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Abstract

The objective of this dissertation is to perform research in technologies for
health care monitoring. During the last years there have been increased
interest in bringing new health care devices into the market. One option
to speed up the development of experiments and increase the portability
between different devices is to develop devices based on modular architec-
ture. Modularity makes possible to interchange different system compo-
nents independently. It allows to use more sophisticated signal processing
techniques that also requires new types of sensors. This could be achieved
by combining different types of sensors to work together or develop further
one specific sensor to enhance its sensitivity level or range. Recorded signals
that are used to detect the health condition of the patient, need analysis
and interpretation. Inclusion of some external sensors, that give an infor-
mation about the environment, would increase the accuracy of analysis.
Having also information about the status of the sensors would help to esti-
mate the reliability of the monitoring system itself. With this knowledge we
could estimate how long the system is able to provide reliable information
or predict some unexpected issues.

Such application independent solutions must meet the following require-
ments: (1) it must be portable and have simple functionality, expandable
for different research areas, (2) use energy-efficient algorithms designed for
portable devices and (3) provide a real-time analysis of measurement data
and feedback to the patient. To carry out research and perform real ex-
periments in various medical domains a prototype platform was developed
that meets those requirements.

Our focus is on research in sleep quality and arterial pulse wave. To
study and perform sleep quality research on children there is a need for
optical sensory platform. This is a set of optical and inertial sensors to
perform optical pulse wave measurements. An architecture together with
prototype was developed. As this set of sensors needs a special analysis
hardware it is connected to our developed modular platform. Compared
to other similar solutions, our optical sensor allows to enhance optical sig-
nal quality by combining signals from different sources of optical sensors
and assess their quality in real-time. This method helps to extract the
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respiration rate from the pulse wave with increased accuracy.
In order to reduce the required computing power and energy consump-

tion, a new algorithm for respiration rate calculation based on the pulse
wave amplitude modulation was developed. Compared to other methodolo-
gies calculations are done in time domain, which significantly reduces the
required number of mathematical operations, and consequentially requires
less energy making it suitable for portable devices.

One of the most widely accepted techniques to quantify the arterial
stiffness is measuring the pulse wave velocity. Determining the arterial pulse
wave is a time-consuming and precise process. To facilitate this process, a
novel optical sensor matrix was developed. It is connected to our platform
that enables the sensor to activate only those optical elements that have
the best signal-to-noise ratio. The result is enhanced signal quality and
decreased measurement time of pulse wave.

To increase the reliability of measurement data for the analysis, one
method is to add situation specific information. This method requires
measurements from additional sensors that is added as a location and
environment-related information. System architecture and prototype with
real-time analysis functionality was developed. Our proposed solution en-
ables to add this kind of information and use it for further analysis. This
method helps to understand the reason of potential anomaly whether any
parameter is changing rapidly or is missing.

This thesis concentrates on research in technologies for health care mon-
itoring. We present a method to speed up real experiments using different
types of sensors that may require different hardware. To demonstrate the
feasibility of the developed method we have implemented it on our mod-
ular platform. We demonstrated how the architecture combined with dif-
ferent sensorics could be used in two different application areas. Finally,
we performed several experiments to demonstrate the effectiveness of the
developed method.
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Annotatsioon

Käesoleva väitekirja põhieesmärgiks on inimese tervise jälgimise tehnoloo-
giate uurimine erinevates valdkondades. Viimastel aastatel on turule jõud-
nud üha suurenev arv erinevaid tervise jälgimise seadmeid. Üks võimalus
terviseuuringute kiiremaks läbiviimiseks ja erinevate portatiivsete seadmete
omavaheliseks ühilduvuse parandamiseks on arendada seadmed, mis põhi-
nevad modulaarsel arhitektuuril. Modulaarsus võimaldab ümber vahe-
tada süsteemi erinevaid komponente üksteisest sõltumatult. Selle tõttu
on võimalik kasutada keerukamaid signaalitöötlusalgoritme, mis omakorda
nõuavad uut tüüpi sensoreid. See on saavutatav kombineerides omava-
hel koos töötama erinevaid tüüpi sensoreid või arendada edasi olemas-
olevaid sensoreid suurendades nende tundlikkust või mõõteulatust. Salves-
tatud signaalid, mis näitavad uuritava tervislikku seisukorda, vajavad ana-
lüüsi ja tõlgendamist. Lisades väliseid sensoreid, mis annavad lisainfor-
matsiooni keskkonnatingimuste kohta, on võimalik suurendada analüüsi
täpsust. Omades informatsiooni kasutatud sensorite staatuse kohta on
võimalik hinnata monitooringusüsteemi usaldusväärsust. Selle teadmisega
on meil võimalik hinnata, kui kaua süsteem on võimeline andma usal-
dusväärset informatsiooni, või ennetada ootamatuid probleeme.

Sellised aplikatsioonist sõltumatud lahendused peavad vastama järgmis-
tele nõudmistele: (1) see peab olema porditav ja lihtsalt kasutatav ning
laiendatav erinevatele uurimisvaldkondadele, (2) kasutama energiasääst-
likke algoritme, mis on arendatud portatiivsete seadmete jaoks ja (3) pak-
kuma reaalajas andmete analüüsimise võimalust ning tagasisidet patsiendile.
Uuringute ja reaalsete eksperimentide läbiviimiseks erinevates meditsiini-
valdkondades arendati välja prototüüp, mis vastab nendele nõudmistele.

Antud töö fookuseks on unekvaliteedi ja arteriaalse pulsilaine mõõtmise
võimaluste uurimine. Viimaks läbi unekvaliteedi uuringuid lastel on vaja
kasutada optilisel sensoril põhinevat seadet. See on kooslus optilistest ja
inertsiaalsetest sensoritest pulsilaine mõõtmiseks. Arendati välja seadme
arhitektuur ja prototüüp. Kuna selline kombinatsioon sensoritest vajab
analüüsimiseks spetsiaalset riistvara, on see ühendatud meie poolt aren-
datud modulaarse platvormiga. Võrreldes teiste sarnaste lahendustega,
võimaldab välja arendatav sensor suurendada optiliselt mõõdetud signaali
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kvaliteeti, kombineerides signaaliallikaid erinevatelt optilistelt sensoritelt
ning reaalajas nende kvaliteeti hinnates. See metoodika aitab suurendada
täpsust ka hingamissageduse tuvastamisel pulsilainest.

Vähendamaks vajalikku arvutusvõimsust ning energiatarvet arendasime
hingamissageduse tuvastamiseks välja uudse pulsilaine amplituudmodulat-
sioonil põhineva algoritmi. Võrreldes teiste metoodikatega sooritatakse
arvutused ajadomeenis. See vähendab oluliselt vajalike matemaatiliste tehete
hulka ja seetõttu nõuab ka vähem energiat, tehes selle sobivaks portatiivse-
tel seadmetel kasutamiseks.

Üks kõige laialdasemalt kasutatav metoodika arterite vanuse määramiseks
on pulsilaine mõõtmine. Arteriaalse pulsilaine mõõtmine on ajamahukas ja
täpsust nõudev protsess. Selle lihtsustamiseks arendasime välja uudse op-
tilise sensor-maatriksi. See on ühendatud meie platvormiga, mis võimaldab
sensoril aktiveerida ainult neid optilisi elemente, millel on parim signaali-
müra suhe. Selle tulemusena paraneb signaali kvaliteet ja väheneb pulsi-
laine mõõtmiseks kuluv aeg.

Mõõtetulemuste usaldusväärsuse suurendamiseks võib neile lisada situat-
sioonispetsiifilist informatsiooni. See metoodika nõuab mõõtmiste soorita-
mist lisaks ka väliste sensorite poolt, mille tulemused lisatakse asukoha ja
keskkonnaga seotud informatsioonina. Arendati välja süsteemi arhitektuur
ja prototüüp koos reaalajas andmete analüüsimise funktsionaalsusega. Meie
pakutud lahendus võimaldab lisada taolist lisainformatsiooni ja kasutada
seda hilisemal analüüsimisel. See metoodika aitab mõista potentsiaalsete
anomaaliate põhjuseid, kui mõni parameeter muutub järsult või on puudu.

Käesolev väitekiri keskendub inimese tervise jälgimise tehnoloogiate uuri-
misele. Me tutvustasime metoodikat, mis aitab kiirendada reaalseid eksperi-
mente, kasutades erinevaid tüüpi sensoreid, mis võivad vajada erinevat
riistvara. Välja pakutud metoodika teostatavuse demonstreerimiseks aren-
dasime modulaarse platvormi. Me demonstreerisime, kuidas välja pakutud
arhitektuuri, ühendatud erinevate sensoritega, on võimalik kasutada erine-
vates valdkondades. Lõpuks viisime läbi erinevaid eksperimente demonst-
reerimaks arendatud metoodika efektiivsust.
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Introduction

Would it have been possible to track your daily activities 10 years ago?
Probably not, if we don’t count our mobile operators nor our national
security institutions. During last years, tracking everything has became like
a habit. We track how active we are, how do we sleep, how do we perform,
what do we eat, etc. We measure everything because it is interesting and
we get some feedback about our lifestyle. On one hand we don’t have yet
the knowledge what we should do with this enormous amount of data. On
the other hand this data could be valuable for doctors who could make
more accurate diagnosis and start with better treatment.

Even-though we may like to track our everyday life, there are situations
where continuous monitoring could be the only preventive way to avoid se-
rious incidents [13]. There are many diseases where such kind of monitoring
would increase people safety and decrease costs of health-care. Elderly peo-
ple living in remote areas may be assisted with tele-monitoring and remote
consultancy [47]. People suffering dementia, sleep diseases, cardiovascular
problems may need to be monitored for screening and safety purposes. An-
other advantage is that such remote monitoring allows patients to stay at
home and visit the doctor only in case of serious situations or to get the
diagnosis of sickness.

The latest technology trend in health-care is personalized medicine that
has brought us many portable medical devices. The selection of different
monitoring devices covers basically most of the body locations. There are
different technologies to perform measurement of the same physiological
signal. However, easier methods may be cheaper and easier to use but may
perform poorly in real-life situations. Integrating different measurement
technologies and combining them is a way forward to avoid people wor-
rying about choosing the best device for health tracking and still support
wide range of real-life situations with good results. Great interest have got
towards optical sensors as a new non-invasive and energy-efficient way to
develop medical devices. There is a wide range of diseases that could be
monitored and analysed by combining optical sensors with motion analy-
sis and other types of sensors. For example, sleep quality monitoring that
needs unobtrusive and long term screening, especially on babies and chil-
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dren [26] [36].
There are different reasons to perform health monitoring but globally

number one cause of death are cardiovascular diseases. An estimated 17.5
million people died from cardiovascular diseases in 2012, representing 31%
of all global deaths [101]. These are a group of disorders of the heart
and blood vessels that are mostly result of unhealthy diet, lack of physical
activity, tobacco and harmful use of alcohol. The effects of behavioural
risk factors may show up in individuals as raised blood pressure, raised
blood glucose or blood lipids, and overweight and obesity. It may take
from several months to years before first symptoms may appear. Often,
there are no symptoms of the underlying disease of blood vessels. A heart
attack or stroke may be the first warning of underlying disease that brings
people to the doctor for diagnosis. Usual cardiovascular disease diagnosis
may include several tests, for example blood tests, electrocardiogram, stress
testing, echocardiography and cardiac magnetic resonance imaging. Some
cardiovascular problems are related to a process called atherosclerosis when
a substance called plaque builds up in the walls of the arteries. Analysis of
the arteries could predict or avoid problems caused by the atherosclerosis
which is usually done by analyzing the arterial stiffness. It is a rather quick
method where patient have to lie on the bed while his or her pulse wave
is being analyzed during few minutes. Shape of the pulse wave reflects the
status of the arteries.

When it comes to the data interpretation by a patient or medical person-
nel, then it highly depends on the qualification of the person. For example,
wristbands that are mostly meant for activity tracking show steps counter,
pulse rate and burned calories. If those results are collected in controlled
environment then they could be compared with results from other patients.
While doing your everyday activities it is hard to estimate, is this partic-
ular lifestyle healthy or not because there is no information whether those
steps were done during the walking in fresh air or doing your homework.
Estimating the sleep quality can be grouped into the same category that
needs more background information to give relevant diagnosis based on the
results. Including different kind of environmental data, like environment
temperature, humidity, light conditions, noise level, lifestyle details, could
help to interpret the data and to improve the diagnosis. On one hand such
kind of enhanced diagnosis needs more complex measurement environment
and on the other hand (partly) automated data analysis systems that help
to make the first initial estimation about environmental situation. As an
example, to perform sleep quality estimation, it needs a set of sensors that
are attached to a human. If there are some anomalies during the experi-
ments, the cause of those anomalies could be better explained with the help
of additional environmental sensors.
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Motivation
Innovation has always been a driving force for increased efficiency and qual-
ity in health care. During the last 100 years the quality of health care has
improved tremendously allowing us to discover and to treat more diseases.
As technology evolves, health care becomes more accurate, cheaper and
faster. That leads us to the new paradigm, called personalized medicine to
serve people in more efficient way, still ensuring the quality and preventing
consequences. It means that the health care is moving away from the hospi-
tal to the patient’s home bringing us small and wearable remote monitoring
devices. Patients could have immediate access to their own records and be
able to transmit or carry it from one health care provider to another.

During the last years personalized medicine has became more popular
with the help of increased number of portable monitoring devices that are
capable of tracking our vital signals in real-time. It makes easier to keep
an eye on newborns during the night or to be informed about unexpected
health conditions of our elderly parents. Most of such wearable devices
need to be attached to the clothes or body to get readings about our current
health status. As the electronics get smaller, many of such devices will be
embedded into the textile or injected into our body as an implant. That
makes personalized health care as one part of our everyday life without
even thinking about that.

In spite of rapid technology development it can take years until health
care reaches to the technological level when only in rear cases there is a
need to visit doctor personally. New types of wearable devices, sensors
and automated systems show the direction of the future. More and more
new manufacturers appear to bring us new technologies. As a result of
research and innovation health care devices get smaller, more powerful and
smarter. But as there is a large number of manufacturers, there is an
increased need for standardization to decrease the cost for development,
increase usability for the end-user and decrease the time for integration with
existing systems. Current situation is not promising as we have hundreds of
health monitoring devices on the market but most of them can be used only
together with application developed for this particular device. In addition,
there is no possibility to integrate such devices into some common health
care system. Nevertheless, first steps have already been done to increase the
compatibility in communication layer. Bluetooth Smart with Health Device
Profile [93] is one example that allows to send vital data in predefined
format that is understandable for every developer.

The time needed for reliable medical device development is usually sev-
eral years. For example, there are countless number of wrist bands like
smart watches, sleep quality analyzers, fitness trackers. In most of the cases
the development of prototype has started from scratch, especially when it
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was developed by the start-up company. There is a very large number of
prototyping boards available but most of them are large, heavy and need
wired connections with the rest of the system. That makes them unusable
for portable device prototyping as already the first prototype has to be
small with many integrated functions. Having a miniature development kit
would give a huge advantage. Instead of designing and building a complete
system, one has to focus only to some certain parts that may be missing
or need re-design. As the market for different kind of measurement devices
increases rapidly, providing a fully flexible and open-source hardware and
software would make developing portable medical and health-care devices
cheaper, faster and increase compatibility on the lower level.

Problem formulation
There are about 100 million units of wearable devices shipped in each year
with market value more than 10 billion US dollars [96]. As the health care
in last years is moving more towards personalized medicine, it is expected
that many of those wearable devices could be used for remote monitoring
and screening purposes. In medical industry standardization is one of the
most important aspect that every manufacturer has to follow. It covers
everything from design up to delivery and the outcome, among others, is
increased usability. By that we mean easier integration with other systems,
better functional extension possibilities and more understandable user in-
terface for end-user. As the number of wearable device manufacturers is
growing, many of those devices are monitoring particular disease and there
are countless number of places on the body they could be attached to,
the standardization is hardly achievable goal. For each particular disease
there are tens of competitive devices that are able to perform exactly the
same measurement operation. For the end-user large number of devices
makes hard to choose the best suitable option for his or her particular
needs. Such kind of highly competitive market decreases confidence for the
end user. There is no assurance if that particular chosen device is on the
market next year or production has stopped because of high competition
and decreased demand. Another situation would be if customer needs have
slightly been changed then replacing the device with another one that has
some additional features is costly, time consuming and may also need to
redesign some part of the supportive infrastructure to perform measure-
ments. This situation would be improved by developing open standards
to support developing devices with increased modularity that are able to
extend each-other features. Modular devices also help to decrease time to
perform experiments.
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Modular architecture
During the last years there have been increased interest in bringing new
health care devices into the market. Modular architecture would give a
possibility to speed up the development of experiment and increase the
portability between devices. Modularity itself means that the system con-
sists of many parts that are interchangeable. In this case we focus on the
system modules that are used to build a complete system. As an example,
the core of the system is on processing module. Interface between analog
sensors and the rest of the system is on analog front-end. Some external
sensors are located on sensor module. By connecting those boards with
each other we can get working system that has modularity on hardware
level. This means, for example, in case we need to replace the signal pro-
cessing module with the more powerful one, we don’t have to make any
changes in the rest of the system. Or another example. If we are going to
develop a new type of sensors then we would like to use these with exist-
ing systems. Signal processing module can remain the same and we only
switch an analog front-end and sensor module with the new one, achieving
a device with completely new functionality. There are lack of such modular
systems on the market, but the need is there, specially forn the research
and prototyping purposes. By having such modular system would enable us
to perform research experiments with starter kit and increase its function-
ality over the time without changing the core system. That would help to
save experimenting and development costs and focus more to the research
problem.

Another aspect is that any kind of disease needs some kind of diagnosis
from the doctor. For good quality diagnosis, it is required to perform exper-
iments that may include several different measurement devices. Depending
on the type of the disease, there are several physiological signals that are
measured during the experiments. The main purpose of experiments is to
collect good quality data that is used to give a diagnosis. Usually it re-
quires to have many different devices but by using devices with modular
architecture would reduce the number of those devices dramatically. That
makes diagnosis faster, more reliable and reduce the cost for health-care.

Non-invasive sensorics
The current trend in health care sensorics is to make as little harm and dis-
comfort to the patient as possible. Non-invasive electro-chemical, electrical
and optical sensors have won popularity in most of the health care sectors.
One of the leaders in non-invasive optical measurement is pulse oximetry.
It is harmless, relatively low power and does not need sophisticated signal
processing to get reliable results.
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The advantage of modular architecture for medical sensorics over the
conventional wearable devices is the possibility to add a new functionality
to the system with lower costs. Modular architecture makes possible to
use more sophisticated signal processing that also requires new type of
sensors. This could be achieved by combining different types of sensors
to work together or develop new specific sensor to enhance its sensitivity
level or range. As new sensors get smaller in dimensions integrating more
sensors does not cost much extra space. Physiological signal measurement
is complicated process that brings in addition to useful signal also different
kind of noises and measurement results could be affected by many related
in-body processes. Suppressing the noise level and enhancing measurement
range would increase the accuracy of processed signal and different features
extracted from that signal.

One application area that takes the advantage from increased sensitivity
and new types of sensors is a pulse wave registration from arteries. This
technique requires to exclude the influence of the peripheral blood vessels
(arteroiles, capillares) that have many challenges [28]. The development of
new types of sensors would give physicians new methodologies and faster
ways to analyse the health condition of the patient. If the communication
interface of new sensors were compatible with the existing ones, it would
need minimal effort to increase the device sensitivity and functionality. This
kind of approach would decrease the overall infrastructure and training
costs of the health-care sector that already takes a huge amount of the
budget.

Data processing and system awareness
As the number of available portable devices is increasing and there are new
types of sensors, there is a continuous development how to make recorded
signals more robust, reliable and accurate. Although new types of proces-
sors, specially designed for portable devices, become more powerful, there
is always a trade-off between the battery life, amount of data processing
and communication. The number of sensors connected to one monitoring
device is increasing. Having many similar sensors near-by could make it
possible to add some level of cooperation to balance the load for data pro-
cessing. For example, if there are similar devices nearby that are capable of
measuring the same signals but using different type of sensor. Depending
on the capabilities and needs it can be decided which sensor is used for data
recordings. There are many parameters like amount of power required for
recordings, battery status, required device lifetime or the speed of wireless
link. Depending on the need it would be even possible to decide which
signal processing algorithm to use. Either the one that provides real-time
analysis with decreased accuracy or get the best possible signal quality for
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medical diagnosis.
All recorded signals that are used to detect the health condition of the

patient, need analyzis and interpretation. Most wearable devices have only
limited number of sensors integrated. Including also some external sensors
that give an information about the environment, would increase the accu-
racy of analysis. Having also information about the status of used sensors
would help to estimate the reliability of the monitoring system itself. With-
out this knowledge we could not be able to estimate how long the system
is able to provide reliable information or predict some unexpected issues.
This kind of awareness gives the system some level of autonomy to make
decisions up to some level of confidence. There is a lack of such available
systems because of the complexity.

Contributions
The main contributions of this thesis are the following:

• A new approach for system level design that extends the possibili-
ties to use the same hardware for the development of different health
monitoring and screening devices. Proposed architecture enables to
extend the functionality of the system and replace some of its func-
tionality without complete redesign of the system. Together with the
hardware a system firmware is built to support the same modularity.

• A method to increase the quality of the optical signal. To validate
the method, a dual optical sensor for infant sleep quality monitoring
was developed. The purpose is to increase the signal quality by con-
tinuously analyzing signal to noise ratio of the acquired signal from
different optical elements. If there is an efficiency decrease below pre-
defined level, a signal from another optical element is used for further
analysis.

• A smart optical photoplethysmographic sensor for automatic pulse
wave registration. In order to record a pulse wave from the artery, the
position of the artery has to be estimated. Developed sensor detects
the position of the artery and enables only those optical elements that
produce the best signal to noise ratio.

• A new efficient low-power algorithm to extract the respiration rate
from the PPG signal. Developed algorithm is a power efficient al-
ternative for using in wearable systems that has limited processing
power and where sophisticated signal processing algorithms are not
possible. It is based on detecting the amplitude changes in the PPG
signal to estimate the respiration rate.

• The model of adaptive and situation aware self-aware health moni-
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toring system to collect the data from different medical and environ-
mental sensor and to make decisions. As the proposed system enables
different functionalities and type of sensors that all could measure
different parameters, there is a need for the system that receives all
measured and pre-analysed signals and make decisions based on the
situation. Decision mechanisms could help to decide in which sit-
uations and when to send critical information about the patient to
the caregiver or parent. As a next step, architecture for the real-time
system was designed and developed although not yet published. Still,
initial results with real-time systems are promising.

Thesis organization
This thesis consists of 5 chapters and 5 appendices.

Chapter 1 gives an overview about the modular architecture of the
portable health monitoring system. Background information gives on one
hand an overview how this architectural solution could increase the system
level compatibility. System prerequisites are defined and based on the pre-
requisites proposed solution of the modular system is described. System
functionality and its extension possibilities in hardware and software level
are discussed.

Chapter 2 starts with an overview of photoplethysmography and in
which areas of health care it is used. Also the challenges of optical measure-
ments are discussed. As one example an architecture of optical foot sensor
for sleep research and sleep quality analysis is proposed. The focus is on
newborns and children as the foot sensor could be one of the most com-
fortable ways to perform long term monitoring. In the second part of the
chapter an architecture of smart photoplethysmographic sensor for pulse
wave registration from arteries is proposed. As this solution is designed for
adults it is one example using the same modular platform for different age
groups and diseases.

Chapter 3 focuses on low complexity algorithm development for sleep
quality estimation. Also background information to give an overview about
sleep and sleep diseases is provided. As one of the most important compo-
nents in sleep monitoring is respiration signal, a low power algorithm for
respiration signal extraction from pulse wave is proposed. Also experiments
together with similar methods are discussed.

Chapter 4 starts with the definition of fog and mist computing, and situ-
ation awareness for health monitoring. The architecture of self-aware health
monitoring system is proposed. The initial architectural description starts
with the off-line system and continues with the real-time system. Initial
experiments were also discussed to show the feasibility of such systems.
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Chapter 5 concludes the thesis and discusses possible directions for fu-
ture research.

The appendices 1 to 5 present research papers that form the basis of
this thesis.
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Chapter 1

MODULAR ARCHITECTURE FOR
PRE-SCREENING

The current trend in health care technologies is connected and personal-
ized medicine. The future of medical device industry is to assist people in
achieving healthier lifestyle, allow quick and remote diagnosis of possible
disease without leaving the everyday environment. Most of health mon-
itoring devices are developed for special purpose and do not provide any
modularity to extend its functionality.

In this chapter we propose a design for a reliable modular system that
supports research in various medical domains. The proposed modular sys-
tem is the basis to provide measurement abilities for different diseases and
for different patient groups. Those systems are mostly portable with lim-
ited processing power and energy capabilities. Combining recordings with
other types of sensors, for example environment information, and exchang-
ing information between those sensors leads us to a self aware health system
that has capability to perform some level of autonomous decisions. Main
results of this chapter have been reported in [55] and [56].

1.1 Background
Health care together with automotive, nuclear and aerospace belong to
highly regulated industries. The health care sector can be divided into two
main groups - health care equipment and services, and pharmaceuticals and
biotechnology. Medical devices with their software belong to the health care
equipment and services group. The 20th century was the time when the
pace of medical advances quickened on all fronts [43]. New understanding
of diseases brought new treatments and cures for many of these conditions.
Together with other areas there were also breakthroughs in technology that
brought us first medical devices. For example, the first pacemaker implant
was installed in 1958. The first pacemaker failure occurred in 1972 that

27



highlighted urgent need for regulations applicable to medical devices. In
1976, the legislature passed medical device amendments to ensure safety
and effectiveness of medical devices [46]. Medical devices are grouped into
different categories based on their design complexity, use characteristics
and potential of harm if misused.

Moving further from traditional to personal medicine, the biggest value
would come from saving doctor’s time by serving more patients and giving
correct diagnosis with minimum amount of time. One option is to apply
personalized medicine together with remote doctor visits and monitoring.
As the technology evolves, there are many medical devices that could be
brought out from the clinical environment to use for pre-screening pur-
poses with remote connectivity. For long-term monitoring a wireless blood
pressure monitor [41] together with wireless pulse oximeter [42] and wire-
less scale [100] could improve the general overview about patient’s health
condition. In some cases an Electrocardiography (ECG) monitoring with
wireless ECG system from LifeSync could be used in hospital and out-
patient settings [60]. The number of such wireless devices is increasing
rapidly. Combining different similar devices could provide an early detec-
tion of possible diseases without the need to visit a doctor after a first sign
of abnormal health condition.

During the forecast period of 2015-2020, the diagnostic and and thera-
peutic market is projected to grow remarkably at 21.3% to generate rev-
enue of 41.3 bn US dollars by 2020 [81]. The diagnostic devices market
is propelled by Polysomnography (PSG) devices, particularly clinical PSG
devices. The usage of Ambulatory PSG devices is expected to increase in
the next few years due to patient preference to be tested at home for con-
venience reasons, patient’s inclination to skip the unfamiliar environment
of sleep labs, and cost-effectiveness of these devices. The global demand
for screening devices such as respiratory polygraphs, two channel screening
devices, single channel screening devices, and actigraphy systems is also
on the rise due to their low costs. These devices serve as cost-effective
and convenient options, as compared to PSG devices, especially for the
low-economic class patient pool.

Even more development is happening on the screening device market.
Stardust II Sleep Recorder device is capable of measuring respiratory air-
flow, pulse, Capillary Oxygen Saturation (SpO2), chest effort and body
position without wireless transmission [77]. Its main purpose is to diagnose
Obstructive Sleep Apnea (OSA). Luna bed cover helps to track the sleep
quality by tracking sleep phases, heart rate and breathing rate [64]. There
are also sleep mats available which are measuring breathing and waking
movements and mats which are put 8-11 cm below foam or sprung mat-
tresses.

As babies and children are one of the main target groups, there are
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several real-time systems on the market for infant monitoring. Most of
them have the functionality to measure heart rate, body temperature and
motions [87] [86]. Some of them have additional body sensor which is
attached to the baby’s lower abdomen with micro-pore tape. Some of these
are built for infants which use UWB technology [106] or have a possibility
to have respiration and humidity level information [62]. Placing a sensor
on the feet is considered one of the most comfortable places for infants. It
allows a quick replacement of the sensor and has a reliable signal quality
[86].

As the most care is needed for babies and elderly people, they are the
biggest target groups who may need continuous care and help. One aspect
of this care is to perform different kind of health care analyses for better
diagnosis. One possible solution for this is depicted on Figure 1.1 that
describes the architecture of health monitoring solution. As it varies highly
which kind of disease is being diagnosed, it may require some environmental
sensors or monitoring device with minor changes in the functionality. By
collecting measurements during longer period of time it is possible to detect
also an abnormal behavior from everyday patterns. It helps to detect and
predict severe health condition changes before they appear as a result of
wrong life-style.

Technology development in recent years have made possible to perform
such monitoring sessions in addition to hospitals also at home or even while
continuing with your daily routines. As some type of monitoring activities
may last several days continuously the system should have some level of
autonomy to send results in automated way to the caregiver or family
members as shown on Figure 1.1. The patient may not even be aware of
continuous monitoring and data transmission process. In this way it is
possible to increase the health care system efficiency.

That leads us to the main topics of this thesis. All mentioned measure-
ment types are connected to each other to fulfill one of the main objectives
of this thesis - design a reliable modular system to perform better diagno-
sis for different age groups. By that we mean that the proposed modular
system is the basis to provide measurement abilities for different diseases
and for different patient groups. Those systems are mostly portable with
limited processing power and energy capabilities. Combining recordings
with other types of sensors, for example environment information, and ex-
changing information between those sensors leads us to a self aware health
system that has capability to perform some level of autonomous decisions.
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Figure 1.1: Health care solution description

1.2 Hardware
The goal of this chapter is to provide an overview about the developed
modular architecture for health monitoring for different age groups and
diseases. Developed prototype is used thorough the thesis to perform dif-
ferent type of measurements. Depending on the age and diseases, they all
require different functionalities of the monitoring device. For example, in-
fant monitoring devices need to be lightweight and have small dimensions.
Elderly people monitoring may need another type of sensors and in some
cases also an alarm button or automatic alarm system. There are also many
diseases that may need only short time monitoring. For short term moni-
toring it is not important to have a long battery life or real-time connection.
The most critical part is to have a good quality sensor to perform measure-
ments fast and easily. All those situations introduce new requirements to
the monitoring device.
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1.2.1 System Prerequisites
According to the Food and Drug Administration (FDA) a device is a med-
ical device when it is intended to use in the diagnosis of disease or other
conditions, or in the cure, mitigation, treatment, or prevention of disease,
in man or other animals, or intended to affect the structure or any func-
tion of the body of man or other animals, and which does not achieve its
primary intended purposes through chemical action within or on the body
of man or other animals and which is not dependent upon being metab-
olized for the achievement of any of its primary intended purposes ([23]).
By that it means that all health-care devices have to meet specific regu-
latory requirements. For clinical trials the monitoring device should meet
the several clinical and technical requirements. Technical requirements are
chosen based on the normal monitoring process so that it does not need
much additional effort to perform the measurement. They are divided into
several sections, starting from the most important ones.

Modularity

To cope with the requirements started earlier, system architecture must be
modular. For extended modularity the system should be divided into mod-
ular groups where each group represents one particular task. There should
be one group to perform power management and processing. Another group
should perform an analog to digital conversion to support different kind of
sensors. The third group is a sensor that is connected directly to the analog
module. All these modular groups should be interchangeable and compat-
ible with each other whichever module is currently connected. It needs to
have a pre-defined physical communication standard and communication
protocol between those boards. As it should be possible to connect either
optical sensor, electrodes or sensor that has its own processor included, the
interface between the analog front-end and sensor should include digital,
analog and supply connectors.

Small Dimensions

The system should be usable for monitoring all age groups - from infants
up to elderly people. Even when the system is being used for adults the
suitable dimensions for babies should be taken into account. Based on the
studies, one of the most comfortable place for long-term monitoring on
infants is the foot [86]. This method is widely used also in hospitals where
all infants have their pulse oximeters attached to the foot. Based on our
measurements and research, the length of the infant foot is ca 8 cm and
the width starts from 3.5 cm. In case the monitoring device is placed on
top or under the foot, dimensions may not exceed those given values. The
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height of the system is not so critical and depends highly on the height of
the components, battery and thickness of the cover.

Processing Power

Processing unit should be reasonably chosen taking into account the signal
type, sampling rate and what kind of data processing algorithms will be
executed on that unit. Based on our needs, we are working mostly with
optical signals, motion and temperature data. As the analog front-end takes
care of receiving an analog signal from sensor and converting it into discrete
signal, it loads off some required processing power from the Microcontroller
Unit (MCU). As the chosen analog front-end supports sampling rate up to
5 kHz with 24-bit signal in parallel from two channels, MCU should be able
to handle this amount of real-time processing.

To filter out noise or unneeded parts of the signal, chosen MCU unit
should be capable of signal pre-processing. For example, to create an Finite
Impulse Response filter (FIR) filter, an hardware multiplication should be
used that is available for example in Texas Instruments MSP430 micro-
controllers. To support up to 5 kHz sampling rate with 24-bit signals in
parallel from two channels, there is a need for at least 512 byte of Random
Access Memory (RAM) for each channel to store the signal into circular
buffer. One should also take into account that one channel gives out four
signals in parallel.

In some cases there is be a need to apply Fast Fourier Transform (FFT)
calculations to determine a dominant frequency. No floating point precision
is needed and sampling rate is up to 250 Hz. An average MSP430 at 25 MHz
could handle it. For example 256 point FFT would take 4.7 ms according
to performance tests [20]. If more computational power is needed, DSP or
ARM based micro-controllers should be used. In our modular system it
requires to replace signal processing module with more powerful one.

Power Consumption

Power consumption of the whole system depends highly on the used MCU,
analog front-end, number of attached optical sensors, amount of signal
processing and frequency of wireless communication. For long term moni-
toring, the system should have an autonomous power at least one full day.
For example, the average time infants sleeps per day is ca 18 hours. With
some reserved capacity, we could say that at least 24 hours of autonomous
power without charging would be required.
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1.2.2 System Architecture
To perform monitoring of different diseases on wide range of ages, we have
defined system prerequisites that has to be fulfilled with our proposed sys-
tem architecture. Figure 1.2 describes the proposed hardware design. The
hardware architecture is divided into three parts - digital board, analog
front-end and sensors. Analog front-end takes care of driving of the optical
sensors. In the analog front-end Digital-Analog Converter (DAC) controls
the intensity and timing of each LED as they need to be switched on and
off with the sampling rate of 1kHz. LED driver amplifies the current that
is needed to illuminate the LED. Photo-detector receives the light that is
not absorbed and current changes are converted into the voltage changes
with the trans-impedance amplifier. Acquired signal is filtered with several
filters to eliminate high frequency noise and 50/60 Hz line interference and
converted into digital form. Taking into account that prototype should
consist as less similar hardware on different hardware modules because of
the limited size and weight, most of these filters have to be applied in the
software. 22-bit Sigma-delta analogue-digital converter (ADC) converts
analogue value into digital form. The benefit of using sigma-delta ADC is
higher stability and higher resolution at low cost.

Figure 1.2: Functional block diagram of the proposed modular system [55]

The current version of the proposed system has dimensions 33.4 x 27.4
mm. These dimensions are dictated by the used 400 mAh Li-ion battery to
power the system. It is required that all other boards should have smaller
dimensions. Developed dual analogue front-end has dimensions 29 x 19.5
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mm. With these dimensions the system is suitable for using from newborns
up to adults.

Power management is managed by the charging system. Estimated bat-
tery lifetime is around 48 hours of continuous monitoring which covers 2-3
full sleep cycles of newborn. Device is recharged over the USB connec-
tion. Li-ion battery charging takes around 2 hours until fully charged. It
is approximately the same time a newborn stays awake between the sleep
cycles.

Signal processing board takes care of the data processing and temporary
data storage. In addition to that it has power management components to
power up a whole system and provide communication with external sys-
tems. There is also a wireless module for wireless communication. This set
of components makes possible to change the processing unit of the system
with another one in case there is a need for more processing power, more
efficient processing unit, larger on-board memory or another type of wire-
less communication. Wireless communication is hidden into higher software
abstraction layer to make it independent from the rest of the system com-
ponents. As there are certain Application Programming Interface (API)
commands used for inter-system communication, it does not affect other
parts of the system if processing unit is replaced with another type of unit.

Signal processing board, that is the system core, consists of processing
unit and storage. MCU is chosen based on the required computational
power in order to perform filtering and features extraction with compres-
sion. Processed data is stored on FLASH/uSD card in case wireless con-
nection is not available.

Radio module connects over Bluetooth Low Energy (BLE) protocol.
Compared to the Bluetooth, it provides less throughput but smaller latency
and better power handling that makes it perfect solution for the wireless
portable devices.

The type of supported sensors is highly dependent on the type of ana-
logue front-end used. It is not limited which kind of sensors can be driven.
We have implemented two types of sensors. One type is a dual optical sen-
sor for infants that includes opto-pairs, temperature and humidity sensor.
Another is an optical sensor array that includes on-board processing unit
and drivers to drive optical sensors. Detailed description of these sensors
can be found in Chapter 2.2.

Current configuration of proposed modular system, depicted in Figure
1.3, is composed of:

1. Flexible board with optical and temperature sensors.
2. Analog board which provides an analog to digital conversion of optical

signals.
3. Processing board which provides processing features for the monitor-
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ing system and wireless transmission.

Figure 1.3: Proposed modular monitoring system [56]

Flexible board with optical sensors is attached as an example how similar
sensors could be attached. There is also flexible connector between the
digital processing and analogue board.

1.2.3 Signal Processing Board
The purpose of the signal processing board is to handle communication
between all system components and to provide high level interface for the
end user for system management. The choice of hardware was done based
on the previously specified requirements. Figure 1.4 depicts the archi-
tecture of processing board and communication interfaces in between each
component.

Red color marks power related components. Micro-USB connector is
used for battery charging and data transfer. Battery charger BQ24072 from
Texas Instruments (TI) chosen to support Li-Ion and Li-Polymer batteries
and configured to support up to 500 mA charging current from the USB
port. All components on the processing board get their power through
Low-Dropout Linear Voltage Regulator (LDO) TPS73633 from TI. It can
power up to 400mA system load with the system operating voltage of 3.3V
with low noise level 30 µVrms.

For analog board, a separate LDO TPS7A4901 from TI in order to
achieve very low noise level 16 µVRMS . Separate power unit for analog
board helps to decrease the overall noise level that the digital board may
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Figure 1.4: Block-level description of digital processing board

generate. All power related component have built in reverse current, short-
circuit and thermal protection functionality that shuts down the system in
case of accidents and malfunction.

Accelerometer

As the purpose of the system is to be a miniature and portable monitoring
device, there is a need for activity and movement detection to notify the
user about events or give to the system additional autonomy. It was decided
to add on-board accelerometer that has low power requirements and has
digital output to decrease the overall power consumption. At the time of
the system design, the smallest size accelerometer with very low power
requirements was provided by Bosch Sensortec. BMA280 has 2x2 mm
package size, and large number of interrupts that can be used for automatic
system sleep and wake-up.

Micro-Controller Unit

A MCU is the main processing unit for the whole system. As it is used
in portable device that is designed to perform also long-term monitoring
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sessions, MCU has to meet to the following requirements:

• 16-bit or 32-bit architecture
• Enough RAM to perform analysis of four 32-bit signals simultane-

ously
• Low power consumption in low power mode
• small footprint to minimize system physical dimensions

There are large number of MCUs available from different manufacturers.
Some of them are designed for low-power applications, others for signal
processing. At the time of designing, the author was the most familiar
with devices from Texas Instruments and especially in low-power micro-
controllers. Therefore the MCU with the highest speed and largest flash
and RAM, that still has low-power capabilities, was chosen. MSP430F5528
has 128 KB of flash and 8KB of RAM. The example of flash and RAM
allocation is described in [56]. Depending on the type of analogue front-
end and sensors, there may be a need for more RAM or faster processor. For
the first prototyping and proof of concept design, chosen micro-controller
has fulfilled all the needs.

If there is a shortage of RAM for pre-processed signal, there are also two
on-board Ferroelectric Random Access Memory (FRAM) memory modules
FM24V10 [14]. Altogether they can store up to 256 kB of temporary data.
Compared to FLASH-based memory, FRAM type memory provides ultra-
fast, up to 100 times faster data throughput, and consumes 3 times less
power.

1.2.4 Analog Front-End
The type of analogue front-end (AFE) depends on the application. Current
application is designed for optical pulse wave detection. Texas Instruments
has developed a special purpose AFE for optical photoplethysmographic
sensors that includes built-in ADC, operational amplifier, trans-impedance
amplifier and digital configuration possibilities. Chosen AFE4490 compo-
nent has 22-bit resolution and sample rate up to 5 kilo-samples per second.
High integration density into single chip decreases the noise to very low
level. All sampling timings are fully configurable digitally through the set
of registers. There is also a built-in sleep mode that decreases the power
consumption of the chip to the marginal level. For better usability there
is also an integrated optical test procedure to detect all short-circuits and
open connections on the optical sensor.

Analogue front-end connects directly to the processing board. As there
could be any kind of modifications on the analog board, there are SPI and
I2C communication possibilities in parallel to support the most common
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connection interfaces. In addition, analogue front-end has ability to use
several GPIO pins from the processing unit as depicted in Figure 1.5.

Figure 1.5: Electrical connections between processing unit and analogue
front-end

The maximum speed of SPI and I2C lines depend on the used process-
ing unit. The current version of the analog front-end board includes two
identical analogue front-end units in one board to increase the reliability of
optical signal.

Figure 1.6 depicts one possible communication solution between the AFE
and sensor. In this case, the sensor is an optical sensor that may have addi-
tional on-board MCU and additional sensors for temperature and humidity
measurements.

Figure 1.6: Electrical connections between analogue front-end and sensor

For data communication between the AFE and sensor, I2C up to 400 kHz
can be used. The advantage over SPI is less amount of wires and possibility
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to connect multiple sensor to the same signal line. On the other hand, the
drawback is slower communication speed that may not be suitable for very
high speed data transfer or strict timing requirements.

1.3 Software
In this section software architecture is described. The system management
commands and communication interfaces are presented. It is also described
how system wide functionality tests were performed.

1.3.1 Software Architecture
System software is written in embedded C. To meet the low power require-
ments, the system stays always in low power mode unless there is something
to process. In case of internal or external interrupt from USB, sensors or
internal clock, the system wakes up and continues from the place where it
stopped and goes back to sleep.

Data processing is solved by using flags. To start or stop continuous
task processing, it is needed to send a command to the system that enables
or disable that particular flag. If the flag is enabled, system is working
autonomously until next command is received that disables the flag. It
is possible to enable different types of tasks simultaneously. For example,
sending continuous temperature, acceleration data and perform pulse wave
analysis do not disturb each other and each one of them can be indepen-
dently enabled or disabled.

1.3.2 Command Processing Flow
There is a certain packet structure how the system is communicating with
external systems and user interface. Through the USB interface it is possi-
ble to control the whole system functionality. Developed packet structure
is flexible and supports new devices and data types without modifying the
existing structure. Table 1.1 describes the packet structure.

Table 1.1: Packet structure
Abbrev. Description Length
HDR Packet header 1 byte
DEV Device type 1 byte
CMD Command 1 byte
FUNC Function 1 byte
DATA Data value 0..59 bytes
FOOT Packet footer 1 byte
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To recognize the command, each packet has to start with a header and
to end with a footer. All packet structure elements, except DATA have
length of 1 byte. The second byte defines device type that can be on-board
sensor, module or external sensor or board that is connected to the digital
processing board or AFE. Defining a device makes it easy to talk only to
a specific device. Command field defines what kind of communication is
expected from that specific device. It could be configuration, measurement,
diagnostic or some other type. Function defines what kind of data that
device should give us or is previously configured to perform. Data is a real
value that is sent to the device or from the device. In some specific cases
we may skip sending data value if there is no need to send any value. Data
value can be up to 59 bytes as the whole packet can be up to 64 bytes which
is also the limit of USB buffer of the used micro-controller.

Device type definition makes it easier to configure or get data from a
specific device. However it is possible to get measurements simultaneously
from more than one device. Table 1.2 lists device types that are currently
supported.

Table 1.2: Device types
Device ID Definition Description
0x01 DEV_MCU MCU on the main board
0x02 DEV_ACCEL On-board accelerometer
0x04 DEV_AFE1 Optical analogue front-end 1
0x05 DEV_AFE2 Optical analogue front-end 2
0x06 DEV_TEP Ext. temperature sensor
0x07 DEV_MCU2 MCU on the smart optical sensor
0x08 DEV_BLE On-board bluetooth smart

There is also a list of supported commands in Table 1.3 that are used for
system management. The first one CMD_NO_COMMAND means that if
there is some data sent to of from the device, it should not be processed as
a command.

The rest of the commands are actual commands to configure the system.
The last one CMD_FW_UPGRADE makes possible to perform automatic
system firmware upgrade without a need for specific programmer. System
image file has to be pre-compiled and loaded into the device that is done
automatically after initiating firmware upgrade.

1.3.3 Wireless Communication
If health monitoring is performed over long period of time and there is a
need for real-time feedback about possible threats, it is required to have a
wireless communication between the monitoring device and control device.
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Table 1.3: Command list
Command ID Definition Description
0x00 CMD_NO_COMMAND No command
0x01 CMD_START Start reading data
0x02 CMD_STOP Stop reading data
0x03 CMD_DIAGNOSTIC Perform system diagnostic
0x04 CMD_R_CONF Read register
0x05 CMD_W_CONF Write register
0x06 CMD_READ_DEV_ID Send device ID
0x07 CMD_CONF_LED Configure LEDs
0x08 CMD_CONF_PD Configure photodiode
0x09 CMD_POWER Configure power settings
0x0A CMD_FW_UPGRADE Firmware upgrade

Wireless interface gives patient more freedom him or herself and reduces
the complexity of handling wires. As smart-phones have became very re-
liable and comfortable devices, also for health and lifestyle tracking, they
are usually the best option for control devices. Almost all smart-phones
have built in Bluetooth, Bluetooth Low Energy (BLE) and WIFI connectiv-
ity. Among those Bluetooth Low Energy, also called as Bluetooth Smart,
has the lowest power consumption and is well suitable for personal area
networks like health and activity monitoring.

Bluetooth Smart is an interface to communicate with the device over
radio node using BLE communication protocol. Its throughput is limited
to around 60 kbps in case of unacknowledged packets. In a typical environ-
ment the fastest reliable throughput with acknowledged packets, according
to Bluegiga Technologies tests, is 8-10 kbps [7].

Transmitting raw Photoplethysmography (PPG) signal with sampling
rate of 250 Hz and 22-bit of data, we need throughput of 5,9 kbps. 14-bit
digital accelerator with the sampling rate of 100 Hz needs 1,6 kbps. In total
there is a need for throughput of up to 7,5 kbps.

Current version of Bluetooth Smart is based on Bluetooth version 4.1.
As it has limited data throughput and in case of higher sampling rate it may
become a limiting factor, we use Bluetooth Smart module only for sending
processed data and receiving commands to manage the device. Bluetooth
Smart 4.2 has almost triple times higher throughput that increases further
possibilities for sending raw data. First chips that support the new version,
will be available during year 2016.

Bluetooth Smart communication is based on Generic Attribute (GATT)
profiles. Services that are advertised under each according profile by our
proposed monitoring system are listed in the Table 1.4.

First column describes name of the service. Second column defines
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Table 1.4: Bluetooth Smart profiles [56]
Service name Service Update Value

type interval descriptor
Device Information global N/A uint16
Health Thermometer global 1 Hz uint16
Heart Rate global 1 Hz uint8/uint16
Respiration Rate local 1 Hz uint8
Blood Oxygen Level local 1 Hz uint8
Body Position local 1 Hz uint8
Activity local 1 Hz uint8
Alert Status local 1 Hz uint8

whether the service is globally defined by the Bluetooth Smart specification
or defined by us. The biggest difference between the global and local service
is that global services are defined by specifications and with known Univer-
sally Unique Identifiers (UUID) but local services can be defined according
to specific need and with own-generated 128-bit UUID. Supporting globally
defined services adds better integration with Bluetooth Health Device Pro-
file [8]. Third column defines the frequency of each service update interval.
If particular service does not support notification based automatic update
it is marked with N/A. Last column defines number format of the service
descriptor value. Type ”uint” means unsigned integer and number after
uint is the number of bits that represents the length of data. Heart Rate
service supports two type of lengths depending the value that is currently
transmitted. Because of the limited throughput and depending on the sam-
pling rate, there is currently no support for raw data transfer. However, for
development purposes, this data is still accessible over the Universal Serial
Bus (USB) interface.

1.3.4 System functionality tests
System functionality can be verified with functionality tests. In this chapter
we describe which hardware was developed for testing and which functions
are covered with tests.

Hardware

To perform hardware and software debugging a special testbed was de-
veloped. To program the system a processing board is fastened between
the middle and bottom board as depicted in Figure 1.7. Top board has
connectors for MCU and BLE module programmer.

Power and all programming signals are connected through the pogo-pins
to the test-board. It is possible to connect an AFE module and USB cable
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Figure 1.7: Testbed for debugging

while test-board is fastened to the test-bed.

Software

As the whole system consists of many components, there is a need for
system wide tests to ensure the reliability. It is possible to ask for system
revision information, get battery level, charging information and perform
full system diagnostic. The system diagnostic command gives an output of
all components. Figure 1.8 describes the system test functionalities. Upper
part of the figure up to the Bluetooth Smart shows the check for system core
functionalities. Middle part shows whether the AFE is functional. Below
part of the figure shows the results how the currently connected sensor is
working and are there any short-circuits or disconnections.

System test starts with visual Light-Emitting Diode (LED) blinking
where all three LEDs blink once. Battery level information is given in hex
format as a value in millivolts and the percentage. All tests output either
a PASS for successful test or FAIL for failed test. All system tests will take
few hundred milliseconds to complete.

1.4 Experimental results
Results can be categorized into two different groups. First group describes,
how good is the user experience in terms of usability and reliability for
all age groups. Second groups describes, how the hardware dimensioning
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Figure 1.8: System functionality diagnostic

meets the real world needs. All experiments were performed with connected
optical sensor that is introduced in the next chapter.

Initial results with optical foot sensor cover tests with infants from 3
months up to children 6 years old, and adults. Results were promising as
the dimension and weight of the device was appropriate and did not disturb
normal movements of the foot. There were no problems during the sleep,
however it was not an easy task to align the sensors correctly to the foot.
Wrong placement of the sensors is causing increased amount of corrupted
signal that needs to be excluded from the further analysis.

Another approach was to test the reliability of the device as there are

44



several physical connections in-between different hardware modules. The
weakest part was an optical foot sensor itself that stopped working after
several sensor bending movements on the foot. Disconnection was caused
by the micro-crack in the copper that caused signal loss between the LED
driver and LED. This is considered as a design issue that can be fixed with
slight modifications in the design, but it is very time consuming because of
the long manufacturing process. As the system includes built in function-
ality for self test then each hardware failure is alarmed immediately. All
data is transferred via wireless connection that makes it easy to perform
data collection remotely and get always the latest status of the system.

Another type of tests was performed using smart photoplethysmographic
sensor. During the test PPG signal was measured. Signal quality was
good without system generated artifacts or noise. As measurements were
performed on the wrist, there were no issues with the hardware. Acquired
data was transferred via micro-USB cable to the PC that did not introduce
any comfortability issues while the device was on the wrist.

1.4.1 Memory footprint
Including all functionality the measurement system requires 1,5 kB of RAM
and 22,8 kB of program memory. The biggest size of the program mem-
ory is occupied by USB, accelerometer and functionality that analyses the
digitized optical signal. Algorithms that are handling accelerometer and
optical signals consume also most of the used RAM.

1.4.2 Power consumption profile
In the ”operating” mode, the total system power budget is 71 mW. The
measured average MCU active duty-cycle is 40% yielding to an average
power consumption of 28,4 mW that meets well the requirement #12 that
is introduced in [56]. It represents about 50 hours of autonomy for a 400-
mAh battery. For data storage we use an external FRAM memory modules
that support over 100 times faster data throughput and consume 3 times
less power compared to FLASH based modules. Figure 1.9 illustrates power
consumption breakdown of the measuring device.

The biggest amount of power is consumed by the MCU that has several
tasks. Embedded algorithms that are activated by external interrupts con-
sume most of the MCU active mode. PPG signal sampling with the rate
of 250 Hz adds a new sample in every 4 ms. If there are at least 5 con-
tinuous unprocessed samples a pulse-wave detection algorithm is executed.
Acceleration information is sent only if there is a movement over the preset
threshold. The remaining, 60 % of the time, MCU is idling that leaves
room for additional processing algorithms.
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Figure 1.9: Power consumption of the measuring device [55]

1.5 Chapter summary
As the technology evolves, traditional medicine is replaced more and more
with personalized medicine. There are many medical devices that could
be brought out from clinical environment to use for pre-screening purposes
with remote connectivity. There are wide range if diseases that could be
monitored remotely. Our proposed modular architecture together with self-
aware system, that is discussed in the next chapters, would suit those needs
to monitor different age groups and diseases.

Currently there are no good solutions on the market that would allow to
perform health monitoring on wide range of ages and for different diseases.
As it requires another level of modularity, there are additional requirements
introduced for the health monitoring devices. Those requirements and the
proposed architecture were discussed and presented in this chapter.

If the system hardware has been designed to be modular, then software
must support it on the same way. For this purpose the software architecture
was presented as well. As the system hardware includes wide range of
sensors and modules, we have also developed system functionality tests to
perform quick hardware debugging.

As any system has to be tested in real life situations, we presented
experimental results. It gives an summarized overview how the designed
system is able to perform its tasks with different sensors.
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Chapter 2

Photoplethysmographic Sensors with
Increased Reliability

The modular system that was developed in Chapter 1 can be used on
different age groups for short and long-term monitoring. In this chapter we
propose two new types of optical sensor designs. First design is focusing
on sleep quality analysis with increased optical signal quality in longer
period of time. The purpose of the second sensor design is to perform
short time measurements and get the pulse wave with the best signal-noise
ratio in different penetration depths. Compared to the conventional pulse
oximeters we have increased the number of optical elements to increase the
reliability of the acquired signal. Main results of this chapter have been
reported in [54].

2.1 Background
The history of medical sensors goes back to the 19th century when first
bio-monitoring electrodes were developed. In 1838 Carlo Matteucci, pro-
fessor of physics the University of Pisa, showed that an electric current
accompanies each heartbeat. In 1887 the first human electrocardiogram
was published [17]. At that time also the first studies of electricity in mus-
cles started. As the technology has evolved sensors have became smaller
and more reliable. It is expected to have 3 billion wearable sensors by 2025
[40]. The biggest size belongs to chemical sensors, inertial measurement
unit sensors and optical sensors. On the other hand, the greatest growth
rate belongs to stretch and pressure sensors (Compound Annual Growth
Rate (CAGR) 40%), chemical sensors (CAGR 32%) and optical sensors
(CAGR 13%).

The first study with PPG was done in 1936 when two research groups
(Molitor and Kniazuk of the Merck Institute of Therapeutic Research, New
Jersey, and Hanzlik et al of Stanford University School of Medicine) de-
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scribed similar instruments used to monitor the blood volume changes in
the rabbit ear following venous occlusion and with administration of va-
soactive drugs [2]. Molitor and Kniazuk also described recordings made
with a reflection mode PPG system from human fingers. Hertzman and
Dillon split the alternating current (AC) and direct current (DC) compo-
nents with separate electronic amplifiers and monitored vasomotor activity
[34]. Potential sources of error with the technique have been identified in
[33], where it was emphasized that good contact with skin was needed,
but without excessive pressure that would result in blanching. It was ad-
vised that movement of the measurement probe against the skin should be
avoided. During recent decades there have been considerable improvements
in the size, sensitivity, reliability and reproducibility of PPG probe design.

2.1.1 Principle of photoplethysmography
PPG is a simple and low-cost optical technique that can be used to detect
blood volume changes in the micro-vascular bed of tissue. It is often used
non-invasively to make measurements at the skin surface. The PPG wave-
form comprises a pulsatile AC physiological waveform attributed to cardiac
synchronous changes in the blood volume with each heart beat, and is su-
perimposed on a slowly varying DC baseline with various lower frequency
components attributed to respiration, sympathetic nervous system activity
and thermo-regulation [2]. Although the origins of the components of the
PPG signal are not fully understood, it is generally accepted that they can
provide valuable information about the cardiovascular system.

Light from a light source, e.g. LED, laser, halogen lamp, is emitted to
the examined tissue, where it is scattered and absorbed. The transmitted
or back-scattered light intensity changes from the tissue can be detected
by using a photo-diode. This technique has been clinically widely used
for example in pulse oximetry systems, where the blood oxygenation rate
is calculated based on the simultaneous amplitude measurement of PPG
signal on two or more wavelength bands [72]. However, the research and
application areas of the PPG technique have been expanding during the
recent years. The PPG signal registration and analysis has been used for
heart and breathing rate measurement, heart rate variability analysis, pulse
transit time, arterial stiffness and vasomotion estimation [2]. PPG sensors
are designed mainly for the pulse wave registration from peripheral vas-
cular beds, such as finger, ear lobe, forehead etc. Nevertheless, the pulse
wave registration from the artery is needed in order to exclude the influence
of the peripheral blood vessels (arterioles, capillaries) and to estimate the
stiffness changes of the central arteries or certain segment of artery [28].
The PPG technology has been used in a wide range of commercially avail-
able medical devices for measuring oxygen saturation, blood pressure and
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cardiac output, assessing autonomic function and also detecting peripheral
vascular disease. The principle of PPG is in more detailed level described
in [97].

Photoplethysmography measurement modes

PPG can be measured in two modes - transmission and reflectance mode.
Figure 2.1 depicts two modes of PPG. In tramission mode, the light trans-
mitted through the tissue is detected by a Photo-Diode (PD) opposite the
LED source, while in reflectance mode, the PD detects light that is back-
scattered or reflected from tissue, bone or blood vessels.

Figure 2.1: LED and PD placement for transmission- and
reflectance-mode photoplethysmography (PPG) [97]

Transmission mode is usually capable of obtaining better signal quality
compared to reflectance mode. The limitation is the measurement site. The
fingertip and earlobe are the preferred monitoring positions but they have
limited blood perfusion. In addition, the fingertip and earlobe are suscep-
tible to environmental extremes, such as low ambient temperatures. On
the other hand, reflection mode PPG is more affected by motion artifacts
and pressure disturbances. Pressure disturbances can deform the arterial
geometry by compression influencing the AC amplitude of the PPG signal.

2.1.2 Challenges in PPG measurement
There are several factors that affect the quality of PPG recordings. As
described previously the location of the LED and PD, and measurement
type affects the signal quality and robustness against motion artifacts [49].
Although PPG sensors are commonly worn on the fingers due to the high
signal amplitude, most daily activities involve the use of the fingers. In
recent years, different measurement sites for PPG sensors have been ex-
plored, including the ring finger, wrist, brachia, earlobe, external ear car-
tilage, and the superior auricular region. The perfusion of 52 anatomical
sites in healthy subjects showed that the fingers, palm, face and ears offer
much highest perfusion values compared with other measurement sites [99].
Earlobe provides the largest perfusion value.
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The PPG sensor monitors changes in the light intensity via reflection
from or transmission through the tissue. In reflectance-type PPG, the PPG
signal waveform may be affected by the contact force between the sensor
and the measurement side. The waveform of the obtained PPG signal
differs depending on the PPG probe contact pressure. Several studies have
shown that moderate pressure on the sensor can improve the PPG signal.
Insufficient pressure results in inadequate contact and consequently low AC
signal amplitude. However, PPG signal recording under excessive pressure
conditions can also lead to low AC signal amplitude, as well as distorted
waveforms caused by the occluded artery beyond the PPG probe.

PPG signal is sensitive to motion artifacts that is mainly random low-
frequency interference. Several signal processing techniques can be ap-
plied, including those that use referencing from an acceleration signal or
those that minimize the motion artifact with synthetic noise generation.
However, attempts to minimize motion artifacts reported to date do not
appear to correlate well with real-world noise sources. The moving aver-
age method is commonly used to reduce motion artifacts and works well
for a limited artifact range. A Fourier analysis, model-based algorithms,
adaptive filters like least mean square adaptive algorithm, Kalman filter
[53], timer frequency methods, wavelet transformation [52], principle com-
ponent analysis and several other signal processing techniques have been
applied to reduce artifacts. Although it is possible to recover distorted sig-
nal and remove most of the noise, there is a need for better accuracy and
reproducibility of real environments to eliminate motion artifacts.

2.2 Overview
The AC component in the PPG signal is synchronous with heart cycle and
it is related to the heart generated pulse wave [2]. The pulse waveform
carries important clinical information about the arterial system, including
the micro-circulation of the skin. Characterization and analysis of pulse
wave is well described in [2]. The detection of the PPG signal from different
tissue layers may give a better understanding of the changes in the arterial
system [94]. Techniques and applications to obtain the information from
deeper tissue layers, such as blood flow monitoring in the tibial anterior
muscle [105] [90], foetal oxygen saturation monitoring [107], estimation of
pulse wave velocity in larger arteries [63] have been developed.

The light penetration volume-depth in skin depends on the selection of
the wavelength [3]. Absorption of the light in the visible and near infrared
wavelengths depends mainly on chromophores such as water, hemoglobin,
and melanin. There is an ”optical window”, where the light is less absorbed
by tissue. Therefore, red and near infrared light can penetrate deeper layers
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of tissue than shorter (green, blue) or longer (infrared) wavelengths and the
absorption of blood is more prevalent. In addition to the absorption, tissue
is a highly scattering medium, where the light behaves diffusely. Photons
are scattered from cell membranes and organelles. Generally, in shorter
wavelengths the light is more scattered than in longer wavelengths. Due to
the scattering and absorption properties of the tissue there is possibility to
obtain the PPG signal from different tissue layers, which is based on the
combination of wavelength and distance between the LED and PD [61].
In addition, earlier studies, using extremely short light pulses and time-of-
flight analysis, have reported that the distance photons travel in tissue is
approximately 4-6 times the distance between the light source and PD [11].
Generally, in case of short distance between the LED and photo-diode, and
short wavelength (green, blue), the penetration volume-depth is small. On
the other hand in case of long distance between the LED and photo-diode,
and longer wavelength (near infrared), the penetration volume-depth is
larger.

As babies and children are the most affected by the sleep problems and
SpO2 level is one of the most frequently used measurement, different studies
have been done measuring the SpO2 level. For that purpose reflectance
pulse oximeter based on Near Infra-red Spectroscopy (NIRS) technique was
used which is more comfortable in long term monitoring [80]. Prototypes
with reflectance sensors embedded in soft foam and fabric materials give an
opportunity to integrate them into snuggle and mattresses where baby lays
for most of the time. Drawback of this solution is that it is very sensitive
to the movements and requires certain body positions that may give many
false alarms. Pulse oximetry and accelerometer has also been integrated
into the infant shoe [86]. Accelerometer is used as an actimetry, position
measurement of infant and to reduce the oximetry motion artifact. On the
other side, this data was not used to perform sleep quality analysis and
extract the respiration rate from the PPG signal.

Comparing the accuracy of oximeters by different manufactures some
claim confidence limits ±2% or ±4% for readings above 70% [88]. Therefore
greater likelihood of false alarms is caused by a false low reading or no
reading at all. The studies of neonates and children found that 44-63% of
all critical care alarms were caused by pulse oximeters, 94% of oximeter
alarms were considered clinically unimportant, and 71% were false alarms
[88].

2.3 Optical foot sensor
If adults are able to detect their sleep problems by themselves then such
kind of issues on children may become undiscovered for a long time. Sleep

51



quality monitoring on babies and children has a long-term affect by increas-
ing their life quality. Those measurements could only be done in remote
monitoring conditions. For this purpose we need a small size and modular
device suitable for long term monitoring that was proposed in chapter 1.
One of the best places for sensors is foot [86]. For this purpose there is also
a need to have an appropriate size optical sensor for PPG measurements.

New hardware and more advanced software algorithms are being de-
veloped to reduce false alarms and provide more reliable readings under
conditions of low perfusion. Signal processing algorithms are one way to
compensate motion artifacts but it does not increase the quality of raw
signal. There are three main factors that affect pulse oximetry readings.
A straight incident light to tissue scattered wavelength-dependently until
about 2 mm depth because the inner structure of tissue is not uniform. The
effect of the tissue has to be considered that affects total optical density.
If using three-wavelengths, two simultaneous equations give the Peripheral
SpO2 without the effect of tissue coefficient dependency. At last, the effect
of venous blood could be removed with five wavelengths.

Oxygen saturation is defined as the measurement of the amount of oxy-
gen dissolved in blood, based on the detection of Hemoglobin and Deoxyhe-
moglobin. Two different light wavelengths are used to measure the actual
difference in the absorption spectra of HbO2 and Hb. The bloodstream is
affected by the concentration of HbO2 and Hb, and their absorption coeffi-
cients are measured using two wavelengths 660 nm (red light spectra) and
940 nm (infrared light spectra). Deoxygenated and oxygenated hemoglobin
absorb different wavelengths. Deoxygenated hemoglobin (Hb) has a higher
absorption at 660 nm and oxygenated hemoglobin (HbO2) has a higher
absorption at 940 nm [24].

Conventional oximeters use two wavelengths (λn) to perform measure-
ments. Later technologies use wider area of wavelengths in order to in-
crease the system reliability. Different research groups are using 3 to 12
wavelengths in oximeter. In addition to λ1 = 660 nm and λ2 = 940 nm,
used in conventional oximeters, the most used wavelengths are λ3 = 700
nm, λ4 = 730 nm, and λ5 = 805 nm [21] [68] [4].

For detection of Carboxyhemoglobin (CoHb) and Methemoglobin (MetHb),
four wavelengths are in principle sufficient [21]. The use of additional wave-
lengths allow further correction of disturbances and improves the accuracy.
Using three-wavelength method improves the accuracy of SpO2 when the
tissue constants are appropriately selected. It does not matter how many
wavelengths are used, motion artifacts elimination is still considered diffi-
cult [4]. Signal artifacts are mostly caused by the body movements. With
two optical sensors it is possible to reduce artifacts caused by the local
movements. Sensors have to be placed on the body away from each other
by at least few centimeters. To calculate pulse wave velocity (PWV) us-
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ing two synchronized, wireless pulse oximeters, placed on the wrist and
fingertip of the same hand has been used in [59].

The purpose of our optical sensor is to increase the reliability of the
signal by adding more optical sensors and compare the quality of the signal
to choose the optical element that gives better signal to noise ratio at that
particular time.

2.3.1 Sensor architecture
The architecture of the sensor is depicted on Figure 2.2. It consists in total
four PDs and two LED-pairs. There is one pair of LEDs and two PDs
for each AFE. For both AFE, one LED has the wavelength λ1 = 660 nm
and another one λ2 = 940 nm. The sensor is connected to the monitoring
device, which was described in Chapter 1.2. The Figure 1.3 in Chapter 1
describes how this optical sensor is physically connected to the device to
perform measurements.

Figure 2.2: The architecture of dual channel optical sensor

With the help of this optical sensor we can detect the pulse wave using
optical elements, calculate SpO2, heart rate and respiration rate. The
sensor includes also digital temperature sensor for skin temperature. To
get the oxygen saturation, we are using LED pair with red and infrared
wavelength.

Dimensions of the sensor are chosen to fit for baby foot for long-term
monitoring. There is one pair of LEDs for each AFE as sown on the picture
2.2. There are also two photo-detectors (PD) for both AFEs. It is not
possible to switch automatically between those PDs as they have to be pre-
soldered manually to enable one of those. The purpose of two PDs is to
find the best placement of the sensor while it is being carried on the foot.
Figure 2.3 depicts the location of arteries on the foot.

The placement of the LEDs is selected to be as close as possible to the
lateral tarsal artery or medial plantar artery to increase the amplitude of
pulse wave and acquire better signal. Figure 2.4 depicts the sensor attached
to the foot.

All locations of the PDs and LEDs are marked. On the top of the foot,
there is a monitoring system with Li-ion battery. It can also be seen that
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Figure 2.3: Foot anatomy [19]

Figure 2.4: Optical sensor attached to the foot

AFE1 LED and AFE2 PD has some air gap between the sensor and skin.
As the foot is being moved frequently, it affects drastically the quality of
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the signal. Therefore it is needed to perform continuous measurement of
the signal quality between different optical elements and use only those
that give the best signal to noise ratio.

2.3.2 Experimental results
The aim of the experiments is to develop a methodology to choose between
optical elements that give the best results. As the signal quality varies
depending on the movement of the foot, there is a need for a method to
receive always a signal with the best quality.

For experimental results we have developed an additional part for the
user interface that is used for smart optical sensor, described in Section
2.4.3. The interface is depicted on Figure 2.5. It gives a real-time in-
formation about the current efficiency of the signal. Efficiency averaging
functionality over 5 seconds has been implemented. If the average efficiency
drops below predefined threshold, an automatic switch to the another AFE
is executed to measure the efficiency on different sensor. If the efficiency on
the second sensor is better, then further measurements will be performed
with the second AFE. In real measurements efficiency above 10% percents
is considered as a result of artifact and therefore skipped. If the signal ef-
ficiency stays continuously between 1% to 5% no switch to another source
signal is done.

As the efficiency could change dramatically there is also a need to change
the sensitivity of the PD and LED current. Current implementation is
tested only with mentioned user interface. It gives us better overview about
the applied thresholds and further development of algorithm to give adapt-
ability depending on the user and how well the sensor was positioned. As
mentioned in the beginning of this chapter, signal quality depends highly
on the placement of the sensor on the foot.

The same efficiency calculation method is used in smart PPG sensor to
automate the task in which opto-pairs give the best signal-noise ratio and
should be used to perform measurements. This kind of parameter change is
called calibration that needs to be done in case of change of sensor location.
The only difference is that in case of foot sensor, this kind of calibration is
done frequently after each foot movement and in case of smart PPG sensor
only initially and only after the misplacement of the sensor.

The only drawback that appeared during the measurements was the
reliability of the optical sensor. Caused by the design issue one physical
connection between the AFE and LED got frequently broken that caused
the loss of the signal. The root cause was a copper disconnection on the flex
board next to the LED pad that appeared after several bending movements.
The result of this incident caused automatic switch to another AFE as the
signal quality dropped dramatically.
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Figure 2.5: Signal efficiency measurements on foot sensor

2.4 Optical smart photoplethysmographic sen-
sor

Combining LEDs with different wavelengths in the same way as described
in previous chapter would increase the measurement results also in other
application areas. As an example, pulse wave registration from the artery
is needed in order to exclude the influence of the peripheral blood vessels
(arterioles, capillaries) and to estimate the stiffness changes of the central
arteries or certain segment of artery [28]. For this purpose we propose a
new optical smart sensor design that is used for pulse wave registration
for adults. This is a new type of sensor, that automates and speeds up
obtaining the pulse wave signal from the radial artery with the highest
possible signal to noise ratio.

PPG sensor development for the signal registration from the different
penetration volume-depths, has been described earlier [105] [90] [89]. The
advantage of our proposed sensor is to combine PDs and LEDs with dif-
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ferent wavelengths into groups so that they can be driven independently.
The selection of the distance between the LEDs and PDs and choice of the
wavelength in the proposed smart PPG sensor has been made based on the
previously mentioned studies.

Our proposed sensor consists of 32 LEDs in four different wavelengths
and four photo-diodes. Distances between the photo-diodes and LEDs
varies to analyze different tissue layers. LEDs can be grouped in order
to analyze automatically larger tissue areas without moving the sensor on
the skin. The sensor is controlled by the miniaturized monitoring device
[56]. The designed PPG sensor is tested for the pulse wave registration
from radial artery.

2.4.1 Sensor architecture
The proposed sensor architecture is part of the developed system. The
architecture and the functionality of the system has been discussed in [56]
and [55]. Smart PPG sensor consists of LED and photo-diode array with
control logic and optical measurement functionality.

The proposed system consists of three main parts. Figure 2.6 illustrates
the system architecture how the smart PPG sensor is connected to the AFE
module and rest of the system.

Figure 2.6: System Architecture

Signal processing module (SPR) manages the whole system, performs
signal pre-processing and data transfer between the user interface and rest
of the system. The architecture and the functionality of processing and
AFE module has been discussed in [55] and [56]. Smart PPG sensor (SPPG)
consists of LED and photo-diode array with control logic and optical mea-
surement functionality. Acquired optical signal is at first received by the
AFE module and then sent to the SPR module for pre-processing. Digital
logic on the SPPG module is also controlled by the SPR module. The SPR
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module supports wide range of system management commands via User
Interface (UI). It is possible to control every individual on-board sensor
and module through the UI.

Figure 2.7 depicts the architecture of the optical sensor module. There
are four independent LED and PD groups, and two independent channels.
A channel means that all signals that are measured in this particular group
are connected with one particular AFE module. In total there are two iden-
tical AFE components integrated into one AFE module that are working in
parallel. Each group, separated with red borders, has one PD, green (G),
red (R) and two infra-red (IR) LED emitters.

Figure 2.7: Structure of optical sensor array [54]

Four different wavelengths in each group are used. Green LED 560 nm,
red LED 660 nm, inner infrared LED (IRn-1 and IRn-3) 880 nm, and
outer infrared LED (IRn-2 and IRn-4) 940 nm. All vertical and horizontal
distances between LEDs and PDs are based on the previous studies.

Figure 2.8: A structure of smart optical sensor
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Sensor driving is done through the API to enable or disable individual
optical elements or its groups. Figure 2.8 depicts the architecture of the
optical sensor module. There are four independent LED and PD groups,
and two independent channels. A channel means that all signals that are
measured in this particular group are connected with one particular AFE
module. In total there are two identical AFE chips integrated into one
AFE module that are working in parallel. Each group, separated with red
borderline, has one PD, green (G), red (R) and two infra-red (IR) LED
emitters.

Communication

Device is controlled by the user interface via USB connection. For better
sensor management we have developed a Python based graphical user inter-
face (GUI) that allows to set individually the current of each LED, feedback
resistors and capacitors, to view the received signals and save the raw data
into the file. From Analogue front-end we receive 6 signals: LED1, LED2,
LED1 ambient, LED2 ambient, LED1-LED1 ambient and LED2-LED2 am-
bient. All signals are 22-bit long. Automatic ambient measurement and
cancellation is done by the AFE.

2.4.2 Driving logic
Sensor configuration must follow certain hardware and software limitations.
This chapter describes how the sensor elements can be configured by follow-
ing pre-defined limitations. It is also described how the sensor configuration
could be extended by grouping different optical elements.

Driving phases

The LED array driving process has two main phases. At first, the array
has to be calibrated which is mandatory to start the measurement pro-
cess. Calibration process analyses the acquired signal and determines LED
groups that have the best signal quality.

For the calibration we group two LEDs into one group. In Figure 2.7
LEDs IRn-1 and IRn-2 form one group, Rn-1 and Gn-1 second, Rn-2 and
Gn-2 third, and IRn-3 and IRn-4 fourth group. The same grouping method-
ology is defined in each group and on both channels. Altogether we get 16
LED groups. Each group is switched on and off for a short period of time
with different pre-defined configurations.

Calibration with each group is started by setting the LED current to
100mA and amplification with the feedback resistor to the maximum level.
If the signal strength goes into saturation, amplification is decreased until
the AC component has the maximum value and DC component is not in
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the saturation. Based on the the AC and DC component, we calculate the
efficiency. At first, a received photo-current is calculated:

Ip =
Vout

2 ∗Rf
, (1)

where Ip is photo-current, Vout is photo-voltage analog-digital conversion
(ADC) value divided by 22-bits, Rf is feedback resistor of the amplifier.
With that equation we can calculate photo-current for AC and DC compo-
nent. Efficiency is calculated with the following formula:

γeff =
IAC

IDC
, (2)

where γeff is the efficiency, IAC is photo-current of AC component and
IDC is photo-current of DC component.

After all groups are toggled once with their own best settings, signal
quality analysis follows to detect the presence of pulse wave. The group
with the highest amplitude of AC component will be chosen automatically
to start the continuous measurement process. If there are signals with
identical quality from more than one group we can redefine groups and
repeat the same process to find only those LEDs that give the best signal
for our needs and group these into one group that will be used during the
analysis.

Configuration of light source driver

The AFE module is capable of generating up to 5 kHz Pulse Repetition
Frequency (PRF). In each period there are two times ambient and LED
sampling. The sample rate is four times PRF, up to 20 kHz. For pulse
wave detection the common sampling rate is 250 Hz and up but using higher
sampling rate it is possible to use built in hardware averaging functionality
that increases signal quality. In our current configuration we are using
sampling rate of 500Hz and no averaging.

As we are using two AFEs concurrently, we can sync them by using
interrupt that is generated every time when pulse repetition period starts.
Combining timings between both AFE modules, it is even possible to emit
the light with one channel and perform the measurements with another
one. In this way we could increase possible combinations of finding the
best signal for blood vessels detection.

Figure 2.9 illustrates the usage of multiple emitter groups. Each PRF
starts with ”ADC Ready” interrupt. Duty cycle of each sample can be
in-between 5% to 25%. There is also a hardware averaging built into the
ADC but it decreases the sampling rate accordingly. If we would like to
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Figure 2.9: Multiple LED switching. A) Sampling with one channel and
dual LED configuration. B) Sampling with one channel and
four LED configuration. C) Sampling with dual channels and

reduced frequency. D) Sampling with two channels and
normal frequency

sample at the rate of 5 kHz with 4 averages then the PRF becomes 1250
Hz.

Multiple Group and Channel Measurements

The most common optical pulse wave measurement device is a fingerprint
sensor. It has red and infrared LEDs and one PD. Both leds are switched
continuously with the duty cycle of 50%. In some cases there is also an
ambient sampling added to reduce the noise level. Same mechanism is
described in the part A in Figure 2.9. With one channel the sampling rate
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can be up to 5 kHz because the ADC sample rate of 20 kHz will be divided
between four cycles - two times ambient and LED sampling.

In case of multiple LEDs or LED groups, as in our proposed solution, we
could define which emitter will be switched on in every cycle. In multiple
LED configuration, part B in Figure 2.9, we start by switching IR1-2, then
continue with IR1-1 and up to G1-1 until the same cycle starts again. With
this configuration we could increase the number of emitters but the sam-
pling rate gets smaller the same amount of times. For one channel we have
up to 16 independent LEDs. with this configuration, using the equation
below, we could achieve the sampling rate up to 625 Hz without averaging.

Fsdesired - desired sample rate
SPS - ADC sample rate (up to 20 kHz)
NLED - number of independent emitter groups
NCH - number of ADC channels

Fsdesired =
(SPS) ∗NCH

2 ∗NLED
, (3)

For the two channel configuration we have a possibility to decrease the
duty cycle to alternate the sampling using two channels. In Figure 2.9 part
C describes a two channel configuration and increased number of LEDs.
The cycle of channel starts with the ADC ready interrupt. The duty cycle
of emitter is reduced to the 12.5%. This gives the possibility to use the rest
of 12.5% for the second channel because the maximum duty cycle could
be up to 25%. For that we shift the second channel ADC ready interrupt
half of the duty cycle forward that makes possible to use the second channel
while there are all LEDs turned off on the first channel. With this 2-channel
configuration we could go through all 32 LEDs and still achieve sample rate
of 625 Hz without averaging.

By using two channels we could also decrease the ambient and LED
sampling duty cycle. This gives a possibility to finish all sampling for one
channel only during part of the full pulse repetition period and use the
rest of time for other channels. In Figure 2.9 part D illustrates a situation
when the first channel has finished sampling, and the second one starts with
sampling within one period of pulse repetition. With this configuration we
could go through all 32 LEDs with sample rate of 1250 Hz. The maximum
duty cycle is 6.25% which is above the allowed minimum of 5%. The number
of possible configurations are not limited to the discussed ones. It shows
the flexibility of our proposed solution for using it on different emitter and
detector configurations.
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Figure 2.10: Sensor module overview [54]

Figure 2.10 depicts the build-up of the sensor module. Module has a
connector to external system connection, that is built on the flex Printed
Circuit Board (PCB). All control logic is placed on the rigid PCB as it helps
to increase the mechanical reliability because the rigid does not bend. All
optics are on the flex PCB as it touches directly the skin and needs to
be bent accordingly. All electronics, including LEDs and photo-diodes, is
poured into the medical silicone to minimize the effect on the skin.

Rigid and flex PCBs have 4-layer design to suppress the noise and in-
crease the stiffness to the appropriate level. Extra care has been taken
with the signal line routing of the detectors. As the length of the whole
sensor part is 138 mm, there is a risk for increased noise. For that reason
all detector lines are routed on the middle layer and also surrounded with
shielding traces.

2.4.3 Experimental results
Signals were collected with the user interface developed in Python. Figure
2.11 depicts the user interface (UI) for managing smart PPG sensor. Upper
part of the UI shows received signal with numeric values of AC and DC
components from active sensors. It is possible to change the current and
feedback resistor value for each LED.

All values are saved automatically into the configuration file that can be
reloaded later if needed. Starting or stopping saving the received signal can
be set in real time. During the real experiments we have got results that
verify our expectations about obtaining the best pulse wave signal from
the radial artery only from the LED and photo-diode pair with the highest
efficiency, that is calculated using formula 2.4.2.

Measurements were performed by placing the sensor on the wrist, as
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Figure 2.11: User interface for smart photoplethysmographic sensor
driving

Figure 2.12: Sensor placement on the wrist [54]
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depicted on figure 2.12, and fastening it using bending strap. Experiments
were performed on different days during few hours on both days, but on
the same test person. The signals were recorded from the left hand radial
artery. Efficiency was calculated as described in the previous section. Table
2.1 depicts the relative signal efficiency for each LED and photo-diode pair.

Table 2.1: Test results [54]

The optopair with highest efficiency on each vertical group is colored.
Red color marks infrared, orange red and light green marks green LED.
Efficiency more than 1% is considered usually as a good signal. The bigger
the efficiency number the better signal to noise ratio we get. The signal
with the highest efficiency is received with the LEDs that have the longest
wavelength, marked with red. Comparing the left and right side, the signal
with highest efficiency is on the right side because radial artery is more close
to the surface of the skin on the wrist side. As it can be seen from Table
2.1, there are also some differences between measurements on different days.
However, it is visible, that the results are repeatable and the radial artery
can be detected under certain optopair.

For the reference we have also measured noise level of photo-diode by
shutting down LED driving part of the AFE module and putting the sensor
to the dark. The average noise is 0.256 mV and it is not dependent on the
feedback resistor in Eq. (1).

Figure 2.13 depicts the results of one LED pair. Upper part describes
the signal measured with IR2-3 and lower IR2-4. Both signals have already
ambient subtracted and LED current is calculated based on Eq. (1) and
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Figure 2.13: Measured PPG signals; Top: IR2-3, bottom: IR2-4

(2). As this figure belongs to the measurements made on the second day,
it correlates well with the lower part of Table 2.1. Efficiency values in that
table show also that IR2-4 has slightly better efficiency compared to IR2-3,
0.69% and 0.48% respectively.

2.5 Chapter summary
The goal of this chapter was to provide an overview about proposed optical
sensors for pulse wave registration. The purpose of the developed sensors
is to increase the reliability of the optical signal and automate the mea-
surement process by getting the best possible signal that any combination
of sensors could give at each particular time. A lack of comparison with
other similar solutions is caused by the method of experiments. Results
can be compared only if the measurement conditions, place, sensors set-
tings and human anthropometric data is known and identical. Based on
our experiments with different persons under controlled experiment envi-
ronment results were correlating and could be repeated with similar results.
Therefore we are not focusing on comparison but to the quality of the mea-
surements. Although there were some differences between measurements
on different days the radial artery can be detected under certain optopair
and results are based on real experiments.

The first part of this chapter gave an overview about PPG and its chal-
lenges. Two types of PPG methods are described together with several
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factors that may affect the quality of PPG measurement.
The second part of this chapter gave an overview and state of the art

about similar solutions developed by others. It is discussed about the ad-
vantages and drawbacks of different solutions.

The third part of this chapter introduced an optical foot sensor that is
suitable for infants and babies up to few years old. This sensor is used to
develop a methodology to receive a signal from that optical element that
has the best signal to noise ratio.

The fourth part of this chapter introduced an optical smart photo-
plethysmographic sensor for pulse wave registration at different vascular
depths. A complete new architecture and driving logic decreases the time
needed for pulse wave registration and artery detection. Also initial exper-
iments were demonstrated.
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Chapter 3

Low Complexity Algorithms for
Sleep Quality Estimation

Long term patient monitoring needs small size and reliable devices that
consume a little power. This restriction also limits the amount of signal
processing, the device is able to perform. Proposed modular platform,
described in Chapter 1, is designed taking into account the same limitation.
To increase the battery lifetime, it has limited processing capabilities that
require to use low complexity algorithms for signal processing. As one of the
use cases is monitoring sleep quality, there is a need for an low complexity
algorithm to perform PPG signal analysis in real time.

The main contributions of this chapter are summarized in [57] and [55].
The aim of this chapter is to demonstrate possibilities to apply the previ-
ously proposed architecture and sensors for disease diagnosis and propose a
low complexity algorithms for sleep quality estimation. In this chapter we
propose an efficient low-power algorithm to extract respiration rate from
PPG signal. We analyze amplitude variations in the PPG signal that are
caused by the respiration and demonstrate experimentally efficiency of our
proposed algorithm. Compared to other methods it performs well also in
limited processing power conditions. As a result the extracted respiration
rate can be used for sleep quality estimation and pre-screening. Main re-
sults of this chapter have been reported in [57].

3.1 Background
Sleep research requires to have background understanding what the sleep is,
what are the methods to measure sleep. An overview about most common
sleep diseases is given and how ti classify it.
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3.1.1 What does sleep mean
Human bodies regulate sleep in the same way that they regulate eating,
drinking, and breathing. Going without food produces uncomfortable sen-
sation of hunger, while going without sleep makes us feel overwhelmingly
sleepy. And just as eating relieves hunger and ensures that we obtain the
nutrients we need, sleeping relieves sleepiness and ensures that we obtain
the sleep we need. But the question still remains, why do we sleep?

There are few theories, why do we sleep. One of the earliest theories,
called inactive theory, suggest that inactivity at night is an adaption that
served a survival function by keeping organisms out of harm’s way at times
when they would be particularly vulnerable. Although there are few more
theories like energy conservation and restorative, the most recent one is
brain plasticity theory [32]. It says that sleep is correlated to changes in
the structure and organization of the brain. Even these theories remain
unproven, it is one of the driving forces of sleep research to understand
better why do we sleep.

3.1.2 Background of sleep research
The history of sleep research starts in 1913 when French scientist Henri
Pieron authored a book entitled ”Le probleme physiologique du sommeil”
[95]. In 1953 Dr. Nathaniel Kleitman, known as the ”father of American
sleep research”, and his students made the landmark discovery of rapid eye
movement (REM) during sleep. Sleep research comprises many different
areas like narcolepsy research, sleep and cardio-respiratory research, circar-
dian rhythms, shift work and it’s effects on sleep, sleep deprivation, sleep
and aging, infant sleep etc. There are approximately 84 different known
sleep disorders. The most common disorders are sleep apnea, narcolepsy,
parasomnias during sleep, infant sleep problems and insomnia. Many of
them have also several sub-categories.

3.1.3 Instrumentation for sleep research
Polysomnography (PSG) is the most frequent test to diagnose sleep disor-
ders. Full PSG is an overnight monitoring in the sleep laboratory. Each
subject is monitored with Electroencephalography (EEG), right and left
electrooculogram, submental EEG, Electromyography (EMG), ECG, chest
and abdominal wall motion by respiratory inductance plethysmography,
oronasal airflow, SaO2, PETCO2 by infrared capnometry at the nose. Sub-
jects are also monitored with infrared video camera [48].

For screening purposes simplified tests using portable equipment may be
used at home. These tests usually involve measuring heart rate, SpO2 level,
airflow and breathing patterns. In case of sleep apnea, the test results show
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drops in the SpO2 level during apneas and subsequent rises with awakening.
As there are less types of measurements taken, portable monitoring devices
don’t detect all cases of sleep apnea. In some cases you still may go through
the full PSG even if your initial results are normal. However, screening is
considered also as a reliable and comfortable way to diagnose the OSA in
babies and children.

3.1.4 Sleep apnea
Sleep apnea, that is one of the most common sleep disorders, has many
variations. Depending on the type of sleep apnea it needs different methods
to detect it. In this section an overview of the sleep apnea classification
and detection is given.

Sleep apnea classification

One of the most common types of sleep disorders is sleep apnea. The term
apnea means absence of spontaneous breathing. It is a common disorder
that is estimated to occur in about 7% of the population of which more
than 85% remain undiagnosed. There are four major types of sleep-related
breathing disorders - central apnea, obstructive apnea, hypoventilation as-
sociated with sleep and non-specific sleep disorders. Central apnea is rare
disorder on unknown cause. It is more prevalent in the middle-aged and
elderly people. OSA is currently estimated to affect 4% and 2% middle-
aged men and women repsectively and between 1% and 3% of 2- to 8-year
old children. It is most commonly found in children between 3 to 6 years
of age.

The 2007 AASM scoring manual respiratory rules for children require
that obstructive apneas last at least 2 breaths, be associated with at least a
90% decrement in air flow from baseline, and be associated with continued
or increased respiratory effort for the duration of the event [75]. Arousals
or desaturation of SpO2 levels are not required for scoring of obstructive
apneas [37].

Above mentioned scoring rules require that hypopneas last at least 2
breaths, be associated with at least a 50% decrement in nasal pressure
or alternative flow signal from baseline, and be associated with arousal,
awakening, or at least a 3% desaturation of SpO2. Use of esophageal pres-
sure monitoring often demonstrates crescendo increases in respiratory effort
when hypopneas are obstructive in nature.

Central apnea may be scored on pediatric PSGs whenever respiratory
effort is absent for at least 20 seconds or whenever respiratory pauses lasting
at least 2 breaths are associated with arousal, awakening, or at least a 3%
desaturation of SpO2. Polysomnographers should take care to distinguish
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when frequent central apneas meet criteria for the diagnosis of periodic
breathing or Cheye Stoken respiration.

Increased resistance of the upper airway is the characteristic PSG feature
of Upper Airway Resistance Syndrome (UARS), a condition where chronic
partial airway obstruction and increased work of breathing disturbs sleep in
the absence of scorable respiratory events and gas exchange abnormalities.
Altough flow limitation is occasionally apparent using PSG methods in pa-
tients with UARS, esophageal pressure monitor represents a more sensitive
measure of partial airway obstruction in these patients.

PSG features of periodic limb movement disorder in children are com-
parable to those of adults. Other sleep related movement disorders occa-
sionally observed in children include being sleep myoclonus of infancy and
alternating leg muscle activation.

Corkum and colleagues studied the sleep of 25 medication-free pre-
adolescent children and reported sleep problems such as bedtime resistance,
restless sleep and longer sleep duration were significantly more frequent in
the Attention Deficit with Hyperability (ADHD) group. The study found
significantly increased night-to-night variability of sleep onset and dura-
tion for the ADHD group during the five consecutive nights [29]. A series
of 50 children with polysomnography proven OSA demonstrated hyperac-
tivity in 42% of subjects and decreased school performance in 16% [30]. A
subsequent examination of the natural history of snoring between 4 to 7
years of age found that hyperactivity, restless sleep and excessive sleepi-
ness were significantly more common among habitually snoring children
compared with youngsters who had never snored, lending further support
to the notion that a causative relationship may exist [1].

There is also an emerging evidence that periodic limb movement dis-
order (PLMD) may be associated with prominent attentional/behavioural
symptoms in children. Diagnostic criteria for PLMD is typically met when
PSG exhibits greater than five PLMs per hour of sleep and symptomatic
sleep disruption is reported, although universally accepted pediatric criteria
have not yet been established [98].

Existing research suggests that daytime inattention, hyperactivity and
behavioral problems are likely to be caused or worsened by OSA or PLMD
for a substantial minority of patients. This will remain an active area of
investigation, with substantial efforts toward development of reliable and
cost-effective screening tools which will permit screening for these primary
sleep disorders without the time and expense of a full PSG. Development
of outcome-based treatment guidelines for these conditions will improve
assessment of the impact of treatment on day and night time symptoms
[35].
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Sleep apnea detection

Normal waking and asleep SpO2 levels in healthy child or adult are 96-99%
and 94-98%, respectively. Sleep apnea has specific pattern in which order
all symptoms appear. Cumulative time when saturation level is below 90%
is also often an early sign of trouble and pointed out in the summary of
clinical PSG tests [79]. The typical cycle of sleep apnea is:

1. saturation level decrease 3-4% from the baseline
2. decrease of the amount of air through the lungs at least 50% with the

duration over 10 seconds
3. heart rate falls below normal
4. brief awakening with few large breaths
5. heart rate speeds up above normal heart rate
6. oxygen level returns to near normal

One such cycle is calles apneic episode that may repeat tens of times per
hour. Apnea Hypopnea Index (AHI), the number of apneic episodes per
hour, is used to detect the severity of sleep apnea.

• AHI of 5-15/hr - mild sleep apnea
• AHI of 16-30/hr - moderate sleep apnea
• AHI of +30/hr - severe sleep apnea

The standard definition of AHI determined during attended laboratory
PSG is calculated using following formula[12]

Awofl - apneas where 10 sec without flow
Rflow - hypopneas with reduced flow with 5% of desaturation
Sttot - total sleep time in hours

AHIs =
(Awofl +Rflow)

Sttot
, (6)

Even as the AHI index is widely used as a metric for OSA diagnosis,
clinicians generally do not rely solely on AHI for OSA diagnosis and for
determining treatment plans. In addition to that, symptoms, sleep archi-
tecture, arousal indices, degree of saturation and examination of raw PSG
data is taken into account to diagnose OSA.
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3.2 Overview
The term sleep quality lacks an established definition. Sometimes it is used
to refer to a collection of sleep measures including total sleep time, sleep
onset latency, total wake time, sleep efficiency and sleep disruptive event
like apnea. As discussed previously there are many different physiologi-
cal signals measured during the sull sleep study that makes it expensive
and uncomfortable. By replacing it with pre-screening, there are less sig-
nals measured that makes it more comfortable and possible to perform the
monitoring remotely at home.

As the need for remote health monitoring systems increases, the com-
plexity of such systems also grows significantly. Signals measured by few
attached sensors consist usually complex signals that are used to extract
different features. Those systems are usually wearable and have limited pro-
cessing power that limits using sophisticated signal processing algorithms.

Pulse oximetry is frequently used in clinical situations for non-invasive
measurement of heart rate and arterial oxygen saturation. PPG is obtained
by optically illuminating the skin and measuring changes in light absorp-
tion with the pulse oximetry. In many clinical situations breathing rate
is extracted from the PPG, which is known to cause a minimum incon-
venience to the patient. A number of methods for deriving the breathing
rate from the PPG have been suggested in the literature. Respiration rate
extraction is used in several application areas. The diagnosis of an OSA is
one of them. It is a respiratory disorder characterized by recurrent airflow
obstruction caused by total or partial collapse of the upper airway.

Physiological monitoring of breathing interval is important in many clin-
ical settings, including critical and neonatal care, sleep study assessment
and anaesthetics. Respiration causes variation in the peripheral circulation,
making it possible to monitor breathing using a PPG sensor attached to the
skin. The low frequency respiratory-induced intensity variations (RIIV) in
the PPG signal are considered that RIIV includes contribution from the
venous return to heart caused by alterations in intra-thoracic pressure and
also changes in the sympathetic tone control of cutaneous blood vessels.
The physiological mechanisms relating to the RIIV are, however, not fully
understood. Different research groups [74, 48] have found that increased
respiratory effort occurs throughout the night in OSA patients, with the
subsequent hypoxia and arousal, may become one of the useful parameters
for the OSA screening of snoring children.

3.2.1 Respiration signal extraction from pulse wave
There are several methods extracting respiratory information from the PPG
signal. Pulse rate variability (PRV), pulse amplitude variability (PAV)
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and pulse width variability (PWV), which all are related to respiration
[51], are used to estimate the respiration using a spectrum-based algorithm
[6]. Respiratory estimation errors are quite comparable and stay around
−0.26± 7.30%.

Empirical Mode Decomposition (EMD) method, that is robust, simple
and makes use of derived Intrinsic Mode Functions (IMF), have shown good
results in [66] with the accuracy of estimating respiratory rate between
98.73% and 99.87%. Some research has been done to efficiently extract
respiration from the PPG using Order Reduced Modified Covariance Auto
Regressive (OR-MCAR) technique [67]. It gives an improvement in the
frequency resolution compared to the traditional Fast Fourier Transform
(FFT) method.

Discrete Wavelet Transform (DWT) is widely used when extracting res-
piration signal from ECG [91]. An absolute average error of 6.8% was
obtained, considered highly acceptable for ambulatory patient monitoring.
One variant of the DWT is Discrete Wavelet Packet Transform (DWPT)
which tiles the frequency space in a discrete number of intervals. According
to the literature [84] the accuracy of the DWPT technique is 85%. Wavelets
have advantages over traditional Fourier methods in analysing physical situ-
ations where the signal contains discontinuities and sharp spikes. Daubechies
wavelet based method was used and proved to be efficient in reducing mo-
tion artifacts restoring all the morphological features of the PPG signal
[85].

By filtering the data, it is possible to extract respiratory rate harmonic
from the filtered signal. In [71] suggested the use of a 3rd order Butterworth
band-bass filter with a pass-band from 0.1 to 0.3Hz to filter the PPG sig-
nal. Autoregressive based method [22] is aiming to provide more accurate
results than existing techniques but it needs to be tuned to an individual,
or at best, to specific age groups and/or for specific time periods. Some
more complex techniques are using Time-Frequency Spectra (TFS) for ana-
lyzing non-stationary signals. In this category, several studies have utilized
Short-Time Fourier Transform (STFT) and Continuous Wavelet Transform
(CWT) [58] to extract the respiration rate from the PPG signal. While the
studies show relatively good results, the CWT is impractical because the
extraction of the RR is done in some cases with the use or Frequency Mod-
ulation (FM) while in other cases with the Amplitude Modulation (AM) of
the heart rate. This requires additional adaptive decision-making schemes,
to determine when to use either FM or AM of the heart rate signal, mak-
ing this kind of approach not suitable for a low power resource constrained
application.

Choosing suitable method depends on the requirements for the signal
quality and available processing power. Taking into consideration that
wireless portable devices have usually limited processing power there is a
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need to have a lightweight algorithm to extract the respiration signal from
the PPG signal in near real-time. To the best of our knowledge, most of
the respiration extraction algorithms require signal spectral analysis that
requires more computational power than our proposed algorithm. There-
fore we propose a method that is suitable for using in energy constrained
systems.

3.2.2 Photoplethysmographic signal
SpO2 is usually measured by using a finger probe or ear lobe saturation with
transmittal sensor that has usually better signal quality. This is considered
as a reliable and practical when patient is steadily in the bed. There are
also experiments where SpO2 readings were taken on wrist and chest belt
[65] with good quality readings. Studies [73] also show that pulse oximetry
measurements on foot are reliable and have also good correlation with foot
perfusion index. It is also stated that oximeter performance is mostly af-
fected by low peripheral perfusion states and patient motion. The features
of PPG signal are more discussed in detail in 2.

Detecting correctly the pulse wave is important for the further analysis.
The biggest difference between adults and neonates is the heart rate and
breathing rate.

Figure 3.1: Analysis of pulse and respiration wave [57]

Strong sympathetic stimulation can increase the heart rate in young
adults from the normal rate of 70 beats per minute up to 180 to 200 and,
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rarely, even 250 beats per minute. Resting heart rate for the newborns is
similar, 70 to 190 beats per minute. In case of 250 beats per minute time
between every beat is 240 ms and biologically it can not be less than 200
ms which defines minimum required timeslot for the pulse wave analysis.

Respiration affects the pulse wave modulating it during the exhalation
and inhalation. This modulation can be analysed to calculate the respira-
tion rate. Figure 3.1 describes morphological changes of the pulse wave.
Time from local minima (P2) to maxima (P3) is about 80 ms. To com-
pare the shape of the currently analysed signal with the next one, it has
to be buffered. It causes a slight delay for the analysis but helps to detect
whether the next local minima or maxima belongs to the current respira-
tion pattern or is the beginning of the next one. Respiration pattern is one
full respiration cycle, starts with the inspiration and ends with the expira-
tion. In order to take into account abnormal conditions like some possible
missing beats, buffering 5 seconds at the time is enough to include the next
pulse wave and not to cause big delays in case some critical changes have
happened.

3.3 Respiration signal extraction
The proposed algorithm is focusing on infants from the newborn up to the
first year and children between the years 2 to 8 who need to be monitored in
case sleep apnea is suspected. Newborn babies have very sensitive skin and
because of the small dimension of their body it is much more complicated to
place the sensors and perform long-term measurements. The most frequent
measurement method is to use fingertip or toe PPG sensors for the SpO2
and heart rate measurements. Our goal is to use sensors which are easy to
place and make minimum discomfort to the babies. Therefore only optical
sensors are used. It will limit the number of acquired signals, which do
not provide enough information for the full PSG but is sufficient for the
home screening. Instead of using fingertip sensors we place it into the
shoe which helps to increase the quality of acquired signal. For example
is is possible to perform measurements simultaneously from more than one
body location. In addition to that, using more wavelengths instead of two
in one sensor, helps to decrease the influence of the artefacts [4]. Both
methods increase the required amount of signal processing that affects the
power consumption. For power constrained devices having energy efficient
algorithms for signal processing gives extended battery lifetime and smaller
dimensions.
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3.3.1 Data acquisition
Reference data has been collected from the PhysioNet MIMIC II Waveform
Database [27]. It contains recordings from bedside patient monitors in
neonatal intensive care units. Our collected signals include fingertip PPG
and respiration signals. Recordings are digitized with sampling rate of 125
Hz and resolution of 8-, 10-, or 12-bit. The recordings are from twelve
different neonates, each with the length of 60 minutes. Exact age is not
specified.

3.3.2 Algorithm structure
One approach to extract the breathing rate information is based on con-
necting the peaks of each PPG pulse wave, thus constructing a continuous
envelop along the top edge of the PPG signal, marked with the red con-
tinuous line in Figure 3.1. Through the use of the Fourier transform, a
prominent high-amplitude peak can be identified that corresponds to the
frequency of the subject’s breathing rate. Respiration cycle modulates the
pulse wave that is causing amplitude changes. When we look at many con-
tinuous pulse waves in Figure 3.1, it can be seen that there is a repeating
pattern caused by the respiration, which is marked with the pink dotted
line. If the PPG signal is without any artefact we can easily detect the
patterns based on local maxima and minima. After each oxygen intake
following pulse wave (P3), marked with the continuous blue line, has lower
amplitude compared with the previous P1 and the next one P5. Maxi-
mum pattern (P1 − P3 − P5) was detected correctly. Local minima P0
was detected but as P2 did not match to the criteria it will be disregarded
automatically and next minima will be stored with the name P4. Similar
analysis has been done in [45]. In addition to that we also analyse the
bottom of each PPG pulse wave because artefacts and baseline movements
may change the pulse wave so that modulated signal can not be detected.
Analysing the lowest points of each amplitude adds extra information and
comparing the results with the peaks, gives better results.

According to our tests it is possible to stay in the time domain and
detect breathing based on the top and bottom edge of the PPG signal.
Our proposed algorithm receives PPG signal from the SpO2 sensor. FIR
notch filter removes 50/60Hz and 100/120Hz noise. The PPG signal was
also filtered with median filtering over 125 samples to remove small glitches
and make the signal smoother. The signal was then normalized and DC
part was removed. In the following algorithm, N represents the number
of current sample and will be increased after next minimum or maximum
point is found. There are five main steps that describe the algorithm in
Figure 3.2.
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1. Buffer the signal with length of five seconds
2. Detect and count number of local minimasminP and maximasmaxP

3. IF maxP (N − 1) > maxP (N) < maxP (N + 1)
THEN found maxPtrn← 1

4. IF minP (N − 1) < minP (N) > minP (N + 1)
THEN found minPtrn← 1

5. IF
minPtrn(startT ) > maxPtrn(startT )
AND minPtrn(startT ) < maxPtrn(endT )
AND minPtrn(endT ) > maxPtrn(endT )
THEN found doublePattern← 1

Figure 3.2: Algorithm1. Respiration extraction using pulse wave
amplitude variation [57]

To analyse the signal we collect in step 1 five seconds of the signal into
the buffer. In step 2, new local minimas minP and maximas maxP , that
arrive alternately with the continuous pulse wave, will be detected. In step
3, after finding a new local maxima maxP (N), it will be compared with the
previous one maxP (N − 1). If the previous maximum point maxP (N − 1)
has larger amplitude than the last one, it will be included as a part of the
detected pattern. If next local maxima maxP (N + 1) has bigger ampli-
tude than the last one maxP (N) then respiration pattern, based on the
maximum points, has been found and value maxPtrn gets value ”1” or
”TRUE”. Same methodology is repeatead in step 4 but with the mini-
mum points (minP ). In step 5 we compare start startT and end time
endT of the minimum and maximum patterns. If the minimum pattern
has started and ended after the maximum one, then respiration signal has
double detected, value doublePattern gets ”TRUE” and we can disregard
last detected pattern.

Figure 3.3 describes the simplified block diagram of the proposed algo-
rithm. There are three main parts for pattern detection. The first one is
detecting patterns based on the local maxima, on the left side. Second one
is detecting patterns based on the local minima. In the middle part, double
patterns are detected and removed, if necessary. The logic of how double
detected patterns were removed was described in Section 3.3.

3.3.3 Algorithm implementation
PPG signals are usually analysed in the wearable device for sleep apnea
diagnosis. There are three main steps that are performed during the anal-
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Figure 3.3: Block diagram of the proposed algorithm [57]

ysis - preprocessing, features extraction and classification, as described in
Figure 3.4. Preprocessing stage removes artefacts and noise from the PPG
signal. In the features extraction stage, respiration rate, heart rate, and
SpO2 level are extracted. Classification stage depends on the goal of the
processing. In our case, all signals, that are extracted, could be used for
sleep quality diagnosis.

Most common source of interferences is the mains power and background
lighting, that causes 50/60Hz sinusoidal spikes with its higher harmonics.
Motion artifacts that are caused by poor contact to the photo sensor, need
much more processing. There are two types of PPG measurements, trans-
mittal and reflective. Although these two arrangements have no fundamen-
tal difference from the optics point of view, their practical properties and
performance differ significantly with respect to the motion artifact, signal-
to-noise ratio, and power requirements. Reflective PPG needs more secure
attachment of the LED and photo-diode to the skin surface, when compared
to transmittal PPG. Once an air gap is created between the skin surface
and the optical components due to some disturbance, a direct optical path
from the LED to the photo-diode may be created [31]. Possibility of using
either method depends highly on the position from where the measurements
will be taken. Attachment of the sensor on the right body location has di-
rect impact to the signal amplitude. Low amplitude PPG signal is mostly
caused by the automatic gain controller. Detecting heart beats from low
amplitude the PPG signal is considered difficult. Under the placed position
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Figure 3.4: Three stages common structure of PPG diagnostic system [57]

there should be a thin epidermal tissue layer through which photons can
reach the target blood vessels with less attenuation. In the arterial end of
the capillaries the pressure is 30 to 40 mm Hg and in the venous ends 10
to 15 mm Hg [31]. Greater arterial pulsation than cutaneous pulsations in
magnitude makes it less suspective to motion to the naturally higher in-
ternal pressure. Simultaneous measurements from different body positions
increase measurement reliability. These factors generate several type of
additive artifacts which may be contained within PPG signals. This may
affect the extraction of features and hence the overall diagnosis, especially,
when the PPG signal and its derivatives will be assessed in the algorithmic
fashion.

3.3.4 Application areas
One possible application of the extracted respiration rate is OSA detection.
There are certain thresholds that point to the apneic episode. Specific
pattern for apneic episode was described in Chapter 3.1.4.

As the sleep apnea could be a result of arrhythmia, individual signals
could be used in order to detect any critical changes. For sleep apnea de-
tection and Apnea Hypopnea Index (AHI) calculation, respiration signal
is mandatory. Implementing vital signal monitoring with the thresholds
makes it possible to develop OSA screening application for home monitor-
ing. It could be used in case sleep apnea is suspected or there is a rec-
ommendation from the doctor to monitor premature babies also at home
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conditions. Figure 3.5 describes proposed algorithm that consists all main
parts of the sleep apnea detection. It is capable to detect apneic cases to
calculate AHI index.

Figure 3.5: Sleep Apnea detection algorithm [55]

The purpose of this algorithm is to provide a general overview about all
the steps that are needed to perform in order to process the acquired signal
and provide output signals for the user feedback and further analysis. Many
of these steps include sophisticated signal processing tasks. Describing
individual steps in detailed level is not the scope of this chapter rather
describe the architecture of proposed sleep apnea detection method.

3.4 Experimental results
An algorithm for respiration signal extraction from PPG signal has been
implemented in MATLAB environment to perform experimental results.
The aim of these experiments is to validate our proposed algorithm suitable
for using on children.

3.4.1 Detection of respiration rate
Respiration causes variation in the peripheral circulation that affects the
pulse wave. There is a great correlation between breathing effort and
changes in the amplitude of pulse wave. Figure 3.6 describes the situa-
tion where the signal is clean and without any artefact. There are high and
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low peaks on top and bottom of the high amplitude signal which describes
the periodical amplitude variation that is caused by the respiration.

Figure 3.6: Correlation between the respiration and pulse wave [57]

Mean accuracy of the respiration detection of our method is 101.92%
with the Standard Deviation (SD) of ±7.65%. Accuracy over 100% means
that there were more respiration elements detected than exist in the ref-
erence signal. Table 3.1 describes tests with twelve different subjects to
validate our proposed algorithm. First column is the signal name that cor-
responds to the name in the PhysioNet MIMIC II Waveform Database.
Second column is the number of respirations in the reference signal. Next
two columns describe the accuracy of minima and maxima based methods.
Last column is the final accuracy we get after using both, minima and
maxima based pattern detections and eliminating double patterns.

If we would use only local minima based detection, mean accuracy would
be 80.28% ±5.36%. Maxima based detection rate has mean accuracy of
80.73% ±5.53%. There is a significant accuracy increase, 32.24% ±6.73%,
using double pattern detection. It helps to increase the accuracy in the
situation where the signal is distorted within some tens of milliseconds or
DC component moves the signal baseline away from the zero point.

3.4.2 Comparison with other results
Mobile sleep apnea screening platforms have been in interest of different
research groups. One similar platform was described in [50]. They con-
nected several bio-sensors to the smart phone and use FFT to calculate
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Table 3.1: Estimating the breathing rate with pulse wave amplitude
variation detection [57]

Ref. Accuracy (%)
Signal name resp. Min based Max based Total
3000358_0010m 3972 76.86 82.30 101.33
3505210_0002m 4172 77.59 74.98 90.65
3470111_0006m 4095 78.44 79.61 104.66
3900726_0001m 4355 69.48 74.95 94.12
3601304_0001m 4139 84.13 86.25 111.11
3000858m 4376 81.67 81.26 92.62
3047119m 4065 90.09 91.76 114.32
3047445m 3465 85.83 84.27 108.54
3048124m 3748 77.51 76.25 95.84
3048455m 3553 80.86 80.83 102.26
3048754m 4232 75.21 71.15 96.93
3049672m 3578 85.63 85.16 110.65
Avarage 80.28 ±5.36 80.73 ±5.53 101.92 ±7.65

the heart and breathing rate. Oxygen saturation was calculated from the
PPG signal. OSA estimation was done based on the heart rate and oxygen
saturation rate because fluctuations in the blood oxygen level and heart
rate are detected during the apnea periods. Spectral analysis of Arterial
Oxygen Saturation (SaO2) or heart rate variability have been suggested as
potential diagnostic tools for this disease [104]. Some studies show that
some patients may not even have variations in SaO2 or heart rate signals,
therefore pre-screening may not give adequate answer to the suspicions and
full PSG is needed.

Because the SpO2 measurement accuracy is very sensitive to the body
movements and amplitude of the pulse wave, several methods have been ap-
plied to suppress motion artefacts. Kalman filter has been used to improve
the results to derive the pulse rate with 3% of error [103].

Table 3.2 compares different techniques to extract the respiration rate
from the PPG signal. First column is a short name of the method, that is
explained at the end of the table. Second column describes number of the
subjects to validate the method. There is a difference in the age groups,
described in the third column. Most of the algorithms are validated with
mid-age adults not with neonates nor children as we have done, except one.
Comparing the number of studies with adults and children, there is still
need for extended research with neonates and children. As there are slight
differences in signal waveforms between children and adults, there could
be some deviations in the results when applying on children. Last column
describes accuracy of extracting the respiratory information with the SD.
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Comparing the PWV method with PRV and PAV, it has the most accu-
rate results because PRV and PAV are more affected by the sympathetic
modulation. The accuracy of our method is also comparable with the PTT
method which needs ECG in addition to the PPG signal [16].

Table 3.2: Comparison of different respiration extraction methods [57]
No of Absolute

Method subj. Age accuracy
IMF 4 NA (adults) 99.48±0.44%
PRV 17 28.5±2.5 86.93±15.34%
PWV 17 28.5±2.5 101.27±7.81%
PAV 17 28.5±2.5 84.55±15.34%
PWV+PAV+PRV 17 28.5±2.5 99.74±7.30%
BML 10 25±3 98.63±1.24%
TMI 10 25±3 98.54±1.12%
PTT 15 4.47±2.04 100.96±9.26%
Our prop. 12 NA (neonates) 101.92±7.65%

*BML - beat morphology [102]; TMI - time interval [102]; IMF - Instrinsic Mode Functions; PRV - pulse rate
variability [51];PAV - pulse amplitude variability [51]; PWV - pulse width variability [51]; PTT - pulse transit
time [16]

Our proposed method, last row in the table, has excellent results com-
pared with the other ones. The main difference is that our proposed algo-
rithm has low computational needs and we stay in the time domain. That
makes our proposed algorithm suitable for using on energy constrained em-
bedded systems while still getting excellent results. We need to detect only
amplitude minimas and maximas and compare those values with the pre-
vious ones. The most important requirement is a source signal with good
quality that can be achieved with high-end electronics and different arte-
fact suppression methods. It needs an extended testing and implementing
various artifact suppression techniques to validate the accuracy in different
real-time situations. Initial results show that using pulse wave amplitude
variation based detection, it is possible to estimate the respiration signal
with high confidence.

However there is a need for extended tests to demonstrate the reliability
of our proposed algorithm in different real-life situations when there could
be significant amplitude changes. To increase the accuracy of breathing rate
estimation there is a need to identify and throw away distorted parts from
the signal. There are many possibilities how pulse wave can be distorted
which makes features extraction unusable. If we would use two optical sen-
sors to measure the pulse wave, we could have significantly better signal
quality. If readings from one sensor are out of limits or distorted, we could
replace some parts of the signal with readings from the second one or esti-
mate the signal with the help of second one. Another option is to increase
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the number of wavelengths adding additional LEDs which could decrease
the effect of artifacts with more sophisticated signal processing. Drawback
of this solution is increased power usage due to the increased number of
optical sensors. On the other hand, our goal is to increase the accuracy of
the measurements from the optical sensors.

3.5 Chapter summary
To goal of this chapter was to present an algorithm for respiration signal
extraction from pulse wave and provide a possible application areas such as
sleep quality estimation and the diagnosis of sleep diseases. Using the pro-
totype, described in Chapter 1.2, and optical sensors, described in Chapter
2.2, there was a need to apply signal processing to detect the pulse wave
and extract interested signals. Proposed algorithm could be used for this
purpose to extract the respiration rate and use it for further diagnosis.

The first part of this chapter gave a background information about the
sleep and history of sleep research. There was also a discussion about sleep
apnea and its classification to understand better the purpose of this work.

The second part of this chapter gave an overview which methods have
been used for respiration signal extraction from pulse wave and how the
respiration signal differs between different age groups.

The third part of this chapter introduced our proposed algorithm for
respiration signal extraction from pulse wave using pulse wave amplitude
variation. It was also discussed about possible application areas.

The fourth part of this chapter described experimental results how res-
piration signal was extracted. Comparison with other results gave a good
overview about the efficiency of our proposed method. Our proposed al-
gorithm had low computational needs that makes it suitable for using on
energy constrained portable devices.
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Chapter 4

Self-Awareness in Health Moni-
toring

During the continuous development remote monitoring health-care sys-
tems become smaller, more powerful and draw less energy. Those features
increase the freedom to use them in more complex situations. Modular
monitoring platform, proposed in Chapter 1, was designed taking into ac-
count possible future directions. Together with proposed optical sensors,
described in Chapter 2, this system could be used for either long- or short-
term monitoring purposes. As this system has several integrated sensors,
it gives some level of awareness to estimate and analyze some of the most
important parameters autonomously. To give systems some level of aware-
ness is the future direction where smart devices will move. The objective
of this chapter is to present this direction as one of the possible application
areas of the proposed system.

In this chapter a self-aware health system is presented. To understand
the concept of self-aware system, there is an explanation of situation aware-
ness. The architecture for the first version of the prototype is proposed and
tested in [83]. As the first version of the prototype was used for offline anal-
ysis, there is also a new version of the prototype presented that is capable
to collect, abstract and categorize inputs from various sensors online. Main
results of this chapter have been reported in [83].

4.1 Background
B.J. Baars observes that ”like any other biological adaptation, conscious-
ness is functional” [5]. The same can be claimed about awareness and
indeed, the insight that a sense of awareness of a system’s own situation
can facilitate robust and dependable behavior even under radical environ-
mental changes and drastically diminished capabilities, has resulted in a
proliferation of work on self-awareness and other system properties such as
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self-organization, self-configuration, self-optimization, self-protection, self-
healing, etc., which are sometimes subsumed under the term ”self-*”. Thus,
awareness enables to improve the behavior of systems, making them more
robust and reducing processing, communication and energy requirements.
However, designing and implementing it in an ad-hoc manner for every new
system is not feasible. Introducing awareness as a separate concept in the
Cyber-Physical System (CPS) infrastructure rather than as part of the ap-
plication functionality, promises to simplify development and operation of
such systems. As CPS are typically Systems of Systems (SoS), the aware-
ness must be solved comprehensively, ensuring that the understanding of
the situation is coherent and consistent across the SoS.

Self-awareness, situation awareness, and attention are key enablers for
efficient Fog and Mist computing. Situation awareness [18] facilitates the
continuous interpretation of the stream of data collected from the environ-
ment in the context of the goals and objectives of the CPS. A situation is
defined by the values and interpretation of a set of situation parameters
[82]. A situation parameter can be monitored or computed independently
and represents a property of the situation of interest. In our example the
information for generating situation awareness is exchanged by a proactive
middleware, that is independent of the application functionality and can
be considered as part of the CPS platform [83].

4.1.1 Fog and mist computing
Mist and fog computing are described in more detail in [83]. Due to its
distributed and localized architecture, computing is a natural platform for
a variety of critical Internet of Things (IoT) applications such as connected
vehicles, smart grids, smart cities, and, in general, wireless sensor and actu-
ator networks [10]. To that end several programming models and applica-
tion frameworks have been developed for fog computing [92, 38]. However,
in a strict definition of fog computing the devices at the very edge are not
involved in computation but only in data acquisition while the interpreta-
tion occurs in the gateway. Hence, network delay and inefficient bandwidth
utilization may still be problematic. Mist Computing pushes the processing
even further to the edge of the network involving the sensor and actuator
devices, thus decreasing latency further and increasing the autonomy of
subsystems. In such scenarios awareness and self awareness of every in-
dividual device is critical as the computation and actuation is dependent
on the individual device’s perception of the situation. The challenge with
implementing mist computing systems lies in the complexity of the result-
ing network and the interactions in the network, which must be managed
by the devices themselves as central management of such systems is not
feasible.
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4.1.2 Situation awareness
To understand the essence of the self-aware system, it needs a specific
terminology that is fully explained in [83]. Self-awareness monitors overall
system performance in a dynamically changing environment. It includes
self-monitoring, situation awareness and attention because the system must
understand both its own state and the environmental conditions. A system
that only tracks its own state has a very limited view of its situation.

Situation awareness enables the continuous interpretation of data col-
lected from the environment in the context of the CPS’s goals and objectives
[25]. A situation is defined by the values and interpretation of a set of situa-
tion parameters [69]. A situation parameter can be monitored or computed
independently and represents a property of the situation of interest. In our
example, the information for generating situation awareness is exchanged
via proactive middle-ware, which is independent of the application func-
tionality and can be considered part of the CPS platform. Attention helps
balance the competing tasks of collecting, processing, and responding to
the data by prioritizing scarce system resources for the CPS’s tasks and
objectives. These priorities dynamically change depending on the situation
and system state.

The concept of situation awareness originated in psychology, but its
concepts are applicable to embedded systems. Just as humans process data
from their senses to develop situation awareness, a CPS must be aware of
its situation to perform optimally, as the “correct” behavior is dependent
on the current situation. For instance, the meaning of a low fuel warning
light in a vehicle is different when that vehicle is in the middle of a desert
than when it is close to a gas station. Although the sensor value is identical,
the interpretation of the sensor reading and consequent actions can be very
different.

Complex phenomena require using data from several sensors with diverse
modalities to generate an adequate level of situation awareness. The sensors
may be attached to distinct, physically disjointed computing nodes, which
presents the challenge of distributing the computation among individual
nodes.

One example of distributed sensing and processing involves monitoring
the human body during everyday activities. Evaluating the body’s state
requires measuring physiological parameters (such as heart rate) and in-
terpreting their meaning (for example, the person is sleeping or running).
Thus, sensors of different modalities must be attached to different areas
of the body, leading to a distributed sensor system. However, wiring the
human body is impractical, necessitating a network of autonomous wireless
sensors.
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4.2 Overview

The initial version of proposed system is presented in [83]. As it supports
many different types of health care sensors and systems, the proposed mod-
ular health-monitoring system is one of the examples that could be inte-
grated into this system. The most common way is to receive health related
monitoring messages via smart-phone which requires installation of special
software that is developed only for this type of sensor. Instead of our pro-
totype, it can be any device and there are wide range of similar health-care
devices on the market. All of them are designed for special purposes and
send out health data that is analyzed by the software suitable only for that
particular device.

There are several possible problems related to the smart-phones as a
monitoring gateway for health-care devices. Up to 1-2 days long battery
lifetime and in case the smart-phone has to be taken into use for other
purposes, may interrupt health data receiving and analyzing. There are
also applications that may automatically limit or turn off data, WIFI or
Bluetooth connection if the phone is in standby mode to increase battery
life. That makes smart-phone unreliable for automatic health-care data
processing and alarming purposes.

To increase the reliability and make everything related to the device
configuration, data reception and analysis invisible for the end-user, there
can be independent self-aware health monitor installed to the home that
takes care of everything in the background. All health-devices, that send
out any data, are received by the self-aware health monitor, collected, ab-
stracted, categorized and classified. The system has a knowledge about the
status of connected devices, itself and could give a feedback depending on
the current situation.

4.3 Self-aware health monitor
Figure 4.1 shows the conceptual architecture of a self-aware health monitor
that makes use of the middleware ProWare and was developed at the Re-
search Laboratory for Proactive Technologies at Tallinn University of Tech-
nology. The prototype monitor abstracts and classifies inputs from various
sensors including altitude, location, heart rate, accelerometers, tempera-
ture, and oximeter and then compares the identified input pattern class
with a pre-built or dynamically updated model. In the case of a mismatch,
an anomaly signal is generated that induces attention. An attention con-
trol mechanism triggers the collection of complementary data or additional
analysis steps if an anomaly appears and the analysis is not conclusive.
Depending on the intensity and duration of the anomalous situation, the
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monitor alerts the person or changes the health goal, thereby adapting to
a new situation. In highly anomalous cases, it alerts other higher-level
devices, emulating an emergency call.

Figure 4.1: The architecture of a prototype self-aware health monitor [83]

Abstracting data in the sensor nodes reduces bandwidth and helps the
system cope with changes to its structure. We apply the same mist com-
puting principles to monitor vital human body parameters in the context
of the individual’s activity. In addition to the interpretation of sensor data
differing in various situations, the fidelity of individual sensor data acqui-
sition and processing is dependent on the person’s activity—for example,
monitoring requirements for sleeping are different from those for running.
Monitoring requirements can be guided by a health practitioner, who could
instruct the system in certain situations to increase the fidelity of monitor-
ing or to log the data with finer granularity.

The situation parameter reflecting the heart rate is only meaningful in
context. To evaluate whether a person’s heart rate at a given moment is
within a safe range, the algorithm must at minimum consider the specific
current activity and the immediate history of activities, as it takes time for
the human body to adapt to or recover from a specific activity. The larger
context is also relevant: how well rested the person is, how much food has
been consumed, and so on. In a health monitoring application, parameter
types can reflect a person’s activity (such as resting, walking, or running),
the state of the body (stressed, rested, or tired), and the current physical
load (high or medium).

Monitoring a person’s daily activities has been an active research area
for some time. Liang Dong and his colleagues placed several accelerometers
on an individual, using a Kalman filter to track and classify the individ-
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ual’s daily physical routines [15]. The body segment status was categorized
into static and dynamic, and further differentiated into periodical and non-
periodical status using discrete Fourier transform. A hidden Markov model
was used for training data and periodical movement modeling. The re-
searchers reported overall classification accuracy at about 90 percent.

Davide Curone and his colleagues developed a similar physical activity
assessment system for emergency intervention rescuers [13]. They inte-
grated wearable electronics into textile fabrics to automatically identify
potentially dangerous conditions for the monitored subject. The system
achieved overall classification accuracy of 88.8 percent.

As these examples illustrate, the evaluation of a person’s activity might
use a range of sensors as input, and the sensor data must be interpreted
differently for different activities. A heart rate of 130 might be normal for
climbing stairs or jogging, but the same heart rate is worrying when the
person is at rest or working at a desk.

4.4 System architecture
System design is a process that has many iterations. In this chapter we
introduce the first version of the prototype that has limited functional-
ity, and the second version that meets our requirements to perform real
experiments.

4.4.1 Initial version of the prototype
To have a first proof of concept and develop the idea further a prototype
with offline processing functionality was built. In this way it took the
least amount of time to get first results, analyze these and continue with
developing a prototype with real-time functionality that could also include
the proposed modular platform.

The first version of the prototype is introduced in [83]. The heart rate
data was logged using a BM-Innovations chest strap BM-CS5 [9]. The
pulse rate was communicated once per second using the Bluerobin wireless
protocol to the Texas Instruments eZ430-Chronos watch. The watch was
equipped with an internal pressure sensor for altitude measurements. The
heart rate and altitude were saved with a full time stamp temporarily in
the internal memory of the watch. Data logs from the experiments were
communicated to a PC for analysis using wireless SimpliciTI protocol.

For evaluating the activity of the person an accelerometer in a smart-
phone was used and the phone was carried in the pocket of the subject
during experiments. The G-Sensor Logger Android application was used
to collect accelerometer measurements.
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4.4.2 A prototype with real-time functionality
To automate the manual work during experiments and simulate more real-
life situations, the second version of the prototype was developed. Al-
though, it is not yet published at the time of writing, first experimental
tests were performed and there are high expectations on this version. The
architecture of the new prototype is depicted on Figure 4.2. Green color
modules are communicating with BLE protocol. Orange color boxes are
using WSN protocol for long range communication.

Figure 4.2: The architecture of self aware system

The system is suitable for using in indoor and outdoor. The main func-
tionality has built into the Raspberry Pi module. There are two BLE
modules connected to it. The reason for two modules is that to detect
iBeacons, transceiver must be in receiving mode all the time. iBeacon is a
protocol standardized by Apple to broadcast the identifier of the device to
nearby portable electronic devices. The technology enables smart-phones
, tablets and other devices to perform actions when in close proximity to
an iBeacon [39]. The purpose of using iBeacons is to detect the location of
human for indoor positioning. There is no limitation how many iBeacons
can be used but we have chosen currently to use three of them concurrently
in order to perform triangulation for exact positioning.

The second BLE modules is used to connect to the BLE peripheral de-
vices. Peripheral device can advertise, to let other devices know that it’s
there, but it is only a Central that can actually send a connection request
to estalish a connection. When a link has been established, the Central is
sometimes called a Master, while the Peripheral could be called a Slave. It

93



is possible to have established connections with many peripheral devices.
However, it is not possible to have a connection with peripheral device and
also listen for advertisements from iBeacons using the same radio. In our
case, we are using a SensorTag [44] and Polar H7 chest strap [78] as a periph-
eral devices. With the SensorTag, it is possible to to receive acceleration
and body temperature information. Body temperature is measured with
infrared temperature sensor together with ambient temperature. Polar H7
chest strap is used for heart rate measurements on the chest.

One of the possible use case of self-aware system is to detect lying human
on the floor. This becomes more important for elderly people monitoring.
Similar functionality has been studied in [70] using non-contact D6T-44L
thermal sensors from Omron [76]. The sensor has chip arrays of 16 channels
(4x4) to measure the surface temperature of an object. It can be used for
detecting the presence of human beings by detecting the far-infrared ray
of an object. For human detection the sensor is placed to the ceiling. The
data about temperature readings is sent over wireless link to the Raspberry
Pi.

Raspberry Pi has been chosen as a gateway because of the functionality.
It has powerful processor, enough internal storage, possibilities for different
communication interfaces and reasonable price. GPS module connected to
the Raspberry adds possibility to perform locationing in outdoor condi-
tions. GSM module makes possible to exchange real-time data between the
Raspberry Pi and rest of the self-aware system. Instead of using GPS and
GSM modules connected to the Raspberry Pi, it could also be a smart-
phone that collects the GPS data and use smart-phone as a WIFI hotspot
for data connection. For research purposes and easier administration we
have chosen the version depicted on Figure 4.2.

All data that is collected by the Raspberry Pi is sent to the Self-Aware
Health sytem database for further processing. The communication between
the server and client is implemented using Node.js architecture. It is an
open-source, cross-platform runtime environment for server-side and net-
working application written in JavaScript. It is widely used in real-time
web applications. On server side, data is saved into MySQL database.

4.5 Experimental results
Even though the complete system of Figure 4.2 has not yet been realized,
we conducted a series of experiments in a health monitoring scenario to val-
idate key assumptions and show the viability of identification of awareness
properties in a mist computing approach. The data relevant for situation
assessment was collected from individual sensors.

In the experiments a test person was involved in the following activities:
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resting on a couch, working at a table, walking slowly indoors, climbing
stairs indoors and walking at a rapid pace outdoors. The sensors used in
the tests were accelerometer, altitude meter and a heart rate monitor.

The collected data was analyzed to determine if local situation assess-
ment by combining data from individual embedded sensor nodes is feasible.
Although the collected data was analyzed off-line the algorithms applied
are sufficiently light-weight to be executable in embedded low-power com-
puting nodes.

The data logged during the tests from all the sensing devices was ana-
lyzed with MATLAB. Our aim was to investigate if the performed activities
can be detected (i.e., situation parameter values determined) from individ-
ual data streams.

As noted above, the sampling rate for pulse rate and altitude estimate
was 1Hz while the average sampling rate for the accelerometer was 16Hz,
therefore the raw sensor data was synchronized before analysis. We em-
ployed the modulus of the acceleration vector

|a| =
√

a2x + a2y + a2z, (5)

to estimate the personal activity level, which proved to be sufficient.
Figure 4.3 (a) depicts the average values of observed pulse rates and

acceleration over 10-second periods. Figure 4.3 (b) depicts the average
values of observed pulse rates and acceleration over 10-second periods.

The results from the different experiments populate distinct areas in the
pulse rate/activity space. The activities of sitting, driving, indoor walking,
and outdoor walking can be well categorized using only two sensors: the
pulse rate meter and the accelerometer. However, stair climbing forms
a rather large area in the pulse rate/accelerometer space, triggering the
attention mechanism to seek further data from the altitude sensor. The
additional data allows the health monitor to identify the activity as stair
climbing and to distinguish between moving upward (green) and downward
(blue).

The results from different experiments populate rather distinct areas
in the pulse rate/activity space. The activities sitting, car driving, indoor
walking, outdoor walking can be well categorized using only two sensors, the
pulse rate meter and the accelerometer. However, the green and cyan dots
(stair climbing) form a rather large area in the pulse rate/accelerometer
space triggering the attention mechanism to consult further data from the
altitude sensor. These additional data allow to identify the activity as stair
climbing and to distinguish between moving upwards (green) and moving
downwards (cyan). More generally, this illustrates the benefit of atten-
tion directed data collection and analysis. If data from a few sensors,
processed with a simple analysis algorithm, comes to an unambiguous con-

95



Figure 4.3: Experimental evaluation results. (a) Pulse rate versus
activity, sitting or resting (red), driving a car (black), indoor
slow walking (dark blue), outdoor rapid walking (magenta),
walking upstairs (green), and walking downstairs (light blue).
(b) The modes are correctly tracked as the subject performs

different activities.

clusion, unnecessary data collection and processing is avoided. Only cases
when anomalies are detected or the analysis is inconclusive warrant a more
elaborate and expensive procedure of data collection, communication and
computing. Thus, attention based sensing and analysis has potential to
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save significant time and energy. To quantify this potential in various ap-
plications remains the objective in future work.

It has to be taken into account that these states in the figure are mostly
what can be considered the steady states for given exercises, although some
transitional states are also observed (the samples between the boxes). Pulse
rate changes are never instantaneous. This is clearly visible in the right side
of Figure 4.3 that depicts a series of exercises explains why the temporal
aspect of human physiology must be considered.

From the experiments it can be concluded that relatively simple sensors
can be used to determine the activity the person is involved in and correlate
physiological parameters to individual activities. Moreover, most of the
time only a subset of the available sensors have to be employed leading to
a lean approach of monitoring.

For a more accurate estimation, however, additional phenomena need
to be measured. Naturally such a monitoring system must adapt to an
individual but once the adaption phase is complete, the CPS is able to
monitor the person and determine if the physiological parameters are within
the typical range for a given activity.

4.6 Chapter summary
Self-awareness, situation awareness and attention are powerful concepts
with the potential to lead to high efficiency in various sensor and actua-
tor networks. Inspired by biological example, studies and proposals that
touch upon various aspects of self-awareness have proliferated during re-
cent years. Still, its potential is hardly understood and by far not yet
exploited. Contributing to this broad effort, we have explored situation
awareness and attention, concluding that the principles of generating situ-
ation awareness using the situation parameter concept are well applicable
for health monitoring. We argue that situation awareness is an inherent
part of self-awareness. A system has to know its own inner state (self-
awareness in a narrow sense) and where it is in the world and what the
environment looks like to make a proper assessment of its own state and
performance. Only with the understanding of the context it is justified to
call the system self-aware in a broader sense.

Situation awareness is jointly generated by a group of sensors, thus
distributing the burden over several nodes and leading to Fog comput-
ing. Fairly simple algorithms, executed by resource constrained embedded
nodes, compute the situation parameters.

We have shown in our experiments with only three sensors (for pulse
rate, acceleration, altitude) how the different measurements complement
each other to allow for a precise assessment of typical activities and how
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attention can steer data collection and processing for the benefit of lean
and efficient system. Multiple sensors facilitate distributed data collecting
and processing based on fog and mist computing paradigms.

In this chapter the working prototype of initial self aware health-system
was introduced. Also the definition of self-aware system and situation
awareness was discussed to give a better overview how the data from sensor
networks could be processed in more efficient way. Initial experiments show
the potential how simple sensors can be used to determine the activity and
correlate it physiological parameters of the human.
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Chapter 5

Conclusions and Future Work

The discussion about methods to speed up health care monitoring experi-
ments in different application areas is summarized. As a result the proposed
hardware solution to perform such experiments would give a valuable ben-
efit designing further open-source platforms. In this chapter we summarize
the thesis and discuss about possible directions for future research.

5.1 Conclusions

This thesis is focusing on the personalized health care that requires new
type of technological solutions to support this direction. One part of this
ecosystem is modular, small size and portable health monitoring devices
that does not require highly qualified medical personnel to use it. As the
health care covers all age groups and wide range of diseases there is a need
for modular solutions that bring down health care costs, have some level
of autonomy and are easy to handle. Proposed architecture in this thesis
is one possible solution for these issues. Also some use cases for different
diseases and age groups were demonstrated.

We have proposed a portable modular architecture for health care mon-
itoring. Its small dimensions together with high flexibility and modularity
make this solution usable from infants up to elderly people. There is readi-
ness to extend system functionality with new type of modules. Two use
cases were presented to demonstrate system capabilities. Foot sensor for
sleep quality analysis for infants and smart sensor for pulse wave detection
for adults. A working prototype was built and tested on the first test sub-
jects. All technical functionality was implemented and tested with built-in
software tests.

New type of dual optical sensor was developed to increase the noise im-
munity caused by the movements. On one hand, infants need always special
care and developing unobtrusive sensors is complicated, on the other hand
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sleep analysis on infants need unobtrusive sensors with good source signal.
Proposed solution is using dual optical sensors to increase the quality of
optical signal by analyzing continuously signal to noise ratio and choosing
the best signal source. Compared to conventional optical sensors with one
optical element we get increased noise immunity but also slightly increased
energy consumption. First version of the prototype was developed and
tested in-together with modular platform. Although some physical connec-
tion errors on the sensor appeared, initial tests were performed successfully.
First tests showed that having multiple optical sensors with adaptive source
signal selection helps to improve overall quality of the optical signal.

Smart photoplethysmographic sensor was developed for pulse wave de-
tection from different tissue layers. Its main purpose is to detect the lo-
cation and pulse wave only from arteries. As one application, this type of
optical sensor decreases the time needed for the measurement of arterial
stiffness. Initial results with adults showed that it is possible to detect the
location of artery.

Respiration extraction algorithm from pulse wave with low computa-
tional requirements was proposed for portable health monitoring devices.
The main difference is that our proposed algorithm has low computational
needs and we stay in the time domain. That makes our proposed algorithm
suitable for using on energy constrained embedded systems while still get-
ting excellent results. The most important requirement is a source signal
with good quality that can be achieved with high-end electronics and dif-
ferent artifact suppression methods. First experiments with clinically val-
idated signals gave excellent results with low computational requirements.
Experiments were performed using signals measured from toddlers and chil-
dren.

As health care is moving more and more into everyone’s home, it re-
quires increased autonomy. There is a need for better understanding about
the conditions person is being monitored and how to take environmental
changes into account. We have proposed a self-aware health care system
that could help to add some level of situation awareness and avoid unex-
pected results. First version of the prototype was built for proof of concept.
Results with this prototype were promising to develop this idea further and
continue with the experiments with the second version of the prototype.
The second version of the prototype had a real-time data analysis function-
ality. By integrating various health-care and environmental sensors it was
possible to increase the quality of the decisions.
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5.2 Future Work

There is a wide range of possible directions how this work could be further
extended. Some of most relevant ones are discussed below.

Proposed modular system is a good starting point to provide an open-
source platform to perform different kind of measurements. Developing
new type of modules helps to extend system functionalities into different
health care areas. This kind of platform could become a standard that is
used for research experiments and as first prototype for developing a new
type of wearable device. Open-source hardware together with firmware
helps to build the community that takes care of developing these ideas
even further. Sharing existing design under the GPL license would give the
biggest benefit for others.

Proposed smart photoplethysmographic sensor is planned with increased
capabilities and reduced dimensions. As current prototype was the initial
attempt with successful results to prove the idea, it is the starting point do
develop it further and perform additional experiments with larger number
of test group.

Proposed self-aware health system is the first version of real-time sys-
tem that implements wide range of sensors for health care monitoring.
Middle-ware, that takes care of decisions and provides situation awareness
capabilities needs more focus. As it is complex system that needs coopera-
tion in different areas the development continues in hardware compatibility,
software functionality and learning method direction.
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Abstract—The aim of this paper is to provide a high level
architectural description of portable sleep apnea screening sys-
tem. Proposed patient mobile monitoring solution increases their
mobility, flexibility and measures vital data with minimal patient
disturbance with increased reliability. Data is acquired with
synchronous dual multi-wavelength optical sensors, placed on
the foot. Movement artefacts are reduced with the correlation
of accelerometer readings. Results are sent over the wireless link
to the smartphone for further diagnosis which gives also feedback
to the end user. Because of the limitation of the measuring
device dimensions and computational power some of the signal
processing is done on the smartphone. Combining different latest
technology achievements makes our proposed solution suitable for
neonates and children for sleep apnea pre-screening.

I. INTRODUCTION

The need for sleep apnea monitoring devices for babies and
children at home environment shows an increasing interest.
Currently available devices monitor only baby’s breathing and
movements. In addition to that, measuring heart rate and
blood oxygen saturation (SpO2) level have huge benefits. In
case of Obstructive Sleep Apnea (OSA) breathing movements
continue but an obstruction in the windpipe prevents any
oxygen reaching the baby’s lung. This is causing sudden SpO2
drop in blood, that is related often to the Sudden Infant Death
Syndrome (SIDS). Clinical polysomnograms, which are used
for sleep disorder detection, are expensive and require special
hospital or sleep disorder centre to monitor patients over-
night. Our developed solution includes in addition to breathing
detection also heart rate, which is calculated from the SpO2
signal, and accelerometer used for body posture detection
and sleep pattern diagnosis. Those inexpensive at-home self-
recording devices can reduce costs by screening out patients
who do not need a full sleep study. For babies and children
it is also the most comfortable way to perform pre-screening.
Having diagnostic data from large number of patients gives a
better quality to perform larger-scale research studies.

II. SLEEP APNEA

The term apnea means absence of spontaneous breathing. It
is a common disorder that is estimated to occur in about 7% of
the population of which more than 85% remain undiagnosed.
SIDS accounts for 22% of all post-neonatal deaths and affect
infants with ages 1 month to 1 year. OSA is currently estimated
to affect between 1% and 3% of 2- to 8-year old children and
is most commonly found in children between 3 to 6 years of
age.
Overnight sleep study test includes usually electrical activity

of the heart, breathing patterns, SpO2 level, muscle activity
and eye movements. For pre-screening purposes collecting all
of those signals is not practical. Therefore current research is
focusing on the most important signals that give immediate
feedback about critical conditions.

III. STATE OF THE ART

The diagnostic devices and therapeutic devices segments
will grow at a Compound Annual Growth Rate (CAGR) of
15% and 17%, respectively, by 2017. The diagnostic devices
market is propelled by Polysomnography (PSG) devices, par-
ticularly clinical PSG devices. The usage of Ambulatory PSG
devices is slated to increase in the next few years due to ob-
served patient preference to be tested at home for convenience
reasons, patients inclination to skip the unfamiliar environment
of sleep labs, and cost-effectiveness of these devices. The
global demand for other diagnostic devices such as respiratory
polygraphs, two channel screening devices, single channel
screening devices, and actigraphy systems is also on the rise
due to their low costs. These devices serve as cost-effective and
convenient options, as compared to PSG devices, especially for
the low-economic class patient pool.
Stardust II Sleep Recorder device developed by Philips is
capable of measuring respiratory airflow, pulse, SpO2, chest
effort and body position without wireless transmission. There
are also sleep mats available which are measuring breathing
and waking movements and mats which are put 8-11 cm
deep below foam or sprung mattresses. Some of them have
additional body sensor which is attached to the baby’s lower
abdomen with micro-pore tape. Some of these are built for
infants which use Ultra Wide Band (UWB) technology [1].
Our proposed solution uses high-end components to achieve
high precision but with smaller size and wireless technology. It
makes possible to extend sleep monitoring for home conditions
and lower the cost. Current paper describes the general concept
of the portable monitoring system which is under development.

IV. PROPOSED SOLUTION

A. Design Concept

The aim of this portable sleep apnea monitoring system is
to provide a higher comfort while monitoring the heart rate,
saturation of oxygen, respiration rate and body movements
when the neonate is sleeping in the bed. Proposed solution
has to meet the following design requirements:

• Easy sensor placing even for untrained personnel



• Newborn sleep cycle could last up to 18 hours.
Monitoring should be performed without the charging
during one full sleep time

• Long term monitoring should provide a high comfort
without any consequences on the body

• Continuous and reliable measurement even during
normal body movements during the sleep

• Electronic parts have to be easy detachable for clean-
ing purposes

B. System Overview

Proposed solution is focusing on infants from the newborn
up to the first year and children between years 2 to 8 who
need to be monitored in case sleep apnea is suspected. Based
on the research most important parameters that are needed
for continuous monitoring of vital signs are heart rate, SpO2
level, respiration, body posture and activity. Since the solution
is mostly used during the sleep time, it should have a minimal
effect on disturbing normal sleep. Therefore it is chosen to
integrate sensing module of the system into the shoe that is
carried by the patient during the sleep. Similar solution is
proposed by [2] but without respiration signal measurement
which is mandatory for detecting sleep apnea.

Fig. 1. The conceptual image of a portable sleep apnea pre-screening system

Figure 1 describes the conceptual image of portable sleep
apnea pre-screening system. Shoe, that consists highly inte-
grated sensors with microcontroller and wireless connectivity,
is worn by the neonate or child during the sleep. Measurements
are performed continuously and sent over the wireless link
to the smart phone. Smart-phone provides additional sophisti-
cated data processing with early warning system in case some
measurements have abnormal readings. Such an early warning
functionality helps parents to look after their children during
the sleep. In case of abnormal readings an alarm is activated
with suggested activities. In addition to that, analysed data can
be used by the sleep clinic personnel to decide about the need
for further sleep analysis.

Figure 2 describes the proposed solution’s architectural
design. Sensing device with sensors and signal processing unit,
and smartphone with user interface divide it into two main
parts. System consists one or more multi-wavelength optical

Fig. 2. System architecture of a proposed system for data processing

sensors and one accelerometer. Optical sensors are placed on
the flex PCB that makes it possible to fine-tune sensor exact
position on the body. Best location on the foot has to be found
during the sleep tests with different patients. It was suggested
by the doctors to perform measurements near Anterior tibidal
which has the biggest perfusion index in the foot. Especially in
cold environment perfusion index plays important role because
cold reduces the amount of circulating blood in the body and
signal quality gets worse.
Individual signals from the raw data are filtered and extracted
in the pre-processing stage. These steps include noise reduction
with low-pass and high-pass filters and DC component removal
without removing useful information from the base signal.
After the signal pre-processing, abnormal condition detection
algorithms are applied to perform initial analysis of patient’s
normal condition. Three basic signals, breathing interval, SpO2
level and heart rate are used for sleep apnea detection. To re-
duce the required amount of signal processing on measurement
device, only individual signal components will be calculated.
For breathing rate extraction from the pulse wave we have
developed an algorithm that is power efficient and suitable for
using on portable devices. Compared to other methods we use
pulse wave amplitude modulation and get excellent results with
reduced power consumption [3].
Depending on the calculated results of the signals, update
interval is adjusted to reduce the amount of power usage by
radio and still provide a near real-time feedback about the
health conditions. Severity algorithm calculates the importance



of the readings and makes interval related decisions based on
that. To reduce the radio usage even more, data compression
is applied before it is sent to the smartphone.
Wireless radio is used to transmit the results to the smartphone
which has to be in range to receive the alarms. Most new smart-
phones include dual-mode Bluetooth chips that support Classic
Bluetooth (BT) and Bluetooth Low Energy (BLE). BLE has
better energy saving technologies built in, that can be fully
used in our proposed solution.
Second part of the solution is the smartphone. Its main purpose
is to perform signal post-processing with sleep apnea detection
and give first feedback to the user. It eliminates the need to
develop an extra hardware for deep data analysis and storage.
In case there is a need for extended monitoring in sleep clinic,
smartphone is acting as a gateway to transfer analysed results
to the medical personnel.

C. Electronics and Signal Acquisition

Typical pulse oximeter consists of photosensor, analogue
front-end, digital processing unit with user interface. We have
extended this general idea of oximeter, to provide more reliable
measurements with additional sensors, with internal storage
and wireless interface.

Fig. 3. Functional block diagram

Figure 3 describes our proposed hardware design. Starting
with Analog Front-End and Sensors box, digital-analogue
converter (DAC) controls the intensity and timing of each
LED as they need to be switched on and off one with the
sampling rate of 1kHz. LED driver amplifies the current that
is needed for the LED. Photo-transistor receives the light that
is not absorbed and current changes are converted into the
voltage changes with the transimpedance amplifier. Acquired
signal is filtered with several filters to eliminate high frequency
noise and 50/60 Hz line interference and converted into digital
form. Taking into account that prototype should consist as less
overhead in hardware because of the limited size and weight,
most of these filters has to be applied in the software.
Power management is done by the Charging System. Estimated
battery lifetime is around 48 hours continuous monitoring
which covers 2-3 full sleep times of newborn. Device is
recharged over USB connection. Li-ion battery charging takes
around 2 hours until fully charged. It is approximately the
same time the newborn stays awake between the sleep times.
System core consists of processing unit and storage. MCU

is chosen based on te required computational power in order
to perform filtering and features extraction with compression.
Processed data is stored on FLASH/uSD card in case wireless
connection is not available to transfer it to the smartphone.
Radio module connects to the smartphone over BLE. Com-
pared to the BT, it provides less throughput but smaller latency
and better power handling that makes it perfect solution for the
wireless portable devices.

D. Sensor Design

New hardware and more advanced software algorithms
are being developed to reduce false alarms and provide more
reliable readings under conditions of low perfusion. Compen-
sating motion artefacts with signal processing algorithms is
dealing with the consequences not with the root cause or
signal acquisition. There are three main factors that affect pulse
oximetry readings. A straight incident light to tissue scattered
wavelength-dependently until about 2 mm depth because the
inner structure of tissue is not uniform. The effect of the
tissue has to be considered that affects total optical density.
If using three-wavelengths, two simultaneous equations give
the SpO2 without the effect of tissue coefficient dependency.
At last, the effect of venous blood could be removed with five
wavelengths.
Conventional oximeters use two wavelengths to perform mea-
surements. Later technologies use wider area of wavelengths
in order to increase the system reliability. Different research
groups are using 3 to 12 wavelengths in oximeter. In addition
to λ1 = 660 nm and λ1 = 940 nm, used in conventional
oximeters, the most used wavelengths are λ4 = 700 nm,
λ5 = 730 nm, and λ1 = 805 nm [4] [5] [6].
For detection of Carboxyhemoglobin (CoHb) and methe-
moglobin (MetHb), four wavelengths are in principle sufficient
[4]. The use of additional wavelengths allow further correc-
tion of disturbances and improves the accuracy. Using three-
wavelength method improves the accuracy of SpO2 when the
tissue constants are appropriately selected. With three wave-
lengths we can eliminate tissue effect but not venous blood
effect. Therefore using five wavelengths could additionally
improve the the quality of readings. Our proposed solution is
using five wavelengths. Two of them , red λ1 = 660 nm and
infrared λ2 = 940 nm are used for oxyhemoglobin (O2Hb) and
deoxygenated hemoglobin (HHb) detection. Three additional
wavelengths are used to detect CoHb and MetHb and improves
the accuracy. It does not matter how many wavelengths are
used, motion artefacts elimination is still considered difficult
[6].
Signal artefacts are mostly caused by the body movements.
With two optical sensors it is possible to reduce artefacts
caused by the local movements. Sensors has to be placed on the
body away from each other at least few centimetres. Similar
method has been used to calculate pulse wave velocity (PWV)
using two synchronized, wireless pulse oximeters, placed on
the wrist and fingertip of the same hand [7].

V. SIGNAL PROCESSING

A. Sleep Apnea Detection

Normal waking and asleep SpO2 levels in healthy child
or adult are 96-99% and 94-98%, respectively. Sleep apnea



has specific pattern in which order all symptoms appear. The
typical cycle of sleep apnea is:

1) oxygen level begins to fall
2) breathing pauses 10 seconds or more
3) heart rate falls below normal
4) brief awakening with few large breaths
5) heart rate speeds up above normal heart rate
6) oxygen level returns to near normal

Apnea Hypopnea Index (AHI), the number of apneic
episodes per hour, is used to detect the severity of sleep apnea.

• AHI of 5-15/hr - mild sleep apnea

• AHI of 16-30/hr - moderate sleep apnea

• AHI of +30/hr - severe sleep apnea

The standard definition of (AHIs) [8] determined during
attended laboratory PSG is calculated

Awofl - apneas where 10 sec without flow
Rflow - hypopneas with reduced flow with 5% of desaturation
Sttot - total sleep time in hours

AHIs =
(Awofl +Rflow)

Sttot

Fig. 4. Sleep Apnea detection algorithm

Figure 4 describes proposed algorithm that consists all
main parts of the sleep apnea detection. It is capable to detect
apneic cases to calculate AHI index. The purpose of this
algorithm is to provide a general overview about all steps that
are needed to perform in order to process the acquired signal
and provide output signals for the user feedback and further
analysis. Many of these steps include sophisticated signal
processing tasks. Describing individual steps in detailed level
is not the scope of this paper rather describe the architecture
of proposed sleep apnea detection method.

VI. DISCUSSION

The studies of neonates and children found that 44-63% of
all critical care alarms were caused by pulse oximeters, 94% of
oximeter alarms were considered clinically unimportant, and
71% were false alarms [9]. The most interest have therefore

got multi-wavelength oximeters. Similar solution has been
proposed in [10]. Even with the excellent LED duty cycle of
2.5%, the most power consuming component is DSP that limits
the system total operating time for eight hours. Our proposed
system have several advantages over other systems.

• Comfortable place to measure pulse wave on neonates
and children with minimal sleep disturbance.

• Portable real-time signal processing device with RF
connection with smart phone that decreases require-
ments for the processing power of measurement de-
vice. In addition to that it provides an early warning
system with basic instructions for the parents and
detailed data for the sleep physicians.

• Performing measurements simultaneously on two
places and with five wavelengths helps to improve
the signal quality by replacing distorted signal with
the better quality one and remove several tissue and
venous blood related artefacts.

• Detection of body movements help to estimate sleep
pattern and give an additional information to correlate
artefacts with the movements.

VII. CONCLUSIONS

Proposed solution helps to decrease cost and increase
accessibility to diagnostic monitoring for sleep studies. For
the neonates and children the most comfortable way to perform
pre-screening is to evaluate it in the natural home situation. Our
proposed solution is designed to include all the most important
signals for pre-screening and give an early warning about
possible life threatening situations using low energy wireless
communication with smart phones.
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Abstract—Wireless infant monitoring system is a small-size
wearable sensor platform. There is a growing trend to simplify
the measuring methods to allow a real-time monitoring of the
vital signals in home environment. Most of these devices have
cables, are quite large in size that may disturb infant’s everyday
life and need continuous supervising from parent. In this paper
we propose a monitoring system that detects the most important
vital signals of baby and transmits results over wireless link to
the control device that could be any smart-phone. The system
is capable of measuring blood oxygen level, heart rate, respi-
ration rate, body temperature, body posture and legs activity.
Combining all of these raw signals it is possible to use this
system in different, possible life-threatening situations during
long-term monitoring. Compared to other similar solutions it has
small dimensions, low weight, increased reliability of measuring
photoplethysmography signal and extended battery life because
of the usage of Bluetooth Smart wireless protocol. 1

I. INTRODUCTION

In the last years there are an increasing number of
monitoring devices for adults and elderly people available.
These systems can monitor their health status and send out
automatically emergency signals. However, the care methods
for infants are different. The only way how infants could
express themselves is crying. The most critical time when
infants may need to be monitored is during the sleep, in case
of birth defects and in times of illness.
The most critical age in the infant’s life is first 6 months when
different complications may appear and cause an unexpected
death. According to the statistics, the average infant mortality
rate is around 45 per 1000 live births and is even bigger
in developing countries. The most frequent causes of infant
death during first year of life are birth defects, low birth
weight, Sudden Infant Death Syndrome (SIDS), maternal
complications, accidents and respiratory distress of newborn
[1].
There are several real-time infant monitoring systems being
developed and already on the market. Most of them have
the functionality to measure heart rate, body temperature and
motions [2] [3]. Some of them also have a possibility to have
respiration and humidity level information [4]. Comparison
of similar devices is discussed also in [5]. There are also
available different sleep mattresses and vests. Some research
is done measuring respiration and heart rate with Ultra Wide
Band (UWB) wireless technology [6]. In clinical environment
most of the sensors are wired and placed all over the body.
Even there are different places from where to measure vital

1This work was jointly supported by EU through European Regional
Development Fund, and by the institutional research funding IUT 19-1 of
the Estonian Ministry of Education and Research.

signals on infant, one of the most comfortable place is on
feet. It allows a quick replacement of the sensor and has a
reliable signal quality [3].
Our proposed infant monitoring device consists of many new
aspects regarding continuous long-term monitoring. Usage of
Bluetooth Smart wireless protocol increases the monitoring
device life cycle several times. We propose the system with
increased reliability of the photoplethysmography (PPG) sig-
nal which has been an active research topic already some
time by different groups [7]. In addition to the usage of
more sophisticated signal processing methods, our proposed
solution adds increased reliability also from the hardware side
[5].
In the following section we present in depth system descrip-
tion with technical characterization and discuss about clinical
and technical requirements, system architecture, embedded
algorithms and wireless communications. Section 3 describes
the initial results and evaluates the performance. Section 4
discusses future work. Finally section 5 gives some conclu-
sions.

II. SYSTEM DESCRIPTION AND CHARACTERIZATION

A. Clinical and technical requirements

To increase the reliability of the health-care device, it
needs to be tested with some number of test-persons. For
clinical trials the monitoring device should meet the several
clinical and technical requirements. Requirements were cho-
sen based on the normal monitoring process so that it does not
need much additional effort to perform the measurement, is
comfortable for the clinician and infant, gives the meaningful
output for the clinician and stores enough information for
further data analysis.
First, the system should be suitable for monitoring newborns
from the birth up to 1 year old (Req #1). The system shall
be easy to use and be convenient for the clinician during
manipulation of the patient (Req #2). The position of the
monitoring device on the body should be comfortable and
safe, and not to cause any harm during long term contact
with the newborn’s skin (Req #3). The size of the device
shall be lightweight and so small that it does not make any
discomfort during the wearing (Req #4).
Concerning the hardware aspects the monitoring device shall
be as unobtrusive and robust as possible. Neither buttons nor
external wires must be apparent to avoid disturbing the patient
or obstruct the measurement process (Req #5). The electrical
and physical design of the monitor shall be such that, however
the conditions, it presents no risk of harming the patient, e.g.
by injecting current to the body (Req #6).



Monitoring device shall be able to measure pulse wave on the
foot, skin temperature, body position and movements (Req
#7). The pulse wave shall be analyzed in real-time and the
result of the analysis shall be directly and wirelessly sent to
a control unit (Req #8). At the same time a raw pulse wave
signal should be logged for further off-line analysis (Req #9).
Wireless exchange information between the operator and the
body-worn monitoring device must be possible. The control
unit shall enable the operator to send the start and stop
command of a recording as well as the patient specific
parameters (Req #10). The status of the monitoring device
shall be displayed to the technician upon request (Req #11).
The system autonomy should allow at least 24 hours of
continuous monitoring (Req #12). Monitoring device shall be
rechargeable over widely used charging standard to eliminate
the need for special purpose charger and therefore lower the
cost of additional hardware (Req #13).

B. System Architecture

The initial pre-selection of the system architecture has
been done in [5]. Most of the intelligence is offloaded to
the monitoring device to minimize wireless communication
between the monitoring and control device that is the most
power consuming process. Main tasks of the device are signal
acquisition and pre-filtering, feature components extraction,
storage of raw data and preparation for wireless transmission.
The host application of the control device manages the
monitoring device and prepares data for network upload to the
historical database. Any third-party functionality is connected
through the back-end interface. User interface of the control
device serves a graphical interface for the operator. The figure
1 illustrates the overall data acquisition software architecture.

Fig. 1. Architecture overview

C. Miniaturized Monitoring Device

The monitoring device, illustrated in figure 2 is composed
of:

1) Flexible board with optical and temperature sensors.
2) Analog board which provides an analog to digital

conversion of optical signals.
3) Processing board which provides processing features

for the monitoring system and wireless transmission.

Processing board consists of two principal electrical
components selected for their low-power characteristics, a
micro-controller unit and a radio transceiver. The micro-
controller unit (MCU) from Texas Instrument MSP430F5528
featuring 8KB of RAM and 128KB of ROM [8]. Bluetooth
Low Energy radio transceiver from Bluegiga Technologies
BLE112 adds the possibility for wireless data transfer to
meet the requirement #5. Wireless module offers an external
communication to the control the device. On-board ferro-
electric RAM (FRAM) memory module offers a compact,

Fig. 2. Monitoring device

ultra-fast and low power storage capability. Micro-USB in-
terface serves charging capability and wired communication
to external devices. Micro-USB has been widely accepted
standard on the latest cell-phones and meets therefore the
requirement #13. On-board indicator LEDs indicate about the
most important status conditions like battery information and
wireless communication. The monitoring board is powered
through a 400 mAh battery.
There are several sensors integrated into the monitoring
device. Three-axes accelerometer BMA280 adds the function-
ality to measure body posture and activity. Optical sensors
on the flex cable measure the PPG signal with two different
wavelengths. Temperature sensor on the flex cable adds
support for body temperature monitoring. All-together they
meet the requirement #7.
The monitoring device with battery pack and silicone enclo-
sure weights around 30g and is packaged into a 75x27x12
mm3 silicone enclosure that meets the clinical requirements
#1 and #4.

Fig. 3. Monitoring device on the foot

Monitoring device is packed into medical grade sili-
cone, Dow Corning S40 Silicone Rubber, that is a two-part
platinum-catalyzed silicone elastomer specifically designed
for liquid injection moulding or supported extrusion [9].
It meets all the US and European standards for health-
care device that is necessary for clinical trials. This criteria
also meets our requirement #3 in safety perspective. As the
whole device is enclosed with the silicone and during the
measurement the device is not charged, it also meets the
clinical requirement #6 in electrical safety.



D. Embedded Algorithms

Embedded algorithms, implemented into the monitoring
device, meet the real-time criteria in limited processing power
environment. All discussed algorithms need the maximum
length of signal buffer up to 2 seconds and don’t require
processor intensive calculations. In regards to that they also
fulfil the requirement #8.

1) Pulse-wave detection: A robust and accurate pulse-
wave detection algorithm is crucial to ensure a reliability of
the system. A real-time algorithm for pulse-wave detection is
implemented. It is based on detection of the pulse wave en-
velope, described in [10]. Compared to the wavelet transform
and neural network based algorithms it is relatively quick and
works in real-time. According to the results of limited testing,
accuracy of the algorithm at rest claims to be 100%.

2) SpO2 calculation: A pulse oximeter analyzes the light
absorption of two wavelengths from the pulse-added volume
of oxygenated arterial blood that is well described in [11].
SpO2 reading is taken out from the table stored on the
memory calculated with the empirical formulas. A ratio of
1 represents a SpO2 of 85%, a ratio of 0.4 represents SpO2

of 100%, and a ratio of 3.4 represents SpO2 of 0%. For
increased reliability, the table must be based on experimental
measurements of healthy patients.

3) Respiration detection: To extract the respiration infor-
mation, the most interested frequency band stays between
0.2 Hz and 1 Hz. In our implementation we are using PPG
signal to extract the respiration information. One efficient way
to calculate the breathing rate is based on connecting the
peaks and bottoms of each PPG pulse wave accordingly, thus
constructing a continuous envelop along the top and bottom
edge of the PPG signal [12].

4) Body posture detection: As the system is used mostly
on babies up to 1 year old who have not learned yet to walk
we are focusing only in which position baby is sleeping or
lying. Most of the time an infant is sleeping on the back
and sideways and in rare cases also lying face down. With
roll and pitch calculations we get any position of the foot
that is sufficient to estimate the position of the body. All
inclination angles are calculated with he help of three-axis
accelerometer. Sensor inclination angles with respect to the
ground are calculated to get the pitch and roll of the body.
Implemented formulas are fully described in [13].

5) Activity detection: There are three most frequent ac-
tivity types that should be detected: sleep, crying and awake.
Each of them has a slightly different threshold. In some
cases an activity detection could increase the detection rate of
another function. Table I describes different type of activities
that could be detected with the measurement of accelerometer
on the foot. The most important vital signals, that describe
the status of baby’s health, are respiration frequency and heart
rate. Combining those signals as described in the table I we
could significantly increase the reliability of each particular
algorithm, listed in the activity type column.

When a baby’s body is in static position, the accelerom-
eter responds only to the gravitiy acceleration of 1 G. In
motion and change of the motion, an accelerometer produces
corresponding acceleration. Activity signal magnitude area
method provides a good way to detect kinematic changes

TABLE I. ACTIVITY COMPARISON

Activity Activity Activity Respiration Heart
type level frequency frequency rate
Sleep low low low low
Awakening medium medium low low
Awake medium low medium medium
Crying high high med.-high high

of the body [13]. Using different time frames it gives a
good opportunity to analyze the specificity of movements and
propose particular type of activity.

E. Wireless Communication Services

The monitoring device features two wireless communica-
tion modes: (1) a two-way event-based mode for data visu-
alization, algorithm output transmission and online algorithm
parameter setting; (2) a wireless data transmission mode to
transfer raw PPG and acceleration data, if requested, to the
control device.
The up-link, from the control device to the monitoring device,
provides the communication with the possibility to send
information as well as query the monitoring device status.
Information such as the algorithm parameters, PPG signal
ADC module, accelerometer configuration, radio module con-
figuration can be transferred.
As the system uses Bluetooth Smart wireless communication
protocol, throughput is limited to around 60 kbps in case of
unacknowledged packets. In a typical environment the fastest
reliable throughput with acknowledged packets, according to
Bluegiga Technologies tests, is 8-10 kbps [14]. Transmitting
raw PPG signal with the sampling rate of 250 Hz and 22-
bit of data, we need throughput of 5,9 kbps. 14-bit digital
accelerator with the sampling rate of 100 Hz needs 1,6 kbps.
In total there is a need for throughput up to 7,5 kbps.
Bluetooth Smart communication is based on Generic At-
tribute (GATT) profiles. Services that are advertised under
each according profile by our monitoring device are listed in
the table II.

TABLE II. BLUETOOTH SMART PROFILES

Service name Service Update Value
type interval descriptor

Device Information global N/A uint16
Health Thermometer global 2 Hz uint16
Heart Rate global 1 Hz uint8/uint16
Respiration Rate local 1 Hz uint8
Blood Oxygen Level local 1 Hz uint8
Body Position local 1 Hz uint8
Activity local 1 Hz uint8
Alert Status local 1 Hz uint8
Raw PPG local 250 Hz uint8
Raw acceleration local 100 Hz uint16

First column describes name of the service. Second col-
umn defines whether the service is globally defined by the
Bluetooth Smart specification or own defined. The biggest
difference between global and local service is that global
services are defined by specifications and with known Uni-
versally Unique Identifiers (UUID) but local services can be
defined according to specific need and with own-generated
128-bit UUID. Supporting globally defined services adds



better integration with Bluetooth Health Device Profile [15].
Third column defines the frequency of each service update
interval. If particular service does not support notification
based automatic update it is marked with N/A. Last column
defines number format of the service descriptor value. Type
”uint” means unsigned integer and number after uint is the
number of bits that represents the length of data. Heart Rate
service supports two type of lengths depending the value that
is currently transmitted. For raw data transfer there are two
services, ”Raw PPG” and ”Raw acceleration” that support
indication types that allows to send unacknowledged packets
to speeds up data transfer. Raw data storage and wireless
transfer also meets the requirement #9.

III. RESULTS

A. Memory footprint

Including all functionality the measurement system re-
quires 1,5 kB of RAM and 22,8 kB of program memory. The
biggest size of the program memory is occupied by USB,
accelerometer and functionality that analyses the digitized
optical signal. Algorithms that are handling accelerometer and
optical signals consume also most of the used size of RAM.

B. Power consumption profile

In the ”operating” mode, the total system power budget is
71 mW. The measured average MCU active duty-cycle is 40%
yielding to an average power consumption of 28,4 mW that
meets well the requirement #12, representing about 50 hours
of autonomy for a 400-mAh battery. For data storage we use
an external FRAM memory modules that support over 100
times faster data throughput and consume 3 times less power
compared to FLASH based modules. Figure 4 illustrates
power consumption breakdown of measuring device.

Fig. 4. Power consumption of the measuring device

The biggest amount of power is consumed by the MCU
that has several tasks. Embedded algorithms that are activated
by external interrupts consume most of the MCU execution
mode. PPG signal sampling with the rate of 250 Hz adds a
new sample in every 4 ms. If there are at least 5 continuous
unprocessed samples a pulse-wave detection algorithm is
executed. Acceleration information is sent only if there is
a movement over preset threshold. The remaining, 60 %
of the time, MCU is idling that leaves room for additional
processing algorithms.

IV. FUTURE WORK

The current infant monitoring device has up to 50 hours
of autonomy. Extending the battery life even further could
benefit arrangement of the monitoring. Several actions can
be taken to decrease the overall system power usage: ap-
ply compression algorithm for wireless raw data transfer,
optimize the duty cycle and power level of optical sensors,
optimize embedded algorithms and increase the time in deep
sleep mode of processing unit. Optimizing the usage of
accelerometer could also benefit overall power consumption.

V. CONCLUSIONS

In this paper, a wireless infant monitor system is pre-
sented. Efforts towards miniaturizing the form factor and
improving the comfort of the system have been made. The
resulting prototype weights with battery pack and silicone
enclosure around 30 g and is packaged into 75x27x12 mm3

silicone enclosure. It has an autonomy of up to two days
with continuous measurement mode. The system was fixed
on the newborn’s foot, as in figure 3. During one week the
several hours long measurements were performed and within
this time no remarkable discomfort was observed.
Our proposed solution is designed to include all the most
important signals for pre-screening and give an early warning
about possible life threatening situations using low energy
wireless communication with smart phones.
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Abstract—Respiratory information is usually measured di-
rectly with chest and abdominal belt or from the nasal airflow.
There are several methods to extract respiration also from the
electrocardiogram (ECG) and photoplethysmogram (PPG). In
this paper we propose a methodology that detects the amplitude
changes in the PPG signal to estimate the respiration rate.
During exhalation, our parasympathetic nervous system makes
the blood vessels more flexible than during inhalation. Blood
vessels flexibility affects the propagation velocity of the pulse
wave. In that way respiration also modulates the amplitude
of the pulse wave signal. Comparing with other respiration
signal extraction techniques our method has excellent results with
limited processing power. The long-term objective of this work is
to use the respiration signal together with heart rate and blood
oxygen saturation level (SpO2), that are extracted from the pulse
wave, for sleep apnea detection and screening purposes.

I. INTRODUCTION

Pulse oximetry is frequently used in clinical situations for
non-invasive measurement of heart rate and arterial oxygen
saturation. Photoplethysmogram (PPG) is obtained optically
illuminating the skin and measuring changes in light absorption
with the pulse oximetry. In many clinical situations breathing
rate is extracted from the PPG, which is known to cause
a minimum of inconvenience to the patient. A number of
methods for deriving the breathing rate from the PPG have
been suggested in the literature. One possible application area
to extract respiration rate is to diagnose an Obstructive Sleep
Apnea (OSA). It is a respiratory disorder characterized by
recurrent airflow obstruction caused by total or partial collapse
of the upper airway. It is believed to cause often for the babies
Sudden Infant Death Syndrome (SIDS) to occur.
As the need for remote health monitoring systems increases,
the complexity of such systems also grows significantly. For
pre-screening purposes there is no need to use systems that
provide full clinical analysis. Signals measured by few attached
sensors consist usually complex signals that are used to extract
different features.
In this paper we propose an algorithm to extract respiration
rate from the PPG signal. We analyse the amplitude variations
in the PPG signal that are caused by the respiration and
demonstrate experimentally efficiency of our proposal.
In the following section we present background on blood
oxygen saturation measurement and discuss related work with
some possible application areas. In section 3 we describe the
methodology that is used to analyse the PPG signal. Section
4 describes the initial results and evaluating the performance.

Finally section 5 discusses future work and gives some con-
clusions.

II. STATE OF THE ART

A. Blood oxygen saturation measurement

Blood oxygen saturation level (SpO2) is one of the most
direct measurement of a baby’s health condition. Although the
primary cause of SIDS has not been determined, there is a
growing evidence that the victims have had previous hypoxic
episodes that may be an early warning sign of SIDS [1]. It can
be detected by measuring a person’s SpO2 level, that is also a
general indicator of the baby’s condition which is perpetually
monitored on premature babies [2]. Healthy baby at normal
conditions should have a reading of 97% to 99%. Some authors
claim that nocturnal arterial blood oxygen saturation level
(SaO2) alone allows for confident recognition of moderate and
severe OSA cases, but it is likely to be inadequate for excluding
milder cases in clinical practice [3].
Low SpO2 level is the direct result of apnea or insufficient
oxygen intake. If there is a sudden drop in the SpO2 level
≥ 4% and if it stays below 90%, this is an early warning
sign of trouble. Several indices derived from overnight pulse
oximetry may predict the presence of OSA, such as the number
of oxyhemoglobin desaturations below a threshold, usually a 3
or 4 % decline from the baseline or the cumulative time spent
below an oxyhemoglobin saturation of 90%, among others [4].
Lethal arrhythmia had been proposed by several groups as
the primary cause of SIDS. The authors of [2] argued that
the arrhythmia may be the result of hypoxic apnea, rather
than a cause of SIDS. Bradycardia (low heart rate) is also
indicator of trouble. Therefore measuring heart rate has a
definite advantage over detecting hypoxic episodes alone.
SpO2 is usually measured by using a finger probe or ear
lobe saturation. This is considered as a reliable and practical
when patient is steadily in the bed. There are also experiments
where SpO2 readings were taken on wrist and chest belt [5]
with good quality readings. Studies [6] also show that pulse
oximetry measurements on foot are reliable and have also good
correlation with perfusion index.
Different studies have been done measuring the SpO2 level on
neonates. For that purpose reflectance pulse oximeter based on
Near Infra-red Spectroscopy (NIRS) technique was used which
are more comfortable in long term monitoring [7]. Prototypes
with reflectance sensors embedded in soft foam and fabric
materials give an opportunity to integrate them into snuggle



and mattresses where baby lays on most of the time. Drawback
of this solution is that it is very sensitive to the movements
and requires certain body positions that may give many false
alarms.
Pulse oximetry and accelerometer has also been integrated into
the infant shoe [8]. Accelerometer is used as an actimetry and
position measurement of infant. It is also stated that oximeter
performance is mostly affected by low peripheral perfusion
states and patient motion. Therefore greater likelihood of false
alarms is caused by a false low reading or no reading at all.
The studies of neonates and children found that 44-63% of all
critical care alarms were caused by pulse oximeters, 94% of
oximeter alarms were considered clinically unimportant, and
71% were false alarms [9].

B. Sleep apnea classification

Corkum and colleagues studied the sleep of 25 medication-
free pre-adolescent children and reported sleep problems such
as bedtime resistance, restless sleep and longer sleep duration
were significantly more frequent in the Attention Deficit with
Hyperability (ADHD) group. An early case series of 50 chil-
dren with polysomnography proven OSA demonstrated hyper-
activity in 42% of subjects and decreased school performance
in 16% [10]. A subsequent examination of the natural history
of snoring between 4 to 7 years of age found that hyperactivity,
restless sleep and excessive sleepiness were significantly more
common among habitually snoring children compared with
youngsters who had never snored, lending further support to
the notion that a causative relationship may exist [11].
There is also an emerging evidence that periodic limb move-
ment disorder (PLMD) may be associated with prominent at-
tentional/behavioural symptoms in children. Diagnostic criteria
for PLMD is typically met when PSG exhibits greater than five
PLMs per hour of sleep and symptomatic sleep disruption is
reported, altough universally accepted paediatric criteria have
not yet been established [12].
Existing research suggests that daytime inattention, hyperac-
tivity and behavioural problems are likely to be caused or
worsened by OSA or PLMD for a substantial minority of
patients. This will remain an active area of investigation,
with substantial efforts toward development of reliable and
cost-effective screening tools which will permit screening for
these primary sleep disorders without the time and expense
of a full polysomnography (PSG). Development of outcome-
based treatment guidelines for these conditions will improve
assessment of the impact of treatment on day and night time
symptoms [13].

C. Difference between full polysomnography and screening

Full PSG is an overnight monitoring in the sleep laboratory.
Each subject is monitored with EEG, right and left elec-
trooculogram, submental EEG, EMG, ECG, chest and abdom-
inal wall motion by respiratory inductance plethysmography,
oronasal airflow, SaO2, PETCO2 by infrared capnometry at the
nose. Subjects are also monitored with infrared video camera
[14].
For screening purposes simplified tests may be used at home.
These tests usually involve measuring heart rate, SpO2 level,
airflow and breathing patterns. If you have sleep apnea, the test
results will show drops in the SpO2 level during apneas and

subsequent rises with awakening. Portable monitoring devices
don’t detect all cases of sleep apnea. In some cases you still
may go through the full PSG even if your initial results are
normal. It is considered also as a reliable and comfortable way
to diagnose the OSA in babies and children.

III. MATERIALS AND METHODS

Proposed solution is focusing on infants from the newborn
up to first year and children between the year 2 to 8 who need
to be monitored in case sleep apnea is suspected. Our goal is
to use sensors which are easy to place and make minimum
discomfort to the babies. Therefore only optical sensors were
used. It will limit the number of acquired signals, which do
not provide enough information for full PSG but is sufficient
for the home screening.

A. Difference in signal characteristics between neonates and
adults

The biggest difference between adults and neonates is the
heart rate and breathing rate. Strong sympathetic stimulation
can increase the heart rate in young adults from the normal
rate of 70 beats per minute up to 180 to 200 and, rarely, even
250 beats per minute. Resting heart rate for the newborns is
similar, 70 to 190 beats per minute. Well-trained athletes has
the lowest heart rate, as low as 40 to 60 beats per minute. In
case of 250 beats per minute time between every beat is 240
ms and biologically it can not be less than 200 ms.

Fig. 1. Analysis of pulse and respiration wave

Figure 1 describes morphological changes of the pulse
wave. Time from local minima (P2) to maxima (P3) is about
80 ms. With 125 Hz sampling rate it is enough to analyse up
to 10 samples at the time, that corresponds to the 80 ms, not
to miss any important changes in the pulse wave.
To compare the shape of the currently analysed signal with the
next one, we buffer it. It causes a slight delay for the analysis
but helps to detect whether the next local minima or maxima
belongs to the current respiration pattern or is the beginning
of the next one. As we also need to catch also a low heart rate
and some possible missing beats, we buffer 5 seconds at the
time, that is enough to include the next pulse wave and not to
cause big delays in case some critical changes have happened.

B. Data Acquisition

Reference data has been collected from the PhysioNet
MIMIC II Waveform Database. It contains recordings from



bedside patient monitors in adults and neonatal intensive
care units. Our collected signals include fingertip PPG and
respiration signals. Recordings are digitized with sampling rate
of 125 Hz and resolution of 8-, 10-, or 12-bit. The recordings
are from six different neonates, each with the length of 60
minutes.

C. Pulse wave signal processing

The main challenges in processing the PPG signals can
be divided into three main groups, preprocessing, feature
extraction, and diagnosis as described in Figure 2.

Fig. 2. Three stages common structure of PPG diagnostic system

Preprocessing stage removes the artefacts from the PPG
signal. Most common source of interferences is the mains
power, that causes 50/60Hz sinusoidal spikes with its higher
harmonics. Motion artefacts that are caused by poor contact
to the photo sensor, need much more processing. There are
two types of PPG measurements, transmittal and reflective.
Although these two arrangements have no fundamental dif-
ference from the optics point of view, their practical proper-
ties and performance differ significantly with respect to the
motion artefact, signal-to-noise ratio, and power requirements.
Reflective PPG needs more secure attachment of the LED and
photo-diode to the skin surface, when compared to transmittal
PPG. Once an air gap is created between the skin surface
and the optical components due to some disturbance, a direct
optical path from the LED to the photo-diode may be created
[15]. Possibility of using either method depends highly on the
position where the measurements will be taken.
These factors generate several type of additive artefacts which
may be contained within PPG signals. This may affect the ex-
traction of features and hence the overall diagnosis, especially,
when the PPG signal and its derivatives will be assessed in the
algorithmic fashion.
Under the placed position there should be a thin epidermal
tissue layer through which photons can reach the target blood
vessels with less attenuation. In the arterial end of the capillar-
ies the pressure is 30 to 40 mm Hg and in the venous ends 10
to 15 mm Hg [15]. Greater arterial pulsation than cutaneous
pulsations in magnitude makes it less suspective to motion to
the naturally higher internal pressure.

D. Respiration signal extraction

Physiological monitoring of breathing interval is important
in many clinical settings, including critical and neonatal care,

sleep study assessment and anaesthetics. Respiration causes
variation in the peripheral circulation, making it possible to
monitor breathing using a PPG sensor attached to the skin. The
low frequency respiratory-induced intensity variations (RIIV)
in the PPG signal are considered that RIIV includes contribu-
tion from the venous return to heart caused by alterations in
intra-thoracic pressure and also changes in the sympathetic
tone control of cutaneous blood vessels. The physiological
mechanisms relating to the RIIV are, however, not fully under-
stood. Baharav and colleagues found that increased respiratory
effort occurs throughout the night in OSA patients, with the
subsequent hypoxia and arousal, may become one of the useful
parameters for the OSA screening of snoring children [16]
[14].
There are several methods extracting respiratory information
from the PPG signal. Pulse rate variability (PRV), pulse
amplitude variability (PAV) and pulse width variability (PWV),
which all are related to respiration [17], are used to estimate
the respiration using a spectrum-based algorithm [18]. Respi-
ratory estimation errors are quite comparable and stay around
−0.26± 7.30%.
Empirical Mode Decomposition (EMD) method, that is robust,
simple and makes use of derived Intrinsic Mode Functions
(IMF), have shown good results in [19] with the accuracy
of estimating respiratory rate between 98.73% and 99.87%.
Some research has been done to efficiently extract respiration
from the PPG using order reduced modified covariance AR
technique [20]. It gives an improvement in frequency resolu-
tion compared to the traditional Fast Fourier Transform (FFT)
method.
Discrete Wavelet Transform (DWT) is widely used when
extracting respiration signal from Electrocardiogram (ECG)
[21]. An absolute average error of 6.8% was obtained, con-
sidered highly acceptable for ambulatory patient monitoring.
One variant of the DWT is Discrete Wavelet Packet Transform
(DWPT) which tiles the frequency space in a discrete number
of intervals. According to the literature [22] the accuracy of
the DWPT technique is 85%. Wavelets have advantages over
traditional Fourier methods in analysing physical situations
where the signal contains discontinuities and sharp spikes.
Daubechies wavelet based method was used and proved to
be efficient in reducing motion artefacts restoring all the
morphological features of the PPG signal [23].
Attachment of the sensor on the right body location has direct
impact to the signal amplitude. Low amplitude PPG signal
is mostly caused by the automatic gain controller. Detecting
the heart beats in low amplitude PPG signals is considered
difficult.
By filtering the data, it is possible to extract the respiratory
rate harmonic from the filtered signal. Nilsson et al. [24]
suggested the use of a 3rd order Butterworth band-bass filter
with a pass-band from 0.1 to 0.3Hz to filter the PPG signal.
Autoregressive based method [25] is aiming to provide more
accurate results than existing techniques but it needs to be
tuned to an individual, or at best, to specific age groups and/or
for specific time periods. Some more complex techniques
are using time-frequency spectra (TFS) for analyzing non-
stationary signals. In this category, several studies have utilized
short-time Fourier transform (STFT) and continuous wavelet
transform (CWT) [26] to extract the respiration rate from the
PPG signal. While the studies show relatively good results, the
CWT is impractical because the extraction of the RR is done in



some cases with the use or frequency modulation (FM) while
in other cases with the amplitude modulation (AM) of the
heart rate. This requires additional adaptive decision-making
schemes, to determine when to use either FM or AM of the
heart rate signal, making this kind of approach not suitable for
a low power resource constrained application.

E. Our proposed method for respiration signal extraction

One approach to extract the breathing rate information
is based on connecting the peaks of each PPG pulse, thus
constructing a continuous envelop along the top edge of the
PPG signal. Then, through the use of the Fourier transform,
a prominent high-amplitude peak can be identified that corre-
sponds to the frequency of the subjects
Respiration cycle modulates the pulse wave that is causing
amplitude changes. When we look at many continuous pulse
waves in Figure 1 it can be seen that there is a repeating pattern
that respiration is causing. If the PPG signal is without any
artefact we can easily detect patterns based on local maxima
and minima. After each oxygen intake following pulse wave
(P1) has lower amplitude breathing signal [27].
According to our tests it is possible to stay in the time domain
and detect breathing based on the top and bottom edge of
the PPG signal. Our proposed algorithm receives PPG signal
from the SpO2 sensor. FIR notch filter removes 50/60Hz
and 100/120Hz noise. The PPG signal was also filtered with
median filtering over 125 samples to remove small glitches and
make the signal smoother. The signal was then normalized and
DC part was removed. In the following algorithm N represents
the number of current sample and will be increased after next
minimum or maximum point is found. There are five main
steps that describe the algorithm:

1) Buffer the signal with length of five seconds
2) Detect and count number of local minimas minP and

maximas maxP
3) IF maxP (N − 1) > maxP (N) < maxP (N + 1)

THEN found maxPtrn← 1
4) IF minP (N − 1) < minP (N) > minP (N + 1)

THEN found minPtrn← 1
5) IF

minPtrn(startT ) > maxPtrn(startT )
AND minPtrn(startT ) < maxPtrn(endT )
AND minPtrn(endT ) > maxPtrn(endT )
THEN found doublePattern← 1

To analyse the signal we collect five seconds of the signal
into the buffer. Each pulse wave has its local minima minP
and maxima maxP that will be detected in the second step.
After finding a new local maxima maxP (N), it will be
compared with the previous one maxP (N−1). If the previous
maximum point has larger amplitude than the last one, it will
be included as a part of the pattern. If next local maxima
maxP (N + 1) has bigger amplitude than the maxP (N)
then respiration pattern, based on the maximum points, has
been found and maxPtrn gets value ”1” or ”TRUE”. Same
methodology is repeatead in step 4 but with the minimum
points (minP ). In step 5 we compare start and end time
of the minimum and maximum patterns. If the minimum
pattern has started and ended after the maximum one, then
respiration signal has double detected (doublePattern) and

we can disregard last detected pattern. Figure 1 describes
how double detected patterns were removed. Maximum pattern
(P1 − P3 − P5) was detected correctly. Local minima P0
was detected but as P2 did not match to the criteria it will
be disregarded automatically and next minima will be stored
with the name P4.

F. Sleep apnea detection

One possible implementation of the extracted respiration
rate is OSA detection. There are certain thresholds that point to
the apneic episode. In case an air volume is measured, decrease
the amount of air through the lungs at least 50% with the
duration over 10 seconds, are signs of apnea. Saturation level
decreases 3-4% from the baseline, which may end up with
awakening. Cumulative time when saturation level is below
90% is also often an early sign of trouble [2]. Normal waking
and asleep SpO2 levels in healthy child or adult are 96-99%
and 94-98%, respectively. Sleep apnea has specific pattern in
which order all symptoms appear. The typical cycle of sleep
apnea is:

1) oxygen level begins to fall
2) breathing pauses 10 seconds or more
3) heart rate falls below normal
4) brief awakening with few large breaths
5) heart rate speeds up above normal heart rate
6) oxygen level returns to near normal

Apnea Hypopnea Index (AHI), the number of apneic
episodes per hour, is used to detect the severity of sleep apnea.

• AHI of 5-15/hr - mild sleep apnea

• AHI of 16-30/hr - moderate sleep apnea

• AHI of +30/hr - severe sleep apnea

The standard definition of (AHIs) [28] determined during
attended laboratory PSG is calculated
Awofl - apneas where 10 sec without flow
Rflow - hypopneas with reduced flow with 5% of desaturation
Sttot - total sleep time in hours

AHIs =
(Awofl +Rflow)

Sttot

As the sleep apnea could be the result of arrhythmia,
individual signals could be used in order to detect any critical
changes. We have tested our respiration extraction results with
OSA detection algorithm. Three signals, heart rate, respiration
rate and SpO2 values were used. In order to test our OSA
detection algorithm we had to simulate SpO2 values because
the reference database did not contain these signals. We have
created random array of SpO2 values between 90% and 100%
with one value per second. In every apneic episode, SpO2 level
stays below the 94% at least 10 seconds, that is essential to
simulate the real apneic episode.

Implementing vital signal monitoring with the thresholds
makes it possible to develop OSA screening application for
home monitoring. It could be used in case sleep apnea is
suspected or there is a recommendation from the doctor to
monitor premature babies also at home conditions.



TABLE I. ESTIMATING THE BREATHING RATE WITH PULSE WAVE
AMPLITUDE VARIATION DETECTION

Reference Accuracy (%)
Signal name respirations MIN MAX Total
3000358 0010m 3972 76.86 82.30 101.33
3505210 0002m 4172 77.59 74.98 90.65
3470111 0006m 4095 78.44 79.61 104.66
3900726 0001m 4355 69.48 74.95 94.12
3601304 0001m 4139 84.13 86.25 111.11
3000858m 4376 81.67 81.26 92.62

IV. RESULTS

A. Detection of respiration rate

Respiration causes variation in the peripheral circulation
that affects the pulse wave. There is a great correlation between
breathing effort and changes in the amplitude of pulse wave.
Figure 3 describes situation where the signal is clean and
without any artefact. There are high and low peaks on top
and bottom of the high amplitude signal which describes the
periodical amplitude variation that is caused by the respiration.

Fig. 3. Correlation between respiration and pulse wave

Mean accuracy of the respiration detection is 99.08% with
the Standard Deviation (SD) of ±7.28%. Table I describes tests
with six different subjects to validate our proposed algorithm.
First column is the signal name that corresponds to the name in
the PhysioNet MIMIC II Waveform Database. Second column
is the number of respirations in the reference signal. Next two
columns describe the number of extracted respirations from
the pulse wave converted into the percentage. Last column is
the final accuracy we get after using both, minima and maxima
based pattern detection and eliminating double patterns. There
is a significant accuracy increase, 30.65% ±8.74%, using
double pattern detection.

B. Comparison with other results

Mobile sleep apnea screening platforms has been interest
by different research groups. One similar platform was built by
[29]. They connected several bio-sensors to the smart phone
and using FFT pulse rate, breathing rate. Oxygen saturation
was calculated from the PPG signal. OSA estimation was
done based on the pulse rate and oxygen saturation rate
because fluctuations in the blood oxygen level and heart rate
are detected during the apnea periods. Spectral analysis of
SaO2 or heart rate variability have been suggested as potential
diagnostic tools in this disease [30]. Some studies show that

TABLE II. COMPARISON OF DIFFERENT RESPIRATION EXTRACTION
METHODS

Number Absolute
Method of subjets Age accuracy
IMF 4 NA (adults) 99.48±0.44%
PRV 17 28.5±2.5 86.93±15.34%
PWV 17 28.5±2.5 98.83±9.44%
PAV 17 28.5±2.5 84.55±15.34%
PWV+PAV+PRV 17 28.5±2.5 99.74±7.30%
BML 10 25±3 98.63±1.24%
TMI 10 25±3 98.54±1.12%
Our proposed 6 NA (neonates) 99.08±7.28%

*BML - beat morphology [32]; TMI - time interval [32]; IMF - Instrinsic Mode Functions; PRV - pulse rate variability
[17];PAV - pulse amplitude variability [17]; PWV - pulse width variability [17]; PAVD - our proposed pulse amplitude
variability based pattern detection

some patients may not even present variations in SaO2 or heart
rate signals, therefore pre-screening may not give adequate
answer to the suspicions and full PSG is needed.
Because the SpO2 measurement accuracy is very sensitive to
the body movements and amplitude of the pulse wave, sev-
eral methods have been applied to suppress motion artefacts.
Kalman filter has been used to improve the results to derive
the pulse rate with 3% of error [31].
Table II compares different techniques to extract respiration
rate from the PPG signal. First column is a short name
of the method, that is explained at the end of the table.
Second column describes number of the subjects to validate
the method. There is a difference in the age groups, described
in the third column. Most of the algorithms are validated
with the mid-age adults not with the neonates nor children
as we have done. As there are slight differences in signal
waveforms between the children and adults, there could be
some deviations in the results when applying on children. Last
column describes the accuracy of extracting the respiratory
information with the SD.

Our proposed method, last row in the table, has excellent
results compared with the other ones. It needs an extended test-
ing and implementing various artefact suppression techniques
to validate the accuracy in different real-time situations. Initial
results show that using pulse wave amplitude variation based
detection, it is possible to estimate the respiration signal with
high confidence.

V. CONCLUSIONS AND FUTURE WORK

Our evaluation of the proposed algorithm demonstrates that
pulse amplitude variation could effectively be derived from
the PPG signal analysis. It does not need as much processing
power as FFT or DWT based algorithms.
However there is a need for extended tests to demonstrate
the reliability of our proposed algorithm in different real-life
situations when there could be significant amplitude changes.
To increase the accuracy of breathing rate estimation there is a
need to identify and throw away distorted parts from the signal.
There are may possibilities how pulse wave can be distorted
which makes features extraction unusable. If we would use
two optical sensors to measure the pulse wave, we could have
significantly better signal quality. If readings from one sensor
are out of limits or distorted, we could replace some parts of
the signal with readings from the second one or estimate the
signal with the help of second one. Drawback of this solution is
increased power usage due to the increased number of optical



sensors. On the other hand, our goal is to increase the accuracy
of the measurements from the optical sensors.
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Smart Photoplethysmographic Sensor for Pulse Wave Registration at
Different Vascular Depths

Mairo Leier1, Kristjan Pilt2, Deniss Karai3 and Gert Jervan4

Abstract— The aim of this paper is to propose a smart optical
sensor for cardiovascular activity monitoring at different tissue
layers. Photoplethysmography (PPG) is a noninvasive optical
technique for monitoring mainly blood volume changes in the
examined tissue. However, different important physiological
parameters, such as oxygen saturation, heart and breathing
rate, dynamics of skin micro-circulation, vasomotion activity
etc., can be extracted from the registered PPG signal. The
developed sensor consists of 32 light emitting sources with four
different wavelengths, which are located to the four different
distances from four photo detectors. Compared to the existing
sensors, the system enables to select the optimal LED (light
emitting diode) and photo detector couple in order to obtain
the pulse wave signal from the interested blood vessels with the
highest possible signal to noise ratio. In this study, the designed
PPG sensor was tested for the pulse wave registration from
radial artery. The highest efficiency and signal to noise ratio
was achieved using infrared LED (940 nm) and photo-diode
pair.

I. INTRODUCTION

Photoplethysmography (PPG) is a noninvasive optical
technique for monitoring mainly blood volume changes in
the examined tissue. Light from a light source, e.g. LED
(light emitting diode), laser, halogen lamp, is emitted to the
examined tissue, where it is scattered and absorbed. The
transmitted or back-scattered light intensity changes from the
tissue can be detected by using photo-diode. This technique
has been clinically widely used for example in pulse oxime-
try systems, where the blood oxygenation rate is calculated
based on the simultaneous amplitude measurement of PPG
signal on two or more wavelength bands [1]. However, the
research and application areas of the PPG technique have
been expanding during the recent years. The PPG signal reg-
istration and analysis has been used for heart and breathing
rate measurement, heart rate variability analysis, pulse transit
time, arterial stiffness and vasomotion estimation [2]. PPG
sensors are designed mainly for the pulse wave registration
from peripheral vascular beds, such as finger, ear lobe,
forehead etc. Nevertheless, the pulse wave registration from
the artery is needed in order to exclude the influence of
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the peripheral blood vessels (arterioles, capillaries) and to
estimate the stiffness changes of the central arteries or certain
segment of artery [3].

Our proposed system consists of 32 LEDs in four different
wavelengths and four photo-diodes. Distances between the
photo-diodes and LEDs vary to analyze different tissue lay-
ers. LEDs can be grouped in order to analyze automatically
larger tissue areas without moving the sensor on the skin. The
sensor is controlled by the previously proposed miniaturized
monitoring device [4]. The designed PPG sensor is tested for
the pulse wave registration from radial artery.

In the following section we present background on the
PPG measurement and discuss related work together with
some possible application areas. In section 3 we describe the
methodology that is used to analyze the PPG signal. Section
4 describes the experiments and initial results. Finally section
5 discusses the future work and gives some conclusions.

II. STATE OF THE ART

The alternating current (AC) component in the PPG signal
is synchronous with heart cycle and it is related to the
heart generated pulse wave [2]. The pulse waveform carries
important clinical information about the arterial system,
including the micro-circulation of the skin. The detection
of the PPG signal from different tissue layers may give a
better understanding of the changes in the arterial system
[5]. Techniques and applications to obtain the information
from deeper tissue layers, such as blood flow monitoring in
the tibial anterior muscle [6] [7], foetal oxygen saturation
monitoring [8], estimation of pulse wave velocity in larger
arteries [9] have been developed.

The light penetration volume-depth in skin depends on
the selection of the wavelength [10]. Absorption of the
light in the visible and near infrared wavelengths depends
mainly on chromophores such as water, hemoglobin, and
melanin. There is an ”optical window”, where the light is less
absorbed by tissue. Therefore, red and near infrared light can
penetrate deeper layers of tissue than shorter (green, blue)
or longer (infrared) wavelengths and the absorption of blood
is more prevalent. In addition to the absorption, tissue is a
highly scattering medium, where the light behaves diffusely.
Photons are scattered from cell membranes and organelles.
Generally, in shorter wavelengths the light is more scattered
than in longer wavelengths. Due to the scattering and ab-
sorption properties of the tissue there is possibility to obtain
the PPG signal from different tissue layers, which is based
on the combination of wavelength and distance between
the LED and photo-diode (PD) [11]. In addition, earlier



studies, using extremely short light pulses and time-of-flight
analysis, have reported that the distance photons travel in
tissue is approximately 4-6 times the distance between the
light source and photo detector [12]. Generally, in case of
short distance between the LED and photo-diode, and short
wavelength (green, blue), the penetration volume-depth is
small. On the other hand in case of long distance between the
LED and photo-diode, and longer wavelength (near infrared),
the penetration volume-depth is larger.

PPG sensor development for the signal registration from
the different penetration volume-depths, has been described
earlier [6] [7] [13]. The advantage of our proposed sensor is
to combine PDs and LEDs with different wavelengths into
groups so that they can be driven independently. The distance
between the LEDs and PDs and selection of the wavelength
in proposed smart PPG sensor has been made based on the
previously mentioned studies.

III. SENSOR ARCHITECTURE

The proposed sensor architecture is part of the previously
developed system. The architecture and the functionality of
the system has been discussed in [4] and [14]. Smart PPG
sensor consists of LED and photo-diode array with control
logic and optical measurement functionality.

A. Sensor

Figure 1 depicts the architecture of the optical sensor
module. There are four independent LED and PD groups, and
two independent channels. A channel means that all signals
that are measured in this particular group are connected with
one particular analog front-end (AFE) module. In total there
are two identical AFEs integrated into one AFE module that
are working in parallel. Each group has one PD, green (G),
red (R) and two infra-red (IR) LED emitters.

Fig. 1. Structure of optical sensor array

Four different wavelengths are used. Green LED 560 nm,
red LED 660 nm, inner infrared LED (IRn-1 and IRn-3) 880
nm, and outer infrared LED (IRn-2 and IRn-4) 940 nm. All
vertical and horizontal distances between LEDs and PD-s are
based on the studies, mentioned in state of the art.

1) Light Source Driver: Figure 2 depicts the hardware
block diagram of the smart PPG sensor. All digital control
signals are marked with dotted line. Multiplexing of control
signal is done by using serial in to parallel out shift registers
that drive analogue switches. Each shift register controls two

switches and each switch in turn two LED pairs. A LED pair
means that there are two LEDs, one LED anode is connected
to another’s cathode so that they can be turned on alternately.
With current configuration we can drive independently up
to 16 LEDs per one channel. In Figure 2 an emitter-pair
is drawn as emitter box. For simplicity there are four two
emitter boxes drawn and inside each one there are two
emitters. Depending on the used analogue switch, there can
be any number of LED pairs inside each box. The switching
of optical sensor is initiated by the data processing module
(a). Real switching of optical sensor is performed by the
integrated Control Logic (b). The current for each LED is
digitally controlled with 8-bit accuracy. Current configuration
allows to set up to 100 mA LED current for each LED
independently by the AFE.

Fig. 2. Hardware block diagram

All four PD-s are driven by one analogue switch. For each
channel there are two PD-s. Solid blue lines on the Figure
2 mark analogue signals. From the PD, an analogue signal
goes directly to the AFE module.

2) Communication: Device is controlled by the user in-
terface via USB connection. For better sensor management
we have developed a Python based graphical user interface
(GUI) that allows to set individually the current of each
LED, feedback resistors and capacitors, to view the received
signals and save the raw data into the file. From Analogue
front-end we receive 6 signals: LED1, LED2, LED1 ambient,
LED2 ambient, LED1-LED1 ambient and LED2-LED2 am-
bient. All signals are 22-bit long. Ambient measurement and
cancellation is built into the AFE as is done automatically
by the AFE.

B. Logic

1) Driving phases: The LED array driving process has
two main phases. At first, the array has to be calibrated which
is mandatory to start the measurement process. Calibration
process analyses the acquired signal and determines LED
groups that have the best signal quality.

For the calibration we group two LEDs into one group.
In Figure 1 LEDs IRn-1 and IRn-2 forms one group, Rn-
1 and Gn-1 second, Rn-2 and Gn-2 third, and IRn-3 and
IRn-4 fourth group. Same grouping methodology is defined



in each group and on both channels. Altogether we get 16
LED groups. Each group is switched on and off for a short
period of time with different pre-defined configurations.

Calibration with each group is started by setting the
LED current to 100mA and amplification with the feedback
resistor to the maximum level. If the signal strength goes into
saturation, amplification is decreased until the AC component
has the maximum value and DC component is not in the
saturation. Based on the AC and DC component, we calculate
the efficiency. At first, a received photo-current is calculated:

Ip =
Vout
2 ∗Rf

, (1)

where Ip is photo-current, Vout is photo-voltage analog-
digital conversion (ADC) value divided by 22-bits, Rf is
feedback resistor of the amplifier. With that equation we
can calculate photo-current for AC and DC component.
Efficiency is calculated with the following formula:

γeff =
IAC

IDC
, (2)

where γeff is the efficiency, IAC is photo-current of AC
component and IDC is photo-current of DC component.

After all groups are toggled once with their own best
settings, signal quality analysis follows to detect the presence
of pulse wave. The group with the highest amplitude of
AC component will be chosen automatically to start the
continuous measurement process. If there are signals with
identical quality from more than one group we can redefine
groups and repeat the same process to find only those LEDs
that give the best signal for our needs and group these into
one group that will be used during the analysis.

2) Configuration of light source driver: The AFE mod-
ule is capable of generating up to 5 kHz pulse repetition
frequency (PRF). Each period includes two times ambient
and LED sampling. The sample rate is four times PRF, up
to 20 kHz. For pulse wave detection the common sampling
rate is 250 Hz and up but using higher sampling rate it is
possible to use built in hardware averaging functionality that
gives even better signal quality. In our current configuration,
we are using sampling rate of 500Hz and no averaging.

Fig. 3. Sensor module overview

Figure 3 depicts the build-up of the sensor module. Mod-
ule has a connector for external system connection, that is
built on the flex part. All control logic is placed on the rigid

part as it helps to increase the mechanical reliability because
the rigid does not bend. All optics are on the flex part as it
touches directly the skin and needs to be bent accordingly.
All electronics, including LEDs and photo-diodes, is poured
into the medical silicone to minimize the effect of the skin.

Rigid and flex parts have 4-layer design to suppress the
noise and increase the stiffness to the appropriate level.
Extra care has been taken with the signal line routing of the
detectors. As the length of the whole sensor part is 138 mm,
there is a risk for increased noise. For that reason all detector
lines are routed on the middle layer and also surrounded with
shielding traces.

IV. EXPERIMENTS AND RESULTS

During the real experiments we have got results that verify
out expectations about obtaining the best pulse wave signal
from the radial artery only from the LED and photo-diode
pair with the highest efficiency, that is calculated using
formula (2). Measurements were performed by placing the
sensor on the wrist, as depicted on figure 4, and fastening it
using bending strap.

Fig. 4. Sensor placement on the wrist

Experiments were performed on different days, but on the
same test person. The signals were recorded from the left
hand radial artery. Efficiency was calculated as described
in the previous section. Table I depicts the relative signal
efficiency for each LED and photo-diode pair. The optopair
with highest efficiency on each vertical group is colored.
Red color marks infrared, orange red and light green marks
green LED. Efficiency more than 1% is considered usually
as a good signal. The bigger the efficiency number the better
signal to noise ratio we get.

The signal with the highest efficiency is received with the
LEDs that have the longest wavelength, marked with red.
Comparing the left and right side, the signal with highest
efficiency is on the right side because radial artery is more
close to the surface of the skin on the wrist side. As it can be
seen from Table I, there are also some differences between
measurements on different days. However, it is visible, that
the results are repeatable and the radial artery can be detected
under certain optopair.

For the reference we have also measured noise level of
photo-diode by shutting down LED driving part of the AFE



TABLE I
TEST RESULTS

module and putting the sensor to the dark. The average noise
is 0.256 mV and it is not dependent on the feedback resistor
in Eq. (1).

Fig. 5. Measured PPG signals; Top: IR2-3, bottom: IR2-4

Figure 5 depicts the results of one LED pair. Upper part
describes the signal measured with IR2-3 and below IR2-
4. Both signals have already ambient subtracted and LED
current is calculated based on the Eq. (1) and (2). As this
figure belongs to the measurements made on the second day,
it correlates well with the Table I bottom part. Efficiency
values in that table show also that IR2-4 has slightly better
efficiency compared to IR2-3, 0.69% and 0.48% accordingly.

V. FUTURE WORK AND CONCLUSIONS

Currently all measurements were performed manually by
switching between LED pairs, setting feedback resistor,
capacitor and LED current values manually. This task will
be automated in the future because this is the calibration task
that needs to be performed before each measurement. During
that time there should be no sensor placement changes nor
any other disturbances that may change the environment
conditions, which impacts heavily signal quality.

LED and photo-diode control logic is currently separated
from AFE with micro-connector. To increase the physical

reliability and noise immunity, AFE and LED/PD driving can
be bundled into one board to reduce the physical dimensions
of the module twice. This makes the placement of the sensor
to the human wrist more comfortable and faster.

It is possible to decrease the ambient noise by increasing
ambient cancellation current and decreasing LED duty cycle.
It is also possible to enable the second stage ambient
cancellation amplification to increase the noise immunity and
get more noise free bits.

In this paper, the architecture and driving possibilities
of smart PPG sensor is presented. We have designed the
first prototype of smart PPG sensor. It has 32 independent
emitters and 4 independent detectors that can be grouped
and driven individually. With the current configuration the
system is flexible enough to perform measurements by
grouping emitters into different groups or driving all of them
individually. First experiments show that it is possible to use
developed sensor for registration of pulse wave from radial
artery in more comfortable way and faster. According to our
results the efficiency variation ca 1.46% between different
optopairs and different emitter wavelengths shows clearly the
usability of proposed sensor.
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Abstract

While situation and self-awareness facilitate a proper assessment of
cost-constrained cyber-physical system, attentions serves to allocate the
limited resources where they are most needed. Together they are key
enablers for efficient distributed sensing and computing networks.

1 Introduction

B.J. Baars (see sidebar [S1, p.347]) observes that “like any other biological adap-
tation, consciousness is functional”. The same can be claimed about awareness
and indeed, the insight that a sense of awareness of a system’s own situation
can facilitate robust and dependable behavior even under radical environmental
changes and drastically diminished capabilities, has resulted in a proliferation
of work on self-awareness and other system properties such as self-organization,
self-configuration, self-optimization, self-protection, self-healing, etc., which are
sometimes subsumed under the term self-* (see sidebar). Thus, awareness en-
ables to improve the behavior of systems, making them more robust and reduc-
ing processing, communication and energy requirements. However, designing
and implementing it in an ad-hoc manner for every new system is not feasi-
ble. Introducing awareness as a separate concept in the Cyber-Physical Sys-
tem (CPS) infrastructure rather than as part of the application functionality,
promises to simplify development and operation of such systems. As CPS are
typically Systems of Systems (SoS), the awareness must be solved comprehen-
sively, ensuring that the understanding of the situation is coherent and consis-
tent across the SoS.

We argue that self-awareness, situation awareness, and attention are key
enablers for efficient Fog and Mist computing (See the sidebox on Fog and Mist
Computing). Situation awareness [1] facilitates the continuous interpretation of
the stream of data collected from the environment in the context of the goals and
objectives of the CPS. A situation is defined by the values and interpretation
of a set of situation parameters [2]. A situation parameter can be monitored or
computed independently and represents a property of the situation of interest.
In our example the information for generating situation awareness is exchanged
by a proactive middleware, that is independent of the application functionality
and can be considered as part of the CPS platform.
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Fog and Mist Computing
Awareness in computing nodes can be achieved using several computing
architectures. In the Cloud Computing scenarios the data from sensors is
communicated to the cloud and the interpretation of sensor data is per-
formed in the cloud environment, which results in inefficiencies in terms
of bandwidth consumption and delays, while being powerful as global
knowledge from all relevant nodes is available for situation evaluation.
In Fog Computing [F1], the computation is performed at the edge of
the network at the gateway devices, thereby reducing the need for com-
municating data to the servers, reducing bandwidth requirements and
latency. Due to its distributed and localized architecture, computing is
a natural platform for a variety of critical Internet of Things (IoT) ap-
plications such as connected vehicles, smart grids, smart cities, and, in
general, wireless sensor and actuator networks [F2]. To that end several
programming models and application frameworks have been developed
for fog computing [F3, F4]. However, in a strict definition of fog com-
puting the devices at the very edge are not involved in computation but
only in data acquisition while the interpretation occurs in the gateway.
Hence, network delay and inefficient bandwidth utilization may still be
problematic. Mist Computing pushes the processing even further to the
edge of the network involving the sensor and actuator devices, thus de-
creasing latency further and increasing the autonomy of subsystems. In
such scenarios awareness and self awareness of every individual device is
critical as the computation and actuation is dependent on the individual
device’s perception of the situation. The challenge with implementing
mist computing systems lies in the complexity of the resulting network
and the interactions in the network, which must be managed by the de-
vices themselves as central management of such systems is not feasible.
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Attention is instrumental in balancing the competing tasks of data collection,
processing and responses under tight resource constraints because it assigns pri-
orities to tasks and goals. These priorities dynamically change depending on
the situation and the state of the system. Thus, situation awareness assesses
the observations and gives significance to data, attention directs scarce system
resources to the most important tasks at hand, and by means of self-awareness
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the overall system performance is monitored in a dynamically changing environ-
ment. In a nutshell, self-awareness (in a broad sense) includes self-monitoring
(self-awareness in a narrow sense) and situation awareness because the system
has to ”understand” both its own state and the environmental conditions. A
system that tracks only its own inner state has a very limited view of its situation
in the world.

Below we explore these concepts in a human health monitoring scenario and
we show how situation awareness facilitates the assessment of human physiolog-
ical data using context information.

Self-Aware and Autonomic Systems
Already in the early days of theoretical psychology over a century ago
the concepts of self-awareness and consciousness have been studied with
great sophistication by William James [S2] and Sigmund Freud [S3],
among others. Since the 1960s attempts to structure and categorize
self-awareness into levels, degrees, and scope have proliferated, but this
development has also lead to a fair amount of confusion due to lack of
coherence with earlier work. To clear the fog A. Morin [S4] has put
forward a comparison of nine neurocognitive models of self-awareness
with an analysis of their respective differences and similarities. Morin’s
framework distinguishes, from lower to higher levels, unconsciousness,
conscious of external stimuli and events, self-awareness of public and
private self-aspects, and meta self-awareness, while interesting aspects
and nuances are due to ”perception of self in time and complexity of
self-representations” [S4].
Beyond categorization of awareness phenomena, a number of theories of
self-awareness, consciousness and attention in human brains have been
developed. Baars describes the Global Workspace Model (GWM) [S1] of
conscious processing, supposed to be located in the Extended Reticular-
Thalamic Activation System (ERTAS) [S1, figure 3.1, page 97]. Its
salient feature is that only one of the many parallel, subconscious pro-
cessing modules gets access at any given time and can spread information
globally and thus controlling the activation in large parts of the brain.
Essentially, consciousness serves as a global resource allocator. Many
of the phenomena predicted by the GWS could be confirmed in simu-
lations and experiments, although more recent research downplays the
importance of consciousness while attention and goals assume a more
prominent role [S5]. The goals exert their effects on behavior by mod-
ulating attention - when people try to attain goals, attention serves to
maintain a balance between focus and flexibility on actions.
Biological examples have long inspired computer engineering and the
field received a boost in the 1990s due to ever growing complexity in soft-
ware systems. The 1998 DARPA Broad Agency Announcement on Self-
Adaptive Software (DAA-98-12) [S6] triggered a plethora of research on
topics like self-adaptive, autonomic, self-aware computing. IBM picked
up the thread and developed a powerful vision on autonomic computing
leading to an abundance of research papers and eventually also prod-
ucts [S7]. Since then work on self-* topics has flourished both in the
context of large software systems and of constrained embedded sys-
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tems. Witness to these efforts are recent surveys and collections on
self-healing [S8,S9], on-chip self-monitoring [S10], bio-inspired hardware
design [S11], situation identification techniques [S12], pattern based en-
gineering approaches [S13], and self-awareness [S14]. Also, Frameworks
and platforms for self-aware computing are proliferating [S15–S17].
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Figure 1: Hierarchical buildup of situation parameters.

2 Situation Dependent Interpretation

Both, situation awareness and attention, are an important part of self-awareness.
Although the discipline of situation awareness originates from the human do-
main, the concepts are applicable in the domain of embedded systems. Both
humans as well as computers process collected data from sensors for developing
situation awareness. A cyber-physical system must be aware of the situation to
perform optimally as the ”correct” behavior is dependent on the current situa-
tion. For instance, the interpretation of a low fuel warning light in a vehicle is
different in the middle of a desert, 300 miles from the closest gas station, and
when the vehicle is pulling into a gas station. So although the sensor value is
identical, the interpretation, and the consequent actions, of the sensor reading
is very different.

Complex phenomena require that data from several sensors with diverse
modalities are used to generate an adequate level of situation awareness. The
sensors may be attached to different, physically disjoint computing nodes. This
introduces the challenge (and the opportunity) of distributing the computation
between individual computing nodes. One example which requires distributed
sensing and processing is monitoring of the human body during everyday activ-
ities. Evaluating the state of the human body requires measuring physiological
parameters and estimating the activities, because the interpretation of the mea-
sured data (e.g. heart rate) depends on the current activity (e.g. sleeping or
running). Thus, sensors of different modalities must be attached in different
areas of the human body, leading to a distributed sensor system. Wiring up the
human body is unpleasant and hence, a network of autonomous wireless sensors
should be used.

When both sensing and processing is distributed, a hierarchical buildup of
situational information becomes necessary, leading to ever higher abstractions of
the data. Figure 1, inspired by Mica Endsley [1], shows the main steps: sensing
(perception of internal properties and the physical world), perceived context,
comprehension and projection. In most computing nodes the highest level of
abstraction of situational information is at the level of low-level situations (per-
ceived context), while a few more capable computing nodes perform also the
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comprehension step. Projection is a complex processing step, which may not be
present at all as this requires a good understanding of the application domain
as well as complex prediction methods. The concept for hierarchical buildup of
situational information has first been introduced by Endsley [1] in the context
of human situation awareness. J. Preden has extended it for the cyber-physical
computing domain, by allowing for the exchange of situational information at
the lower levels, which maps well to the computational architecture in Fog and
Mist computing leading to efficient implementations.

The concept of situation parameters [2] allows to represent abstracted sen-
sory data characterizing relevant aspects of a situation. The situation parameter
types are highly domain and application dependent. It is critical that common
ontology and semantics are used on the types and meaning of the situation pa-
rameters and that the parameter values are valid in the required temporal and
the spatial intervals. A specific data item may be useful and valid at a certain
time and location, but invalid and misleading a few seconds later at a different
location. Thus, metadata must be associated with the parameter values com-
puted by distinct computing nodes. In case of human health monitoring the
minimum spatial validity criteria is that the situation parameters should char-
acterize the same person. The temporal validity criteria specifies the temporal
interval in which the parameter values are valid, e.g., the human activity assess-
ment must reflect the activity within at least the past 10 seconds to correctly
evaluate the current heart rate of the human.

Situation parameter values reflect phenomena of interest and by compos-
ing them, values of higher level parameter can be computed. The types and
accuracy of situation parameters, how they are computed and their validity cri-
teria are highly application dependent. The systems must be able to cope with
inaccuracies as the values may be based on imprecise data because of inher-
ent challenges in precisely monitoring physical processes, limited fidelity of the
sensing hardware, or the approximations made in software. Examples are im-
age processing and acoustic signal processing - the results obtained are almost
always approximations, estimating the probability of the observed phenomena
being of certain type or in a certain state.

One methodology that allows for combining data with varying levels of cer-
tainty is fuzzy logic [3]. Associating situation parameter types with fuzzy sets
and situation parameter values with degree of membership to a given set, the
set memberships can be computed at any computing node. Fuzzy rules can
be used to derive higher-level situation parameter values from lower level fuzzy
set membership levels. The membership functions for some fuzzy sets can be
quite complex, for example a set representing the amount and quality of sleep
of a person. Comprehensive solutions exist for automatic evaluation of this, for
example the solution offered by Beddit Ltd. (http://www.beddit.com/), taking
into account sleeping time, breathing patterns, the heartbeat rate, the amount
of movement and several other factors. Thus, the function for estimating the
quality of sleep itself is complex. Membership functions for other fuzzy sets
may be simpler, e.g. to provide a value of the situation parameter reflecting the
heart rate of the person.
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Figure 2: Architecture of self-aware Health Monitor.

3 Awareness Concepts in Health Monitoring

Our conceptual architecture of self-aware Health Monitor is provided in (Fig-
ure 2). Inputs from various sensors (altitude, location, heart rate, accelerom-
eters, temperature, oxymeter etc.) are abstracted, attributed and categorized.
The identified input pattern class is compared with a pre-built or dynamically
updated model. In case of a mismatch an anomaly signal is generated which
induces attention. An attention control mechanism triggers the collection of
complementary data or additional analysis steps if an anomaly appears and the
analysis is not conclusive. Depending on intensity and duration of the anoma-
lous situation either the person is alerted or the goal is changed, adapting to a
new situation. In highly anomalous cases other higher level devices are alerted
(emulating emergency call).

We have previously shown how principles of using situation parameters for
assessing the state of the physical world can be applied in the context of an In-
telligence, Surveillance and Reconnaissance (ISR) application [2]. The benefits
from abstracting data in the sensor nodes (mist computing) are the reduction
of bandwidth and an adaptable system that is able to cope with changes to the
system structure.

We apply the same principles to monitor the condition of a human body,
where vital parameters are monitored in the context of the activity the human
is involved in. In addition to the interpretation of sensor data being different
in various situations, the fidelity of individual sensor data acquisition and pro-
cessing is dependent on the activity of the person. For example the monitoring
requirements for sleeping are different from those for running. The monitoring
requirements may be also guided by a doctor, i.e. a doctor could instruct the
system in certain situations to increase the fidelity of monitoring or to log the
data with finer granularity.

Utilizing the value of the situation parameter reflecting the heart rate is only
meaningful in the context. To evaluate if the heart rate of a person at a given
moment is within a safe range the algorithm must, as a minimum, consider
the specific current activity and the immediate history of activities (it takes
a certain time for the human body to adapt to or to recover from a specific
activity). Also, the larger context is relevant - how well rested the person is,
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Figure 3: Left: ProWare components in individual computing nodes. Right:
Hierarchies of situation parameters computed by individual computing nodes.

what food has been consumed, etc. In a health monitoring application the
parameter types may reflect the activity of the person (e.g. resting, walking,
running), the state of the human body (e.g. stressed, rested, tired) or the
current physical load (e.g. high load, medium load). The parameter values can
be computed centrally or by separate computing nodes as depicted on the right
part of Figure 3.

Monitoring a person’s daily activity has been an active research area for some
time. Dong et al. [4] have placed several accelerometers on the body. With a
Kalman filter the system tracked and classified the daily physical activities with
good accuracy. The status of the body segment was categorized into static and
dynamic, further differentiated into periodical and non-periodical status using
Discrete Fourier Transform (DFT). A Hidden Markov Model (HMM) was used
for training data and modeling of periodical movement. The overall classification
accuracy is reported as about 90%.

Similar physical activity assessment for rescuers during emergency interven-
tions has been developed by Curone et al. [5]. Wearable electronics was inte-
grated into the textile fabrics with the goal to automatically identify potentially
dangerous conditions for the monitored subject. With the triaxial accelerome-
ter and one lead ECG (electrocardiogram), an overall classification accuracy of
88.8% was achieved.

As these examples illustrate, the evaluation of the activity of a person may
use a range of sensors as input. It is clear that for different activities the
interpretation of the sensor data must be interpreted differently. A heart rate
of 130 may be normal for a person climbing stairs or jogging but the same heart
rate is worrying when the person is resting or working at a desk. Similarly, the
interpretation of other physiological signals depends on the current activity of
the person.

In order to facilitate effective exchange of situation parameters, a Proactive
Middleware (ProWare) has been implemented in the Research Laboratory for
Proactive Technologies. The left part of (Figure 3) depicts the elements of
ProWare involved in data exchange. ProWare enables dynamic establishment of
communication partnerships (as service subscriptions) for exchange of situation
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parameters, enabling the consumer of the situation parameters to specify the
temporal and spatial constraints for the parameters [2].

The ProWare components, located in every computing node, check the va-
lidity criteria and ensure that only data that satisfies the validity criteria are
delivered to the analysis algorithms. In order to facilitate the validation of the
mist computing concepts we have packaged the ProWare components together
with a clustered mesh protocol in a compact wireless module. This module
enables fast integration with sensor devices and it is pin compatible with Rasp-
berry PI, Arduino and Bluehex.

4 Experiments and Results

Even though the complete system of Figure 2 has not yet been realized, we
conducted a series of experiments in a health monitoring scenario to validate
key assumptions and show the viability of identification of awareness properties
in a mist computing approach. The data relevant for situation assessment was
collected from individual sensors.

In the experiments a test person was involved in the following activities:
resting on a couch, working at a table, walking slowly indoors, climbing stairs
indoors and walking at a rapid pace outdoors. The sensors used in the tests
were accelerometer, altitude meter and a heart rate monitor.

The collected data was analyzed to determine if local situation assessment
by combining data from individual embedded sensor nodes is feasible. Although
the collected data was analyzed off-line the algorithms applied are sufficiently
light-weight to be executable in embedded low-power computing nodes.

The heart rate data was logged using a BM-Innovations chest strap BM-
CS5 (http://bm-innovations.com/). The pulse rate was communicated once
per second using the Bluerobin wireless protocol to the Texas Instruments
eZ430-Chronos watch (http://www.ti.com/tool/ez430-chronos). The watch was
equipped with an internal pressure sensor for altitude measurements. The heart
rate and altitude were saved with a full time stamp temporarily in the internal
memory of the watch. Data logs from the experiments were communicated to a
PC for analysis using wireless SimpliciTI protocol (http://processors.wiki.ti.com).
For evaluating the activity of the person the accelerometer in a smartphone was
used and the phone was carried in the pocket of the subject during experiments.
The G-Sensor Logger Android application was used to collect accelerometer
measurements. The data logged during the tests from all the sensing devices was
analyzed with MATLAB. Our aim was to investigate if the performed activities
can be detected (i.e., situation parameter values determined) from individual
data streams. As noted above, the sampling rate for pulse rate and altitude
estimate was 1Hz while the average sampling rate for the accelerometer was
16Hz, therefore the raw sensor data was synchronized before analysis. In a Mist
computing implementation the synchronization will be performed by ProWare.

We employed the modulus of the acceleration vector |a| =
√
a2x + a2y when data

of two sensors was used, and |a| =
√
a2x + a2y + a2z for data from three sensors

to estimate the personal activity level, which proved to be sufficient.
The left side of Figure 4 depicts the averaged values of observed pulse rates

and acceleration over ten-second periods.
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Figure 4: Left: Pulse rate versus activity: red: sitting or resting; black: car
driving; blue: indoor slow walking; magenta: outdoor rapid walking; walking
upstairs (green) and downstairs (cyan). Right: The modes are correctly tracked
as the person performs different activities.

The results from different experiments populate rather distinct areas in the
pulse rate/activity space. The activities sitting, car driving, indoor walking, out-
door walking can be well categorized using only two sensors, the pulse rate meter
and the accelerometer. However, the green and cyan dots (stair climbing) form
a rather large area in the pulse rate/accelerometer space triggering the attention
mechanism to consult further data from the altitude sensor. These additional
data allow to identify the activity as stair climbing and to distinguish between
moving upwards (green) and moving downwards (cyan). More generally, this
illustrates the benefit of attention directed data collection and analysis. If data
from a few sensors, processed with a simple analysis algorithm, comes to an
unambiguous conclusion, unnecessary data collection and processing is avoided.
Only cases when anomalies are detected or the analysis is inconclusive warrant a
more elaborate and expensive procedure of data collection, communication and
computing. Thus, attention based sensing and analysis has potential to save
significant time and energy. To quantify this potential in various applications
remains the objective in future work.

Also note that these states in the figure are mostly what can be considered
the steady states for given exercises, although some transitional states are also
observed (the samples between the boxes). Pulse rate changes are never in-
stantaneous. This is clearly visible in the right side of Figure 4 that depicts a
series of exercises explains why the temporal aspect of human physiology must
be considered.

From the experiments it can be concluded that relatively simple sensors
can be used to determine the activity the person is involved in and correlate
physiological parameters to individual activities. Moreover, most of the time
only a subset of the available sensors have to be employed leading to a lean
approach of monitoring. For a more accurate estimation, however, additional
phenomena need to be measured. Naturally such a monitoring system must
adapt to an individual but once the adaption phase is complete, the CPS is able
to monitor the person and determine if the physiological parameters are within
the typical range for a given activity.
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5 Conclusions and future work

Self-awareness, situation awareness and attention are powerful concepts with
the potential to lead to high efficiency in various sensor and actuator networks.
Inspired by biological example, studies and proposals that touch upon various
aspects of self-awareness have proliferated during recent years. Still, its poten-
tial is hardly understood and by far not yet exploited. Contributing to this
broad effort, we have explored situation awareness and attention, concluding
that the principles of generating situation awareness using the situation param-
eter concept are well applicable for health monitoring. We argue that situation
awareness is an inherent part of self-awareness. A system has to know its own
inner state (self-awareness in a narrow sense) and where it is in the world and
what the environment looks like to make a proper assessment of its own state
and performance. Only with the understanding of the context it is justified to
call the system self-aware in a broader sense.

Situation awareness is jointly generated by a group of sensors, thus distribut-
ing the burden over several nodes and leading to Fog or Mist computing. Fairly
simple algorithms, executed by resource constrained embedded nodes, compute
the situation parameters. ProWare can be used as a platform to facilitate the
information exchange of situational parameters within a resource constrained
network. With the availability of a standalone RF hardware module that con-
tains ProWare it is simple to connect any device to an existing CPS.

We have shown in our experiments with only three sensors (for pulse rate,
acceleration, altitude) how the different measurements complement each other
to allow for a precise assessment of typical activities and how attention can
steer data collection and processing for the benefit of lean and efficient system.
Multiple sensors facilitate distributed data collecting and processing based on
fog and mist computing paradigms.

We are building a complete prototype CPS which is able to monitor the
parameters of the human body and dynamically learn normal sensor patterns
facilitating the detection of deviations and anomalies.
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