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Introduction

Depression is the leading cause of disability worldwide and a major contributor to the
global burden of disease (WHO, 2020). Moreover, the burden of depression and other
mental disorders is rising globally (WHO, 2019; WHO, 2020). The current COVID-19
pandemic has further increased depression symptoms in the general population (Ettman
et al., 2020; Salari et al., 2020; Bauerle et al., 2020). The long-term impact of the pandemic
on mental health is yet unknown and can possibly have even more severe consequences
(Troyer et al., 2020).

Currently, the diagnosis of depression is based on an evaluation of the intensity
of subjective symptoms using clinical interviews and psychiatric questionnaires.
The subjective assessment has led to remarkably frequent over- and underdiagnosis
of depression (Aragones et al., 2006; Mitchell et al., 2009; Rettew et al., 2009; WHO,
2020).

Objective markers in routine testing could imply signs of depression in an early stage
to assist doctors in the early detection of depression or in the depression diagnosis.
The US Preventive Services Task Force has recommended screening for depression in the
general population, bringing out that the benefits overweigh the downsides (Siu et al.,
2016). Furthermore, a scientific objective assessment of depression can help in clustering
subjects for the development of specific therapeutics or track antidepressant efficiency
(Bilello, 2016). Therefore, an inexpensive and easy methodology based on objective
measures is required.

The current thesis provides novel knowledge about the objective electroencephalography
(EEG) measures applied in the classification between subjects with depression and
healthy subjects. | compare EEG measures in depression detection, taking into account
that EEG measures in clinical practice should accurately discriminate depression, be simple,
and have a low computational load. In Publication I, three linear and three nonlinear
single-channel EEG measures are compared in the classification between major
depressive disorder (MDD) and healthy subjects. To the best of my knowledge,
Publication | is the first to investigate the applicability of the EEG single-channel analysis
in the classification between subjects with depression and healthy subjects compared to
the EEG multi-channel analysis in previous studies. In addition, | examine whether
nonlinear measures provide higher accuracy in the classification compared to linear EEG
measures and compare the EEG channel regions in the classification between MDD and
healthy subjects.

As MDD has been associated with disruptions in brain neural networks (Wang et al.,
2012), the complex network analysis is expected to provide valuable input to depression
classification. Functional connectivity (FC) and small-worldness (SW) describe two
different aspects of an EEG functional network and have been previously used in the
classification between MDD and healthy subjects (Leuchter et al., 2012; Mumtaz et al.,
2017; Orgo et al., 2017). However, the relationship between EEG FC and SW has not been
studied before, neither for healthy nor for depressed subjects. Therefore, Publication Il
is the first study to analyze the relationship between resting-state EEG alpha FC and SW
for healthy subjects. Furthermore, the current thesis presents novel results about the
relationship between alpha FC and SW for subjects with MDD.

The surrogate data method was developed to estimate nonlinearity in time series and
has been previously used in the EEG studies of depression (Lee et al., 2007; Zuchowicz
et al., 2019; Puthankattil, 2020). However, false detection of nonlinearity may occur in



case the data are strongly cyclic and the data segment does not comprise full periods of
the dominant cyclic component (Stam et al., 1998; Small & Tse, 2002). The influence of
the EEG segment end-mismatch on the surrogate data has not been studied before and
the dominant frequency component is not considered in segmentation. Therefore,
Publication lll is the first study to examine the extent of an EEG segment end-mismatch
on the results of the surrogate data method. The impact of the EEG alpha frequency
component on the results of the surrogate data method is clarified in the case of
resting-state EEG signals.

Aims of the thesis

The thesis aims to assess different aspects of resting-state EEG measures for the purpose
of an objective marker to discriminate between healthy and depressed subjects. More
specifically, the aims of the thesis are:

1. Compare EEG measures in depression detection (Publication I).

2. Compare EEG channel regions in depression detection (Publication I).

3. Find the relationship between EEG alpha FC and SW for healthy subjects and
subjects with MDD (Publication II).

4. Clarify the impact of an EEG alpha frequency component on the results of the
surrogate data method (Publication Il1).
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Abbreviations

APV

C
Cnorm
DEG
DFA
EBC
EC
EEG
EO
FAA
FC
fMRI
HFD
ICOH
KEFB-CSP
KFD

L
Lnorm
LzC
MDD
MEG
MRI
MSC
NBC
PET
REST
RGP
SampEn
SASI
SL
SW

alpha power variability

clustering coefficient

normalized clustering coefficient
degree of nonlinearity

detrended fluctuation analysis

edge betweenness centrality

eyes closed (recording condition)
electroencephalography

eyes open (recording condition)
frontal alpha asymmetry

functional connectivity

functional magnetic resonance imaging
Higuchi fractal dimension

imaginary part of coherency

kernel eigen-filter-bank common spatial pattern
Katz fractal dimension

characteristic path length

normalized characteristic path length
Lempel-Ziv complexity

major depressive disorder
magnetoencephalography

magnetic resonance imaging
magnitude-squared coherence

node betweenness centrality
positron emission tomography
reference electrode standardization technique
relative gamma power

sample entropy

spectral asymmetry index
synchronization likelihood
small-worldness
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1 Literature Review

1.1 Searching for objective markers

Several markers have been analyzed with the aim to objectively discriminate between
subjects with depression and healthy subjects. | will be focusing on the most frequent
and promising techniques. Firstly, discriminative biomarkers have been searched from
omics such as genomics, transcriptomics, metabolomics, and proteomics (Bilello, 2016;
Mora et al., 2018). Some previous studies have obtained good classification between
MDD and healthy subjects (Papakostas et al., 2013; Bilello et al., 2015). However,
no biomarker-based method has proven to have sufficiently high specificity, sensitivity,
and reproducibility for clinical settings (Bilello, 2016; Mora et al., 2018). Omics data is
noisy and often with low reproducibility, caused, for example, by data changes over time
within a system and differences in sample preparation protocols between studies
(Ning & Lo, 2010). Furthermore, because of invasive sampling, omics biomarkers are
difficult to apply in depression screening.

Secondly, some studies have also analyzed audio-visual data to differentiate between
subjects with depression and healthy subjects and although further research is needed,
studies have found promising results (Williamson et al., 2014; Solomon et al., 2015).
The shortcoming of audio-visual data is the dependence on ethnocultural characteristics,
as well as gender (Wang et al., 2019a) and other possible characteristics such as smoking
habits (Solomon et al., 2015). Another question is the deception-proofness of the system.
Solomon et al. 2015 found that most acoustic features that were found to be significantly
different between subjects with depression and healthy subjects during normal behavior
remained so during concealed behavior. However, only 9 subjects with depression and
8 healthy subjects participated and multiple comparisons of 98 statistically tested
features were not considered. Therefore, further research is needed.

Thirdly, neuroimaging techniques are most widely used in the classification between
subjects with depression and healthy subjects. These techniques include EEG,
magnetoencephalography (MEG), magnetic resonance imaging (MRI), and positron
emission tomography (PET). EEG has been commonly used in the classification between
depressed and control subjects with high classification accuracies (Table 4 in Appendix
1). Furthermore, the review by Gao et al. (2018) showed that MRI techniques, functional
MRI (fMRI), structural MRI (sMRI), and diffusion tensor imaging (DTI) have also been
widely studied and have shown high accuracy in the classification between healthy
subjects and subjects with depression. Some studies have also used MEG (Lu et al., 2013;
Lu et al., 2014) or PET (Kautzky et al., 2017), but those techniques have not been used as
widely as MRI or EEG. Although MEG and MRI are non-invasive and have a good spatial
resolution, these devices are expensive and non-portable (Parkkonen, 2014; Scarapicchia
etal., 2017), and therefore unreasonable for screening depression in clinical applications.
EEG is both non-invasive and cost-effective, being a promising neuroimaging technique
for clinical settings. Furthermore, the long-term stability of EEG measures supports their
reliability (PSld et al., 2021). Accordingly, EEG is used in the current thesis.
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1.2 Classification between subjects with depression and healthy
subjects using EEG

Several resting-state EEG studies have used machine learning methods to classify healthy
subjects and subjects with depression (Table 4 in Appendix 1). EEG power has been used
as the most frequent machine learning feature in different studies. While some studies
have reported alpha power to give the best results (Mohammadi et al., 2015; Liao et al.,
2017; Lee et al., 2018; Mahato & Paul, 2020), other studies have found delta, theta, beta,
or gamma power to give better results than alpha power (Knott et al., 2001; Cai et al.,
2018). Furthermore, Mohammadi et al. (2015) found the best results with eyes open (EO)
delta power if linked mastoids was used as a reference and eyes closed (EC) alpha power
if EEG channel CZ was used as a reference. This result shows that the choice of the
reference and recording conditions can have great influence on the results. While some
studies have found best results with the power of different frequency bands, other
studies have found interhemispheric alpha asymmetry (Mumtaz et al., 2017) or detrended
fluctuation analysis (DFA), Higuchi fractal dimension (HFD), correlation dimension, and
Lyapunov exponent (Hosseinifard et al., 2013) to give higher accuracy compared to
power in the classification between subjects with depression and healthy subjects.
In addition, several other EEG measures have been reported to classify better between
healthy and depressed subjects than other EEG measures analyzed in these studies:
theta asymmetry (Mahato & Paul, 2020), sample entropy (SampEn) (Cuki¢ et al., 2020b),
network measures node betweenness centrality (NBC) and clustering coefficient (C) (Sun
et al., 2019), absolute center frequency of the beta wave (Cai et al., 2018), synchronization
likelihood (SL) (Mumtaz et al., 2018), spectral asymmetry index (SASI) (Bachmann et al.,
2017), kernel eigen-filter-bank common spatial pattern (KEFB-CSP) (Liao et al., 2017),
and HFD in the beta frequency band (Ahmadlou et al., 2012).

In addition to the EEG measures, the choice of EEG channels is also important in
discriminating depression. Most significant results have been found from frontal (Knott
et al., 2001; Ahmadlou et al., 2012; Mohammadi et al., 2015; Mumtaz et al., 2017; Acharya
et al., 2018; Mumtaz et al., 2018), temporal (Hosseinifard et al., 2013; Liao et al., 2017;
Mumtaz et al., 2018; Sun et al., 2019) and posterior (Hosseinifard et al., 2013;
Mohammadi et al., 2015; Mumtaz et al., 2018) regions (Table 4 in Appendix 1). However,
the comparisons between studies are complicated, because the most significant brain
regions are dependent on the EEG measure, the results depend on the choice of the
reference, and some studies do not include all brain regions in their analysis (Knott et al.,
2001; Ahmadlou et al., 2012; Acharya et al., 2018; Cai et al., 2018).

Based on the previous resting-state EEG studies, it is unclear which measures and
channels best discriminate between depressed and healthy subjects. A wide range of
different EEG measures has been used across studies and therefore the comparison
between the measures is complicated. Furthermore, there is a wide range of variables
that could influence the results and cause inconsistencies between studies, such as the
choice of the subjects, EEG acquisition, and signal preprocessing. Several studies have
reported that a combination of different EEG measures gave the highest classification
accuracy (Table 4 in Appendix 1). Interestingly, the measure combinations giving the
highest accuracy may not coincide with the measures with the highest group differences
(Knott et al., 2001), meaning that combining different measures may give new
perspectives. Nevertheless, no EEG measure or a combination of measures has been
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consistently reported to be the best in discriminating between healthy and depressed
subjects.

For an EEG application for depression screening in clinical practice, simplicity is
important. Firstly, the number of EEG channels should be as low as possible. Several
EEG measures successfully applied in the classification between subjects with depression
and healthy subjects are calculated for an EEG signal from a single EEG channel, such as
EEG power, DFA, HFD, and correlation dimension (Table 4 in Appendix 1). On the other
hand, some measures require multiple channels, such as inter- and intrahemispheric
asymmetry, FC, and graph theoretical measures. Discrimination of depression based on
a single-channel EEG signal analysis has been considered in a few studies (Bachmann
et al., 2013; Bachmann et al., 2017; Acharya et al., 2018; Lee et al., 2018). However, it is
unclear whether single-channel EEG measures can provide as good discrimination
between healthy subjects and subjects with depression as multi-channel EEG measures
and whether using a single EEG channel would be sufficient.

Secondly, the computational load of chosen EEG measures should be low. Generally,
linear EEG measures are computationally less expensive. However, if nonlinear measures
provide significantly better classification accuracy between healthy and depressed
subjects, nonlinear measures should be chosen instead. On the one hand, previous
studies have reported nonlinear properties of EEG signals (Rubinov et al., 2009; Bae
et al.,, 2017; Lei et al., 2017; Puthankattil, 2020) and nonlinear measures can detect
nonlinear information that linear measures cannot. On the other hand, linear measures
are faster to compute, more robust to noise, and can perform as well as nonlinear
measures in some cases (Netoff et al., 2006; Bastos & Schoffelen, 2016; Cai et al., 2018).
Therefore, the comparison between linear and nonlinear EEG measures in the classification
between healthy and depressed subjects is required.

1.3 Graph theoretical analysis

Over the last decade, EEG FC and functional network analysis have gained much interest,
due to the ability to estimate interactions between signals from different brain regions
and topological properties of an EEG functional network. As MDD has been associated
with disruptions in brain neural networks (Wang et al., 2012), FC and graph theory are
expected to provide valuable input to depression classification. Calculating FC requires
at least two channels, while graph theory measures require full-head EEG. Therefore,
FC and graph theory measures could be considered for discriminating depression in
clinical practice if they provide significantly higher classification accuracy compared to
single-channel EEG measures.

EEG signals can be analyzed using complex network analysis. A graph is constructed
by computing FC between EEG signals, obtaining a connectivity matrix. Weak connections
are removed by thresholding the FC values: an edge exists only if the value of FC is higher
than the threshold. For proportional thresholds, a percentage of the highest FC values is
kept. The small-world organization has been widely applied to study complex brain
networks. A network has small-world properties when it has higher functional segregation
and similar functional integration than a random network (Rubinov & Sporns, 2010).
The measures of C and local efficiency are used to describe functional segregation and
characteristic path length (L) and global efficiency are used to describe functional
integration of an EEG network. A measure of SW estimates the trade-off between
functional integration and segregation in a single statistic (Humphries & Gurney, 2008).
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Previous EEG studies have shown that FC could be a promising marker to discriminate
depression (Knott et al., 2001; Fingelkurts et al., 2007; Leuchter et al., 2012; Olbrich
et al., 2014; Li et al,, 2017; Zhang et al., 2018; Shim et al., 2018). MDD has been mostly
characterized by increased FC in the theta and alpha frequency bands. Olbrich et al.
(2014) reported increased prefrontal lagged phase synchronization for MDD patients in
the alpha frequency band. Fingelkurts et al. (2007) found that EEG structural synchrony
was positively correlated with the severity of depression in the alpha and theta frequency
bands. According to Li et al. (2017), MDD subjects have increased coherence in the theta
frequency band and Leuchter et al. (2012) found significantly increased coherence in the
delta, theta, alpha, and beta frequency bands. However, some studies have also found a
significant decrease in FC for subjects with MDD (Knott et al., 2001; Zhang et al., 2018;
Shim et al., 2018). Knott et al. (2001) found decreased inter-hemispheric coherence in
the delta, theta, alpha, and beta frequency bands. Shim et al. (2018) found a decrease in
the phase-locking value (PLV) in the theta and alpha frequency bands. Zhang et al. (2018)
also found a decrease in the FC, estimated by Pearson correlation coefficients of power
spectral density, in the alpha frequency band.

Several studies have used topological measures describing small-world properties of
an EEG functional network, as well as other functional network measures to study
depression (Li et al., 2017; Orgo et al., 2017; Zhang et al., 2018; Shim et al., 2018; Sun
etal., 2019). Mostly, randomization of functional networks is found for the subjects with
depression. Li et al. (2017) calculated leaf fraction, the mean weight of the minimum
spanning tree, and hierarchical clustering in the theta frequency band because the
difference in coherence between MDD and control subjects was more evident in the
theta band than in the alpha and beta bands. For the group of MDD subjects, they found
increased leaf fraction and mean weight, indicating a more random functional network
structure in MDD. They also found lower clustering in the frontal regions. Sun et al. (2019)
calculated L, C, edge betweenness centrality, NBC, and modularity in the theta and alpha
frequency bands. In the theta frequency band, they found significant differences in L,
edge betweenness centrality (EBC), and NBC between subjects with MDD and healthy
subjects. However, depending on the binarization technique, these measures were
decreased or increased in MDD. In the alpha frequency band, they found decreased L, C,
EBC, NBC, and modularity for MDD, revealing randomization in functional networks.
Zhang et al. (2018) calculated C, normalized clustering coefficient (C,,orm), L, normalized
characteristic path length (L,orm), global and local efficiency, power law exponent,
exponential cutoff, resilience, size of the largest component, and the rich-club coefficient
for the alpha frequency band. Only the alpha band was chosen because the correlation
matrix density was significantly different in that frequency band between MDD and
control groups. They found that MDD subjects had decreased C, L,,m, L, local efficiency,
exponential cutoff, and rich-club coefficient and increased global efficiency, power law
exponent, and the size of largest component. These alterations again indicate a shift
towards a more random network topology. Shim et al. (2018) found decreased C in the
theta and alpha frequency bands, decreased efficiency in the alpha band, and increased
path length in the alpha band for MDD subjects. In our previous study, we investigated
whether adding the EEG features of graph theoretical measures L, C, and SW to the
features of coherence would increase the classification accuracy between healthy
subjects and subjects with depression (Orgo et al., 2017). As a result, no significant
increase was found.
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FCand graph theory measures complement each other by describing different aspects
of the functional network. When alterations in FC and graph theory measures in a mental
disorder are analyzed, the relationship between FC and graph theory measures is also
important to know. However, to the best of my knowledge, the relationship between
EEG FC and graph theory measures has not been studied before, neither for healthy nor
for depressed subjects.

1.4 Surrogate data method

The multivariate surrogate data method (Theiler et al., 1992; Prichard & Theiler, 1994)
has been widely used for different EEG applications, including studying depression (Lee
et al., 2007; Zuchowicz et al., 2019; Puthankattil, 2020). The surrogate data method was
introduced by Theiler et al. (1992) for nonlinearity testing in time series and is therefore
often used for nonlinearity testing in the EEG time series (Breakspear & Terry, 2002;
Natarajan et al., 2004; Lee et al., 2007; Bae et al., 2017; Lei et al., 2017; Orgo et al., 2018;
Puthankattil, 2020). The null hypothesis that data were generated by a linear process and
therefore data can be fully explained by a linear model, is set. Surrogate data is generated
from original data by taking the Fourier transform, rotating the phase of each frequency,
and taking the inverse Fourier transform. The null hypothesis is rejected if the nonlinear
statistics calculated for original and surrogate data are significantly different.

In addition to nonlinearity testing, the surrogate data method has been widely used
to analyze different aspects of EEG signals. In the current thesis, | focus on studies where
the surrogate data method is used in applications also applicable in classifying between
depressed and healthy subjects. These applications include EEG preprocessing and the
calculation of different measures. Firstly, Chavez et al. (2018) used the surrogate data
method for artifact removal from an EEG signal. Secondly, some studies have used the
surrogate data method to determine the statistical threshold of connectivity values in
the network analysis. Dimitriadis et al. (2015) calculated global and local efficiency to
compare subjects with mild traumatic brain injury and control subjects. Olejarczyk et al.
(2017) used the surrogate data method in the network analysis to calculate degree,
strength, local efficiency, betweenness centrality, density, L, C, and global efficiency to
analyze the effects between eyes open and eyes closed conditions. Zuchowicz et al.
(2018) calculated network strength and degree to study the effects of repetitive
transcranial magnetic stimulation (rTMS) treatment on MDD and bipolar disorder
patients. Thirdly, some studies have used EEG measures calculated for original and
surrogate data to compare subject groups or different conditions. Nicolaou et al. (2017)
removed insignificant imaginary part of coherency (ICOH) values using the surrogate data
method before calculating average ICOH values to compare the EEG in response to music
stimuli played at four different tempi. Wang et al. (2019b) calculated original and
surrogate values of SampEn to compare subjects with Alzheimer’s disease and healthy
subjects. Alonso et al. (2010) compared cross mutual information for the surrogate data
and the difference between the cross mutual information calculated for the original and
surrogate data to evaluate the pharmacological effects of alprazolam.

Although the surrogate data method has been widely used for EEG analysis, these
studies do not take into account the EEG segment end-mismatch while applying the
surrogate data method. Stam et al. (1998) and Small and Tse (2002) brought out that a
false detection of nonlinearity may occur with the surrogate data method if the data are
strongly cyclic and the length of the analyzed signal segment does not comprise full
periods of the dominant cyclic component. This problem can be explained by the spectral
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leakage in the discrete Fourier transform. Thornhill (2005) showed that even a small
segment end-mismatch could cause false detection of nonlinearity for sine waves.
However, they showed that pseudoperiodic data with less regular cycles were more
robust to small end-mismatches.

In the eyes-closed resting state, EEG is generally characterized by dominant alpha
frequency rhythm, especially in the posterior regions. However, the influence of the EEG
cyclic alpha component on the surrogate data method has not been studied before.
Therefore, the impact of the EEG alpha frequency component on the results of the
surrogate data method needs to be clarified.
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2 Methods

2.1 Subjects

The study group of Publication | consisted of 13 subjects with MDD and 13 healthy
subjects without any history of depression. Healthy subjects were chosen to match MDD
subjects according to age, sex, and handedness. Both groups consisted of 5 male and 8
female subjects with a mean age of 38.7 years and a standard deviation of 15.8 years.
Subjects with MDD were referred by psychiatrists or family physicians and EEG
recordings were made before starting with the treatment.

The study group of Publication Il and Publication Il consisted of 80 healthy subjects.
Out of all subjects, 38 were female and 42 were male. The mean age was 37.0 years and
the standard deviation was 14.5 years. In addition, in the current thesis, the results of 13
subjects with MDD were added to the results of healthy subjects from Publication II.

The subjects were asked to abstain from alcohol 24 hours and from coffee two hours
prior to the EEG recording. The studies were conducted in accordance with the
Declaration of Helsinki and were approved by the Tallinn Medical Research Ethics
Committee. Informed consent was obtained from each subject before participating in
the study.

2.2 EEG recordings and preprocessing

EEG signals were recorded using the Neuroscan Synamps2 acquisition system
(Compumedics, NC, USA) from 30 electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8, FT7, FC3, FCz,
FC4, FT8, T7, C3, Cz, C4, T8, TP7, CP3, CPz, CP4, TP8, P7, P3, Pz, P4, P8, 01, Oz, 02). EEG
electrodes were positioned according to the extended international 10-20 system and
linked mastoids was used as the reference. Furthermore, horizontal and vertical
electrooculograms were recorded to monitor eye movements.

The duration of the resting-state EEG recordings was between 7 and 30 minutes
and the sampling rate was 1000 Hz. During the recordings, the subjects were lying in a
relaxed position with their eyes closed. The room was dimly lit and electrically shielded.
In addition, earplugs were used to minimize any disturbances.

The data were analyzed using MATLAB (The Mathworks, Inc.) and MATLAB toolboxes
Brain Connectivity Toolbox (Rubinov & Sporns, 2010) and HERMES (Niso et al., 2013).
The EEG signals were digitally filtered at the cutoff frequencies of 0.5 Hz and 46 Hz in
Publication I, 8 Hz and 12 Hz into alpha frequency band in Publication Il and 1 Hz and
45 Hz in Publication Ill. The sampling frequency was reduced to 200 Hz in Publication Il
to reduce the computation time of FC measures. The length of data segments also
differed between publications: 10 seconds (10 000 samples) in Publication I, 20.48 seconds
(4096 samples) in Publication Il, and 5.3 seconds (5300 samples) in Publication Iil.
The actual length of segments in Publication Il depended on the frequency of dominant
alpha waves. All segments were visually inspected and segments with ocular, muscular,
or other artefacts were removed.

In Publications Il and lll, the signals were re-referenced according to the reference
electrode standardization technique (REST) (Yao, 2001). Previous studies have brought
out that REST has a good performance even for low-density EEG montages and may be a
good reference technique to compare results from different research labs. (Qin et al.,
2010; Huang et al., 2017). In Publication I, the reference remained the average of
mastoids, as initially recorded.
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2.3 Measures of EEG

A wide selection of EEG measures was calculated throughout the publications presented

in the current thesis. A summary of these measures is given in Table 1.

Table 1. EEG measures used in the thesis.

Measure Usagein Estimates
publications
Higuchi fractal dimension (HFD) | Publications | Complexity and self-
and lll similarity of time series
- Katz fractal dimension (KFD) Publication Ill | Fractal dimension based
< on morphology
ﬁ Lempel-Ziv complexity (LZC) Publications | Randomness of finite
€ and Ill sequences
§ Sample entropy (SampEn) Publication lll | Signal irregularity
C
é Synchronization likelihood (SL) Publications Il | Functional connectivity
and Il
Detrended fluctuation analysis Publication | Quantifies long-range
(DFA) temporal correlations
Spectral asymmetry index Publication | Balance of beta and
(SASI) theta band powers
§ Alpha power variability (APV) Publication | Alpha power variability
2
g Relative gamma power (RGP) Publication | Relative gamma power
§ Magnitude-squared coherence Publication Il Functional connectivity
= (MSC)
Imaginary part of coherency Publication Il Functional connectivity
(ICOH)

2.4 Classification between MDD and healthy subjects (Publication I)

Three nonlinear and three linear measures (Table 1), as well as combinations of these
measures, were compared. The calculation of the EEG measures and more thorough
explanations of the methods are presented in Publication I. Briefly, the classification was
conducted using logistic regression with leave-one-out cross-validation. The statistical
significance of classification accuracies was estimated by randomly rearranging the labels
of MDD and healthy subjects and making a null distribution from the maximum
classification accuracies of each permutation. The confidence level of p<0.05 from the
maximum classification accuracies was considered statistically significant.

2.5 Correlation between functional connectivity and small-worldness
(Publication Il)

The calculation of the FC measures and SW, as well as more thorough explanations of
the methods, are presented in Publication Il. For each subject, the mean values of EEG
alpha FC and SW were calculated over all channels and Pearson correlation between FC
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and SW was calculated for healthy subjects and subjects with depression. The confidence
level of p < 0.05 was used and the p-value was adjusted according to the number of
statistical tests using Bonferroni correction to address the problem of multiple
comparisons. As three different measures and nine different graph densities were used,
the number of statistical tests was 27 and p-value was adjusted to p < 0.05/27 =
0.0019.

2.6 Degree of nonlinearity depending on the alpha period
(Publication Il1)

To determine whether the surrogate data method significantly depends on the EEG alpha
frequency component, the degree of nonlinearity (DEG) was calculated for gradually
incremented EEG segments. We defined DEG as the percentage of segments where
nonlinearity was detected. The starting EEG segment consisted of an integer number of
alpha periods and was approximately 5 seconds long. The length of the starting EEG
segment was gradually increased by 2, 4, 6, ..., 108 ms within one alpha period and DEG
was calculated for each segment. The calculation of the surrogate data method, the DEG,
and the incrementation process are more thoroughly explained in the methods of
Publication Ill. One-way analysis of variance (ANOVA) was conducted to determine
whether the value of DEG was influenced by the alpha frequency component for five
nonlinear EEG measures (Table 1). The calculation of the EEG measures is briefly
explained in Publication Ill.
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3 Results

3.1 Classification between MDD and healthy subjects (Publication I)

The maximum classification accuracies of different EEG channels are presented in Table 2
and the classification accuracies of all analyzed measure combinations and channels are
shown in Tables 1 and 2 in Publication I. Statistically significant classification accuracies
(higher than 0.81) are marked with a gray background. The best classification accuracy
between subjects with MDD and healthy subjects was obtained with the combinations
of measures: 88% with SASI and RGP from linear measures, 88% with HFD, DFA, and LZC
from nonlinear measures, and 92% with all measures combined. The highest classification
accuracies for single EEG measures were obtained with the linear measures APV and
RGP. Although classification accuracies of SASI, HFD, DFA, and LZC did not reach statistical
significance after permutation testing, these measures gave high classification accuracies
in different measure combinations. Therefore, the results obtained show that no
superior EEG measure was found in the depression classification.

Nonlinear measures did not provide better classification accuracy compared to linear
measures. When comparing single EEG measures, the highest classification accuracies
were slightly higher for linear measures. However, when EEG measures were combined,
slightly better results were obtained with nonlinear measures. The classification accuracies
were not statistically compared and therefore these comparisons are conjectural.

The highest classification accuracies were found from central, temporal, and parietal
regions. However, no EEG channel was found to be superior in the classification between
MDD and healthy subjects.

Table 2. Maximum classification accuracies between MDD and healthy subjects for each EEG
measure combination as a summary of Tables 1 and 2 from Publication I. Grey background marks
statistical significance (p<0.05) after permutation testing.

Linear EEG measures Nonlinear EEG measures
Accuracy Accuracy
SASI 77% HFD 77%
APV 81% DFA 77%
RGP 81% LzC 69%
SASI & APV 77% HFD & DFA 81%
SAS| & RGP 88% HFD & LZC 85%
APV & RGP 81% DFA & LZC 81%
SAS| & APV & RGP 81% HFD & DFA & LZC 88%
| All 6 measures combined | Accuracy 92% |

3.2 Correlation between functional connectivity and small-worldness
(Publication Il)

As a result of Publication Il, a statistically significant negative correlation occurred for all
three FC measures for healthy subjects (Fig. 1). MSC and ICOH resulted in statistically
significant correlations for graph densities 15% ... 50% and SL 20% ... 50%. The highest
correlations between FC and SW are shown in Fig. 3 in Publication Il. Furthermore, novel
results presented in the current thesis also show a negative correlation for all three FC
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measures for MDD subjects (Fig. 2). Correlations calculated using MSC were significant
for graph densities 30% ... 40%, using SL 35% ... 50%, and using ICOH 35%. The results for
MDD subjects are novel and have not been previously published (Fig. 2). The negative
correlation between FC and SW was similar for MDD and healthy subjects, but the level
of statistical significance was different due to an unequal number of subjects in each
group: 80 healthy subjects and 13 MDD subjects.

—o—MSC
—o—SL
ICOH

p <0.05 (with Bonferroni correction)

Correlation between functional
connectivity and small-worldness

10 15 20 25 30 35 40 45 50

09 | | |

Graph density, %

Figure 1. The values of Pearson correlation coefficients for healthy subjects between measures of
functional connectivity (MSC, SL, and ICOH) and small-worldness calculated from these measures
(SWVSC sWSL, and SW'!) for different graph densities (Publication Il). The black horizontal line
corresponds to a correlation -0.34. Correlations below this line are statistically significant with a
confidence level of 0.05 (p-value is adjusted according to the Bonferroni correction to p<0.0019).
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Figure 2. The values of Pearson correlation coefficients for major depressive disorder (MDD)
subjects between measures of functional connectivity (MSC, SL, and ICOH) and small-worldness
calculated from these measures (SWS¢, SW*%, and SW/") for different graph densities. The black
horizontal line corresponds to a correlation -0.77. Correlations below this line are statistically
significant with a confidence level of 0.05 (p-value is adjusted according to the Bonferroni correction
to p<0.0019).

3.3 Degree of nonlinearity depending on the alpha period
(Publication Il1)

The percentage of segments where nonlinearity was detected is presented in Table 3.
HFD, KFD, and SampEn revealed significant nonlinearity within EEG signals (DEG>5%), but
LZC and SL did not (DEG<5%). The value of DEG was statistically significantly influenced
by the incrementation of the segment within one alpha period for every nonlinear
statistic that indicated nonlinearity: HFD, KFD, and SampEn (Fig. 3). This result shows that
the EEG DEG is influenced by the alpha cyclic component within the signal.

In addition, the dependence of DEG on the segment length increment in different
channels (Fig.2 in Publication 1ll) and for different frequency bands (Fig.3 in
Publication Ill) are analyzed in Publication Ill. These results will not be discussed in the
current thesis.

Table 3. The degree of nonlinearity for 5-second EEG segments (Publication III).

HFD

KFD

LZC

SampEn

SL

DEG

45.7%

99.9%

0.4%

82.0%

4.4%
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Figure 3. The degree of nonlinearity DEG depending on the segment length increment At for (A)
HFD, (B) KFD, (C) LZC, (D) SampEn, and (E) SL (Publication Ill). Statistically significant results are
indicated with a pink background.
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4 Discussion

One purpose of the thesis was to find an easily measurable EEG marker to differentiate
subjects with depression from control subjects. For a clinical application of discriminating
depression, the simplicity and low computational load of EEG measures are important.
Therefore, in Publication | we focused on EEG measures calculated from single EEG
channels. On the one hand, the highest classification accuracies for single EEG measures
were obtained for APV and RGP (81%). On the other hand, the combination of SASI and
RGP and the combination of HFD, DFA, and LZC gave an even higher accuracy of 88%.
Therefore, no specific EEG measure was concluded to be superior compared to other EEG
measures, indicating that the choice of the EEG measures in discriminating depression is
not strictly limited to certain measures. Therefore, other factors, such as the
computational load, can be considered. The inconsistency of previous studies (Table 4
in Appendix 1) supports the conclusion of Publication I that currently there is no EEG
measure that would be superior in depression classification. A review by de Aguiar Neto
and Rosa (2019) included 42 EEG studies and also did not point out any superior
EEG-based measures. They recommended using theta or gamma frequency band, HFD,
and connectivity measures to discriminate between subjects with depression and
healthy subjects and alpha frequency band for the detection of depression symptoms or
for prognostics. In Publication I, we also found good results with RGP and HFD. However,
it should be noted that the suggestions by de Aguiar Neto and Rosa (2019) were also
influenced by the results of Publication I. The review by Cuki¢ et al. (2020a) suggested
using nonlinear EEG features and another review by Mahato and Paul (2019) suggested
using band powers and relative wavelet energy.

De Aguiar Neto and Rosa (2019) suggested using connectivity measures among others
to classify between healthy subjects and subjects with depression, as was done in some
previous studies (Knott et al.,, 2001; Leuchter et al.,, 2012). However, FC and other
multi-channel EEG measures are computationally more complex and require more
EEG electrodes than single-channel measures analyzed in Publication I. The highest
classification accuracy obtained in Publication | using single-channel EEG measures was
92%. Obtained accuracy is not lower compared to previous EEG studies using
multi-channel EEG measures (Table 4 in Appendix 1). Previous studies have found similar
classification accuracies for single- and multi-channel EEG studies: 62-98% for FC
(Leuchter et al., 2012; Mumtaz et al., 2018), 66-88% for graph theory measures (Sun
et al., 2019), 74-98% for asymmetry in combination with power (Mumtaz et al., 2017;
Mahato & Paul, 2020), and 66-98% for measures calculated from single channels
(Ahmadlou et al., 2012; Hosseinifard et al., 2013; Bachmann et al., 2017, Mahato &
Paul, 2020; Cuki¢ et al., 2020b). These results show that multi-channel EEG measures are
expected to provide only limited advantage in the classification between healthy subjects
and subjects with depression compared to single-channel measures. This conclusion is in
agreement with the previous studies (van der Vinne et al., 2017; Wan et al., 2019).
One year after Publication I, Wan et al. (2019) also found that single-channel EEG
analysis can discriminate MDD as accurately as multi-channel analysis. Furthermore,
the meta-analysis by Vinne et al. (2017) included 16 studies and showed a limited
diagnostic value of frontal alpha asymmetry. Therefore, single-channel EEG measures
could be preferred for clinical application, as the calculation of both FC and asymmetry
requires at least two EEG channels and graph theory measures require full-head scalp
EEG recordings.
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As a result of Publication Il and the thesis, we found a negative correlation between
alpha FC and SW for MDD and healthy subjects. Based on the results of Publication II,
we suggested that decreased alpha small-world organization is compensated with
increased connectivity of alpha oscillations in a healthy brain. Furthermore, results
presented in the current thesis (Fig. 2) show that the suggested compensational
mechanism is maintained in depression. The conclusion that FC and graph theory
measures provide similar discrimination between MDD and healthy subjects compared
to single-channel EEG measures supports the proposition that compensating decreased
small-world organization with increased alpha connectivity works similarly for healthy
and depressed subjects. This result is important for a better understanding of the
mechanisms of functional networks of both MDD and healthy subjects. Furthermore,
this result could be the reason why FC or graph theory measures have not been
frequently used in classifying between healthy subjects and subjects with depression
compared to other measures, such as band powers or HFD (Table 4 in Appendix 1).

Schizophrenia and Alzheimer’s disease have been previously described with
decreased FC in the alpha frequency band (Koenig et al., 2005; Jalili & Knyazeva, 2011;
Wang et al., 2014; Di Lorenzo et al., 2015; Maran et al., 2016; Babiloni et al., 2016),
but also decreased small-world measures (Micheloyannis et al., 2006; Rubinov et al.,
2009; Wang et al., 2014; Babiloni et al., 2016). Therefore, based on the network analysis
in the studies by other authors, the compensational mechanism suggested in Publication
Il may be disrupted in schizophrenia and Alzheimer’s disease. Therefore, FC could be more
valuable to discriminate schizophrenia or Alzheimer’s disease compared to depression.

Generally, linear measures have a lower computational load than nonlinear measures.
The results of Publication | demonstrated that linear EEG measures (SASI, APV, and RGP)
provided similar classification accuracies compared to nonlinear EEG measures (HFD,
LZC, and DFA) for discrimination of depression in resting state. This result is in line with
previous studies because similar classification accuracies have been presented for both
linear and nonlinear measures throughout different studies: 66% - 98% for linear
measures (Knott et al., 2001; Leuchter et al., 2012; Hosseinifard et al., 2013; Bachmann
et al., 2013; Mumtaz et al., 2017; Bachmann et al., 2017; Mumtaz et al., 2018; Lee et al.,
2018; Mahato & Paul, 2020) and 70% - 98% for nonlinear measures (Ahmadlou et al.,
2012; Hosseinifard et al., 2013; Bachmann et al., 2013; Bachmann et al., 2017; Mumtaz
et al., 2018; Cuki¢ et al., 2020b). Furthermore, while Hosseinifard et al. (2013) found that
nonlinear measures provided better discrimination between subjects with depression
and healthy subjects, Cai et al. (2018) found the opposite. Unfortunately, the classification
accuracies were not statistically compared and therefore the comparisons are conjectural.

In Publication lll, five nonlinear measures were analyzed: LZC, SL, HFD, KFD, and
SampEn. As a result, HFD, KFD, and SampEn revealed a significant percentage of
nonlinearity within the EEG signals (Table 3), indicating that the values of these measures
were significantly altered if the phase information within the signal was lost. Although
the values of HFD, KFD, and SampEn are influenced by nonlinear information within the
EEG signals, the advantage of these measures compared to other measures in the
classification between MDD and healthy subjects is not marginal (Table 4 in Appendix 1).
LZC and SL did not reveal significant nonlinearity in the signal (Table 3), meaning that the
values of these measures were not significantly influenced by nonlinear information
within the EEG signals or the nonlinearity was not revealed by the surrogate data
method. As a result of Publication Il, we found similar results for nonlinear measure SL
and linear measure MSC (Figs. 1 and 2 from Publication Il). This result shows that
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although SL is computationally much more demanding, MSC may work as well as SL.
However, the same result may not apply to all EEG data. Lei et al. (2017) reported that
72% - 74% of EEG segments were identified as nonlinear using SL and Mumtaz et al.
(2018) found that SL gave higher accuracy in the classification between MDD and healthy
subjects compared to coherence.

In Publication |, the highest classification accuracies between MDD and healthy
subjects were obtained using a combination of several EEG measures. Previous studies
have also come to the same conclusion that the highest classification accuracy is
obtained using a combination of different EEG measures (Knott et al., 2001; Hosseinifard
et al.,, 2013; Cai et al., 2018; Mahato & Paul, 2020). The relationship between EEG
measures gives information about the performance of combining different measures.
Including highly correlated features in the classification may decrease the classification
accuracy by overfitting the model. As an example, our previous study showed that adding
graph theory features to FC features did not significantly increase accuracy in classifying
between MDD and healthy subjects (Orgo et al., 2017). As a result of Publication Il and
the thesis, we found a negative correlation between alpha FC and SW for MDD and
healthy subjects, conjointly explaining why combining these measures did not increase
the classification accuracy in our previous study.

Another subject on the correlated EEG features is correlations between EEG channels.
In Publication I, statistically significant classification accuracies were found from a range
of EEG channels from central, temporal, and parietal regions. A result from a range of
channels is expected due to the effects of volume conduction. Furthermore, previous
studies have shown that depression affects brain activity across the whole cortex
(Fingelkurts et al., 2006; Wang et al., 2012). Correlating EEG channels could be one
reason why single-channel EEG measures give results comparable to multi-channel
measures in the classification between subjects with depression and healthy subjects.

As a result of Publication Ill, EEG DEG was statistically significantly influenced by the
alpha frequency component for every nonlinear EEG measure that indicated
nonlinearity. This result indicates the importance of segmenting EEG signals according to
the alpha component for eyes-closed resting-state EEG when using the surrogate data
method. The surrogate data method has been widely used for EEG time series and is
applicable in studies discriminating between subject groups (Dimitriadis et al., 2015;
Wang et al., 2019b), including subjects with depression and healthy subjects (Lee et al.,
2007; Zuchowicz et al., 2019; Puthankattil, 2020). However, to the best of my knowledge,
previous studies have not considered the alpha component in EEG signal segmentation.
Wang et al. (2019b) found that the EEG measures calculated for original data had better
discrimination between subject groups compared to the EEG measures calculated for
surrogate data. This result may be influenced by the EEG segment end-mismatch because
random segmentation also randomizes surrogate data results (Fig. 3).

Although several studies have classified between subjects with depression and
healthy subjects, presented accuracies are often obtained using the data on hand and
are not extendable to unknown data. This is the case when testing is not performed on
an independent data. Instead, data in EEG studies is often divided into training and
validation sets and after that, the same data is divided into training and testing sets.
In previous EEG studies, best performing EEG measures, frequency bands, or channels
have been selected in a validation phase using either statistical tests to compare means
of two groups such as ANOVA or t-test (Knott et al.,, 2001; Ahmadlou et al., 2012;
Bachmann et al., 2013), correlation with a self-reported depression scale (Sun et al., 2019),
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or feature selection (Hosseinifard et al., 2013; Cai et al., 2018; Mumtaz et al., 2018;
Mahato & Paul, 2020). In Publication I, training and testing were conducted on data
without any prior validation and therefore presented classification accuracies are not
overfitted by the validation phase (Tables 1 and 2 in Publication I). The statistical
significance of classification accuracies was estimated using a permutation test. Only a
few depression EEG studies have used independent datasets for validating and testing
(Mohammadi et al., 2015) or a statistical test to estimate the performance of the
classifier (Sun et al., 2019). Independent subject groups are often not used due to the
difficulty to find unmedicated volunteers with depression, resulting in a small number of
subjects. Another obstacle is the individuality and complexity of depression: different
subjects may exhibit different symptoms and comorbidity of disorders. Cuki¢ et al.
(2020a) brought out that a small number of subjects is one of the main problems in the
EEG studies discriminating depression. They added that a larger number of subjects and
independent testing would increase the prediction accuracy on unseen data and would
decrease unwarranted optimism.

The current thesis focuses on classification between subjects with depression and
healthy subjects and does not address the classification between various mental
disorders. Markers for discriminating depression could assist doctors in the early
detection of depression. Nevertheless, clinical diagnoses should be made by a medical
doctor. Note that as a diagnosis of depression is based on subjective symptoms, the
classification between healthy subjects and subjects with MDD is also based on detecting
subjective symptoms of depression, because subjects for the studies are chosen based
on clinical diagnoses. EEG measures addressed in the current thesis can also have
applications in discriminating other psychiatric or degenerative disorders or between
different disorders, but these areas are not covered in the current thesis.
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Conclusions

The current thesis provides novel knowledge about the objective EEG measures applied
in the classification between subjects with depression and healthy subjects. In accordance
with the aims of the thesis, the following conclusions were made:

1.

As a result of the thesis, no specific EEG measure was concluded to be superior
compared to other EEG measures, indicating that the choice of the EEG
measures in discriminating depression is not strictly limited to certain measures.
Therefore, other factors, such as the computational load or simplicity, can be
considered. The results of the thesis demonstrated that linear EEG measures
provided similar classification accuracies compared to nonlinear EEG measures
for discrimination of depression in resting state. Furthermore, Publication | was
the first study to demonstrate that EEG measures calculated for a single EEG
channel did not provide lower classification accuracies than measures
calculated for multiple EEG channels in previous studies.

One purpose of the thesis was to identify the most sensitive EEG channel regions
in the classification between MDD and healthy subjects. As a result, the highest
classification accuracies were found from central, temporal, and parietal
regions. As no superior EEG channel was found, a range of channels are suitable
for discriminating depression.

The current thesis was the first study to report a negative correlation between
EEG FC and SW in the alpha frequency band for MDD and healthy subjects.
The relationship between FC and SW was previously unknown. Based on the
results, it was proposed in the thesis that decreased small-world organization is
compensated with increased alpha connectivity and the compensational
mechanism works similarly for MDD and healthy subjects.

A specific problem was found in applying the surrogate data method to the EEG
segments. It was previously known that a false detection of nonlinearity may
occur in case the data are strongly cyclic for data segments with end-mismatch.
However, it was unknown how the segment end-mismatch influences the
surrogate data method calculated for an EEG signal and previous EEG studies
have not addressed this problem. As a result of the thesis, we found that a false
detection of nonlinearity occurred when the data segment did not comprise full
periods of the alpha frequency component. This result shows the importance of
segmenting data according to the alpha component for eyes-closed resting-state
EEG when using the surrogate data method.

In the conclusion of the thesis, complicated EEG measures based on multiple EEG
channels or nonlinearity are expected to provide only limited advantage in the
classification between subjects with depression and healthy subjects compared to linear
single-channel measures.
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Abstract
Assessment of electroencephalographic measures applied in
the detection of depression

Depression is the leading cause of disability worldwide and a major contributor to the
global burden of disease. However, currently, the diagnosis of depression is based on an
evaluation of the intensity of subjective symptoms using clinical interviews and
psychiatric questionnaires. The general aim of the thesis is to assess different aspects of
resting-state electroencephalography (EEG) measures for the purpose of an objective
marker to discriminate between healthy and depressed subjects.

Firstly, the thesis aimed to compare EEG measures and EEG channel regions in
depression detection (Publication I). Three nonlinear measures: Higuchi fractal dimension
(HFD), Lempel-Ziv complexity (LZC), and detrended fluctuation analysis (DFA), and three
linear measures: spectral asymmetry index (SASI), alpha power variability (APV), and
relative gamma power (RGP), as well as combinations of these measures, were compared.
As a result, no specific EEG measure was concluded to be superior for the discrimination
of depression in resting state. Furthermore, linear EEG measures provided classification
accuracies similar to nonlinear EEG measures. The results of the thesis demonstrate that
the EEG measures calculated for a single EEG channel did not provide lower depression
classification accuracies than the multi-channel measures used in previous studies. The
highest classification accuracies were found from central, temporal, and parietal regions.

Secondly, the thesis aimed to find the relationship between EEG alpha functional
connectivity (FC) and small-worldness (SW) for healthy subjects (Publication Il) and
subjects with major depressive disorder (MDD). SW describes the organization of a
network by estimating the trade-off between functional integration and segregation.
Pearson correlation coefficient between FC and SW was calculated for three EEG
measures: magnitude-squared coherence (MSC), imaginary part of coherency (ICOH),
and synchronization likelihood (SL). As a result of Publication Il, a statistically significant
negative correlation occurred for all three FC measures for healthy subjects. Furthermore,
the previously unpublished results of the thesis show that the same relationship between
FC and SW is maintained in MDD. Based on the results, it was proposed in the thesis that
decreased small-world organization of a brain network is compensated with increased
alpha connectivity and the compensational mechanism works similarly for MDD and
healthy subjects.

Thirdly, the thesis aimed to clarify the impact of an EEG alpha frequency component
on the results of the surrogate data method (Publication Ill). For that reason, the
percentage of segments where nonlinearity was detected was calculated for gradually
incremented EEG segments. As a result, the degree of nonlinearity (DEG) was statistically
significantly influenced by the incrementation of the segment within one alpha period
for every nonlinear statistic that indicated nonlinearity: HFD, Katz fractal dimension
(KFD), and sample entropy (SampkEn). This result shows the importance of segmenting
data according to the alpha frequency component for eyes-closed resting-state EEG
when using the surrogate data method.

The current thesis shows the feasibility of using EEG measures for an objective marker
to discriminate between subjects with depression and healthy subjects. However, for a
marker applicable in clinical settings, further research is needed towards sufficiently high
accuracy and reproducibility.
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Liihikokkuvote
Depressiooni avastamiseks kasutatavate
elektroentsefalograafilise signaali moodikute analiiiis

Depressioon on (lemaailmselt pd&hiline t66vGimetuse pdhjustaja ning oluline tegur
haiguste poolt iihiskonnale pShjustatud koormusele. Sellele vaatamata pdhineb hetkel
depressiooni diagnoos Kkliinilistes intervjuudes ning psihhiaatrilistes kisimustikes
avaldunud subjektiivsetele simptomitele. Doktoritdo tldiseks eesmargiks on analiilsida
elektroentsefalograafilise (EEG) signaali moodikuid eesmargiga luua objektiivne naidik
depressioonis ja tervete uuritavate eristamiseks.

Esimesteks t00 eesmarkideks oli vorrelda omavahel EEG mdddikuid ja kanalite
piirkondi depressiooni tuvastamisel (Publikatsioon I). Selleks vorreldi omavahel kolme
mittelineaarset EEG mdddikut, Higuchi fraktaaldimensioon (Higuchi fractal dimension —
HFD), Lempel-Ziv keerukus (Lempel-Ziv complexity — LZC) ja vahendatud k&ikumiste
anallils (detrended fluctuation analysis — DFA), kolme lineaarset moddikut, spektraalse
aslimmeetria indeks (spectral asymmetry index — SASI), alfa véimsuse dispersioon (alpha
power variability — APV) ja suhteline gamma vdimsus (relative gamma power — RGP) ning
nende mooddikute kombinatsioone. Doktorit6d tulemusena jareldati, et depressiooni
tuvastamiseks rahuolekus ei tootanud ikski EEG md&ddikutest teistega vorreldes
oluliselt paremini. Samuti leiti, et lineaarsed EEG moddikud andsid sarnaseid
klassifitseerimistapsusi vorreldes mittelineaarsete mdddikutega. Sarnaselt, Ghele EEG
kanalile arvutatud moddikud ei andnud madalamaid klassifitseerimistdpsusi vorreldes
mitmele EEG kanalile arvutatud md&d&dikutega depressioonis ja tervete uuritavate
eristamisel. Piirkonniti leiti parim eristatavus tsentraalsetest, temporaalsetest ja
parietaalsetest kanalite regioonidest.

Kolmandaks t66 eesmargiks oli leida tervete (Publikatsioon Il) ja depressioonis
uuritavate jaoks seos EEG alfa funktsionaalse (ihendatavuse ja vaikse maailma mddtme
vahel. Vaikese maailma md&d&de kirjeldab vGrgustiku organiseeritust, hinnates omavahel
vastandliku funktsionaalse segregatsiooni ja integratsiooni suhet. Seose leidmiseks
arvutati Pearsoni korrelatsioonikordaja funktsionaalse hendatavuse ja vdikse maailma
md&tme vahel kolme erineva EEG mdddiku korral: koherentsuse reaalosa ruut
(magnitude-squared coherence — MSC), koherentsuse imaginaarosa (imaginary part of
coherency — ICOH) ja suinkronisatsiooni tGendosus (synchronization likelihood — SL).
Publikatsiooni Il tulemusena leiti statistiliselt oluline negatiivne korrelatsioon kdigi
kolme EEG md&ddiku korral tervetel uuritavatel. Doktoritéd uudse tulemusena leiti
lisaks, et negatiivne korrelatsioon esines ka depressioonis uuritavatel funktsionaalse
ihendatavuse ja vaikese maailma md&6tme vahel. Tulemustele tuginedes pakuti
doktoritdos valja, et vahenenud vaikse maailma organiseeritus kompenseeritakse ajus
suurenenud alfa UGhenduste tugevusega ning kompenseerimise mehhanism td6tab
depressioonis ja tervete uuritavate korral sarnaselt.

Neljandaks t66 eesmargiks oli selgitada EEG alfa sageduskomponendi moju
surrogaatandmete meetodile (Publikatsioon Ill). Selleks suurendati vahehaaval EEG
segmentide pikkust ning arvutati iga pikkuse jaoks segmentide protsent, milles esines
mittelineaarsus. To66 tulemusena leiti, et mittelineaarsuse protsent oli statistiliselt
oluliselt m&jutatud segmendi pikendamisest Uihe alfa perioodi ulatuses iga mittelineaarse
EEG moddiku korral, mis naitas mittelineaarsust: HFD, Katzi fraktaaldimensioon (Katz
fractal dimension — KFD) ja valimientroopia (sample entropy — SampEn). Saadud tulemus
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naitab, et surrogaatandmete meetodi puhul on oluline segmenteerida rahuoleku EEG
aegrida vastavalt alfa sageduskomponendile.

Kaesolev doktorit6d naitab, et EEG moodikuid saab rakendada depressioonis ja
tervete uuritavate eristamiseks vajaliku objektiivse naidiku valjatootamiseks. Kliinilises
praktikas kasutatava naidiku loomiseks on aga vajalik edasine teadustdd, et tagada
naidiku piisavalt kdrge klassifitseerimistdpsus ning korratavus.
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Appendix 1 - Table of EEG Studies

Table 4. Resting-state EEG studies classifying between subjects with depression (depr) and healthy
controls (HC).

Ref Subjects | Features analyzed Best features for | Brain areas Highest
classification classif
accuracy
& — | 30 MDD | Absolute power of | The combination | Signals from all | 88%
IS g 30 HC delta, theta, alpha, | of alpha2 and | brain areas used,
& alphal, alpha2, and | theta asymmetry | best results not
g 3 beta and theta mentioned
= e asymmetry
> 21 depr | HFD and SampEn SampEn Signals from all | 98%
i 20 HC brain areas used,
- best results not
% Q mentioned
© R
_ 16 MDD | Graph theory | NBCin alphaand | All regions | 88%
M 16 HC measures L, C, edge | Cintheta analyzed, best
8 betweenness results from left
ﬁ; centrality, NBC, and central region
@ modularity in theta and right
é and alpha frequency temporal region
~ bands
92 depr | Centroid frequency, | The combination | Channels  Fpl, | 77%
121 HC relative and absolute | of absolute | Fp2, and Fpz
centroid frequency, | power of theta, | used. Bestresults
relative and absolute | beta, and | with Fpl and Fp2
power, peak, | gamma  waves
variance, skewness, | and absolute
kurtosis, Hjorth | center frequency
parameter, power- | of beta wave
spectrum  entropy,
Shannon entropy,
correlation
dimension, c0-
complexity,
?ﬁ Kolmogorov entropy.
I All these features in
T-f\ delta, theta, alpha,
o beta, gamma, and
S full-band frequency
~ bands
> 34 MDD | SL, interhemispheric | SL  and  the | All brain regions | 98%
% 30 HC coherence, and | combination of | covered. Best
N mutual information SL, coherence, | results from
*é’ = and mutual | frontal,
é§ information temporal, and
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Ref Subjects | Features analyzed Best features for | Brain areas Highest
classification classif
accuracy
= 15 depr | EEG signal segments No measures | Channels FP1-T3 | 96%
© § 15 HC compared and FP2-T4.
S . Better  results
§ © with FP2-T4 (right
-0 hemisphere)
50 depr | Absolute power of | High-alpha and | All brain regions | 70%
T,f 50 HC delta, theta, low- | beta powers analyzed,
o = alpha, high-alpha, significant results
§ p= and beta frequency from left central
-« bands region
33 MDD | Alpha Interhemispheric | Significant 98%
i 30 HC interhemispheric alpha results from all
g asymmetry and | asymmetry and | areas, but most
N absolute power of | the combination | results from
*é’ = delta, theta, alpha, | of power and | frontal
§ g and beta frequency | asymmetry
-« bands features
17 depr | SASIand DFA SASI All brain areas | 77%
c = 17 HC analyzed, best
= results from
_g ~ posterior
® ® channels PZ and
2% 02
12 MDD | KEFB-CSP in the sub- | KEFB-CSP  and | All brain areas | 81%
. 12 HC bands with the width | alpha power used, best results
g of 4 Hz from 4 Hz to from  temporal
N 44 Hz, absolute power region
® of theta, alpha, beta
E and gamma frequency
8 bands, and fractal
— dimension
53 MDD | Absolute and log | With linked | All regions used, | 89%
43 HC power of delta, theta, | mastoids as | best results from
- alphal, alpha2, alpha | reference, EO | frontal, central,
g total, and beta | delta power. | and posterior
N frequency bands in | With CZ as | regions
€ EO and EC conditions | reference, EC
@ alpha power.
'}'; Also, the
g combinations of
o delta, theta,
§ alpha, and beta
~ band powers
> 17 depr | SASIand HFD Equal accuracy | Frontal, 85%
i 17 HC for SASI and HFD | temporal,
. parietal, and
S occipital regions
_g — used. Best results
c M .
83 from parietal
-« channels

42



Ref Subjects | Features analyzed Best features for | Brain areas Highest
classification classif
accuracy
45 depr | Absolute power of | Combination of | All brain areas | 90%
45 HC delta, theta, alpha | DFA, HFD, | used, more
g = and beta frequency | correlation significant results
=g bands, DFA, HFD, @ dimension and | found from left
g S. correlation Lyapunov temporal  and
g o dimension, and | exponent posterior regions
- Lyapunov exponent
. 30 depr | Relative wavelet | Frequency range | Channels FP1-T3 | 98%
= E 30 HC energy in different | 0-4 Hz and FP2-T4.
© frequency bands Similar results for
& < both
c Q
5 9 hemispheres
&8
12 MDD | KFD and HFD indelta, | HFD in  beta | Frontal channels | 91%
_ | 12 HC theta, alpha, beta, | frequency band Fpl, Fp2, F3, F4,
Eg and gamma Fz, F7, and F8.
R frequency bands More significant
E < results from left
<% hemisphere
121 Coherence in delta, | Alpha coherence | All regions | 81%
5 g MDD theta, alpha, and beta analyzed, best
% N_ 37 HC frequency band results  mostly
2 ® from prefrontal
=% region
69 MDD | Absolute and relative | Relative beta | Frontal, parietal | 91%
23 HC power, inter- and | power, mean | and occipital
intra-hemispheric total frequency, | brain areas used.
power asymmetry, | alpha inter- | Results found
frequency, and | hemispheric from all scalp
coherence for delta, = asymmetry, sites with the
theta, alpha, and beta | theta intra- | focus on anterior
= frequency bands and | hemispheric sites
§ frequency for full- | asymmetry, and
2 band delta, theta,
g alpha, and beta
=] inter-
é hemispheric
~ coherence
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Background and Objective: Depressive disorder is one of the leading causes of burden of disease today
and it is presumed to take the first place in the world in 2030. Early detection of depression requires a
patient-friendly inexpensive method based on easily measurable objective indicators. This study aims to
compare various single-channel electroencephalographic (EEG) measures in application for detection of
depression.

Methods: The EEG recordings were performed on a group of 13 medication-free depressive outpatients
and 13 gender and age matched controls. The recorded 30-channel EEG signal was analysed using lin-
ear methods spectral asymmetry index, alpha power variability and relative gamma power and nonlinear
methods Higuchi’s fractal dimension, detrended fluctuation analysis and Lempel-Ziv complexity. Classifi-
cation accuracy between depressive and control subjects was calculated using logistic regression analysis
with leave-one-out cross-validation. Calculations were performed separately for each EEG channel.
Results:  All calculated measures indicated increase with depression. Maximal testing accuracy using a
single measure was 81% for linear and 77% for nonlinear measures. Combination of two linear measures
provides the accuracy of 88% and two nonlinear measures of 85%. Maximal classification accuracy of 92%
was indicated using mixed combination of three linear and three nonlinear measures.

Conclusions: The results of this preliminary study confirm that single-channel EEG analysis, employing
the combination of measures, can provide discrimination of depression at the level of multichannel EEG
analysis. The performed study shows that there is no single superior measure for detection of depression.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Depression and other mental disorders related to the fast
rhythm of life and everyday stress have a rising trend in our so-
ciety. According to World Health Organization report, unipolar de-
pressive disorder is a leading cause of burden of disease in high-
and middle-income countries today and it is presumed to take
the first place in the world in 2030 [1]. Nowadays, the diagno-
sis of depression is based mainly on evaluation of the intensity of
subjective symptoms using clinical interview and psychiatric ques-
tionnaires. Detection of declinations in brain physiology before the
subjective symptoms appear is crucial for early detection of de-
pression, enabling treatment that is more effective and improving
quality of mental health.

* Corresponding author.
E-mail address: maie@cb.ttu.ee (M. Bachmann).

https://doi.org/10.1016/j.cmpb.2017.11.023
0169-2607/© 2017 Elsevier B.V. All rights reserved.

Any declinations in the brain neuronal activity and mental state
are expected to be reflected in the brain bioelectrical activity. Elec-
troencephalography (EEG) is easily available, cost-effective tech-
nique, providing high temporal resolution for evaluation of the dy-
namics of bioelectric activity of the brain. EEG features have been
successfully applied for investigation of brain behaviour in various
mental diseases [2-8]. A method distinguishing depression based
on analysis of single-channel EEG can be promising to be inte-
grated in a simple user-friendly device for regular evaluation of the
state of brain.

Multichannel quantitative EEG characteristics have been un-
der consideration for investigation of depression in many studies
[6,7,9]. Specific depression EEG features have been detected us-
ing changes in EEG bands powers, coherence and interhemispheric
asymmetry [6,7,10]. Resting state neurophysiologic connectivity is
increased broadly across all brain regions in depression [7]. Dis-
criminant analysis of quantitative EEG from 21 electrodes classi-
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fied correctly 91.3% of the patients and controls whereas mainly
delta and beta inter-hemispheric coherence, beta intra-hemispheric
coherence and alpha intra-hemispheric power asymmetry con-
tributed to the classification [6]. However, coherence appeared in-
effective in the case of smaller number of channels [11]. In ad-
dition, there is evidence that frontal alpha asymmetry across as-
sessment occasions was not closely linked to depression severity
[10] and the validity potential as a clinical measure for depression
still remains unclear [12].

Nonlinear complexity analysis of EEG is promising for obtain-
ing additional information to that achieved by linear measures.
Higuchi’s fractal dimension (HFD) indicates increased complexity
with depression compared to healthy controls in all brain areas
[13,14]. A high accuracy of 91.3% was reported for classification of
depression using enhanced probabilistic neural network and sig-
nals from 7 frontal EEG channels [13].

Detrended fluctuation analysis (DFA) has been used in resting
and sleep EEG studies in depression [15,16]. The analysis of 8-
channel EEG showed relatively higher values of scaling exponents
of depressed patients compared to healthy controls in all brain re-
gions [15]. Major depressive episodes are characterized by a mod-
ification in the correlation structure of the sleep EEG time series
[16].

The Lempel-Ziv complexity (LZC) of multichannel resting EEG
has been reported being successful in evaluation of various neu-
ronal and mental disorders including major depression [17-19].

Machine learning algorithms combining linear (power of four
EEG bands) and nonlinear (DFA, HFD, correlation dimension, Lya-
punov exponent) features from 19 EEG electrodes discriminate suc-
cessfully depressive and healthy groups [20]. Logistic regression
classifier provided the classification accuracy of 90% using all non-
linear features as input [20]. However, comparable evaluation be-
tween various input features was not performed.

Classification of depression based on a single channel EEG sig-
nal analysis has been considered in very few studies. Spectral
asymmetry index (SASI) was successfully applied for detection
of depression employing single channel EEG [11,14]. The method,
based on the evaluation of the balance of powers in two frequency
bands selected higher and lower than the alpha band spectrum
maximum in single channel EEG, provided classification accuracy
of 85% comparable to that of HFD results [14].

Current study aims to identify the most sensitive EEG analysis
method and channels for detection of depression based on the sig-
nal from a single EEG channel. For this purpose, the effectiveness
of various linear and nonlinear EEG analysis methods was com-
pared in each single EEG channel using statistical differences and
classification accuracies as the indicators. Three linear and three
nonlinear methods SASI, EEG alpha band power variability (APV),
relative gamma power (RGP), HFD, DFA, and LZC, were selected.
The comparisons were performed in each single EEG channel.

2. Methods
2.1. Subjects and recording protocol

The EEG data were obtained from a group of medication-free
right-handed outpatients with major depressive disorder and from
age, gender and handedness matched control group. Both groups
consisted of 13 subjects (5 male and 8 female) with a mean age
of 38.7 and standard deviation 15.8 years. All five-year subgroups
between youngest 18 and oldest 66 were presented. The subjects
were asked to abstain from coffee for two hours and from alco-
hol for 24 h before the experiment. All patients underwent a clin-
ical interview and were diagnosed with a single (9 patients) or re-
current (4 patients) depressive episode based on ICD-10 criteria.
Healthy controls completed the official Estonian self-report ques-

tionnaire (Emotional State Questionnaire - EST-Q) for depression
and anxiety and the subjects without inclination to these mental
disorders were selected.

The study was conducted in accordance with the Declaration
of Helsinki and was formally approved by the Tallinn Medical Re-
search Ethics Committee. All subjects signed written informed con-
sent.

The study procedure included continuous EEG recording per-
formed between 9 a.m. and noon - two minutes eyes open fol-
lowed by 30 min eyes closed recording. During the procedure,
participants were lying in relaxed position in dimly lit laboratory
room; to exclude the auditory stressors, earplugs were used.

2.2. Data acquisition

The EEG signals were recorded using Neuroscan Synamps2 ac-
quisition system (Compumedics, NC, USA). Thirty EEG channels
were placed according to the International 10/20 extended system.
The average of mastoids (M1, M2) was selected as reference and
horizontal and vertical electro-oculograms (EOG) were recorded.
Raw EEG signals were recorded with a frequency band of 0.3-
200Hz at a sampling rate of 1000 Hz. The impedance of recording
electrodes was below 10 kQ.

The raw EEG signals were digitally filtered at the cutoff frequen-
cies of 0.5Hz and 46 Hz. The signals were visually inspected and
signal segments with artefacts were removed. The further analy-
sis was performed on 5 min eyes-closed artefacts-free EEG signals.
MATLAB software was used for EEG signal processing.

2.3. EEG analysis: linear measures

Three EEG linear measures were calculated based on signal
power in different EEG frequency bands. All selected linear mea-
sures use relative combinations of powers in different EEG fre-
quency bands to exclude dependence on the absolute values of the
powers.

SASI uses subject-specific frequency bands, excluding individ-
ual alpha frequency band, while including individual theta and
beta frequency bands. Compared to traditional quantitative EEG
frequency bands with fixed boundary frequencies the selected in-
dividual theta and beta frequency bands are related to the central
frequency F. of EEG spectrum maximum in alpha band [11] and
are calculated for each person individually. Consequently, individ-
ual modified theta band has limits from (F. —6) Hz to (F. —2) Hz
and modified beta from (Fc +2) Hz to (Fc +26) Hz [11].

SASI was selected as a measure providing promising results in
detection of depression based on single channel EEG analysis. SASI
describes the asymmetry of EEG spectrum as the balance of pow-
ers in modified theta and beta bands. Powers in the frequency
bands were calculated as

fi=F—2

Pﬁmn = Z Smn and (1)
fi=F.—6
fi=F+26

Pgn = Z Smn. (2)
fi=k+2

where Smp is the power of the recorded EEG signal in a unit band

at the frequency f; in a channel m for a subject n. SASI in a channel
m for a subject n is calculated as

Pﬂmn - P(Smn
Pﬂmn + Pan
EEG alpha band is excluded in calculation of SASI. However, alpha

oscillations emerge from network properties of cortical tissue and
EEG alpha rhythm is supposed to characterize fundamental brain

SASln = (3)
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behaviour [21]. Biophysical model of EEG generation demonstrated
that thalamo-cortical mechanisms, such as the resonance proper-
ties of feedforward, cortico-thalamo-cortical, and intra-cortical cir-
cuits, are underlying changes in amplitude and frequency of al-
pha oscillations [22]. Instability of the alpha rhythm amplitude and
power are expected to be related to the disturbances in brain func-
tioning.

Therefore, APV is proposed in this study as a measure to detect
depression. Calculation of APV in fixed frequency bands provides
indication of both, alpha power and frequency variations. There-
fore, 8-12Hz was used. APV in selected time-window was calcu-
lated in three steps. First, alpha band signal power in time-window
T was calculated as

W Ly o @)
| N ’
r=1

where V(r) is the amplitude of the recorded signal in a sample
rand N is the number of samples in the time-window T. In the
selected time-window of 2s N=2000. Further, the calculated W;
values were averaged over 5min recording and standard deviation
was calculated as

i=M

1
0=M§(W—Wo>2~ (5)

where W, is the value of alpha band power averaged over 5 min.
Finally, APV was calculated as

o

APV = Wo (6)
The impact of EEG gamma band power to SASI values is mini-
mal due to low level of EEG power density in gamma band com-
pared to beta and theta bands. Gamma band is excluded also from
APV calculations. However, higher EEG frequencies in gamma band
can also be affected by depression [23]. Therefore, relative gamma
power (RGP) as an additional measure was introduced.

P
RGPy = -2, 7
= p (7)
fi=46
where P,y = Z Smn and (8)
fi=30
fi=46
Psip = Z Smn.- (9)
fi=3

2.4. EEG analysis: nonlinear measures

All nonlinear features were calculated for 10-second segments
(2000 samples). A nonlinear measure was found as a median value
averaged over all segments for a signal of 5 min length.

HFD algorithm calculates fractal dimension of time series di-
rectly in the time domain [24]. It is based on a measure of length
L(k) of the curve that represents the considered time series while
using a segment of k samples as a unit if L(k) scales like

L(k) ~ k~FP (10)

The value of fractal dimension FD with a parameter kmax =8 was
calculated according to the algorithm presented by Higuchi [24].
DFA was calculated directly in the time domain according to
the steps described by Peng et al [25,26]. First, the EEG signal seg-
ment x(i), where i is the length of the segment ranging from 1 to
N (N=2000), was integrated to generate a new time series y(k),

k
¥ =Y [x() ~&] k=1,..N (11)
i=1

where X is the average of the EEG signal x(i). After that the new
time series y(k) is divided into n equal windows. Window length
started from 4 samples up to 200 samples varying equidistantly
on logarithmic scale (0.02s up to 1.00s). The maximum window
length was selected as 1/10 of the signal segment length [27]. In
each window n, the least squares line, y,(k), is fit to the data y(k).
The fitting range was chosen from 0.1s, excluding the prominent
alpha frequency [28], to 1.0, as brain often suppresses large fluc-
tuations on longer timescales [29]. Next, the local trend yn(k) is
subtracted from the data y(k). The root mean square fluctuation of
the demeaned, integrated and detrended signal segment is calcu-
lated as:

N
Fay = |5 S v - (ol (12)
k=1

Those final steps are repeated for all window sizes giving the av-
erage fluctuations as a function of window length. Those fluctua-
tions are expected to increase with the window length. The scaling
is present in case on a log-log graph of F(n) vs. n appears a linear
correlation. The slope of the line, that is the scaling exponent «,
relating logF(n) to logn describes the type of scaling.

For LZC calculation each signal segment is converted into binary
sequence s(n) as follows [30]:

1, if x(n)>m

s(m) = {0, if x(n)<m’ (13)

where x(n) is the signal segment, n is the segment’s sample index
from 1 to N (segment length) and m is the threshold value. The
segment length N was chosen 2000 samples - a value for which
the traditional LZC is stabilized [31]. For threshold m, signal me-
dian value was preferred considering outliers [32].

Thereafter, the resulting binary sequence s(n) is scanned from
left to right counting the number of different patterns occurring.
The complexity value c(n) is increased every time a new pattern
is encountered. The detailed description of the algorithm can be
found in [33].

It has been previously proven [32] that the upper bound of c¢(n)
is

N
log,N

where a is the number of different patterns, and N is the segment
length. In order to avoid the variations due to the segment length,
normalized LZC values are calculated as follows:

c(N)

=y (15)

Jlim ¢(n) = b(N) = (14)

2.5. Statistics and classification

Current study aims to identify the most sensitive EEG analy-
sis method for detection of depression based on the signal from a
single EEG channel. Therefore, a statistical analysis was performed
separately in each EEG channel. The Mann-Whitney test was per-
formed to evaluate statistical difference between depressive and
control group for each of the calculated measures and chan-
nels. Logistic regression classifier (LR) with leave-one-out (LOO)
cross-validation was selected as a classifier, which has previously
provided highest classification accuracy between depressive and
healthy subjects [20]. The classification accuracy was calculated
using separate measures or their combinations as input for LOO
cross-validation in each single EEG channel. The parallel testing of
multiple models was taken into account by randomly permuting
the labels and creating null distribution from maximum classifica-
tion accuracies of each permutation.



14 M. Bachmann et al./ Computer Methods and Programs in Biomedicine 155 (2018) 11-17

25—

Relaive difference (%)
o 5
T

=

[ TP
CcP3
[ cr4
CPz
Ec:
[ F3
 —
(= p7
]
[E— Pz
[ 01
[—) oz
& —

Fig. 1. Effect of depression on EEG linear (SASI, APV, RGP) and nonlinear (HFD, DFA, LZC) measures in all analysed EEG channels as relative difference between values of a
measure averaged over all subjects in depressive and control group. Asterisks represent statistically significant differences after permutation testing for multiple comparisons

(p <.05).

3. Results

Fig. 1 presents the differences between calculated measures for
depressive and control group in each EEG channel. The calculated
linear (SASI, APV, RGP) and nonlinear (HFD, DFA, LZC) measures
are higher in depressive group compared to control group in all
channels. However, the enhancement of the measures with depres-
sion is not always statistically significant. For some measures (APV,
RGP and HFD) the differences between the depressive and control
groups appear statistically significant in a number of EEG chan-
nels, while the differences in SASI and LZC values do not reach the
level of statistical significance after considering the multiple com-
parisons using permutation testing.

Table 1 presents classification accuracies between depressive
and healthy subjects employing linear measures in each single EEG
channel. The LR classification accuracy of 81% was achieved by
solely APV or RGP measures. Combining two linear measures, SASI
and RGP, even higher classification accuracy of 88% was reached.
Adding the third measure to the combinations did not improve
the quality of classification. Considering EEG channel locations, the
trend of higher classification accuracy occurs in central, temporal
and parietal regions.

Results of classification based on the nonlinear measures of EEG
are presented in Table 2. The best accuracy of single measure, 77%,
appears in centro-parietal brain region using HFD or DFA. The best
classification rate achieved by single nonlinear measure is lower
than the one achieved by single linear measure (Table 1). Simi-
lar trend continues while combining two non-linear measures. The
highest accuracy of 85% is achieved by combination of HFD and
LZC measures. Once more, the linear measures outweigh the non-
linear ones. Nevertheless, nonlinear measures reach the trend of
higher classification values more broadly, covering also the frontal
brain areas. In addition, the quality of classification of nonlinear
measures reaches also 88% while adding the third nonlinear mea-
sure to the combinations. The trend of higher quality of classifica-
tion appears in frontal, central and temporal brain areas.

Combining all linear and nonlinear measures a classification ac-
curacy up to 92% was achieved in central region.

4. Discussion

The experimental results presented above show that the fea-
tures related to depression are evident in all EEG channels. This
was reflected in the increase of linear EEG measures (SASI, APV
and RGP) as well as nonlinear complexity measures (HFD, DFA and
LZC) in all EEG channels due to depression (Fig. 1). Some of the
measures (APV, RGP, HFD) indicate significant differences in EEG
behaviour between depressive and control group for a number of
EEG channels. These results are in good agreement with the earlier
study which demonstrated that depression affected brain activity
in nearly the whole cortex, rather than only in the frontal and/or
parietal areas [9].

The Tables 1 and 2 show that higher discrimination ability be-
tween control and depressive subjects occurs in central, tempo-
ral and parietal regions for linear and in frontal, central, temporal
brain areas for nonlinear measures.

Enhancement of SASI and RGP can occur if EEG power in higher
frequency bands (beta and gamma) increases with depression. The
conclusion about increased beta power in depression is supported
by findings reported by other authors [6,8,34]. Gamma band is
usually not considered in evaluation of depression because approx-
imately 98% of spectral power lies within 0.5-30Hz limits [9,20].
Our results for single measure indicate one of the highest accuracy
for RGP. This result is in agreement with the findings that gamma
power is significantly greater in depressive patients compared to
healthy controls [22,33].

Instability of the alpha rhythm amplitude and frequency are ex-
pected being related to the disturbances in brain functioning [22].
Therefore, it is not surprising that APV is more informative EEG
feature for detection of depression compared to traditional alpha
power. To the best of our knowledge, the proposed measure, APV,
is new and not used in previous depression EEG studies. Depres-
sion without cardiovascular disease has been reported being asso-
ciated with reduced heart rate variability (HRV) [35]. Our experi-
mental results indicated increased APV in depression.

The best accuracy considering nonlinear measures is achieved
with HFD and DFA in current study. Similar trend of enhancement
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Table 1

Classification accuracy, indicated by logistic regression analysis with leave-one-out cross-validation using linear EEG
measures as input. Grey background marks statistical significance (p <.05) after permutation testing. MaxM indicates
maximal accuracy for a measure; MaxC indicates maximal accuracy in an EEG channel.

SAI&
SASI& SASI& APV&
SASI APV RGP APV& MaxC
APV RGP RGP
RGP
FP1 0,58 0,58 0,62 0,58 0,69 0,54 0,54 0,69
F7 0,65 0,58 0,73 0,65 0,69 0,73 0,73 0,73
FP2 0,50 0,65 0,58 0,54 0,62 0,58 0,58 0,65
F3 0,65 0,62 0,69 0,54 0,73 0,65 0,65 0,73
FC3 0,58 0,62 0,73 0,62 0,73 0,62 0,62 0,73
F17 0,69 0,62 0,69 0,58 0,65 0,58 0,58 0,69
7 0,65 0,65 0,69 0,54 0,65 0,65 0,65 0,69
F8 0,54 0,54 0,69 0,50 0,62 0,69 0,69 0,69
F4 0,62 0,62 0,62 0,50 0,69 0,54 0,54 0,69
FzZ 0,50 0,58 0,69 0,54 0,73 0,58 0,58 0,73
FCz 0,50 0,62 0,69 0,54 0,88 0,65 0,65 0,88
c3 0,58 0,69 0,62 0,65 0,85 0,62 0,62 0,85
TP7 0,58 0,69 0,62 0,65 0,62 0,69 0,69 0,69
FT8 0,58 0,58 0,65 0,65 0,58 0,62 0,62 0,65
FC4 0,54 0,65 0,65 0,46 0,77 0,62 0,62 0,77
cz 0,65 0,62 0,73 0,58 0,81 0,69 0,69 0,81
CPZ 0,62 0,73 0,73 0,69 0,85 0,65 0,65 0,85
CcP3 0,65 0,58 0,69 0,65 0,77 0,73 0,73 0,77
P3 0,65 0,69 0,77 0,69 0,69 0,73 0,73 0,77
P7 0,73 0,58 0,73 0,77 0,69 0,77 0,77 0,77
T8 0,65 0,62 0,69 0,65 0,73 0,81 0,81 0,81
P8 0,69 0,65 0,73 0,65 0,69 0,69 0,69 0,73
ca 0,65 0,69 0,69 0,65 0,85 0,65 0,65 0,85
P8 0,77 0,62 0,81 0,69 0,81 0,65 0,65 0,81
CP4 0,58 0,81 0,77 0,73 0,81 0,77 0,77 0,81
P4 0,58 0,77 0,73 0,65 0,73 0,73 0,73 0,77
PZ 0,62 0,69 0,69 0,65 0,77 0,73 0,73 0,77
0z 0,65 0,65 0,69 0,65 0,65 0,65 0,65 0,69
o1 0,65 0,65 0,69 0,62 0,62 0,62 0,62 0,69
02 0,73 0,65 0,73 0,65 0,65 0,65 0,65 0,73
MaxM 0,77 0,81 0,81 0,77 0,88 0,81 0,81

of fractal dimension with depression has been reported also in
other study [13]. Nonlinear methods HFD and DFA have demon-
strated also successful classification of depression EEG [13,20].

A higher LZC in depression than control group [18] is in good
agreement with our results. However, in our study the LZC dif-
ferences between depressive and control groups do not reach the
level of statistical significance after permutation testing. Lower de-
tectability of LZC compared to other complexity methods is caused
by the nature of the method: LZC is guided by variation of slow
EEG rhythms due to higher amplitude values, overlooking the
higher frequency components of lower values. EEG power mea-
sures demonstrate the importance of higher EEG frequencies to
discriminate depression. Therefore, it is not surprising that LCZ has
somewhat lower sensitivity compared to HFD and DFA.

The increase of all selected features with depression can pro-
vide evidence, that depression disturbs brain neurophysiology and,
as a response, causes activation of compensatory processes accom-

panied with increased frequency of neuronal oscillations (indicated
by RGP and SASI), increased instability (indicated by APV) and
complexity (indicated by HFD, DFA, and LZC) of the oscillations.

The classification accuracy of depressive and healthy subjects
based on linear EEG measures (Table 1) is comparable to that
based on nonlinear measures (Table 2). The accuracy of 88%
achieved in single channel EEG signal using two linear measures
(Table 1) is higher compared to classification accuracy of 76.6% re-
ported in the study where three linear features and signals from
19 electrodes were used [20]. Higher sensitivities of selected lin-
ear measures (SASI, APV and RGP) compared to traditional EEG fre-
quency band powers can be explained with more specific approach
used in this study taking into account the powers’ balance, power
variability and higher frequencies.

The results of the current study demonstrated that linear EEG
methods provided comparable or even better classification accu-



Table 2

Classification accuracy indicated by logistic regression analysis with leave-one-out cross-validation using nonlinear EEG
measures as input. Grey background marks statistical significance (p <.05) after permutation testing. MaxM indicates
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maximal accuracy for a measure; MaxC indicates maximal accuracy in an EEG channel.

HFD&
HFD& | HFD& | DFA&
HFD DFA Lzc DFA& MaxC
DFA Lzc Lzc
Lzc

FP1 0,65 0,65 0,50 0,65 0,73 0,62 0,69 0,73
F7 0,65 0,62 0,42 0,65 0,77 0,62 0,77 0,77
FP2 0,58 0,58 0,50 0,62 0,62 0,58 0,58 0,62
F3 0,65 0,69 0,46 0,77 0,85 0,69 0,85 0,85
FC3 0,65 0,65 0,46 0,73 0,85 0,73 0,88 0,88
FT7 0,69 0,65 0,27 0,65 0,77 0,62 0,77 0,77
7 0,69 0,69 0,42 0,65 0,58 0,62 0,62 0,69
F8 0,65 0,62 0,58 0,73 0,73 0,62 0,81 0,81
F4 0,62 0,65 0,46 0,69 0,65 0,65 0,65 0,69
Fz 0,62 0,65 0,46 0,69 0,81 0,69 0,73 0,81
Fcz 0,58 0,65 0,46 0,73 0,77 0,73 0,77 0,77
&) 0,65 0,69 0,50 0,77 0,85 0,77 0,77 0,85
7 0,65 0,69 0,58 0,58 0,77 0,65 0,73 0,77
FT8 0,69 0,65 0,42 0,69 0,81 0,65 0,81 0,81
FC4 0,65 0,65 0,46 0,73 0,81 0,65 0,77 0,81
cz 0,62 0,69 0,46 0,73 0,81 0,73 0,77 0,81
cpPz 0,69 0,65 0,46 0,81 0,77 0,77 0,77 0,81
cpP3 0,69 0,69 0,50 0,81 0,81 0,81 0,73 0,81
P3 0,65 0,77 0,62 0,69 0,69 0,81 0,65 0,81
P7 0,73 0,69 0,65 0,69 0,73 0,62 0,69 0,73
T8 0,73 0,62 0,62 0,81 0,85 0,77 0,81 0,85
P8 0,77 0,62 0,58 0,73 0,69 0,73 0,73 0,77
c4 0,62 0,65 0,46 0,77 0,85 0,73 0,88 0,88
P8 0,77 0,62 0,58 0,77 0,77 0,77 0,69 0,77
P4 0,69 0,65 0,46 0,77 0,73 0,81 0,77 0,81
P4 0,62 0,62 0,58 0,73 0,77 0,73 0,77 0,77
Pz 0,65 0,65 0,62 0,69 0,73 0,73 0,65 0,73
0z 0,62 0,50 0,58 0,62 0,65 0,58 0,62 0,65
o1 0,69 0,58 0,69 0,65 0,65 0,62 0,58 0,69
02 0,62 0,50 0,54 0,58 0,58 0,65 0,62 0,65
MaxM | 0,77 0,77 0,69 0,81 0,85 0,81 0,88

racies compared to nonlinear EEG measures for discrimination of
depression.

The maximum classification accuracy of 77%, based on a single
nonlinear measure HFD (Table 2) is the same as based on a single
linear measure SASI (Table 1). This is in agreement with previous
results indicating comparable sensitivity of SASI and HFD in detec-
tion of small changes in brain bioelectrical activity related to de-
pression or environmental factors [14,36]. Combination of two lin-
ear measures, SASI and RGP, shows somewhat higher accuracy of
88% (Table 1) compared to the accuracy of the best combination of
two nonlinear measures HFD and LZC of 85% (Table 2). Although,
the differences between depressive and control group detected by
SASI or LZC do not reach the level of statistical significance after
permutation testing, the methods consist valuable information im-
proving the combined classification accuracies.

The accuracy of 92% achieved in single channel EEG using 3
linear and 3 nonlinear measures is higher compared to the accu-

racy of 90% achieved using 4 nonlinear features and signals from
19 channels [20]. The possible explanation is the involvement of
higher EEG frequencies in current calculations. It seems likely that
the impact of EEG gamma band power, despite of its relatively
small value, is important for discrimination of depression.

The main purpose of the study was to find an easily measur-
able indicator to differentiate subjects with depression from con-
trol subjects. The selected measures are not dedicated for classifi-
cation between various mental disorders but only for detection of
declination in EEG for revealing major depressive disorder. Clinical
diagnoses should be determined by a medical doctor.

Good ability of EEG frequency bands power has been reported
for discrimination of major and bipolar depression and to predict
the therapeutic response in several publications [37,38]. Further in-
vestigations are required to clarify the ability of the proposed EEG
measures to detect mental disorders other than major depression
or to evaluate therapeutic response.
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The current preliminary study has limitations due to small
number of subjects caused by the problem of finding medication-
free depressive patients. Limited number of subjects in subgroups
of different age and gender did not allow getting reliable data
about age and gender dependencies affecting the results. Further
investigations on larger groups of different age and gender are
needed for the clarification of age and gender corrections neces-
sity.

Single channel EEG analysis has an advantage compared to mul-
tichannel EEG analysis, because it is easily implementable into a
patient-friendly inexpensive EEG device, applicable for screening in
occupational and family medicine centres.

5. Conclusions

The results of the performed preliminary study confirm that
single-channel EEG analysis, employing the combination of mea-
sures, can provide the accuracy for discrimination of depression
not lower than reported in other studies where multichannel EEG
signals were analysed.

The performed analysis indicates no single superior measure for
detection of depression.
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The aim of the study was to analyze the relationship between resting state
electroencephalographic (EEG) alpha functional connectivity (FC) and small-world
organization. For that purpose, Pearson correlation was calculated between FC and
small-worldness (SW). Three undirected FC measures were used: magnitude-squared
coherence (MSC), imaginary part of coherency (ICOH), and synchronization likelihood
(SL). As a result, statistically significant negative correlation occurred between FC and
SW for all three FC measures. Small-worldness of MSC and SL were mostly above 1,
but lower than 1 for ICOH, suggesting that functional EEG networks did not have small-
world properties. Based on the results of the current study, we suggest that decreased
alpha small-world organization is compensated with increased connectivity of alpha
oscillations in a healthy brain.

Keywords: electroencephalography, functional connectivity, small-world organization, network analysis, alpha
frequency, coherence, imaginary part of coherency, synchronization likelihood

INTRODUCTION

Functional connectivity (FC) is highly important in physiology at various levels: from molecules to
organs and physiological networks are not only of wide scientific interest, but also have high impact
in medicine (Ivanov et al., 2016; Lin et al., 2016; Moorman et al., 2016). Functional connectivity
is crucial also in brain physiology (Lynn and Bassett, 2019). Significant work has been done to
show that neural network architecture can be adaptively reconfigured between different states of
the subjects (Bassett et al., 2006; Liu et al., 2015a; Lin et al., 2020) and associate network topology to
physiologic states (Bashan et al., 2012; Bartsch and Ivanov, 2014; Ivanov and Bartsch, 2014; Bartsch
etal., 2015; Liu et al., 2015b).

Functional connectivity and complex network analysis have been the most widely used
types of brain network analysis by providing the tools to analyze the brain as a network
of interacting regions, while maintaining computational simplicity. Complex network analysis
is based on classical graph theoretical analysis, but focuses on analyzing complex real-life
networks (Rubinov and Sporns, 2010). Real-life neural networks are represented graphically, using
electroencephalographic (EEG) channels as nodes and FC as edges between nodes. Graphs are
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constructed by removing edges with lowest values. Small-world
organization is one of the most frequently analyzed topological
properties of functional neural networks. A network is compared
to random networks and in order to have small-world properties,
the network should be more clustered than a random network,
but have similar characteristic path length (Watts and Strogatz,
1998; Albert and Barabasi, 2002; Rubinov and Sporns, 2010;
Bassett and Bullmore, 2017). In that case, functional integration
and functional segregation are simultaneously high. A measure
of small-worldness (SW) has been proposed to assess small-
world properties of a network (Humphries and Gurney, 2008).
Since then, studying small-world properties of functional brain
networks has been widely used.

Changes in EEG resting state FC and small-world structure
are often used for statistical analysis between two populations,
generally with the aim to compare patient and control groups.
Previous studies have found results in all frequency bands,
but often inconsistencies between studies occur. Therefore,
we will focus on frequency bands, where the most frequent
and consistent results were reported. Major depressive disorder
(MDD) is mostly characterized by increased FC (Fingelkurts
et al, 2007; Leuchter et al, 2012; Olbrich et al, 2014; Li
et al,, 2017) and more random network structure (Li et al,
2017; Zhang et al., 2018; Sun et al., 2019) in theta and alpha
frequency bands. However, few studies have also found a
decrease in alpha FC (Shim et al, 2018; Zhang et al., 2018).
Alzheimer’s disease (AD) has been consistently characterized
by decreased FC in alpha frequency band (Koenig et al,
2005; Wang et al., 2014; Babiloni et al., 2016). Furthermore,
SW of AD subjects has been found to decrease in theta
frequency band (Wang et al, 2014; Vecchio et al, 2017),
and AD is characterized by more random network structure
in alpha frequency band (Wang et al., 2014; Babiloni et al.,
2016). In schizophrenia, most consistent FC alteration has
also been the decrease of FC in alpha frequency band (Jalili
and Knyazeva, 2011; Di Lorenzo et al, 2015; Maran et al,
2016). Furthermore, schizophrenia has also been associated
with decreased SW in alpha, beta, and gamma frequency
bands (Micheloyannis et al., 2006) and more random network
architecture (Rubinov et al., 2009).

Although alterations in FC and small-world organization have
been studied for diseased brain (see above), the relationship
between FC and SW is unclear for healthy subjects. We have
previously shown that adding graph theoretical measures to
features of FC did not improve classification accuracy when
classifying MDD and healthy subjects (Orgo et al, 2017).
Therefore, a fundamental relationship between FC and graph
theory measures can be expected and a disruption in that
relationship is likely related to different mental disorders.
However, only a few studies have analyzed the relationship
between different graph theory measures. Lynall et al. (2010)
reported a positive correlation between functional magnetic
resonance imaging (fMRI) FC and SW, together with several
correlations between different graph theoretical measures.
However, healthy and schizophrenic subjects were analyzed
together and the group contained of a small number of subjects
(15 healthy and 12 schizophrenic subjects). To the best of our

knowledge, the relationship between graph theory measures for
EEG data has not been analyzed before.

FC has recently been shown to be a complex spatiotemporal
phenomenon (Racz et al, 2018), but in the current study
we apply widely used static approach of FC to construct
functional networks. To ensure more reliable results, we
calculate three frequently used FC measures: magnitude-squared
coherence (MSC), imaginary part of coherency (ICOH), and
synchronization likelihood (SL). These measures were chosen
to take different EEG properties into account. Firstly, SL is
calculated in time domain, while MSC and ICOH are calculated
in frequency domain. Secondly, measures of FC can be divided
into linear and nonlinear measures. On the one hand, EEG
nonlinear time series analysis is based on the nonlinear nature
of neural processes. Previous studies have reported strong
nonlinear interdependences in EEG signals (Rubinov et al., 2009)
and nonlinear metrics can detect nonlinear interdependencies
between EEG signals that linear measures cannot. On the other
hand, nonlinear measures are computationally expensive and
susceptible to noise (Netoff et al., 2006). Linear measures are
more robust and can perform as well as nonlinear measures
in some cases (Bastos and Schoffelen, 2016; Bachmann et al.,
2018). Therefore, a combination of linear and nonlinear measures
should provide the most information. In the current study,
SL can capture both linear and nonlinear interdependencies
between signals. We have previously shown with surrogate
data method that SL can detect nonlinearity in 9% of EEG
segments, which cannot be detected with linear methods (Pieske
et al., 2018). Therefore, SL may provide additional information
to other connectivity measures. Thirdly, several FC measures
such as MSC are strongly influenced by volume conduction
(Bastos and Schoffelen, 2016). One solution to avoid spurious
results from volume conduction would be to apply inverse
method to the scalp EEG signals and then calculate FC between
obtained source signals. The problem with this approach is
that perfect inverse method cannot exist (Sarvas, 1987) and
therefore accurate FC estimation is not guaranteed. Other
option is to use FC measures that are less sensitive to volume
conduction, for example ICOH (Christodoulakis et al., 2015;
Bastos and Schoffelen, 2016). Imaginary part of coherency
measures only phase-shifted relationship between time series,
therefore minimizing connectivity between information from
the same sources. At the same time, true interactions at zero-
phase are also lost and for a more complete understanding, these
measures can be calculated complementary to other measures.

In the current study, we analyze the relationship between
alpha FC and SW in the resting state for healthy subjects. We
use only alpha frequency band, because most of the alterations
in FC or SW have been previously found in the alpha frequency
band for MDD, AD, and schizophrenia. Furthermore, EEG alpha
frequency has an important role in cognitive, sensorimotor,
psycho-emotional and physiological processes (Bazanova and
Vernon, 2014). It is important to note that although graphs are
constructed by thresholding FC values, small-world graph theory
measures are normalized. Therefore, mathematically, there is no
correlation between FC and normalized graph theory measures
for random graphs. If a correlation between FC and SW occurs
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for a physiological network, but not for a random network, the
origin of the correlation is also expected to be physiological.
We will also construct random graphs for reference, using
Erdos-Rényi model, to ensure that our results could not be
derived mathematically.

MATERIALS AND METHODS
Subjects

The subjects were chosen for the experiment according to
the following criteria: no epilepsy, no usage of psychotropic
medication one month prior to the experiment, no usage of
narcotics three months prior to the experiment, no history of
head injury or concussion, and no psychiatric disorders at the
time of the experiment. Following these criteria, the study was
carried out on a group of 80 healthy volunteers from ages 19
to 75, with the mean age of 37 & 15 years. Out of all subjects,
38 were female and 42 were male. The subjects were asked to
abstain from alcohol 24 h and from coffee two hours prior to
the EEG recording.

The study was conducted in accordance with the Declaration
of Helsinki and was approved by the Tallinn Medical Research
Ethics Committee. Informed consent was obtained from each
subject before participating in the study.

Data Recordings

Electroencephalographic signals were recorded using Neuroscan
Synamps2 acquisition system (Compumedics, NC, United States)
from 30 electrodes (Fpl, Fp2, F7, F3, Fz, F4, F8, FI7, FC3,
FCz, FC4, FT8, T7, C3, Cz, C4, T8, TP7, CP3, CPz, CP4, TPS,
P7, P3, Pz, P4, P8, Ol, Oz, O2). Electrodes were positioned
according to the extended international 10-20 system with
linked mastoids as reference. In addition, horizontal and vertical
electrooculograms were recorded to monitor eye movements.
To ensure good conductivity between the skin and electrodes,
electrode impedances were kept below 10 kQ.

The data were sampled at 1000 Hz. The resting state EEG was
recorded for six minutes, during which the subjects were lying
in a relaxed position with their eyes closed. The room of the
recordings was electrically shielded and dimly lit. In addition,
earplugs were used to minimize any disturbances.

Preprocessing

The data were analyzed using MATLAB (The Mathworks, Inc.).
Butterworth filter was used to filter signals into alpha (8-12 Hz)
frequency band. Sampling frequency was reduced to 200 Hz
to reduce the computation time of FC measures and the data
were divided into 20.48-s (4096 sample) segments. All segments
were inspected by a studied technician and segments with ocular,
muscular or other artifacts were removed. For each subject, first
10 artifact-free segments were used for further analysis.

Signals were re-referenced according to the reference
electrode standardization technique (REST) (Yao, 2001), which
approximately re-references scalp EEG signals to a reference
point at infinity using an equivalent source model. REST has been

shown to be the best reference montage to recover the real EEG
FC network configuration (Qin et al., 2010; Huang et al., 2017).

FC Analysis

Three non-directed measures of FC were calculated in the current
study: MSC, ICOH, and SL. An example of EEG signals in
alpha frequency band for different levels of FC is shown in the
Supplementary Material. FC measures were calculated between
all channels, obtaining connectivity matrices for each subject.
Median values of MSC, ICOH, and SL were obtained over
segments in time.

Magnitude-Squared Coherence

Coherency estimates linear relationship between two signals at
each frequency f. When time series from channels i and j are x;(t)
and x;(t) and their Fourier transforms are X;(f) and X;(f), then
the cross-spectrum between X;(f) and X;(f) is S = (X; (f)X;‘ )
where * indicates complex conjugation and () expectation value.
Coherency is calculated as:

Si
Gy = —1D__ W)

(S (NS ()
where Sji(f) is the power spectrum of X;(f) and Sj(f) is the power
spectrum of X;(f). Coherence is the absolute value of coherency:
1S5
1/2
(Sis;H) "

In the current study, the MSC (Kay, 1988) was used as a
frequently used measure of FC:

COHi(f) = |Ci(N)] = @

2
1S5
(Sii(NS;(N)
Symmetric Hann window with a window length of 512 samples
and 50% overlap was used to calculate Fourier transform.

MSC was found by averaging MSC;i(f) values within the
alpha frequency band.

MSCi(f) = COHfj(f) = (3)

Imaginary Part of Coherency

It is often argued not to use MSC as it is strongly influenced my
volume conduction. Therefore, ICOH (Nolte et al., 2004) was also
used in current study as a secondary measure of FC, which is
calculated as an imaginary part of coherency:

Imag(S;;(f)) )
(Si(Hs;()"?

Imaginary part of coherency was found by averaging iCOHj;(f)
values within the alpha frequency band. Imaginary part
of coherency removes zero-phase interactions between time
series x;(f) and x;(t), therefore minimizing the effects of
volume conduction.

iCOHj;(f) = Imag (Cyj(f)) =

Synchronization Likelihood
Synchronization likelihood (Stam and Van Dijk, 2002)
describes dynamical interdependencies between simultaneously
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recorded signals. The definition and calculation of SL is
provided by Stam and Van Dijk (2002). Briefly, time series
are reconstructed in state space and the recurrences of
states are detected from time-delay embedding vectors.
Synchronization likelihood is the likelihood of these recurrences
being simultaneous. The parameters for SL were calculated from
sampling frequency, highest frequency and lowest frequency
using suggestions by Montez et al. (2006). Therefore, the
following parameters were used: the embedding lag L = 6,
the embedding dimension m = 6, the number of recurrences
nrec = 10, the fraction of recurrences pref = 0.01, window
W1 = 50 and window W2 = 1049. Such selection of the
parameters ensures that the state vector is long enough
to sample the slowest oscillations and at the same time
signal is sampled at sufficiently short intervals to take fastest
oscillations into account.

Graph Theory Analysis

A connectivity matrix can be analyzed as a graph consisting
of nodes (EEG channels) and edges between the nodes (FC
between EEG channels). To obtain a graph, a threshold is
applied on FC values: an edge exists only if the value of
FC is higher than the threshold. In the current study, the
sparsity of each graph was maintained by applying a different
threshold to each graph. For example, network density of
40% means that 60% of all connections were removed from
each graph. This ensures that differences between graph theory
metrics are due to differences in graph topologies, rather
than connectivity strengths. As currently there is no optimal
network density used in the literature, a range of network
densities are used. In the current study, the network densities
from 10 to 50% with a step of 5% were used. These are
one of the commonly analyzed densities, ensuring that the
network is sparse enough to show small-world properties
and at the same time is still fully connected (Bullmore
and Bassett, 2011; Sun et al, 2019). Obtained graphs were
binarized: edge values were 0 or 1, depending on whether
there was a connection between two nodes or not. In other
words, unweighted graphs were used in the current study.
As non-directed FC measures were used, edges did not
have a direction.

Brain Connectivity Toolbox (Rubinov and Sporns, 2010) was
used to calculate graph theoretical measures in MATLAB. Graph
theory measures calculated in the current study describe small-
world properties of a network and are therefore also called small-
world measures. Clustering coefficient (C) describes functional
segregation, characterizing brain’s ability to process information
within interconnected clusters. Clustering coefficient for a given
node equals with the fraction of node’s nearest neighbors
that are also directly connected to each other (Watts and
Strogatz, 1998). Characteristic path length (L) is a measure of
functional integration, characterizing brain’s ability to combine
information from distributed areas. Shortest path length is the
smallest number of edges between two nodes. Characteristic
path length is the average shortest path length of the graph
(Watts and Strogatz, 1998). High functional integration is
described with small L. A network has small-world properties

if it is more clustered than a random network, but has similar
L (Rubinov and Sporns, 2010). Small-worldness quantifies these
properties and is calculated from C and L (Humphries and
Gurney, 2008):

Chorm _ C/Crand

SW = = ,
Lnorm L/Lyana

(5

where C,;,g is the clustering coefficient and L, is
the characteristic path length of an equivalent random
network. A network has small-world properties if
SW > 1 (Wang et al, 2014). Random networks
for normalization were generated according to the
method of Maslov and Sneppen (Maslov and Sneppen,
2002; Rubinov and Sporns, 2010) by reshuffling the
topology and maintaining the degree distribution of
original networks.

Small-worldness was calculated for all three FC measures.
For reference, random graphs were generated using Erdos-
Rényi model - for the fixed number of nodes, the existence
of each potential edge is determined by a probability p.
To differentiate between graph theoretical measures calculated
from different FC measures, FC measures are marked with
a superscript. For example SWMSC denotes small-worldness,
calculated from a MSC graph.

Statistical Comparisons

For each subject, the mean values of FC and SW were
calculated over all channels. The values of SW were statistically
compared using Wilcoxon’s ranksum test and the correlations
between mean FC and SW were calculated using Pearson
correlation coefficient (r). The confidence level of p < 0.05
was used. p-Value was adjusted according to the number
of statistical tests using Bonferroni correction to address
the problem of multiple comparisons. As three different
measures and nine different graph densities were used,
the number of statistical tests was 27 and p-value was
adjusted to p < 0.05/27 = 0.0019. The correlations were
considered statistically significant if |r| > 0.34, corresponding
to the adjusted p-value p < 0.0019 and sample size of
80 subjects. If the absolute value of obtained correlation
was higher than 0.34, the correlation could not have
emerged randomly.

RESULTS

First, we statistically compared the values of SW calculated from
different FC measures (Figure 1). Bonferroni correction for 27
statistical tests was applied. Small-worldness calculated from
ICOH was significantly lower than SW calculated from MSC and
SL for all graph densities analyzed in the current study. For MSC
and SL, SW was mostly above 1 or close to 1, indicating these
networks have better or similar small-world properties compared
to a random network. For ICOH, most values of SW were below
1, indicating these networks have less small-world properties
compared to a random network.

Frontiers in Physiology | www.frontiersin.org

August 2020 | Volume 11 | Article 910



Péeske et al.

Relationship Between FC and SW

N - [e)} )

Small-worldness (SW)

—_

0.8

0.6

—e—MSC
—6—SL
— o ICOH

L ! L !

04— 1 1 I
10 15 20 25

SWICOH is significantly lower than SWMSC and SWSL.

FIGURE 1 | Small-worldness (SW) depending on graph density. The mean and standard deviation values are shown for SW, calculated from MSC, SL and ICOH.
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FIGURE 2 | The values of Pearson correlation coefficients (r) between measures of functional connectivity (MSC, SL, and ICOH) and small-worldness calculated from
these measures (SWMSC, SWSL and SWICOH) for different graph densities. Black horizontal line corresponds to correlation -0.34. Correlations below this line are
statistically significant with confidence level of 0.05 (p-value is adjusted according to Bonferroni correction to p < 0.0019).

p < 0.05 (with Bonferroni correction)
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Secondly, Pearson correlation coefficient was calculated
between SW and FC for all measures of FC (Figure 2). There
was a statistically significant negative correlation between FC and
SW for all measures of FC. For MSC and ICOH, correlations

were statistically significant for graph densities 15 ... 50% and
for SL 20 .. 50%. The highest correlations are plotted on
Figure 3. The highest correlation for MSC was for graph density
40% (Figure 3A), for SL 45% (Figure 3B) and for ICOH 50%
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FIGURE 3 | Correlation between FC and SW for (A) MSC, (B) SL, and
(C) ICOH. Pearson correlation coefficient (r) is shown in the upper right corner.

(Figure 3C). Pearson correlation coefficient was also found
between SW and averaged edge values of random graphs. As
expected, correlation for random graphs was not statistically
significant for any of the analyzed graph densities.

DISCUSSION

As a result of the study, we found a negative correlation
between EEG alpha FC and SW. The correlation occurred

for all three measures of FC calculated in the current study.
For MSC and ICOH, correlations were statistically significant
for graph densities 15 50% and for SL 20 50%.
Based on the results of the current study, we suggest a
hypothesis that decreased alpha small-world organization is
compensated with increased connectivity of alpha oscillations
in a healthy brain. Furthermore, a correlation may indicate
that a certain efficiency is maintained in the brain by
balancing between alpha FC and SW: as one increases, the
other decreases.

Results found in the current study may be associated
with default mode network (DMN; Jann et al, 2010;
Liuetal., 2017). The DMN has been the most studied of
resting state networks, largely because it deactivates during
demanding tasks. Furthermore, areas involved in DMN
have high activity during resting state, observed with fMRI
BOLD signal, and high connectivity (Hagmann et al., 2008).
A recent study used high-density EEG to detect large-scale
networks (Liu et al., 2017). The authors spatially overlapped
obtained EEG networks with fMRI networks and found that
although each resting state brain network is associated with
oscillations of different frequency bands, DMN can be fully
reconstructed using alpha frequency band. In the current
study, alpha frequency band was also used and therefore
association between the results in the current study and
DMN are plausible.

Previous studies have mostly found that alpha FC is
increased in MDD (Fingelkurts et al, 2007; Leuchter et al,
2012; Olbrich et al, 2014). Although changes in alpha SW
in MDD are unclear, some studies have found that small-
world measures of alpha EEG were decreased for subjects
with MDD (Zhang et al, 2018; Sun et al, 2019). Therefore,
in MDD, the relationship between FC and SW found in the
current study is probably not disrupted. Fingelkurts et al.
(2007) suggested that FC between short-range connections
in the left hemisphere and long-range connections in the
right hemisphere of subjects with MDD was increased to
compensate insufficient semantic integration. However,
according to the hypothesis suggested in the current study,
the compensational mechanism proposed by Fingelkurts
et al. (2007) may be inherent to healthy subjects as well.
A compensational mechanism could be a fundamental
characteristic to brain functioning. According to that
theory, another possible explanation to the increase in FC
for MDD is the decrease in SW, which in turn leads to
an increase in FC.

Alzheimer’s disease in alpha frequency band is characterized
by decreased FC (Koenig et al., 2005; Wang et al., 2014; Babiloni
et al., 2016), but also decreased small-world measures (Wang
et al, 2014; Babiloni et al, 2016). Therefore, compensating
low small-world architecture with increased FC may be
disrupted in AD.

Similarly to AD, schizophrenia in alpha frequency band
has also been previously described with decreased FC (Jalili
and Knyazeva, 2011; Di Lorenzo et al., 2015; Maran et al,
2016) and small-world measures (Micheloyannis et al., 20065
Rubinov et al., 2009). Schizophrenia is often described with
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“dysconnectivity syndrome” - impaired functional integration
between and within brain areas. Considering the results of
the current study, it could be presumed that “dysconnectivity
syndrome” is expressed by disrupted compensational mechanism
in schizophrenia.

We statistically compared the values of SW calculated
from different FC measures. Small-worldness calculated from
ICOH (SW!®OH) was significantly lower compared to SWMSC
and SWSL. As ICOH measures only phase-shifted relationship
between time series, this result shows that MSC and SL
capture a lot of information from zero-phase interactions.
A lot of these interactions are due to volume conduction.
Previous studies have shown that volume conduction falsely
increases values of SW (Ku$ et al, 2004). The same effect
could also be observed in the current study, where SWMSC
and SWSL were significantly higher compared to SWI!COH,
Nevertheless, the correlation between FC and SW found in
the current study cannot be caused by volume conduction,
because in addition to MSC and SL, the correlation was
also found with ICOH, which minimizes the effects of
volume conduction.

Magnitude-squared coherence is a linear measure that is
calculated in a frequency domain and SL is a nonlinear
measure that is calculated in a time domain. Although these
measures are fundamentally different, there were no statistically
significant differences between SWMSC and SWSL. This result
shows that for robust network analysis applications, MSC
can be selected instead of SL, because MSC is easier and
faster to compute.

In the current study, SWMSC and SWSL were mostly
slightly higher than 1 (Figure 1), indicating these networks
have better or similar small-world properties compared to
the random networks generated from original networks.
However, SW!C°H was mostly below 1 (Figure 1), indicating
these networks have less small-world properties compared
to a random network. These results are in line with
previous studies: SW has been found to be above 1 for FC
measures that are more influenced by volume conduction
(Micheloyannis et al, 2006; Wang et al, 2014; Zhang
et al, 2018) and slightly below 1 for measures that are
less influenced by volume conduction (Hou et al, 2018;
Zheng et al, 2018). Previous studies have found that EEG
functional networks are small-world networks, but the
current study shows that these results may be influenced by
volume conduction, since functional ICOH networks in the
current study did not show small-world properties during
eyes-closed resting state.

Most studies that compare two groups of subjects, obtain
values above 1 for SW. Since those metrics are obtained
by comparing original networks to random networks,
decrease in those values is generally interpreted as a
more random network structure (Rubinov et al, 2009;
Zhang et al, 2018; Sun et al, 2019). In the current study
we showed that although decrease in SWMSC and SWSt
can be interpreted as a more random network structure
(Figures 3A,B), decrease in SWICOH  resulted in a less
random network structure (Figure 3C). Therefore, the

decrease in SW does not necessarily interpret into a more
random network structure, although such result can be
concluded mathematically in case of certain measures.
These results strengthen the argument to calculate ICOH
in addition to MSC or SL.

The negative correlation obtained in the current study
increased between graph densities 10 ... 25% and was more
stable for graph densities 30 .. 50% (Figure 2). As mean
FC was constant for all graph densities, this result could be
more influenced by the dependence of SW on graph density.
Still, one has to take into account that the dependence of
SW on graph density differs for each individual network.
Generally, denser networks naturally have smaller values
of SW (Bassett and Bullmore, 2017). However, the same
conclusion did not apply to the results of ICOH in the
current study (Figure 1). To address the limitation of SW
depending on the graph density, the small-world propensity
(SWP) was introduced by Muldoon et al. (2016). However, in
the current study, we chose a more common approach to
calculate SW for a range of graph densities (Figure 2) to
investigate the correlation between FC and SW depending on
the graph density.

In the current study, functional networks of healthy
subjects in resting state was analyzed. Further studies
could also investigate the relationship between FC and

SW in subjects with MDD, AD, and schizophrenia.
Based on the network analysis in studies by other
authors, the relationship between FC and SW found

in the current study may be in AD and
schizophrenia, but not in MDD.

Previous studies have shown that different physiologic
states can be described with different network structure
(Bartsch et al., 2015) and FC (Lin et al., 2016) within
organ systems, indicating an association between network
topology, FC, and physiologic function. In the more focused
perspectives of the brain, the hypothesis of a compensatory
mechanism between FC and SW suggested in the current
study seems to be consistent with these findings in that in
healthy subjects FC and SW underlying different physiologic
states may well alter in an interrelated manner. This
concept should be made subject of further research within
a broader framework incorporating functional integration and
segregation, too.

disrupted

CONCLUSION

To the best of our knowledge, current study is the first
to analyze the relationship between resting state EEG FC
and SW. We report a negative correlation between FC
and small-world organization in alpha frequency band
for healthy subjects. We interpret these results as the
manifestation of a compensational mechanism of the
healthy brain, where lower small-world organization is
compensated by higher connectivity strength. The finding
is expected to be useful in the differentiation of mental and
neurological disorders.
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The aim of the study is to clarify the impact of the strong cyclic signal component on
the results of surrogate data method in the case of resting electroencephalographic
(EEG) signals. In addition, the impact of segment length is analyzed. Different non-
linear measures (fractality, complexity, etc.) of neural signals have been demonstrated
to be useful to infer the non-linearity of brain functioning from EEG. The surrogate
data method is often applied to test whether or not the non-linear structure can be
captured from the data. In addition, a growing number of studies are using surrogate
data method to determine the statistical threshold of connectivity values in network
analysis. Current study focuses on the conventional segmentation of EEG signals, which
could lead to false results of surrogate data method. More specifically, the necessity
to use end-matched segments that contain an integer number of dominant frequency
periods is studied. EEG recordings from 80 healthy volunteers during eyes-closed
resting state were analyzed using multivariate surrogate data method. The artificial
surrogate data were generated by shuffling the phase spectra of original signals. The
null hypothesis that time series were generated by a linear process was rejected by
statistically comparing the non-linear statistics calculated for original and surrogate
data sets. Five discriminating statistics were used as non-linear estimators: Higuchi
fractal dimension (HFD), Katz fractal dimension (KFD), Lempel-Ziv complexity (LZC),
sample entropy (SampEn) and synchronization likelihood (SL). The results indicate that
the number of segments evaluated as non-linear differs in the case of various non-
linear measures and changes with the segment length. The main conclusion is that the
dependence on the deviation of the segment length from full periods of dominant EEG
frequency has non-monotonic character and causes misleading results in the evaluation
of non-linearity. Therefore, in the case of the signals with non-monotonic spectrum
and strong dominant frequency, the correct use of surrogate data method requires the
signal length comprising of full periods of the spectrum dominant frequency. The study
is important to understand the influence of incorrect selection of EEG signal segment
length for surrogate data method to estimate non-linearity.

Keywords: EEG, dominant frequency, alpha frequency, surrogate data, Fourier transform, segment length
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INTRODUCTION

Non-linear dynamics is the most appropriate way to describe
complex physiological systems and is therefore widely used in
biomedical applications. During last decades, the interest in
the theory of non-linear dynamics has increased due to raising
interest in brain functioning and the necessity to understand
complex dynamics of the underlying processes (Hornero et al.,
2009; Rodriguez-Bermudez and Garciia Laencin, 2015).

The brain is assumed to function as a self-organizing complex
network of interacting dynamical non-linear subsystems. Despite
some cellular processes may be random and characterized by
probability functions, the neural systems may exhibit rather
chaotic non-linear nature. Large networks of interconnected
neurons behave as self-organized large systems with local non-
linear interactions (Hornero et al., 2009). The question, whether
EEG signals should be looked at as a non-linear deterministic
process or a linear stochastic one, is still open. Therefore, before
analyzing EEG signals by non-linear methods, it is required to
assess whether the non-linearity exists in the data. In case non-
linearity is present, the non-linear dynamics theory could also
characterize the intrinsic nature of EEG, helping to understand
its dynamics, underlying brain processes and search for its
physiological significance, without losing or ignoring important
information (Natarajan et al., 2004). The presence of non-
linearity can be confirmed by hypothesis testing.

Theiler et al. (1992) described a statistical approach for
identifying non-linearity in a time series, through the surrogate
data method. A surrogate data is generated from the original data
by shuffling the phase spectra. Null hypothesis that data were
generated by a linear process is tested by comparing non-linear
statistic calculated for original and surrogate data. If the value
for original data is significantly different, the null hypothesis can
be rejected and non-linearity concluded. The probability that the
surrogate data test will reject null hypothesis depends on the
non-linear statistic used (Spasic, 2010).

Surrogate data method is widely used on EEG signals for
testing the null hypothesis of linearity. There are two main
purposes for surrogate data testing. The first purpose is to
test whether the chosen non-linear measure captures non-linear
structure in the data, which cannot be detected with spectral
density function (Breakspear and Terry, 2002; Natarajan et al.,
2004; Spasic, 2010; Bae et al,, 2017; Orgo et al., 2017). If the
data does not have any non-linear structure, a linear method
could be used instead. The second purpose is to determine the
statistical threshold of connectivity values in network analysis
(Dimitriadis et al., 2015, 2017; Olejarczyk et al., 2017), which
is being used by a growing number of studies with the method
of surrogate data. However, some factors can cause misleading
results for EEG signal linearity estimation. Surrogate data testing
for a linear stochastic system can indicate false non-linearity in
case the process is non-stationary (Timmer, 1998). A specific
problem has been identified that false detection of non-linearity
may occur in case the data are strongly cyclic (Stam et al., 1998;
Small and Tse, 2002). The problem arises when the length of the
analyzed signal segment deviates from the multiple full periods of
the cyclic component in the signal.

Electroencephalographic (EEG) signal has a strong alpha
frequency component in the frequency range between 9 and
11 Hz. This rhythm is most pronounced in occipital region,
but is also present in central, temporal or even frontal regions.
Alpha rhythm is best revealed during eyes-closed resting state.
Therefore, it might be expected that due to the strong cyclic alpha
component of the resting eyes-closed signal, the surrogate data
method may give false results.

The aim of the study is to clarify the impact of the strong
cyclic signal component on the results of surrogate data method
in the case of EEG signals. In addition, the impact of segment
length is analyzed. For this reason, the degree of non-linearity
was found in eyes-closed resting EEG signal depending on the
analyzed segment length and deviation from full period of the
dominant cyclic component. Five discriminating statistics were
used as non-linear estimators: Higuchi fractal dimension (HFD),
Katz fractal dimension (KFD), Lempel-Ziv complexity (LZC),
sample entropy (SampEn), and synchronization likelihood (SL).

MATERIALS AND METHODS

Subjects

Eighty healthy volunteers (38 female and 42 male) aged
37.0 + 14.5 years participated in the study. The experiments were
approved by the Tallinn Medical Research Ethics Committee and
were conducted in accordance with the Declaration of Helsinki.
All subjects signed an informed consent.

EEG Recordings

The EEG was recorded using Neuroscan Synamps2 acquisition
system (Compumedics, Charlotte, NC, United States) from 30
electrodes, positioned according to the extended international
10-20 system. The sampling frequency was 1,000 Hz. Linked
mastoids were used as a reference and electrode impedances were
kept below 10 kQ. EEG was recorded for 6 min, during which
subjects were lying in a relaxed position with their eyes closed.

Surrogate Data

Multivariate surrogate data method is used to test whether data
were generated by a non-linear process (Theiler et al., 1992;
Prichard and Theiler, 1994). The null-hypotheses that data were
generated by a linear process and therefore data can be fully
explained by a linear model, is set. Surrogate data is generated
from original data. If the non-linear statistic calculated for
original data significantly differs from the non-linear statistic
calculated for surrogate data, null-hypothesis is rejected and
non-linearity is detected.

Surrogate data is calculated from time series according to
the algorithm by Prichard and Theiler (1994). Fourier transform
is applied and the phase of each frequency component is
independently rotated by a random degree between (0, 27). After
that, inverse Fourier transform is performed. As a result, the
power spectrum and the autocorrelation function of the time
series is preserved. For multivariate time series, a fixed random
sequence is used to alter the phase of each frequency, ensuring
linear correlations between simultaneously recorded time series.
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To determine whether the value of the non-linear statistic
for the original data set significantly differs from the non-linear
statistics for the surrogate data, z-test is used (Breakspear and
Terry, 2002):

_ Qiata — mean (qurrogatc)

Z
std (qurrogaIE)

1

where Qg is the non-linear statistic calculated for the original
data set, mean (Qsurrogate) is the mean and std (Qsurrogate) is the
standard deviation of linear statistics calculated for the surrogate
data. In the current study, surrogate data was calculated 20 times
for each data segment and the significance level of p < 0.05 was
used. Under the null hypothesis, z-statistic is normally distributed
and when | Z| >1.96 for a two-tailed test, the null hypothesis can
be rejected. For data analysis, we calculated the degree of non-
linearity (DEG), which we define as the percentage of segments
where the null hypothesis was rejected and non-linearity was
detected:

"
. 100% (2)
n

DEG =
where 7 is the number of segments and #gg, is the number of
segments, where | Z| >1.96.

Non-linear Statistics

The measures for estimation of non-linearity were selected based
on two main criteria. Firstly, whereas different estimators detect
various aspects of non-linearity, the applied measures should
describe one of the specific features of the signals: self-similarity,
dimension-based morphology, complexity, irregularity or
functional connectivity. Secondly, less time-consuming methods
currently widely used in EEG analysis should be represented.
As a result, five non-linear methods were selected: HFD, KFD,
LZC, SampEn, and SL. HFD and KFD are fractal dimension
methods, LZC is a measure of complexity and SampEn is a
measure of irregularity. As connectivity between neurons and
synchronization of their spiking play crucial role in the brain
functioning, functional connectivity measure SL, although
computationally time consuming, was also selected.

The HFD evaluates the complexity and self-similarity of time
series (Higuchi, 1988). It is calculated directly in the time domain,
making it a simple and fast method. The HFD with a parameter
kmax = 8 was calculated according to the algorithm presented by
Higuchi (1988).

The KFD obtains fractal dimension based on morphology,
measuring the roughness of the time series (Katz, 1988). The KFD
is the ratio of the length of the curve (sum of distances between
two successive points), divided by the maximum distance of any
point under consideration from the first point. In other words,
the ratio of the total length to the straight line corresponding to
the maximum distance from the first point. In addition, a scaling
factor, an average of the distances between two successive points
is used.

Higuchi’s and Katz fractal dimensions are the most common
methods of estimating the fractal dimension of EEG signals
directly in the time domain. Despite both, HFD and KFD
describe the fractal dimension of EEG waveform, the behavior

of the measures is different. HFD has been suggested being the
most accurate, whereas KFD yields the most consistent results
regarding discrimination between brain functional states (Esteller
etal,, 2001). Therefore, both are applied in this study.

The LZC evaluates the randomness of finite sequences
(Lempel and Ziv, 1976). First, the EEG signal is transformed
into a finite symbol sequence, according to a chosen threshold.
Next, the sequence of symbols is analyzed from left to right. The
LZC counts the number of times a new pattern is encountered
and its recurrence rate for the given sequence. LZC is simple
to calculate and does not need long data segments. Larger LZC
values correspond to signals that are more complex. Still, the
LZC strongly depends on the signal bandwidth (Kalev et al.,
2015). In the current study, median value of the sequence was
selected as threshold, as it is capable of coping with outliers.
Next, the data was binarized (two symbols) according to the
threshold. Due to artifact free sequences, selecting between
median or mean is not expected to change the outcome
considerably.

The SampEn measures the signal irregularity (Richman and
Moorman, 2000). Signals that are more irregular give larger
SampEn values. The method is quite independent of the signal
length. It is suitable for analyzing short and noisy time series.
The SampEn is the negative natural logarithm of the conditional
probability that two sequences similar for m = 2 points remain
similar at the next point. Parameters for the SampEn were chosen
according to recommendations from previous studies (Richman
and Moorman, 2000; Lake and Moorman, 2010): the embedding
dimension m = 2 and the tolerance r = 0.2 SD, where SD is the
standard deviation of the sample.

The SL is a non-linear measure of functional connectivity
(Stam and Van Dijk, 2002). The SL estimates dynamical
interdependencies between simultaneously recorded time series
using Takens” theorem (Takens, 1981) of reconstructing EEG
signals into state space. The calculation of the SL is more
thoroughly explained in the article by Stam and Van Dijk
(2002). The SL parameters were calculated according to
the formulas presented in the paper by Montez et al
(2006) with respect to the time-frequency content of the
signal. Therefore, the following parameters were used: the
embedding lag L = 7, the embedding dimension m = 136, the
number of recurrences n,,. = 10, the fraction of recurrences
Pref = 0.01, window W; = 2000 and window W, = 2999.
Such selection of the parameters ensures that the time-
frequency characteristics of the signals are fully taken into
account. Therefore, small alterations in these parameters are
not expected to change the results of surrogate data method
significantly.

Data Processing

Data processing was done in MATLAB (The Math-works, Inc.)
using signal processing toolbox. Signals were digitally filtered
(1-45 Hz) using zero-phase Butterworth filter and re-referenced
according to the reference electrode standardization technique
(REST) (Yao, 2001). Signals were divided into 5.3-s segments.
Data were visually inspected and segments with artifacts were not
analyzed.
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Surrogate data method makes an assumption of stationarity.
We conducted two stationarity tests: the Kwiatkowski-Phillips—
Schmidt-Shin (KPSS) and the Phillips-Perron (PP) test and no
non-stationarity was detected.

Dependence on the Segment Length Increment for
Alpha Component

The aim of the current section was to determine how DEG
depends on the segment length increment. For that purpose, the
length of the segment was gradually incremented from an integer
number of alpha periods by 2 ms. Therefore, the length of each
segment was determined as:

I = kT + At, At = 0,2,4,...,108 ms, 3)

where k is an integer, T is the period of alpha frequency
component and At is the segment length increment. The first
segment was approximately 5 s, starting and ending at the alpha
peak amplitude (At = 0) - consisting of an integer number of
alpha periods. Therefore, the exact length of the first segment
depended on the alpha period. The second segment started
at the same position as the first one, but ended 2 ms later
(At = 2). Finally, the length of the last segment (At = 108) was
approximately 5.1 s. For most subjects, the length of the last
segment corresponds to [ = (k + 1)T - again an integer number
of alpha periods. As there were 62 data segments for a subject,
we repeated the incrementation procedure for each of the 62 data
segments and DEG was calculated according to formula (2) for
each At=0,2,4,...,108 ms, where n = 62.

Alpha peaks were found by zero-phase filtering signals into
alpha frequency band (7.5-13 Hz) using Butterworth filter and
peaks were indicated by local maxima. The channel Ol was
chosen for processing, because of the highest average alpha
power. After finding positions of alpha peaks in channel O1,
whole frequency band (1-45 Hz) was used for calculating DEG.
The dependence on At was found for five different non-linear
parameters: HFD, KED, LZC, SampEn and SL. As SL is calculated
between two channels, O1 and O2 were used.

Dependence on Channel

In different channels, the amount of alpha power, the strong
cyclic component, differs. This component is most pronounced
in occipital region, but is also present in other regions. To analyze
the dependence on the EEG channel, three channels were chosen
according to average mean alpha power: O1 with the highest
alpha power, C3 with average alpha power and T7 with the lowest
alpha power. In addition to O1, analysis for C3 and T7 were
conducted in accordance to 2.5.1, whereas HFD was used as a
non-linear measure.

Dependence on the Segment Length Increment for
Different Frequency Components

It is well known that alpha is the dominant frequency during
eyes-closed resting state EEG recordings, especially in posterior
areas. However, it is important to clarify, whether the surrogate
data method is also affected by the cyclic component of other
EEG frequency bands. For that purpose, the analysis in 2.5.1 was
repeated using HFD, but the segments beginning and the segment

length increment have been matched to the following frequencies:
delta (1-1.5 Hz; At = 0, 20, ..., 1000), theta (4-8 Hz; At = 0,
3, ..., 126) and beta (13-30 Hz; At =0, 1, ..., 46). For better
comparison, the results for alpha component (7.5-13 Hz; At =0,
2,...,108) are also presented.

Dependence on Segment Length

While incrementing the segment by At, the overall segment
length was almost the same, between 5 and 5.1 s. To analyze
the dependence on the segment length, the data were divided
into substantially different segment lengths: around 5, 10, 15, and
20 s. Each segment started from alpha peak and ended with alpha
peak, consisting of an integer number of alpha periods. Each
subject had 10 segments of each segment length, whereas n = 10
in formula (2). DEG was calculated for each subject and segment.

Data Processing

The observations of DEG were obtained for each subject. The
dependence on the At and the segment length were statistically
evaluated using one-way analysis of variance (ANOVA) with
the significance level of p < 0.05. To correct for the problem
of multiple comparisons, Bonferroni correction was used by
adjusting the p-value p = p/m, where m is the number of
comparisons.

RESULTS

Average DEG values for end-matched segments according to
alpha frequency (At = 0) are presented in Table 1. The percentage
of segments where non-linearity was detected varies significantly
depending on the non-linear measure. KFD indicated the highest
degree of non-linearity: the KFD value was significantly changed
in 99% of segments, while LZC revealed non-linearity only in
0.4% of the segments.

Dependence on the Segment Length

Increment for Alpha Component

The calculated DEG values for HFD, KFD, LZC, SampEn and
SL in alpha frequency band are presented in Supplementary
Datasets 1-5. We conducted ANOVA to analyze whether the
segment length increment At influences the results of surrogate
data method. ANOVA (p < 0.05/5) yielded statistically significant
results for every non-linear statistic that indicated non-linearity
(DEG > 5%): HFD DEG (Figure 1B), KFD DEG (Figure 1D) and
SampEn DEG (Figure 1H). For example, when At = 0, then HFD
DEG was 46.1%, but At = 50 (corresponding to half alpha period)

TABLE 1 | The degree of non-linearity at alpha peak.

DEG, %
HFD 46.1
KFD 99.1
LzC 0.4
SampEn 81.5
SL 3.9
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FIGURE 2 | The degree of non-linearity DEG depending on the segment
length increment At for alpha component in channels O1, C3, and T7.

resulted in HFD DEG 80.0%. LZC DEG (Figure 1F) and SL DEG
(Figure 1J) did not depend on the At.

In order to understand the DEG results presented in Figure 1,
we can consider the values of non-linear measures calculated
for original and surrogate data, according to which DEG was
calculated. Incrementing the segment length to At = 50 increased
the values calculated for surrogate data for all five non-linear
measures, but the increase was statistically significant only for
HED (Figure 1A), KFD (Figure 1C), LZC (Figure 1E), and
SampEn (Figure 1G). Since HFD and SampEn calculated for
surrogate data were significantly increased compared to the
values calculated for original data, this resulted in an increase
also in DEG (Figures 1B,H). However, KDF for surrogate data
was significantly decreased compared to KFD for original data,
resulting in a decrease in DEG (Figure 1D). Although LZC
calculated for surrogate data was also influenced by segment
length increment (Figure 1E), LZC was similar for original and

surrogate data, yielding low DEG values, resilient to segment
length increment (Figure 1F).

Dependence on Channel

The calculated HFD DEG values for channels O1, C3 and T7
are presented in Supplementary Datasets 1, 6, 7. According to
ANOVA (p < 0.05/3), HFD depended on the At for all studied
channels. The deflection in DEG was the largest in channel OI,
followed by C3 and T7 (Figure 2). These results are in accordance
with the amount of spectral alpha power in those channels.

Dependence on the Segment Length
Increment for Different Frequency

Components

The calculated HFD DEG values for delta, theta, alpha and
beta frequency components are presented in Supplementary
Datasets 1, 8-10. According to ANOVA (p < 0.05/4), HFD
depended on every calculated cyclic component (Figure 3).
The difference between maximum and minimum DEG for
different At was the largest for alpha component (80.0% -
45.3% = 34.7%), followed by theta (63.9% — 51.4% = 12.5%),
delta (61.1%—51.1% = 10.0%), and beta component
(60.6% — 51.6% = 9.1%).

Dependence on Segment Length

The influence of segment length (At = 0) on DEG was
investigated for five non-linear measures: HFD, KFD, LZC,
SampEn, and SL (Supplementary Dataset 11). The results are
presented in Table 2. According to ANOVA (p < 0.05/20), DEG
depended on the segment length for HFD, SampEn, and SL
(marked with * in Table 2). The results for 5-s segments are
slightly different from the results in Table 1, because smaller
number of segments were used.

DISCUSSION

The aim of the study was to clarify the impact of the strong cyclic
EEG signal component on the results of surrogate data method

A Delta B Theta c Alpha D Beta
80 80 80 80
75 75 75 75
X 70 X 70 X 70 X 70
8 65 8 65 8 65 8 65
[a] [a] [a] [a]
A 60 A 60 A 60 Q 60
= = B B
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FIGURE 3 | The degree of non-linearity DEG depending on the segment length increment At for (A) delta, (B) theta, (C) alpha, and (D) beta frequency components.
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TABLE 2 | The degree of non-linearity at different segment lengths (*p < 0.05).

DEG, %
Segment length 5s 10s 15s 20s
HFD 45.7* 41.0* 36.4* 34.0*
KFD 99.9 100 100 100
LzC 0.4 0.6 0.2 0.4
SampEn 82.0* 95.4* 98.5* 99.4*
SL 4.4* 6.5% 7.0* 9.1*

by Theiler et al. (1992). In addition, the impact of segment
length was analyzed. The major finding of the study was that
if the EEG segment does not contain an integer number of full
alpha periods, the values calculated for surrogate data may be
significantly altered, resulting in a false rejection of linearity. To
the best of our knowledge, similar results have not been reported
earlier.

Previous studies have shown that false detection of non-
linearity may occur when the data are strongly cyclic (Stam
et al., 1998; Small and Tse, 2002). However, the influence
of this problem on EEG signals was not previously known.
Although surrogate data method is widely used for EEG analysis
(Breakspear and Terry, 2002; Natarajan et al., 2004; Spasic, 2010;
Dimitriadis et al., 2015, 2017; Bae et al., 2017; Olejarczyk et al.,
2017), the cyclic behavior of dominant frequency component
is not considered in segmentation. The current study shows
the importance of segmenting data according to the alpha
component for eyes-closed resting state EEG.

Our results demonstrate remarkable non-monotonic changes
in the degree of non-linearity of EEG signals with the fine
tuning of the segment length within a period of dominant EEG
signal frequency for every non-linear statistic that indicated non-
linearity (DEG > 5%): HFD (Figure 1B), KFD (Figure 1D), and
SampEn (Figure 1H). The changes in the degree of non-linearity
are caused by the changes in the non-linear measures calculated
for surrogate data (Figures 1A,C,G), whereas the measures
calculated for original data have no remarkable dependence on
so small alteration of segment length. The impact of segment
length tuning on the results of surrogate data method is maximal
when the segment length contains an odd number of half-periods
of the dominant frequency (Figure 1). The phenomenon can be
explained by spectral leakage in the discrete Fourier transform
while deriving the surrogates, as discrete Fourier transform
assumes periodic signals. Thornhill (2005) showed that even
a small spectral component other than that at the dominant
frequency could be interpreted as non-linearity and causes false
detection of non-linearity for sine waves. However, they showed
that pseudoperiodic data with weaker cyclic behavior were more
robust to small end-mismatches. These results are in accordance
with the results in the current study. Moreover, the current study
proves that the cyclic behavior of EEG has a strong influence
on non-linear measures calculated for surrogate data for large
end-mismatch.

Two measures, LZC (Figure 1F) and SL (Figure 1J), did
not detect significant non-linearity (DEG < 5%). In the case of
LZC, the possible reason is that the measure is highly sensitive

to low frequency EEG component in binarization due to its
high amplitude values. The non-linearity, if contained in the
low amplitude high frequency activity, gets overlooked in the
process of binarization and is not detected by the measure.
SL did not detect non-linear coupling, indicating that SL does
not necessarily give significantly more information compared to
similar linear functional connectivity measures.

The level of alterations caused by fine tuning within a period of
dominant frequency differs at different non-linear discrimination
measures. The degree of linearity changes about two-fold with
HFD, is much lower with KDF and SampEn and becomes
insignificant with LZC and SL. The different impact of fine tuning
of segment length within a period of dominant frequency can be
explained by different sensitivity of various non-linear measures
to a small additional spectral component introduced by the
deviation of the segment length from a full period. The problem
can be solved by selecting the start and end of the segment by
matching the period of the strong cyclic component. A segment
end-matching can be performed by selecting a segment length
equal to integer number of full periods of the dominant frequency
(Stam et al,, 1998). In addition, Small et al. (2001) suggested
an alternative surrogate data method: pseudo-periodic surrogate
(PPS) algorithm. However, PPS is not applicable to data where
the non-linearity of interest is distortion of the periodic waveform
(Thornhill, 2005).

The dependence of the degree of non-linearity on the segment
length increment from full alpha periods has the maximal
value for alpha frequency component (Figure 3). The alteration
of the degree of non-linearity with the dominant frequencies
in delta, theta or beta bands are less critical. The possible
reason is the structure of EEG signal with a dominant alpha
frequency. The minimum DEG value in Figure 3 is the smallest
for alpha frequency component. These results show that the
synchronization of the fine tuning of the segment length should
be performed with the dominant frequency component to
decrease the amount of false positive surrogate data results.

The dependence of the degree of non-linearity on the
segment length increment from full period of dominant EEG
frequency is evident in various EEG channels (Figure 2). As
expected, the impact is stronger in the EEG channels with
higher alpha content (O) and weaker in channels with lower
alpha content (T). The influence of segment end-mismatch
on other channels also mostly depends on the spectral alpha
power and lies between the obtained results of Ol and T7
(Figure 2). The results may also be influenced by an additional
strong frequency component (channel C3 in Figure 2), but the
dominant frequency component should be taken into account in
segment end-matching.

The degree of linearity estimated at an integer number of
alpha periods (Tables 1, 2) shows that the degree of non-linearity
varies for different non-linear measures. Different sensitivity to
surrogate data method has also been reported by other author
(Spasic, 2010) when comparing HFD and third order correlation.
Our results suggest that HFD, KFD, and SampEn were more
sensitive to non-linearity, while SL and LZC values changed
significantly in less than 5% of segments for 5-s segments. In
this case, SL has been calculated between O1 and O2 channels.
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The results can vary for different channel pairs, but Orgo et al.
(2017) found that for SL 5-s segments, the average degree of non-
linearity over all channel pairs was similar to that in our current
study (6.1% compared to our 4.4%). In addition, the degree
of non-linearity estimated in the current study is close to the
results reported by Breakspear and Terry (2002), who detected
statistically significant evidence of non-linear interactions in 4.8%
of the 2.048-s segments of eyes-closed resting state EEG.

The findings presented in Table 2, indicating changed non-
linearity with increased segment length, are in principle in
accordance with the results reported by other research groups
(Olbrich et al., 2003; Sun et al., 2012; Orgo et al., 2017). Olbrich
et al. (2003) have reported the dependence of rejection of the
null hypothesis between natural and surrogate data in sleep EEG
on the length of the analyzed segment. They suggested that
the increase of evaluated non-linearity with the segment length
might occur because of the increasing non-stationarity of the
longer time series. In the current study, KPSS and PP test did
not reveal any non-stationarity. Sun et al. (2012) have made a
conclusion that the length of signal segment for analysis of 3-
16 periods is sufficient for detecting non-linearity in the case
of EEG phase synchronization. However, in the current study
we showed that the results of evaluation of non-linearity vary
even with the segment lengths of more than 100 periods. Orgo
et al. (2017) were the first to compare the degree of EEG non-
linear coupling in different frequency bands and segment lengths,
during eyes-closed resting state. Their results showed that the
degree of non-linear coupling increased with the length of the
segment, and it was most dominant in total, alpha, beta and theta
frequency bands.

CONCLUSION

The results of the performed study show that the selection of a
proper segment length in evaluating non-linearity of EEG signals
with surrogate data method is critical to assure the reliability of
evaluation. The results of performed calculations demonstrate
that false rejection of linearity occurred with surrogate data
method when an EEG segment did not contain an integer
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