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ABSTRACT

Extraction of useful information from cardiac signals for the diagnosis of diseases
and judgment of heart function is of special interest to medical personnel. Thus,
the development of effective, robust, and efficient diagnostic tools for heart diseases is
required. The aim when developing new techniques and tools is to minimize the
required cost and long hospitalization time, and increase the patient’s ease and safety. In
accordance with this statement, in this PhD thesis, non-invasive electrical-based
methods are of special interest. However, extracting useful information from measured
biomedical data is not always trivial. The research community, including our previous
contributions, has developed many algorithms for separating the signals of different
origins, e.g., cardiac, respiratory, and muscular activities, etc. Nevertheless, none of the
existing methods provides any mechanism to evaluate the performance of the developed
algorithms. Thus, there exist uncertainties regarding the properties of the signals, such
as its amplitude, waveform, components, and the origin of the signal waveform, which,
in turn, limits the quality of the diagnostics of diseases and conditions.

In this PhD thesis, it is argued that modelling the measured signals offers several
advantages to help dealing with the above problems, as compared to relying on
measured data only. By using a formalized representation, the parameters of the signal
model can be easily manipulated and/or modified, thus providing mechanisms that
allow researchers to reproduce and control such signals.

In turn, having such a formalized signal model makes it possible to develop
computer tools that can be used for manipulating and understanding how the signal
changes depend on various heart conditions, as well as for generating input signals for
experimenting with and evaluating the performance of, e.g. useful signal extraction
methods.

In this work, the focus is on bioelectrical information, mainly electrical bio-
impedance (EBI). Once the EBI is measured, it is necessary to model the corresponding
signals for analysis. In this case, the so-called advanced user should have to follow a
structured approach to move from real measured data to the model of the corresponding
signals. For this, a generic framework is proposed in the PhD work. It has been used to
guide the modelling of the impedance cardiography (ICG) and impedance respirography
(IRG) signals. Here, based on statistical parameters and visual fit, a Fourier series is
selected to model the ICG and IRG signals.

The proposed framework has been used to guide the development of the
corresponding bio-impedance signal simulator (BISS). The internal details of the
simulator are presented, including the various model parameters and the mechanisms for
adding modulation, noise, and motion artefacts. As a result, the implemented BISS
generates simulated EBI signals and BISS gives freedom to the end-user to control the
essential properties of the generated EBI signals depending on his/her needs. Predefined
human conditions/activities states are also included for ease of use.



ANNOTATSIOON

Erinevate mooteseadmete loomisel on kasuliku informatsiooni eraldamine
modtesignaalist iiks olulisemaid ja samas ka keerukamaid iilesandeid. Néiteks on
meedikutele oluline omada head iilevaadet siidame to0st ja selle vOoimalikest hiiretest.
Bioimpedantssignaalis on vajalik informatsioon olemas, kuid lisaks sellele on seal ka
palju héirivaid ja segavaid komponente. Kuigi kasulike komponentide eraldamisega on
tegeletud pikka aega, puudub seni universaalne meetod, mis tootaks kdikides
modtesituatsioonides {ihtviisi usaldusvdirselt. Saadud mdotesignaalide kvaliteet on
tihedas sOltuvuses modddetava olekust. Kui eraldusalgoritmid tootavad reeglina hésti
tervete ja puhkeolekus inimeste puhul, siis haigete siidametegevus ja hingamine vdivad
olla sellisel méddral héiritud, et nende dratundmine ja eraldamine ei dnnestu. Liikuva
inimese puhul lisanduvad héired, mis on seotud lihaskonna tegevuse ja
modteelektroodide liitkumisega. Sellised hdired on tiiiipiliselt suurusjérkude vorra
suuremad kui kasulik signaal ja voivad viimase tdielikult maskeerida. Modte ja
signaalieristusmeetodite arendamist ja evalueerimist raskendab paraku vordlusbaasi
piiratus voi puudumine.

Kéesolev dissertatsioon pakubki lahendusi eespool késitletud probleemile. Vilja on
arendatud raamistik, mis vdimaldab, ldhtudes kasulike signaalide mudelitest,
genereerida reaalsele sarnanevaid modtesignaale. Kasulike signaalide mudelid
pohinevad {ildistatud mootmistulemustel. Nende abil genereeritud siidame ja
hingamissignaalidele lisatakse vajadusel miira ja héireid, neid moduleeritakse,
moonutatakse vastavalt haigusele jne.

Mbootesignaalide modelleerimine annab hea voimaluse erinevate eraldusalgoritmide
tdpseks numbriliseks  vOrdlemiseks erinevates reaalselt esineda  vOivates
mootesituatsioonides. Kasutades formaliseeritud esitusviisi, on vOimalik mudeli
signaalide parameetreid kergesti manipuleerida ja modifitseerida. Lisaks pakub selline
formaliseeritud ldhenemine vGimaluse vilja tootada programmvaralisi vahendeid,
ennustamaks signaalide muutustest tegelikke siidame olukordade muutusi.

Kéesolevas uuringus on pdhifookus asetatud bioimpedantsi modtmistest (EBI)
pirinevate signaalide tootlemisele, aga tulemused on rakendatavad ka laiemalt.
Dissertatsioonis esitatakse iildine mudel-raamistik t6oks impedants-kardiograafia (ICG)
ja impedants-respirograafia (IRG) signaalidega ning nédidatakse vdimalust
bioimpedantsi signaalisimulaatori (BISS) loomiseks. Uuritakse mudel-raamistiku
erinevate parameetrite moju mudeli véljundile, arvestatakse modulatsiooni, miira ja
liikkumise artefaktidega, mille tulemusena BISS genereerib parima sobivusega EBI
signaali. Sellega antakse lOpptarbijale vdimalus lihtsalt ning korratavalt kontrollida
signaali tootlemise ja lahutamise algoritmide kditumist erinevates inimese tegutsemisest
ja tervisest soltuvates tingimustes tegelikku katset 1dbi viimata.



ACKNOWLEDGEMENT

This work would not have been possible without the valuable advice of my
colleagues and friends from Thomas Johann Seebeck Department of Electronics at
Tallinn University of Technology, or without the support of the Foundation Archimedes
ESF DoRa programme. [ particularly wish to thank the Estonian Research Council for
supporting this research under research Project IUT19-11, and the Foundation
Archimedes through the Centre of Excellence CEBE (TKO05UO1) for supporting the
technology-oriented scientific projects in Estonia.

I appreciate the fruitful and valuable advice, support, and discussions with
Prof. Mart Min, Dr. Olev Mértens, Dr. Raul Land, Dr. Jaan Ojarand, Dr. Rauno Gordon,
Dr. Muhammad Naveed, Mrs. Galina Rang, Ms. Anu Johannes, and Ms. Riina Vilgats.
Thank you very much all of you for your kind help and cooperation.

I highly appreciate the valuable suggestions and comments from Prof. Emeritus Enn
Velmre, who helped me to enhance the dissertation and make it more readable.

My special thanks go to Dr. Toomas Parve. He was always ready to help whenever I
had a question.

I would like to thank Dr. Andrei Krivoshei for his great experience that guided me
throughout the entire study.

I am highly thankful to my second co-supervisor, Dr. Yannick Le Moullec, for his
great help and support. He was always ready to help me and gave me valuable
suggestions and feedback.

I am also especially highly thankful to my first co-supervisor, Dr. Paul Annus, for
his excellent supervision and advice. He continuously gave me new ideas and
challenges to carry out my research work. I also thank him for his encouragement
throughout my research work.

My heartiest thanks go to my supervisor, Prof. Toomas Rang, for his excellent
supervision, and for giving me the opportunity to work with enthusiastic colleagues. He
is the person who gave me a research direction and kept me on track.

Finally, I would like to thank my family for the support and understanding that
helped me through the exciting but difficult task of writing this PhD thesis.






CONTENTS

LIST OF PUBLICATIONS......ooiiiitiiiiiitiieeeeiteeeeeiteeeeetaeeeetvaeesearaaeesasseseessssesssnsssessenssenens 11
ABBREVIATIONS .......outiiiiiiiiieeiiieeeeitteeeettteesesssesasssseeessssseesssssesesssssessssssseesesssseesssseess 13
LIST OF SYMBOLS ......ootiiiitiiieiiiieeeesiteeeeivteeeststesssseseeeasssseeesssssesssssesssssssesessssseessnsssess 13
SHORT DEFINITIONS OF TERMS ........cooiiiiiiiiiieeiiiieeeeeeiteeeeeeteeeeesaeeeeestseeeeessseeseessseaeenns 14
1. INTRODUCTION AND MOTIVATION ........cccooiiiiiininnen. 15
1.1 Problems and Statements of Data Acquisition..................ccocoevvvrvcincieninnnen. 16
1.1.1 Issues with Extraction of a Useful Signal: the Example of Separation
of Cardiac and Respiratory Signals during Non-invasive Procedures............. 16
1.2 Need for Modelling the Cardiac and Respiratory Signals and
Development of the Corresponding Signal Simulator .................c..c.cc.oc.... 18
1.3 Framework for Biomedical Applications for Modelling and Simulating
Bioelectrical Signals ...............ccoooiiiiiiiiiiiiceeee e 19
1.4 Research QUEeStioONS ................oooiiiiiiiiiiiie e e 19
1.5 Main Contributions of the Thesis ................coccoiiiiiiiniiniee, 19
1.6 Structure of the Thesis.............cccooiiiiiiiii e 20

2. STATE OF THE ART OF MODELLING AND SIMULATION

OF THE PHYSIOLOGICAL SYSTEMS .......cccocoiiiieiee 21
2.1 Cardiovascular SyStem .............ccccoviriiiiiiniiiiiniinieeeee et 21
2.1.1 Structure and Functioning of the Cardiovascular System............c.ccccevevveennnns 21
2.1.2 The ReSPIratory CENLIE ......cccecvvervieieerierieeiieiesieeeetesieeeesessesssessesseessessessesseenns 24
2.2 Model of the Cardiovascular System ...............ccocorviiriiriiiiinnieieneesee e 25
2.2.1 From Physiology to Mathematical Representation of the CVS....................... 25
2.2.2 Structure of the Cardiovascular Model ...........cccooeirininenereeeeeee 26
2.3 Overview of the Existing CVS Simulator and Software Tools for EBI........ 28
2.3.1 Cardiovascular Simulator (CVSim) .........cceceririerienienieieeeeteie e 28
2.3.2 Software Tool for Analysis of Breathing-Related Errors in Trans-

thoracic Electrical Bio-Impedance Spectroscopy Measurements (EBSM)...... 30
2.3.3 Simulation of Lung Edema in Impedance Cardiography ...........ccceceevuerurnene. 31
2.4 Acquiring Physiological Information from the Cardiovascular System.............. 31
2.4.1 Need for Non-invasive Methods ...........ccoereiieiiiiinereeccee e 32
2.4.2 Analysis of Impedance Models...........cceveririenieninieriereeee e 37
2.4.3 The Issue Regarding the Origin of the ICG Signal...........cccooceevininiiiinnnnne. 39
2.4.4 Existing Configurations of Electrodes ..........cccoovevevieninievenieseeieneceevene e 41
2.5 Analysis of Existing Approaches for Modelling the Bio-Impedance Signal........ 42
2.6 Summary of the Chapter .............cccocoiiiiiiiiic e 43



3. PROPOSED NOVEL GENERIC FRAMEWORK FOR

MODELLING THE BIOELECTRICAL INFORMATION......... 45
3.1 Novel Generic Framework ..............coccoceiiniiiiiininnneeccceeeee 47
3.2 Detailed Explanation of Each Step of the Novel Generic Framework............... 48
3.2.1 Description of the Biological System/Object (Step 1)...ccceevvvvevreveecievierrrenenn 48
3.2.2 Selection of the Data Source of the Interest (Step 2)...c.cccevvvveeerererierierieneenne 54
3.2.3 Measurement of the Parameters of Interest (Step 3)......ccceovvveerenenienienencnne. 55
3.2.4 Data Cleaning (StEP 4) ....coueeueeieririeeienie ettt sttt st et sbe e 56
3.2.5 Modelling of the ICG and IRG Signals and Building a Corresponding
STMUIALOT (STEP 5) weveenietieiieierte ettt sttt 57
3.2.6 ApPlications (STEP 0)...cc.eerveruirieriirieeieie ettt 58
3.3 Summary of the Chapter..............ccccooiiiiiiiiiniiieee e 59
4. IMPLEMENTATION OF THE FRAMEWORK AND
THE EXPERIMENTAL RESULTS.......cccooiiiiieeeeeee, 61
4.1 Measurement of the EBI Signals ..................ccoooiviiiiniiiieeees 61
4.1.1 Measurement SETUP ......ccccccveereeeiieriierieesieseeseeseeseeseessseeseeseeseesseesseesseesseens 61
4.1.2 Waveforms and Spectra of the EBI Signals...........cccccevvvevieniincierienincieieneenns 63
4.2 Method for Modelling of Bio-Impedance Signal....................ccccoieiiininnnnnn. 67
4.2.1 Curve-Fitting Method..........ccceccieviiriiiieiececieececee ettt eenens 67
4.2.2 Results of Modelling and Comparison of the Models of Curve Fitting .......... 69
4.3 Proposed Bio-Impedance Signal Simulator...................ccocooovinnnnnnnnnn 75
4.3.1 Development of the STmMUIAtOr ..........c.eecvieviieriieiieeceeee e 75
4.4 Generic Framework for Modelling the Bio-Impedance Information.......... 79
4.4.1 Implementation of the Proposed Novel Generic Framework for
the Development of the EBI Signal Simulator.............ccccovvveviinienciinieeieene, 80
4.5 Summary of the Chapter ..............ccocveiiiiiieiieeeeeee e 86
5. CONCLUSIONS ...ttt 87
REFERENCES........coo ittt 91
APPENDIX .. ..o 99
Paper 1 101
Paper 11 107
Paper 111 115
Paper IV 121
Paper V 127
Curriculum Vitae (in English) 133
Curriculum Vitae (in Estonian) 135

10



LIST OF PUBLICATIONS

Here is the list of the main publications upon which this work is based, according to
Tallinn University of Technology’s classification scheme. Copies of the publications
can be found in Appendix (Papers [-1V)

I.  Yar M. Mughal, Yannick Le Moullec, Paul Annus, Mart Min

“Development of a Bio-Impedance Signal Simulator on the basis of the Regression based
Model of the Cardiac and Respiratory Impedance Signals”

in IFMBE Proceedings, Volume 48, 16th Nordic-Baltic Conference on Biomedical Engineering,
16. NBC & 10. MTD 2014 Joint Conferences, Gothenburg, Sweden, October 14—16, 2014,
pages 92-95.

Conference participants numbered 430. For this paper, I was awarded the Young Investigator Award (YIA)
at the conference. The award was given by Springer and IFMBE.

II. Yar M. Mughal, Paul Annus, Mart Min, Rauno Gordon

“An Overview of the Impedance Models of the Thorax and the Origin of the Impedance
Cardiography Signal and Modeling of the Impedance Signals”,

in Proceeding of 2014 IEEE Conference on Biomedical Engineering and Sciences
(IECBES 2014), Miri, Malaysia, December 8-10, 2014.

III. Yar M. Mughal

“Decomposing of cardiac and respiratory signals from electrical bio-impedance data using
filtering method”,

in the IFMBE Proceedings, Volume 42, International Conference on Health Informatics
(ICHI’13), Vilamoura, Portugal. November 07-09, 2013, pages 252-255.

IV. Yar M. Mughal, A. Krivoshei, P. Annus

“Separation of cardiac and respiratory components from the electrical bio-impedance
signal using PCA and fast ICA”,

in the Proceedings of the International Conference on Control, Engineering & Information
Technology (CEIT’13), Sousse, Tunisia, June 04—07, 2013.

The following paper is also published in the same field, but does not form a main part of this
thesis. A copy of the publication can be found in the Appendix (Paper V).

V. P Annus, R Land, M Reidla, J Ojarand, Y Mughal, M Min

“Simplified signal processing for impedance spectroscopy with spectrally sparse sequences”,

- Journal of Physics: Conference Series, Volume 434, Conference 1,

Proceedings of the XV International Conference on Electrical Bio-Impedance (ICEBI) and XIV
Conference on Electrical Impedance Tomography (EIT), Heilbad Heiligenstadt, Germany,
April 22-25,2013.

11



Author’s Contribution to the Publications
Here is a list of the author’s contributions to the papers listed on the previous page.

Paper I

The author of this thesis is the main contributor of this paper. The author has
built the Impedance Cardiography (ICG) and Impedance Respirography (IRG) signals
model by means of a Fourier series curve-fitting method. The author has also compared
three mathematic models on different EBI datasets. The author has analysed the best-fit
model of ICG and IRG signals based on statistical parameters and visual fit. Finally,
the author has developed and implemented the corresponding simulator, namely the
Bio-impedance Signal Simulator (BISS), which imitates the real phenomena of the
signals. The author of this thesis has performed a significant part of the writing of the

paper.

Paper 11

The author of this thesis is the main contributor of this paper. The author has conducted
the literature survey for a realistic thorax impedance model for modelling ICG and IRG
signals. The author has studied five different impedance models of the thorax to
evaluate their suitability with respect to development of the ICG signal model.
The author has reviewed generation of the (bio-)impedance signal in order to understand
the origin of the ICG waveform. Finally, the author drew the conclusion of the study.
The author of this thesis wrote major parts of the paper.

Paper II1

The author of this thesis was involved in preparation of the setup to measure EBI
datasets. The author developed an algorithm to attempt to decompose cardiac and
respiratory signals from EBI datasets. Moreover, the author drew the conclusion of
the study. This paper was written by the author of this thesis.

Paper IV

The author of this thesis developed an algorithm for attempting to separate cardiac and
respiratory signals from the EBI dataset. The author applied Principal Component
Analysis (PCA) and Independent Component Analysis (ICA) to solve the separation
problem. Finally, the author drew the conclusion of the study. The author of this paper
wrote substantial parts of the paper.

Paper V
The author of this thesis was involved in the experimental phase of the study.

12



ABBREVIATIONS

The following frequent abbreviations are used in the thesis.

BISS  Bio-Impedance Signal Simulator
CO Cardiac Output

CT Computed Tomography

CVS Cardiovascular System

EBI  Electrical Bio-Impedance

ECG Electrocardiogram

EIT  Electrical Impedance Tomography
EWI  Electro-mechanical Wave Imaging
FCG Foucault Cardiography

HR Heart Rate

ICG  Impedance Cardiography

ICT  Information Communication Technology
IRG  Impedance Respirography

MRI  Magnetic Resonance Imaging
OEP  Opto-Electronic Plethysmography
RR Respiration Rate

RV Respiration Volume

SV Stroke Volume

TEB  Thoracic Electrical Bio-Impedance
TPR  Total Peripheral Resistance

TV Tidal Volume

LIST OF SYMBOLS

The following symbols are used in the thesis.

impedance [€2]

Voltage [V]

Current [A]

Resistance [Q]

Frequency [cycles per second, Hz]
Time [s] [1 min = 60 s]

Signal (in general)

eSS m~ <N

13



SHORT DEFINITIONS OF TERMS

Signal:

A signal is a function in time that conveys information about the behaviour or
attributes of some phenomenon. In this work, examples of signals include impedance
cardiography (ICG) and impedance respirography (IRG) signals.

Signal Modelling:

The idea of signal modelling is to represent the signal via (some) model parameters.
For example, in this work, the ICG and IRG signals are modelled by means of Fourier
series.

Signal simulator:

A signal simulator is a system designed to provide a realistic imitation of a signal
with the possibility to control its operation. A Bio-Impedance Signal Simulator (BISS)
is developed in this work.

Simulation:

Simulation is the imitation of the operation of a real-world process or system over
time. The act of simulating such a process or system first requires that a model be
developed.

This model represents the key characteristics or behaviours/functions of the selected
physical or abstract process or system.

In this work, Bio-Impedance Signal Simulator (BISS) is used to simulate the
Electrical Bio-Impedance (EBI) signals based on the ICG and IRG signal models.

Framework:

A framework is a conceptual structure intended to serve as a support or guide for
building an application. In this work, a framework for developing bioelectrical
applications is proposed. Furthermore, its usage is exemplified for the EBI case.
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1. INTRODUCTION AND MOTIVATION

Healthcare is becoming an important challenge around the world. Many developed
countries are facing socio-economic problems such as increasing healthcare costs. For
example, in 2010, the USA alone spent about US $2.5 trillion (17% of its GDP) on
healthcare, and this number is expected to grow in the future due to emerging new
requirements in healthcare. In response to these growing concerns, developed countries
such as the USA, EU, and Japan are advancing a new healthcare model called
“Personalized Healthcare” to control the healthcare costs while improving the medical
quality by use of Information Communication Technology (ICT) (Wu 2011).

These concerns result from phenomena such as a) increasing average life expectancy
and the ageing of baby boomers, as well as b) the growth of chronic diseases (e.g.
cardiovascular diseases) related to, e.g. dietary and lifestyle factors.

Regarding a), the increased size of the elderly population (65+) is becoming a
worldwide demographic phenomenon. It is approximated that in 2050 people aged 65 or
more will be found as follows: in Europe ~40%, in Japan 36%, in China the figure will
increase from 10% in 2006 to 28% in 2040, and in the USA it will reach 19.6% in 2030
(Wu 2011).

Regarding b), cardiovascular diseases are very common. For example, in the USA
cardiovascular diseases caused 788,000 deaths in 2010, which was 32% of all deaths.
The cardiovascular disease-related number of deaths increased considerably from 1900
to 1970 and remains high. Heart disease is the top cause of death; the primary case,
coronary heart disease, caused 380,000 deaths (NIH 2010).

In Europe, cardiovascular diseases cause over 4 million deaths every year, including
more than 1.9 million deaths in the European Union (EU). Cardiovascular diseases
cause 47% of all deaths in Europe and 40% in the EU. Cardiovascular disease is the
primary cause of death in women in all European countries and is the primary cause of
death in men in all but 6 European countries (EHN 2012).

To deal with issues related to a) and b), there is an increasing need and requirements
for monitoring and analysing human cardiovascular functions, especially for enhancing
continuously for non-invasively and non-obtrusively underneath clinical and ambulatory
conditions.

In particular, how to extract useful information from cardiac signals for the diagnosis
of diseases and judgment of heart function is of special interest. Thus, the development
of effective, robust, and efficient diagnostic tools for heart disease symptoms such as
cardiac rhythm disorder and arrhythmia is required to help medical personnel to
investigate and analyse the cardiac signals in detail (Kersulyte et al. 2009; Gargasas et
al. 2004).

In this context, electrocardiogram (ECG) analysis is mostly used in clinic practice,
but usually only in a visual way (Gargasas et al. 2004; Kersulyte et al. 2009).

Generally speaking, the aim when developing new techniques and tools is to
minimize the required cost, long hospitalizations and increase patient’s ease and safety
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(Sola et al. 2011). Thus, in this PhD project, non-invasive electrical-based methods are
of special interest; such non-invasive electrical signal-based procedures are now very
common (further discussed in detail in Section 2.4.1 of Chapter 2). The main advantage
of this type of procedures is that they do not need to break the skin and are not only used
for making a diagnosis but are also usable for treating patients (e.g. electrotherapy,
radiotherapy, as discussed in Section 2.4 of Chapter 2).

Nevertheless, non-invasive procedures are not without their own practical problems.
In what follows, examples of such problems are discussed.

1.1 Problems and Statements of Data Acquisition

Non-invasive data acquisition suffers from various problems; some of them are
discussed below.

a) The human body is inhomogeneous; this makes it difficult to measure accurate and
valuable information from the body, such as when measuring cardiac and
respiratory information.

b) The body evaluation model is a combination of three different sublevel models, i.e.
electrical, mechanical (hydraulic and pneumatic), and geometrical models of the
body (Malmivuo & Plonsey 1995).

c) It is important to place the measuring sensors according to the body’s model. The
optimal positioning of the measuring sensors increases the measurement accuracy
and influences the reliability of data, as well as repeatability and accuracy of
the evaluated haemodynamic parameters.

d) The measured data is a combination of various signals (e.g. cardiac (Scardiac)s
respiratory (Srespiratory), motion artefacts (Sarefact), N0ise (Swoisc), €tc.). As an
example, the measured data are useful only if one can separate cardiac and
respiratory signals and simultaneously suppress the unwanted artefacts such as
motion artefacts, noise, and stochastic disturbance.

e) The quality of instruments and sensors should assure the quality of the
measurement.

1.1.1 Issues with Extraction of a Useful Signal: the Example of
Separation of Cardiac and Respiratory Signals during
Non-invasive Procedures

Separating cardiac and respiratory signals are useful to cardiologists (medical
personnel) for diagnosing and monitoring purposes. By means of measurements, one
can assess physiological activities and the structural configuration of a tissue, as well as
offer the possibility to analyse dynamic processes in organs such as the heart and lungs.
Thus, a method needs to be developed that is capable of separating the useful signals,
mainly cardiac and respiratory ones, and to suppress the unwanted artefacts, such as
noise and motion artefacts, from the measured signal. The method should work robustly
and efficiently in a real-time environment.

16



The research community has developed many algorithms to solve the separation
problem (Krivoshei et al. 2008; Krivoshei 2006; Krivoshei et al. 2006), including our
previous studies (Mughal et al. 2013; Mughal 2014), where algorithms are developed to
solve the separation problem of the cardiac and respiratory signals from measured data.
However, none of these methods provides any mechanism to evaluate the performance
of the developed algorithms.

Because of the measurement and useful signal extraction problem, there exist
uncertainties regarding a) the properties of the signals such as amplitude, waveform,
components (e.g. cardiac vs. respiration), and b) the origin of the signal waveform (e.g.
is it due to configuration/positioning of electrodes/sensors or the condition of the
patient).This, in turn, limits the quality of the diagnostics for diseases and conditions.

To help in dealing with the measurement and useful signal extraction problems
discussed above, it is argued that modelling the measured signals offers several
advantages as compared to relying on measured data only:

a) By using a formalized representation (e.g. mathematical), the parameters of the
signal model can be easily manipulated and/or modified, thus providing
mechanisms that allow researchers to reproduce and control such signals.

b) In turn, having such a formalized signal model makes it possible to develop tools
(e.g. simulators) that can be used for manipulating and understanding how the
signal changes depending on various conditions, as well as for generating input
signals for experimenting with and evaluating the performance of, e.g. useful signal
extraction methods such as separation algorithms.

Once the (bio-electrical) data is measured, it is necessary to model the corresponding
signals for analysis. In this case, the so-called advanced user' should have to follow a
structured approach to move from real measured data to model the corresponding
signals. Therefore, in this PhD work it is proposed to:

a) devise a generic framework that could be used to guide both the modelling of the
signals of interest and the development of an application for bioelectrical
information for further processing; and

b) implement the framework as a specific example for the EBI case.

! An advanced user is a person who makes the decisions in each step and analyses the results in
order to develop an application.
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1.2 Need for Modelling the Cardiac and
Respiratory Signals and Development of
the Corresponding Signal Simulator

The modelling of the heart and lung signals allows the advancement of knowledge
regarding the interplay of anatomical structures and physical phenomena, which
contribute to cardiac and respiratory physiological and pathophysiological behaviours.
Applications of this knowledge are found in biomedical research, education and
training. An important application of modelling in biomedical research is to evaluate the
performance of, e.g. separation algorithms. The models provide a somewhat simplified
description of the heart and lungs and can exist in physical and mathematical
representations. Mathematical models are commonly computer-based and applied in
numerical simulations.

Because of the aforementioned problems, signals need to be modelled and a cor-
responding simulator must be developed. The end-user” can use the simulator to model
the signals as per his/her needs.

Our study results (Mughal 2014; Mughal et al. 2013) provide the motivation to
develop a signal model which imitates the real phenomena of cardiac and respiratory
signals. In addition, the end-user has the freedom to generate the required simulated
signal(s) based on his/her needs and mix artefacts and noise artificially. This idea led to
developing a framework for biological information. In this study, the focus was
narrowed down to develop a generic framework for modelling the bioelectrical
information, and this framework is implemented, as an example, for EBI signals.

For the example at hand, the separation problem was initially addressed and an
electrical bio-impedance signal model and corresponding simulator were developed.
The latter could be used to evaluate the performance of separation algorithms because it
is very difficult to evaluate the performance of separation algorithms based on the
measured dataset only. For this purpose, a signal model is required to simulate artificial
signals, which imitate the real cardiac and respiratory phenomena in order to evaluate
the performance of algorithms before applying the developed separation algorithm on
real measured data.

The developed simulator, namely the Bio-Impedance Signal Simulator (BISS), could
also be used in teaching and training of physiological courses for engineering and health
science students. It would give a “hand-on means” to the students to understand the
complicated physiological phenomena.

2 The end-user is a non-technical person who uses BISS to simulate the signals as per
need/requirement/wish.
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1.3 Framework for Biomedical Applications for
Modelling and Simulating Bioelectrical Signals

The basic principle of a framework is “Not having to reinvent the wheel” (Hunter &
Tan 2006) each time new bioelectrical applications must be developed.

Thus, in this work, a framework is a conceptual structure intended to serve as a
support or guide for building bioelectrical applications. It provides a basis on which
developers can develop applications for the specific tasks. It includes several phases,
which point to the kind of steps that can or should be followed, and how these steps
would interrelate.

1.4 Research Questions

To deal with the issues discussed above, several research questions can be posed.
The following questions will be investigated in this thesis:

a) Is it possible to develop a generic framework for modelling the measurable
bioelectrical signals? In particular, what are the main steps and parameters that
must be taken into account?

b) Is it possible to develop a sufficiently accurate signal model of the bioelectrical
signals that:

1) imitates the real physiological phenomena in the form of corresponding cardiac
and respiratory signals and

ii) simulates the parameters such as heart rate (HR), respiration rate (RR),
artefacts, and noise? This would illustrate how the generic framework can be
applied.

¢) How to implement a simulator (tool) that incorporates the above signal model and
lets the end-user simulate the signal as per his/her need?

The end-user should be able to control parameters such as HR, RR, timeframe,
amplitude (amplitude of heart rate, respiration rate, artefacts, and noise) and
load/save different human states/conditions that reflect these parameters.

1.5 Main Contributions of the Thesis

The main contributions of this thesis are:

a) A novel generic framework for modelling the bioelectrical information is proposed.
To the best of my knowledge, this is a unique approach to proposal of such a
framework and the first effort that provides support and guidance for building
bioelectrical applications, namely the steps that range from measuring the
bioelectrical data from the subject, the cleaning process for the measured bioelectrical
data, and developing the corresponding simulator. Thus, the framework provides a
pathway between biological systems and bioelectrical applications (see Chapter 3).
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b) A bio-impedance signal model is developed by means of a regression-based curve-
fitting method to imitate the real ICG and IRG phenomena; the proposed approach
is more realistic than existing approaches (see Section 2.5 in Chapter 2 and Section
4.2 in Chapter 4).

c) Three regression models for modelling the ICG and IRG signals are tested and
compared for six datasets. For modelling the ICG and IRG signals, a Fourier series
is found to be better than the polynomials and the sum of sines. This is because the
resulting modelled signals have the lowest error compared to the real signals and a
high correlation with these signals (i.e. between the modelled and template signals;
see Section 4.2 in Chapter 4) and visually a Fourier series model is also the best fit
with the template signals.

d) Based on the developed bio-impedance signal model, the corresponding novel
BISS is developed. To the best of my knowledge, BISS is the first EBI signal
simulator that both imitates the real ICG and IRG signals phenomena and gives the
freedom to the end-user to simulate EBI signals as per his/her needs (see Section
4.3 in Chapter 4).

1.6 Structure of the Thesis

The rest of the thesis is structured as follows:

Chapter 2 describes the state of the art related to the physiology of cardiovascular
systems, the cardiovascular model, acquiring physiological information from the
cardiovascular system, CVSim (a cardiovascular simulator developed at MIT), and the
analysis of existing approaches for modelling the bio-impedance signal. This chapter is
mostly based on Paper II and also partially based on Papers I, III and IV.

Chapter 3 focuses on the proposed novel generic framework for modelling the
bioelectrical information, including a detailed description of the various steps involved.
At the time of writing, the contributions of this chapter are being included in a paper
that will possibly be submitted for a journal publication.

Chapter 4 describes an implementation example of the proposed framework and the
experimental results of the modelling and simulations. The measurement method and
proposed method for modelling the bio-impedance signal and corresponding BISS are
discussed. The EBI method is used as an example to implement the proposed novel
generic framework for modelling the EBI data. This chapter is mostly based on Paper I
and also partially based on Paper II.

Chapter 5 concludes the research findings and presents further research directions.

The remainder of the thesis consists of one appendix. It presents the four main
publications (Papers I to IV) from the full list of five, which are shown on page 11, and
the author’s CV (English and Estonian).
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2. STATE OF THE ART OF MODELLING
AND SIMULATION OF THE PHYSIO-
LOGICAL SYSTEMS

This chapter reviews the physiology of the cardiovascular system in order to
understand its main mechanisms and parameters, which are of interest in this PhD work.
This chapter also describes other researchers’ approaches to developing cardiovascular
system models as well as three simulation examples, namely a) a cardiovascular
simulator (“CVSim”), b) a software tool for analysing breathing-related errors in
transthoracic electrical bio-impedance spectroscopy measurements, and c) simulation of
lung edema in impedance cardiography.

However, a detailed study of the physiology of the cardiovascular system is not
performed since this is beyond the scope of this thesis work.

Based on the understanding gained in the review, a generic framework is devised to
guide the development of bioelectrical information signal models; this framework is
discussed later in Chapter 3. Subsequently, ICG and IRG signal models and a
corresponding simulator are developed, which are discussed in Chapter 4.

2.1 Cardiovascular System

Before looking at the existing models of the cardiovascular system (CVS) in
Section 2.2, this section gives a short background to the actual human CVS in order to
aid the reader understanding the basis on which these models were developed.

2.1.1 Structure and Functioning of the Cardiovascular System

The CVS is the central transport system in the human body. The transport of
substances which must be distributed to different parts of the body is carried out through
blood flow by the vessels of the two circuits of the CVS, i.e. the systemic circuit and the
pulmonary circuit (Timischl 1998; Kappel & Peer 1993).

Blood is the transport medium inside the CVS wherein the substances which have to
be transported are either dissolved in plasma (for example, the main part of carbon
dioxide (COy)), or bound to carrier molecules (for example, oxygen (O,), which is
bound to the haemoglobin of the red blood cells).

The essential blood flow is created by the heart, which can be considered as a serial
arrangement of two pulsatile pumps (left and right ventricles); this is depicted in
Figure 2.1. The systemic circuit is the part of the CVS that actually distributes the
substances in the body, although the pulmonary circuit, along with the lungs, is primarily
responsible for the exchange of the oxygen blood gases (O, and CO») (Kappel 2012).
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Figure 2.1 The simplified human circulatory system (Harrub 2005).
Oxygenated blood (red) and deoxygenated blood (blue).

The heart is the primary organ in the human body; we cannot live without the heart.
Although the heart is “just” a pump that makes the blood circulate in the body, the heart
is nevertheless a complex and important organ. Like all other pumps, it can become
clogged, break down, and require repair. This is why understanding how the heart works
is critical. The anatomy of the heart is depicted in Figure 2.2; with some knowledge
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about one’s heart and what is good or bad for it, one can significantly reduce his/her risk
for heart disease (Bianco 2014).
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Figure 2.2 Anatomy of the heart (Bianco 2014).

Heart disease is the leading cause of death in the United States. Almost 2,000
Americans die of heart disease each day. This means that every 44 seconds someone
dies of a heart-related issue in the USA. On the other hand, the good news is that the
heart disease death rate has been steadily falling. Unfortunately, heart diseases are still a
reason for sudden death and many people die before even reaching the hospital
(Bianco 2014).

The Baroreceptor Reflex

The baroreceptor reflex is the most powerful mechanism in the control of systemic
arterial pressure. The baroreceptors are spray-type nerve finishes in the walls of the
carotid sinus and the aortic arch. The impulse rate of the baroreceptors is an exact image
of the transmural pressure. The transmural pressure is the difference in pressure
between two sides of a wall or an equivalent separator.

The firing rate increases during systole and decreases during diastole; therefore, the
mean firing rate increases with mean arterial pressure. Moreover, the faster the pressure
changes, the greater the response of the baroreceptors. In the absence of arterial
baroreceptors, the mean arterial pressure would be higher and there would be large
variations around the mean value (Timischl 1998).

Control of Local Blood Flow

The control of local blood flow is an important mechanism of the circulatory system.
Each tissue has the capability to control its own local blood flow according to its
demand. Certain vessels, especially arteries in the brain and kidneys, can adjust their
resistance so that the blood flow stays almost constant if the blood pressure changes.
This mechanism is called the Bayliss effect or myogenic auto-regulation.
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Another important mechanism of blood flow control is metabolic auto-regulation,
which exists in the small arterioles. If the metabolic rate increases or if less oxygen
exists, different chemical substances (a “metabolic cocktail”) are released which cause
vasodilation of the small arterioles. Thus, the blood flow is increased and consequently,
on the one hand, more nutrients per time are carried to the tissues, and, on the other
hand, more unnecessary waste products are removed from the tissues (Timischl 1998).

Frank-Starling Mechanism and the Bowditch Effect

The pumping capability of the heart depends upon contractility, pre-load and heart
rate (HR). The entire heart can increase its contractility with the help of three
mechanisms: the Frank-Starling mechanism, the Bowditch effect, and sympathetic
activation.

a) The Frank-Starling mechanism refers to the intrinsic capability of the heart to
adjust to changing loads of inflowing blood. The heart pumps all the blood that
comes into the aorta. For instant if pre-load and force are increased, so in this way
increased stroke volume (SV) and pumped against the unchanged aortic pressure.
One of the most important effects of the Frank-Starling mechanism is that changes
in the arterial pressure against which the heart pumps (=afterload) have almost no
effect on SV. If everything else remains constant, SV increases with increased
afterload and vice versa. Afterload influences SV by affecting the velocity of
contraction (“force-velocity relationship”) (Timischl 1998; Patterson et al. 1914).

b) The Bowditch effect is reported as the sensitivity of the cardiac muscle to the
interval between contractions. The vigour of the contractions increases if the heart
rate increases. The reason is that the interval between heartbeats influences the
quantity of calcium available to the force-velocity relationship (Timischl 1998;
Patterson et al. 1914; Franz et al. 1983).

¢) The sympathetic nervous system increases the heart rate (HR) and contractility.

2.1.2 The Respiratory Centre

Strictly speaking, the respiratory centre is not part of the CVS, but it plays an
important role closely related to that of the CVS.

The respiratory centre is situated in the medulla oblongata® and pons; it contains
various broadly dispersed groups of neurons. The so-called vagal and glossopharyngeal
nerves transmit sensory signals into the respiratory centre from the peripheral
chemoreceptors, the baroreceptors, and from different types of receptors in the lungs.

3 The medulla oblongata is the lower half of the brainstem, which is continuous with the spinal
cord, the upper half being the pons. It is mostly related to the medulla. The medulla covers the
cardiac, respiratory, vomiting, and vasomotor centre, and hence deals with the autonomic
(involuntary) functions of heart rate, breathing, and blood pressure.
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The respiratory centre is also closely related to the vasomotor activity*. Nearly any
cause that increases the degree of vasomotor activity also increases, at least moderately,
respiration. The neurons in the respiratory centre make the rhythm of respiration and
transmit nervous signals to the inspiratory muscles (Timischl 1998).

The overall level of respiratory centre activity is controlled based on the ventilation
(i.e. breathing) needs of the body. It is the ultimate goal of respiration to uphold proper
concentrations of carbon dioxide, hydrogen ions and oxygen in the body fluids. This is
achieved, on the one hand, via feedback that makes the respiratory centre react to
changes in the chemical composition of the blood, and, on the other hand, by excitatory
signals from other parts of the nervous system that control the respiratory activity
(Timischl 1998).

2.2 Models of the Cardiovascular System

Given the complexity of the cardiovascular system (CVS), it would be beneficial to
model it for simulation purposes, for example. Thus, developing computational models
of the CVS has caught the interest of many researchers over the past decades. What
follows summarizes the main developments undertaken since the 50s to model the CVS.

2.2.1 From Physiology to Mathematical Representation of
the CVS

The past has witnessed concentrated re-examination of the concepts related to
cardiac output regulation (Stead and Warren, 1947; Hamilton, 1953, 1955; Katz, 1955;
Sarnoff, 1955; Guyton, 1955; Gregg, Sabiston, and Theilin, 1955; Rushmer, 1955,
1956; Gauer, 1955; Richards, 1955) (Grodins 1959).

Controversies have arisen, some real and some only apparent. These controversies
served to focus and emphasize the requirement for a basic integration of cardiovascular
dynamics.

In 1959, Grodins (Grodins 1959) developed a CVS model based on electrical circuit
components. He started with the ventricles, later added a pulmonary circuit, and lastly
added a systemic circuit to achieve a closed-loop model with fourteen parameters.

Later in 1963, Defares, Osborne, and Hara (Defares et al. 1963) developed a simple
circulation model with six compartments. Each compartment was modelled as a
capacitor connected to a ground and to the two end-to-end nodes by impedances;
current (flow) through the ventricular compartments was regulated by diodes
representing valves. Furthermore, Defares and his colleagues applied their model using
discrete analogue components to develop an electrical circuit analogue computer for

* The vasomotor centre (VMC) is a part of the medulla oblongata, which regulates the blood
pressure and other homeostatic processes.
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simulating haemodynamics with real-time behaviour grossly similar to that observed in
vivo in humans.

In 1978, Katz and colleagues (Katz et al. 1978) were able to create a real-time digital
simulator that was very simple. The co-called Windkessel model was programmed in
the FORTRAN program language; it was run on a PDP-12 with output via D/A
converters to a polygraph recorder. Thanks to the superior flexibility afforded by digital
computer programs over analogue circuit models, it allowed students to vary parameters
such as heart rate (HR), stroke volume (SV), total peripheral resistance (TPR),
compliance, and valve competence numerically.

In 1982, Campbell and colleagues (Campbell et al. 1982) implemented a CVS model
of canine haemodynamics with a five-compartment closed; they used a Hewlett-
Packard 1000 computer equipped with an XY plotter. This model was similar to that of
Defares; then in the model they incorporated time-varying capacitances, which had
already been performed by Suga and Sagawa (Sunagawa & Sagawa 1982); the model
ran noticeably slower than real time on the available hardware, because of the
complexity of the model.

2.2.2 Structure of the Cardiovascular Model

In the study by Timischl (Timischl 1998), the developed part of the cardiovascular
model contains two circuits (systemic and pulmonary). Both circuits are placed in
series and include two pumps (left and right ventricles); this configuration is depicted in
Figure 2.3.
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Figure 2.3 The cardiovascular part of the cardiovascular model (Timischl 1998).
A fixed blood volume Vj is circulated between the systemic and pulmonary arteries

and the systemic and pulmonary veins. The pumps and the resistance vessels are
expected to represent an unimportantly small volume.
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In (Timischl 1998), the cardiac circle event is ignored and it is assumed one-way and
non-pulsatile blood flow by the left and right ventricles. Therefore, during a steady
state, the left and right cardiac outputs Q and Q,, respectively, along with the blood
pressures Py (systemic arterial), Pys (systemic venous), Pa, (pulmonary arterial), and Py,
(pulmonary venous) in different part of the circuits are fixed. Their values represent the
respective mean values over the length of a pulse (Timischl 1998; Kappel & Peer 1993).

The Mass Balance Equations

In her study (Timischl 1998), Timischl derived a continuity equation for each of the
four compartments, which are the systemic artery, the systemic vein, the pulmonary
artery, and the pulmonary vein. The variation of blood volume controls the systemic
artery, which is the deviation between inflow (Q;) and outflow from systemic flow (F;).
This phenomenon is depicted in Figure 2.3.

The Dependence of Ventricle Output on the Blood Pressures

During the time of steady state, the left cardiac output (Q) is fixed and it is
determined as the mean blood flow over the length of a pulse.

The arterial and venous blood pressures depend upon the cardiac outputs. In turn, the
cardiac outputs depend upon the blood pressures. To develop these relationships, the
venous filling pressure, the arterial load pressure (pressure opposing ejection of the
blood) and the heart rate are considered constant inputs, which can be set arbitrarily. In
this way, the impact of each of them on the cardiac output and ventricular volumes can
be analysed ("isolated heart").

In the study by Timischl (Timischl 1998), the objective was to derive the
dependence of the stroke volume (V) on the venous (filling) pressure and the arterial
(load) pressure.

Hagen-Poiseuille's Law

It is presumed that blood is a homogeneous fluid; its flow depends on the forcing
pressure difference and on the opposing viscous resistance via Hagen-Poiseuilles' law
(Timischl 1998). For a model considering the dependence of resistance on blood
pressure, metabolic auto-regulation is taken into account when modelling exercise. Up
to now, by regarding Ry and R, as parameters, the resistance vessels are modelled as
unbending tubes (Timischl 1998).
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2.3 Overview of the Existing CVS Simulator and
Software Tools for EBI

Many researchers are working on modelling and simulation in the area of biomedical
engineering. Three relevant examples for my work are discussed below. These selected
simulator and software tools are focused on cardiovascular simulation (this provides a
general basis on how to structure and implement such a simulator) and on thoracic
electrical bio-impedance (these provide valuable insight related to the effects of
artefacts and estimation errors in EBI measurement and simulation).

2.3.1 Cardiovascular Simulator (CVSim) (Developed at MIT)

CVSim (Heldt et al. 2010) was initially aimed at teaching purposes, but it has
subsequently also been used for research purposes.

In this PhD work, inspiration was gained from CVSim to develop a novel simulator
(tool) for the EBI signal that could be used as a research tool to model and simulate bio-
impedance signals, mainly cardiac and respiratory signals, to subsequently evaluate the
performance of signal processing algorithms. It could also be used for teaching and
training purposes for engineering and medicine students. More details about the
simulator developed in this PhD work are discussed in Section 4.3, Chapter 4.

The first version of the cardiovascular simulator (CVSim) was developed in 1983 by
Robert Sah based on Defares’ model, and is similar to that of Campbell. Both models
are discussed above in Section 2.2 of this chapter. Figure 2.4 depicts the six-
compartment circuit model, which is introduced by CVSim.
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Figure 2.4 Six-compartment circuit model (Heldt et al. 2010).
Counter-clockwise blood flow (electrical current) is driven
by contraction of the ventricles (time-varying capacitors).
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The two compartments represent the left and right ventricles utilizing time-varying
capacitors joined via diodes representing heart valves. The other four compartments
relate to the systemic and pulmonary arteries and veins, modelled utilizing linear
capacitors and resistors representing the compliance and resistance of the vasculature
fragments (Heldt et al. 2010).

In the beginning, CVSim was considered only for teaching and training purposes.
Beginning in the late 1990s, Thomas Heldt and Eun Bo Shim — and, individually,
Ramakrishna Mukkamala — adapted CVSim for research uses. It is a lumped-parameter
model of the human CVS that has been built and applied for research purposes, as well
as for teaching quantitative physiology courses at MIT and Harvard Medical School
since 1984 (Heldt et al. 2010).

The CVS model is established on realistic parameter values indicating normal human
physiology and contains the main arterial baroreflex system for blood pressure
homeostasis. The graphical user interface (GUI) allows easy and intuitive interaction
with the model. It is capable of simulating pulsatile blood pressures, volumes, and flow
rates whose mean, systolic, and diastolic values are within the normal ranges of an adult
human (Heldt et al. 2010).

Application

Teaching: CVSim has been employed since 1984 for teaching and training the
lumped-parameter cardiovascular model to engineering students at MIT and medical
students.

Research: In research, CVSim has been extended in various ways. These may be
categorized as either the development and assessment of novel algorithms, or the study
of cardiovascular responses to physiologic perturbations.

The Research CardioVascular SIMulator (RCVSIM) has been effectively used to
build and assess system identification algorithms for evaluating transfer functions and
parameters that describe the main cardiovascular regulatory mechanisms (e.g.
baroreflex (BRR), control of heart rate (HR) and total peripheral resistance (TPR)), and
haemodynamic parameters (maximal ventricular elastance changes) from non-invasive
measurements of beat-to-beat cardio-respiratory variability (Chen et al. 2008; Lu &
Mukkamala 2004; Lu & Mukkamala 2005; Mukkamala & Cohen 2001;
Mukkamala et al. 2003).

The benefit of applying a cardiovascular simulator for this aim is that the real
reference values of the quantities required for assessment are precisely known.
Independent reference measurements in an experimental model may be difficult or even
impossible in the case of a transfer function (Heldt et al. 2010).
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2.3.2 Software Tool for Analysis of Breathing-Related Errors in
Transthoracic Electrical Bio-Impedance Spectroscopy
Measurements (EBSM) (Developed at KTH, UB and KI,
Sweden and Philips, Netherlands)

In this study (Abtahi et al. 2012), the authors focused on developing a software tool
(Figure 2.5) that can be employed to simulate the influence of respiration activity in
frequency-sweep EBSM of the human thorax to examine the effects of the different
sources of error. The helpfulness of the software tool is showcased by an example of
deviations and errors gained in estimation of Cole parameters. The impedance of
respiration is only modelled as a sinusoid with its amplitude controlled by an end-user
to simulate spectrum measurements which are not synchronized with respiration cycle.
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Figure 2.5 GUI of the developed software tool for Electrical Bio-impedance
Spectroscopy Measurements (EBSM) (Abtahi et al. 2012).

The application of the tool has helped the authors to affirm their hypothesis that the
measurement time delay caused by sweeping between frequencies on the acquisition of
EBIS measurements influences the measured spectrum, generating a measurement
artefact, and accordingly taints any subsequent data analysis using Cole parameter
classifications.
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2.3.3 Simulation of Lung Edema in Impedance Cardiography
(Developed at Philips, Germany and Netherlands)

In (Ulbrich et al. 2012), the aim was to recognize the causes for inaccuracy of the
ICG in assessing the SV for heart failure patients. Thus, simulations using a finite
element model (FEM) examined the effect of lung edema on the ICG.

The simulation model is based on human MRI data, along with volumetric variations
of the heartbeat and aortic expansion, as well as variations during lung perfusion and
erythrocyte orientation.

2.4 Acquiring Physiological Information
from the Cardiovascular System

In medicine, an extensive variety of procedures, tests, and tools are already available
for diagnosing and treating cardiovascular disease. Some of these procedures are very
simple to use on patients, some of them are very difficult, whilst others are not only
difficult but also very risky for the patients.

In a very wide and general sense, such procedures can be divided into invasive
procedures and non-invasive procedures.

Invasive procedures are medical procedures that break or penetrate the skin,
via catheterization or other ways of entering a body cavity. This is a large category and
contains just about all major surgeries and many diagnostic tests. If it leaves a mark, it is
most probably an invasive procedure.

Non-invasive procedures are also medical procedures that are very common.
These procedures do not need to break the skin. Simple examples include inspecting the
inside of the nose and performing a check-up of the eardrum. However, more advanced
or complicated procedures can also be performed non-invasively.

Non-invasive procedures comprise a large category including methods such as
imaging studies, together with x-rays, ultrasound, MRI, and CT scans. ECGs also fall
under the non-invasive category. Some of these procedures are not only for making a
good diagnosis; they are also used for treatment of patients. For instance, radiotherapy is
used to treat cancer patients. In this procedure, a simple radiation is applied to the
particular area of the patient’s body inorder to kill a cancerous tumour. In this
procedure, it is not required to break the patient’s skin, as the radiation beam can be
applied from the outside (Rosenberger 2009). The literature reports on the various
studies that took place to compare invasive and non-invasive methods; more details can
be found in e.g. Jurjevi¢ et al. 2009 and Soudon et al. 2008.
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2.4.1 Need for Non-invasive Methods

The aim of non-invasive methods is to minimize the required cost and
hospitalization time, as well as to increase patient ease and safety (Sola et al. 2011). The
ECGs, intermittent blood pressure (BP) monitors, and pulse oximeters have been
successfully released into the market, paving the way towards the monitoring of cardiac
and vascular parameters in hospitals and out-patients (Parati et al. 2008).

The non-invasive electrical-based methods are of special interest because these are
mostly simple, safe, and inexpensive means of assessing haemodynamic parameters.
The following lists the most relevant ones and their respective use related to cardiac
diseases.

a)

b)

¢)

d)

Electrocardiogram (ECG) is a record of the electrical activity of the heart.
The sensors detect electrical impulses coming from the heart, where the heart
muscle contracts. ECG is normally used to detect abnormal heart rhythms and to
inquire as to the cause of chest pains (Kenny & Tidy 2012).

Opto-Electronic Plethysmography (OEP) is a relatively novel technique to assess
the ventilation pattern by an external measurement of the chest wall surface
motion. The OEP system measures variations in the complex shape of the chest
wall while breathing by modelling the thoracoabdominal surface with a large
number of points belonging to chosen anatomical reference sites of the rib cage and
abdomen (Santos et al. 2013).

Electrical Impedance Tomography (EIT) is monitoring technology based on
the analysis of multiple bio-impedance signals. From an electrical perspective,
the thoracic cavity is composed of distributed impedance volumes. While the lungs
are filled with air, they form high impedance volumes, whereas the heart and blood
vessels, filled with blood, form volumes with lower impedance (Sola et al. 2011).

Impedance Cardiography (ICG) measurement has been offered as a cost-effective
non-invasive method for monitoring haemodynamic parameters. The time-variant
part of the bio-impedance (BI) phasor reflects processes in the patient’s
physiological state, since some changes in BI can be caused by normal activity or
pathological reasons (Grimnes & Martinsen 2014; Mughal 2014). Extracting
information from impedance signals for diagnosing diseases and assessing heart
function is essential for exploiting this method (Mughal et al. 2015).

Foucault Cardiography (FCG) is a method for monitoring the cardio-
haemodynamic cases of the cardiac region of the thorax with the eddy currents
induced in it using radio-frequency magnetic field. The measurable signal is
acquired because of the variation in the power absorbed by the tissues, along with
the variation of their electrical impedance (Trolla & Vedru 2001).

Electro-mechanical Wave Imaging (EWI) is an entirely non-invasive, non-
ionizing, ultrasound-based imaging method. It is based on mapping the electro-
mechanical activation sequence of the myocardium along various
echocardiographic planes. EWI is capable of detecting and mapping the
electromechanical contraction wave (Kohl, Peter Sachs, Frederick Franz 2011).
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From the measured data (obtained by means of one or several of the above
procedures), one can assess physiological activities and structural configurations of a
tissue, as well as analyse dynamic processes in organs such as the heart and lungs.

Data measurement plays a key role in measurement of the stroke volume (SV) of the
heart, cardiovascular system, and many other parameters, as described by Cotter et al.
2006.

The six non-invasive bioelectrical methods listed above have their own merits and
limitations. Still, one key problem shared by all of them is that of the measurement and
useful signal extraction. In particular, there exist uncertainties regarding the properties
of the signals, such as amplitude, waveform, components (e.g. cardiac vs. respiration),
and the origin of the signal waveform (e.g. is it due to configuration/positioning of
electrodes/sensors or the condition of the patient). This, in turn, limits the quality of the
diagnostics for diseases and conditions.

Therefore, being able to model the signals obtained by the above methods is highly
desirable for analysis and comparison purposes. In order to create models and
simulators for bioelectrical signals, a generic framework has been devised in this PhD
work. This framework can be used to guide the development of such signal models and
simulators for the six methods above by means of a structured flow that includes the
measured object, measurement and pre-processing, modelling and simulation, and the
final application. This framework is described later on in Chapter 3.

In this PhD work, the measured EBI data is used to model the ICG and IRG signals
and to build the corresponding simulator (BISS). The ICG does not separate different
objects during the measurement. Electrode positioning can help (at least somewhat). If
the electrodes are placed properly, relative to what is required to be measured, such as
HR, SV, cardiac output (CO), respiration rate (RR), muscular movement, etc., then in
this case ICG is one of the very prospective method among the above/mentioned non-
invasive methods. The ICG is a verified method. The determination of the cardiac
stroke volume is an area in which accurate, easily applied methods are desirable
(Malmivuo & Plonsey 1995).

The remaining above-mentioned methods also have some limitations; for example,
ECG does not reflect the actual blood flow and cardiac output, and it does not tell much
about the real pumping effectiveness of the heart. The OEP is multipoint; it cannot be
simple. The EIT is a complicated multi-electrode system for which intensive computing
is needed; this is the reason for which the EIT is a complex and expensive method. The
FCG has quite unsuitable dependence on sensitivity from the size of the coil and from
the distance/depth of the organ of interest. The EWI results in images (like MRI); the
question is what to do with them and how to analyse them.

Given the above discussion and the fact that the EBI method is at the centre of
various on-going research efforts in the department (giving, among others, access to
EBI measurement datasets), the EBI method (including ICG and IRG) has been selected
as the case study in this PhD work.

The next sections introduce the ICG and IRG methods, their parameters, and
respective problems.
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Impedance Cardiography

Impedance cardiography (ICG) is also known as impedance plethysmography or
thoracic electrical bio-impedance (TEB). TEB is a method that converts variations in
thoracic impedance to changes in volume over time. These measurements, which are
gathered non-invasively and continuously, have become more sophisticated and more
accurate with the development of data signal processing and improved mathematical
algorithms (Deborah & Alvater 2002). The time-variant part of the EBI is caused by the
physiological activity of the heart. The cardiac activity is the basis of the ICG in the raw
EBI data.

This method is a safe and non-invasive, and can be used to estimate the
haemodynamic status of a patient (Cotter et al. 2006). This technique was first
introduced by NASA in the 1960s. The first correlation between the measured EBI
variations and the cardiac activity was published by Atzler and Lehmann in 1932 and
Nyboer et al. in the 1940s. Nowadays, this non-invasive technique is used for estimating
the cardiac output (CO) on a large scale in clinics (Deborah & Alvater 2002).

How the technique works

Through electrodes, an electrical current is supplied and then the voltage drop is
measured, or the other way around, i.e. a voltage is applied and the current is
measured. A low amplitude electrical current passes through the chest to excite
the thoracic fluid. In each cardiac cycle the fluid volume varies, thus affecting
the impedance measured by the electrodes (Deborah & Alvater 2002).

When AC current is supplied through the thorax:
a) The supplied current first passes through the path which has low resistance, i.e. the
blood-filled aorta (blood has a resistance around 1.6 Qm compared to other tissues).
b) With every heartbeat, the blood volume and velocity change in the aorta.
¢) ICG reflects the variation of impedance, which can correspond to the process.
From ICG, the haemodynamic parameters can be derived if the transfer function is
known.

Applications of ICG
The clinical applications of impedance cardiography are discussed below (Deborah &
Alvater 2002).
Application in critical care:
a) Trend and detect haemodynamic variations for earlier intervention.
b) Provide a non-invasive bridge.
c) Enable earlier removal of invasive lines.
d) Quickly assess baseline haemodynamic status with any patient.
e) Assist in invasive line management and determine need.
f) Monitor drug titration and fluid management and optimize treatment.

ICG Parameters

This paragraph discusses an evaluation of haemodynamics. Haemodynamics refers
to the blood flow or circulation in the body. The blood has high conductance and low
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resistance compared to other tissues which are located near the heart and blood vessels.
For instance, the blood has a resistance of around 1.6 Qm, the lungs have a resistance of
around 20 Qm, but the bones have very high resistance, around 170 Qm (Malmivuo &
Plonsey 1995). If one uses proper configuration of electrodes to measure the EBI raw
data combined with a proper algorithm, it would be possible to separate tissue responses
accurately (Deborah & Alvater 2002).

The ICG parameters are very important for cardiologists because they relate to
stroke volume (SV) and cardiac output (CO). Some parameters will be discussed in
Chapter 3, such as stroke volume (SV), heart rate (HR), cardiac output (CO), blood
volume (BV), blood pressure (BP), venous return (VR), total peripheral resistance
(TPR), respiration rate (RR), respiration volume (RV), etc.

Problems in ICG parameters

The major problem that influences the accuracy of haemodynamic estimation is the
Sigman effect. The core of this effect is that the admittance of the blood is flow-
dependant. This was reported by Sigman et al. for the first time in 1937. Because blood
flow variations are not plethysmographic, this kind of variation gives errors in the
measurement of blood volume.

Another issue is that of the accuracy of the SV and estimation of other
haemodynamic parameters. In particular, using oversimplified models of the torso and
cardiovascular systems can negatively influence the accuracy of the estimation. This
oversimplification is often due to ignoring the structure of the tissue and assuming that
the haemodynamic parameters are homogenous and isotropic (Krivosei 2009).

The modern cardiac pacemakers are often equipped with EBI measurement tools for
calculating the SV values from intra-cardiac impedance data (Krivosei 2009).

These problems are very complicated due to the following reasons:

a) The cardiac and respiratory components are correlated due to their nature
(Sérnmo & Laguna 2005). However, it can be assumed that they could be
viewed as uncorrelated under the assumption that this correlation is relatively
too weak to cause sufficient errors (Mughal 2012) (Mughal et al. 2013). Both
components have different sources, because cardiac signals are generated by
the heart and respiratory signals are generated by the lungs.

b) The spectra of both components partially overlap each other because the

respiration rate is around four times lower than the cardiac heart rate; several
higher harmonics of the respiratory signal exist in the frequency range of the
cardiac signal. This is depicted in Figure 2.6.
The heart rate (HR) is autonomous, in contrast to the respiration rate (RR),
which varies by a wide range and has rapid increase and decrease that make
the separation problem more complicated, as well as the fact that the cardiac
and respiratory signals have low amplitude, which also makes problem
challenging.

¢) The EBI components are somewhat stochastic due to variations of HR and RR,
stochastic disturbance, and motion artefacts.
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EBI measurement problems

a) The measurement of EBI relies on the quality of the instruments, such as
current source, voltage measurement unit, modulators, analogue to digital
convertor (ADC), digital to analogue convertor (DAC), and the quality of the
electrodes (sensors). Hence, many factors (e.g. temperature, clock drift,
calibration) can influence the quality of the measurements.

b) The human body is not homogenous, thus the body evaluation model is a
combination of three sublevel models, i.e. electrical, mechanical (hydraulic and
pneumatic), and geometrical. Therefore, obtaining accurate and valuable
impedance information from the body, mainly the cardiac and respiratory
components, is difficult because of the varying properties of the tissues.

It is also important to place the measuring electrodes on the body according to the
regions of interest. The optimal position of the measuring electrode increases the
measurement accuracy and it influences the reliability of data, repeatability, and
accuracy of the evaluated haemodynamic parameters.

In 2009, Andrei Krivoshei (Krivosei 2009) assumed the EBI to be the sum of five
components:

S(t) = So+ Sc(t) + Sg(t) + ng(t) + ny(t), (2.1)

where the basal Sy, cardiac Sc(z), and respiratory Sr(¢) components are combined with
unwanted artefacts, such as stochastic disturbance ns(?) and motion artefacts na(?).
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Figure 2.6 Sketch of the possible frequency domain harmonic spectrum of the EBI
signal, which consists of the cardiac and respiratory components (Krivosei 2009)).

Vertical axis A is the amplitude of harmonic(s), and the horizontal axis is the frequency in Hertz (Hz).

Impedance Respirography
IRG in EBI is a basic technique for measuring the mechanics of respiration. It
measures the time variation of EBI caused by respiration.

It reflects the physiological activities, state of lungs, and respiration. The estimation
of pneumodynamic parameters such as minute ventilation (MV) is very important. It is
close to metabolic demand during rest at 6 [I/min] and during exercise at 60 [I/min].
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The MV is linearly related with the cardiac output (CO) and heart rate. This property is
used in pacemakers, where the pneudynamic parameters are used to measure the
human workload by metabolic demand which is reflected in ICG (Krivosei 2009).

Parameters of IRG

The important parameters of IRG are the respiration volume (RV) and the tidal
volume (TV).

The TV is the volume of gas inhaled and exhaled during one respiratory cycle. In a
healthy adult, the TV is approx. 500 ml per inspiration. It is measured in litres and
ventilation volumes are estimated based on a patient’s ideal body weight. IRG can be
smoothed and rectified by using a low-pass filter (LPF)

The RV is the main parameter in respiration; it is actually a flow, which represents
a volume variation over time. The RV is the amount of air a person breathes in a
minute. The RV [I/min] is the average volume of air inspired into the lungs; it can be
evaluated by using values of TV and respiration rate (RR [I/min]) (Krivosei 2009):

RV =TV x RR (2.2)

Problems in IRG parameters

The HR is autonomous. If compared to RR, which varies by a wide range, it is hard
to estimate it. The RR can be changed by a human person consciously and, for limited
amounts of time, even stopped.

2.4.2 Analysis of Impedance Models

The existing physiological impedance information models vary from the simplest
ones (e.g. two or more compartments) to the 3D model of the thorax. In this PhD work,
these were studied to evaluate their suitability for developing a realistic ICG signal
model that is as accurate as possible, i.e. whether or not such thorax models could
provide an ICG signal model.

Simplified Model of the Thorax

This is a very simplified thorax model in which the thorax is considered to be
divisible into two parts: tissue (4;) and fluids (4,). The parts are characterized by area
A of the cross-section of each of them. This model was developed to find the
relationship between change in blood volume (4BV) and impedance change (42)
(Malmivuo & Plonsey 1995; Mughal et al. 2014).

Ideal Cylindrical Models

The cylindrical models can have one or two compartments. The cross-sectional area
of the ideal cylinder models may be elliptical, circular, or have any other suitable
shape.

In the simple cylindrical model, the thorax is divided into either one or two
compartments with the same resistivity.
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In the two-compartment model, the two cylinders are physically in parallel and the
conductance model is preferred, where 4,+v, is the volume of the inner cylinder, and v,
is the volume of the outer cylinder; the sensitivity decreases with a larger surrounding
volume (v,) (Grimnes & Martinsen 2014; Mughal et al. 2014).

Kinnen’s Thorax Model

Kinnen et al. developed their model based on a cylindrical thorax model. The
purpose of this model is to examine the generation of the impedance signal. The thorax
model is divided into two cylindrical parts. The inner part of the model characterizes
the BV of the heart and primary arteriovenous system of the thorax. The lungs are
characterized by the medium outside the inner part. The resistance for the inner part of
the model was taken equal to 495 Q, and 32 Q for the other part (Mughal et al. 2014;
Malmivuo & Plonsey 1995).

Sakamoto’s Thorax Model

Sakamoto et al. developed a model that is anatomically more realistic. This model
consists of the heart, aorta, lungs, vena cava, and torso shape. The model allows
investigation of the effect of conductivity variations of the tissues on the measured
impedance. These results showed that information connected to blood circulation in the
human thorax could be measured by potential distribution changes on the body surface.

The impedance waveform is affected not only by the CO or the 4BV in the aorta,
but also by the 4BV in the heart and lungs (Sakamoto et al. 1979; Mughal et al. 2014).

3D Thorax Model

The 3D thorax model is composed of the lungs, muscle, heart and spinal column, as
depicted in Figure 2.7.

The potential distribution can reflect different effects when inhaling and exhaling;
the lungs become smaller when exhaling and larger when inhaling. The potential
distribution fluctuates with the change in resistivity caused by the activities in the
thorax, such as inspiration and expiration. Thus, the model is helpful in judging
whether there are more or less physiological activities or pathologic variations in the
studied subject (Wu et al. 2008; Mughal et al. 2014).
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Figure 2.7 3D thorax model at the end of phase: a) inhaling b) exhaling
(Wu et al. 2008).
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These five models mentioned above are included in the more detailed comparison
presented in our contribution (Mughal et al. 2014).

2.4.3 The Issue Regarding the Origin of the ICG Signal

This section reviews the history of the ICG signal origin generation; its
understanding and related waveform markers are discussed. In particular, it is found
that although a consensus exists within the scientist community, doubts and critical
analyses regarding the origin of the ICG signal have been expressed.

Analysis of the Original ICG Signal Waveform

A typical impedance signal (dZ) and its first derivative (dZ/dt) can give detailed
information about the physiological activities of the thorax. Figure 2.8 (Woltjer et al.
1997) depicts the different marks on the waveform, which indicate the important
points. The corresponding ECG is also depicted in Figure 2.8. Research efforts have
focused on discovering the physiological correlation with the ICG signal and its origin.
It has been studied together with its first derivative (Woltjer et al. 1997; Xu et al. 2011).

dz

dz/dt max
(0]

ECG

Figure 2.8 Characteristic impedance (dZ) signal [Ohms], first derivative (dZ/dt) of
impedance signal [Ohms/sec], and ECG signal [Volts] (Woltjer et al. 1997).

“Zero” is a zero baseline value and x-axis is Time [sec].

In 1970, Karnegis and Kubicek first indicated that the A-wave of the dZ/dt is
associated with the P-wave of the ECG and that the C-wave of dZ/dt is associated with
ventricular contractions (Karnegis & Kubicek 1970). During diastole, another upward
deflection of the O-wave in the dZ/dt signal was noticed. During the study, Karnegis
and Kubicek found that the B-point of dZ/dt corresponded to the aortic valve opening
and the X-point to the aortic valve closure. Several researchers make use of
echocardiography and aortic pressure recordings and have confirmed these
observations.

Furthermore, studies are required to confirm the exact physiological and anatomical
origin of the impedance cardiography signal. Several investigators have dealt with this
topic in the past, including a modelling and study performed on animals (Sakamoto et
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al. 1979; Woltjer et al. 1997) (Wittoe & Kottke 1967; Baker et al. 1974; Kubicek et al.
1974; Thompson & Joekes 1981; Wang et al. 1991; Patterson 1985; Sakamoto &
Kania 1979; Lamberts et al. 1984; Mohapatra 1981; Penny 1986; Mohapatra 1988;
Wang & Patterson 1995; Patterson et al. 1993; Patterson 2010).

In order to unravel a more elaborate explanation of the origin of the C-wave marker,
researchers have attempted to imitate impedance cardiographic variations in a model.
Still, these are far from reliable evidence, and most fail to give details of
the relationship between (dZ/dt)... and other physiological variables as aortic peak
flow velocity. More study is required on the contributors to (dZ/dt)max as predicted by
a model (Woltjer et al. 1997).

Based on the literature survey and analysis of the existing thorax impedance models
and origin of the ICG signal, it can be concluded that none of these models are accurate
enough to imitate the real phenomena in the ICG signal. A summary and the limit-
ations of each model are discussed in Table 2.1, reproduced from our contribution
(Mughal et al. 2014).

Table 2.1. Summary and Limitations of Existing Models

Model Summary and Limitations
Simplified This thorax model is highly simplified, since the division into only two
Model of the | uniform tissues is used and geometrically it is not realistic. On the contrary,
Thorax the real structure of the human thorax is very complicated.
Ideal Cylind- This model is also very simple, because a cylinder is used to represent
rical Model of | the thorax structure. In particular, the cross-sectional point of view is not
the Thorax taken into account.
Kinnen’s Kinnen’s model is simple; it indicates only two conductivity zones (blood
Thorax Model | volume of the heart and primary arteriovenous system, and the lungs).

Most of the current flow would pass by the lungs. In this case, the
generation of the impedance signal waveforms is primarily based on the right
ventrical (RV), which is not true if we consider the real thorax physiology.

Sakamoto’s This is not an accurate enough thorax impedance model, because the

Thorax Model | blood pumps more toward the left leg side.

3D The model is not accurate enough because it uses a cylinder as the

Thorax Model | structure of the thorax. Furthermore, it does not take the variation of heart
size during inhaling and exhaling into account.

Given these limitations, it is thus deemed preferable to build a new signal model
from measured data instead of the above models. For this purpose, it is decided to use a
16-electrode configuration belt in order to measure the EBI signal. This type of
electrode setup is presumed to allow raising of strong enough amplitude variations of
the ICG and IRG signals in order to record the cardiac and respiration activities caused
by the heart and lungs. Further details about the EBI measurement setup used in this
work can be found in our contribution (Mughal 2014). The next section discusses the
existing configuration of electrodes from the literature.
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2.4.4 Existing Configurations of Electrodes

The measurement of thoracic EBI has been in practice since the 1930s. Kubicek and
colleagues introduced the first practical method for determination of cardiac function in
a clinical setting in the 1960s. It is difficult to extract impedance response from the
actual mechanical activity of the heart. The blood’s volume changes occur during the
cardiovascular impedance measurement. Several electrode configurations exist and
many suggestions for alternative electrode arrangements are reported in the literature
(Kauppinen et al. 1998).

Reliable information should be obtained when using an electrode configuration that
covers the region of interest with the proper sensitivity (Kauppinen et al. 1999).

In this study, the following electrode configurations were considered:

a) Four circumferential band electrodes, which were originally introduced by Kubicek
et al. and are widely used in ICG applications. Circumferential band electrodes were
attached around the end of the thorax. Electrical current is supplied through the outer
electrode and the inner electrodes measure the voltage drop. These voltage
electrodes were positioned at the lower stomach and upper neck. The distance
between current electrodes on the neck and stomach was 3.2 and 6.4 cm,
respectively (Kauppinen et al. 1998).

b) The four spot electrodes configuration was used by Penney. The two electrodes were
attached to the base of the neck, centred at about a 6-cm distance crosswise from
each other. Other two electrodes were attached below the heart on the left
anterolateral chest surface, one electrode was attached at the end of the ninth
intercostal space, and another electrode attached at an 8-cm distance from first tenth
intercostal space. The dropped voltage was measured between the remaining pair
(Kauppinen et al. 1998).

¢) Hands-to-feet spot electrodes were used by Andrei Krivosei as input data in his research
work for which data was collected at JR Medical Ltd, Estonia (Krivosei 2009).

d) I6-electrodes in a band are tested at the Thomas Johan Seebeck Department of
Electronics, Tallinn University of Technology. A 16-electrode belt was manu-
factured with each electrode at a 6-cm distance from each other. This belt was worn
around a person’s thorax. This method was selected to acquire the datasets and is
used in this study; more details can be found in Section 4.1, Chapter 4, and in our
contribution (Mughal 2014).
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2.5 Analysis of Existing Approaches for Modelling
the Bio-impedance Signal

In this section, well-known methods that have been applied by several researchers
for modelling the bio-impedance signal are discussed.

A simple bio-impedance signal synthesizer (BISS’) was proposed by Krivoshei
(Krivoshei 2006) to generate cardiac and respiratory signals. The author used a piece-
wise linear triangular function to model the cardiac signal, and a trapezium to model the
respiratory signal.

The model, however, is too simple to imitate the cardiac and respiratory signals
fully, and thus does not allow testing of, e.g. separation algorithms.

A cardio model based on the sum of exponential functions was proposed by
Kersulyte et al. (Kersulyte et al. 2009). The purpose of their work was to find a model
for cardio signals as precise as possible and compare complexity parameters of the real
signals and that of the model for both healthy and sick persons. They compared two
function types — polynomial and sum of exponentials.

Their results indicate that both methods lead to similar results in terms of fidelity;
however, the authors also indicate that the polynomial equation depends on the signal
length and number of intervals, which could lead to too many coefficients and increased
computational requirements for complex signals.

A cardiac signal model based on a series of real signals was proposed by Matusek et
al. (Matusek et al. 2012). By filtering and averaging the series of real signals, they
estimated one average ICG signal cycle and simply replicated this cycle over time to get
the final signal model.

One limitation of this approach is that it lacks a mathematical model and thus the
user cannot easily reproduce the model and change its parameters.

More details about the three above models are discussed in my contributed paper
(Mughal et al. 2015) and in Section 4.2, Chapter 4.

3> The BISS acronym is also used by Andrei Krivoshei (a researcher at Tallinn University of
Technology, Estonia) in his published paper, “A Bio-Impedance Signal Synthesiser (BISS) for
Testing of an Adaptive Filtering System” (Krivoshei 2006)). In his work, BISS stands for Bio-
Impedance Signal Synthesizer . In my PhD work, BISS stands for Bio-Impedance Signal
Simulator.
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2.6 Summary of the Chapter

In this chapter, the state of the art regarding the modelling and simulation of the
physiological systems has been discussed based on a survey of the scientific literature in
order to understand the physiology of the human body, blood circulation, and structure
of the cardiovascular system.

Many of the cardiovascular system (CVS) models are based on electrical circuit
components; over time, more advanced CVS models and corresponding simulators have
been developed.

However, enhancing the CVS model, the signal model, and the corresponding
simulators are still an active specific area of interest.

In relation to this, impedance cardiography (ICG) is a safe and non-invasive method
to assess haemodynamic parameters related to the CVS.

An analysis has been performed on the existing impedance thorax models and the
origin of the ICG signal in order to evaluate the possible use of one of the models to
generate the required bio-impedance signals for further experiments. It has been
concluded that none of these models provide electrical bio-impedance data as per the
requirement of this PhD work.

Then, a review of how other researchers approach the problem and why these
methods are not suitable to solve our problem has been conducted. These methods are
not suitable, mostly because other researchers used either a method that was too simple,
i.e. which does not model the signal realistically, a method lacking a mathematical
signal model, or a method which is computationally expensive.

For this study, it is concluded to be desirable to model the cardiac (ICG) and
respiratory (IRG) signals based on measured EBI dataset.

The developed models based on measured clean ICG and IRG signals are better than
the models of the ICG and IRG signals based on existing thorax models.

These literature surveys led to development of a framework for modelling the
bioelectrical information and use EBI as an example to implement the framework.

In Chapter 3, the proposed framework is discussed. In Chapter 4 the proposed
framework is implemented for the EBI case. The cardiac and respiratory signals are
modelled and the corresponding simulator is developed in Chapter 4.
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3. PROPOSED NOVEL GENERIC FRAMEWORK
FOR MODELLING THE BIOELECTRICAL
INFORMATION

In this chapter, a generic framework is proposed to guide the modelling of signals
and to develop a simulator for the bioelectrical information. The framework is a
pathway to develop bioelectrical applications; first, the bioelectrical information must
be modelled based on template signals and then a corresponding simulator must be
developed.

The modelling of the signals allows the advancement of knowledge regarding the
interplay of anatomical structures and physical phenomena, which contribute to
pathophysiological behaviours. Applications of this knowledge are found in research
and education.

An important application of modelling in biomedical research is to evaluate the
performance of algorithms, e.g. separation algorithms. The models provide a simplified
description of the physical and mathematical representation. Mathematical models are
commonly computer-based and applied in numerical simulations.

Before describing the proposed framework, the generic block diagram is illustrated
for modelling of the template signals and for developing a corresponding simulator for
bioelectrical information, from which the need for the framework arises.

As depicted in Figure 3.1, the template signals could be modelled with help of
methods such as curve fitting, e.g. polynomial, sum of sines, Fourier series, and so on
(with the help of tools such as Matlab Curve Fitting toolbox, EzyFit, TableCurve 2D,
PeakFit)), and waveform generation (e.g. Matlab Waveform Generator), etc.

Signal Model Parameters

MODELLING OF DATA/SIGNALS ﬁ 4 P SIGNALS’ SIMULATOR
0
- Curve Fitting 4 Ple
) ) P2 | >
Template Methods: such as Polynomial, Sum of 3 ra ADAPTATION: P2 | Simulated
sines, Fourier series, so on i rd imulate
. g g g Adaptation of model/
Signals % Tools: such as Matlab Curve Fitting - ar:meters to user PG,G >|GENERATOR Signals
toolbox, EzyFit, TableCurve 2D, - P di N twill .
PeakFit, Matlab Waveform Generator, Pno/ « heedirequirement/wi Pm;\
soon. ; / /]\’
[
P10, P2,, P3o, ..... Pnocan Parameters for the Generator
USER possibly controlled by the user.

Model parameters can also be
possibly controlled by the user.

Figure 3.1 Block diagram of generic system for modelling of the template signals
and for developing of a corresponding simulator.
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Ideally, the developed signal model should be validated against template signals®.
This validation could be performed based on, for example, statistical parameters such as
sum of square error (SSE), correlation between modelled signal and template signal,
execution time, and so on. The best-fit modelling method can then be chosen.
Alternatively, a visual inspection could be performed to evaluate the fit of the model
against the template signal. However, if a very accurate model is required, then both
approaches should be performed.

Once the developed signal model has been validated against template signals, and
thus can imitate the real phenomena, it means that the original values of the signal
model parameters (P1lo, P20, P30, ...Pno) are set. These values will only be modified in
the simulator by the end-user.

Now, it is required to build a corresponding simulator where the predefined signal
model parameters (Plo, P20, P30, ...Pno) are also possibly controlled (i.e. overwritten)
by the end-user. Moreover, other parameters (internal to the adaptation process) could
also be introduced in the simulator by the end-user; these can also be controlled by the
end-user. These other parameters are used inside the adaptation process to tune the
signal model parameters in order to reflect the actual phenomena that take place in the
biological system/object of interest.

The core mechanisms of the simulator include adaptation. Either the adaptation of
the signal model is done according to the end user’s need/requirement or his/her will to
simulate the signals. The generator generates the simulated signals as per end-user’s
prescribed parameters (Plg, P2g, P3g, ...Png), so that the end-user is able to control the
signal model parameters and generate the simulated signals as desired.

The simulated signals could be used for further analysis or evaluation of the
performance of algorithms, e.g. separation algorithms.

The above block diagram of a generic system (Figure 3.1) and a generic framework
(Figure 3.2) for modelling bioelectrical information that can guide the model and
development process has been devised. The framework serves to measure the
parameters of interest for the biological system/object and the process to clean the
measured data in order to achieve the ideal (template) of signals.

The flow diagram of the processes according to the proposed framework is depicted
in Figure 3.2. This flow chart guides the advanced user step by step with the help of the
predefined blocks.

Each diagram has specific criteria which must be kept in mind and guidelines that
must be followed.

The details of this generic framework are discussed in what follows.

® A template signal is an ideal signal, which has been measured and cleaned.
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3.1 Novel Generic Framework

Below, in Figure 3.2, a flow diagram of data acquisition, processing, and modelling
and simulation of the bioelectrical information is given.
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Figure 3.2 Flow diagram of the proposed novel generic framework for modellingm

simulation the bioelectrical information.
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This flow diagram is the pathway to application in order to model the signals.
In the next chapter (see Section 4.4.1 in Chapter 4), this flow diagram is implemented
for the specific case of EBI based on the IRG and ICG signals.

In the first step (Step 1 in Figure 3.2), a biological system or an object is selected; in
the second step (Step 2), the data source of interest is selected; in the third step (Step 3),
the parameters in which the advanced user (e.g. technical measurement personnel) is
interested are measured (i.e. those which are directly measurable). After measuring the
parameters of interest, data cleaning techniques are applied in the fourth step (Step 4).
Then, after cleaning the data, the signals are modelled and a corresponding simulator is
built in the fifth step (Step 5). In the sixth and final step (Step 6), the application of
interest is developed as per the end user’s needs.

3.2 Detailed Explanation of Each Step of
the Novel Generic Framework

In this section each step is discussed in detail, from the first step (Step 1, selection of
biological system/object) to the last step (Step 6, bioelectrical application of the novel
generic framework).

3.2.1 Description of the Biological System/Object (Step 1)

This diagram (Figure 3.3) contains three systems, namely the cardiovascular system,
the respiratory system, and the muscular system; each of these is illustrated by a sub-
diagram. Each system contains parameters (which are the most interesting in this work),
and these parameters are connected with each other within the same system. Some of
these parameters are also connected with parameters which are contained in one or both
of the two other systems.

Connection/relationship/dependency between the parameters inside the system or
outside the system are shown with different arrows as explained below.
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Figure 3.3 Block diagram of the relationship of parameters of three main systems
(cardiovascular, respiratory, and muscular).
It shows the connection/relationship/dependency between the parameters
inside each system or between the systems.

Thin arrows (solid line): show the dependency to some extent on the other parameter(s)
inside the same system.

Thick arrows (solid line): show the direct relation, strong dependency on the other
parameter(s) inside the same system.

Thin arrows (dotted line): show the dependency to some extents on the other
parameter(s) within another system.

Thick arrows (dotted line): show the direct relation, strong dependency on the
parameter(s) within another system.

Thick arrows (both site direction): show the direct proportional to each other with the
same system.

The following description starts from the BRR and follows the natural flow of the
three systems.
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Parameters of the Cardiovascular System

BRR (Baroreceptor Reflexes): Blood pressure (BP) is controlled on a minute-to-minute
basis by BRR. Changes in BP affect the frequency of action potentials sent to the
Cardiovascular Control Centre (CCC) from the BRR. BRR is discussed previously in
Chapter 2 in Section 2.1 and in Timischl 1998.

CCC (Cardiovascular Control Centre): Heart Rate (HR) is controlled by both
sympathetic (SPP) and parasympathetic (PSP). SPP (Sympathetic) increase the HR. PSP
(Parasympathetic) decrease the HR.

HR (Heart Rate): HR corresponds to the frequency of heartbeat, i.e. the number of
heartbeats per minute or reciprocal of the duration of heart cycle Yc = I1/Tc
[beats/minute].

VR (Venous Return): VR is the amount of blood that returns to the heart (VR dependent
on BV (Blood Volume)) expressed in time units [I/minute].

SV (Stroke Volume): SV is the volume of blood which is pumped out by the heart with a
single beat (SV is dependent on VR and Total Peripheral Resistance (TPR)). The HR
and SV are proportional to each other [I/minute].

CO (Cardiac Output): CO is the volume of blood which is pumped out by the heart per
minute. It is a function of HR and SV (CO is dependent on HR and SV) [beats/minute].
BP (Blood Pressure): BP usually refers to the arterial pressure of the systemic
circulation. It is partly dependent on CO and the vessels, and directly (strongly) depends
on BV and BF (Blood Flow)). In Section 2.1 of Chapter 2 and Timischl 1998 it is
discussed in detail [mmHg].

BV (Blood Volume): BV is the volume of blood (both red blood cells and plasma) in the
circulatory system of any individual. It is dependent on CO.

TPR (Total Peripheral Resistance): the blood vessels provide resistance to the flow of
blood. The resistance and pressure are directly (strongly) proportional to each other. If
the resistance increases, then the pressure increases (TPR is dependent on CO, BV, BP,
BF and MAP) [Ohms].

BF (Blood Flow): The flow of the blood through the vessels of the circulatory system is
a function of the BP and TPR (BF is dependent on BP, TPR, and CO). In Section 2.1 of
Chapter 2 and Timischl 1998 it is discussed in detail [[/minute].

MAP (Mean Arterial Pressure): MAP represents the average driving force for the blood
flow through the arterial system (MAP is dependent on CO, BV, and directly
proportional with TPR) [mmHg].

SPQO; (Saturation Pressure of Oxygen): The muscles highly depend on SPO, because if
the muscle starts to work, they require more oxygen (SPO; is dependent on muscles,
CO, and BF) [Percentage].

ICI (Intra-Cardiography Impedance): Measures the cardiac output internally [Ohms].

EPG (Epicardial Potential): Internal ECG [V].
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Parameters of the Respiratory System

RR (Respiration Rate): RR is the number of cycles per minute. It is not directly
dependent on HR, but under certain conditions, it is dependent on HR and SPO;
[cycles/minute].

RF (Respiration Flow): Inspiration or expiration volume of airflow in a minute. RF is
also dependent on SPO; [l/minute].

RV (Respiration Volume): RV is the volume of air that is inhaled and exhaled per
minute. It is a function of RR and RF (RV is dependent on the RR and the RF)
[[/minute].

TV (Tidal Volume): TV is the volume of gas inhaled or exhaled during one respiratory
cycle. It is discussed in detail in Section 2.4 of Chapter 2 and Krivosei 2009.

Parameters of the Muscular System
Muscles: The muscles’ ability to work is highly dependent on oxygen supply (SPO>).

Movement: Body movement from Biological Systems/object as prescribed.

Oxygen Usage: It is dependent on real physical load.

Short Explanation of the Cardiovascular System Parameters

The cardiovascular control centre (CCC) responds by decreasing sympathetic input and
increasing parasympathetic input to the heart. This causes a drop in HR and SV, which
lowers the cardiac output. The sympathetic (SPP) increases the HR and the
parasympathetic (PSP) decreases the HR. Both SPP and PSP nerve fibres control
the HR.

Heart Rate (HR) is the number of heartbeats per minute. The Venous Return (VR) is
return of the blood to the heart, and is largely dependent on the total blood volume (BV)
and the mechanisms that improve the blood flow in the veins.

Stroke Volume (SV) is the volume of blood, in millilitres (mL), pumped out of the heart
with each beat. If the heart were to be filled more per beat, then it could pump out more
blood on each beat and this would increase SV. Moreover, if the heart were to contract
more strongly, then the heart could also pump out more blood with each beat: in other
words, a stronger contraction would lead to a larger SV.

Cardiac Output (CO) is the volume of blood which is pumped by the heart in a time
interval commonly given per minute (mL blood/min). The CO is an integral function
(sum of CO over number of beats) of HR and SV. If either HR or SV increase, the CO
also increases. The CO depends linearly on HR. The average person has a resting
heartbeat of 70 beats/minute and a resting SV of 70 mL/beat. A rough estimation of the
cardiac output for a person at rest is:

CO =170 (beats/min) x 70 (mL/beat) = 4900 mL/minute 3.1
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Baroreceptor Reflexes (BRR): the blood pressure is controlled on a minute-to-minute
basis by BRR. Changes in blood pressure affect the frequency of action potentials sent
to the CCC from the BRR.

Blood Pressure (BP) is partly dependent on CO and the vessels. It is directly dependant
on BV and BF. The blood pressure is proportional to the blood volume at every instant.

Blood Volume (BV) directly affects the blood pressure. If the blood volume is increased
then venous return of blood to the heart increases. An increase in venous return will, by
Starling’s law, causes SV to increase. As SV goes up, the cardiac output goes up and the
blood pressure rises. Starling’s law is discussed below in detail and in Section 2.1 of
Chapter 2.

Total Peripheral Resistance (TPR): blood vessels provide resistance to the flow of
blood because of the friction between moving blood and the wall of the vessel. The TPR
refers to the total sum of vascular resistance to the flow of blood in the systemic
circulation. Because of their small radii, arterioles provide the greatest resistance to
blood flow (BF) in the arterial system. Adjustments in the radii of arterioles have
significant effect on TPR, which in turn has a significant effect on MAP. The resistance
and pressure are directly proportional to each other. If the resistance increases, then the
pressure increases.

Blood Flow (BF): the blood flow through the vessels of the circulatory system is a
function of the pressure in the system and the resistance to flow caused by the blood
vessels. The BF is directly proportional to pressure and inversely proportional to
resistance (TPR).

Pressure

Blood Flow = (3.2)

Resistance ~

If the pressure in a vessel increases, then the blood flow increases. However, if the
resistance in a vessel increases, then the BF decreases. The resistance in the blood
vessels is affected by three parameters:

Length of the vessel — the longer the vessel, the greater the resistance.
Viscosity of the blood — the greater the viscosity, the greater the resistance
Radius of the vessel — the smaller the radius, the greater the resistance.

The relationships between the factors that affect the blood flow are described by
Poiseuilles’s law:

APTir

Blood Flow = , 3.3)
8nlL

where A is the change, P is the pressure, r is the radius of the vessel, « is the constant,
1 is the viscosity of blood, and L is the vessel length.

Mean Arterial Pressure (MAP) represents the average driving force for blood flow
through the arterial system. The three most important variables affecting MAP are TPR,
CO, and BV.

Saturation Pressure of Oxygen (SPO;): if the muscles are working, the SPO, depends on
the respiration volume. This means that more oxygen has to be supplied. This is because
as the muscles start to work, they require more oxygen.
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End-diastolic Volume (EDV): an increase in venous return (VR) of blood to the heart
will result in greater filling of the ventricles during diastole. Consequently, the volume
of blood in the ventricles at the end of diastole, called end-diastolic volume, will be
increased.

Starling’s law describes the relationship between end diastole volume and SV. It states
that the heart will pump out whatever volume is delivered to it. If the EDV doubles then
SV doubles.

Short Explanation of the Respiratory System Parameters
Respiration Rate (RR) is the frequency ofrespiration, that is, the number

of breathes (inhalation-exhalation cycles) taken within a set amount of time (typically
60 seconds).

Tidal Volume (TV) is the volume of gas inhaled and exhaled during one respiratory
cycle. In a healthy adult, the TV is approx. 500 ml per inspiration. It is measured in
Litters and ventilation volumes are estimated based on a patient’s ideal body weight.
The respiration smoothing can be rectified using a low-pass filter (LPF)

Respiration Volume (RV) is a very important parameter in respiration; it is actually flow,
which represents a volume variation over time. The RV is the amount of air a person
breathes in a minute. The RV [I/min] is average volume of air inspired into the lungs; it
can be evaluated using values of TV and respiration rate (RR [I/min]). It is discussed in
detail in Section 2.4 of Chapter 2 and Krivosei 2009.

Short Explanation of the Muscular System Parameters

Muscle is a bundle of fibrous tissue in the body that has the capability to contract,
producing movement or maintaining the position of parts of the body.

Movement is changing the position of a compartment of the body. During measurement,
movement is the unwanted artefact.

Oxygen Usage in this situation is the amount of oxygen consumed by the muscle.
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3.2.2 Selection of the Data Source of the Interest (Step 2)

The second diagram (Figure 3.4) of the overall framework is divided into three sub-
diagrams. Each sub-block is discussed below.

Primary data (all possible data)
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Figure 3.4 Flow diagram for selection of the data source of the interest.

In the ‘Selection of the desired physiological parameters’ sub-diagram, the objective
is to select the desired physiological parameters for further use from the full set of
physiological parameters, which are received from the previous diagram (Biological
System/Object).

In the ‘Selection of physiological parameters according to their measurability’ sub-
diagram, the objective is to select the physiological parameters according to their
measurability. From an object, some parameters can be measured directly, such as ECG,
HR, MAP, RR, RF, RV, and movement, etc., whereas some other parameters can be
measured indirectly, such as CO, SV, BP and SPO,, etc. However, some parameters
cannot be measured, such as BV, BF, VR, and TPR.

In the ‘Selection of physical measurable physiological parameters according to
expected fidelity’ sub-diagram, the objective is to select the useful physiological
parameters that could be used for further analysis. It is dependent on the condition and
problem in the object.

In Step 2 (Figure 3.4), the focus is to select a set of useful parameters that can be
used for further analysis. After selecting the set of parameters, the question has to be
answered: “Are the selected physiological parameters as per requirement?” If the
answer is “Yes”, then the flow moves to the next step. If the answer is “No”, then the
flow goes back and the selection of desired physiological parameters has to be
reconsidered.
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3.2.3 Measurement of the Parameters of Interest (Step 3)

The third diagram (Figure 3.5) is divided into four sub-diagrams. Each sub-diagram

is discussed below.
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Figure 3.5 Flow diagram for measurement of parameters of interest.

In the ‘Spot location and size of sensors’ sub-diagram, the objective is to decide on
the configuration of sensors based on the aim of the experiments, the criterion being
which physiological parameters need to be measured.

In the ‘Time (state/condition and duration)’ sub-diagram, the objective is to decide
the state and condition of measurement for parameters of interest, such as when, and
duration of measurement, such as how long time data measurement is required.

In the ‘Measurement method’ sub-diagram, the objective is to decide the
measurement method. The measurement method could be invasive or non-invasive. In
case we consider a non-invasive method, then the specific measurement method has to
be considered and selected. The non-invasive measurement methods include
Electrocardiogram (ECG), Opto-Electronic Plethysmography (OEP), Electrical
Impedance Tomography (EIT), impedance cardiography (ICG), Foucault Cardiography
(FCG), and Electro-mechanical Wave Imaging (EWI), etc. These methods are briefly
discussed in Section 2.4 of Chapter 2 and (Sola et al. 2011; Kenny & Tidy 2012; Santos
et al. 2013; Grimnes & Martinsen 2014; Mughal 2014; Mughal et al. 2015; Trolla &
Vedru 2001; Kohl, Peter Sachs, Frederick Franz 2011).

The final sub-diagram is ‘Measured location and time-dependent signals/data’. After
deciding on the positioning of the electrodes and the measurement method, the location-
dependent signals/data are measured.

The different spot location, time (state/condition and duration), and measurement
methods should be carefully considered. The results can be tested and evaluated by the
advanced user for further analysis. From this phase, an object could be excited in order
to pass current and measure voltage or vice versa. After measuring the full set of
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physiological parameters, the following question has to be answered: “Is the measured
set of physiological parameters as per requirement?” If the answer is “Yes”, then the
flow moves to next step. If the answer is “No”, then the flow goes back and the
advanced user has to reconsider the selection of spot location, time (state/condition and
duration), and measurement method.

3.2.4 Data Cleaning (Step 4)

The diagram 4 (Figure 3.6) is divided into two sub-diagrams. Each sub-diagram is
discussed below.
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Figure 3.6 Flow diagrams of data cleaning.

In the ‘Pre-processing (data cleaning)’ sub-diagram, pre-processing should be
performed to clean the data for further processing. Pre-processing includes data
normalization (scaling), conditioning, and filtering to attenuate useless part(s) of
the data.

In the ‘Processing’ sub-diagram, the objective is to extract the feature from signals
which are saved for further processing.

In Step 4 (Figure 3.6) the features are selected. If the selected features are fulfilling
the need, then the flow moves to next diagram; otherwise, this diagram could be
repeated and the required feature would be selected again, i.e. measured data.
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3.2.5 Modelling of the ICG and IRG Signals and Building a
Corresponding Simulator (Step 5)

The modelling and simulation Step 5 (Figure 3.7) is divided into two sub-diagrams.
Each sub-diagram is discussed below.
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Figure 3.7 Flow diagram of modelling and simulation.

In the ‘Modelling of the signals’ sub-diagram, modelling of the signals is based on
extracted information and the selected features. The objective is to choose the modelling
method to construct a robust signal model. The modelling methods that could be
considered include a curve-fitting method (polynomial, Fourier series, sum of sines,
interpolant, smoothing, exponential, Gaussian, power, rational, Weibull, etc.),
waveform generator, etc.

In the ‘Building and testing of a simulator’ sub-diagram, a simulator tool for the
advanced user should developed; it can simulate the signals as per need for further
processing.

In Step 5 (Figure 3.7), the signals are modelled, tested, and simulated; if the
modelled and simulated signals are as per need then they are validated. If not, then the
modelling and simulation of signals could be repeated. If “Yes”, then flow moves to the
next condition. If the simulated signals similar with measured and assessment, if “Yes”
then flow moves to the final step, i.e. the application; if “No”, then the flow goes back
to Step 4, Step 3, or Step 1 to identify which sub-diagram poses the problem.
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3.2.6 Applications (Step 6)

The application diagram, which is depicted in Figure 3.8. Ideally, a wide range of
bioelectrical applications could be considered, such as simulated EBI signals, Foucault
Cardiography (FCG), and Photoplethysmography (PPG). The developed application
could be used as follows:

a) The simulator could be used for research to evaluate the applicability of the
application.

b) The tool could be useful for academia in teaching and training purposes. A
teacher may use it for practice to provide students physiological understanding.

¢) The student could play around with the tool and understand the phenomena-
related physiological parameters.

Simulated signals

Evaluations of Applicability

Figure 3.8 Flow diagram of bioelectrical application.

The generic framework described in this chapter is used to implement a practical
EBI application, as presented in the chapter that follows, Chapter 4.
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3.3 Summary of the Chapter

In this chapter a novel generic framework has been proposed, which is a pathway to
model a signal and develop a simulator for the bioelectrical information.

The unique approach in the proposal of such a framework is that the framework
provides a pathway between biological systems and the development of bioelectrical
applications.

The process begins with selecting a biological system/object, which is needed to
decide who or what will be the object.

The first step is divided into three main sub-systems. Each of these systems contains
alist of parameters in which one can be interested, and show the connections,
relationships, and dependencies within the system or with other systems.

The second step is the selection of the data source of the interest, where the focus is
on selecting useful parameters as per the advanced user’s need and to use them for
further analysis.

The third step is the measurement of parameters, where the spot location, time, and
measurement method should be carefully considered. The biological system/object
could be excited as part of the measurement of the physiological parameters.

The fourth step regards data cleaning; it applies pre-processing and processing upon
selecting the required features which need to be modelled.

The fifth step is about modelling, building, and testing the simulator: firstly, the
extracted signal needs to be modelled with the help of any available method, and
secondly a corresponding bioelectrical application (e.g., a simulator) must be developed.
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4. IMPLEMENTATION OF THE FRAMEWORK
AND EXPERIMENTAL RESULTS

As the basis for the implementation, the EBI measurement method was selected to
measure the impedance cardiography (ICG) and impedance respirogram (IRG) signals
in order to develop the corresponding signal models; for this purpose, different curve-
fitting methods are discussed.

The corresponding simulator is built based on the modelled ICG and IRG signals,
which is used to simulate the EBI signal.

The selected data measurement method, the proposed method for modelling the ICG
and IRG signals, and the developed corresponding signal simulator are implemented
following the proposed framework (defined in Chapter 3) as an example.
The framework is used as a pathway to measure the human subject and to develop the
EBI signal simulator, namely Bio-Impedance Signal Simulator (BISS). In what follows,
each diagram of the framework is discussed and implemented.

4.1 Measurement of the EBI Signals

The measured EBI data is used to model the ICG and IRG signals because
the implementation of this study, as an example, focuses on the modelling of these
signals and the construction of a corresponding simulator.

The ICG does not separate signals from different objects during the measurement.
Electrode positioning can help (at least somewhat); if the electrodes are placed properly
relative to what is required to be measured and calculated, such as HR, SV, CO, RR,
muscular movement, etc., then in this case ICG is one of the very prospective methods
among the previously mentioned non-invasive methods (The details are discussed in
Section 2.4.1 of Chapter 2).

The measurement setup and the 16-electrode configuration method are used to
acquire the EBI data from the healthy male subject, as described in Mughal et al. 2015
and Mughal 2014.

4.1.1 Measurement Setup

The measurement setup shown in Figure 4.1 is used to acquire the EBI data
(corresponding to the measured EBI signal). The 16-electrode belt is worn around the
thorax of the subject.

The Zurich HF2IS Impedance Spectroscope (Zurich 2015) is the measurement
equipment which was used in this measurement. The HF2IS is used to excite the subject
and measure the EBI datasets from the subject through sense electrodes. The HF2IS is
connected to the switch-box through connector cables.
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The HF2IS was limited to two channels (Channel 1 and 2); because of this, at any
given time four electrodes (two electrodes from each channel (Excitation A and B))
were used to excite the subject and four electrodes (two electrodes from each channel
(Sense A and B)) were used to sense the EBI data. Thus, eight electrodes are active at
a time. These channels are shown in Figure 4.1.

The sensed (measured) EBI datasets were stored in a computer for further analysis.

The attached computer is also used to control the switch-box and HF2IS impedance
spectroscopy equipment.

A program developed at T.J. Seebeck Department of Electronics was used to control
the switch-box that switches/selects the electrodes’ configuration for each time-step

automatically. Nevertheless, the configuration of the electrode can also be set up by the
advanced user.
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Figure 4.1 Measurement setup for measuring the EBI of a subject.

In order to make the simple representation of EBI dataset, it is assumed that the EBI
data is the summation of the following four components:

SeBi) = Sice) T Sirc(e) T Sartefactt) T Snoise(t)» 4.1)

where (Sicc) and (Sig) are the cardiac and respiratory signals, respectively, (Sarefucr) 1S

unwanted motion artefact caused by body movements or muscle activity, and (Swoise)
is noise.

The heart rate Sice (Eq. 4.1) of a healthy person can vary in the range between
60 bpm to 240 bpm (1 to 4 Hz), and the respiration rate Sizc (Eq. 4.1) of a healthy

person can vary from about 12 breaths/min to 30 breaths/min (0.2 to 0.5 Hz) (Mughal
2014).
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4.1.2 Waveforms and Spectra of the EBI Signals

The waveform of the cardiac and respiratory components of the EBI signal are
relatively smooth (Min et al. 2000); that is why only a few higher harmonics
are required for representing them. Figure 4.2 shows the measured and filtered IRG
signal from measured EBI, which corresponds to the subject’s respiration, as well as the
ICG signal, which corresponds to the cardiac activities of the subject.
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Figure 4.2 Two cycles of respiration and ~12 cycles of cardiac activity in 10 seconds

Unfortunately, muscular activities also lie on the same frequency range as that of the
cardiac signal, and the higher harmonics of the respiratory signal also lie on the same
frequency range of the cardiac signal, as shown in Figure 4.3 (Mughal 2014).

A simplified possible sketch of the harmonic spectrum of the EBI signal is shown
in Figure 4.3. The possible spectrum is sketched for the signal components shown in
Figure 4.2; in the spectrum, it is illustrated that the fifth harmonic of the respiration
signal is partially overlapping with the first harmonic of the cardiac signal, and that the
other higher harmonics of the respiration signal “enter” the cardiac signal frequency
range.

1 Magnitude of hormonic(s)
MRespl_

Harmonics of the respiratory component I

Harmonics of the cardiac component [l

Z (Ohms)

MCarl

I [ ] 2 _a il 0 = =
OfRespl fcarl Frequency (HZ)

Figure 4.3 A possible sketch example of the simplified frequency spectrum of the
thoracic EBI, which is based on Figure 4.2.
It contains cardiac and respiratory components (Mughal 2014).
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Based on the literature survey and analysis of the existing thorax impedance models,
as well as the origin of the ICG signal (Section 2.4 of Chapter 2 and in our published
paper (Mughal et al. 2014)), it is assumed that none of the existing models are accurate
enough to imitate the real phenomena of the ICG signal. Based on these limitations, it
was therefore decided to use the 16-electrode configuration belt to measure the ICG and
IRG signals instead of one of the existing models. The candidate existing configurations
of electrodes are discussed in Section 2.4.4 of Chapter 2. The curve-fitting method is
used to model the measured signals.

With this approach, these signal models would be more realistic and the underlying
model parameters would be easily tuneable.

The models and evaluation methods are discussed below in Section 4.2. In what
follows, the four measured EBI datasets and the clean ICG and IRG datasets are used.

In Figures 4.4-4.9 (Datasets 1-6), each dataset has been measured from different
positioning of electrodes. Our results are published in Mughal et al. 2014.
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Figure 4.4 Measured EBI waveform (Dataset 1) (Mughal et al. 2014).
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Figure 4.5 Measured EBI waveform (Dataset 2).
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Figure 4.8 Measured EBI waveform (Dataset 5).
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Figure 4.9 Measured EBI waveform (Dataset 6).

Datasets 14 (Figures 4.4-4.7) are raw measured EBI data. Datasets 5-6 (Figure 4.8
and Figure 4.9) are the cleaned ICG and IRG signals from the measured EBI datasets.
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4.2 Method for Modelling the Bio-Impedance Signal

Modelling of the EBI signals can be performed by way of using template signals.
This is discussed in Chapter 3 (Figure 3.1) and Section 3.2 (Modelling and Building
Simulator, Step 5 of Figure 3.2).

Here the curve-fitting method is used to model the ICG and IRG signals.

Different curve-fitting models are evaluated by comparing the measured and
modelled signals based on statistical parameters and visual fit.

4.2.1 Curve-Fitting Method

In the curve-fitting method, three different curve-fitting models are compared,
namely polynomial, Fourier series, and sum of sines. The comparison criteria were
based on visual fit and statistical parameters, namely sum of square error (SSE),
correlation between the model and the corresponding dataset fitted modelled values
(R-Square), and execution time. Each curve-fitting method and statistical parameters are
discussed and evaluated below (Mughal et al. 2015):

Models and Evaluation Method
Each model is discussed and evaluated with the help of six EBI measured datasets.
Four datasets are raw EBI measured datasets and two are cleaned ICG and IRG signals.

a) Polynomial Model

Polynomials are well suited for cases where a fairly simple empirical model is
needed; they can be used for interpolation or extrapolation to characterize data by means
of a global fit. The general polynomial model formula is given in Equation 4.2:

y =X pit" (4.2)
where 7 is the degree of the polynomial (highest power of the predictor variable), n+1
is the order of the polynomial (number of coefficients), p; is the coefficients, and ¢ is time.

In this work, the polynomial model was evaluated for degrees 1 to 9 for the four EBI
datasets; degree 9, which is the highest order available in the toolbox, gave the most
suitable results. The comparative results are shown in Table 4.1 and Figures 4.10—4.15.

b) Fourier Series Model
A Fourier series is a sum of sine and cosine functions that describes a periodic
signal. The model formula is given in Equation 4.3:
y = ag + )i a; cos(imt) + b;sin(int) , (4.3)

where a is the intercept, which is a constant term in the data, @ is the fundamental
frequency, and 7 is the number of terms in the series. The model was evaluated with
1 to 8 terms for the four EBI datasets; the most suitable results were obtained for the
degree of eight, the highest available in the toolbox. The comparative results are shown
in Table 4.1 and Figures 4.10-4.15.
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¢) Sum of Sines Waves Model

This model consists of a sum of sines terms only. The model formula is given in
Equation 4.4:

y = Xizqa; sin(iot + ¢;), (4.4)
where a is the amplitude, w is the frequency, c the phase, which is constant for each
term and 7 is the total terms in the series.

The model was evaluated with 1 to 8 terms for the four EBI datasets; 8 terms
(the highest available in the toolbox) gave the most suitable results. The comparative
results are shown in Table 4.1 and Figures 4.10—4.15.

d) ICG and IRG Signal with Polynomial, Fourier series, and Sum of Sines Waves Models

The same approach as for the EBI datasets is used with the ICG and the IRG clean
signals, and these signals are modelled with the polynomial, Fourier series, and sum of
sines waves methods. The comparative results are shown in Table 4.1 (Clean ICG and
IRG) and Figure 4.14 and Figure 4.15, respectively (Mughal et al. 2015).

Statistical Parameters

The performance of the three modelling methods is evaluated by means of the
following three fit measures.

a) Sum of Squares Error

The sum of square error (SSE) statistic assesses the total deviation of the data values
from the fitted model, as expressed in Equation 4.5:

SSE = ZiLawi (i —¥)% (4.5)

where n is the number of data points, y; is the response data, and y; is predictor data.
SSE values close to 0 indicate that the model is fitted well and has very little random
error (Matlab2012b 2014; Mughal et al. 2015).

b) R-Square

The R-Square measure is the square of the correlation between the data and the fitted
model values. A value close to one shows a greater correlation between the data and the
model, whereas a value close to zero shows a poor correlation. It is determined as the
ratio of the sum of squares of the regression (SSR) and the total sum of squares (SS7),
where SST = SSR + SSE. The R-square measure is given in Equation 4.6 (Matlab2012b
2014):

SSR SSE

R-square = ST 1- ST (4.6)

¢) Execution time

The execution time is measured through Matlab “stopwatch functions (tic, toc)” and
reported in Table 4.1.
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4.2.2 Results of Modelling and Comparison of the Models of
Curve Fitting

Table 4.1 and Figures 4.10—4.15 shows the fit of the three models with the four EBI
datasets and clean ICG and IRG datasets. Generally speaking, the three models provide
a reasonable fit across the four datasets: the average SSE value is 0.879¢-07, and the
min and max values are 0.161e-07 and 1.9417e-07, respectively

Similarly, the average R-square value across the four datasets is 0.9762; the min and
max values are 0.9512 and 0.9936, respectively.

The Fourier series model minimizes the error (average SSE=0.335¢-07) and also has
a high correlation across the four datasets compared to the other models. However, it
took 1.275 more seconds to execute compared to the polynomial model; it is
nevertheless much faster (by 44.476 seconds or nearly 10 times) than the sum of sines
waves model.

In this study, the most suitable results were obtained with eight terms for the Fourier
series model, which gives 18 coefficients. For the polynomial model, we set the degree
to 9, leading to 10 coefficients. It is preferable to limit the number of coefficients for
relate to the patients’ condition. However, this has to be traded-off for a lower fit and
number of coefficients, as shown in Table 4.1. These results are published in our
contribution (Mughal et al. 2015).

Table 4.1. Evaluation Criteria Results for the Modelled Signals

Sum of sine waves (24 Fourier (18 coeff) Polynomial (10 coeff)
coeff)
Datasets
SSE R-Sq | SSE RSq | SSE RS9 | ssEAvg| SSEMn | SSEMax | R-SqAvg
Dataset 1 1.0424-07 | 0.9917 | 0.1612¢07 | 0.9987 | 1.2270e-07 | 0.9903 [0.810e-07|0.161 e-07 {1.23 e-07| 0.9935
Dataset 2 0.9044e-07 | 0.9875 | 0.1786e-07 | 0.9976 | 0.3050e-07 | 0.9959 [0.463¢-07| 0.179 €-07 | 0.904 €-07 | 0.9936
Dataset 3 1.9417e-07 | 0.9274 | 0.6476e-07 | 0.9758 | 1.3185¢-07 | 0.9506 [1.326e-07 | 0.6476e-07 | 1.9417-07 | 0.9512
Dataset 4 0.8054e-07 | 0.9714 | 0.3506e-07 | 0.9876 | 1.6683¢-07 | 0.9409 [0.941e-07 | 0.3506e-07 | 1.6683 e-07 | 0.9666
SSE Avg, R-SqAvg | 117 e-07 | 0970 | 0335 e07 | 09758 |[1.13 e-07 | 0.969 [0.879¢-07 0.9762
SSE Min, R-Sq Min | 0.805 e-07 | 0.161 |0.161 e-07 | 09758 |0.305 e-07 | 0.941 0.161 e-07 0.9512
SSE Max, R-Sq Max| 1.94 e-07 | 0.9917 |0.648 e07 [ 09987 |167 e-07 | 0.99 1.9417 ¢07 | 0.9936
Clean ICG Signal with different scale
Clean ICG [ 01996 [0.9994 [0.0611 [09999 [28229 ] 09937 [1.0279 [0.0611 [ 2.8229 0.9959
Ex. Time (s) | ~49.170 | ~4.694 | ~3.419 |
Clean IRG Signal with different scale
Clean IRG [7896.1¢-07 [ 1 [ 2890.6e-07 |1 [19.5782 ] 0.9983 [6.5264 [2890.6e-07 [ 19.5782 0.9994

Regarding the difference between the polynomial and the sum of sines waves
models, it can be seen that for Datasets 2 and 3, the polynomial model minimizes
the error (0.3050e-07 and 1.3185e-07, respectively) and is highly correlated with
the datasets (0.9959 and 0.9506, respectively). On Datasets 1 and 4, the sum of sines
waves model minimizes the error (1.0424e-07 and 0.8054e-07, respectively) and is
highly correlated (0.9917 and 0.9714, respectively) with the datasets. However, 8 terms
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were used for the sum of sines waves model, which gives 24 coefficients (versus 10 for
the polynomial model) and a much longer execution time.

For the clean ICG and IRG datasets, the Fourier series model performed very well in
minimizing the error (0.0611 and 2890.6e-07, respectively) and is highly correlated
(0.9999 and 1, respectively) with the datasets. It is followed by the sum of sines waves
model, which has the second minimum error (0.1996 and 7896.1e-07, respectively) and

high correlation (0.9994 and 1, respectively) but also a larger number of coefficients
(24) and longer execution time (49.170 seconds) compared to the polynomial model

(Mughal et al. 2015).
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Figure 4.10 Results of fitting of the EBI dataset 1: the measured dataset 1 (solid
lines, black) and fitted models (dotted lines, red) (Mughal et al. 2015).
Results for the sum of sines waves model are presented without offset.

For readability, the results for Fourier series model are offset by 0.05%10, and
the results for Polynomial model are offset by 0.1x10.
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Figure 4.11 Results of fitting of the EBI dataset 2: the measured dataset 2 (solid

lines, black) and fitted models (dotted lines, red) (Mughal et al. 2015).

Results for the sum of sines waves model are presented without offset.
For readability, the results for Fourier series model are offset by 0.05x10, and
the results for Polynomial model are offset by 0.1x10-3,
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Figure 4.12 Results of fitting of the EBI dataset 3: the measured dataset 3 (solid

lines, black) and fitted models (dotted lines, red) (Mughal et al. 2015).

Results for the sum of sines waves model are presented without offset.
For readability, the results for Fourier series model are offset by 0.05x10, and
the results for Polynomial model are offset by 0.1x10-3,
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Figure 4.13 Results of fitting of the EBI dataset 4: the measured dataset 4 (solid
lines, black) and fitted models (dotted lines, red) (Mughal et al. 2015).
Results for the sum of sines waves model are presented without offset.

For readability, the results for Fourier series model are offset by 0.05x10, and
the results for Polynomial model are offset by 0.1x10-3,

=25
Dataset 5 (ICG Clean)
= = —
Polynomial
1.5 — —
0
E T Fourier Series
o
No.s - W/ & / R ONL TV
o
—o.s Sum of Sine Waves
-1 o 2(50 400 SO0 8(50 1000

Samples (Number of samples)
Figure 4.14 Results of fitting of the Clean ICG dataset 5: the measured Clean ICG
dataset 5 (solid lines, black) and fitted models (dotted lines, red) (Mughal et al. 2015).

Results for the sum of sines waves model are presented without offset.
For readability, the results for Fourier series model are offset by 0.5 and
the results for Polynomial model are offset by 1.
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Figure 4.15 Results of fitting of the Clean IRG dataset 6: the measured Clean IRG
dataset 6 (solid lines, black) and fitted models (dotted lines, red) (Mughal et al. 2015).
Results for the sum of sines waves model are presented without offset.

For readability, the results for Fourier series model are offset by 0.5 and
the results for the polynomial model are offset by 1.

Figure 4.16 depicts the ICG measured signal (red), which was cleaned, and the
corresponding modelled signal with help of Fourier series (black). From the statistical
parameters shown in Table 4.1 (clean ICG) and visually, it appears that the ICG signal
modelled by means of Fourier series model curve-fitting method follows the measured
ICG waveform quite accurately. Although it is not totally error-free, the results are
deemed satisfactory for the purpose at hand.

1 T T T T T T T T
i i i —— ICG Measured
i..— ICG Model

0 1 2 3 4 5
Time (sec)

Figure 4.16 ICG signal measured (red) and ICG modelled
by means of Fourier series (black).

As can be seen in Figure 4.16, both signals are overlapping most of the time,
showing that only slight error exists in the modelled signal. The first derivative of both
the measured and modelled signals are taken, which gives more information about the
cardiac activities. Markers are used for each activity.
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The first derivative of the cleaned ICG measured signal (red), and the corresponding
first derivative of the modelled signal with help of Fourier series (black) is depicted in

Figure 4.17.
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Figure 4.17 First derivative of the ICG measured (red) and
ICG Fourier modelled (black).

Markers: B - opening of aortic valve; C - associated with contraction; X - closure of aortic valve,
and O - diastole opening of mitral valve.

In Figure 4.17, both the curves of the first derivative of the measured and modelled
ICG signals overlap each other extremely well.

Marker B is associated with the opening of the aortic valve, marker C with the
contraction of heart muscles, marker X with the closure of the aortic valve, and marker
O with diastole, i.e., the opening of the mitral valve to fill the heart with blood.
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4.3 Proposed Bio-Impedance Signal Simulator

The bio-impedance signal simulator (BISS) is built based on the Fourier series
model.

The simulator is depicted in Figure 4.18, and the simulated EBI signal is generated
by summing the ICG signal (Sicg), IRG signal (Sirg), artefacts (Sareucs), and a white
Gaussian noise (Snoise)-

Sics(t)

Sice

SA rtefacts

Seailt)

SNoise

|

SR Sirelt)

Figure 4.18 Block diagram of the Bio-Impedance Signal Simulator (BISS)

The need for summation of the components of the EBI signal is discussed above in
Section 4.1 in Equation (4.1). For more details, see our published results in (Mughal et
al. 2015).

4.3.1 Development of the Simulator

The EBI signal simulator is developed in the way discussed in the block diagram of
the generic system for modelling of the template signals and for developing a
corresponding simulator (Figure 3.1) in Chapter 3.

The first part of the generic block diagram is discussed in Section 4.2 for modelling
of the template signals. In this chapter, the focus was narrowed down to one method in
this study and a specific approach to develop the simulator and then present the specific
implementation of the BISS.
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Specific approach to develop the Bio-Impedance Signal Simulator (BISS)

The development of the specific corresponding bio-impedance signal model
simulator is motivated by the desire to simulate the EBI signal to evaluate the
performance of signal processing algorithms such as separation algorithms.

Figure 4.19 depicts a) the modelled ICG (Sicg) and IRG (Sizg), signals (modelled by
means of Fourier series method) are discussed in Section 4.2, b) recorded motion
artefacts (Surefucss) (€.g. swinging arm) added to the simulated EBI signal, and c) a white
Gaussian noise (Snoise) also added to the simulated EBI signal.

Resting
Standing
d)| Walking
Running
Frequency ; A .
YT mplitude
Heart Rate (b/m) | Time Frame p
Modelled : i+ Bio-Impedance Signal Simulator (BISS)
Impedance ; .
Signals | e I
2) 1 - Modulation :
I . Siceq)
Sice — state base para.ICG | state base para.ICG
modelled Amp. Mod (+/-25%) Freq. Mod (+/-5%) Sesi(y
e T T T 2 J e)
Sire HR ratio \:/ state base para. IRG B> statebase para.RG Ny SImu_IatEd
modelled with RR Amp. Mod (+-50%) Freq. Mod (+/-10%) Srewm < ' EBI Signals
e
Frequency Amplitude Amplitude

Respiration Rate (cycle/m)

Figure 4.19 Block diagram of BISS for modelled of the ICG and IRG signals and
for development of a corresponding simulator for EBI Signals.

The block diagram of BISS has different pre-recorded states d) corresponding to a
healthy resting, healthy standing, healthy walking and healthy running persons are
included. Each state has different parametric values and cardiac relationships with
respiration, which vary with each state/condition.

Nevertheless, the end-user also has the possibility to change the parameters as per
his/her needs, such as heart rate, respiration rate, timeframe, and amplitude of
respiration, artefacts, and noise.

Finally, e) shows that the simulated EBI signals are a mixture of ICG, IRG, artefacts,
and noise, as per Equation 4.1, and are also shown in Figure 4.18. Such simulated EBI
signals can then be used for further processing (e.g. to evaluate the performance of
separation algorithms).

In Figure 4.19, the outer parameters (blue colour) such as heart rate (beats/minute),
timeframe (sec), respiration rate (cycles/minute), amplitude for respiration, artefacts,
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and noise are controlled by the end-user (possibly overriding the values loaded from a
pre-recorded state).

In Figure 4.20, a healthy running person is loaded. In this figure, the end-user
interface of BISS is depicted, including:

a) a menu where the end-user can load the different states of the person (e.g. healthy
rest, healthy standing, healthy walking, and healthy running), open existing simulated
EBI signals, save the current simulated EBI signals, and exit the simulator.

b) is the measured and cleaned ICG signal,

c) is the modelled ICG signal by means of Fourier series method,

d) is the measured and cleaned IRG signal,

e) is the modelled IRG signal by means of Fourier series method.
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Figure 4.20 End-user graphical interface of the BISS simulator with the signals
simulated for the “healthy person while running” state.

The cardiac amplitude in BISS, Figure 4.20 (f), is based on the systolic and diastolic
activities in order to imitate the real phenomena of the heart.

If the heart rate increases, the amplitude of the ICG decreases and the diastole period
also decreases. If the heart rate decreases, the amplitude of ICG increases and the
diastole period also increases. A small variation is also introduced in systolic activities
as per cardiovascular phenomena. The ICG signal is continuously moving in time and
the ICG signal simulated where modulation is introduced with each cycle in amplitude
and frequency.

As previously discussed in this section, the signal model parameters can also be
directly configured by the advanced user.

In order to imitate the real phenomena, signal modulations are included in BISS.
The ICG amplitude modulation range is £25% and the frequency modulation range is
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+5%, depending on the heart rate. This makes cycles different from each other.
Similarly, modulation is also introduced for respiration (IRG) amplitude (£50%) and
frequency (£10%). Medical doctors confirmed these modulation ranges as realistic.

The IRG signal is continuously moving in time and the simulated IRG signal, where
modulation is introduced with each cycle.

The respiration rate is correlated to the cardiac heart rate by means of a ratio.
The default ratio is taken at 5:1 (5 cardiac cycles for 1 respiration cycle). Nevertheless,
the end-user can control the respiration rate as well.

Furthermore, in Figure 4.20, h) is the noise generator, i) the recorded artefacts
caused by motion (in this example, by swinging the arm during the measurement)
randomly moving in the defined time window, j) the simulated EBI signals model based
on the end-user’s entered parameters, k) the detailed summary of the simulated EBI
signals model, and 1) buttons that let the end-user save the simulated EBI signals, open
existing simulated EBI signals, clear all the simulated model signals and start again, and
exit from BISS’ GUI environment.
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4.4 Generic Framework for Modelling
the Bio-Impedance Information

This section shows how the generic framework has been implemented, as an
example, for the EBI case described previously. The generic framework is proposed in
Chapter 3 (Figure 3.2); it provides guides on how to measure the EBI data from the
subject, how to process to clean the measure EBI signals in order to achieve the ideal
(template) of ICG and IRG signals, and how to build signal models for ICG and IRG
signals.

The signal model approach is discussed in Section 4.2. It is required to have a
corresponding simulator; in this work, the simulator is actually built, as discussed in
detail in Section 4.3.

As an example, the flow diagram of the process to implement for the EBI case is
depicted in Figure 3.2. The flow guides the advanced user step by step with the help of
predefined diagrams to model the ICG and IRG signals and develop a corresponding
BISS.

Each diagram has specific criteria and requirements that must be kept in mind while
following the steps of the flow diagram.

In the first step (in Figure 3.2), a human was selected as a subject.

In the second step, the thorax area of the subject was selected as the data source of
interest.

In the third step, the interest is how to measure the ICG and IRG signals, heart rate
(HR), and respiration rate (RR) of the human (selected subject). Thus, the EBI
measurement method had been selected; in the fourth step on the EBI measured dataset,
filtering method was applied to clean the data and attenuate unwanted signals.

Then, after cleaning the EBI signal, namely its [CG and IRG signal components, in
the fifth step, the ICG and IRG signals are modelled with the help of Fourier series
(see Section 4.2.1) and the corresponding simulator, namely BISS, is built
(see Section 4.3).

In the sixth, final step, the EBI signals simulator is developed, which has an
application to simulate the EBI signal to evaluate the performance of separation
algorithms. However, the simulator (BISS) could be used for teaching and training for
the engineering, health science, and medicine students.
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4.4.1 Implementation of the Proposed Novel Generic Framework for
the Development of the EBI Signal Simulator

In this section, each step in the flow of the framework is described in detail to
develop an EBI signal simulator.

Description of the Biological System/Object (Step 1)

The first part — the biological system or object (subject) — is presented in Figure 4.21.
It is divided into three sub-systems, which represent the three main systems of the body,
namely the cardiovascular, the respiratory, and the muscular systems.

Each system is described through its parameters. The relationship between the
parameters is shown in the form of arrows connecting them with each other, mainly
within the same system but some of them are also connected with the parameters, which
belong to one or both of the two other systems.
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Figure 4.21 Block diagram of the relationship of parameters for the three main systems
of the organism (cardiovascular, respiratory, and muscular).
The parameters of greatest interest are highlighted.
The details of the individual parameters are discussed in Section 3.2.1 of Chapter 3.
Here, the interest was how to measure HR, RR, and the ICG and IRG signals from the
selected subject.
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Selection of the Data Source of the Interest (Step 2)

The second diagram (Figure 3.2) is divided into three sub-diagrams. Each sub-diagram
is discussed, which is shown in Figure 4.22.

| Selection of desired physiological parameters |e

Objective
Selected set of physiological parametersW T2 i e [ETR o]
RR of physiological parametrers

Selection of physiological parameters according to their measurability L

|
2 1
|
|
|
ISelected:etaf ble physiological p W
|
|
7 1

Selection of physical measurable physiological parameters
according to expected fidelity

Objective
Measurable HR and RR of
physiological parametrers

Selected set of measureable physiological paramters
L according to expecte fidelity

[ 5]

Selecting of the Data
Source of the Interest

Yes Are selected physiological

parameters as per requirement ?

Figure 4.22 Flow diagram for selection of the data source of the interest.
The red box shows the specific parameters of interest,
which are selected by the advanced user for this example.

In this diagram, the objective is to select the desired physiological parameters for
further use from the full set of physiological parameters, which come from the selected
subject area of the thorax. The physiological parameters of interest are HR and RR.
The HR and RR are directly measurable.

Based on the selected area of the thorax, it is assumed that strong variations of
the ICG and IRG signals can be obtained, and thus that it is possible to measure the
physiological parameters HR and RR.

After selecting the source of data and acquiring the EBI dataset and physiological
parameters, it is necessary to be sure that these selected physiological parameters are as
per needs.
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Measurement of Parameters (Step 3)

The third diagram (Figure 3.2) is divided into four sub-diagrams. Each sub-diagram
is discussed below, which is shown in Figure 4.23.

Selected source of the data
(B ——
| Spot location and size of sensors — 1
Z 3M disposable surface EMG/ECG silver/silver chloride electrodes \*\————’/ |
95 EI Spolt located sensors Objective
Worn the 16-electrodes’ belf on the
= E | Time (state/condition and duration) @ i i !
= = % 7 2 1 e T orax of human (subject). I
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=t |,
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E 5 Measurement method — I 3
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i‘: E | Selected method and measured damW N sel {1 EBI ement method |
o
= = 1 Measured location and time dependent signals/data |
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I Full set of physiological I
e e e - = s
No

Are measured set of physiological
parameters, as per requiremeit ?

Figure 4.23 Flow diagram for measurement of parameters of interest.
The red box shows the specific configuration of electrodes and measurement method,
which are selected by the advanced user for this example.

In this step, the objective was to select the configuration of electrodes and select the
type of electrodes.

It was decided to use the non-invasive EBI measurement method to acquire the EBI
data from the subject with a different configuration of electrodes.

For acquiring the EBI dataset, a 16-electrode configuration belt was used, which was
worn on the human thorax area and 3M disposable surface EMG/ECG/silver/silver
chloride electrodes were chosen to measure the physiological parameters, namely HR,
RR, and the ICG and IRG signals.

After deciding the parameters for all these sub-diagrams, the EBI data, which is
location and time dependent, can finally be measured.
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Data Cleaning (Step 4)

The fourth diagram (Figure 3.2) is divided into two sub-diagrams. Each diagram is
discussed below, which is shown in Figure 4.24.

Measured EBI signals of interest

T e e e e el
|

I Preprocessing (data cleaning)
a0 (Clean ICG and IRG signals) Objective:

Used Fillering fo clean the

Data is scalled, conditioned and cleaned measured EBI signals

Processing
(Measured Selected Physiological Parameters)

Objective:
Extract the required feature from
cleaned ICG and IRG signals

I R ———
Features are extracted from

Is information extracted as
cleaned ICG and IRG signals

No per requirement ?

Figure 4.24 Flow diagram of data cleaning.
The red box shows cleaning of the ICG and IRG signals and extracting the feature
from the cleaned signals.

In this diagram, the pre-processing was performed to clean the ICG and IRG signals.
The pre-processing includes EBI signal normalization (scaling), conditioning and
filtering to attenuate useless parts of the signal.

After pre-processing the EBI signal, further processing is performed to extract
the features from the clean ICG and IRG signals, such as the waveform and trend of the
ICG and IRG signals.

On this point, careful visualization of the ICG and IRG signals’ waveform
representation with the ideal ICG and IRG signal waveform templates is required.
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Modelling and Building a Simulator (Step 5)

The fifth diagram (Figure 3.2) is divided into two sub-diagrams: modelling of the
signals and building a corresponding simulator, as discussed below, which is shown in
Figure 4.25.

Back to block 4 or 3 or 1

Modelling of the signals
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Building of a Sjmulator
\ Z
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e
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g
S
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S
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Modelling and Simulating
Is the problem in step 5 ?

HHHHH Are dataset: delled and simulated as per user requirement ?
No
Simulated EBI signals “HHHHH Yes
No Is it required EBI signals
simulator application ?

Figure 4.25 Flow diagrams for modelling the ICG and IRG signal parameters
based on Fourier series and building a corresponding simulator (BISS).

In the diagram, the signals are modelled based on the clean features of the extracted
ICG and IRG signals. The Fourier series method was chosen among other curve-fitting
methods to model the ICG and IRG signal parameters. The Fourier series is discussed
above in Section 4.2.1.

The corresponding simulator, namely BISS, is built based on the ICG and IRG
signals’ modelled parameters.
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Applications (Step 6)
The sixth diagram (Figure 3.2) is the application, which is shown in Figure 4.26.

Simulated EBI signals (3

Evaluations of Applicability

Figure 4.26 Diagram of the Electrical Bio-Impedance (EBI) application.

Finally, an application (BISS) which simulates the EBI signal is developed.

BISS can be a useful tool to simulate the EBI signals in order to evaluate the
performance of signal processing algorithms, e.g. those for separation of cardiac and
respiratory signals. Thus, the proposed approach can increase the level of confidence
when applying the developed algorithms to real measured EBI data.

However, BISS could also be used for teaching and training in physiological courses
for engineering and health science students, as it can provide a hands-on means for the
students to understand the complicated physiological phenomena.
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4.5 Summary of the Chapter

This chapter discussed the implementation of the framework, the experimental
results related to the modelling of the ICG and IRG signals, and the developed
corresponding simulator.

The EBI measurement method was selected to measure the human thorax area to
record EBI datasets in order to model the ICG and IRG signals because impedance is
one of the prospective methods in non-invasive methods.

Therefore, this chapter firstly described how a Zurich Instrument HF2IS Impedance
Spectroscope was used to measure the EBI (datasets).

The measured EBI data were cleaned to extract the ICG and IRG signal waveform
features. The cleaning was performed with the help of a filtering method (high-pass and
low-pass filters).

Then, three curve-fitting methods, namely polynomial, Fourier series, and sum of
sines models were evaluated based on six EBI datasets (four measured EBI raw datasets
and two cleaned (ICG and IRG signals)).

The evaluation criteria were to obtain the best fit both visually and by means of
statistical parameters that were evaluated in terms of the minimization of the error (SSE),
high correlation between data and model (R-Square), as well as short execution time.

Based on our evaluated results and generally speaking, the three models perform
very well but Fourier series performs the best among them.

Thirdly, building on the Fourier series model, BISS has been developed to simulate
the EBI signals.

BISS gives the end-user the freedom to simulate EBI signals as per his/her needs for
further analysis. Nevertheless, predefined states are included in BISS. The simulator
imitates the real phenomena of ICG and IRG signals, and thus the EBI simulated signals
could be used to evaluate the performance of separation algorithms, for example. However,
the developed BISS could also be used for teaching and training purposes.

The proposed generic framework has been implemented for the case of EBI as an
example.

The framework guided the steps ranging from measuring the EBI data from the
subject, the cleaning process for the measured EBI data to achieve the ideal ICG and IRG
signals, and finally, based on that, to the developed corresponding simulator (BISS).
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S. CONCLUSIONS

At the beginning of my PhD studies, my research was focused on developing
an efficient and robust algorithm to separate the cardiac and respiratory signals from an
electrical bio-impedance signal. The separated signals could then be analysed by
cardiologists to understand the conditions of the heart and lungs.

With respect to this problem, different approaches and methods, namely
conventional filtering, independent component analysis, principle component analysis,
wavelet, etc. were analysed, tested, and tried in order to solve the problem.

During the first part of my research (Papers III and V), it has been understood what
the mechanisms for the separation algorithms are and how to evaluate them. In
particular, these papers illustrated that it is not possible to evaluate the performance of
the algorithms directly from measured data, because the parameters and waveform of
the measured signals are uncertain, i.e. the cardiac and respiration signal parameters and
waveform vary depending on the configuration of the electrodes, for example, and are
subject to measurement errors.

The understanding and results of the first part of the research summarized above led
to development of a signal model that can imitate the real phenomena of the cardiac and
respiratory signals. The modelled signals could then be used for evaluating the
performance of various signal processing algorithms, including separation algorithms.

Based on measured and cleaned extracted signals, the impedance cardiography
(ICG) and impedance respirogram (IRG) signals have been modelled and a
corresponding bio-impedance signal simulator (BISS) has been developed to simulate
electrical bio-impedance (EBI) signals for evaluating the performance of various signal-
processing algorithms on such signals.

In order to guide the development of the above signal models and simulator,
a significant part of this PhD work focused on developing a physiological parametric
framework for modelling measurable bioelectrical information and implement this
parametric framework with a pragmatic approach on the bio-impedance example. Thus,
in this study, a novel generic framework has been proposed for modelling the
bioelectrical information and was then implemented for the case of EBI as an example.

From the author’s point of view, the following tasks and results have been conducted
and achieved, respectively:

a) An analysis of the existing impedance thorax models and origin of the ICG signal
has been carried out in order to potentially identify and use one of the models to
generate the required cardiac and respiratory signals for further experiments.
The analysis shows that, to the best of my knowledge, none of the models provides
sufficiently accurate cardiac and respiratory signals to develop the ICG and IRG
signal models (Chapter 2).

b) A review has been performed regarding the ways in which other researchers
approach the problem to build a signal model for cardiac and respiratory signals;
the review also explains why these methods are not suitable in solving our
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d)

g)

h)

problem. This is mostly because other researchers used either a simple method, i.e.
one which does not model the signal realistically, a method lacking a mathematical
signal model, or a method is which computationally expensive (Chapter 2).

From this study, it is concluded to be preferable to model the cardiac (ICG) and
respiratory (IRG) signals based on measured EBI data rather than relying on
measured data only (Chapter 2).

The developed models based on measured clean ICG and IRG signals are better
than the ICG and IRG signal models based on existing thorax models.
The measured clean ICG and IRG signals imitate the real phenomena of the signals
sufficiently accurately (as per the selected statistical measures) (Chapter 2,
Chapter 4).

A novel generic framework for modelling the bioelectrical information is proposed.
The framework provides a pathway between biological systems and bioelectrical
applications. This is the unique approach that such a framework is proposed
(Chapter 3).

The generic framework described in Chapter 3 is used to implement a practical EBI
application (Chapter 3 and Chapter 4).

Three curve-fitting models, namely polynomial, Fourier series, and sum of sines
models, were evaluated based on six EBI datasets (four measured EBI raw datasets
and two cleaned (ICG and IRG signals)). The evaluation criteria were to obtain the
best fit both visually and by means of statistical parameters that were evaluated in
terms of minimization of error (SSE), high correlation between the data and model
(R-Square), as well as short execution time. Based on our evaluated results and
generally speaking, the three models perform quite well but the Fourier series
performed best among them (Chapter 4).

Building on the Fourier series model, BISS has been developed to simulate the EBI
signals. BISS gives the end-user the freedom to simulate the EBI signal as per
his/her needs for further analysis. Nevertheless, predefined states are included in
BISS. The simulator imitates the real phenomena of ICG and IRG signals, and thus
the EBI simulated signals could be used to evaluate and assess the performance of
separation algorithms, for example. However, the developed BISS could also be
used for teaching and training purposes.

Based on the results summarized in a), b), and c), it is concluded that the proposed

bio-impedance signal model imitates the real ICG and IRG phenomena and is more
realistic than existing approaches. This is the second main contribution of this thesis
(Section 1.5-b).

Moreover, based on the results presented in d) and g), it is concluded that out of

the three regression models for modelling the ICG and IRG signals, the Fourier series
offers the best results for modelling the ICG and IRG signals. This corresponds to the
third main contribution of this thesis (Section 1.5-¢).

Furthermore, based on the results listed in €) and f), it is concluded that the proposed

framework provides a pathway between biological systems and bioelectrical
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applications by means of steps, including the measurement of the bioelectrical data
from the subject, the cleaning process for the measured bioelectrical data, and
the development of the corresponding simulator. This is the first main contribution of
this thesis (Section 1.5-a).

Finally, based on the results enumerated in h), it is concluded that the novel BISS
EBI signal simulator implements the developed signal models and imitates the real I[CG
and IRG signals phenomena. BISS also gives the end-user the freedom to simulate EBI
signals as per his/her needs. This corresponds to the fourth main contribution of this
thesis (Section 1.5-d).

The following paragraphs discuss possible improvements and directions for future
research work.

Directions for further research include:

a) Currently, the implementation of BISS is focused on the simulation of the EBI
signals and thus only EBI signals are modelled (namely ICG and IRG signals);
however, BISS could be extended to other methods of bioelectrical information, such
as Foucault Cardiography (FCG), Opto-Electronic Plethysmography (OEP),
Electrical Impedance Tomography (EIT), and so on. This would require modelling
the signals used in that method (e.g. cardiac and respirogram in the Foucault method)
and integrating them in BISS. For this purpose, the proposed generic framework
would provide valuable guidelines about the different steps that need to be
undertaken to measure and model the signals, as well as for building the
corresponding simulators.

b) To relate the variations observed in the generated EBI signal to the actual
physiological phenomenon, e.g. the relation between the model coefficients and
parameters and the states/activities of the subject. This would require extensive study
of the dynamics of the physiological phenomena, which is a very complex task
requiring deep knowledge of the human physiology.

¢) BISS could be advanced by adding extra functionalities to calculate physiological
features such as stroke volume (SV) and cardiac output (CO) from the simulated EBI
signals.

d) In the current implementation, the states are focused on healthy resting, standing,
walking, and running. However, by repeating the steps described in the framework,
it would be relatively easy to add other states (e.g. for someone with a heart
condition) to the simulator. This would require acquiring dataset(s) from either new
measurements or existing databases.
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Development of a Bio-Impedance Signal Simulator on the Basis of the Regression
Based Model of the Cardiac and Respiratory Impedance Signals
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Abstract—A software implemented bio-impedance signal
simulator (BISS) is proposed, which can imitate real bio-
impedance phenomena for analyzing the performance of
various signal processing methods and algorithms. The un-
derlying mathematical models are built by means of a curve-
fitting regression method. Three mathematical models were
compared polynomial, Fourier series and sum of sine waves
with four different measured impedance cardiography (ICG)
datasets and two clean ICG and impedance respirography
(IRG) datasets were taken as the basis of the signals. Statisti-
cal analysis (sum of squares error, correlation and execution
time) implies that Fourier series is best suited. The models of the
ICG and IRG signals are integrated into the proposed simulator.

In the simulator the correlation between heart rate and
respiration rate are taken into account by means of ratio
between them (5:1 respectively).

Keywords— Regression based model, Signal Simulation
and Modeling, Electrical Bio-Impedance, Impedance Cardi-
ography, Respiratory Signal.

. .INTRODUCTION

Impedance cardiography (ICG) measurement has been
offered as a cost effective and noninvasive method for
monitoring haemodynemical parameters. The time variant
part of the bioimpedance (BI) phasor reflects processes in
patient physiological state since some changes in BI can
be caused by normal activity or pathological reasons [1, 2].

Extracting information from impedance signals for di-
agnosing diseases and assessing heart function is essential
for exploiting this method.

Working on real signals can be difficult; it is desirable
to provide a simulation tool to enable simulation and con-
trol of such signals for analyzing the performance of vari-
ous signal processing methods such as cardiac and respira-
tory separation algorithms, e.g. independent component
analysis (ICA), adaptive filtering, ensemble averaging, and
spectral methods [3, 4].

Modeling of the ICG signal has captured the interest of
several researchers in the past few years, using different
approaches such as described in [4, 5, 6].

In [4], Krivoshei proposed a simple bio-impedance sig-
nal synthesizer to generate cardiac and respiratory signals.
The author used a piece-wise linear triangular function to
model the cardiac signal and a trapezium to model the
respiratory signal. The model, however, is too simple to
fully imitate the cardiac and respiratory signals, and thus
does not allow testing e.g. separation algorithms.

Kersulyte et al. [5] proposed a cardio model based on
the sum of exponential functions. The purpose of their

© Springer International Publishing Switzerland 2015

work was to find out a model for cardio signals as precise
as possible and compare complexity parameters of the real
signals and that of the model for both healthy and sick
persons. They compared two function types polynomial
and sum of exponentials. Their results indicate that both
methods lead to similar results in terms of fidelity; howev-
er, the authors also indicate that the polynomial equation
depends on the signal length and number of intervals,
which could lead to too many coefficients and increased
computational requirements for complex signals.

In [6] Matusek et al. proposed a cardiac signal model
based on a series of real signals. By filtering and averaging
the series of real signals, they estimated one average ICG
signal cycle and simply replicated this cycle over time to
get the final signal model. One limitation of this approach
is that it lacks a mathematical model and thus the user
cannot easily change the parameters of the model.

Given the limitations of the above works, it was decid-
ed to compare the suitability of three mathematical models
(polynomial, Fourier series, sum of sine waves) by means
of Matlab’s Curve Fitting Toolbox.

1. MopELING THE ICG AND IRG SIGNALS

The impedance cardiography and impedance respirog-
raphy (IRG) signals are nearly periodic signals that can be
approximated through various mathematical models. In
this study, first were evaluated ten models, which are
available in the toolbox and found out that three of these
gave the better results, namely polynomial, Fourier series,
and sum of sine waves. Then these three models were
applied on four measured ICG datasets and two clean ICG
and IRG datasets for evaluation and comparison purposes.
What follows briefly describes the electrical bio-
impedance (EBI) measurement procedure and then dis-
cusses each model separately.

A. EBI Measurement Procedure

The datasets were obtained using multiple pairs of elec-
trodes with different electrode configurations. The EBI
measurement electrode setup is shown in Figure 1.

b) Numbers of Sixteen
electrodes around the
object chast

a) Placementof
Sixteen electrodes

- ~
- Each electrode

=X e b=
el \ bas 6 em distance "% %

Fig 1. Sixteen electrodes configured belt, which is used for the EBI
measurement procedure [2].
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Such type of electrodes’ setup is presumed to allow
raising strong enough variations of the EBI in order to
record the cardiac and respiration signals, which are
caused by the heart and lungs. Further details about
the EBI measurement setup can be found in [2].

The measured datasets are obtained from a healthy male
subject aged between 40 and 50 years, in a seated position.

The total EBI dataset was divided into three different
segments. Each segment contains 10 seconds of the total
EBI raw data, about 10,000 samples. Accordingly, the
structure of the three segments is as follows:

a) cardiac only (breathing was held),

b) cardiac + respiration (deep breathing),

c) cardiac + respiration + motion artefacts (normal

breathing with added motion artefacts).

In what follows, the four ICG datasets correspond to b)
and the clean ICG and IRG datasets correspond to filtered
versions of a) and b), respectively.

B. Models and Evaluation Method

a) Polynomial Model

Polynomials are well suited for cases where a fairly
simple empirical model is needed; they can be used for
interpolation or extrapolation to characterize data by
means of a global fit. The general polynomial model for-
mula is given in Equation 1:

— yn+1
Y=

i=1 Pi (1)
where 7 is the degree of the polynomial (highest power of
the predictor variable), n+/ is the order of the polynomial
(number of coefficients), p; are the coefficients and ¢ is time.

In this work, the polynomial model was evaluated for degrees
1 to 9 for the different datasets; degree 9, which is the highest
order available in the toolbox, gave the best suitable results.
The comparative results are shown in Table 1 and Figures 2 & 3.

tn+1—i

b) Fourier Series Model

The Fourier series is a sum of sine and cosine functions
that describes a periodic signal. The model formula is
given in Equation 2:

y = ay+ Y-, a; cos(iwt) + b;sin(iwt) ?2)
where a, is the intercept, which is constant term in the data, @
is the fundamental frequency and » is the number of terms in
the series. The model was evaluated with 1 to 8 terms for the
different ICG datasets; the best suitable results were obtained
for the degree of 8, the highest available in the toolbox. The
comparative results are shown in Table 1 and Figures 2 and 3.

c¢) Sum of Sine Waves Model
This model consists of a sum of sine terms only. The
model formula is given in Equation 3:

y = X sin(iot + ¢;) 3)
where a is the amplitude, o is the frequency, c the phase, which
is constant for each term and 7 is the total terms in series.

The model was evaluated with 1 to 8 terms for the dif-
ferent datasets; 8 terms (the highest available in the
toolbox) gave the most suitable results. The comparative
results are shown in Table 1 and Figures 2 and 3.
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d) IRG Signal with Polynomial, Fourier Series and Sum
of Sine Waves Models
Following the same approach as for the ICG signal, the
IRG clean dataset is also modeled with the polynomial,
Fourier series and sum of sine waves methods. The compar-
ative results are shown in Table 1 (Clean IRG) and Figure 3(c).

C. Statistical Parameters

The performance of the three modeling methods is
evaluated by means of the following fit measures.

a) Sum of Squares Error (SSE)
The SSE statistic assesses the total deviation of the data
values from the fitted model, as expressed in Equation 4:

SSE = ¥iawy (i — yi)z 4)
where 7 is the number of data points, y; is the response data,

andy; is predictor data. SSE values close to 0 indicate that
the model is fitted well and has a very small random error [7].

b) R-Square

R-Square measure is the square of the correlation be-
tween the data and the fitted model values. A value close to 1
shows a greater correlation between the data and the model
whereas a value close to 0 shows a poor correlation. It is
determined as the ratio of the sum of squares of the regression
(SSR) and the total sum of squares (SST), where SST =SSR +
SSE. The R-square measure is given in Equation 5 [7]:
SSR _ SSE

R-square = =
SsT ssT

(%)
c¢) Execution time

The execution time is measured through Matlab stop-
watch functions (tic, toc) and reported in Table 1.

. EXPERIMENTAL RESULTS

Table 1 and Figures 2 and 3 show the fit of the three
models with the various datasets. Generally speaking, the
three models provide a reasonable fit across the four da-
tasets: the average SSE value is 0.879¢-07, the min and
max values are 0.161e-07 and 1.9417¢-07, respectively

Similarly, the average R-square value across the four
datasets is 0.9762, the min and max values are 0.9512 and
0.9936, respectively.

The Fourier series model minimizes the error (average
SSE=0.335¢-07) and has also a high correlation across the
four datasets as compared to the other models. However, it
took 1.275 more seconds to execute as compared to the
polynomial model; it is nevertheless much faster (by
44.476 seconds or nearly 10 times) than the sum of sine
waves model.

In this study, the most suitable results were obtained
with eight terms for the Fourier series model, which gives
18 coefficients. For the polynomial model, we set the
degree to 9, leading to ten coefficients. It is preferable to
limit the number of coefficients for relating them to the
patients’ condition. However, this has to be traded-off for
a lower fit, as shown in Table 1.
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Table 1. Evaluation Criterions Results for the Modeled Signal

Datasets Sum 0fs11;z¥;wes @4 Fourier (18 coeff) Polynomial (10 coeff)
SSE R-Sq SSE R-Sq SSE R-Sq | SSE Avg | SSE Min SSE Max | R-SqAvg
Dataset 1 1.0424e-07 | 0.9917 | 0.1612¢07 0.9987 | 1.2270e-07 | 0.9903 [0.810e-07| 0.161e-07 | 1.23e-07 | 0.9935
Dataset 2 0.9044e-07 | 0.9875 | 0.1786e-07 | 0.9976 | 0.3050e-07 | 0.9959 [0.463e-07| 0.179e-07 | 0.904e-07 | 0.9936
Dataset 3 1.9417e-07 | 09274 | 0.6476e-07 | 09758 | 1.3185e-07 | 0.9506 [1.326e-07| 0.6476e-07 |1.9417¢-07| 0.9512
Dataset 4 0.8054¢-07 | 0.9714 | 0.3506e-07 | 09876 | 1.6683e-07 | 0.9409 [0.941e-07| 0.3506e-07 |1.6683¢-07| 0.9666
SSE Avg, R-Sq Avg | 1.17e-07 | 0.970 0.335e-07 0.9758 1.13e-07 0.969  [0.879¢-07 0.9762
SSE Min, R-Sq Min | 8.05e-08 | 0.161 0.161e-07 0.9758 0.305e-07 | 0.941 0.161e-07 0.9512
SSE Max, R-Sq Max | 1.94e-07 | 0.9917 | 0.648¢-07 0.9987 1.67e-07 0.996 1.9417e-07| 0.9936
Clean ICG Signal with different scale
Clean ICG [ 01996 09994 [0.0611 [0.9999 2.8229 [ 09937 [1.0279 [0.0611 [2.8229 [ 0.9959
Ex. Time (s) | ~49.170 ~4.694 ~3.419 | | |
Clean IRG Signal with different scale
Clean IRG [7896.1¢-07 |1 [2890.6e-07 1 [19.5782 [ 09983 [6.5264 [2890.6e-07 [19.5782 | 0.9994

Regarding the difference between the polynomial and
the sum of sine waves models, it can be seen that for Da-
tasets 2 and 3, the polynomial model minimizes the error
(0.3050e-07 and 1.3185e-07, respectively) and is highly
correlated with the datasets (0.9959 and 0.9506, respec-
tively). On Datasets 1 and 4, the sum of sine waves model
minimizes the error (1.0424e-07 and 0.8054e-07, respec-
tively) and is highly correlated (0.9917 and 0.9714 respec-
tively) with the datasets. However, 8 terms were used for
the sum of sine waves model, which gives 24 coefficients
(versus 10 for the polynomial model) and a much longer
execution time.

For the clean ICG and IRG datasets, the Fourier series
model performed very well among all to minimize the
error (0.0611 and 2890.6e-07, respectively) and is highly
correlated (0.9999 and 1, respectively) with the datasets. It
is followed by the sum of sine waves model, which has the
second minimum error (0.1996 and 7896.1e-07, re-
spectively) and high correlation (0.9994 and 1, respec-
tively) but also has a larger number of coefficients (24)
and larger execution time (49.170 seconds) as compared to
the polynomial model.
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Fig 2. Measured datasets (solid-lines) and fitted models (dotted-lines) for three EBI datasets:

a) results of fitting of the EBI dataset 1, b) results of fitting of the EBI dataset 2, c) results of fitting of the EBI dataset 3.
Results for the sum of sine waves model are presented without offset, results for Fourier series model are offset by 0.05x10
and results for Polynomial model are offset by 0.1x107.
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Fig 3. Measured (a) and cleaned (b, c) datasets (solid-lines) and fitted models (dotted-lines) for other three EBI datasets:

a) results of fitting of the EBI dataset 4, b) results of fitting of the cleaned ICG dataset 5, c) results of fitting of the cleaned IRG dataset 6.
Results for the sum of sine waves model are presented without offset, results for Fourier series model are offset by offset a) 0.05x107, b) offset 0.5, c)
offset 1.5) and results for Polynomial model are offset by (a) 0.1x107, b) 1, ¢) 3].

1v. THE BIOIMPEDANCE SIGNAL SIMULATOR (BISS)

This section describes how the Fourier series model was
included in our Bioimpedance Signal Simulator (BISS).

As shown in Figure 4, the simulated bio-impedance
signal is generated by summing the ICG signal (Saz icq),
artefacts (Sarefacts), @ White Gaussian noise (Syoise) and the
IRG signal (Saz 1rg) such as:
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6

The BISS’ GUI is shown in Figure 5, where a) is the menu used
to perform different operations such as loading different datasets
(ICG/FCQG) to simulate the signal, saving the final generated EBI
signal model for further processing and exiting from the BISS
environment, b) a recorded clean ICG period, ¢) a period of the
ICG signal model, d) a recorded respiration period ) a period of
the IRG signal model f) the continuously simulated ICG signal.

SeBi) = Saz1c6 + Sartefacts T Snoise T Saz rG
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Bio-Impedance Signal Simulator (BISS)
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Fig 5. User Interface of the Bioimpedance Signal Simulator (BISS).
The heart rate, time scale, respiration rate, noise and atefacts amplitude parameters are user-Controlled

In order to take the real phenomena of BI signals into
account, a random modulation is introduced with each
cycle (amplitude +25, frequency +5). Moreover, the user
should specify the heart rate in beats/min and time win-
dow. g) is the continuously simulated respiration signal
where a random modulation is introduced with each cycle
(amplitude +50, frequency £10).

The respiration rate is correlated to the cardiac heart rate
by means of the ratio. The default ratio is 5:1 (5 cardiac cy-
cles for 1 respiration cycle). Nevertheless, the user can con-
trol the respiration rate as well. h) is the noise generator, i) the
recorded artefacts caused by swinging the arm during the
measurement (randomly moving in the defined time window,
j) the generated bio-impedance signal model based on the
user entered parameters, k) the detailed summary of the gen-
erated bio-impedance signal model and 1) buttons that let the
user clear all simulated model signals and start again, save
the EBI signal model and exit from BISS’ GUI environment.

Figures 5 f), g), h) and i) illustrate the effect of the user-
controlled parameters such as time scale window, heart rate (b/m),
respiration rate (b/m), noise amplitude and artefacts amplitude.

v. CONCLUSIONS

The polynomial model is relatively simple, but it does
not provide the best results for our application. The sum of
sine waves model produces better results than the poly-
nomial one, but is less suitable than the Fourier series one
because it has a higher number of coefficients, higher SSE
values, lower R-Square values, and higher execution times.

Overall, the Fourier series model fits with the measured
datasets very well, minimizes the error and has high correla-
tion values as compared to the two other models; only its
execution time is slightly higher than that of the polynomial
model.

Furthermore, the correlation between the heart rate and
the respiration rate is implemented by means of a ratio (de-
fault 5 ICG cycles for 1 IRG cycle).

Finally, the user can enable the insertion of the recorded
artifact in the final EBI model.

Nevertheless, the resulting simulated signal does not
model all aspects of the real bioimpedance data yet. Thus,

IFMBE Proceedings Vol. 48

future work will refine the model by means of piece-wise
segmentation of the datasets for finer grain curve-fitting
while maintaining the number of coefficients to the re-
quired minimum for reflecting the pathological conditions
(i.e. not necessarily 24, 18, and 10 as shown in Table 1).

The Starling’s and Poiseuille laws will be taken into account
in the model to reflect the systolic and diastolic phenomena
respectively.
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Abstract—This paper presents our work in the search for a
realistic thorax impedance model that is suitable for the
simulation of an impedance cardiography (ICG) signal model.
The developed ICG signal model would be useful to evaluate
the performance of e.g. algorithms for the separation of cardiac
and respiratory signals. Five different impedance models of the
thorax were studied to evaluate their suitability with respect to
the development of the ICG signal model. We found out that
none of the models would be accurate enough to imitate the real
human thorax phenomena in the context of ICG. In addition,
we also reviewed the generation of (bio-) impedance signal in
order to understand the origin of the ICG signal waveform. It
is found that although a consensus exists in the scientific
community, several researchers have expressed doubts about
the generally admitted origin of impedance signal waveform.
The present study concludes that the ICG signal model could
be mathematically derived from measured electrical bio-
impedance (EBI) data obtained with a specific electrodes
configuration.

I. INTRODUCTION

The measurement of thoracic electrical impedance has
been practiced since the 1930s. As a measurement technique,
the impedance method is generally viewed as a promising
non-invasive method for measuring cardiac output (CO) [1]
and other physiological and biological parameters.

Nevertheless, the anatomical structure of the human
thorax is very complex and its electrical properties are related
to anisotropic and inhomogeneous structures in it [2].

The formation of the ICG waveform is essential for
understanding the physiological activities and anatomy of the
human thorax as well as the origin of the ICG signal. In the
formation of the impedance signal, each organ and tissue
makes its contribution [3]. Several methods have been used
to understand the origin of the ICG signal [4] and relate it to
physiological activities. The main obstacle in cardiovascular
impedance measurement is the incapability to precisely
associate the measured impedance waveforms to the original
mechanical and physiological activities of the heart and
following blood volume changes (ABV) happening in it [3].

This research was supported by the European Union through the
European Regional Development Funding in the frames of the research
center CEBE and the competence center ELIKO, the Estonian Ministry of
Education and Research (Institutional Research Project TUT19-11) the
Found. Archimedes ESF DoRa and Estonian Science Found. Grant (9394).

Y. M. Mughal, P. Annus, M. Min and R. Gordon are with Thomas
Johann Seebeck Department of Electronics, Tallinn University of
Technology, Ehitajate tee 5, Tallinn, Estonia. (email: yar@elin.ttu.ce
phone: +37258026086) and also with the competence center ELIKO.

In order to determine the variations from basal impedance
(Zy), one can detect the resistivity variations in the thorax (or
construct a model of it) from the potential of the ICG leads
field that can be obtained by changing the conductivity
values of the thorax or constructed model [3].

This study focuses on the selection of a thorax impedance
model suitable for generating an ICG signal model. In
principle, the signal model development could be based on
existing selected thorax impedance model or measured
electrical bio-impedance (EBI) data.

In this paper, five thorax impedance models and the
origin of the ICG signal waveforms are discussed with
respect to the ICG signal model development.

Such ICG signal model could be used to evaluate the
performance of e.g. algorithms for the separation of cardiac
and respiratory signals instead of relying on measured EBI
data, which have been shown to be impractical [5].

II. IMPEDANCE MODELS OF THE THORAX

The existing impedance models vary from the simplest
(e.g. two or more compartments) ones to the 3D model of the
thorax. They were studied to evaluate their suitability for
developing a realistic ICG signal model that is as accurate as
possible.

A. Simplified Model of the Thorax

This is a very simplified thorax model in which the thorax
is considered to be divisible into two parts: tissue (4;) and
fluids (4,). The parts are characterized by area A4 of the cross-
section of each, as depicted in Fig. 1. This model was
developed to find the relationship between change in blood
volume (4BV) and impedance change (4Z). The following
equation was found to describe this relationship [2]:

dv, = pyl%/2%dZ (1)

where d,;, is the change of blood volume, p, is the resistivity
of blood, / is the distance between the measurement
electrodes, Z is the thorax impedance, and dZ is the
impedance change.

Figure 1. A simple thorax’s cylindrical model, which contains a
uniformly distributed blood and tissue compartments for determining the
net torso impedance [2].
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B. Ideal Cylindrical Models

The cylindrical models can have one- or two-
compartments. The one- and two- compartment cylinder
models are depicted in Fig 2(a-b). The cross sectional area of
the ideal cylinder models may be elliptic, circular, or could
have any plane [6].

I

L &
v/ b)

Figure 2. Ideal Cylindrical Models [6]:
a) One-compartment cylinder model, b) Two-compartment cylinder model

In the simple cylindrical model, the thorax is divided into
either one or two compartments with the same resistivity. In
Fig. 2, L is the length and A4v is the parallel volume increment
such that:

A/ = Av)v 2)

Equation (2) is for one compartment (Fig 2a). It is clear
that the relative 4BV can be found without knowing the
dimensions of the cylinder:

A/ = Av/Av+vy+v, (3)

In the two-compartment model (Fig 2b), the two cylinders
are physically in parallel and the conductance model
preferred where Av+v, is the volume of the inner cylinder,
and v, is the volume of the outer cylinder. Equation (3)
shows that the sensitivity decreases with a larger surrounding
volume (v,) [6].

C. Kinnen’s Thorax Model

Kinnen et al. developed their model based on a cylindrical
thorax model [2]. The purpose of this model is to examine the
generation of the impedance signal. The model is depicted in
Fig. 3, in which the thorax model is divided into two
cylindrical parts. The inner part of the model characterizes
the BV of the heart and primary arteriovenous system of the
thorax. The lungs are characterized by the medium outside
the inner part. The resistance for the inner part of the model
was taken equal to 495 Q, and 32 Q for the other part.

Band electrode

- f+ Equipotential surface

P 77| current fiow line

<Band electrode—— Y,

Figure 3.  Kinnen’s Thorax Model [2]

D. Sakamoto’s Thorax Model

Sakamoto et al. [7] developed a model that is
anatomically more realistic. This model consists of the heart,
aorta, lungs, vena cava and torso shape, as depicted in Fig. 4
(b-c). The model allows investigating the effect of

conductivity variations of the tissues on the measured
impedance. These results showed that the information
connected to the blood circulation in the human thorax could be
measured by potential distribution changes on the body surface.
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Figure 4.  Simplified Sakamoto’s thorax model:
a) model of human body, b) cross-section at I=5,5, ¢) cross-section at
=12 [7].

The impedance waveform is affected not only by the CO
or the 4BV in the aorta, but also by the 4BV in the heart and
lungs [7].

In Fig. 5, the solid lines depict the impedance signal
waveform A4Z, which is recorded through different pairs of
point electrodes around the human thorax, and the dotted line
represents the signal waveform recorded through the pair of
band electrodes. This impedance signal waveform is affected
through the 4BV in both the heart and the aorta [7].

—_— e

Impedance change

Figure 5.

Impedance signal recorded by different pairs of point and band
electrodes around the thorax [7].

E. 3-D Thorax Model

The 3-D thorax model is composed of lungs, muscle,
heart and spinal column, as depicted in Fig. 6. The potential
distribution can reflect different effects when inhaling (Fig.
6(a)) and exhaling (Fig. 6(b)); the lungs become smaller
when exhaling and larger when inhaling. The potential
distribution fluctuates with the change of resistivities caused
by the activities in the thorax, for example, inspiration and
expiration (cf. Fig. 7). Thus, the model is helpful to judge
whether there are more or less physiological activities or
pathologic variations in the studied subject [8].

Heart

Heart

Spinal Column ‘Spinal Column

Musele

Muscle

= b)

Figure 6. 3D thorax model at the end of phase: a) inhaling b) exhaling [8]
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Figure 7. Changing of the node potentials during haling [8].

III. ORIGIN OF THE ICG SIGNAL

This section reviews the history of the ICG signal origin
generation; understanding and waveform markers are
discussed. In particular, it is found that although there exists
a consensus within the scientist community, doubts and
critical analyses about the origin of ICG signal have been
expressed.

A. Analysis of Original ICG Signal Waveform

A typical impedance signal (4Z) and its first derivative
(dZ/df) can give detailed information about the physiological
activities of thorax. Fig. 8 [9] depicts the different marks on
the waveform which indicate the important points. The
corresponding ECG is also depicted in Fig. 8. Research
efforts have focused on discovering the physiological
correlation with the ICG signal and its origin. It has been
studied together with its first derivative [1, 36].

az

Zero

Figure 8.  Characteristic impedance (dZ) signal, first derivative (dZ/dt) of

impedance signal and ECG signal [1].

In 1970, Karnegis and Kubicek first indicated that the
A-wave of the dZ/dt is associated with the P-wave of the
ECG and that the C-wave of dZ/dt is associated with
ventricular contractions [9]. During diastole, it was noticed
another upward deflection of the O-wave in the dZ/dt signal.
During the study, they found that the B point of dZ/dt
corresponds to the aortic valve opening and the X point to the
aortic valve closure. Several researchers make use of
echocardiography and aortic pressure recordings and have
confirmed these observations.

Furthermore, studies are required to confirm the exact
physiological and anatomical origin of the impedance
cardiography signal. Several investigators have dealt with
this topic in the past, including a modelling and study
performed on animals [1].

Witso & Kottke conducted these experiments in 1967 with
dogs, using venous occlusion achieved by inflated ball [10].

Baker et al. reported experimental results in 1974. During
their experiment, the ventricles were operated either at the
same time or individually. From the experiment, it is
concluded that the contribution of the left ventricle (LV) to
the impedance signal waveform was 62% of the total
impedance signal; on the other hand, the contribution from
the right ventricle (RV) was 38% [11].

Kubicek et al. concluded in 1974 that the systolic portion
of the dZ/dt impedance signal waveform was mainly
contributed to by left ventricle ejection (LVE) into the aorta
[12]. However, Thompson and Joekes reported in 1981 that
both sides of the heart, left and right, make a main
contribution to the systolic dZ/dt impedance signal waveform
[13]. Wang et al. in 1991 presented that the impedance signal
waveform was perhaps related to the right heart instead of
left heart [14].

In 1979 Sakamoto proposed that the contribution of the
BV variation in the lungs was very small [7], although
Patterson in 1985 suggested that the lungs were one of the two
largest origin source of the impedance signal waveform [15].

In 1979, Sakamoto and Kania reported that another
possible reason of the impedance variations is resistivity
change of the subsequent blood caused by a preferred
orientation of the red blood cell [16].

Sakamoto et al. in 1979 and Lemberts et al. in 1984 point
out that the blood resistivity change in the main arteries and
veins contributed approximately one half to the overall 4Z
signal [16], [17]. The movement of the thoracic organ may
also be a contributor to the impedance change [7].

In 1981, Mohapatra conducted a critical analysis on
several of the hypotheses regarding the origin of the cardiac
impedance signal waveform. In this study, he concluded that
the signal is due to cardiac hemodynamics only. Moreover,
the impedance signal reflects both changes in the blood
velocity as well as changes in blood volume (ABV). The
changing speed of forcing out affects the systolic behaviour
of 4Z, while changing volume (mostly of the atria and great
veins) affects the diastolic portion of the impedance signal
waveform curve [18].

In 1986, Penney concludes several studies which are
based on the observations of contributions to the impedance
signal waveform; his findings are reported in Table I [19].

TABLE L. ORIGIN OF THE IMPEDANCE SIGNAL IN ICG [19]
Tissue/Organ Contribution in %
Aorta and thoracic musculature +60%
Pulmonary artery & lungs +60%
Vena cava and right atrium +20%
Pulmonary vein and left atrium +20%
Left ventricle -30%
Right ventricle -30%
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In 1988, Mohapatra reported in his critical analysis that
the evidence that the impedance plethysmography is at the
origin of the impedance signal is very weak; but this is not
exactly known until now [20]. In 1995, Wang and Patterson
reported that the exact origin(s) or a region in the thorax that
causes the impedance change during cardiac cycle, are
unknown. It is suggested that contributions from many
regions or origins invest to the formation of the impedance
change [21].

Later, Kauppinen et al., as well as Patterson, reported
controversial research findings. In 1998, Kauppinen et al.
reported results that state that it is likely that more than 55%
of the time-varying signal originates from the skeletal muscle
even though that amount of measurement sensitivity
originates in it. The contribution from the ventricle, aortas,
carotid artery and jugular vein in 4 cases was 3.06%, 2.36%,
3.66% and 3.39%, respectively [3]. The obtained results also
confirm the reported measurement problem when using
sternal electrode for impedance cardiography [22].

In 2010, Patterson reported new controversial results: the
aorta is a very weak contributor to the source of the impedance
signal. The aorta contributes approximate only 1% to the total
impedance measurement [23]. These reported results are closely
agreeing with that of Kauppinen et al. [3]. The comparisons of
contribution of tissues/organs are shown in Table II.

TABLE IL. IMPEDANCE CONTRIBUTION FROM EACH TISSUE [3], [23].
Tissue/Organ Kauppinen et al 1998 Patterson 2010
Skeletal muscle 67.00% 52.90%
Left lung 4.64% 3.17%
Right lung 4.15% 3.48%
Liver 1.59% 3.62%
Aortic arch/Aorta 0.26% 0.89%
Others 22.36% 35.94%
Total 100.00% 100.00%

Both studies reported the large contribution of the skeletal
muscle to total impedance signal and a small contribution by
the aorta in impedance waveform.

B. Waveform Markers

Waveform markers are the physiological indicators of
different activities (see Fig. 8) [1]. The B waveform marker is
the standard B points for the ICG waveform [36].

1) The A-wave marker

A wave associates with the contraction of atria, as found
by Karnegis et al. [9] and others who found undoubted
evidence. The hypothesis rose that the source of the A-wave
marker is due to the back flow of blood from the atria into
central veins. The A-wave marker is depicted in Fig. 8.

In 1979, Takada et al. found evidence that the left atrium
might be the major contributor to this wave [24]. However, the
exact contributions of the right and left atria are not known [1].

2) The C-wave marker

Several studies have taken place to unravel the origin of
the systolic C-wave in the impedance cardiogram, since the

absolute height (dZ/dt,..), depicted in Fig. 8, is used to
calculate stroke volume (SV). These studies took place on
animals and models by several researchers using different
approaches, such as described in [17, 25, 26, 27, 28, 29, 30,
31 and 32].

In order to unravel a more elaborate explanation of the
origin of the C-wave marker, researchers have attempted to
imitate impedance cardiographic variations in a model. Still,
these are far from reliable evidence, and most fail to give
details of the relationship between dZ/dt,, and other
physiological variables as aortic peak flow velocity. More
study is required on the contributors to dZ/dt,,, as predicted
by a model [1].

3) The O-wave marker

The O-wave marker corresponds to the diastolic upward
deflection of the dZ/dt signal, which is depicted in Fig. 8. In
1970, Lababidi Ehmke and Rurnin published their findings
and many researchers prove its origin, which is described in [33].

IV. DEVELOPMENT OF THE TARGETED ICG MODEL

Based on the literature survey and analysis of the existing
thorax impedance models and origin of the ICG signal, it can
be concluded that none of these models are accurate enough
to imitate the real phenomena in the ICG signal. A summary
and the limitations of each model are discussed in Table III.

TABLE IIL SUMMARY AND LIMITATION OF EXISTING MODELS
Model Summary and limitations
Simplified This thorax model is highly simplified since

Model of Thorax the division into only two uniform tissues is
used and geometrically it is not realistic.

On the contrary, the real structure of the
human thorax is very complicated.

This model is also very simple because a
simple cylinder is used to represent the
thorax structure.

In particular, the cross sectional point of
view is not taken into account.

Kinnen’s model is simple; it indicates only
two conductivity zones (blood volume of
heart & primary arteriovenous system, and
lungs).

Most of the current flow would pass by the
lungs. In this case, the generation of the
impedance signal waveforms is primarily
based on right ventrical (RV), which is not
true if we consider the real thorax
physiology.

This is not an accurate enough thorax
impedance model because the blood pumps
more toward the left leg side.

3-D The model is not accurate enough because it
Thorax Model uses a cylinder as the structure of the thorax.
Furthermore, it does not take the variation of
heart size during inhaling and exhaling into
account.

Given these limitations, it is thus decided to use a sixteen
electrodes’ configuration belt to measure the ICG signal
instead of the above models. Such a type of electrodes’ setup
is presumed to allow raising strong enough variations of the
EBI in order to record the cardiac and respiration signals,
which are caused by the heart and lungs. Further details about
the EBI measurement setup can be found in [34].

Ideal Cylindrical
Model

Kinnen’s
Thorax Model

Sakamoto’s
Thorax Model
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The curve fitting method is used to develop an ICG
signal model. With this approach, the ICG signal model
would be more realistic and the underlying model parameters
could be easily tuneable.

The EBI measurement procedure and the models and
evaluation methods are discussed below.

A. EBI Measurement Procedure

The impedance measurement system consists of sixteen
active electrodes; each of them can be used for measurement
as well as excitation. The electrodes are connected to the
impedance analyzer using a switch-box that can cross-switch
any of the 16 electrode-inputs to any of the four analyzer-
outputs, which is depicted in Fig. 9.

P

Figure 9. Switchbox with four capacitive and four active electrodes are
attached

The datasets were obtained using multiple pairs of
electrodes with four different positioning of the electrodes. The
electrode setup is used for EBI measurement, which is shown in
Fig. 10.

a) Placement of sixteen
electrodes

\ |
SR/

around the object chest
Each electrodes has
| 6cm distance

Figure 10. Sixteen electrodes configured belt, which is used for the EBI
measurement procedure [34].

The measured datasets are obtained from a healthy male
subject aged between 40 and 50 years, in a seated position.

The total EBI dataset was divided into three different
segments. Each segment contains 10 seconds of the total EBI
raw data, about 10,000 samples. Accordingly, the structure of
the three segments is as follows:

a) cardiac only (breathing was held),

b) cardiac + respiration (deep breathing),

c) cardiac + respiration + motion artefacts (normal

breathing with added motion artefacts).

In what follows, the four ICG datasets correspond to b)
and the clean ICG and IRG datasets correspond to filtered
versions of a) and b), respectively.

In Fig. 11 (Datasets 1-6), each dataset has been measured
from different positioning of electrodes.
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Figure 11. Measured EBI datasets with different configuration of electrodes.

B. Models and Evaluation Methods

Different curve fitting methods such as polynomial with
different orders, Fourier series and sum of sine with different
terms have been evaluated. The best-fit model performance has
been selected based on the Sum Square Error (SSE), correlation
(R-square) and execution time. Further details can be found in
[35].

1) Polynomial Model

Polynomials are well suited for cases where a fairly
simple empirical model is needed; the general polynomial
model formula is given in Equation 4:

y= Z?:ll pitn-f-l—t (4)
where 7 is the degree of the polynomial (highest power of the

predictor variable), n+/ is the order of the polynomial
(number of coefficients), p; are the coefficients and ¢ is time.

2) Fourier Series Model

The Fourier series is a sum of sine and cosine functions that
describes a periodic signal. The model formula is given in Eq.
5:

y = ag+ X, a;cos (iwt) + b;sin (iwt) 5)

where a, is the intercept, which is constant term in the data,
o is the fundamental frequency and # is the number of terms
in the series.

3) Sum of Sine Waves Model

This model consists of a sum of sine terms only. The
model formula is given in Equation 6:

y = Thia; sin (it +c;) (©)

where «a is the amplitude,  is the frequency, ¢ the phase,
which is constant for each term and n is the total terms in
series.

b) Numbers of sixteen electrodes
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V. DISCUSSION, CONCLUSION AND FUTURE WORK

It is concluded that the simplified, Ideal Cylindrical, and
Kinnen’s models are too simple models that only take a few
basic parameters into account. Sakamoto’s and the 3-D
model are more advanced and closer to reality, but still not
accurate enough to imitate the complicated structure of the
human thorax and different electrical properties of tissues
such as anisotropy and inhomogeneity. Thus, we consider
that none of these models is complete enough for developing
the targeted ICG signal model.

Based on the reviewed existing thorax models and
controversial statements regarding the origin of the
impedance signal, we have started to evaluate how measured
electrical bioimpedance (EBI) data can be used to develop an
ICG signal model which closely imitates the real phenomena.

For this, we have built upon our previous study in which
the EBI data was measured through a sixteen electrodes
configuration belt from a normal human thorax [34]. The
various curve-fitting methods have been used to process the
collected data and in turn derive a mathematical model of
the ICG signal. A practical application of this work can be
found in [35] where a Bio-Impedance Signal Simulator
(BISS) is described and implemented.

In future work, we will further investigate the modelling
of the relation between cardiac and respiratory signals
depending on human activity and health condition.
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Decomposing of Cardiac and Respiratory Signals from Electrical
Bio-impedance Data Using Filtering Method

Y.M. Mughal
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Abstract— This paper presents an attempt to decompose
cardiac and respiratory signals from an electrical bio-
impedance (EBI) dataset. To accomplish this task, the conven-
tional filtering method is used. FIR (low pass filter (LPF) and
high pass filter (HPF)) was intended to decompose the imped-
ance respirogram (IRG) and impedance cardiogram (ICG),
(the clean ECG was also extracted by filtering method). The
decomposed components can be analysed and processed fur-
ther, each one separately. Investigation was accomplished
under the assumption that the total EBI dataset is the summa-
tion of cardiac and respiratory components, motion artefacts,
stochastic disturbance and noise. The impedances were meas-
ured using a Zurich Instruments HF2IS Impedance Spectro-
scope. A sixteen electrodes configuration belt was used around
a human thorax, to measure the EBI. This study showed that it
is not possible to decompose cardiac and respiratory signals
completely through conventional filtering method.

Keywords— Cardiac Signal, Electrical Bio-impedance; FIR
Filter; Respiratory Signal.

I. INTRODUCTION

This study is focused on the decomposition of cardiac and
respiratory components from a mixed electrical bio-impedance
(EBI) raw dataset, by suppressing disturbing components such as
motion artefacts, stochastic disturbance and noise by filtering.

By means of EBI measurements one can assess physio-
logical activities and structural configurations of a tissue, as
well as offer possibility to analyze dynamic processes in
organs such as a) impedance cardiogram (ICG) of the heart,
and b) impedance respirogram (IRG) from the thorax. The EBI
measurement is a non-invasive and cost effective method.

The assumption is that, the total EBI data is the sum of:

S(t) = Scar(f) + Srexp(t)+Nrnot(f) + Mitocn + Sbas(f) (1)

where Scap and Sy are the cardiac and respiratory compo-
nents, Ny unwanted motion artifact caused by body move-
ment or muscle activity, Mo stochastic disturbance and Sy
basal (average) signals.

The cardiac and respiration components are correlated due to
their nature [1]. However, they can be viewed as uncorrelated under
the assumption that the correlation is relatively weak because both
components have different sources [2]. The filtering method was
tested as a mean for accomplishing a) ICG and IRG from the total
EBI dataset and b) simultaneously suppressing the artefacts.

II. ELECTRICAL BIO-IMPEDANCE (EBI)

The study of the EBI is very important in the medicine to
developed robust, efficient and practical measurement appa-
ratus, which can be based on the electrical bio-impedance
[1, 3]. The signal processing area has acquired promising
achievements which help to estimate components of the EBI
and to further analyze and process them. Impedance devices
with digital signal processing capability can be used to estimate
and analyze the EBI components efficiently, precisely, reliably
and online with the measurements.

The measurement of EBI is a scientifically relevant topic
nowadays. The prefix bio in the electrical bio-impedance is
due to the biological essence of an object [3]. In addition to
galvanic path, the EBI measures dielectric polarization on a
tissue, which arises from intrinsic polarizability, which is the
manner that the biological tissue resists to an electrical current.

In a typical impedance measurement setup, a known cur-
rent is supplied on the tissue under test. The EBI measures
the dielectric response of the tissue under examination [3].

The EBI measurement is used to get an input dataset to
which the filtering method was applied in this study.

The EBI is measured by applying electrical current across
the thorax region and measuring the voltage drop (Figure 1).
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Fig. 1 Schematic of the high and low frequency current distribution in a
cell tissue [5].

At a selected frequency, the EBI can be expressed as the
ratio of the voltage drop to the excitation current, which has

caused the voltage drop [4]:
LV

2=" @

where V is the voltage drop which measures the resistance,
and I is the electrical current, which is used to excite the tissue.

It has become clear that the EBI on living tissue is fre-
quency dependent because of the capacitive effect of tissue.
In addition, each tissue region and even each cell has differ-
ent dielectric response as well as spectral characteristics in

the frequency domain.

1. Lackovi¢ et al. (eds.), The International Conference on Health Informatics, IFMBE Proceedings 42, 252
DOI: 10.1007/978-3-319-03005-0_64, © Springer International Publishing Switzerland 2014
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The cardiac and respiratory components from the human
thorax can be measured as the time variation of the EBI.
From the total EBI, the useful components, like cardiac and
respiratory ones, can be extracted for further analysis and
separate processing [4].

11I. EBI MEASUREMENT PROCEDURE

The dataset of the total EBI is measured using multiple
pairs of electrodes. The excitation current was applied to the
body through one pair of electrodes. The voltage drop was
measured though the other pairs of electrodes.

The EBI measurement setup is depicted in Figure 2. Such
kind of electrodes’ setup is assumed, allow to produce
strong enough variations of the EBI in order to measure the
cardiac and respiration activities, which are caused by heart
and lungs.

A. Configuration of Electrodes

The sixteen electrodes configuration was used in the ex-
periment, which was performed in the Thomas Johan See-
beck Department of Electronics, at Tallinn University of
Technology. The electrodes were positioned at 6 cm dis-
tance from each other. This belt was worn around a person’s
thorax. Figure 2 illustrates the configuration of electrodes.

b) Numbers of Sixteen

electrodes around the
object chest

a) Placement of
Sixteen electrodes

~ % Each electrode i
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AW 12 s
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Fig. 2 Sixteen electrodes configured belt, which is used at the EBI meas-
urement procedure.

The impedances were measured using a Zurich Instru-
ments HF2IS Impedance Spectroscope.

Current source excitations, of 8 slightly different fre-
quencies, were used in every electrode pairs in order to
minimize mutual influence of simultaneous impedance
measurements between the channels.

The measurement current was confined under 1mA at all
times for ensuring patient’s safety. Electrical contact to the
thorax was achieved by 3M disposable surface EMG/ECG
silver/silver chloride electrodes, followed by proprietary
front-end electronics close to the electrodes.

B.  Pre-processing of Data Gathering Experiment

A person was instructed at the beginning of the experi-
ment to hold his breathing around 10s (from 1s to 10s),
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after the 10" second he starts to take deep breathing around
10s (from 10s to 20s) and finally, while taking the breathing,
added motion artefacts around 10s (from 20s to 30s).

According to this, the total EBI dataset was divided into
three different segments. Each segment contained 10 sec of
the total EBI raw data, about 10,000 samples. Accordingly
the structure of each segment is as follows:

a) only cardiac,

b) cardiac + respiration,

¢) cardiac + respiration + motion artefacts.

IV. FINITE IMPULSE RESPONSE (FIR) FILTERS

The FIR filters are assure to be stable BIBO and generally
used in applications that require the filter to have linear phase
frequency response to the desired signal passed [6]. Types of
FIR filters are the LPF, HPF and BPF. These filters are used
in this study to filter out the IRG and ICG signals.

The LPF is a filter that allows the harmonic components of
low frequencies up to cut-off (fc) to pass and attenuates all
components of higher frequencies [7]. The LPF is used to
filter out the IRG component which has low frequency, and
to attenuate all higher frequencies, because respiration can
take place only at low frequency range often below 1 Hz.

The HPF is a filter that allows the harmonic components
of high frequencies above the fc and attenuates all compo-
nents of lower frequencies [7]. The HPF is used to filter out
the ICG. Fc frequency is selected to attenuate all lower
frequencies because those are out of interest.

V. FILTERING METHOD

The decomposition of cardiac and respiratory compo-
nents was accomplished from Segment (b) of the total EBI
dataset. We assume that the total EBI dataset is the summa-
tion, as shown in Equation 1.
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Fig. 3 An example of frequency spectrum of EBI, which contains cardiac
and respiratory components. [4].

The heart rate Sco- (Eq.1) of a healthy person can vary in the
range between 60 bpm to 240 bpm (1 to 4 Hz) [8], and the
respiration rate Sy, (Eq.1) of a healthy person can vary from
12 breaths/min to 30 breaths/min (0.2 to 0.5 Hz). Unfortunate-
ly, muscular activities also lie on almost on the same frequency
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range, and the higher harmonics of the respiratory signal also
lie on the same frequency range with the cardiac signal [8 - 9].
The harmonic spectrum of EBI signal is shown in Figure 3.

The waveform of the cardiac and respiratory components of
the EBI signal are relatively smooth [10] and that is why only
few higher harmonics are required for representing them.

In this study, LPF and HPF were used to extract the imped-
ance respirogram (IRG) and impedance cardiogram (ICG) from
the total EBI dataset (Segment b). The electrical cardiograph
(ECG) was also filtered separately as a reference signal for ICG.

In accordance with the characteristics of the signals, given
above to separate the respiratory and cardiac signals, a structure of
filtering device, given in the block diagram in Figure 4 was used.
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Fig. 4 Flow diagram of the filtering method

Input as an
EBI dataset

To filter out the ICG waveform, the HPF is used to at-
tenuate the lower frequencies, mainly to suppress the respiration
components, and the LPF is used to attenuate the higher frequen-
cies, which are out of interest. The Equation (3) is used to deter-
mine the high pass and low pass FIR filters delay:

td = % 3)
where N is the number of filter coefficients and td is the time delay.

VL. RESULTS

The filtering method according to Figure 4 was used to
decompose the cardiac and respiratory components from the
total EBI, and simultaneously to suppress the stochastic
disturbance, motion artefacts and noise.

A. Decomposition of the IRG

The IRG component contains harmonics with low frequen-
cies of relatively high amplitudes (Figure 3). On the basis of
spectrum analysis, the LPF was designed to filter out the IRG
component. For IRG, the pass-band was set to 1.5 Hz and atten-
uation of higher frequencies was set to 80 dB. Figure 5 (dotted
line, blue colour) and Figure 6 (a) show the decomposed IRG
signal from the total EBI dataset. To some extent, cleaner IRG
signal is extracted, and it is slightly smoother as well.

B.  Decomposition of the ICG

The cardiac component contains low amplitude harmon-
ics at relatively higher frequencies. The spectra of cardiac

IFMBE Proceedings Vol. 42

Y.M. Mughal

and respiration signals often overlap with each other (Figure
3). Based on spectrum analysis, the LPF was designed and
tuned to separate the ICG component. For the ICG, the
pass-band was set to 20 Hz, stop-band was set 22 Hz and
attenuation of all higher frequencies was set to 80 dB.

Figure 5 (solid line, red colour) and Figure 6 (b), shows
the separate output ICG signal. The ICG signal is corrupted by
the respiration: because respiration has high influence, we just
can see the rippling. The LPF permits all low frequency com-
ponents to pass. Accordingly the respiration components,
which exist at low frequencies, will also pass (Figure 3).

In order to decompose just cardiac components, first a
HPF was designed to attenuate the low frequencies of the
respiration component. After attenuating the low frequen-
cies, the LPF was designed to attenuate the higher frequen-
cies; i.e only passed the range of interest. This is shown in
the flow diagram of the filtering method in Figure 4.

The Figure 5 (solid line, black colour) and Figure 6 (c)
shows the filtered ICG signal which is extracted from the
total EBI dataset; but the extracted ICG signal is not clean
enough. It contains some noise.

The first harmonic of the cardiac component is very close
to some of the higher respiration harmonics (Figure 3). In
order to suppress the respiratory component, the cut-off
frequency of the HPF was taken closer to the first cardiac
harmonic. It was 0.8 Hz.

C. Decomposition of the ECG

The electrical cardiogram (ECG) was recorded during the
experiment, and added to the total EBI dataset. The ECG is
included in this study as a reference signal for ICG.

Based on the spectrum analysis, the LPF was designed to
clean the ECG component. For the ECG, the pass-band was
set to 25 Hz and stop-band was set 30 Hz, and attenuation
the all higher frequencies set to 80 dB.

Figure 5 (dotted line, green colour) and Figure 6 (d), show the
cleaned ECG signal. To the some extent the ECG signal is clean.
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Fig. 5 Filter out the signals (IRG and ICG) from the total electrical bio-
impedance (EBI) dataset on the same scale.
a) Impedance Respirogram (IRG),
b) Impedance Cardiogram (ICG) corrupted by respiration,
¢) Impedance Cardiogram (ICG),
d) Electrical Cardiogram (ECG)




Decomposing of Cardiac and Respiratory Signals from Electrical Bio-impedance Data Using Filtering Method 255

c)

Fig. 6 Filter out the signals (IRG and ICG) from the total
electrical bio-impedance (EBI) dataset.
a) Impedance Respirogram (IRG),
b) Impedance Cardiogram (ICG) corrupted by respiration,
¢) Impedance Cardiogram (ICG),
d) Electrical cardiogram (ECG)

VII. DISCUSSIONS, CONCLUSIONS AND FUTURE
WORK

The first LPF, which was designed to separate out the
IRG signal and attenuate the higher frequencies because
respiration (IRG) exists at low frequencies, to some extent
separated the IRG signal, which became smoother and
cleaner. The results are shown in Figure 5 (dotted line, blue
colour) and Figure 6 (a).

The second LPF was used to separate the ICG signal. In
Figure 5 (solid line, red colour) and Figure 6 (b) are shown
the separated ICG signal. The results seem to be corrupted
by respiration because respiration has influence to the ICG
through its higher harmonics.

In order to filter out the cardiac component, the HPF was
designed and tuned to attenuate the low frequencies first
those frequencies which are out of interest. We again ap-
plied a LPF to attenuate the higher frequencies; those which
are also out of interest. Figure 5 (solid line, black colour)
and Figure 6 (c) are shown the ICG signal, which is separat-
ed. The ICG is not clean enough, it contains some noise.

The ECG was extracted to use as a reference signal for
the ICG. The LPF was designed to separate the clean ECG
component. Figure 5 (dotted line, green colour) and Figure
6 (d) is shown the decomposed ECG signal. At the some
extent the ECG signal is very clean.

It seems that it is difficult to solve the decomposition prob-
lem through conventional filtering method. The filtering
method could be used as pre-processing for the total EBL
Further development of the method is required to approach

b)

‘.d) |
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better decomposition of the cardiac and respiration signals
from the total EBI dataset. For example, one could try to take
the advantage of blind source separation (BSS) because BSS
works on correlated and dependent sources. The cardiac
(Sear) and respiratory (Syes) components are correlated.
Moreover, machine learning techniques could be used to
approach the problem.
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Abstract— This paper is an attempt to separate cardiac and
respiratory signals from an electrical bio-impedance (EBI)
dataset. For this two well-known algorithms, namely Principal
Component Analysis (PCA) and Independent Component
Analysis (ICA), were used to accomplish the task. The ability of
the PCA and the ICA methods first reduces the dimension and
attempt to separate the useful components of the EBI, the
cardiac and respiratory ones accordingly. It was investigated
with an assumption, that no motion artefacts are present. To
carry out this procedure the two channel complex EBI
measurements were provided using classical Kelvin type four
electrode configurations for the each complex channel. Thus four
real signals were used as inputs for the PCA and fast ICA. The
results showed, that neither PCA nor ICA nor combination of
them can not accurately separate the components at least are
used only two complex (four real valued) input components.

Keywords— Principal Component Analysis, fast Independent
Component Analysis, Electrical Bio-impedance, Cardiac Signal
and Respiratory signal

1. INTRODUCTION

The Blind Source Separation (BSS) is forth-coming field of
interest to separate useful components in the case of using the
multi-source signals. The BSS is an approach which allows
estimating original statistically independent sources from only
observed mixture of these sources without any known a priori
information.

The BSS can be found in many applications, such as
biomedical, telecommunication, image and speech signal
processing [1-4]. Many algorithms are used to implement the
BSS. They are based on a statistical independence property of
the separated signals [3, 4].

The Principal Component Analysis (PCA) algorithm is a
useful technique to uncorrelate the components, but the
Independent Component Analysis (ICA) algorithm as an
implementation of the BSS; it is suitable to separate the
original independent components [1-4].

The purpose for combining the both algorithms (PCA and
ICA) is to decrease the dimension of the electrical bio-

impedance (EBI) data set before implementing the ICA
algorithm, hence to make easier for the ICA to separate the
cardiac and respiratory components.

In this study, it was tried to apply the Principal Component
Analysis (PCA) and fast Independent Component Analysis
(ICA) algorithms to the electrical bio-impedance (EBI) dataset,
which consist of two simultaneously measured complex EBI
signals containing both the respiratory and cardiac
components, as well as certain amount of motion artefacts and
disturbances from the surrounding environment.

The impedances were measured using Zurich Instruments
HF2IS Impedance Spectroscope. The classical Kelvin type
four electrode configurations were used.

Current source excitation at slightly different frequencies
was used in both of them to minimize mutual influence of
simultaneous impedance measurements between two channels.

The measurement current was kept under 1mA at all times
for safety reasons. Connection to the chest was made using
Kendall/Tyco ARBO disposable surface EMG/ECG
silver/silver chloride electrodes, followed by proprietary front
end electronics close to the electrodes.

Biologically modulated impedance signals were collected
from two orthogonal directions. One set of electrodes was
placed on belt surrounding the chest, and another on vertical
line between heart tip and neck.

The later analysis was accomplished in MATLAB environ-
ment on PC. The purpose of this study is to use the PCA and
fast ICA individually or in combination in order to observe
their capability to separate the cardiac and respiratory com-
ponents of the total EBI. It is known that the spectra of the
both components are overlapping each other, and thus it is a
challenging task to separate these components in frequency
and time domain.

The rest of this paper is structured as follows. Section 2 and
3 presents the related work of PCA and ICA. Section 4
discusses the block diagram and steps of the trial method.
Section 5 demonstrates the results which are obtained. Finally,
Section 6 concludes with the summary of the main
contributions of the paper and future work.



II.  PRINCIPAL COMPONENT ANALYSIS (PCA)

PCA, which is sometimes also called the Karhunen-Loéve
transformation, is broadly used for the representation of high-
dimensional data and is commonly used as a preprocessing
step to a projection of high-dimensional data into a low-
dimensional subspace [12]. As well the PCA is frequently
used for data reduction in statistical pattern recognition and to
visualize the comparisons between the biological samples, and
for filtering out noise [6, 7].

The mixing matrix equation is:

Y=AS’, ey

where Y is data modelled as the product of 4 (scores are the
amount of artefact’s variable for particular sample) and S’
(loading is define new coordinate, which has highest
variation).

The principal component analysis projects the data into a
new space and finds the principal components (PCs) like s,
82, e , Sy, which are uncorrelated and orthogonal [7]. The
PCs can effectively extract the related information form the
data [7], so that they carry the maximum amount of variance
likely by N linear transformed components [1, 6]. Each PC
consists of one score and one loading and PCs are given by
s=w. v, where y and w; are observation vector and i-th is the
PCA weight vector, and ()" represents the transposition [1, 6].

The computation for the w; can be achieved by making the
use of covariance matrix E{xx’} = R,, where E{.} is the
expectation operator. w; are the eigenvectors of R, that relate
to the NV largest eigenvalues of R,. The first PC s, points in the
direction where the input has the highest variance, and second
PC s, is orthogonal to the first PC and points a direction of
highest variance when the first project has been subtracted,
and so on [1, 6].

I1I. INDEPENDENT COMPONENT ANALYSIS (ICA)

The ICA algorithm is an implementation of the Blind
Source Separation (BSS) approach and it is a valuable
technique to find the independent components (ICs) of a
multivariate random variable. These components are in the
direction, which the element of the random variable has no
dependency. The ICs are used to decrease effects of noise and
artefacts of signals [7, 9]. Because of this, ICA becomes good
application of the BSS.

In contrast to the correlation based transformation the PCA,
the ICA also reduces higher-order statistical dependencies for
non-Gaussian distributed signals [1]. In latest literature, it has
been presented that the independent components (ICs) from
the ICA were better in separating the different kinds of
biological groups than principal components (PCs) from the
PCA[7, 10, 11].

IV. METHOD

In this study the well-known algorithms used such as the
PCA and fast ICA, were selected to investigate their ability to
extract the information about the two components of the EBI
dataset corresponding to the cardiac and respiratory activities
of a human. The cardiac and respiratory signals are correlated

due to their nature [Ch. 8 in 13]. However they could be
viewed as uncorrelated under assumption that the correlation
is relatively weak to cause sufficient errors.

The complex EBI was measured on two channels. The
obtained four real valued signals were used as input dataset
for the selected methods.

The block diagram of trial method, which was used to
investigate the separation of cardiac and respiratory
components, is shown in the Figure 1.

The first part is the PCA algorithm, is intended to un-
correlate the EBI dataset, whilst the second part is the ICA
algorithm, which tries to separate the cardiac and respiratory
components the total EBIL.

EBI dataset
—>
@ Mixing fast
—> Matrix |[Y=AS| ca | SWY
A 3 —>
> —>
'9 Observed]
@ Mixture
Uncorrelate Separate
L Signals || Signals |

PCA ICA

Figure 1. Block diagram of trial method, which consists the combination of
PCA and ICA steps to solve the BSS problem.

It was observed that the PCA is capable to un-correlate and
reduce the dimensionality of the EBI dataset but it is not
efficient to separate the cardiac and respiratory signals
accurately. However, ICA is more suitable for separation of
independent components from a mixture of input signals
[7,10, 11]. The PCA and ICA algorithms complement each
other since if only the PCA is used; no separation can be
achieved, because the PCA only uncorrelates the data, it does
not mean independence. However, if fast ICA is applied alone,
it is too hard for fast ICA to solve problem.

The raw EBI signals were sampled at rate 1000 samples/s.

It was observed in this study that without preprocessing the
raw data the ICA’s convergence is slow.

The following steps were followed for solving the problem:

Step 1: The EBI dataset is loaded and divided into frames

0f 10,000 samples each.

Step 2: Frames of the EBI data are sampled down by

factor 10.

Step 3: The second order low-pass Butterworth filter is

applied to suppress the noise.

Step 4: The PCA is applied to un-correlate the filtered data.

Step 5: The fast ICA is applied to separate the cardiac and

respiratory components.

Assume the EBI dataset is a centred n * p matrix (the mean
of each column has been subtracted), where 7 is the number of
samples (or observations) and p is the number of variables or
parameters that are measured.



Y =UDV", (2)

where U is an n * p matrix, columns of which are uncorrelated
(U'U=1,) Disap *p diagonal matrix with diagonal
elements d; and the V'is a p * p orthogonal matrix ( vy = 1,).

After un-correlating the EBI dataset by the PCA method,
the uncorrelated data Y is passed as input to the fast ICA
algorithm. The fast ICA algorithm maximizes the non-
Gaussian form for each component and separates the
independent data [5, 7].

Let Y (n * p) be the centred data and S (n * p) the matrix
containing the independent components (ICs). It can solve the
ICA problem by introducing a mixing matrix 4 of size n * n.

Y = AS. 3)

The mixing matrix 4 shows how the ICs of S are linearly
joined to make Y. If it reorder the equation above to get

S=WY, 4)

where the un-mixing matrix W (n * n) describes the inverse
process of mixing the ICs, if assuming A is a square and
orthonormal matrix and then the W is basically the transpose
of 4. In practice, it is very beneficial to whiten the data matrix
Y. In this study PCA is used as pre-processing step to

centring and whitening the data matrix for fast ICA algorithm
[5, 7]. However, fast ICA uses the PCA as a preprocessing by
default.

After adopting the method, the convergence of the entire
algorithm became faster and results are enhanced as well with
regard to results obtained by applying the fast ICA algorithm
alone as it is visible from Figure 2 (a).

V. RESULTS

This study investigates the performance of both algorithms,
the PCA and the fast ICA, to separate the EBI signals
corresponding to cardiac and respiratory activities.

After some attempts and observations, it was understood
that sequential use of both algorithms (PCA and ICA) are
required in order to take advantage of BSS. The required steps
are discussed in the method section I'V.

In the Figure 2 the comparison of results achieved by
applying both algorithms and described steps are depicted.

After following the steps described in method section, fast
ICA performance was tested without the PCA. The results are
depicted in the Figure 2 (a). However, fast ICA uses the PCA
by default.

The results are depicted in the Figure 2 (b) for the case
PCA separately was used as the preprocessing step for the
fast ICA.

Result of the fast ICA without using PCA as pre-processing

- p—t

&x

Figure 2. Results of investigation of the fast ICA applied on a frame of the EBI dataset:
(a) without using the PCA for pre-processing,
(b) with using the PCA for pre-processing.



Figure 2 (a) depicts the performance of fast ICA after
applying only centring procedure to the EBI dataset. It is
difficult to predict anything based on shown signals in Figure
2 (a) because signals are not clear. The results were discussed
with cardiologist. The cardiologist said that based on figure 2
(a), it is difficult to perceive anything. However, based on
figure 2 (b), could be some useful information.

On the other hand, it is observed that fast ICA alone is not
efficient. The results are not so promising, which are depicted
in Figure 2 (a).

In the second trial the PCA has been used as preprocessing
step in order to reduce the dimension of the EBI dataset before
applying the fast ICA algorithm. The more promising results
were obtained, but not accurate enough to solve the task. The
cardiac component still contains the respiratory one, but with
lower amplitude.

However, the respiratory signal was not separated by both
methods.

VI. CONCLUSIONS AND FUTURE WORK

The complex EBI measured using two orthogonal placed
electrode pairs. Thus four real valued signals were used as
inputs for the PCA and ICA.

It was understood that the sequential use of both algorithms
and proper steps of preprocessing is required to outcome the
fast execution of algorithms; the steps are discussed in the
method section. Firstly, it is required to reduce the demission
of the EBI dataset, and then to separate the cardiac and
respiratory signals.

The investigation showed that neither the PCA nor ICA nor
combination of them can not accurately and robustly separate
the components, at least when using only two complex valued
(four real valued) input components. But the combination of
the PCA and ICA algorithms showed more promising results,
than the ICA alone, however the estimate of the cardiac
component still contains the respiratory one.

The PCA uncorrelate and reduce the dimension of data. It
does not mean the separation of components. The ICA works
on the assumption of independence among source signals; if
the source signals do not satisfy the condition then ICA would
not be able to separate the components. In this case more
investigation is required to understand the nature of cardiac
and respiratory components.

It was the first attempt to use the PCA and fast ICA in order
to separate cardiac and respiratory components from the
electrical bio-impedance (EBI) dataset, measured using two
orthogonal placed electrode pairs simultaneously.

Development of the method is required to approach better
separation of cardiac and respiratory components from the
EBI in order to take advantage of the BSS, machine learning
techniques and understand the nature of cardiac and
respiratory components.
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Abstract. Classical method for measurement of the electrical bio-impedance involves
excitation with sinusoidal waveform. Sinusoidal excitation at fixed frequency points enables
wide variety of signal processing options, most general of them being Fourier transform.
Multiplication with two quadrature waveforms at desired frequency could be easily
accomplished both in analogue and in digital domains, even simplest quadrature square waves
can be considered, which reduces signal processing task in analogue domain to synchronous
switching followed by low pass filter, and in digital domain requires only additions. So called
spectrally sparse excitation sequences (SSS), which have been recently introduced into bio-
impedance measurement domain, are very reasonable choice when simultaneous
multifrequency excitation is required. They have many good properties, such as ease of
generation and good crest factor compared to similar multisinusoids. Typically, the usage of
discrete or fast Fourier transform in signal processing step is considered so far. Usage of
simplified methods nevertheless would reduce computational burden, and enable simpler, less
costly and less energy hungry signal processing platforms. Accuracy of the measurement with
SSS excitation when using different waveforms for quadrature demodulation will be compared
in order to evaluate the feasibility of the simplified signal processing. Sigma delta modulated
sinusoid (binary signal) is considered to be a good alternative for a synchronous demodulation.

1. Introduction

Complex electrical impedance has been widely used to characterize properties of biological tissues for
many years [1]. One of the promising application areas is postoperative monitoring of the healing
process. Bioimpedance reflects changes in the tissue state, which can be used to characterize the
revivability or resuscitation ability of the tissue. Typically simultaneous measurement at several
frequencies is required. Low and high frequency currents flow through the resistive interstitial space
between the cells (extracellular component), but only the high frequency current can flow through the
electrical capacitances of the insulating cell membranes (intracellular current). Ratio of these currents
will reflect the state of the cells, accumulation of fluid in extracellular space, amount of swelling and
ultimately warn before massive edema is about to develop. Generally it is desirable to monitor tissue
parameters from different tissue locations simultaneously. These multifrequency and multisite
measurements may be relatively rare and slow due to the dynamics of the underlying processes, and
can be even sequential. Monitoring is warranted during the first few days after the surgical
intervention, and possible changes take several minutes to occur. One of the critical tasks is restoration
of the spontaneous blood circulation postoperatively. Cardiac activity will cause modulation of the

Published under licence by IOP Publishing Ltd 1
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measured bioimpedance due to varying amounts of blood pushed through the tissue. Therefore faster
changes in impedance need to be monitored as well, in order to assess whether the blood vessels are
connected, and blood flow is restored. Extensive laboratory experiments have been conducted during
longer period on isolated tissue samples, such as pigs heart, tongue etc. of pigs, for preclinical
investigation of the impedance changes in the biological tissues. Device prototype has been developed
for conducting these bioimpedance measurements in laboratory conditions (figure 1). Device has the
ability to conduct measurements simultaneously on 16 frequencies in the range from 1 Hz to 100 kHz.
Spectrally sparse sequences have been proven to be viable excitation signals for such a device [2]. SSS
as two level or binary signal has many good properties, such as ease of generation, and good crest
factor compared to similar multisinusoids. They can have tens of almost arbitrarily chosen, spectral
lines with tailored magnitudes. The drawback is that there is also certain amount of energy on
unwanted spectral lines, on so called snow lines, which extend well beyond the highest measurement
frequency of interest. Combination of oversampling and correction is used in order to avoid large
measurement errors. Another drawback is that real time calculation of that many discrete Fourier
coefficients puts a heavy burden even on the internal resources of the used digital signal processor
(DSP) and has been main limiting factor so far. Therefore simplification of the signal processing step
is highly desirable.

b Ty

K Am s

-

Figure 1. Two channel tissue monitor with spectrally
sparse sequence as an excitation signal.

2. Description of simplification steps and the test

One of the possibilities is replacement of the sinusoidal signals used for quadrature demodulation with
suitable binary counterparts. In an essence it would enable usage of simple summation (or switching in
analogue domain) instead of more complex multiply and accumulate (MAC) operations. Eliminating
MAC from the signal processing chain widens choice of possible signal processing platforms. It has
been shown that simple low power complex programmable logic device (CPLD) can be used to
process acquired signals if only summation is involved [3]. Three of the possible candidates are
considered for replacement, and resulting measurement errors are compared (figure 2, table 2). First is
the set of simple quadrature square waves, second is the set of shortened square waves (SSW) [3] with
shortening angle of 22.5 degrees, and lastly sinusoids modulated with first order sigma delta circuit are
considered. Simple first order RC low pass circuit is used with varying corner frequency to make
simulations in LabVIEW environment more realistic, since impedance of various biological tissues
can be modelled as RC circuitry. Filter corner frequency is swept form 1 Hz to 1.1 kHz, covering wide
variety of possible target impedances. SSS, used in simulation, contains ten measurement frequencies
(2,4, 8,16, 32, 64, 128, 256, 512, and 1024 Hz) with equal magnitudes. Result of the demodulation of
the response to the SSS excitation with binary signals is compared against measurements with
classical single sinusoidal excitation signal which is demodulated by multiplying it with two
quadrature sinusoids.
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Figure 2. Simplified first order sigma delta modulator (upper left), and block diagram of the
experiment with excitation generation, object and demodulation, where f; is filter corner frequency, o,
- w, frequencies of the SSS components, and w, is an actual measurement frequency.

Quadrature sinusoids were also used for demodulation of the response to SSS excitation, however
resulting errors were very low compared to purely sinusoidal case, and are therefore omitted from
analysis. It should be noted that results are not general and depend on chosen excitation sequence,
nevertheless similar tests can be conducted for any arbitrary sequence needed and results compared.

3. Results
Since RC circuit is modelled using exponential function certain caution is in order. Measured real and

imaginary components of the response signal should be equal exactly when the corner frequency of
the sweeping RC filter coincides with the measurement frequency. In reality there is some discrepancy
between these frequencies due to limited resolution of the simulation. To assess simulation accuracy
this discrepancy is calculated for purely sinusoidal measurement case:

Table 1. Measurement frequency versus frequency when real and imaginary parts
coincide in case of sinusoidal excitation and demodulation with sinusoidal signals.

Frequency when real and imaginary parts coincide in Hz

£ samplings KHZ Measurement frequency in Hz
2 4 8 16 32 64 128 | 256 | 512 | 1024

100 1.99 | 3.99 | 7.99 | 15.97| 31.92| 63.74 | 126.9 | 251.9 | 495.8 | 960.8
1000 1.99 | 399 | 7.99 | 1599 | 31.99 | 63.99 | 127.9| 255.6| 510.3|1017.4

The sampling frequency should exceed maximal filter corner frequency roughly 1000 times according

to table 1. Raising it further would make simulation too slow to complete within reasonable time.
Generally relative errors are presented in literature, whereas deviation from the correct value is

divided by the correct value. In some cases these errors exceed 50% for real and imaginary parts.
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However closer examination shows that it happens when the value of the measurand is very small. In
real measurement situation it could mean that it is already buried in the noise. Therefore it seems
reasonable to compute full scale errors instead, whereas deviation from the correct value is divided by
maximal value of the measurand. Resulting errors are shown in table 2. Also absolute phase errors in
degrees are included in italics for better clarity.

Table 2. Demodulation quality with square wave (SQW), shortened square wave (SSW), and sigma
delta modulated sinusoid is compared against demodulation of the response to the sinusoidal
excitation with pure sinusoids. Errors below 0.001% are denoted by “-“. Absolute phase errors are
added in italic.

. Maximal full scale measurement error in % / absolute phase error
Signal component detected, - -
signal used for detection Measurement frequency in Hz
2 4 8 16 32 64 128 | 256 | 512 | 1024

Re, SQW 142 |3.85 |3.23 (348 |2.65 |2.80 [1.95 [0.048]0.63 |0.47
Im, SQW 324 |5.00 |5.27 |2.89 |1.79 [1.32 [0.22 [0.85 [0.55 [1.22
Magnitude, SQW 1.36 [3.85 [3.23 [3.48 |2.64 |2.78 |1.93 |0.18 |0.39 |0.38
Phase, SOW (deg, abs) 0.96 |1.55 |1.63 |1.00 |0.61 |0.55 |0.2 0.25 [0.29 |0.48
Re, SSW 3.81 [2.60 |2.36 |2.52 |1.54 [0.81 [0.85 [042 [032 [0.27
Im, SSW 1.11 [1.79 [2.13 [1.81 |1.77 |1.10 |0.15 ]0.29 |0.92 |0.54
Magnitude, SSW 3.81 |2.60 [236 (252 |1.52 |0.78 [0.83 [0.36 |0.05 |0.15
Phase, SSW, (deg, abs) 0.24 |0.56 |0.63 |0.56 |0.56 |034 [0.09 [0.14 [0.33 [0.23
Re, sigma-delta 0.002 | 0.007 | 0.006 | 0.001 | - 0.024 | - 0.005 | 0.004 | -
Im, sigma-delta 0.005 [ 0.005 [ 0.01 [0.02 |0.007 | 0.009 | 0.005 | 0.004 | 0.003 | 0.007
Magnitude, sigma-delta 0.002 | 0.007 | 0.006 | 0.001 | - 0.024 | - 0.005 | 0.004 | 0.003
Phase, sigma-delta, (deg, abs) | 0.002 | 0.002 | 0.004 | 0.006 | 0.004 | 0.002 | 0.002 | 0.003 | 0.004 | 0.12

4. Discussion

Even though error calculation results depend on actual SSS used, and on actual object to be measured,
some observations are in order. First of all, when comparing measurement results with those of pure
sinusoidal excitation and classical Discrete Fourier Transform (DFT), SSS perform almost exactly as
well when DFT is applied. Secondly, sufficient oversampling is in order when SSS is used for
measurement, due to higher harmonic content. Regarding demodulation with different binary signals it
is probably fair to say that sigma delta modulated sinusoids perform almost as well as real sinusoids,
with both relative and full scale magnitude errors being below 0.1% and absolute phase error below
0.2 degrees. Even measurement results with simple square waves are within 4% of actual magnitude
and 2 degree of real phase. Question remains if the usage of shortened square waves is justified due to
little improvement over simple square waves, and added complexity.
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