
Tallinn 2021

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Aleksandr Kožemjakin 185955IADB

Upgrading Electronic Devices Factory Testing

Web Environment in a Private Company

Bachelor's thesis

Supervisor: Nadežda Furs

 MBA

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Aleksandr Kožemjakin 185955IADB

Seadmete tehasetestide veebikeskkonna

uuendamine elektroonikaettevõttes

Bakalaureusetöö

Juhendaja: Nadežda Furs

 MBA

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Aleksandr Kožemjakin

17.05.2021

4

Abstract

The goal of the thesis is to develop a web environment for factory tests. The solution is

made for company inner use to improve quality of analysing electronic devices test

results.

The solution has got backend and frontend implemented. Backend has got MongoDB

database support and services with API controllers. Frontend was created using Blazor

WebAssembly and its features.

Created project is a prototype that is being further developed and will be fully integrated

in the company use in the future.

This thesis is written in English and is 49 pages long, including 5 chapters, 31 figures and

9 tables.

5

Annotatsioon

Seadmete tehasetestide veebikeskkonna uuendamine elektroonikaettevõttes

Lõputöö eesmärk on areneda veebikeskkond tehasetestide jaoks. Veebikeskkond peab

salvestama ja näitama infot seadmete testimise kohta, näiteks seadmete loetelu, nende

issue-d ja testitulemused. Lahendus on mõeldud ettevõtte sisekasutuseks, et parandada

elektroonikaseadmete testitulemuste analüüsi kvaliteeti.

Lõputöös kirjeldatakse ettevõttes praegu kasutatavat veebikeskkonda koos selle

probleemidega, analüüsitakse mitu veebikeskkonda loomiseks sobivat tehnoloogiat,

eesmärgiga valida kõige sobivam ja mugavam, luuakse uue veebikeskkonna prototüüpi

koos dokumentatsiooniga.

Lahenduses on rakendatud backend ja frontend. Backend-is on implementeeritud

MongoDB andmebaasi tugi ja API kontrollerid koos teenustega. Frontend-i loodi Blazor

WebAssembly abil.

Loodud lahendus on prototüüp, mida arendatakse edasi ja mis integreeritakse tulevikus

täielikult ettevõtte kasutusse. Veebikeskkond võimaldab näha tooteid, seadmeid ja

seadmete issued. Pealegi on frontend-i abil võimalik luua uusi seadmeid ja nende issued.

Frontend-il on mugav routing, seega on võimalik linke parameetritega jagada ja vajalikku

infot kohe renderdada.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 49 leheküljel, 5 peatükki, 31

joonist, 9 tabelit.

6

List of abbreviations and terms

AOP

API

BSON

CLR

CRUD

DI

DOM

ERD

HTML

HTTP

IDE

IoT

JRE

JSON

PC

REST

UI

URL

Aspect Oriented Programming

Application Programming Interface

Binary JavaScript Object Notation

Common Language Runtime

Create, Read, Update, Delete

Dependency Injection

Document Object Model

Entity Relationship Diagram

HyperText Markup Language

HyperText Transfer Protocol

Integrated Development Environment

Internet of Things

Java SE Runtime Environment

JavaScript Object Notation

Personal Computer

Representational State Transfer

User Interface

Uniform Resource Locator

wasm

WPF

WebAssembly

Windows Presentation Foundation

7

Table of contents

1 Introduction ... 12

1.1 Background ... 12

1.2 Problem ... 12

1.3 Goal .. 13

1.4 Methodology ... 13

1.5 Author`s role ... 13

2 Analysis ... 14

2.1 Current solution overview .. 14

2.2 New solution requirements ... 14

2.3 Database .. 15

2.3.1 MySQL .. 15

2.3.2 MongoDB .. 15

2.3.3 Database choice ... 17

2.4 Backend and frontend stack .. 18

2.4.1 .NET .. 18

2.4.2 Spring Framework ... 19

2.4.3 JavaScript .. 20

2.4.4 Blazor WebAssembly .. 22

2.4.5 Summary of frontend and backend stack .. 23

2.5 Tools ... 24

3 Implementation .. 26

3.1 Entities and API endpoints ... 26

3.2 Project structure .. 30

3.3 MongoDB support implementation .. 31

3.4 API implementation .. 32

3.5 Frontend implementation .. 36

3.5.1 Widgets .. 37

3.5.2 UI components ... 38

3.5.3 Main components .. 40

8

3.6 Existing software adjustment.. 42

3.7 Result .. 44

4 Further development .. 45

5 Summary .. 46

References .. 47

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 49

9

List of figures

Figure 1. Relational DB and document DB example (Picture from the Internet) [6]. ... 16

Figure 2. Spring Framework modules overview [12]. ... 20

Figure 3. Rendering Engines and JavaScript Engines [16]. ... 21

Figure 4. Blazor app in HTML [22]. .. 23

Figure 5. Project structure (screenshot by author). ... 30

Figure 6. Configuration model (part of author`s code). ... 31

Figure 7. Database settings class (part of author`s code). .. 31

Figure 8. Database settings configuration in the startup class (part of author`s code). .. 32

Figure 9. Device entity (part of author`s code). ... 32

Figure 10. Entity models and database settings (screenshot by author). 32

Figure 11 Services (screenshot by author) ... 33

Figure 12. Controllers (screenshot by author). ... 33

Figure 13. Custom exceptions interface (code created by project team)........................ 33

Figure 14. DeviceService constructor (part of author`s code).. 34

Figure 15. Exceptions initialization in service (code created by project team). 34

Figure 16. Get function (part of author`s code). ... 35

Figure 17. Create function (part of author`s code). .. 35

Figure 18. Services singleton implementation (part of author`s code)........................... 35

Figure 19. Device API controller (part of author`s code)... 36

Figure 20. API Get function (part of author`s code). ... 36

Figure 21. Endpoints class (part of author`s code). .. 37

Figure 22. ContentTable widget (code created by project team). 37

Figure 23. Header widget (code created by project team). ... 38

Figure 24. DockedEditor component (code created by project team). 39

Figure 25. Section component (code created by project team). 39

Figure 26. DeviceList component (code created by project team). 41

Figure 27. AddDevice HTML part (code created by project team). 42

Figure 28. Client project components (screenshot by author). 42

Figure 29. Constructor that skips authentication (part of author`s code). 43

10

Figure 30. Main function (part of author`s code). .. 43

Figure 31. Web environment UI (screenshot by author). ... 44

11

List of tables

Table 1. Customer object. ... 26

Table 2. Product object. .. 26

Table 3. Device object. ... 27

Table 4. Issue object. .. 27

Table 5. Session object. .. 27

Table 6. Result object. .. 28

Table 7. Test Suite object. .. 28

Table 8. Test object. ... 29

Table 9. Project API. .. 29

12

1 Introduction

In the following thesis development of the web environment for factory tests is described

and provided analysis and overview of technologies that were used.

1.1 Background

Nowadays electronic devices are used everywhere. Since modern world is so dependent

on electronics it is essential to provide its correct functioning.

Correct functioning of an electronic product can be achieved with testing. Complete

production cycle of an electronic product requires separate tests for each electronic part

of a product during each stage of production. It means that circuit board for a product

must be tested separately and eventually it must be tested with other components when a

device is assembled.

For efficiency and convenience of testing it is necessary to store and display testing

information in a clear format for a developer. This way it is easier for the developer to

gather and analyse testing information.

This approach requires development of a test environment with modern and comfortable

UI (User Interface) which meets manufacturer requirements for proper testing.

1.2 Problem

Company area of work is electronic equipment production. Test environment that is

currently used in equipment manufacture is outdated and needs to be updated.

• The UI is not clear and is inconvenient to use.

• Production standards require more detailed information recording, which is

currently not possible.

13

1.3 Goal

The goal of the thesis is to create a web environment for the electronic devices’ factory

testing. Web environment must store and display information about devices factory

testing, such as testing devices list, their issues and test results. Created web environment

will be a prototype that will be further developed and integrated in the company use in

the future.

Additionally, the environment must meet following requirements:

• Must support existing interfaces between current systems and services.

• The web environment must be accessible to all most common browsers (Chrome,

Firefox, Edge Chromium, Safari).

1.4 Methodology

Currently used web environment with it`s problems is described.

In order to solve the problem, several technologies suitable for web environment

development are analysed, aiming to choose the most suitable and convenient one.

Based on requirements and analysis, technology choice is explained.

New web environment prototype with documentation is created, which implements the

most significant functionality and creates basis for further development.

Functionality that will be added in the future is described.

1.5 Author`s role

The author of the thesis described technologies used for a project development and

provided reasoning for choosing them. The author of the thesis participated in a

documentation creation, project structuring and technical implementation.

The project was developed in a team with one developer of the company. The author took

part in a development of all parts described in the thesis.

14

2 Analysis

In this part different technologies suitable for solution are described and provided a more

detailed view on current solution with it`s problems.

2.1 Current solution overview

Backend and frontend of current web environment for factory tests is done in PHP. There

are no any documentations provided which makes it hard to implement new features and

understand existing code.

Existing code is badly structured and therefore hard to refactor and complement.

Database for the environment is made in MySQL. No ERD (Entity Relationship

Diagram) model schemas were originally made. Existing ERD model schema was

generated automatically based on existing entities and may be inaccurate. Current

database structure is too complicated and has got unnecessary tables, which makes it hard

to follow data flow and make structure changes if necessary.

UI of the environment is outdated and uncomfortable to use.

Current environment communicates with other application via API (Application

Programming Interface) in order to get devices and their test results.

Based on the problems it was decided that developing of a new environment is easier and

more profitable solution than updating the existing environment.

2.2 New solution requirements

Since current solution uses separate program for getting test results, it is essential to

provide communication between a new solution and the program that is currently used

for running test cases.

15

Since developers use different browsers, solution must have cross-browser compatibility

and work correctly with most popular browsers (i.e. Chrome, Firefox, Edge Chromium,

Safari).

Code must be well structured and easy to follow, so it is possible to update web

environment in the future.

2.3 Database

In this part database technologies suitable for solution are described and compared. In the

end it is explained which one was chosen for development and why.

2.3.1 MySQL

Current solution uses MySQL database.

MySQL is the most popular Open Source SQL database management system.

MySQL databases are relational. A relational database stores data in separate tables rather

than putting all the data in one big storeroom [1].

SQL is a database computer language designed for managing data in relational database

management systems [2].

SQL has remained a popular choice for database users over the years mainly due to its

ease of use and the highly effective manner in which it queries, manipulates, aggregates

data and performs a wide range of other functions to turn massive collections of structured

data into usable information.

For this reason, it has been incorporated into numerous commercial database products,

such as MySQL, Oracle, Sybase, SQL Server, Postgres and others [3].

Different SQL iterations usually have same basic commands as select, insert, update and

create. This makes it possible for a developer with some knowledge of SQL to work in

different SQL products and environments.

2.3.2 MongoDB

MongoDB is a NoSQL document-oriented database.

16

NoSQL is best considered with the acronym “NOSQL” - Not Only SQL - which more

accurately represents an approach that combines non-relational databases with the use of

relational ones. This approach seeks to leverage both NoSQL and SQL technologies in

order to balance the demands of performance, scalability, and schema flexibility with data

integrity and consistency.

The primary reason for moving away from the relational model is to make scaling out

easier, but there are some other advantages as well. MongoDB provides a more flexible

approach for data storing such as embedded documents and arrays. The document-

oriented approach makes it possible to represent complex hierarchical relationships with

a single record (Figure 1) [4], [5].

Figure 1. Relational DB and document DB example (Picture from the Internet) [6].

A document’s schema is dynamic and self-describing, so it is not needed to first pre-

define it in the database. Fields can vary from document to document, and it is possible

to modify the structure at any time, allowing to continuously integrate new application

functionality, without additional schema migrations. If a new field needs to be added, it

can be created without affecting all other documents in the collection, without updating a

central system catalogue and without taking the database offline.

17

When it is needed to make changes to the data model, the document database continues

to store the updated objects without the need to perform extra operations. Documents

allow multiple versions of the same schema to exist in the same table space.

MongoDB stores data as JSON (JavaScript Object Notation) documents in a binary

representation called BSON (Binary JavaScript Object Notation). Unlike most databases

that store JSON data as primitive strings and numbers, the BSON encoding extends the

JSON representation to include additional types such as int, long, date, floating point, and

decimal128. This makes it much easier for applications using MongoDB to reliably

process, sort, and compare data [7].

2.3.3 Database choice

It was decided to use MongoDB instead of currently used MySQL database or other

relational SQL databases. Data stored in the application has an hierarchical structure

without heavily interlinked parts. The layout of the data resembles structured documents

and therefore it is more optimal to use MongoDB for the storage.

Since most of the relational SQL databases work by the same principle there is no need

to compare each possible option with MongoDB separately.

One of the problems with current database is, that it contains a lot of tables which makes

it’s structure too complicated. If database is a relational one, each entity regardless it’s

importance requires separate table. Moreover, it is necessary to correctly setup hierarchy

between tables. That approach grows into a quite complex database and requires JOIN

operations between tables to get necessary information in one query. If there is a need to

change database structure these changes adjustment can be time consuming because in

relational database, it may be required to correctly merge data.

MongoDB solves these issues. Due to it’s embedded document approach it is possible to

hold some minor entities inside bigger ones without making separate collections. This

way it is easier to manage data between parent and child entities and it makes data model

more compact and comfortable to use. Also, collection structure in MongoDB can be

modified at any time without a need of additional database actions such as migrations.

Because of that, it is possible to experiment with data structures during development

18

without worrying about database errors. This can save time and make development more

efficient.

2.4 Backend and frontend stack

In this part technologies that were considered for backend and frontend are described and

compared. It is really important to choose the correct technology stack, so it is possible

to develop system with good architecture. The architecture of a software system is the

shape given to that system by those who build it. The form of that shape is in the division

of that system into components, the arrangement of those components, and the ways in

which those components communicate with each other. A software system that is hard to

develop is not likely to have a long and healthy lifetime. So, the architecture of a system

should make that system easy to develop [8].

2.4.1 .NET

One of the frameworks that was considered for building backend REST (Representational

State Transfer) API is .NET using C# language.

.NET is an open-source and cross-platform development platform for building many

types of applications. Designed by Microsoft, the platform supports multiple

programming languages and libraries to build web, mobile, desktop, IoT (Internet of

Things) applications, and more.

.NET is supported by Microsoft on Windows, macOS, and Linux. It is updated regularly

for security and quality.

Besides C# language, it is possible to use many other languages in .NET. The languages

that supported by Microsoft are C#, F#, Visual Basic.

Above the core components, .NET has different application model frameworks, that is,

the libraries that offer support for developing different types of applications. The most

notable ones are:

• ASP.NET: The framework that allows to build web applications and web APIs.

• WPF (Windows Presentation Foundation): A graphical UI for Windows desktop

applications.

https://dotnet.microsoft.com/apps/aspnet
https://auth0.com/docs/quickstart/webapp/aspnet-core-3
https://auth0.com/blog/how-to-build-and-secure-web-apis-with-aspnet-core-3/
https://auth0.com/docs/quickstart/native/wpf-winforms
https://auth0.com/docs/quickstart/native/wpf-winforms

19

• Xamarin: The framework for building cross-platform mobile, TV, and desktop

applications.

• Blazor: The framework to build client web applications by using C#. It also allows

to generate client web apps in WebAssembly code [9], [10].

For package management there is special mechanism in .NET, called NuGet. It defines

how packages for .NET are created, hosted, and consumed, and provides the tools for

each of those roles.

Within an individual project, NuGet manages the overall dependency graph, which

includes resolving multiple references to different versions of the same package. It is quite

common that a project takes a dependency on one or more packages that themselves have

the same dependencies. In the entire dependency graph, then, it is possible to have ten

different references to different versions of the same package. To avoid bringing multiple

versions of that package into the application itself, NuGet sorts out which single version

can be used by all consumers [11].

2.4.2 Spring Framework

Other popular option for building REST API is Spring Framework.

Spring Framework is a Java platform that provides comprehensive infrastructure support

for developing Java applications.

The Spring Framework consists of features organized into different modules (Figure 2).

These modules are grouped into Core Container, Data Access/Integration, Web, AOP

(Aspect Oriented Programming), Instrumentation, and Test. These modules provide

functionality that defines Spring framework and helps in developing Spring framework

applications. For example, Core Container provides Dependency Injection features, Data

Access module contains tools for working with database such as Hibernate [12].

https://auth0.com/blog/easy-authentication-xamarin-auth0/
https://auth0.com/blog/what-is-blazor-tutorial-on-building-webapp-with-authentication/
https://auth0.com/blog/securing-blazor-webassembly-apps/
https://docs.microsoft.com/en-us/nuget/install-nuget-client-tools

20

Figure 2. Spring Framework modules overview [12].

With the modules shown above it is possible to use Spring in all sorts of scenarios, from

applets up to fully-fledged enterprise applications using Spring's transaction management

functionality and web framework integration [13].

It is recommended to install Spring framework using a build tool that supports

dependency management (such as Maven or Gradle) [14].

2.4.3 JavaScript

JavaScript is a dynamic computer programming language. It is lightweight and most

commonly used as a part of web pages, whose implementations allow client-side script

to interact with the user and make dynamic pages. It is an interpreted programming

language with object-oriented capabilities.

Client-side JavaScript is the most common form of the language. The script should be

included in or referenced by an HTML (HyperText Markup Language) document for the

code to be interpreted by the browser.

It means that a web page need not be a static HTML, but can include programs that

interact with the user, control the browser, and dynamically create HTML content [15].

21

Different browsers use different JavaScript Engines to interpret JavaScript code before

rendering it on the web page. The major JavaScript engines are V8 used in Chrome,

SpiderMonkey used in Firefox and Nitro used in Safari (Figure 3).

Figure 3. Rendering Engines and JavaScript Engines [16].

Different browsers contain different features. Some browsers show the popup and the

perform tag management differently and some contains a few features to attract the

audience. The feature that the user sees in the browser works because of the browser

engine. Which is why it is possible that JavaScript can work differently in different

browsers and it is important to provide correct client-side functioning in the most popular

browsers [16].

Nowadays a lot of web applications made with JavaScript use some JavaScript

framework. JavaScript frameworks are an essential part of modern front-end web

development, providing developers with tried and tested tools for building scalable,

interactive web applications [17]. JavaScript frameworks exist to provide a better

developer experience. They do not bring brand-new powers to JavaScript; they give easier

access to JavaScript's powers [18]. Most popular major JavaScript frameworks are React,

Vue and Angular [19]. Each major JavaScript framework has a different approach to

updating the DOM (Document Object Model), handling browser events, and providing an

enjoyable developer experience [20].

22

2.4.4 Blazor WebAssembly

Though being part of the .NET ecosystem, which was briefly covered in section 2.4.1,

Blazor WebAssembly is one of the major alternatives to dominant JavaScript frameworks

and is therefore considered worth to be covered in detail.

Blazor is a client-side web UI framework similar in nature to JavaScript front-end

frameworks like Angular or React but instead of JavaScript Blazor is based on C#. Blazor

can run directly in the browser via WebAssembly. No browser plugins are required.

In 2015, the major browser vendors joined forces in a W3C Community Group to create

a new open web standard called WebAssembly. WebAssembly is a new type of code that

can be run in modern web browsers and provides new features and major gains in

performance [21]. WebAssembly has been standardized and implemented by all major

browsers.

Blazor has great tooling support in Visual Studio and Visual Studio Code. The framework

also includes a full UI component model and has built-in facilities for:

• Forms and validation

• DI (Dependency Injection)

• Client-side routing

• Layouts

• In-browser debugging

• JavaScript interop

Blazor apps consist of one or more root components that are rendered on an HTML page

(Figure 4).

23

Figure 4. Blazor app in HTML [22].

Blazor components are .NET classes that represent a reusable piece of UI. Each

component maintains its own state and specifies its own rendering logic, which can

include rendering other components. Components specify event handlers for specific user

interactions to update the component’s state [22]. The component class is usually written

in the form of a Razor markup page. Razor is a syntax for combining HTML markup with

C# code designed for developer productivity. Razor allows to switch between HTML

markup and C# in the same file [23].

2.4.5 Summary of frontend and backend stack

It was decided to use .NET with Blazor WebAssembly.

One of the main reasons for that decision is that it is possible to write both, backend and

client-side using C# language. When using Blazor, .NET is used throughout the whole

development process. This brings the benefit of being able to reuse code from the back to

the front end and vice versa. In addition, the ability for a developer to work in both areas

without needing to know two different technologies.

https://docs.microsoft.com/en-us/aspnet/core/mvc/views/razor?view=aspnetcore-5.0

24

If there appears a necessity to use JavaScript, Blazor solves this issue as well due to its

JavaScript interoperability. With JS Interop, a Blazor app can invoke JavaScript functions

from .NET methods and .NET methods from JavaScript functions [24].

Alternatively, it is possible to develop frontend and backend using JavaScript. Main

disadvantage of that approach compared to .NET development is a necessity of installing

and optimazing additional extensions and frameworks, while .NET provides all necessary

tools out of the box. Moreover, company prefers to use strongly typed compiled languages

instead of dynamically typed interpreted languages. It helps to reduce amount of mistakes

and find errors early.

 If JavaScript was used as a solution for client-side application, then backend should have

been done in a separate language and framework. Moreover, JavaScript would have

required an additional client-side framework. This would have been a big technology

stack and constant changes between used technologies would be uncomfortable during

development. .NET with Blazor solves this issue. Moreover, WebAssembly loads fast

inside the browser, because pre-compiled wasm (WebAssembly) files have to be

transported to the Internet, compared to JavaScript, which uses just in time compilation.

Also, it is not needed to use polyfills in WebAssembly, because all browsers support it

following same instructions [25].

2.5 Tools

Author used following developing tools:

• Visual Studio 2019 – Author used Windows 10 operational system during

development, therefore it was decided to use Visual Studio 2019 as an IDE

(Integrated Development Environment). Visual Studio includes compilers, code

completion tools, graphical designers, and many more features to ease the

software development process [26].

• Postman – Was used for testing backend system API. Postman is an API

development tool. It has the ability to make various types of HTTP (HyperText

Transfer Protocol) requests (GET, POST, PUT, PATCH) [27].

25

• Git – Git was used as a version control tool. Git is a fast, scalable, distributed

revision control system with an unusually rich command set that provides both

high-level operations and full access to internals [28].

• .NET 5.0 – Is a developer platform that was used for developing web environment.

• MongoDB – Database that was used for storing data.

• NetBeans – IDE that is used for developing Java applications. It was used to adjust

another company software, which was developed, using this IDE.

• JDK - Includes a complete JRE (Java SE Runtime Environment) plus tools for

developing, debugging, and monitoring Java applications [29]. Was used with

NetBeans to run company software.

26

3 Implementation

In this part project structure is described and provided a detailed view on backend and

frontend implementation of the project. Considering that this solution is a prototype in

the future changes are inevitable.

3.1 Entities and API endpoints

Project had a documentation created beforehand. In the documentation were defined

entities that project must use and API endpoints for communication with those entities.

Based on these instructions a major part of the backend was developed.

Customer is the highest entity level in the system (Table 1). It groups together all

products that can be manufactured for the customer. It also holds some generic

information that associates the customer and product with other information systems

inside the company.

Table 1. Customer object.

Name Type Required Description

Id Guid Yes Unique identifier.

Name string Yes Customer name.

Code string Yes Customer identifier as defined in quality management

system.

Every manufactured product must be associated with a customer. Every product has a

name that must be unique in the customer scope (Table 2).

Table 2. Product object.

Name Type Required Description

Id Guid Yes Unique identifier.

Name string Yes Product marketing name.

Code string Yes Product identifier as defined in quality management

system.

CustomerId Guid Yes Reference to customer object the project is associated

with.

Suites Suite[] No List of test suites associated with this product.

27

Each manufactured or maintained device must be part of one product (Table 3). Device

inherits the name of the product. For unique identification, every device must have a

number that is visible on a device.

Table 3. Device object.

Name Type Required Description

Id Guid Yes Unique identifier.

Name string Yes Device name (inherited from product).

Number string Yes Human readable unique identification.

ProductId Guid Yes Reference to product object the device is associated

with.

Issue is used to track all device lifecycle events and associate them with executed test

suites (Table 4).

Table 4. Issue object.

Name Type Required Description

Id Guid Yes Unique identifier.

Name string Yes Issue name.

Description string No Issue description.

DeviceId Guid Yes Reference to device object the issue is associated

with.

Closed boolean Yes Indicates whether the issue is resolved or not.

Comment Comment[] Yes List of comments associated with issue.

Sessions Session[] Yes List of conducted test suites.

Session is used to get set of test results (Table 5).

Table 5. Session object.

Name Type Required Description

Start DateTime Yes When testing was started.

Stop DateTime Yes When testing ended.

Results Result[] No List of test results. Can be omitted if test session was

aborted.

28

Name Type Required Description

Verdict enum Yes Final results for this test session:

PASSED – All checks were completed successfully

FAILED – Some checks failed

ABORTED – Test session was cancelled by user

Comment string No Additional information associated with this test

session.

In a result object information about test results is stored (Table 6).

Table 6. Result object.

Name Type Required Description

Name string Yes Test name (inherited from test declaration).

Verdict enum Yes Final result of the test:

PASSED – Test was passed successfully.

FAILED – Test failed.

TIMEOUT – Test timed out

ABORTED – Test aborted

Name Type Required Description

Comment string No Additional information about the result.

Criteria string Yes Describes the criteria required to pass the test.

Value string Yes Actual test value.

All tests in one suite must be run in the same fixed order as they are defined (Table 7).

Failure of any one of the test cases will trigger the failure of the whole test suite.

Table 7. Test Suite object.

Name Type Required Description

Name string Yes Suit name.

Description string No Suit description.

Tests Test[] Yes List of tests to be carried out in this suite.

29

Every test case must have a clearly defined pass criteria that will be checked when the

test case is run (Table 8).

Table 8. Test object.

Name Type Required Description

Name string Yes Test name.

Description string No Test description.

Criteria string Yes Result required to pass for this test to be considered

successful.

With described entities, project has got API endpoints shown in Table 9.

Table 9. Project API.

Endpoint name Request type Description

/customers GET Lists all defined customers.

/customers POST Create new customer.

/customers/{id} GET Get customer identified

by id.

/customers/{id}/products GET Get all products for a specific

customer.

/products GET Lists all defined products.

/products POST Create a new product.

/products/{id} GET Get product identified by id.

/products/{id}/devices GET List all devices associated

with the product identified

by id.

/devices POST Create a new device.

/devices GET Lists all defined devices.

/devices/{id} GET Get device identified by id.

/devices/{id}/issues GET List all issues associated with

the device identified by id.

/issues POST Create a new issue.

/issues/{id} GET Get issue identified by id.

/issues/{id}/sessions GET All test sessions associated

with the issue identified

by id.

30

Endpoint name Request type Description

/issues/{id}/sessions POST Create new test session

under selected issue.

/issues/{id}/sessions/{i} GET Get information about the

selected session under the

issue id at position i in the

issue list.

/issues/{id}/sessions/{i} POST Post test result for the test

session.

/product/{id}/suites/ POST Create a new test suite.

/product/{id}/suites/{i} GET Get test suite for

product id located at

position i.

Described API was implemented in the project backend.

3.2 Project structure

Project structure is shown in Figure 5.

Figure 5. Project structure (screenshot by author).

Client part is a frontend of the application. It contains UI components of the application.

Server part is a backend of the application. It hosts client part of the application and

contains controllers and services.

Shared part contains parts of the app, that client and server parts use, such as entities.

UI part contains widgets and UI layout that are used to build UI components from the

client part and reduce code repetition.

31

3.3 MongoDB support implementation

To add MongoDB support in application, MongoDB was previously installed on authors

PC (Personal Computer).

First, it was necessary to install MongoDB driver for .NET. It was done via NuGet

package manager.

In appsettings.json file was added a configuration model (Figure 6).

 "FTDatabaseSettings": {

 "DatabaseName": "FTDatabase",

 "CustomersCollectionName": "Customers",

 "ProductsCollectionName": "Products",

 "DevicesCollectionName": "Devices",

 "IssuesCollectionName": "Issues",

 "ConnectionString": "mongodb://localhost:27017"

 }

Figure 6. Configuration model (part of author`s code).

Configuration model contains database name, connection string to the database and

names of collections, that will be used for storing data.

FTDatabaseSettings class and it`s interface were created (Figure 7).

public interface IFTDatabaseSettings {

 string DatabaseName { get; set; }

 string CustomersCollectionName { get; set; }

 string ProductsCollectionName { get; set; }

 string DevicesCollectionName { get; set; }

 string IssuesCollectionName { get; set; }

 string ConnectionString { get; set; }

 }

public class FTDatabaseSettings : IFTDatabaseSettings {

 public string DatabaseName { get; set; }

 public string CustomersCollectionName { get; set; }

 public string ProductsCollectionName { get; set; }

 public string DevicesCollectionName { get; set; }

 public string IssuesCollectionName { get; set; }

 public string ConnectionString { get; set; }

 }

Figure 7. Database settings class (part of author`s code).

FTDatabaseSettings class is used to store appsettings.json file`s FTDatabaseSettings

property values.

32

In a startup class the configuration instance to which the appsettings.json file's

FTDatabaseSettings section binds is registered in the DI container (Figure 8).

 services.Configure<FTDatabaseSettings>(Configuration.GetSection(nameof
(FTDatabaseSettings)));

 services.AddSingleton<IFTDatabaseSettings>(sp=>sp.GetRequiredService<I
Options<FTDatabaseSettings>>().Value);

Figure 8. Database settings configuration in the startup class (part of author`s code).

This way MongoDB was implemented in the solution and now it is possible to create API.

3.4 API implementation

First of all, entity model classes with necessary attributes were created (Figure 9).

 public class Device {

 [BsonId]

 public Guid Id { get; set; }

 [Required]

 public string Name { get; set; }

 [Required]

 public string Number { get; set; }

 [Required]

 public Guid ProductId { get; set; }

 }

Figure 9. Device entity (part of author`s code).

Id property is required for mapping the CLR (Common Language Runtime) object to the

MongoDB collection and it is annotated with [BsonID] to mark property Id as the

document's primary key.

Rest of the models were created following similar pattern (Figure 10).

Figure 10. Entity models and database settings (screenshot by author).

33

For every model with it`s own collection was created separate service and controller

(Figures 11, 12). Services implement functionality that is used by controllers to perform

communication between API and database (Table 9).

Figure 11 Services (screenshot by author)

Figure 12. Controllers (screenshot by author).

It was decided to create a few custom exceptions, so it is easier to understand what

happens in the application if error occurs (Figure 13).

 public interface IServiceException {

 public abstract class NotFoundException : Exception {

 public NotFoundException(string message) : base(message)
{ }

 }

 public abstract class DuplicateEntryException : Exception {

public DuplicateEntryException(string message) : base(message) { }

 }

 }

Figure 13. Custom exceptions interface (code created by project team).

NotFoundException is thrown when empty list is returned, or object is not found in

database and DublicateEntryException is thrown if some conflict with duplicate entries

based on business logic occurs. For example, two devices with same ProductId cannot

have similar Number property.

To describe services implementation, device entity service will be shown and explained

(Figure 14).

34

 private readonly IMongoCollection<Device> _devices;

 private readonly IMongoCollection<Issue> _issues;

 public DeviceService(IFTDatabaseSettings settings) {

 var client = new MongoClient(settings.ConnectionString);

 var database = client.GetDatabase(settings.DatabaseName);

 _devices =
database.GetCollection<Device>(settings.DevicesCollectionName);

 _issues =
database.GetCollection<Issue>(settings.IssuesCollectionName);

 _devices.Indexes.CreateOne(new
CreateIndexModel<Device>(new
IndexKeysDefinitionBuilder<Device>().Ascending(device => device.ProductId)

 .Ascending(device => device.Number), new
CreateIndexOptions { Unique = true }));

 }

Figure 14. DeviceService constructor (part of author`s code).

In the preceding code, an IFTDatabaseSettings instance is retrieved from DI via

constructor injection. Also, unique MongoDB index is created. It is needed to avoid

creation of device with same Numbers, if they have same ProductId. Indexes are special

data structures that store a small portion of the collection's data set in an easy to traverse

form. The index stores the value of a specific field or set of fields, ordered by the value

of the field. The unique property for an index causes MongoDB to reject duplicate values

for the indexed field [30].

To use custom exceptions, it is needed to initialize them inside service class (Figure 15).

 public class NotFoundException :
IServiceException.NotFoundException {

 public NotFoundException(string message) : base(message)
{ }

 }

 public class DuplicateEntryException :
IServiceException.DuplicateEntryException {

 public DuplicateEntryException(string message) :
base(message) { }

 }

Figure 15. Exceptions initialization in service (code created by project team).

After these steps CRUD (Create, Read, Update, Delete) operations described in Table 9

were created (Figure 16).

https://docs.mongodb.com/manual/core/index-unique/

35

 public async Task<Device> Get(Guid id) {

 var device = new Device();

 try {

 device = await _devices.Find(device => device.Id ==
id).FirstAsync();

 }

 catch (Exception) {

 throw new NotFoundException($"Device with ID {id}
not found.");

 }

 return device;

 }

Figure 16. Get function (part of author`s code).

 Function in Figure 16 tries to get device from database based on given id and return it. If

device is not found, then custom exception is thrown (Figure 17).

 public async Task<Device> CreateDevice(Device device) {

 try {

 await _devices.InsertOneAsync(device);

 }

 catch (MongoWriteException ex) {

 throw new DuplicateEntryException($"{ex.Message}");

 }

 return device;

 }

Figure 17. Create function (part of author`s code).

Function shown in Figure 17 tries to create a new device in database. If unique index

conflict occurs, than MongoDB exception is caught and custom exception is thrown.

Other services and CRUD operations in them are created following a similar pattern.

In the startup class all service classes are registered with DI to support constructor

injection in consuming classes (Figure 18).

 services.AddSingleton<ProductService>();

 services.AddSingleton<DeviceService>();

 services.AddSingleton<IssueService>();

 services.AddSingleton<CustomerService>();

Figure 18. Services singleton implementation (part of author`s code).

Then entity controllers were created (Figure 19).

36

[Route("api/devices")]

[ApiController]

 public class DevicesController : ControllerBase {

 private readonly DeviceService _deviceService;

 public DevicesController(DeviceService deviceService) {

 _deviceService = deviceService;

 }

Figure 19. Device API controller (part of author`s code).

API controller uses the DeviceService class to perform CRUD operations and contains

action methods to support GET, POST, PUT, and DELETE HTTP requests (Figure 20).

 [HttpGet("{id}")]

 public async Task<ActionResult<Device>> Get(Guid id) {

 try {

 return Ok(await _deviceService.Get(id));

 }

 catch (DeviceService.NotFoundException ex) {

 return StatusCode(StatusCodes.Status404NotFound,
$"{ex}");

 }

 }

Figure 20. API Get function (part of author`s code).

Method shown in Figure 20 uses Get method from DeviceService to get device from

database by id, if it catches custom exception, then it responses with code 404 and

exception message.

Other controllers and their functions are made using similar pattern.

3.5 Frontend implementation

Frontend of the project is divided into two parts. First part is in the Client project. It

contains main pages of the application user communicates with. Second part is located in

the UI project. UI project contains widgets and components that are used by the first part

of the frontend. Widgets are lightweight entities that are mainly used to enforce consistent

styling and rendering. Components are stand-alone entities that encapsulate business

logic and more complex rendering use cases.

Since frontend uses a lot of endpoints for web navigation and API requests it was decided

to create a separate class with endpoints (Figure 21).

37

public class Endpoints {

 public class API {

 public const string Devices = "/api/devices";

 public const string Products = "/api/products";

 public const string Issues = "/api/issues";

 public const string Customers = "/api/customers";

 }

 public class Web {

 public const string Devices = "/devices";

 public const string Products = "/products";

 }

 public class Action {

 public const string New = "new";

 public const string Edit = "edit";

 public const string Delete = "delete";

 }

 }

Figure 21. Endpoints class (part of author`s code).

This way all main endpoints are stored in one place and in case change is needed, it can

be made in one place rather than changing through the whole frontend implementation.

3.5.1 Widgets

ContentTable widget is used to render lists of elements (Figure 22).

@typeparam TModel
@if(Model == null) {
 <p>Loading...</p>
 return;
}
<table>
 <thead>
 <tr> @TableHeader </tr>
 </thead>
 <tbody>
 @foreach(var entry in Model) {
 <tr>@RowTemplate(entry)</tr>
 }
 </tbody>
</table>
@code {
 [Parameter]
 public RenderFragment TableHeader { get; set; }
 [Parameter]
 public RenderFragment<TModel> RowTemplate { get; set; }
 [Parameter]
 public IReadOnlyList<TModel> Model { get; set; }
}

Figure 22. ContentTable widget (code created by project team).

38

TableHeader and RowTemplate are templated components that can be specified using

child elements that match the names of the parameters. TModel is a generic type, that is

used to render RowTemplate.

Header widget is used in components to display header information (Figure 23).

<header>

 @ChildContent

</header>

@code {

 [Parameter]

 public RenderFragment ChildContent { get; set; }

}

Figure 23. Header widget (code created by project team).

These widgets help to reduce code repetitions and differences in styles, when lists or

headers are added to the page.

3.5.2 UI components

DockedEditor is a component majority of frontend pages are built with (Figure 24).

@typeparam TModel
@inject NavigationManager NavigationManager
@implements IDisposable
@if (Model == null || !(Visible ?? true)) { return; }
@if (Action != null && !NavigationManager.HasAction(Action)) { return; }
<div class="@Class">
 <nav>
 @EditorHeader
 <a @onclick="HandleClose"><i class="far fa-window-
close"></i>
 </nav>
 <main>
 <aside>
 @EditorSidebar
 </aside>

 <section>
 @ChildContent
 </section>
 </main>
</div>
@code {
 [Parameter]
 public RenderFragment ChildContent { get; set; }
 [Parameter]
 public EventCallback<TModel> OnClose { get; set; }

 [Parameter]
 public RenderFragment EditorHeader { get; set; }

39

 [Parameter]
 public RenderFragment EditorSidebar { get; set; }
 [Parameter]
 public TModel Model { get; set; }
 [Parameter]
 public string Action { get; set; }
 [Parameter]
 public string Class { get; set; }
 [Parameter]
 public bool? Visible { get; set; }
 protected override void OnInitialized() {
 base.OnInitialized();
 NavigationManager.LocationChanged += LocationChanged;
 }
 private void LocationChanged(object sender, LocationChangedEventArgs
e) {
 StateHasChanged();
 }
 void IDisposable.Dispose() {
 NavigationManager.LocationChanged -= LocationChanged;
 }
 private void HandleClose(MouseEventArgs args) {
 OnClose.InvokeAsync();
 }
}

Figure 24. DockedEditor component (code created by project team).

In HTML part it has got a few if clauses. They define conditions when component must

not render. OnInitialized function is invoked when the component is initialized.

LocationChanged is an event that is triggered whenever the URL (Uniform Resource

Locator) in the browser is altered. It passes an instance of LocationChangedEventArgs

which provides information about new URL and if navigation was initiated via code or

via an HTML navigation [31]. Dispose is executed when component is removed from its

parent tree.

Section component is used to add sections to DockedEditor component (Figure 25).

<details open="open">
 <summary>
 @SectionHeader
 <i class="fa fa-angle-double-up"></i>
 </summary>
 @ChildContent
</details>
@code {
 [Parameter]
 public RenderFragment SectionHeader { get; set; }
 [Parameter]
 public RenderFragment ChildContent { get; set; }
}

Figure 25. Section component (code created by project team).

40

Other components can be put inside the templated components as well, which makes it

possible to build the frontend using universal components, developed in advance. This

can reduce amount of HTML markup and make frontend code cleaner.

3.5.3 Main components

DeviceList component is used to display all created devices (Figure 26).

@attribute [Route(Endpoints.Web.Devices)]
@attribute [Route(Endpoints.Web.Devices + "/{deviceId:guid}")]
@attribute [Route(Endpoints.Web.Devices +
"/{deviceId:guid}/issues/{issueId:guid}/{*sectionId}")]
@layout DeviceLayout
@if (_devices == null) {
 <p>Loading...</p>
 return;
}
<NavLink href=@($"{Endpoints.Web.Devices}?action=new")>Add</NavLink>
<ContentTable Model="_devices" Context="D">
 <TableHeader>
 <th>ID</th>
 <th>Device Number</th>
 <th>Product</th>
 </TableHeader>
 <RowTemplate>
 <td><NavLink
href=@($"{Endpoints.Web.Devices}/{D.Id}")>@D.Id</NavLink></td>
 <td>@D.Number</td>
 <td>@D.Name</td>
 </RowTemplate>
</ContentTable>
<aside>
 <DeviceDetails DeviceId="DeviceId" IssueId="IssueId"
SectionId="@SectionId" OnClose="HandleSave" />
 <AddDevice OnClose="HandleAdd" DeviceId="DeviceId" />
</aside>
@code {
 [Parameter]
 public Guid? DeviceId { get; set; }
 [Parameter]
 public Guid? IssueId { get; set; }
 [Parameter]
 public string SectionId { get; set; }
 private List<Device> _devices;
 protected void HandleAdd(Device device) {
 if (device != null) _devices.Add(device);
 NavigationManager.NavigateTo(Endpoints.Web.Devices);
 }
 protected void HandleSave(Device device) {
 NavigationManager.NavigateTo(Endpoints.Web.Devices);
 }
 protected override async Task OnInitializedAsync() {
 try {
 _devices = await
HttpClient.GetFromJsonAsync<List<Device>>($"{Endpoints.API.Devices}");

41

 }
 catch (System.Net.Http.HttpRequestException) {
 _devices = new();
 }
 }
}

Figure 26. DeviceList component (code created by project team).

Attribute part determines which URL links can lead to this page. It uses endpoints defined

in the Endpoints class. In addition, route also has got such parts as deviceId:guid or

issueId:guid. These are parameters passed in a URL link and type they must match. These

parameters are defined as DeviceId, IssueId and SectionId in a Code part and are passed

to other components, so these components can be rendered. In the DeviceList component

it is possible to see how ContentTable widget with templated components is used.

Templated components have info passed into them and due to logic written in the

ContentTable widget, given information is being rendered. In addition, it is possible to

see how functions and parameters are passed to other components in a AddDevice

component. OnClose is the name of the function, that AddDevice uses, HandleAdd is the

function that is being passed from DeviceList component.

In the AddDevice component DockedEditor is used as a component everything is built

around (Figure 27).

<DockedEditor Model="_device" Action="@Endpoints.Action.New"
OnClose="OnClose" Class="device">
 <EditorHeader>
 <h1>Add Device</h1>
 </EditorHeader>
 <ChildContent>
 <EditForm Model="_device" OnValidSubmit="CreateDevice">
 <label>
 Device Number
 <InputText @bind-Value="_device.Number"
DisplayName="Device number" />
 </label>
 <label>
 Product Family
 <InputSelect @bind-Value="_device.ProductId"
DisplayName="Product">
 <option>Select product</option>
 @foreach (var product in _products) {
 <option
value="@product.Id">@product.Name</option>
 }
 </InputSelect>
 </label>
 <button type="submit">Submit</button>
 </EditForm>

42

 </ChildContent>
</DockedEditor>

Figure 27. AddDevice HTML part (code created by project team).

AddDevice component uses EditForm component that is provided with Blazor. EditForm

component allows to manage forms, validations, and form submission events. Editform

has two attributes specified Model and OnValidSubmit. Model - Specifies the top-level

model object for the form. OnValidSubmit is a callback/method that will be invoked when

the form is submitted, and attributes used in form are determined to be valid [32].

Frontend part has got other components as well that are build using similar pattern and

logic (Figure 28).

Figure 28. Client project components (screenshot by author).

Current list of components is not final, and it will increase as the project is being further

developed.

3.6 Existing software adjustment

Current web environment communicates with another program built in Java for posting

devices and test results. Author`s task was to find out what is needed to do to post trivial

information via this program, so it is possible to adjust the program completely in the

future.

Since program was built using NetBeans IDE, author installed it on his PC.

43

First of all, Device model was changed so it has got same structure as a model from .NET

app. Then API link for posting devices was changed to „api/devices“. Since .NET app

does not have authentication yet, it was necessary to avoid authentication need in a class

that is used for posting. For that separate constructor was created (Figure 29).

 public DevbaseClient(String path, boolean skipLogin) {

 OkHttpClient.Builder builder = new OkHttpClient.Builder();

 okHttpClient = builder.build();

 retrofit = new Retrofit.Builder()

 .callFactory(okHttpClient)

 .baseUrl(path)

 .addConverterFactory(GsonConverterFactory.create())

 .build();

 devbase = retrofit.create(DevbaseService.class);

 authKey = "UNAUTHENTICATED";

 userAgent = "User-Agent: FTApp3/";

 httpAcceptHeader = "Accept: application/vnd.ft3.v1+json";

 loggedIn = skipLogin;

 }

Figure 29. Constructor that skips authentication (part of author`s code).

This constructor imitates state when user has already logged in.

Finally, this class was used in a main method, device object was created and sent to .NET

backend (Figure 30).

public static void main (String[] args) throws IOException {

 DevbaseClient devbaseClient = new DevbaseClient("http://localhost:307
9/", true);

 Random random = new Random();

 Device device = new Device();

 device.Id = UUID.randomUUID();

 device.Name = "TestingDeviceName";

 device.Number =Integer.toString(random.nextInt(100000));

 device.ProductId = UUID.fromString("284ed37f-c8b6-4761-9fc1-
e2760bb25373");

 devbaseClient.saveDevice(device);

}

Figure 30. Main function (part of author`s code).

Device object was successfully added to the database, using company software.

44

3.7 Result

During the development was created backend and frontend of the new web environment.

Backend implements all logic described in Table 9 and in addition has got custom

exceptions handling. Frontend development still continues, but it already allows, to see

list of products, devices and device`s issues (Figure 31). Moreover, it is possible to create

new devices and issues using frontend. Frontend has got comfortable routing, so it is

possible to share full links with parameters and get necessary information rendered right

away.

Figure 31. Web environment UI (screenshot by author).

New functionality implementation will be easier, because UI components, main pages are

built around have been developed. UI is modern and comfortable to use. Due to the shared

components and widgets, styling of new pages will be easier.

45

4 Further development

The current version of the solution is not final, and project is being further developed.

Features that will be added in the near future, are authentication, commenting of the

issues, detailed tests view and complete integration with another company software.

As the project is meant for developers to follow device state throughout testing, it will

provide a detailed information about made tests. For example, it will be shown which

tests are passed or failed, expected and received results and time it was consumed to pass

all needed tests. It will be possible to comment on issues so developers can make notes

and share them with each other.

When all necessary functionalities will be developed, old web environment will be

replaced.

46

5 Summary

The goal of the thesis was to develop a web environment that stores and displays

information about factory testing. Old web environment had problems that made it

uncomfortable to use and hard to improve: lack of documentation, poorly structured code,

complex ERD model with odd tables, outdated UI. In addition, web environment

communicates with company software. This communication should have been saved in a

new web environment.

The thesis has described technologies that were used for a development and provided

reasoning for choosing them. Was developed a prototype version of the web environment.

New web environment has got documentation, improved UI, well-structured code and a

simplified database structure. Was created basic communication between company

software and developed environment.

New environment still lacks functionality, such as authentication, test results display and

full integration with company software. Web environment development continues, and it

will replace old version in the future.

47

References

[1] “What is MySQL?,” Oracle Corporation, [Online]. Available:

https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html. [Accessed 13 04 2021].

[2] H.-P. Halvorsen, “Structured Query Language,” [Online]. Available:

https://www.halvorsen.blog/documents/tutorials/resources/Structured%20Query%20Language.pdf.

[Accessed 13 04 2021].

[3] R. Leach, “SQL Database Management,” [Online]. Available: https://employthisguy.com/sql-

database-management/. [Accessed 13 04 2021].

[4] K. Chodorow, MongoDB: The Definitive Guide, Second Edition, O’Reilly Media, Inc., 2013.

[5] M. Madison, “NoSQL Database Technologies,” Journal of International Technology and

InformationManagement.

[6] “What is a Document Database?,” MongoDB, Inc., [Online]. Available:

https://www.mongodb.com/document-databases. [Accessed 14 04 2021].

[7] M. W. Paper, “MongoDB Architecture Guide:Overview,” [Online]. Available:

http://s3.amazonaws.com/info-mongodb-com/MongoDB_Architecture_Guide.pdf. [Accessed 12 4

2021].

[8] R. C. Martin, Clean Architecture: A Craftsman’s Guide to Software Structure and Design, Pearson

Education, Inc., 2018.

[9] A. Chiarelli, “What is .NET? An Overview of the Platform,” [Online]. Available:

https://auth0.com/blog/what-is-dotnet-platform-overview/. [Accessed 18 04 2021].

[10] “Introduction to .NET,” Microsoft, [Online]. Available: https://docs.microsoft.com/en-

us/dotnet/core/introduction. [Accessed 18 04 2021].

[11] “An introduction to NuGet,” Microsoft, [Online]. Available: https://docs.microsoft.com/en-

us/nuget/what-is-nuget. [Accessed 18 04 2021].

[12] “Introduction to Spring Framework,” [Online]. Available: https://docs.spring.io/spring-

framework/docs/3.2.x/spring-framework-reference/html/overview.html. [Accessed 18 04 2021].

[13] R. Johnson, “Spring java/j2ee Application Framework,” [Online]. Available:

https://docs.spring.io/spring-framework/docs/2.0.x/spring-reference.pdf. [Accessed 18 04 2021].

[14] “Installing Spring Boot,” [Online]. Available: https://docs.spring.io/spring-

boot/docs/1.3.0.M1/reference/html/getting-started-installing-spring-boot.html. [Accessed 18 04

2021].

[15] “JavaScript - Overview,” [Online]. Available:

https://www.tutorialspoint.com/javascript/javascript_overview.htm. [Accessed 19 04 2021].

48

[16] A. Zlatkov, “How JavaScript works: the rendering engine and tips to optimize its performance,”

[Online]. Available: https://blog.sessionstack.com/how-javascript-works-the-rendering-engine-

and-tips-to-optimize-its-performance-7b95553baeda. [Accessed 19 04 2021].

[17] “Understanding client-side JavaScript frameworks,” Mozilla, [Online]. Available:

https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-

side_JavaScript_frameworks. [Accessed 19 04 2021].

[18] “Introduction to client-side frameworks,” Mozilla, [Online]. Available:

https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-

side_JavaScript_frameworks/Introduction. [Accessed 19 04 2021].

[19] “Front-end frameworks popularity,” [Online]. Available:

https://gist.github.com/tkrotoff/b1caa4c3a185629299ec234d2314e190. [Accessed 19 04 2021].

[20] “Framework main features,” Mozilla, [Online]. Available: https://developer.mozilla.org/en-

US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/Main_features. [Accessed

19 04 2021].

[21] “WebAssembly Concepts,” Mozilla, [Online]. Available: https://developer.mozilla.org/en-

US/docs/WebAssembly/Concepts. [Accessed 19 04 2021].

[22] D. Roth, Blazor for ASP NET Web Forms Developers, Redmond, Washington: Microsoft

Developer Division, .NET, and Visual Studio product teams, 2020 .

[23] “Introduction to ASP.NET Core Blazor,” Microsoft, [Online]. Available:

https://docs.microsoft.com/en-us/aspnet/core/blazor/?view=aspnetcore-5.0. [Accessed 19 04

2021].

[24] C. Fuentes, “Why to choose blazor for your web development & why not,” [Online]. Available:

https://www.zartis.com/why-to-choose-blazor-for-your-web-development-why-not/. [Accessed 19

04 2021].

[25] “Introduction,” WebAssembly Community Group, [Online]. Available:

https://webassembly.github.io/spec/core/intro/introduction.html. [Accessed 29 04 2021].

[26] “Welcome to the Visual Studio IDE,” [Online]. Available: https://docs.microsoft.com/en-

us/visualstudio/get-started/visual-studio-ide?view=vs-2019. [Accessed 20 04 2021].

[27] “Introduction to Postman for API Development,” [Online]. Available:

https://www.geeksforgeeks.org/introduction-postman-api-development/. [Accessed 20 04 2021].

[28] “git - the stupid content tracker,” [Online]. Available: https://git-scm.com/docs/git. [Accessed 20

04 2021].

[29] “Java SE Downloads,” Oracle, [Online]. Available:

https://www.oracle.com/java/technologies/javase-downloads.html. [Accessed 29 04 2021].

[30] “Indexes,” [Online]. Available: https://docs.mongodb.com/manual/indexes/. [Accessed 26 04

2021].

[31] “Detecting navigation events,” [Online]. Available: https://blazor-

university.com/routing/detecting-navigation-events/. [Accessed 26 04 2021].

[32] “EditForm - forms and validation in Blazor,” [Online]. Available: https://dev.to/rineshpk/editform-

forms-and-validation-in-blazor-54h7. [Accessed 26 04 2021].

49

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Aleksandr Kožemjakin

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Upgrading Electronic Devices Factory Testing Web Environment in a Private

Company”, supervised by Nadežda Furs

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

17.05.2021

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

