://blog.cloudflare.com/hybrid-public-key-encryption
https://blog.cloudflare.com/hybrid-public-key-encryption
https://doi.org/10.17487/RFC9458
https://www.rfc-editor.org/info/rfc9458
https://www.rfc-editor.org/info/rfc9458
https://datatracker.ietf.org/doc/charter-ietf-masque/
https://datatracker.ietf.org/doc/charter-ietf-masque/
https://datatracker.ietf.org/doc/draft-ietf-masque-connect-ethernet/02/
https://datatracker.ietf.org/doc/draft-ietf-masque-connect-ethernet/02/
https://doi.org/10.17487/RFC9298
https://doi.org/10.17487/RFC9298
https://www.rfc-editor.org/info/rfc9298

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Tommy Pauly, Eric Kinnear, and David Schinazi. An Unreliable Datagram Exten-
sion to QUIC. RFC 9221. Mar. 2022. DOI: 10.17487/RFC9221. URL: https:
//www.rfc-editor.org/info/rfc9221.

David Schinazi and Lucas Pardue. HTTP Datagrams and the Capsule Protocol.
RFC 9297. Aug. 2022. DOI: 10.17487/RFC9297. URL: https://www.rfc—
editor.org/info/rfc9297.

Tommy Pauly et al. Proxying IP in HTTP. RFC 9484. Oct. 2023. DOI: 10.17487/
RFC9484. URL: https://www.rfc-editor.org/info/rfc9484.

SIDN. New DNS over QUIC protocol makes encrypted DNS traffic faster and more
efficient. Aug. 25, 2022. URL: https://www.sidn.nl/en/news—-and-
blogs/new-dns-over—-quic—-protocol-makes—-encrypted-dns-
traffic-faster—-and-more—efficient (visited on 04/14/2024).

Mike Kosek et al. “One to rule them all? a first look at dns over quic”. In: Interna-
tional Conference on Passive and Active Network Measurement. Springer. 2022,
pp- 537-551.

Christian Goth et al. “Optimizing 0-RTT Key Exchange with Full Forward Security”.
In: Proceedings of the 2023 on Cloud Computing Security Workshop. 2023, pp. 55—
68.

Rashna Kumar and Fabidn E Bustamante. “Reclaiming Privacy and Performance
over Centralized DNS”. In: arXiv preprint arXiv:2302.13274 (2023).

DNSCrypt proxy implementation. URL: https://github.com/DNSCrypt/
dnscrypt-proxy/wiki/Oblivious—DoH (visited on 03/18/2024).

Patrick Sattler et al. “Towards a tectonic traffic shift? investigating Apple’s new
relay network”. In: Proceedings of the 22nd ACM Internet Measurement Conference.
2022, pp. 449-457.

Christopher Wood Lucas Pardue. Unlocking QUIC’s proxying potential with
MASQUE. Mar. 20, 2022. URL: https : / /blog . cloudflare . com/
unlocking—quic-proxying—-potential (visited on 11/04/2023).

Mirja Kiihlewind et al. “Evaluation of QUIC-Based MASQUE Proxying”. In: Pro-
ceedings of the 2021 Workshop on Evolution, Performance and Interoperability of
QUIC. EPIQ ’21. Virtual Event, Germany: Association for Computing Machinery,
2021, pp. 29-34. I1SBN: 9781450391351. DOI: 10.1145/3488660.3493806.
URL: https://doi.org/10.1145/3488660.3493806.

Dan Hall. Zero Trust WARP: tunneling with a MASQUE. June 22, 2023. URL:
https://blog.cloudflare.com/ zero-—trust —-warp—-with—-a-
masque (visited on 03/27/2024).

76

https://doi.org/10.17487/RFC9221
https://www.rfc-editor.org/info/rfc9221
https://www.rfc-editor.org/info/rfc9221
https://doi.org/10.17487/RFC9297
https://www.rfc-editor.org/info/rfc9297
https://www.rfc-editor.org/info/rfc9297
https://doi.org/10.17487/RFC9484
https://doi.org/10.17487/RFC9484
https://www.rfc-editor.org/info/rfc9484
https://www.sidn.nl/en/news-and-blogs/new-dns-over-quic-protocol-makes-encrypted-dns-traffic-faster-and-more-efficient
https://www.sidn.nl/en/news-and-blogs/new-dns-over-quic-protocol-makes-encrypted-dns-traffic-faster-and-more-efficient
https://www.sidn.nl/en/news-and-blogs/new-dns-over-quic-protocol-makes-encrypted-dns-traffic-faster-and-more-efficient
https://github.com/DNSCrypt/dnscrypt-proxy/wiki/Oblivious-DoH
https://github.com/DNSCrypt/dnscrypt-proxy/wiki/Oblivious-DoH
https://blog.cloudflare.com/unlocking-quic-proxying-potential
https://blog.cloudflare.com/unlocking-quic-proxying-potential
https://doi.org/10.1145/3488660.3493806
https://doi.org/10.1145/3488660.3493806
https://blog.cloudflare.com/zero-trust-warp-with-a-masque
https://blog.cloudflare.com/zero-trust-warp-with-a-masque

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Simon Kuhn. Enabling privacy on the Internet with Oblivious HTTP. Mar. 23, 2023.
URL: https://www. fastly.com/blog/enabling-privacy-on-
the-internet-with-oblivious—http (visited on 04/07/2024).

Stephen Nellis and Paresh Dave. “Apple’s new “private relay” feature will not be
available in China”. In: Reuters (June 2021). URL: https://www.reuters.
com/world/china/apples—new-private-relay-feature-will-
not-be-available-china-2021-06-07/.

Martino Trevisan et al. “Measuring the performance of icloud private relay”. In:

International Conference on Passive and Active Network Measurement. Springer.
2023, pp. 3-17.

Heiko Kiesel. TrustMeRelay? Investigating Apple’s iCloud Private Relay. URL:
https://media.ccc.de/v/camp2023-57214—-trustmerelay__
investigating _apple _ s _ icloud _private _ relay (visited on
03/28/2024).

INVISV. Why VPNs are Wrong and MPRs are Right. Sept. 15, 2022. URL: https:
//invisv.com/articles/relay (visited on 05/10/2024).

Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446. Aug. 2018. DOI: 10.17487 /RFC8446. URL: https://www.rfc—
editor.org/info/rfc844e6.

Eric Rescorla et al. TLS Encrypted Client Hello. Internet-Draft draft-ietf-tls-esni-18.
Work in Progress. Internet Engineering Task Force, Mar. 2024. 51 pp. URL: https:
//datatracker.ietf.org/doc/draft-ietf-tls-esni/18/.

Rushil Mehra Alessandro Ghedini Christopher Wood. Encrypted Client Hello
- the last puzzle piece to privacy. Sept. 29, 2023. URL: https : / / blog .
cloudflare.com/encrypted—-client—hello (visited on 05/07/2024).

Benjamin M. Schwartz, Mike Bishop, and Erik Nygren. Service Binding and Pa-
rameter Specification via the DNS (SVCB and HTTPS Resource Records). RFC
9460. Nov. 2023. DOI: 10.17487 /RFC9460. URL: https://www.rfc-
editor.org/info/rfc9460.

Tommy Pauly, Eric Rosenberg, and David Schinazi. QUIC-Aware Proxying Using
HTTP. Internet-Draft draft-ietf-masque-quic-proxy-00. Work in Progress. Internet
Engineering Task Force, Aug. 2023. 24 pp. URL: https://datatracker.
ietf.org/doc/draft-ietf-masque-quic-proxy/00/.

71

https://www.fastly.com/blog/enabling-privacy-on-the-internet-with-oblivious-http
https://www.fastly.com/blog/enabling-privacy-on-the-internet-with-oblivious-http
https://www.reuters.com/world/china/apples-new-private-relay-feature-will-not-be-available-china-2021-06-07/
https://www.reuters.com/world/china/apples-new-private-relay-feature-will-not-be-available-china-2021-06-07/
https://www.reuters.com/world/china/apples-new-private-relay-feature-will-not-be-available-china-2021-06-07/
https://media.ccc.de/v/camp2023-57214-trustmerelay_investigating_apple_s_icloud_private_relay
https://media.ccc.de/v/camp2023-57214-trustmerelay_investigating_apple_s_icloud_private_relay
https://invisv.com/articles/relay
https://invisv.com/articles/relay
https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://datatracker.ietf.org/doc/draft-ietf-tls-esni/18/
https://datatracker.ietf.org/doc/draft-ietf-tls-esni/18/
https://blog.cloudflare.com/encrypted-client-hello
https://blog.cloudflare.com/encrypted-client-hello
https://doi.org/10.17487/RFC9460
https://www.rfc-editor.org/info/rfc9460
https://www.rfc-editor.org/info/rfc9460
https://datatracker.ietf.org/doc/draft-ietf-masque-quic-proxy/00/
https://datatracker.ietf.org/doc/draft-ietf-masque-quic-proxy/00/

Appendix 1 — Non-Exclusive License for Reproduction and

Publication of a Graduation Thesis!
I Leonard Walter

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my
thesis “evaluating the use of masque proxies for achieving dns privacy”, supervised
by Shaymaa Mamdouh Khalil and Silver Saks

1.1. to be reproduced for the purposes of preservation and electronic publication of
the graduation thesis, incl. to be entered in the digital collection of the library
of Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to
be entered in the digital collection of the library of Tallinn University of
Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

12.05.2024

(Kl

The non-exclusive licence is not valid during the validity of access restriction indicated in the student’s
application for restriction on access to the graduation thesis that has been signed by the school’s dean,
except in case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation
thesis is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted,
by the set deadline, the student defending his/her graduation thesis consent to reproduce and publish the
graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive
license shall not be valid for the period.

78

Appendix 2 - Configuration Files and Code Modifications

Caddy server config

v2202403219344260446.goodsrv.de {
root * /var/www/html/
file server
reverse_proxy /dns—-query 127.0.0.1:448 { transport http }
log { output file /var/log/access.log }

Routing setup for the MASEQUE proxy server

iptables —-I FORWARD 1 —-in-interface tun0 -o ethO0 —-3j ACCEPT

iptables —-I FORWARD 2 —--in-interface eth0 -o tunO0 -3j ACCEPT

iptables -t nat -I POSTROUTING -p all -s 10.1.1.2 —=7J SNAT \
——to-source 89.58.42.177

Routing setup to only forward traffic from Routedns docker to the MASQUE tunnel

ip rule add from 172.17.0.2 table 1
ip route add 10.1.1.0/24 dev tun0O scope link table 1
ip route add default via 10.1.1.1 dev tun0O table 1

Diff file for ODOH client TLS secrets logging and query time measurements

odoh-client—-go/commands/request.go
15al6,17

> "os"

> "time"

148a149,160

>

> fmt.Println("TLS secret logging enabled")

> keyLogFile, err2 := os.OpenFile("/var/tls.key", \
0s.0_WRONLY |os.O_APPEND|os.O_CREATE, 0666)

> if err2 !'= nil {

> fmt.Println ("unable to open TLS key log file: %s", err2)

79

}
tlsConfiguredTransport := &http.Transport({
TLSClientConfig: &tls.Config{KeyLogWriter: keyLogFile},

}

vV V V V V V

client.Transport = tlsConfiguredTransport
171al84
> start := time.Now ()
202a216

> fmt.Println("Resolution time: \n", time.Since (start))

Diff file for ODOH proxy TLS secrets logging

odoh-server-go/proxy.go
31a32, 33

> "os"

> "crypto/tls"

46a49, 60

> wvar tlsConfig xtls.Config
> tlsConfig = new(tls.Confiq)

> keyLogFile, errl := os.OpenFile("/var/tls.key", \
0s.0O_WRONLY |os.O_APPEND |os.O_CREATE, 0666)

> 1if errl != nil {

> log.Println ("unable to open TLS key log file: %s", errl)

>}

>

> tlsConfig.KeyLogWriter = keyLogFile

> transport := &http.Transport{TLSClientConfig: tlsConfig}

> client.Transport = transport

Diff file for Routedns DoH TLS secrets logging and 0-RTT

routedns/dohclient.go

8a9

> "OS"

184c185,190

< req, err := http.NewRequestWithContext (ctx, "GET", u, nil)
> method := http.MethodGet

80

> if d.opt.Transport == "quic" {
> method = http3.MethodGetORTT
>)
>
> req, err := http.NewRequestWithContext (ctx, method, u, nil)
270a277,286
>
> Log.Debug ("TLS secret logging enabled")
> keyLogFile, err := os.OpenFile("/var/tls.key", \
0s.0O_WRONLY |os.O_APPEND |os.O_CREATE, 0666)
> 1if err != nil {
> Log.Errorf ("unable to open TLS key log file: %s", err)
>)
> tlsConfig.KeyLogWriter = keyLogFile
>
> // enable TLS session caching for session resumption and O0-RTT
> tlsConfig.ClientSessionCache = tls.NewLRUClientSessionCache (100)
424a441
> Log.Debug("using dial early")

Diff file for Routedns DoQ TLS secrets logging and 0-RTT

7a8

> "og"

64a67,76

>

> Log.Debug ("TLS secret logging enabled")

> keyLogFile, err := os.OpenFile("/var/tls.key", \

0s.0_WRONLY |os.O_APPEND|os.0O_CREATE, 0666)
if err != nil {
Log.Errorf ("unable to open TLS key log file: %s", err)

}
tlsConfig.KeyLogWriter = keyLogFile

// enable TLS session caching for session resumption and O0-RTT

>

>

>

>

>
78a91, 97
>

> tlsConfig.ClientSessionCache = tls.NewLRUClientSessionCache (100)
>

2

12c228,242

81

<

V V V VvV V V V V V V

vV V V V V

s.EarlyConnection, s.udpConn, err = quicDial (context.TODO(), \

s.hostname, endpoint, s.lAddr, s.tlsConfig, s.config)

s.udpConn, err = net.ListenUDP ("udp", nil)
if err !'= nil {
log.WithError (err) .Debug ("couldn’t create UDP connection")

return nil, err

}

// Resolve the UDP address for the endpoint
udpAddr, err := net.ResolveUDPAddr ("udp", endpoint)
if err != nil {
log.WithError (err) .Debug ("couldn’t resolve UDP address for \
endpoint [" + endpoint + "]1"M)

return nil, err

// Use quic.DialEarly to attempt to use 0-RTT DNS queries
s.EarlyConnection, err = quic.DialEarly(context.TODO(), \

s.udpConn, udpAddr, s.tlsConfig, s.config)

82

	Introduction
	Background and Related Technologies
	DNS
	Encrypting DNS
	The QUIC Protocol
	DNS over QUIC
	Client Anonymity
	Oblivious DNS over HTTPS
	Oblivious HTTP

	MASQUE

	State of the Art and Related Work
	DNS over QUIC
	QUIC and 0-RTT

	Oblivious DoH
	MASQUE
	MASQUE Prototype Implementations
	Commercial applications of MASQUE

	Research Methods
	Phase 1 - DNS Protocol and Tool Selection
	DNS protocol selection
	Evaluation Tools

	Phase 2 - Defining Evaluation Metrics
	Defining Performance Metrics
	Defining Privacy Metrics
	Defining Security Metrics
	Summarizing Metrics for the Evaluation

	Phase 3 - Testbed Implementation
	Testbed Stage 1
	Testbed Stage 2

	Phase 4 - Evaluation and comparison
	Evaluating Performance
	Evaluating Security and Privacy

	Evaluating Existing Encrypted DNS Systems
	Analyzing DoH
	DoH Performance
	DoH Security and Privacy

	Analyzing DoQ
	0-RTT and Session Resumption for DNS over QUIC
	Security concerns with 0-RTT DoQ

	Oblivious DoH evaluation
	Oblivious DoH performance
	Oblivious DoH privacy and security

	Implementing a Novel DNS System using MASQUE and DoQ
	Masque Proxy implementation
	MASQUE operational modes

	Benefits of a custom MASQUE proxy

	Evaluating a Novel DNS System using MASQUE and DoQ
	Evaluating MASQUE proxied DoQ performance
	Evaluating MASQUE proxied DoQ security
	Summary of the Evaluation
	Comparison to ODoH
	Future improvements

	Summary
	References
	Appendix 1 – Non-Exclusive License for Reproduction and Publication of a Graduation Thesis
	Appendix 2 – Configuration Files and Code Modifications

