

TALLINN UNIVERSITY OF TECHNOLOGY

 Faculty of Information Technology

Department of Software Science

Dmitri Bogatenkov, 121963 IABMM

REACTIVE PROGRAMMING ON ANDROID

IN AN AGILE ENVIRONMENT

Master’s thesis

Supervisor Ants Torim

Raul Liivrand

Tallinn 2018

TALLINNA TEHNIKAÜLIKOOL

 Infotehnoloogia Teaduskond

Tarkvarateaduse instituut

Dmitri Bogatenkov, 121963 IABMM

REAKTIIVNE PROGRAMMEERIMINE

ANDROIDIL AGIILSES KESKKONNAS

Magistritöö

Juhendaja Ants Torim

Raul Liivrand

Tallinn 2018

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Dmitri Bogatenkov

05.12.2017

Acknowledgements

I would like to take this opportunity to thank those people who supported me during my

studies and thesis. All the Professors and personnel of TTU for their support and

assistance during the times of studies.

Firstly, I would like to gratitude my supervisors Mr. Raul Liivrand and Mr. Ants Torim

for the support and guidance during the development of this work.

Secondly, I would like to thank members of the thesis defense panel for their assistance

in improving this research.

Finally, I would like to thank members of my family, who had supported me throughout

my studies.

Abstract

The current Master’s thesis describes the significance of using reactive programming

while developing native applications for Android in an agile environment.

The purpose of this work is to demonstrate that the usage of a reactive programming

paradigm for Android application development while solving concrete problems can help

to improve the code quality and make the development process easier in the environment,

where requirements evolve and change quickly throughout the project.

Firstly, the determination process of the most typical obstacles that Android developers

overcome every day is described, and the basic requirements for an Android development

in the agile environment are analyzed.

Secondly, the key concepts of reactive programming are disassembled, and different

paradigms are compared.

Lastly, on the concrete project example, detected problems are combined and solutions

suggested by using two different paradigms: Imperative and Reactive.

As a result, solutions to the identified problems are compared against defined criteria set,

and the most efficient approach is selected.

This thesis is written in English and is 50 pages long, including 6 chapters, 10 figures, 2

tables.

Annotatsioon

Käesolev magistritöö kirjeldab reaktiivse programmeerimise olulisust Android

rakenduste arendamise seisukohalt pidevalt muutuvas keskkonnas.

Magistritöö eesmärgiks on näidata, et reaktiivse programmeerimise kasutamine Android

rakenduste arendamiseks võib parandada koodi kvaliteeti ja teha arendamise protsessi

lihtsamaks tihti muutuvate nõuetega.

Teoreetilises osas magistritöö autor toob välja kõige kriitilisemad kohad, läbiviidud

uuringu tulemuste põhjal, millega Android rakenduste arendajad igapäevaselt kokku

puutuvad ning analüüsib Android rakenduste arendamise vajadusi.

Töö empiirilises osas autor võrdleb ja analüüsib reaktiivse programmeerimise erinevaid

kontseptsioone, mida kasutatakse teoreetilises osas tuvastatud probleemide

lahendamiseks ning selle järel toob välja tuvastatud probleemidele lahendused, kasutades

selleks kahte erinevat paradigmat: Imperatiivne ja Reaktiivne.

Magistritöö viimases osas võrdleb autor probleemidele saadud lahendusi määratletud

kriteeriumide kogumiga ning selgitab välja kõige tõhusamat lähenemisviisi.

Magistritöö on kirjutatud inglise keeles ja on 50 lehekülge pikk, sisaldab 6 peatükki, 10

jooniseid, 2 tabelit.

List of abbreviations and terms

RP Reactive Programming

FP Functional Programming

FRP Functional Reactive Programming

RX Reactive Extensions

PHP Hypertext Preprocessor

UX User Experience

UI User interface

AHP Analytic hierarchy process

JVM Java Virtual Machine

List of figures

Figure 1. Distribution of respondents based on involvement in Android development. 15

Figure 2. Principles of Reactive Programming. ... 17

Figure 3. Basic building blocks of stream concept in Rx program. 20

Figure 4. Marble diagram for the skip operator. [8] ... 20

Figure 5. Survey results of some common obstacles in Android development. 21

Figure 6. Background selection screen. .. 23

Figure 7. Result screen. .. 24

Figure 8. Marble diagram for the filter operator. [8] .. 34

Figure 9. AHP structure for the evaluation of alternatives based on different criteria. .. 39

Figure 10. Decision table on choosing the most suitable programming approach. 40

file:///C:/Users/bogatenkov/OneDrive/Documents/Diplom/Magisterr/master_reactive_programming_121963IABMM.docx%23_Toc502610430

List of tables

Table 1. Prioritized survey results of some typical obstacles in Android development. 21

Table 2. Criteria set for each defined problem. .. 36

Table of contents

Author’s declaration of originality ... 3

Acknowledgements .. 4

Abstract ... 5

Annotatsioon ... 6

List of abbreviations and terms .. 7

List of figures ... 8

List of tables ... 9

Table of contents .. 10

1. Introduction .. 12

1.1 Background ... 12

1.2 Problem statement .. 12

1.3 Purpose ... 13

1.4 Overview .. 13

2. Methodology ... 14

2.1 Research question ... 14

2.2 Research approach .. 14

2.3 Research process... 15

3. Reactive Programming ... 17

3.1 Reactive and Functional Reactive programming overview 17

3.2 Comparisons between imperative programming and declarative programming .. 19

3.3 Rx, RxJava and RxAndroid .. 19

4. Problems and solutions ... 21

4.1 Project description .. 22

4.2 Problem 1: Long-running background tasks .. 24

4.2.1 Use case 1 .. 25

4.2.2 Use case 2 .. 29

4.3 Problem 2: Responding to user interaction .. 31

4.3.1 Use case 1 .. 31

4.4 Problem 3: Isolation, complex list filtering and data transformation 33

4.4.1 Use case 1 .. 33

4.4.2 Use case 2 .. 35

4.5 Evaluation criteria... 36

5. Analysis and evaluation .. 38

6. Summary ... 42

Kokkuvõte .. 44

References .. 46

Appendix 1 - Survey results ... 48

Appendix 2 - Survey results ... 49

Appendix 3 - Survey results ... 50

12

1. Introduction

The majority of the development teams today are using agile techniques in their projects.

Application needs have dramatically changed in the recent years. Users expect quick

response times and 99.9% uptime. Software architecture rapidly becomes outdated as new

demands are placed.

1.1 Background

Agile software development teams welcome changes, accepting the idea that

requirements will evolve throughout a project. More often happens that the functionality

of the application cannot be fully predicted at the beginning of the project. The project

needs change frequently thus a streamlined and flexible approach is required for

requirements change management. Systems should be more robust, more resilient, more

flexible and better positioned to meet the modern demands. The code should be easily

maintainable. [1]

1.2 Problem statement

Basically, on the day to day basis, developers make the code changes and add new things.

Unfortunately, most of the developers are focused on what they want the program to do

today thus they forgot that what the system does today is only a part of the story and

tomorrow will be a new day with some new requirements. So, this is where the author

believes that Reactive Programming (RP) can help software engineers to make their life

easier with a possibility to continue developing at speed and in this thesis the author tests

this hypothesis. RP is a general programming term that is focused on reacting to changes,

such as data values or events. [2]

13

1.3 Purpose

Nowadays more and more people appreciate talks about Reactive programming but are

still not able to find the proper place where to make an appropriate use of it in their

Android projects.

This master thesis focuses on the usage of reactive programming while developing native

Android applications in an agile environment.

The purpose of this thesis is to demonstrate that reactive programming paradigm is an

essential part of the Android applications development. The author believes that while

solving concrete problems it can help to reduce complexity of the code and make it more

readable. In addition, based on the case study and the comparison against chosen criteria

provide an opportunity to understand when the Reactive approach will be the most

efficient and will help to improve the code quality and make the development process

easier in the environment, where requirements evolve and change quickly throughout the

project.

1.4 Overview

The author analyzed the necessary requirements for a native Android development in the

agile environment and defined criteria set. Through the survey research among others

Android developers, the author has determined the most typical problems they are

experiencing every day.

On the concrete project example, the author managed to combine all detected problems

that Android developers experience every day and suggested possible solutions by using

two different paradigms: Imperative and Reactive.

The comparison against defined criteria set provides an opportunity to understand when

the Reactive approach will be most effective and worth considering for the upcoming

projects.

As a result, solutions to the identified problems are compared against defined criteria set,

and the most efficient approach is selected.

14

2. Methodology

This chapter describes the research process and provides an outline of the methodology

used to determine certain typical obstacles that Android developers experience every day

while doing Android development.

2.1 Research question

The focus of the research was to measure people’s opinions and judgements about using

the reactive approach while dealing with an Android development in the commercial or

pet projects. The research question was to identify what kind of most common challenges

Android developers, with different experience level, trying to solve while doing Android

applications development in the agile environment. Research objective was to specify

what common challenges Android developers face with in the environment where

requirements evolve and change quickly throughout the project.

2.2 Research approach

To establish several of the biggest general problems that Android developers experience

every day the quantitative research method was used.

A questionnaire construction was used as a data collection technique to produce a reliable

and valid result. The author tried to design questions to be good measures. Good questions

are reliable thus providing consistent measures in comparable situations and questions

answers correspond to what they are intended to measure. [3]

Two different types of questions were used while composing a questionnaire: free

response questions and closed questions.

With the help of Google Forms information was collected, organized and survey data was

analyzed and visualized.

15

2.3 Research process

The respondents of the study were 20 people dealing with an Android development most

of their time. The distribution of respondents based on their Android programming skills

is showed on the Figure 1.

The author contacted with the potential survey respondents via telephone or email. Due

to the efficiency of data collection and convenience for respondents, online survey

method was used. Unfortunately, only 16 respondents had a will to participate in this

survey.

The online survey took place from the period between 12 September 2017 and 26

September 2017. The data has been collected and updated contemporaneously with each

Figure 1. Distribution of respondents based on involvement in Android development.

16

new respondent's answer. The survey results have been organized in the Google Forms

and visualized as a chart. [Appendix 1-3]

17

3. Reactive Programming

3.1 Reactive and Functional Reactive programming overview

Reactive programming is a programming paradigm, oriented around data flows and the

propagation of change. [4]

Reactive programming is programming with asynchronous data streams. A stream is a

sequence of ongoing events ordered in time. It can emit three different things: a value of

some type, an error, or a "completed" signal. These emitted events are captured

asynchronously, by defining different functions that will execute when signals are

emitted. The function for values must be defined, others can be omitted. The listening

activity to the stream is called subscribing. The defined functions are called observers.

The stream is the subject or observable being observed. This is almost the Observer

Design Pattern. [4]

It extends the observer pattern to support sequences of events and adds operators that

allow composing sequences together declaratively while abstracting away concerns about

things like low-level threading, synchronization, thread-safety and concurrent data

structures. [5]

Reactive programming is based on the four guiding principles:

Figure 2. Principles of Reactive Programming.

18

The primary goal of any reactive application is to be responsive. As the application grows

more complex it is still able to quickly react on the user actions thus providing

consistently the better user experience.

Achieving responsiveness without both resilience and scalability is impossible. A

scalable system is easily upgraded on demand to ensure responsiveness under various

load conditions. A resilient system uses proper design and architecture principles to

ensure responsiveness under a variety of real-world, less than ideal conditions. [6]

Scalability and resiliency are closely related while creating consistently responsive

applications.

As we know the world is asynchronous thus a message-driven approach is the basis of

scalable, resilient and responsive applications. A message-driven architecture provides us

with an asynchronous boundary that decouples from time and space and is the basis for

reactive applications. All the principles must be applied together to develop quality

software in a modern context. [6]

Functional Reactive Programming combines reactive and functional programming.

Functional Programming (FP) is one of the programming paradigms, which does

computation like mathematical functions without changing state and mutating data.

Functional Reactive Programming is a modification of Reactive Programming that

follows Functional Programming principles such as transparency and seeks to be purely

functional. [4]

Based on the statements given above it is easy to form the following equation:

Imperative programming + Declarative programming with lazy evaluation = Reactive

programming

Reactive programming + higher order functions and composition = Functional reactive

programming

19

3.2 Comparisons between imperative programming and declarative

programming

Typical applications are developed in an imperative style. The way where operations are

ordered sequentially and based on a call stack. Applications nowadays are frequently

asynchronous and imperative programming is not enough for the application logic.

Event-driven applications are focused on triggering events. Instead of components

making requests when they need something, components raise events when things

change. Other components then listen to events and react appropriately. [7]

Events can be encoded as a queue of messages that is observed by observers. The number

of observers could be zero or more. The significant difference between event-driven and

imperative style is that the caller does not block and hold onto a thread while waiting for

a response. [6]

As a result, with the use of the event-driven architecture, it is simple to avoid nested

callbacks problem called callback hell. Functional programming allows to follow SOLID

principles thus makes code cleaner and less coupled.

3.3 Rx, RxJava and RxAndroid

The Reactive Extensions (Rx) is a library for designing event-based and asynchronous

programs using observable sequences and operators, developed by Microsoft. [5]

RxJava is a library for declaratively composing event-based and asynchronous programs

by using observable sequences for the Java virtual machine (JVM). [5] In the world of

RxJava, everything can be represented as a stream. Each stream with some single or

multiple items emitted can be consumed. For example, click events, location updates,

push notifications and so on.

Main blocks of a Rx program are Observable, Observer and Operator. Observable emits

values on changes. Observer or several Observers can subscribe to a single Observable to

receive its emitted events and transform or modify data streams using powerful Rx

Operators.

20

Figure 3. Basic building blocks of stream concept in Rx program.

RxJava toolset contains a big variety of built-in operators. Each operator is visualized in

the documentation. The visual explanation of how certain operator works, called Marble

Diagram. For example, a marble diagram of the filtering operator named “skip” is showed

on the Figure 4.

Figure 4. Marble diagram for the skip operator. [8]

RxAndroid is a Reactive Extensions for Android that consist of Android specific bindings

for RxJava. This module simplifies usage of the reactive components in Android

applications.

21

4. Problems and solutions

With the help of the survey results author figured out some of the most typical problems

that Android developers solve every day.

Figure 5. Survey results of some common obstacles in Android development.

Extracted problems were prioritized based on the frequency of mention.

Table 1. Prioritized survey results of some typical obstacles in Android development.

Typical obstacles in Android development
Frequency of

mention

Background tasks and callback-hell (nested callbacks) 87,5 %

Transform, modify and filter data 81,3 %

Accumulated calls 56,3 %

Combine the result into a single data point after making the parallel

network calls
43,8 %

Form validation 43,8 %

Error handling 37,5 %

22

Search using autocomplete 37,5 %

Rotation persist 37,5 %

Loose coupling, isolation 18,8 %

Based on the project described below, specifically the PxMile Android application, all

listed problems were analyzed and solved by comparing two different programming

paradigms: Imperative and Reactive.

4.1 Project description

As an example, let's take an IoT project named PxMile Photobooth. PxMile is a

contemporary green-screen photo booth solution that allows customers to make pictures

with various backgrounds. Users can control the whole process with their mobile device

by using the PxMile mobile application. This application lets users control PxMile photo

booth - choose backgrounds, take, watch and share pictures.

To take a picture the user just need to download the application from the market, choose

a suitable background, pair with a photo booth, click a couple of buttons and as a result

the picture appears on the user's phone.

23

Figure 6. Background selection screen.

24

Figure 7. Result screen.

4.2 Problem 1: Long-running background tasks

The first and the most worrying topic for all participants in the survey was the background

tasks and nested callbacks problem. The question is how to efficiently execute heavy tasks

on the background threads and deliver the result to the UI thread. [Appendix 1-5]

In the domain of Android, parallel execution allows processing data without freezing the

UI thus responding to ongoing user interactions.

Some of the Android developers may say that this is trivial and straightforward.

Everything that is needed is the background and UI thread and possibility to organize

25

communication among different threads, for example by using AsyncTask.

Unfortunately, by using it, there is a chance that implementation will be overly

complicated or not all problem situations will be handled.

Based on the project described above, specifically the PxMile Android application, let's

try to analyze the two following use case.

For that particular problem to compare two different approaches (Imperative and

Reactive) the following criteria set was defined:

Criteria 1: Combining multiple web requests

Criteria 2: Activity/ Fragment lifecycle

Criteria 3: Caching

Criteria 4: Error handling

Criteria 5: Testability

4.2.1 Use case 1

As a user, I want to see a detailed list of the backgrounds.

To fulfill this requirement, PxMile API should be queried first to get a list of the

backgrounds and then the detailed information should be requested for each background

with a help of the next endpoints:

{base_url}/backgrounds – to get the list of backgrounds

{base_url}/backgrounds/{background_id} – to get detailed information for the

specific background

26

Imperative approach:

The standard way to perform some simple asynchronous tasks in Android is to make use

of Java’s low-level concurrency primitives. The result of the incorrect use of them are

threading risks, for example race hazard or deadlock.

@Override

public void getDetailedBackgrounds(@NonNull final
LoadBackgroundsCallback callback) {

 Call<BackgroundsResponse> backgroundsCall =
RestService.getInstance().getPxMileApi()

 .fetchBackgrounds(PreferencesManager.getUserToken(context));

 backgroundsCall.enqueue(new Callback<BackgroundsResponse>() {

 @Override

 public void onResponse(Call<BackgroundsResponse> call,
Response<BackgroundsResponse> backgroundsResponse) {

 if (backgroundsResponse != null &&
backgroundsResponse.code() == 200) {

 final List<DetailedBackground> detailedBackgrounds =
new ArrayList<DetailedBackground>();

 for (Background background :
backgroundsResponse.body().getBackgrounds()) {

 Call<DetailedBackgroundResponse>
detailedBackgroundCall = RestService.getInstance().getPxMileApi()

.fetchDetailedBackground(PreferencesManager.getUserToken(context),
background.getId());

 detailedBackgroundCall.enqueue(new
Callback<DetailedBackgroundResponse>() {

 @Override

 public void
onResponse(Call<DetailedBackgroundResponse> call,
Response<DetailedBackgroundResponse> response) {

 if (response != null && response.code() ==
200) {

 detailedBackgrounds.add(response

.body().getDetailedBackground());

 if (detailedBackgrounds.size() ==
backgroundsResponse.body().getBackgrounds().size()) {

 if (callback != null) {

 callback

.onDetailedBackgroundsLoaded(detailedBackgrounds);

 }

 }

 }

 }

27

@Override

 public void
onFailure(Call<DetailedBackgroundResponse> call, Throwable throwable)
{

 Logger.e(Logger.TAG,
"getDetailedBackground onFailure " + " exception: " +

 Throwable

.getMessage().toString());

 }

 });

 }

 }

 }

 @Override

 public void onFailure(Call<BackgroundsResponse> call,
Throwable throwable) {

 Logger.e(Logger.TAG, "getDetailedBackgrounds onFailure " +
" exception: " +

 throwable.getMessage().toString());

 }

 });

}

The example above shows what most of the Android developers might already be familiar

with.

The first web service is called to request all available backgrounds. As a successful result

there will be a list of available backgrounds. With the use of the first service callback

each list item is passed to the second web service that is responsible for the background

details. When all calls are done and there is an information for each item in the list, the

second callback is used to update the application UI. As a result, we have to manage

nested callbacks.

Android assures that this code will not execute in the main user-interface thread.

Though it is not the worst code, but adding more web service calls will increase

illegibility. Each following call will be dependent of the previous one and will add levels

of callbacks and the code complexity. Thus, it occurrence is known as callback hell. For

example, a developer would like to improve the application performance and make a few

web-service calls in parallel. For that, the results should be merged and returned back to

28

the UI. There is no common solution for that problem. One of the ways to do that is to

create a custom executor and to coordinate parallel threads.

Also, unfortunately, there is no ready-made solution for the situation where something

can go wrong. There is a solution to surround code with a try/catch block. It helps, but

developers have to pay a proper attention and correctly handle all exceptions based on the

project needs. Custom solutions are not consistent and predictable for new coming

developers with a bunch of extra code.

If developers would like to unit test their code it will be really difficult and as a result

hard to maintain in the future. So definitely third-party library should be used.

Reactive approach:

public void rxFetchDetailedBackgrounds(@NonNull final
LoadBackgroundsCallback callback) {

 RestService.getInstance()

 .getPxMileApi().fetchBackgroundsRx()

 .concatMap(Observable::from)

 .concatMap((Background background) ->

 RestService.getInstance()

 .getPxMileApi()

 .rxFetchBackgroundDetails(background.getId()))

 .toList()

 .subscribeOn(Schedulers.newThread())

 .observeOn(AndroidSchedulers.mainThread())

 .subscribe(detailedBackgrounds-> {

 if (callback != null) {

 callback.onDetailedBackgroundsLoaded(detailedBackgrounds);

 }

 });

}

Fortunately, all the issues discussed above have an elegant solution with RxJava and

RxAndroid library. The reactive approach helps to avoid accumulating callbacks or

“callback hell” and make the code more clear and legible. To merge the final results

concatMap Rx Operator is used.

By using Observables, no additional work needed. Both, error and success cases are

already handled by default in a concise way. As an additional feature, it is possible to

29

specify where the results will be handled. For example, the results of the request could be

processed on the main thread.

Testing is clear, maintainable and straightforward with a reactive approach. By using

toBlocking() method, any method could be turned from asynchronous to synchronous

one. Thus, there is no need to fragile things by using sleep methods.

4.2.2 Use case 2

As a user, I want to view the taken photo when it will be fully processed on the server-

side and uploaded to an Amazon S3 bucket.

To fulfill this requirement, PxMile API should be queried first to get the current photo

status.

If the photo status equals "0" let's repeat the first call after a specific timeout, in the other

case the photo is successfully uploaded and the image should be requested.

This will involve two PxMile web service endpoints and one Amazon S3 bucket endpoint:

{base_url}/users/{user_id}/photos/{code}/status- retrieve the photo status

{base_url}/users/{user_id}/photos/{code} - retrieve the photo hash

{bucket}.s3.amazonaws.com/images/{hash}.jpg - retrieve the photo

To fulfill the user needs based on the described use case, multiple web service calls should

be composed. Let's omit the nested callbacks problem as it was discussed above and focus

on the long-running task – photo download process.

30

Imperative approach:

The most of the Android developers use AsyncTask class to perform long-running

background operations. AsyncTask must be subclassed and should override at least one

method (doInBackground(Params...)). Let's ascertain what happens if the user

presses back button finish Activity or change the device orientation while having long-

running task.

If nothing additional is added to prevent that situation the application will crash. The

NullPointerException will be fired, because the Activity is not accessible anymore. To

avoid this crash the task have to be referred. Another way is to use isFinishing()

method, to check the Activity state and cancel the task.

Thus, it is really hard to get everything right because there is no any proper approach

provided and solutions that are used, differ from project to project

Reactive approach:

In the world of the reactive programming the lifecycle and the memory leaking problems

are solved by the usage of subscriptions.

A common pattern is to use a CompositeSubscription. It helps to hold all Subscriptions

and unsubscribe all at once at ease in onDestroy() or onDestroyView() methods.

private CompositeSubscription compositeSub = new
CompositeSubscription();

private void initAutocompleteField() {

 AutocompleteService autocompleteService = new
AutocompleteService();

 compositeSub.add(autocompleteService

 .autocomplete(startLocation, locationService)

 .observeOn(AndroidSchedulers.mainThread())

 .subscribe(updateAutocompleteList()));

}

@Override

public void onDestroyView() {

 compositeSub.unsubscribe();

 super.onDestroyView();

}

31

The context leaking is also prevented due to the unsubscription.

There is also another way to resolve that problem, by using Trello's RxLifecycle

lightweight library.

Mentioned library allows for automatic completion of sequences based on Activity or

Fragment lifecycle events. It determines the appropriate time to end the sequence.

myObservable.compose(RxLifecycleAndroid.bindActivity(lifecycle))

.subscribe();

4.3 Problem 2: Responding to user interaction

One of the key elements of the most Android applications is the user

interface and a reaction to the user interactions. The majority of

Android developers solve issues concerning UI in the traditional way,

but the reactive approach could be also applied.

Criteria 1: Reuse individual pieces

Criteria 2: The code length and readability

Criteria 3: Separation of view and model logic

Criteria 4: Memory leaks

4.3.1 Use case 1

As a user, I want to see the dropdown list with countries suggestions when I stop typing

without pressing any button.

To fulfill this requirement, the AutoCompleteTextView could be used and auto-complete

action should be triggered when the user stops typing. The problem is how to get known

when to trigger it.

As user type the word "Estonia", developer does not want to execute searches for E, Es,

Est ... etc. But rather wait for a couple of seconds, make sure the user has finished typing

the whole word, and then make a call.

32

Imperative approach:

One of the solutions is to use onFocusChangeListener to observe when the user begins

editing text in this text field and when ends. Another possible solution is to start timer

with a delay. With any text change timer restarts and waits for the next change in the text

field. If there is no changes the required action should be triggered. It will be really hard

to cut the complete solution down to about 30 lines of code. There is also a risk of the

potential memory leaks.

Reactive approach:

RxJava/RxAndroid library could be used not just for background operations. It is not yet

fully featured, but is already really useful for making a responsive UI. It also helps to

separate view and model logic.

With RxJava, Subject can be used to automatically update the UI. Subjects are

observables that can both subscribe to and trigger updates on. With Subjects a reference

is not required to an observer, just emit the data on the subject itself. To optimize event

handlers debounce and throttle methods could be used.

public Observable<List<SuggestedLocation>>
autocomplete(CustomAutocompleteTextView view, final LocationService
locationService) {

 return getInputTextObservable(view)

 .debounce(DEBOUNCE_TIMEOUT_IN_MILLISECONDS, TimeUnit.MILLISECONDS)

 .switchMap(new Func1<String,
Observable<List<SuggestedLocation>>>() {

 @Override

 public Observable<List<SuggestedLocation>> call(final String
query) {

 return fetchSuggestedLocations(LOCALE, query,

locationService.getCurrentLocation())

 .timeout(REQUEST_TIMEOUT_IN_SECONDS, TimeUnit.SECONDS)

 .retry(RETRY_COUNT_FOR_REQUEST);

 }

 });

}

33

As an addition the throttle method could be also applied to avoid button multiple clicks.

RxView.clicks(view).throttleFirst(500,
TimeUnit.MILLISECONDS).subscribe(empty -> { // action on click });

4.4 Problem 3: Isolation, complex list filtering and data transformation

Based on the survey results another significant topic for all participants in the survey was

the data transformation. The question is how to make it easier to convert, filter, combine

and transform data with no pain, fewer lines of code and the ability to reuse individual

pieces.

For that particular problem to compare two different approaches (Imperative and

Reactive) the following criteria set was defined:

Criteria 1: Code length

Criteria 2: Reusability

Criteria 3: Complexity

4.4.1 Use case 1

As a user, I want to filter out all black-and-white backgrounds and display background

names in the lowercase.

Imperative approach:

ArrayList<String> tempBackgroundNames = new ArrayList<>();

ArrayList<String> filteredBackgroundNames = new ArrayList<>()

ArrayList<String> backgroundNames = new ArrayList<>();

for (String backgroundName : tempBackgroundNames) {

 if (backgroundName.startsWith("BW")) {

 filteredBackgroundNames.add(backgroundName);

 }

}

for (String backgroundName : filteredBackgroundNames) {

 backgroundNames.add(backgroundName.toLowerCase());

}

34

Reactive approach:

The great power of the reactive approach lies in the operators. They allow manipulating,

transforming, filtering and combining objects emitted by the Observables. There is a wide

range of operators that could make the developers life easier. Multiple operators could be

used at once. The complete list of Rx operators is available in the official document.

Applying an operator to Observable returns a new Observable, leaving the original one

untouched. Thus, is it easy to isolate and decompose the tasks.

Observable<String> backgroundNamesObservable =
Observable.from(backgroundNames)

 .flatMap(new Func1<String, Observable<String>>() {
 @Override
 public Observable<String> call(String background) {
 return Observable.from(background.toUpperCase());
 }

 })
 .filter(new Func1<Observable<String>, Boolean>() {
 @Override
 public Boolean call(String background) {
 return background.startsWith("BW");
 }
 });

In the suggested solution the filter() operator is used, which takes a predicate and

either passes events further or discards them.

For the better understanding how filter() operator works let's have a look on the visual

explanation of how it, by the help of so-called marble diagram:

Figure 8. Marble diagram for the filter operator. [8]

35

4.4.2 Use case 2

As a user, I want registration form to be validated when all input fields are filled.

The best practice is to make sure that all fields are filled before submitting the form. The

question is how to make sure that all form fields are filled.

Imperative approach:

There is at least two possibilities. The first one is to listen to changes made within field

and fire up the field validation. The second one is to listen to the submit-button click and

start validatin all fields in the from on submit.

Each form input field should be registered and textChangeListener added.

EditText emailField = (EditText) findViewById(R.id.edit_text_email);

emailField.addTextChangedListener(new TextWatcher() {

 public void onTextChanged(CharSequence charSeq, int start,
int before, int count) {}

 // with each change, check if email is valid

 public void afterTextChanged(Editable emailText) {

 isEmailAddress(emailText.toString(), true);

 }

 public void beforeTextChanged(CharSequence charSeq, int
start, int count, int after) {}

});

TextWatcher makes it possible to validate field ad-hoc.

After the form submission the validation class will check for any errors and display them

if needed on the respective fields.

Handling it input fields with a bunch of booleans makes the code cluttered and kind of

difficult to follow.

Reactive approach:

Traditionally, validation methods return a boolean that tells us if it succeeded or not, so

we started with that.

36

However, using combineLatest Rx Operator developer could monitor the state of

multiple observables at once compactly at a single location and as a result has a small

block of code.

Observable.combineLatest(emailObservable, countryObservable

(emailValid, countryValid) -> emailValid && countryValid)

.distinctUntilChanged()

.subscribe(valid -> submitButton.setEnabled(valid));

Button state, enabled or disabled depends on the combined single emitted value and

changes relatively. Rx Operator combineLatest emits value only when all Observables

have at least one value that is emitted.

This technique becomes more apparent when there is more than one input field in a form.

4.5 Evaluation criteria

The author analyzed top three of the most worrying problems, while doing Android

development, for all participants in the survey. Firstly, long-running background tasks.

Secondly, immediate and continuous user interaction and finally, complex list filtering

with data transformation.

Each obstacle was analyzed based on the different suite of use cases. For each problem

specific criteria set was defined to compare imperative and reactive approaches.

Table 2. Criteria set for each defined problem.

Criteria Problems

Combining multiple web requests Long-running background tasks

Activity/ Fragment lifecycle Long-running background tasks

Caching Long-running background tasks

Error handling Long-running background tasks

37

Testability Long-running background tasks

Reuse of individual pieces
Responding to user interaction, Isolation,

complex list filtering and data transformation

The code length and readability
Responding to user interaction, Isolation,

complex list filtering and data transformation

Separation of view and model logic Responding to user interaction

Memory leaks Responding to user interaction

Complexity
Isolation, complex list filtering and data

transformation

38

5. Analysis and evaluation

The author analyzed the requirements of an Agile environment and identified basic

criteria.

The factors to be considered are the key factors of the fast-paced work environment:

tolerance of failure, capability, reusability, testability and flexibility.

Based on the survey results author figured out some typical problems that Android

developers experience every day. Extracted problems were prioritized based on the

frequency of mention.

Based on the identified criteria provided in the Table 2 and the list of the key factors most

common problems were solved by comparing two different programming paradigms:

Imperative and Reactive.

The goal was to demonstrate that Reactive programming paradigm from a field of two

main paradigms: Imperative and Reactive is the most suitable while solving several of

the biggest general problems that Android developers experience every day that were

discovered with the help of the survey research method.

For analyzing a complex decision, the analytic hierarchy process was used. AHP provided

a rational framework for structuring a decision problem and for evaluating alternative

solutions. The author analyzed independently every sub-problem in the hierarchy.

39

Figure 9. AHP structure for the evaluation of alternatives based on different criteria.

With the usage of analytic hierarchy process, alternative solutions were evaluated. The

author created a decision hierarchy based on the defined criteria that could be helpful for

other developers to select the most suitable programming approach.

40

Figure 10. Decision table on choosing the most suitable programming approach.

Current Master's thesis objectives were:

▪ To highlight the significance of Reactive programming while developing native

applications for Android in an agile environment.

▪ To demonstrate how or why to make use of the Reactive approach.

▪ To verify on the concrete project example that problem solutions with the usage of

Reactive programming can help to improve the code quality and make the

development process easier.

The following actions were taken to accomplish the purpose:

41

▪ The most typical problems that Android developers experience every day were

determined with the help of survey that was conducted to get a better overview.

▪ The key concepts of Reactive programming were disassembled, and different

paradigms were compared.

▪ On the concrete project example, the detected problems were prioritized based on the

frequency of mention and combined by criteria.

▪ By using two different paradigms, Imperative and Reactive, possible solutions were

suggested and compared against defined criteria.

The first and the most worrying topic for all participants in the survey was the long-

running background tasks and nested callbacks problem. The author tried to efficiently

execute heavy tasks on the background threads and deliver the result to the UI thread.

Two use cases were analyzed. At first thought, solutions based on the imperative approach

seemed to be trivial and straightforward. However, the comparison with the reactive

approach revealed that not all the edge cases were handled.

It also proved that without using of RxJava/ RxAndroid libraries each following call will

be dependent of the previous one and will add levels of callbacks and the code

complexity. On the dropdown list example, the author also showed how the reactive

approach could be applied while solving issues concerning the user interface and a

reaction to the user interactions. As a result, the reactive approach also helped to separate

view and model logic, optimize event handlers and prevent memory leaks.

The author was also able to demonstrate the power of the Rx operators while validating

forms that allow manipulating, transforming and combining objects issued by the

Observables.

RxJava and RxAndroid libraries are still rather new. Even today many developers are still

figuring out why to use a Reactive approach and how it could help to overcome some

typical problems while developing applications for Android.

42

6. Summary

In the world of software systems, the four elements are fulfilled to tag it as reactive:

▪ React to events – event driven / message driven

▪ React to system load – scalable

▪ React to failure – resilient and robust

▪ React to user – responsive

Based on the survey results author demonstrated the most typical problems that Android

developers experience every day. Extracted problems were prioritized based on the

frequency of mention. Based on the concrete project example, the author found some

disadvantages of using Imperative approach while solving extracted problems:

▪ Multithreading management is very basic.

▪ No easy way to synchronize nested asynchronous calls.

▪ Callbacks are not universal and reuse of methods is almost impossible.

▪ Difficult to transform data.

With the usage of AHP, alternative solutions were evaluated. The author created a

decision hierarchy table based on the chosen criteria set that could be helpful for other

developers to select the most suitable programming approach for the Android

development.

From the decision hierarchy it is possible to conclude, that using the Reactive approach,

helped to improve the code quality and made the development process easier. The author

also found that the biggest advantage of reactive programming is that it lets write clean,

concise and readable code. It is easy to focus on solving the problem rather than the

required procedure with a reactive approach. Individual pieces could be reused,

multithreading management is simplified, and operators make data transformation easier.

As a result of this thesis the author demonstrated on the real-life project with some real

cases that the Reactive programming can help to solve some most common cases with a

no pain, less lines of code and easy refactoring. As a result, it will be a much smaller

43

program that will consist of isolated components, will be loosely-coupled, flexible and

will stay responsive in the face of failure. It offers some fresh expectations on solving the

recent programming problems and makes developers think differently and in most cases

using it can help to improve the application speed.

The author hopes that this thesis has provided an opportunity to understand when the

Reactive approach could be the most efficient, help to improve the code quality and could

make the development process easier in the environment, where requirements evolve and

change quickly throughout the project.

44

Kokkuvõte

Antud magistritöö eesmärgiks oli:

▪ Rõhutada reaktiivse programmeerimise kasutamise olulisust Android rakenduste

arendamisel pidevalt muutuvas keskkonnas.

▪ Näidata kuidas ja miks oleks mõistlik kasutada Reaktiivset lähenemist.

▪ Konkreetse projekti näitel kontrollida, et reaktiivse programmeerimise kasutamine

probleemide lahendamiseks parandab koodi kvaliteeti ning teeb arendamise protsessi

lihtsamaks.

Eesmärgi täitmiseks töö autor tegi järgmised sammud:

Küsitluse abil olid välja selgitatud kõige teravamad kohad, millega Android rakenduste

arendajad igapäevaselt kokku puutuvad.

Reaktiivse programmeerimise mõiste oli lahti seletatud ning võrreldud erinevate teiste

paradigmatega.

Konkreetse projekti näitel probleemid olid järjestatud olulisuse alusel ning grupeeritud

kriteeriumite järgi.

Kasutades Reaktiivset ja Imperatiivset paradigmat pakkus autor välja probleemidele

lahendused, mis omakorda olid võrreldud eelnevalt määratletud kriteeriumitega.

Esimene ja kõige murettekitavam teema kõigi uuringus osalenute jaoks olid kaua kestvad

taustategevused ja astmeliste funktsioonide pärimisega seotud probleemid.

Autor üritas tõhusalt täita koormavaid ülesandeid tausta harudes ja kuvada tulemusi

kasutajaliideses. Kahte kasutusjuhtu võeti analüüsimiseks.

Esmapilgul tundus, et imperatiivse lähenemise tulemused paistsid liiga triviaalsed ja

lihtsad, kuid võrreldes reaktiivse lähenemisega selgus, et kõik erijuhud ei olnud kaetud.

45

Samuti tuli välja, et ilma RxJava/ RxAndroid teegita iga järgmise päring hakkab sõltuma

eelnevast ja lisab tasemeid ja koodi keerukust.

Rippmenüü näitel, demonstreeris autor kuidas reaktiivset lähenemist võiks kohaldada

lahendamaks probleeme, mis puudutavad kasutajaliidest ja kasutajamugavust.

Selle tulemusena reaktiivne lähenemine aitas eraldada vaadete ja mudelite loogikat,

optimeerida sündmustetöötlejaid ja vältida mälu lekkeid.

Autor näitas ka Rx operaatorite efektiivsust vormide valideerimisel. Samuti ka

manipuleerides, filtreerides, muutes ja ühendades objekte.

Autor kasutas analüütilist hierarhilist mudellähenemist (AHP) ning tegi valmis

otsustuspuu imperatiivse ja reaktiivse paradigmade võrdlemiseks. Autor loodab, et

otsustuspuu, saab lihtsustada teiste Android arendajate elu ning aidata õigesti valida, kas

kasutada imperatiivse või reaktiivse lähenemise vastavalt määratletud kriteeriumitele.

RxJava ja RxAndroid teegid on veel vähe tuntud. Endiselt leidub palju arendajaid, kes ei

tea kuidas ja miks nad peavad neid kasutama konkreetsete ülesannete lahendamiseks.

Autor loodab, et käesolev magistritöö aitab mõista, millal Reaktiivne lähenemine võiks

olla kõige tõhusam, aidates parandada koodi kvaliteeti ja lihtsustada arendusprotsessi

keskkonnas, kus nõuded arenevad ja muutuvad kiiresti kogu projekti vältel.

46

References

[1] J. Bonér, D. Farley, R. Kuhn and M. Thompson, "The Reactive Manifesto," 16

September 2014. [Online]. Available: https://www.reactivemanifesto.org.

[Accessed 20 December 2016].

[2] T. Nurkiewicz and B. Christensen, Reactive Programming with RxJava: Creating

Asynchronous, Event-Based Applications, O'Reilly Media, 2016.

[3] F. J. Fowler, "Designing Questions to Be Good Measures," in Survey Research

Methods, 1984, pp. 76-79.

[4] A. Staltz, "The introduction to Reactive Programming you've been missing," 2016.

[Online]. Available: https://gist.github.com/staltz/868e7e9bc2a7b8c1f754.

[Accessed 3 November 2017].

[5] "RxJava: Reactive Extensions for the JVM," ReactiveX, 2015. [Online]. Available:

https://github.com/ReactiveX/RxJava. [Accessed 2 March 2017].

[6] K. Webber, "What is Reactive Programming?," RedElastic, 19 August 2014.

[Online]. Available: https://blog.redelastic.com/what-is-reactive-programming-

bc9fa7f4a7fc. [Accessed 13 November 2017].

[7] M. Fowler, "Event Collaboration," 19 June 2006. [Online]. Available:

https://www.martinfowler.com/eaaDev/EventCollaboration.html. [Accessed 3 May

2017].

[8] A. Staltz, "Interactive diagrams of Rx Observables," 2015. [Online]. Available:

http://rxmarbles.com/#skip. [Accessed 10 December 2017].

47

[9] A. Huang and C. Arriola, Reactive Programming on Android with RxJava,

MYNAH, 2017.

[10] Meetings with Reactive Programming evangelists on the Droidcon London

conference. [Interview]. 2017.

[11] T. Nield, Learning RxJava: Reactive, Concurrent, and responsive applications,

Packt Publishing, 2017.

[12] K. D. Goepel, "AHP online system," 2016. [Online]. Available:

https://bpmsg.com/academic/ahp-hierarchy.php. [Accessed 21 September 2017].

48

Appendix 1 - Survey results

49

Appendix 2 - Survey results

50

Appendix 3 - Survey results

