
TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Informaatika instituut

Tarkvaratehnika õppetool

Tarkvara modulaarse laiendamise võimalus

CMS-i näitel
Bakalaurusetöö

 Üliõpilane: Stanislav Babuškin

 Üliõpilaskood: 103716IAPB

 Juhendaja: Kaarel Allik

Tallinn

2015

2

Autorideklaratsioon

Kinnitan, et olen koostanud antud lõputöö iseseisvalt ning seda ei ole kellegi teise poolt

varem kaitsmisele esitatud. Kõik töö koostamisel kasutatud teiste autorite tööd, olulised

seisukohad, kirjandusallikatest ja mujalt pärinevad andmed on töös viidatud.

.. ..

 (kuupäev) (allkiri)

3

Annotatsioon

Käesoleva töö eesmärk on välja töötada tarkvara arhitektuur, mis võimaldab täiendada

süsteemi funktsionaalsust, kasutades dünaamiliselt lisatud moodulaarsid laiendusi. Jargnevalt

kirjeldatakse vaadeldava arhitektuuri disainiga seotud probleeme ja nende lahendusi keskse

haldussüsteemi näitel. Kasutades kirjeldatud lahendust, on võimalik uuendada ja muuta

tarkvarakomponentide funktsionaalsust ilma masina taaskäivituse ja programmi peatamiseta.

Näidisprogrammi arenduskeeleks on cSharp. Süsteem koosneb kahest osast: keskserverist

(Server) ja mitmest agendist (Agent). Keskserver saab kasutaja käest ülesanded, koostab

klientprogrammile mõistetava käsustiku ja saadab selle klientarvutitele, kus töötab

agenditarkvara. Süsteemi funktsionaalsus jaotatakse kirjeldatud laienduste vahel ära. Iga

laienduse moodul paigutatakse süsteemi erinevasse osasse ning seejärel algatavad moodulid

omavahelise suhtluse. Süsteemi tuuma (core) peamine ülesanne on laienduste haldamine ja

sõnumite edastamine läbi arvutivõrgu.

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 43 leheküljel, 5 peatükki, 25

joonist.

4

Software Modular Extensibility On A Central Management System

Example

Abstract

The purpose of this thesis is to design software architecture for Central Management

System that allows to extend functionality of the system using dynamically added modules. In

additional to describe the problems associated with the architecture and their solutions.

Solution should be able to update and change functionality of agent extensions without

reinstalling agent program. Application will be written in CSharp language and consist of two

components Central Server and Agent. Central server receive tasks from user, converts to

understandable instruction set and sends it to the client agent. The functionality of the system

is stored in extensions. Each of the extension is placed on system both components and

communicate with each other. The system core main functionality is extension management

and providing communication between modules of extension.

This thesis is in English and contains 43 pages of text, 5 chapters, 25 figures.

5

Glossary of terms and abbreviations

CMS Central Management System

MEF Managed Extensibility Framework

xml Extensible Markup Language

Base64 Binary-to-text encoding schema

IIS Internet Information Services

WCF Windows Communication Foundation

CBSE Component Based Software Engineering

MS SCCM Microsoft System Center Configuration Manager

OCSI NG Open Computers and Software Inventory Next Generation

NTFS New Technology File System

OSI Open Systems Interconnection

6

Table of Contents
1 Introduction .. 8

2 Theoretical base .. 10

2.1 Environment .. 10

2.2 Terms ... 11

3 System architecture ... 13

3.1 Application architecture design. .. 13

3.1.1 Common Design .. 14

3.1.2 System components ... 14

3.2 Extension ... 16

3.3 Extension Management ... 19

3.3.1 Initial loading ... 19

3.3.2 Runtime management .. 21

3.4 Message ... 21

3.4.1 Message Structure .. 22

3.4.2 Message States ... 22

4 Communication System .. 23

4.1 Messaging Forwarding .. 23

4.1.1 Logical Implementation ... 24

4.1.2 Code Implementation ... 26

4.2 Message Queuing .. 29

4.3 Message Instruction... 31

4.4 Message Addressing .. 34

4.5 Network Communication .. 34

5 Putting all together.. 37

6 Diagnostics ... 39

6.1 System stability ... 40

Conclusion ... 41

Resümee ... 42

References .. 43

7

Table of Figures

Figure 1 Common term definitions .. 11

Figure 2 System Composition Model.. .. 12

Figure 3 System Architecture .. 13

Figure 4 Software element common architecture .. 14

Figure 5 Windows User Sessions .. 16

Figure 6 Extension distribution .. 17

Figure 7 Extension Class Diagram .. 18

Figure 8 Module Class Diagram .. 19

Figure 9 Extension Class Diagram. Initialization mechanism. .. 20

Figure 10 Extension Class Diagram. Components Management mechanism 21

Figure 11 Message Class Diagram .. 22

Figure 12 Communication model. ... 23

Figure 13 Extension Class Diagram. Forwarding mechanism methods. 24

Figure 14 Message Activity Diagram of each Functional Module .. 24

Figure 15 Communication Model .. 25

Figure 16 Message forwarding use case diagram. Missing child module 25

Figure 17 Communication Architecture .. 26

Figure 18 Message movement through layers sequence diagram ... 29

Figure 19 Extension Class Diagram. Message queueing mechanism methods. 30

Figure 20 Instruction semantic structure.. 31

Figure 21 Extension Class Diagram. Common operations set. ... 32

Figure 22 Help tool output example .. 33

Figure 23 Network Layer Classes Class Diagram ... 35

Figure 24 Message XML Representation on a different module levels 37

Figure 25 Service Recovery ... 40

file:///C:/Thesis/Thesis.docx%23_Toc419982883
file:///C:/Thesis/Thesis.docx%23_Toc419982884
file:///C:/Thesis/Thesis.docx%23_Toc419982891
file:///C:/Thesis/Thesis.docx%23_Toc419982892
file:///C:/Thesis/Thesis.docx%23_Toc419982893
file:///C:/Thesis/Thesis.docx%23_Toc419982894
file:///C:/Thesis/Thesis.docx%23_Toc419982895
file:///C:/Thesis/Thesis.docx%23_Toc419982897
file:///C:/Thesis/Thesis.docx%23_Toc419982903
file:///C:/Thesis/Thesis.docx%23_Toc419982904
file:///C:/Thesis/Thesis.docx%23_Toc419982905

8

1 Introduction

For user computer is a set of applications. One of the main tasks for user is application

management – installing, deleting and updating a software elements. Administration is not a

critical issue for a one workstation, but at organization level many stations need to be controlled

- what becomes a bigger issue. In most companies the users right must be limited to prevent

property damage or for security reasons. Each computer can be configured separately but

management of computers configuration is still an issue. A Solution that allows to centralize

management of machines is called Central Management System.

There are few popular implementations of CMS systems like Microsoft System Center

Configuration Manager (MS SCCM) or Open Computers and Software Inventory Next

Generation (OCS Inventory NG).

In perfect static world CMS resolution will be enough, but environment is developing

and things change all the time so do software also. As a consequence an application meant to

keep external components up to date need to be updated too. Even more in case where part of

workstations are inaccessible most the time.

In this work will be considered a software architecture that allows to dynamically add,

replace and remove functional components. Some problems will be highlighted on code level

with snippets. This method should make possible to change system modules at the run time,

without rebooting workstations and restarting application components.

The method itself construction software based on extensive modules or plugins is not

new it is called Component Based Software Engineering, the major difference of project

application architecture is that application exclude all functionality except plugin management

core. In some cases additional functions can be added. Because of prototype components cores

located on a different workstations, the communication functionality need to be added to cores.

In scope of this work will be considered an application server and client core developing

and communication channel creation through the network using web services. Creating a few

extensions with different functionality, work of each extension will be demonstrated and

service layers on agent and server side. Work out message traveling method through the system

from client side extension to the server side extension and vice versa. As an important issue

the stability of sample CMS system, error handling and system stability will be highlighted in

a separate chapter.

Application requirements:

 Application must be separated into the individual parts being able to communicate

with each other.

 Ability to update application components according to needs and technologies.

 Each system component should be able to work independent and accumulate data

in case of connection lost.

 System should be stable to errors.

 Core should be able only to manage plugins.

 Application cores should be able interact with each other and transfer messages.

9

Because prototype system contains of many projects and classes then none of its parts

will be presented entirely including class descriptive diagrams. In each chapter will be

highlighted only part directly connected to topic.

Purpose of this thesis is to workout enterprise application architecture solution that

allows dynamically add functionality to System without reinstalling or rebooting its

components and application as a system. System security is out of project scope. The work

does not include graphical interface creation and optimization, only applying principles of

current architecture will be highlighted.

This work is divided into 5 chapters, each one which contains subtopics.

The first chapter will give a short overview of used technologies and platforms and

domain knowledge of sample system. The second chapter is about system components,

application architecture and its layers description. Putting together system components,

communication within application and between system components will be described in the

third chapter. The fourth chapter is sample of usage methods and solutions explained in

previous chapters. Last chapter is a short overview of system stability, diagnostics and testing.

10

2 Theoretical base

At some point of working as a developer in company producing more than one product I

came to realization of software updating problem. Due to company size we didn’t had a special

helping software for delivering a builds to client. The small prototype were done in small period

of time and demonstrated to customer. One of requirement was to make a tool as simple as it

possible from the inside to avoid bug fixes and updates. Despite a fact that client declined I

continued working on a project in educational purposes. One issue stuck in my head – how to

update software that is meant to update software without going to maintenance or stopping the

production facilities. The forward work is my thoughts and an attempt to solve facing issue.

2.1 Environment

A Central Management System prototype will be implemented on Windows and

Windows Server1 operating system and a .NET platform2 for a software development. As a

programming language will be used one of the .NET supported languages – CSharp. For

creating an application is used development environment provided by Microsoft - Visual

Studio. Any data storage that application use will be created using SQL Server Management

Studio and stored in SQL Server3. The application itself works on Internet Information

Services4.

Files stored outside of database represents an unstructured data. The using of outside

unstructured data can cause management complexities in other case when data is stored directly

to database the performance of server can be lowered due to bid files streaming. Solution

provided by SQL Server called FILESTREAM is integration of NTFS5 system to database

engine. This solution is taking advantages of both previses cases, can provide additional

security to database server and stored data. Extension distribution files will be stored in SQL

Server using file stream feature.

A .NET platform supply good support for component based software engineering by

providing ability to dynamically adding modules to running applications. One of platform

frameworks which makes it easier is Managed Extensibility Framework6.All project modules

are built using MEF.

 All these components are provided by Microsoft. On one hand it is easier to create a

more stable system because components are meant to work together and proper error handling

and debugging in development process. In other hand using special features of each component

makes harder a multiplatform implementation. The implementation of system features might

differ from original due to platforms architecture.

 Initially a .NET were created for a Windows, but not so long ago Microsoft announced

about launching its .NET distribution for Linux and Mac OS. Which makes possible of using

initial project implementation on different platforms with only slight changes.

11

2.2 Terms

Further in this work will be used many terms related to system or application break

down to its components. Usage of those term is different perspectives and architectonical scales

might be confusing, therefore there is a need in rigorous definition of each of them. At first the

common definition will be given and then applied to project architecture.

Most definitions are from book Component Based Software Engineering: Putting the

Pieces Together7 by Bill Councill and George T. Heineman. Table of used terms:

Terms

Software element A sequence of abstract program statements that describe

computations to be performed by a machine.

Software component Software element that conforms to a component model and can

be independently deployed and composed without

modification according to a composition standard.

Component Model A model of specific interaction and composition standards. A

component model defines specific interaction and composition.

Component Infrastructure Set of interacting software components designed to ensure that

a software system or subsystem constructed using those

components and interfaces will satisfy clearly defined

performance specifications.

Interaction An action between two or more software elements.

Composition The combination of two or more software components yielding

a new component behavior at a different level of abstraction.

Figure 1 Common term definitions

As is shown on a Figure 2 System consist of handled workstation, in software

perspective the root object in a break down is an Application which consist of individual self-

sustained software elements that are working on a separate workstations and interact with each

other – Agent or Central Server.

Next level of breakdown of elements are Software Components – On project prototype

sample those are cores and functional modules of extensions. Because of Extension is basically

a three modules that meant to be installed on a different instances of application, placed on

same level of modules hierarchy located on opposite edges of application and communicate

with each other. Two interactive modules of same level is called mirror modules.

12

System

Application

Work Station 2Work Station 1

Software Element 1

Component
1

Component
2

Component
4

Component
3

Software Element 2

Mirror
Component 1

Mirror
Component 2

Mirror
Component 4

Mirror
Component 3

Interaction

Figure 2 System Composition Model. Elements related to hardware is marked by shape sharp edges, software elements are

marked by round edges.

13

3 System architecture

In this chapter the main topic is application architecture, main elements and used

components description. As a beginning the highest-level breakdown of a system into its parts,

software components breaking apart into the layers and solution applied to each layer. The

design and functionality of system elements. The main effort is to design such architecture

where dynamic extension and interaction between newly added modules is possible.

Architecture will be designed to support dynamically added components with business

logic to application elements. Static component will manage only extension components.

3.1 Application architecture design.

In general the project have a Client-Server architecture. There is two software elements:

Central Management System Central Server or just a server and an agent machines - client

which communicate with server through a network.

Application have a hierarchical structure in other words there is one primary element –

Central Management System Central Server which forward will have a codename – Octopus,

Figure 3 System Architecture

14

and a secondary elements installed on a managed workstations Central Management System

Agent forward will be referred using a „Tentacle“.

 A main task for an octopus will be handling messages from tentacles and a receiving

tasks from a user. For a tentacle major job will be a processing octopus messages, execute

instructions from messages and sending a report.

3.1.1 Common Design

Each application element has a similar structure: The static component which has

limited functionality – the core and a dynamic component which have a common interface and

different purpose - functional modules.

 Core – Unchangeable component with limited functionality. For avoiding changes

in core all business logic must be placed in child modules. Core is a part of a

service layer it provides or consumes services. Minimum required functionality

for this part is:

o Child components management

o Communication with opposite side

o Error handling

 Functional Module – Using common interfaces for communicating with the core

or child modules it implements business logic according to its needs. Can be

dynamically added or removed from parent module. A module functionality can

be reduced to message forwarding and child modules management. In this case

module will have a proxy role. Another role that module can have is an executive.

This kind of module usually don’t have any child components and only executes

instructions in receiving messages.

3.1.2 System components

The reason why CMS like system was chosen by sample prototype is because of its

complexity. To demonstrate potential and adaptability of fully component based enterprise

applications. Before making decision how to build each of components there is a need to take

a closer look to each of them.

Core

Functional Module 1

Sub module Sub Module

Functional
Module 2

Sub module

Figure 4 Software element common architecture

15

Sample CMS consist of two main components. Each component have his own purpose.

In next chapter will be given a short overview of each of them, the running environment and

tasks.

Central Server

Central Server is a workstation with Octopus web service application hosted on Internet

Information Services Server. Central server is a core of all system. All workflow are controlled

by the application control part. Octopus is presented by two parts: the processing element and

visual management tool.

The processing element core component itself is basically a service layer8 which has a

set of available operations listed in service endpoint to communicate with tentacles. The

endpoint is implemented using Windows Communication Foundation9 library presented in

.NET platform.

User interface have a tools set to give instruction to central server and can be

implemented in two ways. One is a Web application hosted at the same server. In this case

extension components are located on same workstation but been used with different software

element. The second way is to create a desktop application. In this way components with user

controls need to be transferred to the same workstation.

In scope of this work one of main tasks for central server is runtime component

distribution. All extension components are stored on central server storage for distribution. It

can be stored on file system or database. Central server tasks can vary depending on the

implementation.

Client

Agent is a software element running on background of handled workstation as a

windows service that reacts on changes in environment, making reports for a central server and

listens to its instructions.

Due to Windows OS platform peculiarity the agent will be divided in a two parts: the

mandatory and optional part. For each end user there is a separate session. A services can run

on a local system or in user session, the key difference between them is a services working in

user session stops with user logout. For this reason a mandatory part – agent core should be

placed in local system to be able to control user sessions. In other hand the local system service

is unaware of user session environment running processes and events. The optional part goes

to user session in case of need of controlling it.

16

Local System Services

User A Session Services User B Session Services

Figure 5 Windows User Sessions

The optional part is implemented and fully controlled by functional modules. In fact

that not all functional modules need a presence in a user session this part is optional.

Agent core tasks are:

 Interaction with central server.

 Components management.

Client have a two working states: normal and accumulative state. In normal state the

connection with central server is working and messages are not delayed. In case of connection

lost the messages are stored locally to be sent later. This functionality is missing on client core

and can be placed there because of core limited functionality. By following architecture design

the additional functionality must be placed to separate extension. A new module will

implement messages storing functionality and need to be placed as a root component.

3.2 Extension

Extension is an application component which can be dynamically added or removed by

application core. This component contains application custom functionality. The component

itself represents a set of class libraries or modules. Modules are created using Managed

Extensibility Framework - the library that allows to create extensible applications by

developing user extensions which can be plugged into core.

 In development process an extension is composed from three parts or plugins. Each part

represents a code library which is handled by cores on the workstations. Extension have a list

of available operations or methods listed in extension common interface. Important point that

need to be concerned while creating an extension is that each logical operation of extension

need to be divided into the three parts and each of this parts located on a different system

components.

17

Figure 6 Extension distribution

Control part is a class library where the biggest part of business logic is stored. A result

of work in this part is a saved state of modules, task management and a string instruction that

will be sent to agent. In addition can have a functionality of:

 Operation result handling.

 Database interaction.

 Task distribution among the agents.

 Additional business logic can be also placed here.

Executing part have an executive part of operation. Executive module is located on an

agent workstation and docked to its core. This module contains the implementation of work

part of method. It might have a querying nature, or configuration setting change.

User extension located on administrator work station and docked into the user interface

core is a visual part of extension. The working process is quite similar to agent - it uses same

communication endpoint and works on user computer. It has a two fundamental differences:

 The core of visual part works as a desktop application or a web application.

 Composes instructions for central server.

In this part operation is implemented to compose an understandable string command

list for a control part. In other words a list of methods and parameters that need to be called on

control part. Visual part have a custom control which is presented to end user as a tool for

creating tasks.

18

<<Abstract>>

Extension

+Name

+Location

<<Abstract>>

AgentExtension

<<Abstract>>

ServerExtension

<<Abstract>>

UserExtension

+UserControl

+Extensions
+GetFilter(Name)

+event MessageRecieved
+event RiseMessage

Figure 7 Extension Class Diagram

All part of extension have a similar composition. There is a Loader class which

implements one of module extension: Server Extension, Agent Extension and a User Extension

abstract classes. Loader class is used as a proxy for messages instructions. It reads command

from task and sends to operation processor class which in addition to module operation set have

a command decoder method called MethodEntry. Decoded method is used for selecting a right

method from operations set, setting parameters and calling it. When task is processed a loader

class notify about task completion by creating a response message.

On a system edge all extension components have a hierarchical structure, to module it

means that it can have a child modules stored in Extension property. Each of them have a

predefined Name property used for addressing messages. Parent module can access name by

using getter method GetFilter. Location is a physical path to extension directory.

All modules can work as an individual software element: it has an entry method -

MessageRecieved (similar to program “main” method), parameters can be passed in message

and a result is returned by rising result message.

19

Loader

+Init()

-ProcessMessage()

<<Interface>>

IOperationSet

+CustomOperation1(Parameter[])
+CustomOperation2(Parameter[])

OperationProcessor

+MethodEntry()

<<Abstract>>

ModuleExtension

+CustomOperation2(Parameter[])
+CustomOperation1(Parameter[])

Figure 8 Module Class Diagram

In scale of operation the visual part and control part have an accessory facilities. A main

task for these two parts is to deliver a task from user to agent.

Each module contains a class what implements operation set interface. For this reason

Control Part and the Executing Part have same method sets, the difference between them that

in Control part each method construct scripts for executing part mirror method is placed where

all business logic for certain operations. By the signature of control part it is a mirror functional

module to control part.

Visual part of extension is a separate software component or library. In addition to

certain extension method it has an additional one for returning a user control.

3.3 Extension Management

 As long as project has a component based architecture the component management

issue is important. Extension management is a loading functionality from modules to main

program and handling code libraries and within a software element.

3.3.1 Initial loading

 Application software element consist of two parts: a static part and a dynamic part. The

relatability of first part will be discussed in a diagnostic chapter. This subtopic is about initial

loading mechanism of dynamic software components.

 At the beginning of work program have only working core and file system which need

to loaded to execution library. The components are loaded recursively, which means that each

component are loading only child components and triggers child component initiation. The first

place where initialization starts is core:

20

 public class ExtensionManager{
 [ImportMany]
 public IEnumerable<AgentExtension> Extensions { get; set; }

 public ExtensionManager(String ExtensionsDirectory){
 InitExtensions ExtensionsDirectory);
 }

 public void InitExtensions(String extensionDir){
 var extensionDirs = Directory.GetDirectories(extensionDir);
 var catalog = new AggregateCatalog();
 foreach (var dir in extensionDirs)

 catalog.Catalogs.Add(new DirectoryCatalog(dir));
 var container = new CompositionContainer(catalog);
 container.ComposeParts(this);
 }
 }

 This method set is quite similar to extension interface loading mechanism. The

AggregateCatalog, DirectoryCatalog and CompositionContainer classes re part of .NET MEF

library. A DirectoryCatalog is a folder with extension module which has an implementation of

AgentExtension implementation class. The implementation object – module is loaded to

extension list. An AggregateCatalog is a helper class which is needed when modules are

distributed to different directories.

<<Interface>>

Extension

+Extensions

+InitExtensions()
+InitMessagingTunnel()

Figure 9 Extension Class Diagram. Initialization mechanism.

 All extensions have an initialization mechanism with default implementation similar to

core. In addition it has a message channel initialization method to concatenate communication

events:

 public abstract class Extension{

 [ImportMany]
 public virtual IEnumerable<Extension> Extensions { get; set; }

 ...

 public virtual void InitMessagingTunnel(){
 foreach (var extension in Extensions)
 extension.OnMessage += (sender, args) =>
 SendMessageToParent(args.Message.WrapMessage(this));
 }

 }

21

3.3.2 Runtime management

Previous chapter was about extension loading but initial structure was constant. How to

manage extension in runtime is a topic for this chapter. The main idea of this work in scope of

component based software engineering is how add, delete or update components without

stopping program workflow.

<<Abstract>>

Extension

-memberName

+AddExtemsion(Name)

ServerExtension

+Dowbload()

AgentExtension

+Download()

+RemoveExtension(Name)
+abstract Download()

Figure 10 Extension Class Diagram. Components Management mechanism

A method Download has default implementation on module level extension interfaces.

Operation divided according to system roles. General purpose of the method is transmitting

physical files. The implementation of this method may vary and not will be demonstrated in

this project.

To make changes in composition possible there is a need in two operations

implementation: the physical file system management and a component model management.

Once the main object where extension modules is being composed the forward elements

addition or deletion is going through the same way as on initialization

3.4 Message

In this chapter we will look at message as an object and its structure and message

properties purposes. The message states while traveling through the system.

22

3.4.1 Message Structure

The structure of message is the same for each layer of application. The message is an

object that is being constructed in functional module and meant to the mirror functional module

on the other side. Message has next fields:

 Action – An action that need to be done with message. Possible

values are forward/apply. Value forward means that current functional

module is not a destination module and message need to be sent to

parent or child module, depends on message direction. Apply value

means that module reached end point and instructions need to be

applied.

 Address – In case if action is equals to forward then we

need to know the next module name where to send.

 Destination – Workstation name. Used At core level.

Duplicated at all message levels.

 Task ID – When message is constructed and need to be

confirmed the functional module store message to response

task queue and awaiting response message with same id.

 Instruction – a set of commands or script for mirror functional module.

 Status – When message is processed by mirror functional module it change status

and send back acknowledge message with script result.

 Encoded Message And Inner Message – Encapsulated message for the next layer.

Encoded message is a text representation in base64 format message used at the network

layer. As a simple example representation message in string. Can be used for security purposes

and coded with secret key.

3.4.2 Message Serialization

On the way through the system message transforms from object to xml state.

For convert messages between two states is used .NET System.Runtime.Serialization

class library. Using special attributes from library it is easy to define xml structure right in

CSharp class. Thereby by using serialized data objects in services there is no need in creating

envelope xml messages to send over the network.

[DataContract]
public class Message{
 [DataMember]
 public String Address;
 [DataMember]
 public String Destination;
 ...
}

Figure 11 Message Class

Diagram

23

4 Communication System

Modules of system can have various amount of functionality and operations. In case if

two modules were designed to work together directly there is no need in complex proxy system

of method calls through limited communication interfaces. This chapter contains a description

of solution to communication problem – the way how two modules located on a different

system edges can cooperate using standard message interface.

In communication model system have two components: Sender and receiver. They are

using a message as a communication object. The Central Server and Agent both can have a

Sender and Reviver roles. The Sender role generates task and send message to receiver. At

receiver side task is being processed and a result is sent back to sender.

4.1 Messaging Forwarding

In applications built as a final application all operations can be called using standard

method call procedures and communication channels have a specific structure however in

system designed to be able add and remove senders and receivers the major question is how to

find destination module in dynamic environment.

Message is moving through application layers or modules using functional module base

functionality implemented in abstract class.

The operation SendRequestMessage and SendResponseMessage have a functional

default implementation on a module extension because of different forwarding methods. The

difference will be described in next topic.

Figure 12 Communication model.

24

<<Abstract>>

UserExtension

+UserControl

+SendRequestMessage(Message)
+SendResponseMessage(Message)

<<Abstract>>

ServerExtension

+UserControl

+SendRequestMessage(Message)
+SendResponseMessage(Message)

<<Abstract>>

AgentExtension

+UserControl

+SendRequestMessage(Message)
+SendResponseMessage(Message)

<<Abstract>>

Extension

+Name

+SendMessageToChild(Message)

+Location
+Extensions

+GetFilter(Name)
+SendMessageToParent(Message)

abstract SendRequestMessage(Message)
abstract SendResponseMessage(Message)

4.1.1 Logical Implementation

All layers of system component (functional modules and cores) are working on similar

logic implemented in extension interface (abstract class). When incoming message is detected

the first thing is to check Action. If action equals “Apply” the message is meant to this certain

module and need to be processed. Otherwise message will be send to next level of functional

modules.

In this way using limited messaging interface message from newly added module can

reach mirror module on other side. Using hierarchical modules structure it is easy to find a

Figure 13 Extension Class Diagram. Forwarding mechanism methods.

Figure 14 Message Activity Diagram of each Functional Module

25

destination module. On each level of modules message is being wrapped and destination is set

to mirror module at the same level on different side.

Once message is reached a network level and traveled to receiver side it starts moving

from core to destination module. Within each level a module unwraps message and search next

module by inner message destination address. The procedure repeats until message reached

destination module.

Communication model is similar to ISO OSI10 Communication model where layers

exchange messages using lower level services.

There is a special case when no child component is found. This is not an error. The

complete hierarchy of extension modules exists only on central server. On agent side child

modules are loaded on first call. To module who didn’t foun a destination child module it means

that the child module need to be downloaded and installed before call.

Message
Income

Get address
Module name

exist

Download
module

Register
module

Forward
message

No

Yes

Figure 16 Message forwarding use case diagram. Missing child module

Figure 15 Communication Model

26

4.1.2 Code Implementation

 In logical implementation there is no difference between message moving to core

direction and from core, but on code implementation they are two different methods of

forwarding message.

To core

 Message moving to core using event bubbling method. When message moves to the

core direction through the layers it uses an events rising. Each functional module has an event

rising mechanism that triggers when module have something to send. Functional module has

list of sub modules and event handling mechanism. When one of sub modules raise an event

the parent module get message from event using event handler. If message are meant for this

certain module it process message data, otherwise it rises event with message inside and send

message to parent modules.

 public abstract class Extension{
 ...

 public virtual void SendMessageToParent(Message message){
 if (OnMessage != null)
 OnMessage(this, new MessageEventArgs { Message = message });
 }

 }

Figure 17 Communication Architecture

27

To Functional Module

On the way from the core to the functional modules system uses method calls. Each

functional module reads message destination address and check list of sub modules, when the

right sub module is found then the message is sent to selected module.

 public abstract class Extension{
 ...
 public virtual void SendMessageToChild(Message message){
 if (message.Action == MessageAction.Forward){
 var extension = Extensions.FirstOrDefault(x =>
 x.GetFilter(message.InnerMessage.Address));
 if (extension != null)
 extension.SendMessageToChild(message.InnerMessage);
 }
 else if (message.Action == MessageAction.Apply){
 NotifyMessageIncome(message);
 }
 }
 ...

 }

 As a result we need to have both methods implementation on each module type. But

depending on module type the call will be crossed. On Server type:

 public abstract class ServerExtension : Extension{
 ...

 public void SendRequestMessage(Message message){
 this.SendMessageToParent(message);
 }

 public void SendResponseMessage(Message message) {
 this.SendMessageToChild(message);
 }

 }

On Agent type:

 public abstract class AgentExtension : Extension{

 public override void SendRequestMessage(Message message){
 this.SendMessageToChild(message);
 }

 public override void SendResponseMessage(Message message){
 this.SendMessageToParent(message);
 }
 }

28

Through the network

At the moment of crossing network the way how it is been transferred depends not on

role in communication model but on system elements. At the way transferring message from

agent to server is simple service call. In opposite case the mechanism is a bit complicated.

For this purpose a call-back technology is used to create duplex communication

channel. For creating two side service there is a need in two components. The service interface:

 [ServiceContract (CallbackContract = typeof (IMessageCallback))]
 public interface IOctopusService
 {
 [Operation Contract (IsOneWay = true)]
 void Subscribe(String Name);

 [OperationContract (IsOneWay = true)]
 void Unsubscribe();

 [OperationContract(IsOneWay = true)]
 void SendMessage(Message message);
 }

 And a call-back interface:

 interface IMessageCallback : ICommunicationObject
 {
 [OperationContract (IsOneWay = true)]
 void Notify(Message message);
 }

While travelling through the system message have two states: XML Format and

DataObject type. DataObject is used in code. Functional module creates message as an object

and sends to parent functional module. Upon message reaches core level it converts into the

xml format and travels through the network. At the other side, when core receive a message it

converts it back to an object and sending to child functional module.

Message travels from sender to receiver. At sender side each layer wraps message and

put his own header address. After reaching a receiver side on each level unwrap message and

send inner message to next level module according destination address. After message was

processed at destination module, s status message travels back to sender. The way how it is

moving through the design levels is reversed. On agent side message is being capsulated and

unwrapped on a server side.

29

Sub Functional
Module

Functional
Module

Sender
Core

Reciever
Core

Functional
Module

Sub Functional
Module

Task Compose message

Send message to reciever
 sub functional mofule

Wrap
message

Send message to reciever
functional module

Serialize message

Send xml message
to reciever

Deserialize message

Send inner message Unwrap message

Send inner message
Peocess

task

Figure 18 Message movement through layers sequence diagram

When user gives an instruction for a system the task appears. Task can be initialized by

scheduled event or an error handling logic also. The functional module who got a task construct

a set of commands – instruction for an executive module which is located on another system

component. When script is done the functional module creates a message and sets a destination

module name. On the way through the sender modules the message is wrapped on each of them

and a certain level name is specified. When message reaches to destination point and

acknowledge message need to be sent then sender and receiver changes roles and message

travels back at the same way.

4.2 Message Queuing

By reason of unavailability to make direct calls and processing return values due to

dynamic application structure the communication within project is asynchronous, what means

when functional module generated message is sent to a mirror functional module it does not go

to awaiting state. For this reason a special solution need to be implemented to make possible

getting operation result to initial module. For sending result a mirror module uses a message.

In a logical representation a message can be divided in two groups.

Task Message is a message which is sent for processing to receiver. In cases when task

requires a feedback to show to end user or just store processing result to database there is a

need in task Result Message. Those messages are moving from receiver to sender with

instruction execution result.

To handle response messages, extension have a special mechanism. Each generated

message have unique task Id, only result message have same id as a task message. TaskID is

used at the moment when message arrives to functional module. If task queue contains received

message task id it means that arrived a result message it and need to be handled in other way.

30

TaskManager

+event RepeatTask

+Add(Message)

<<Interface>>

InterfaceName

+RiseMessage()
+AwaitResponse(Message)

-List<MessageTask>Queue

+Remove(Message)
-Notify()+ProcessResponse(Message)

+TaskManager

MessageTask

+Message
+Counter
+event MessageExpiered
-Timer

+Dispose()

Figure 19 Extension Class Diagram. Message queueing mechanism methods.

Not in all cases module operation need a result message, but in cases when it do it uses

a message queueing mechanism. When extension rises a message it being encapsulated to

MessageTask class and stored to TaskManager. It has a timer to notify manager about message

expiration:

 public class MessageTask{
 ...
 public MessageTask(Message msg){
 ...
 timer.Elapsed += TaskExpiered;
 ...
 }

 private void TaskExpiered(object sender, ElapsedEventArgs e){
 if (MessageExpiered != null){
 MessageExpiered(this, new TaskEventArgs { Task = this });
 }
 }
 ...

 }

TaskManager uses MessageTask counter property to calculate resend attempts. When

it reaches maximum allowed number the status of message will be changed to error and

forwarded to awaiting module:

31

 public class TaskManager{
 public MessageHandler RepeatTask;
 private List<MessageTask> Queue;

 public void Add(Message message) {
 var task = new MessageTask(message);
 task.MessageExpiered += Notify;
 Queue.Add(task);
 }

 ...

 private void Notify(object sender, TaskEventArgs e){
 if (e.Task.Counter > 3){
 var message = e.Task.Message;
 message.Status = "Unreached";

 if (RepeatTask != null) {
 RepeatTask(this, new MessageEventArgs{Message = e.Task.Message});
 Queue.Remove(e.Task);
 e.Task.Dispose();
 }
 e.Task.Counter++;
 }

}

In case when result message arrives successfully a task manager removes message from

queue by task id. Method that requires a result need to be able to handle it.

4.3 Message Instruction

As long as direct method call from server side to agent functional module is impossible

due to dynamic components common interface there is need to compose small textual

commands with parameters – instructions to make possible tasks understanding for mirror

functional module. A set of instructions or script is generated by server functional module when

user makes changes in configuration or gives tasks to agent through the central server using

extension visual part. A script need to be sent from server side functional module to agent side

functional module using system local standard message and be processed on agent side.

Instruction

Method name Parameters

Parameter1 Parameter2

Name value

Figure 20 Instruction semantic structure

Instruction is a string which consist of two parts: called method name and parameters.

The amount of parameters is limited by custom operation signature. Each parameter have a

leading name and its value.

By purpose instructions are divided into task instruction which is sent to receiver with

task message and result which are sent back from receiver. Each operation who is generating a

32

message and awaiting result should recognize the result message addressed to the same

operation. To decode instructions to method call an extension interface have a proxy entry

method.

To have a similar method set all modules of one Extension inherit base interface. Each

module implements operations according to it needs.

Loader

+Init()

<<Interface>>

IOperationSet

+CustomOperation1(Parameter[])
+CustomOperation2(Parameter[])

OperationProcessor

<<Abstract>>

AgentExtension

Loader

+Init()

OperationProcessor

<<Abstract>>

ServerExtension

<<Abstract>>

Extension

<<Interface>>

IOperationSet

+MethodEntry()

+ProcessMessage()

Figure 21 Extension Class Diagram. Common operations set.

In case if extension interface have a few operations it is easy to define methods short

names and parameters set. But in opposite situation, when we have more than dozen of

operations, the management of names can became an issue. A .NET platform have a Reflection

classes11 which allows to use custom attributes on classes, methods and properties.

Using reflection class and custom attribute classes MethodNameAttribute and

MethodParamAttribute is possible to add method and parameters short names at the moment

of definition custom extension:

public abstract class CustomExtension : OperationSet
 {
 [MethodNameAttribute(Name="co1",Description = "Custom Operation1")]
 public abstract string CustomOperation1();

 [MethodNameAttribute(Name = "co2", Description = "Custom operation 2.")]
 [MethodParamAttribute(Name = "p1", Description = "Custom argument1.")]
 [MethodParamAttribute(Name = "p2", Description = "Custom argument2.")]
 public abstract string CustomOperation2(String param1,String param2);
 }

33

 Attributes can be used within custom method implementation for string instruction

creation and parsing. The method GetHelp is used for showing list of available operations and

its descriptions:

public abstract class OperationSet{
 public string GetHelp(){
 string info = String.Empty;

 foreach (var operation in this.GetType().GetMethods()){
 try{
 var method = (MethodNameAttribute)
 operation.GetCustomAttributes(typeof(MethodNameAttribute), true)[0];
 info += method.Name + ": " + method.Description + Environment.NewLine;

 var parammeters = (MethodParamAttribute[])
 operation.GetCustomAttributes(typeof(MethodParamAttribute), true);
 foreach (var param in parammeters)
 info += "\t-" + param.Name + ": " + param.Description +
 Environment.NewLine;
 info += Environment.NewLine;
 }catch(Exception) {
 continue;
 }
 }
 info += Environment.NewLine;
 return info;
 }
}

Figure 22 Help tool output example

 Custom attribute classes:

[AttributeUsage(AttributeTargets.Method)]
 public class MethodNameAttribute : Attribute
 {
 public String Description { get; set; }
 public String Name { get; set; }
 }

 [AttributeUsage(AttributeTargets.Method, AllowMultiple = true)]
 public class MethodParamAttribute : Attribute
 {
 public String Description { get; set; }
 public String Name { get; set; }
 }

34

4.4 Message Addressing

On the way to central server there is no need to determine destination point – it is only

one. But in opposite case, when message is traveling to agent it is important to which one.

When central server receives a task from user or other control part as a parameter is sent a

destination agent name which will be set to message object at the moment of creation.

When message reaches network layer it don’t use Address – the module name. There is

many agents with same modules. A Destination agent name is stored in separate property and

used only at service call back:

 public class OctopusService : IOctopusService{
 private static readonly Dictionary<String, IMessageCallback> Agents =
 new Dictionary<String, IMessageCallback>();

 public static void ForwardMessage(Message message)
 {
 try{
 foreach (var agent in Agents){
 if (agent.Key.Equals(message.Destination)){
 if (agent.Value.State == CommunicationState.Opened)
 agent.Value.Notify(message.InnerMessage);
 }
 }
 }
 ...
 }
 }

4.5 Network Communication

On the way from sender to receiver the message need to be sent over the network in

both ways. To network layer it mean that it must have not only service endpoint to listen client

requests and send responses but a mailing functionality also – when server send request to

clients without client call. A web service which combines those two functionalities is called

Call-back services.

For creation a network layer is used Windows Communication Foundation library from

.NET framework. It also supports call-beck technology. This chapter highlights a network layer

implementation.

In order to make possible communication between newly added modules through the

network the cores need to have:

 Service Endpoint

 Subscription mechanism

 Call-Back mechanism

On Figure 10 is demonstrated prototype network layer classes hierarchy. On a service

there are service interface IOctopusService which is used as a service metadata for clients and

service implementation OctopusServiceClient class. As long as service have duplex

35

communication channel it need to have a call-back communication interface -

IOctopusServiceCallback.

Subscription mechanism is quite simple and consist of three components subscribe,

unsubscribe methods and list of subscribed clients – Agents. In scale of network layer each

client is a saved callback channel.

<<Interface>>

IOctopusService

+Subscribe()

+Unsubscribe()

<<Interface>>

IOctopusServiceCallBack

+Notify(Message)

OctopusService OctopusServiceClient MessageReciever

+ForwardMessage(Message)

+SendMessage(Message)

+InstanceContext +OnMessage()-Agents

 Based on prototype modular application architecture the system cores do not need more

operations than sending messages through the network and forwarding to functional modules.

In network layer the way how message do not depends on roles from communication model it

depends on system component.

 In case when agent want to send a message it makes a simple service call using service

client object:

 public OctopusServiceClient Octopus;
 public void SendToServer(Message message) {
 Octopus.SendMessage(message);
 }
 }

 The request is being processed on a server side. In different case when server sending

message to agent it uses IOctopusServiceCallback interface to send message to call-back

callback:

 public class OctopusService : IoctopusService{
 private static readonly Dictionary<String, IMessageCallback> Agents =
 new Dictionary<String, IMessageCallback>();

 public static void ForwardMessage(Message message){
 foreach (var agent in Agents){
 if (agent.Key.Equals(message.Address))
 if (agent.Value.State == CommunicationState.Opened)
 agent.Value.Notify(message.InnerMessage);
 }

Figure 23 Network Layer Classes Class Diagram

36

Agent call-back channel is registered on mailing subscription operation. At the moment

when agent core receives a message a MessageReciever rises an OnMessage event to forward

message to functional modules.

 public class MessageReceiver : IOctopusServiceCallback
 {
 public event MessageHandler OnMessage;
 public delegate void MessageHandler(object sender, MessageEventArgs e);

 public void Notify(Message message)
 {
 if (OnMessage != null)
 OnMessage(this, new MessageEventArgs { Message = message });
 }
 }

 Agent cannot be detected automatically without additional development. At this stage

of development the only way to find agent if a subscription call to predefined service endpoint.

37

5 Putting all together

In this part the prototype project will be considered a bit closer with module examples

using principles described before. The sample contains two extensions: The Monitoring

extension and configuration. The configuration extension is a sub module of a monitoring.

Which means that all messages meant to configuration module will be going through

monitoring module.

 Thought the layers of modules message is traveling using methods described in chapter

4. In sample case there is 3 levels on each side: the core as a root of hierarchy, it has one child

module Management module which has a sub functional module Configuration module. When

configuration module decides to get ZUXS-PC workstation storage free space it composes an

instruction “diskscan –n:C” and creates a message shown on figure 24. The initial message is

shown on a figure c).

 On the way to core the message is being wrapped on an each layer - at monitoring level

figure b) and at core level part c).Message is transferred to core by rising events.

On figure 24 is shown an xml representation of message unwrapping on an agent levels.

The message a) is an xml arrived from the network. From the filled properties it has only Action

– Forward, Destination – current workstation name, and message b) encoded in base64 format.

To send message to next level the core decodes message to data object and send to child module

using its name as an address.

In this case the Monitoring module is used only as a middle module and don’t do any

additional tasks. The b) message has only filled properties needed to forward message. Inner

message is being transferred to next child module.

And a last part of message – part c) has action set to “Apply”. The module reads

instruction, finds a right method and process it.

<Message>
 <Action>
 Forward
 </Action>
 <Destination>
 Zuxs-PC
 </Destination>
 <EncodedMessage>
 base64
 </EncodedMessage>
</Message>

<Message>
 <Action>
 Forward
 </Action>
 <Address>
 Monitoring
 </Address>
 <Destination>
 Zuxs-PC
 </Destination>
 <InnerMessage>
 ...
 </InnerMessage>
</Message>

<Message>
 <Action>
 Apply
 </Action>
 <Address>
 Configuration
 </Address>
 <Destination>
 Zuxs-PC
 </Destination>
 <Instruction>
 diskscan –n:C
 </Instruction>
 <TaskId>
 e2b1b980
 </TaskId>
</Message>

a) Agent Core level b) Monitoring level c) Configuration level

Figure 24 Message XML Representation on a different module levels

38

According to task semantic structure mentioned in chapter 4.2 it is easy to find a right

method and give parameters. The example of entry method custom implementation

public class Executor : IConfigurationExtension{
 ...
 public string Execute(String instruction)
 {
 var method = instruction.GetMethodName();
 switch (method){
 case "diskscan":
 var name = instruction.GetParamValue("n");
 return AnalyzeStorage(name);
 break;
 case "liststorages":
 return GetStorageList();
 break;
 }
 throw new UnknownOperationException(method);
 }

Two helper methods to parse instruction:

public static class InstructionParser{

...
 public static string GetMethodName(this String instriction){
 return instriction.Split(' ')[0];
 }

 public static string GetParamValue(this String instriction, String paramName)
 {
 foreach (var param in instriction.Split(' ')){
 if (param.Contains(':')){
 var parts = param.Split(':');
 var name = parts[0].Trim('-');
 if (name == paramName)
 return parts[1];
 }
 }

 throw new ParamNotFoundException(paramName);
 }
 }

39

6 Diagnostics

One of the reasons of current application architecture is to avoid errors which appears

while static components is being updated. For this reason a static component must have

minimum functionality to avoid unnecessary updates. The main issue that is need to be concern

is a stability of a system and possibility to diagnose it.

To diagnose a module a man functionality need to check possibility of adding, removing

and updating child modules. The easiest way to implement diagnostic it to use some simple

child module which can be added to whatever component. The diagnostic method is going

through main core tasks checked on each module. Next steps need to be done:

Step 1 – Download dummy module to local drive.

Step 2 – Apply child module to extensions library.

Step 3 – Call test method. The result need to be asserted with predefined value.

Step 4 – Unregister library and delete from drive.

Step 5 – Steps from 1 to 3 is being repeated for next version of dummy module.

Step 6 – Call test Method. If result is different from previous call then update was

successful.

Step 7 – Clean test data.

 Steps listed above is used for core, but possible that custom modules might need some

additional testing. Extension interface has an entry method for custom tests RunTests. Which

is used after module is initialized and added to library and before start of usage:

 [Export(typeof(AgentExtension))]
 public class Loader : AgentExtension{

 public override string RunTests(){
 String errors = String.Empty;
 errors += TestHardRdiveAccess();
 errors += customTest2();
 return errors;
 }

 private string TestHardRdiveAccess(){
 String result = String.Empty;
 try{
 var ds = Directory.GetAccessControl(Location);
 }
 catch (UnauthorizedAccessException e){
 result += e.Message;
 }
 return Result;
 }

 private string customTest2() {
 ...
 }
 }

40

 Tests entry method can be used as an initial check or can be periodically. System critical

component need to be checked periodically for solving errors and prevent crashes. In this case

custom test mechanism is implemented in simple way as a one possible way.

6.1 System stability

For a dynamic system, where all modules are added and deleted dynamically, an

important issue is stability. First step to get a stable application is well tested code. To predict

all errors is almost impossible and that is why errors appears in every code. The second step of

achieving stable system is proper error handling.

There are a few case of system behavior in error occasion. The handled exception can

be solved locally in module or in central server. An unhandled error usually cause an

application crash. If central server is crashed then it need to be recovered automatically or

manually. At time when central server is unavailable agents are working in data accumulative

mode. There might be situations when agent is crashed. A special recovery mechanism is

provided by run environment – Windows.

 Useful windows feature that can be used in

project is services recovery. In case if service

crashes few times in a row it is possible to run a

second application which might be remote access

session for problematic agent.

 Another useful tool for diagnostics is a

detailed logging. A useful data can be collected in

runtime and sent to central server for storage for

later analyze by user. A popular framework used in

.NET platform is NLog12. It is simple in used and

have two features is leveling of logging and good

multiples log files handling system.

 As a result of combining these two tool is

an auto reporting system. A possible crash recovery

scenario:

 First failure: Change logging

configuration to trace level and a separate streaming file. After configurations

were changed start service.

 Second failure: Submit log file to central server. Restart service again on same log

configuration preferences.

 Third failure: Submit fresh logs. And Register workstation in technical support for

a maintenance.

Having two logs files right before crash will be make easier to find an issue.

Figure 25 Service Recovery

41

Conclusion

The goal of this work was to work out a fully component based application architecture

and prove operability of prototype project by solving problems related to architecture. For

example a biggest issue was a communication between dynamic modules, second challenge

related to project requirements was a runtime components updating and etc.

The application type were chooses as an example of applying Component Based

Architecture and didn’t had strict requirements to functionality. Since the project was designed

as a prototype it do not fulfil all requirement to real life project. The reason for this is that only

real life environment can dictate requirements which can be different from project to project,

but it demonstrates well the flexibility of architecture and possibilities.

The central server were hosted on IIS and listened agent client located on another test

machine. They exchanges messages in XML format trough the network and component within

system were able to communicate with each other without having static addressing

environment.

 Agent is possible to find a server with predefined service endpoint or work in offline

mode with data accumulating for sending later. It was also able to download mirror modules

from Central Server and register them without restarting a program. The custom module were

able to receive tasks, process and send a response task to server side. All middle modules were

able to forward messages in both side with choosing right address.

 As an example were chosen CMS system but the architecture can be applied to every

kind of enterprise application. It is not reasonable to use the solution to small program because

of complexity of design – amount of work spent on core development should not be biggest

part in development process. Simpleness and universality from outside means complexness

from inside. The decision of choosing this architecture must be fully motivated by conditions.

For example if:

 The project is a long life. As it was mentioned before the updating of small

component is easier than updating the whole system.

 The all functional requirements to project or system is not predefined.

The worked out architecture design and solutions makes possible of using modular

extensibilities containing system functionality. The approach of software creation can be

applied not only to applications what are working on an OS platform but OS itself can be

designed in this way. As a simple and a bid sci-fi example it could be a cluster of robots

controlled by central server. The OS composition of each node might be constructed according

to machine objectives or even of physical configuration.

42

Resümee

Käesoleva töö põhieesmärk oli välja töötada laienduste haldussüsteemi rakenduse

baasarhitektuur, luua selle põhjal töötav prototüüp ja tõestada selle toimimist. Töös lahendati

mitmeid vaatlusaluse arhitektuuriga seonduvaid probleeme. Üks suurematest probleemidest oli

suhtlemine dünaamiliste moodulite vahel. Teine väljakutse oli seotud töö eesmärkidega, nimelt

püstitati nõue, et laiendusi peaks saama hallata programmi töötamise ajal.

Näidisrakenduse tüübiks valiti hajutatud süsteem, millel ei olnud rangelt defineeritud

funktsionaalsuse nõudeid. Kuna projekti näol oli tegu prototüübiga, ei olnud reaalse

alussüsteemi kasutamine tarvilik. Reaalses ettevõttes loob konkreetne töökeskkond

spetsiifilised nõuded, mis võivad valdkonniti erineda, samas demonstreerib antud töö

käsitletava arhitektuuri paindlikkust ja võimalusi.

Keskserveri tarkvaraks valiti IIS server, mis kuulas klientide päringuid. Klient ja server

suhtlesid omavahel kasutades XML-vormingus sõnumeid. Väljatöötatud aadressisüsteem

võimaldas süsteemikomponentidel omavahel dünaamilises keskkonnas suhelda.

Agent oli võimeline leidma etteantud veebiaadressiga serveri ja töötama

võrguühenduseta režiimis. Viimasel juhul kogus agent andmeid, et need hiljem keskserverile

saata. Juhul kui saabus sõnum, kus aadressiväljal oli kirjeldatud agendi jaoks tundmatut

moodulit, oli see võimeline keskserverilt vastavat infot pärima ja mooduli süsteemi

paigaldama. Serveri moodulid võimaldasid saata ülesandeid kliendile ja klient suutis neid

ülesandeid täita ning vastuse tagasi saata. Alammoodulite süsteem suutis edastada sõnumeid

õigele aadressile.

Näidisprojektiks oli valitud CMS süsteem, kuid loodud arhitektuuri saab rakendada igat

liiki rakendustarkvarale. Väikesemahuliste programmide jaoks ei ole väljatöötatud lahendust

mõistlik kasutada, sest tuuma arenduse ajakulu ei tohiks olla märkimisväärselt suur võrreldes

kogu tarkvara arenduseks kulunud ajaga. Raamistiku väljaspoolne lihtsus ja universaalsus toob

endaga kaasa seespoolse keerukuse. Enne selle arhitektuuri kasutamist tuleb kindel olla et:

• Projekt on pikaajaline. Nagu juba eespool mainitud, süsteemis väikese osa

uuendamine on lihtsam, kui kogu süsteemi ajakohastamine.

• Kõiki projekti või süsteemi funktsionaalseid nõudeid ei ole antud töös kirjeldatud.

Käesolevas töös loodi tarkvaraarhitektuur ja sellel põhinev prototüüplahendus, mis

võimaldasid rakendada olemasolevale arvutussüsteemile modulaarset laiendatavust. Antud

juhul on tarkvaraarendusel võimalik luua rakendustarkvara mingile kasutatavale

operatsioonisüsteemile, kuid samuti võib operatsioonisüsteemi enda vastavalt kavandada.

Siinkohal näeb töö autor oma visioonis veel seni veel sci-fi valdkonda kuuluvat näidet,

kus robotite klastrit juhib keskne server ning operatsioonisüsteemi kooseisu iga lüli on loodud

vastavalt konkreetse masina vajadustele või isegi selle füüsilise konfiguratsiooni järgi.

43

References

1 Windows Server [2015] [WWW] https://technet.microsoft.com/en-

us/library/bb625087.aspx

2 .NET platform [2015] [WWW] http://en.wikipedia.org/wiki/.NET_Framework (25.04.2015)
3 SQL Server [2015] [WWW] https://msdn.microsoft.com/ru-

ru/library/bb545450.aspx(25.04.2015)

4 IIS Web Server [2015] [WWW] http://www.iis.net/learn/get-started/introduction-to-iis/iis-

web-server-overview (25.04.2015)

5 NTFS [2015][WWW] http://blog.sqlauthority.com/2012/07/06/sql-server-ntfs-file-system-

performance-for-sql-server/ (25.04.2015)

6 MEF [2015] [WWW] https://msdn.microsoft.com/en-

us/library/dd460648%28v=vs.110%29.aspx (1.05.2015)

7 Chapter 1. Definition of a Software Component and its Elements. George T. Heineman,

William T. Councill (2001). Component-Based Software Engineering: Putting the Pieces

Together. London: Addison-Wesley Professional. p8.

8 Service layer. Martin Fowler (2002). Patterns of Enterprise Application Architecture.

London: Addison-Wesley Professional. p133.

9 WCF [2015] [WWW] https://msdn.microsoft.com/en-

us/library/ms731082%28v=vs.110%29.aspx (25.04.2015)

10 ISO OSI Communication model [2015][WWW] http://en.wikipedia.org/wiki/OSI_model

(1.05.2015)

11 Reflection Classes [2015][WWW] https://msdn.microsoft.com/en-

us/library/f7ykdhsy%28v=vs.110%29.aspx (1.05.2015)

12 Open Source logger NLog [2015][WWW] http://nlog-project.org/(1.05.2015)

https://technet.microsoft.com/en-us/library/bb625087.aspx
https://technet.microsoft.com/en-us/library/bb625087.aspx
http://en.wikipedia.org/wiki/.NET_Framework
https://msdn.microsoft.com/ru-ru/library/bb545450.aspx(25.04.2015)
https://msdn.microsoft.com/ru-ru/library/bb545450.aspx(25.04.2015)
http://www.iis.net/learn/get-started/introduction-to-iis/iis-web-server-overview
http://www.iis.net/learn/get-started/introduction-to-iis/iis-web-server-overview
http://blog.sqlauthority.com/2012/07/06/sql-server-ntfs-file-system-performance-for-sql-server/
http://blog.sqlauthority.com/2012/07/06/sql-server-ntfs-file-system-performance-for-sql-server/
https://msdn.microsoft.com/en-us/library/dd460648%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/dd460648%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/ms731082%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/ms731082%28v=vs.110%29.aspx
http://en.wikipedia.org/wiki/OSI_model
https://msdn.microsoft.com/en-us/library/f7ykdhsy%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/f7ykdhsy%28v=vs.110%29.aspx
http://nlog-project.org/

