

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Anna Ivanova 2107371IABB

Solution Proposal for the EDUKOHT

Programming School Intranet

Bachelor’s Thesis

Supervisor: Bahdan Yanovich

BSc

Tallinn 2024

2

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Anna Ivanova 2107371IABB

Programmeerimiskooli EDUKOHT siseveebi

lahenduse ettepanek

Bakalaureusetöö

Juhendaja: Bahdan Yanovich

BSc

Tallinn 2024

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references to

the literature and the work of others have been referred to. This thesis has not been presented

for examination anywhere else.

Author: Anna Ivanova

23.05.20204

4

Abstract

This thesis examines the development and partial implementation of the proposed user

interface for the EDUKOHT programming school. The goal of the study was to analyze

system requirements and create interface layouts that are intuitive and easy to use. Based on

an analysis of existing platforms, functional requirements were formulated and a use case

diagram was developed with three main roles: administrator, mentor and client. The work

involved creating layouts in Figma, including a dashboard, course page, and mentor page,

and implementing forms for adding events and mentors.

During the implementation phase, registration and login functionality ware developed, as

well as a calendar for viewing and adding events. Mentor pages with the ability to edit

information have been developed. During the work, it was revealed that the project was not

developing as quickly as originally planned, and the lack of clear deadlines made it difficult

to fully complete the tasks.

For further development of the project, it is recommended to set clear deadlines, expand the

functionality of the platform, regularly update and test the system, and integrate user

feedback. These steps will help improve the platform and increase its value for EDUKOHT

Coding School users.

This thesis is written in English and is 66 pages long, including 4 chapters, 36 figures, 16

table.

5

Annotatsioon

Programmeerimiskooli EDUKOHT siseveebi lahenduse ettepanek

Käesolevas lõputöös vaadeldakse programmeerimiskooli EDUKOHT väljapakutud

kasutajaliidese väljatöötamist ja osalist juurutamist. Uuringu eesmärk oli analüüsida

süsteeminõudeid ning luua intuitiivseid ja hõlpsasti kasutatavaid liidese paigutusi.

Olemasolevate platvormide analüüsi põhjal formuleeriti funktsionaalsed nõuded ja töötati

välja kasutusjuhtude diagramm kolme peamise rolliga: administraator, mentor ja klient. Töö

hõlmas Figma paigutuste, sealhulgas armatuurlaua, kursuse lehe ja mentorilehe loomist ning

sündmuste ja mentorite lisamise vormide rakendamist.

Rakendusfaasis töötati välja registreerimise ja sisselogimise funktsionaalsus ning kalender

sündmuste vaatamiseks ja lisamiseks. Välja on töötatud mentorilehed, millel on võimalus

infot muuta. Töö käigus selgus, et projekt ei arenenud nii kiiresti kui algselt planeeritud ning

selgete tähtaegade puudumine raskendas ülesannete täielikku täitmist.

Projekti edasiseks arendamiseks on soovitatav seada selged tähtajad, laiendada platvormi

funktsionaalsust, regulaarselt uuendada ja testida süsteemi ning integreerida kasutajate

tagasiside. Need sammud aitavad platvormi täiustada ja tõsta selle väärtust EDUKOHT

Coding Schooli kasutajate jaoks.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 66 leheküljel, 4 peatükki, 36 joonist,

16 tabelit.

6

List of abbreviations and terms

API Application Programming Interface

Back-end the part of a website which runs on the server,

handling data processing, server-side scripting, and

database interactions

CSS Cascading Style Sheets

DOM Document Object Model

Front-end the part of a website that users interact with directly

in their web browsers, including everything users

experience directly

Git a distributed version control system designed to

process any project quickly and efficiently.

Html Hyper Text Markup Language

JWT JSON Web Tokens

LMS Learning Management System

Moodle Modular Object-Oriented Dynamic Learning

Environment

NPM Node Package Manager

Scratch A visual programming language targeted primarily at

children

7

Table of Contents

Author’s declaration of originality ... 3

Abstract ... 4

Annotatsioon ... 5

List of abbreviations and terms .. 6

Table of Contents ... 7

List of Figures ... 9

List of Tables .. 11

1 Introduction ... 12

1.1 Background and Problem .. 12

1.2 Goal and Expected Results ... 13

1.3 Work Structure .. 13

2 Methodology .. 15

2.1 Object Description .. 15

2.2 Description of Tools ... 16

2.3 Description of Technologies ... 17

2.3.1 Back-End .. 17

2.3.2 Front-End ... 18

2.4 Description of Workflow .. 19

2.5 Feedback Collection ... 20

2.5.1 Mentor surveys ... 20

2.5.2 Interview with the client ... 20

2.5.3 Author’s own observations... 20

3 Work Results ... 22

3.1 Description of Initial Solution .. 22

3.1.1 Notion ... 22

3.1.2 Moodle ... 25

3.1.2.1 Login page ... 26

3.1.2.2 Home page... 27

3.1.2.3 Course page ... 29

3.2 Analysis of Main Users Feedback .. 31

8

3.3 Formation of Final Requirements ... 32

3.4 Prototyping ... 43

3.5 Technical Solution .. 47

3.5.1 Database ... 47

3.5.2 Back-end... 47

3.5.3 Front-end .. 48

3.5.4 Some technical aspects of the solution ... 49

3.6 Testing and Validation .. 50

4 Analysis of Results .. 52

4.1 Technology and Tools .. 52

4.2 Project Workflow .. 53

4.3 Requirements .. 54

4.4 Implemented Functionalities ... 55

4.4.1 Welcome Page .. 55

4.4.2 Login and Registration Pages ... 56

4.4.3 Calendar ... 57

4.4.4 Mentor Page ... 59

4.5 Testing and Validation .. 61

4.6 Further Work ... 61

Summary ... 62

References .. 63

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis

 .. 64

Appendix 2 - Login and registration buttons example ... 65

Appendix 3 - Registration form example ... 66

9

List of Figures

Figure 1. Notion Quik links .. 22

Figure 2. Notion Kanban board with tasks ... 23

Figure 3. Notion locations (Estonia) .. 23

Figure 4. Notion additional hours reporting ... 23

Figure 5. Notion calendar ... 24

Figure 6. Notion course blocks ... 25

Figure 7. Notion course lessons .. 25

Figure 8. Moodle log-in page ... 26

Figure 9. Main pages of Moodle .. 27

Figure 10. Profile settings ... 27

Figure 11. Moodle courses ... 28

Figure 12. Moodle courses ... 28

Figure 13. Moodle calendar .. 29

Figure 14. Lessons navigation menu .. 30

Figure 15. Students' attendance page .. 30

Figure 16. Session form .. 30

Figure 17 Use Case Diagram .. 34

Figure 18. Registration wireframe .. 43

Figure 19. Dashboard wireframe .. 44

Figure 20. “Add event” form wireframe .. 44

Figure 21. Courses page wireframe .. 45

Figure 22. Course page wireframe ... 45

Figure 23. Course’s module page wireframe.. 46

Figure 24. Mentor page wireframe ... 46

Figure 25. Session routing in `routes.js` file .. 49

Figure 26. 'server.js' file example ... 50

Figure 27. Welcome page ... 56

Figure 28. Register page ... 56

Figure 29. Login page ... 57

Figure 30. Dashboard page with calendar .. 57

10

Figure 31. Calendar views .. 58

Figure 32. New event form ... 58

Figure 33. Event information ... 59

Figure 34. Mentor page .. 59

Figure 35. Create new mentor form.. 60

Figure 36. Mentor details page ... 60

11

List of Tables

Table 1. Feedback from mentors .. 31

Table 2. Log-in function ... 35

Table 3. User registration function ... 35

Table 4. Calendar of events .. 36

Table 5. Add event function ... 36

Table 6. Event change function .. 37

Table 7. Event delete function .. 37

Table 8. Courses page ... 38

Table 9. Add course function ... 38

Table 10. Edit course function .. 39

Table 11. Delete course function .. 39

Table 12. Mentors page .. 40

Table 13. Add a mentor function .. 40

Table 14. Edit mentor function ... 41

Table 15. Delete mentor function ... 41

Table 16. Automatic calculation of mentors' salaries ... 42

12

1 Introduction

In this chapter, the author gives a brief overview of the developed solution, goals, and

problems is provided. Additionally, the created functionality and further structure are

described in a generalized manner.

1.1 Background and Problem

"EDUKOHT OÜ"[1] (hereafter referred to as "EDUKOHT") stands as an esteemed hobby

school, distinguished by its provision of programming courses tailored for children and

youth. The institution operates across four Estonian cities — Tallinn, Narva, Kohtla-Järve,

and Jõhvi — engaging over 900 students and more than 30 young mentors in its educational

pursuits. Predominantly, EDUKOHT offers courses on web development and Scratch, with

the former concentrating on the foundational aspects of HTML, CSS, and JavaScript, and the

latter being a block-based visual programming language and website, designed primarily as

an educational instrument for children.

The educational and operational mechanisms of the organization encompass a multitude of

complex tasks, including but not limited to, the facilitation of communication with mentors,

the meticulous tracking of attendance, the diligent monitoring of student progress, and the

precise recording of employees' regular and overtime hours. Presently, the management of

these tasks is executed through a variety of online tools, such as social media chats, Google

Sheets, and Learning Management System (LMS) Moodle [2], which has been developed

specifically within the EDUKOHT framework.

Nonetheless, this segmented approach to information management incurs significant

inconvenience, necessitating considerable time and effort to aggregate and interrelate data

from disparate platforms. Furthermore, this decentralization of data accentuates the

propensity for inaccuracies, with the omission of critical information, erroneous tracking, or

oversight potentially culminating in a range of adverse outcomes. These may include failure

to disburse mentors' remunerations, inaccuracies in student financial accounting, and other

implications.

13

1.2 Goal and Expected Results

Given the complexities caused by such a dispersed management approach, the organization's

founders decided to initiate the development of an intranet that would serve all stakeholders

involved in the educational process.

The goal of the project is to propose a solution for EDUKOHT programming school intranet.

The expected results are:

1. New intranet system requirements

2. Mock-ups

3. Some implemented features

A unified platform, consolidating data from the Learning Management System (LMS),

Google Sheets, Type forms, and other sources, would significantly streamline and automate

administrative operations while improving communication among all participants.

Considering the substantial amount of time required for the project, the owners of

EDUKOHT do not expect the author to implement the full range of functions.

1.3 Work Structure

This thesis is structured into four main parts, each dedicated to a distinct phase of the project

lifecycle, from initial methodologies to the final analysis of the results.

This chapter lays the foundation for the project, detailing the object of the project, and the

tools and technologies employed. It covers everything from the initial description of the

project object to the workflow and the technologies used for both backend and frontend

development. Additionally, this section discusses the methods used for collecting feedback,

such as mentor surveys, client interviews, and observations.

14

This part delves into the application of the initial solutions such as Notion and Moodle, and

explores their functionality including the login, home, and course pages. It also discusses the

prototyping process using Figma wireframes, the technical solution including database and

backend development, and the subsequent phases of testing and validation to ensure the

system's efficacy and security.

The final part of the thesis evaluates the system's performance through various analytical

methods and discusses the implemented functionalities such as the Welcome Page, login and

registration interfaces, and additional features like the calendar and mentor pages. This

chapter culminates with a comprehensive assessment of the project outcomes, highlighting

both the successes and areas for future work.

15

2 Methodology

In this chapter, the author describes the project and a complete list of the technologies and

tools used in it. This chapter also includes a detailed description of the workflow process.

2.1 Object Description

Initially, the idea of developing a proprietary intranet for a programming school belonged to

one of the company's co-founders. By the time the project was handed over to the author of

this work, a project had already been created in the company's personal GitHub, and there

was a Kanban board with project tasks on the Jira project management platform.

Before beginning the work, the author was provided with all the necessary components for

the job:

1. Access to all necessary materials and development environments.

2. Support — the co-founder of EDUKOHT (hereafter the project client) provided support

during the analysis process and subsequently during the development process when problems

arose.

The author's first step was to conduct a business analysis to clarify and formalize the

requirements for the intranet. Interviews were conducted with key users and stakeholders to

determine their needs and expectations of the system. This information was systematized and

transformed into clearly formulated requirements, which were then approved by the client.

The Jira board was used to manage the requirements and their priorities, ensuring

transparency of the process and ease of tracking changes and additions to the project.

The decision was made to use Vue.js [4] for developing the user interface and the open-

source backend framework Node.js. [5] This choice was made in favor of these technologies

because they were proposed by the project client, and moreover, the author already had

experience developing web applications using these technologies.

16

2.2 Description of Tools

GitHub is an internet hosting service specializing in software development and version

control using the Git [6] system. In this project, GitHub [7] was used as the primary

repository for storing source code. Its features for monitoring changes and additions to the

code significantly facilitated centralized management and development coordination.

Jira [8] is a project management platform widely used to organize work processes. In this

project, Jira was utilized for planning, coordinating, and tracking task completion. Thanks to

its capabilities, the author was able to organize the workflow, structure tasks, and monitor

their execution in real time, which contributed to increased work efficiency.

Figma is an interface design tool that allows teams to create, collaborate, and share design

components in real time. Figma was used in this project for developing and implementing

interface wireframes. With its help, the author could visualize the structure of the proposed

solutions, easing the process of verifying design concepts and ensuring effective interaction

with the development team.

WebStorm [9] development environment was chosen for developing the client side of the

application using the Vue.js framework. WebStorm is ideally suited for web development,

providing powerful tools for working with JavaScript, CSS, and HTML. The environment

supports modern frameworks such as Vue.js and offers features that simplify the

development of interactive user interfaces, including built-in debugging, profiling, and

testing tools, as well as integration with version control systems.

IntelliJ IDEA [10] was used for developing the server side on Node.js. Thanks to its

versatility and powerful capabilities, it effectively supports development in JavaScript and

Node.js. IntelliJ IDEA provides comprehensive support for Node.js, including dependency

management through npm, application running and debugging, and support for asynchronous

programming.

17

2.3 Description of Technologies

This chapter contains detailed information about the key technologies used in the

development of this application.

2.3.1 Back-End

For the server-side part of this project, Node.js technology was used in combination with the

Express.js framework [11]. Node.js is a JavaScript runtime built on the V8 engine from

Google Chrome, enabling the development of both client-side and server-side web

applications in JavaScript. Its asynchronous, event-driven environment is ideal for creating

scalable network applications. Express.js, a minimalist and flexible web application

framework for Node.js, was chosen to simplify the development process. It provides an

extensive set of features for web and mobile applications, simplifying routing, middleware

integration, and HTTP utility methods.

The decision to use Node.js and Express.js was based on several factors. Node.js uses a non-

blocking, event-driven architecture, allowing it to handle multiple connections

simultaneously and efficiently. Unlike traditional multi-threaded servers, Node.js operates

on a single-threaded event loop, which simplifies memory management and reduces the

likelihood of synchronization errors. Using JavaScript on both the client and server sides

offers versatility. This allows developers to reuse code, streamline development processes,

and reduce the learning curve associated with new languages.

NPM (Node Package Manager) provides access to many open-source packages and modules.

This rich ecosystem accelerates development by offering pre-built solutions for common

tasks, thus reducing the time and effort required to implement complex features. Node.js

excels in performance and scalability, making it a leading platform for server application

development. Its ability to handle numerous simultaneous connections with high throughput

is particularly beneficial for real-time applications. Using Express.js with Node.js

significantly simplifies the development process. Express.js offers a structured yet flexible

18

approach to building web applications, allowing developers to focus on writing business

logic rather than dealing with the intricacies of server configuration.

In this project, SQLite [12] was chosen as the database to complement the Node.js and

Express.js stack. SQLite is a self-contained, serverless, and zero-configuration SQL database

engine. This choice was made due to its simplicity, portability, and ease of integration with

Node.js. SQLite stores data in a single file, which makes it ideal for small to medium-sized

applications and development environments where setup overhead needs to be minimal.

Additionally, SQLite’s lightweight nature ensures that it requires minimal system resources

while still providing full SQL capabilities.

The combination of Node.js, Express.js, and SQLite in this project enhances development

efficiency, reduces time to market, and ensures the creation of high-performance, scalable

applications. This technological stack continues to be a preferred choice for modern web

application development due to its robustness, flexibility, and ease of use.

2.3.2 Front-End

Vue.js was chosen as the primary framework for the front-end development of the project.

Vue.js is a progressive JavaScript framework designed for building user interfaces. One of

its key features is its incremental adaptability, which allows it to be used as either a simple

library for small projects or as a full-fledged framework for complex solutions. This

flexibility gives developers the freedom to choose the necessary tools depending on the

requirements and complexity of the project. Moreover, Vue.js features an intuitive and

compact API, which facilitates quick learning and accelerates the development process. The

framework also has a convenient modular component structure, simplifying code reuse and

maintenance, and ensures high interface reactivity through efficient change tracking and

automatic DOM updates.

Bootstrap was also used to enhance the user interface and ensure the project's adaptability

[13]. This frontend toolkit enables rapid creation of modern, responsive, and visually

appealing interfaces. Bootstrap includes an extensive set of ready-to-use components and

19

utilities, which significantly speeds up development and allows focusing on the unique

aspects of the project without needing to deal with routine styling.

Using Vue.js in combination with Bootstrap is ideal for creating powerful yet easily

maintainable applications, providing excellent compatibility with Node.js. This combination

of technologies allows developers to achieve high scalability and flexibility, making the

choice of Vue.js and Bootstrap an excellent solution for our project.

2.4 Description of Workflow

The workflow was initiated by providing access to the project through the corporate

platforms GitHub and Jira, which created the basis for starting work. At the outset, general

requirements and technology descriptions were presented in a vague manner, highlighting

the need for a thorough business analysis. This analysis became a central part of the process,

as it allowed us to formulate specific requirements for the functionality of the developed

platform and identify key tools for their implementation.

The implementation of business analysis included collecting feedback from the parties and

analyzing current business processes in the company, which helped to identify all the

necessary functional and technical requirements. This data was critical to forming a clear

picture of the project.

Instead of a traditional approach with strict time frames, meetings between myself and the

project client occurred on an as-needed basis.

At any time, the author of the work had the opportunity to contact the customer for

clarification or assistance. This provided effective support and prompt resolution of emerging

issues. Maintaining ongoing dialogue and knowledge sharing between parties had a positive

impact on workflow and results.

20

Thus, the work process was organized in such a way as to provide maximum flexibility and

the ability to quickly adapt to changing conditions and project requirements.

2.5 Feedback Collection

This chapter introduces 3 main methods for collecting feedback for the future analysis:

mentor surveys, interview with client and surveillance.

2.5.1 Mentor surveys

In the process of collecting feedback, it was decided to conduct a survey among mentors to

evaluate their experience of using the current educational platform. The survey was

conducted in an informal manner: mentors were given the opportunity to leave their

comments in free text without asking questions. This approach allowed for the collection of

honest and detailed feedback, expressing participants' personal opinions and suggestions for

improving the system.

2.5.2 Interview with the client

To gain a deep understanding of the customer’s requirements, a video meeting was organized,

during which the customer shared his impressions of the shortcomings of the current

platform. This session allowed us not only to clarify specific aspects that require

improvement, but also to discuss potential areas for functionality development. The interview

helped to identify key problems affecting the ease of use and efficiency of the educational

process.

2.5.3 Author’s own observations

The author of this work, actively participating in the learning process as a mentor at the

EDUKOHT programming school, had the opportunity to personally evaluate the

functionality and ease of use of the discussed platforms. This experience allowed to observe

real-life applications of the systems and identify problems faced by users on a daily basis.

21

Direct participation in the educational process and the use of platforms made it possible to

form a valuable opinion on the necessary improvements and additions.

22

3 Work Results

3.1 Description of Initial Solution

This chapter provides a description of the initial tools used by the EDUKOHT Programming

School before the development of the project began.

3.1.1 Notion

Notion, a universal tool for project management and workflow organization, plays an

important role, although it has not been used in the EDUKOHT organization for over a year.

The author emphasizes the significance of Notion, particularly in the context of project

requirement analysis, but notes a significant reduction in its use.

On the main page of Notion, there are links for quick access to important information (Figure

1), as well as a Kanban board for tracking tasks (Figure 2). It also includes a list of cities

where the organization is active, although some of them are currently inactive (Figure 3 and

4). A feature for mentors to register additional work hours is available.

Figure 1. Notion Quik links

23

Figure 2. Notion Kanban board with tasks

Figure 3. Notion locations (Estonia)

Figure 4. Notion additional hours reporting

24

The location page includes information about the status of various places, whether active or

inactive, with the city of Tallinn as an example. It contains links that provide detailed

information about each location, including logistical aspects and security procedures. A

notable feature is the calendar, which helps mentors track lessons and update information

on student attendance and progress (Figure 5).

Figure 5. Notion calendar

The course page provides a structured overview of courses, such as web development. It

describes the content of the course, its objectives, and the technologies used, as well as

thematic blocks with details of each session (Figure 6 and 7).

25

Figure 6. Notion course blocks

Figure 7. Notion course lessons

Without delving into the details of each feature, the author highlights the reduced yet

conceptually important use of Notion in the current activities of EDUKOHT, aligning with

the organization's strategy to decrease dependency on this platform.

3.1.2 Moodle

Moodle (Modular Object-Oriented Dynamic Learning Environment) is a free, open-source

learning management system (LMS) used to create interactive online courses and websites.

It is one of the most popular platforms for e-learning and is particularly favored in academic

and educational institutions worldwide due to its flexibility, customizability, and active user

community. Moodle offers extensive features including course management, assessment of

26

learning achievements, discussions (forums), file repositories, automated testing, and much

more.

The EDUKOHT team switched to using Moodle as their main platform in March 2023.

Subsequent chapters will provide descriptions of the main pages in Moodle.

3.1.2.1 Login page

On the Moodle login page, there is a field for entering a username or email address and a

separate field for the password, allowing users to input their credentials. To log into the

system, users can click the "Log in" button. If a user has forgotten their password, they can

use the "Lost password?" link to start the recovery process. The page also includes a section

for new users with the question "Is this your first time here?" and a "Create new account"

button, which allows new visitors to register on the site. These elements provide convenient

access to an account or help create a new account if the user is visiting the site for the first

time.

Figure 8. Moodle log-in page

27

3.1.2.2 Home page

With the transition to the Moodle platform, the core functionality previously available in

Notion has been preserved.

Moodle on the EDUKOHT platform includes three main pages: the homepage, the control

panel, and the "My Courses" section. The top panel features icons for notifications, messages,

and user photos (Figure 9). Clicking on the user avatar provides access to their personal

profile, private files, calendar, and reports. Additionally, the user can change the interface

language, gender, or log out of the system (Figure 10).

Figure 9. Main pages of Moodle

Figure 10. Profile settings

On the homepage, there is a list of active courses which can be accessed by clicking on their

respective links. In addition to the main courses, the platform also features additional

sections: "Welcome to EDUKOHT", "Mentor Statistics", and "Guide to Using Moodle"

(Figure 11 and 12).

28

Figure 11. Moodle courses

Figure 12. Moodle courses

The platform also retains the functionality of a calendar, which allows users to add events.

This tool provides the ability to plan and organize various activities within educational

operations, ensuring effective time and resource management. The calendar is easily

integrated with other platform features, making it convenient for daily use in an educational

environment (Figure 13).

29

Figure 13. Moodle calendar

3.1.2.3 Course page

The course page maintains a similar structure to that of Notion, where the material is

divided into thematic blocks. On the left, there is a navigation menu that allows for quick

access to the necessary lessons (Figure 14).

Unlike Notion, the attendance tracking of students is now conducted through a special

attendance page (Figure 15). The mentor has the option to add a session using the

corresponding button. After the form is filled out, the data about the lesson is displayed in a

general table (Figure 16).

30

Figure 14. Lessons navigation menu

Figure 15. Students' attendance page

Figure 16. Session form

31

3.2 Analysis of Main Users Feedback

In this chapter, we delve into collecting and analyzing feedback from mentors specifically

regarding their use of Moodle. The focus is to identify and understand the existing challenges

that mentors encounter with Moodle. The analysis reveals that while Moodle offers various

tools, there were significant requests for enhancements to support user interaction. The

feedback underscores key weaknesses that hinder mentors' ability to manage study groups

and courses are effectively outlined. The main feedback points are detailed in Table 1.

List management system Mentors face difficulties due to the lack of filtering capabilities

in list management systems, which complicates the

segmentation and management of students. The absence of

dashboards also makes it difficult to track attendance and

workload. It is recommended to implement enhanced filtering

features and dashboards that would provide mentors with

deeper analysis and better control over the learning process.

Corner case handling Challenges arise in handling special cases, such as when a

student is also a mentor. Current solutions in the Moodle

system are assessed as suboptimal. Development of more

flexible mechanisms to account for exceptional situations is

needed, which would improve UX and simplify user

management.

Feedback and lesson

coordination with the topic

The lack of a structured feedback process and rigid linkage of

lessons to specific topics limit the flexibility of the educational

process. It is proposed to create mechanisms for more flexible

integration of feedback into curricula and develop

methodologies that allow mentors to adapt educational

materials based on the needs and requests of students.

Mentor limitations Mentors working with various courses experience difficulties

with switching between groups and accessing resources from

different cities. It is important to provide a unified integrated

management system that allows mentors to freely move

between courses and groups, and ensures reliable and secure

access settings.

Interface and settings A complex and cluttered interface with an excessive number of

filters complicates the work of mentors. It is recommended to

redesign the interface to make it more intuitive and minimalist,

which would improve the overall user experience.

Table 1. Feedback from mentors

32

In addition to improvements based on current feedback, the client expressed interest in

developing a feature for automatic salary calculation after each conducted lesson. This

feature should be integrated not only into the administrative interface but also made available

to mentors to enhance transparency and control over their finances, as well as to avoid errors

in salary calculations.

3.3 Formation of Final Requirements

This chapter describes the process of generating specifications for the key functional

requirements of an educational platform. An effective requirements specification not only

ensures clarity of technical implementation, but also ensures that the final product meets user

expectations and is tailored to current and future educational needs. The chapter also covers

the key features needed to make the platform fully functional, including course and mentor

pages, content addition features, an event calendar and location information, as well as the

specification of the login function.

The use case diagram is a crucial element in visual modeling that aids in analyzing a system's

functional requirements. It shows various actors (users or external systems) who interact with

the system, and the use cases, which describe the actions that can be performed by the actors

with the system [14].

The system defines three main types of users: Administrator (Admin), Mentor, and Client

(Parent).

Administrator Capabilities

The Administrator has the most extensive powers in the system:

• Course management: adding, removing, and editing courses.

• Mentor account management: adding, removing, and editing mentor accounts.

• Client account management: adding, removing, and editing client accounts.

• Viewing and managing payments: automatic payment calculation based on worked

hours, issuing invoices.

33

• Managing information about locations: adding, removing, and editing information

about course venues.

Mentor Capabilities

Mentors in the system have opportunities for interacting with courses and materials:

• View assigned courses: access to the list of courses that the mentor leads.

• Adding comments to course materials: ability to leave notes and comments on

materials to improve courses.

• View payment information: access to information about the number of hours

worked and corresponding payments.

• Access to course materials: viewing educational materials for preparation and

conducting classes.

Client (Parent) Capabilities

Clients (parents) using the system can manage their children's education and interact with

mentors:

• View available courses and enroll children: choosing courses for their children’s

education.

• View children's progress and attendance records: monitoring children’s

performance and attendance.

• Make payments/view payment history: managing financial issues related to

education.

• Communicating with mentors and administrators: opportunity for feedback and

managing requests.

• Access resources and materials: receiving educational and additional materials from

the organization

Use cases are visualized on Figure 17.

34

Figure 17 Use Case Diagram

35

Specifications for key functional requirements are presented in Tables 2 - 16.

Log-in function

Functional Secure user access to their accounts.

Technical requirements Integration with security system for authentication and

authorization.

Interface Simple login form with options to restore access.

Acceptance criteria Authentication security, user data protection, login speed.

Table 2. Log-in function

User registration function

Functional Allows new users to create an account on the platform by entering

the necessary personal data such as name, email, password and

possibly additional profile data.

Technical requirements Integration with user database to save new entries. A function is

required to check the entered information for uniqueness and

validity. Implementation of security mechanisms to protect user

data.

Interface A registration form that contains data entry fields, instructions for

users about data requirements (eg, email format, password

requirements), and a registration confirmation button.

Acceptance criteria The user should successfully create an account without errors. All

data must be stored correctly in the database. The user is

automatically sent an email confirming registration.

Table 3. User registration function

36

Calendar of events

Functional Displaying main events, lessons, and important dates for users.

Technical requirements Integration with calendar management system, support for

multiple time zones. Validation for date, event cannot take place in

the past.

Interface Intuitive calendar with customization and presentation options. It

is possible to view specific days, weeks and months separately

Acceptance criteria Accuracy of event display, ease of setup, multilingual support.

Table 4. Calendar of events

Function of adding an event to the calendar

Functional Allows users to add events to the calendar, including setting the

time, date, location, participant selection, and event description.

Supports the creation of one-time and recurring events.

Technical requirements Integration with calendar database to store all events. API support

for synchronization with external calendar services such as Google

Calendar and Microsoft Outlook. Implement notification functions

to alert users about upcoming events.

Interface A form for adding an event with fields for entering all the

necessary details: selecting a date and time through an interactive

control, fields for entering a location and description, functions for

selecting participants from the contact list. The interface should

provide checkboxes to configure the repetition of events.

Acceptance criteria Correct execution of functions for adding and editing events,

accurate saving of user-specified event details into the database.

The interface should be intuitive and provide high speed data

entry. Security of event data and protection from unauthorized

access to the calendar.

Table 5. Add event function

37

Event change function

Functional Allows users to change details of already scheduled events,

including time, date, location, list of participants and description.

Technical requirements User rights to edit an event must be checked. Database integration

to update event information in real time.

Interface An event editing form that allows you to change all aspects of the

event through convenient interface elements such as calendar

pickers, text fields and drop-down lists.

Acceptance criteria Changes should be correctly displayed in the calendar of all event

participants. The system should automatically notify all

participants about changes to the event.

Table 6. Event change function

Event delete function

Functional Allows users to remove scheduled events from the calendar. This

feature should only be available to users who have permission to

edit the event.

Technical requirements Integration with a calendar management system to provide the

ability to delete events. User rights to delete a specific event must

be verified to avoid unauthorized access.

Interface A delete button or icon located next to each event on the calendar.

A confirmation dialog should appear asking the user if they are

sure they want to delete the event

Acceptance criteria The deletion must be quick and accurate, and the event must

completely disappear from everyone's calendar. Once deleted, a

notification must be sent to all event participants that it has been

cancelled.

Table 7. Event delete function

38

Courses page

Functional View available courses and the ability to register for them.

Technical requirements Ensuring connection with the course database, support for filtering

and searching.

Interface Clear and intuitive list of courses with detailed information about

each course.

Acceptance criteria Completeness of information presentation, page loading speed,

ease of navigation.

Table 8. Courses page

Add course function

Functional Allows administrators to add new courses to the platform,

including course title, description, start and end dates, and mentor

information.

Technical requirements Integration with course database to save new entries. Checking the

uniqueness of course names to avoid duplication.

Interface Form for adding a course with fields for entering all the necessary

details. Drop-down lists should be provided for selecting mentors,

if necessary.

Acceptance criteria The course is successfully added to the system without technical

errors. All data is displayed correctly in the general list of courses.

Table 9. Add course function

39

Edit course function

Functional Allows administrators to change information about existing

courses, including title, description, dates, and associated mentors.

Technical requirements Database integration to update existing records. A function to

check changes for conflicts or errors is required.

Interface A course editing form that allows the administrator to change all

aspects of the course through convenient interface elements.

Acceptance criteria Changes must be correctly saved and displayed in the system. The

system should provide feedback on the successful saving of

changes.

Table 10. Edit course function

Delete course function

Functional Allows administrators to remove courses from the system.

Technical requirements Database integration for deleting course records. There must be

precautions to prevent accidental removal.

Interface Delete option in the course management interface with

confirmation of the action through a dialog box.

Acceptance criteria The course must be completely deleted from the system without

the possibility of recovery, with confirmation of deletion for the

administrator.

Table 11. Delete course function

40

Mentors page

Functional Providing information about mentors, their

qualifications, specializations and availability.

Technical requirements Communication with the personnel database,

ensuring the relevance and accuracy of the

data.

Interface Mentor profiles with detailed descriptions and

the possibility of direct communication.

Acceptance criteria Data relevance, ease of use, protection of

personal information.

Table 12. Mentors page

Add a mentor function

Functional Allows administrators to add new mentors to

the system, including their personal details,

qualifications and courses they teach.

Technical requirements Integration with the mentor database to create

new entries. Checking for uniqueness of data to

prevent duplication.

Interface A form for adding a mentor with fields for

entering data and the ability to select courses

that the mentor will teach.

Acceptance criteria The mentor is added to the system without

errors, and his data is displayed correctly in the

list of mentors.

Table 13. Add a mentor function

41

Edit mentor function

Functional Allows administrators to change information

about mentors, including their personal details,

qualifications and courses they teach.

Technical requirements Database integration to update existing records.

A function to check changes for conflicts or

errors is required.

Interface A form for editing mentor data, allowing the

administrator to change all the necessary

information through convenient interface

elements.

Acceptance criteria Changes must be correctly saved and displayed

in the system. The system should provide

feedback on the successful saving of changes.

Table 14. Edit mentor function

Delete mentor function

Functional Allows administrators to remove mentors from

the system.

Technical requirements Database integration to delete mentor records.

There must be precautions to prevent

accidental removal.

Interface Delete option in the mentor management

interface with confirmation of the action

through a dialog box.

Acceptance criteria The mentor must be completely removed from

the system, with confirmation of removal for

the administrator.

Table 15. Delete mentor function

42

Automatic calculation of mentors' salaries

Functional Automation of the process of calculating

salaries for mentors based on hours worked and

established tariffs, as well as on the basis of

additional hours of work entered.

Technical requirements Database integration to track mentors' time in

class and their rates.

Interface Panel for mentors and administrators to enter,

view and approve work data.

Acceptance criteria Accuracy of calculations, ease of use of the

interface, data security.

Table 16. Automatic calculation of mentors' salaries

The tables presented above describes the key specifications for various functions that are

important for managing and servicing an educational platform. Each function — from adding

and editing courses to managing mentor profiles — is carefully designed to ensure efficiency,

security, and ease of use. The specifications include a clear definition of functionality,

technical requirements, user interface, and acceptance criteria. These elements are critically

important to ensure that each function not only meets technical standards and business

requirements but also provides the best possible experience for end users—administrators,

mentors, and students. The described processes and standards help guarantee that all aspects

of the system work cohesively and effectively, supporting seamless and productive

educational activities.

43

3.4 Prototyping

Chapter delves into the prototyping phase to explore and refine ideas before the start of

full-scale development.

During the implementation of the approved procedure for forming functional requirements,

detailed mockups were developed using Figma software. These mockups significantly

facilitated the approval process of the platform's functionality from the client's side.

Subsequently, these same mockups were used in the project's technical implementation.

Registration and Login

The "EDUKOHT" registration and login page is presented as a simple and clean form,

allowing users to quickly log into the system or register (Figure 18). The "Log In" and

"Register" buttons are clearly highlighted, ensuring easy navigation. This interface element

is critical, as it represents the user's first interaction with the platform.

Figure 18. Registration wireframe

44

Dashboard

The "EDUKOHT" dashboard includes widgets for quick access to key features such as an

event calendar, access to courses, and other resources (Figure 19-20). Also featured on the

dashboard is a calendar with events. The "Add Event" button allows users to add events to

the calendar, which is an important function for planning the educational process.

Figure 19. Dashboard wireframe

Figure 20. “Add event” form wireframe

45

Course Management

The course page features cards for each course, allowing easy navigation through available

training programs (Figure 21-23). Individual course pages provide detailed information and

functionality for managing modules and lessons, ensuring flexibility in administering

course content.

Figure 21. Courses page wireframe

Figure 22. Course page wireframe

46

Figure 23. Course’s module page wireframe

Mentor Management

The mentor management page facilitates easy handling of information about instructors,

including the ability to add, edit, and delete mentors (Figure 24). This is crucial for

maintaining up-to-date information about instructors and their availability to students.

Figure 24. Mentor page wireframe

47

3.5 Technical Solution

As the author still managed to implement some of the functionalities, this chapter briefly

describes the technical solution.

3.5.1 Database

The project uses SQLite as the database management system, providing convenience and

simplicity in setup, making it ideal for development and testing. The configuration and

management of the database are carried out through the Sequelize ORM (Object-Relational

Mapping) tool, which allows developers to abstract database interactions using an object-

oriented approach.

3.5.2 Back-end

The server-side of this project handles request processing, data management, and interactions

between various services. It was developed using the Node.js platform and the Express.js

framework. Detailed descriptions of these platforms and the reasons for their use in the

project can be found in chapter 2.3.

The project consists of several key modules, each responsible for a specific functionality of

the system. All server logic is organized according to the principles of "Clean Code,"

ensuring clear structure and ease of maintenance.

Project Structure:

models - contains data models that define the structure of SQLite database tables and

methods for data processing.

sqlitedb - contains configuration files for managing the SQLite database and setting up the

local development environment.

jwtProvider.js - responsible for implementing authentication and security mechanisms

using JSON Web Tokens (JWT).

routes.js - contains all API endpoints for each service.

48

Server.js - the main server file, which is the entry point of the application and performs

server initialization.

.env - contains environment variables for application configuration.

The architecture is based on the "router-controller-model" pattern, which ensures a clear

separation of responsibilities between different system components. Each request passes

through a router that directs it to the appropriate controller, which handles the request logic

and interacts with the database through models.

3.5.3 Front-end

The front-end of our solution employs a modular approach, utilizing reusable components to

streamline development and ensure consistency across the user interface. These components,

such as login and registration buttons, are designed to be flexible and adaptable to various

parts of the application, enhancing the user experience and reducing the overall development

time.

For example, our login page features standardized buttons for user authentication processes,

which are not only visually consistent but also functionally uniform across different

scenarios. Detailed code snippets of these reusable components, demonstrating their

implementation and integration, can be found in Appendix 2, which showcases the login and

registration button example, and Appendix 3, which details the registration form structure.

By leveraging such reusable components, we ensure that the application maintains a cohesive

look and feel, while also supporting scalability and maintainability of the codebase.

49

3.5.4 Some technical aspects of the solution

Routing

Routing in the project is implemented in the `routes.js` file, which defines all API endpoints

and handles incoming requests by directing them to the appropriate controllers (Figure 25).

This allows for a clear structure of requests and their handling logic.

Figure 25. Session routing in `routes.js` file

Authentication

The `jwtProvider.js` module is responsible for implementing authentication and security

mechanisms using JSON Web Tokens (JWT). This ensures system security by verifying and

validating user sessions.

Main server file

The main server file, `server.js`, is the entry point of the application, where all components

are integrated and configured (Figure 26). Here, server initialization occurs, connecting all

necessary middleware for parsing JSON, managing sessions, and handling errors, ensuring

smooth server operation. This file configures the server, connects all necessary middleware,

and launches the server, listening for incoming requests on the specified port.

50

Figure 26. 'server.js' file example

3.6 Testing and Validation

This chapter details the methods and outcomes of testing processes.

To ensure the operational integrity and reliability of the software, manual testing was

extensively conducted. This involved structured walkthroughs and scenario-based testing to

simulate real-world usage, ensuring that all parts of the system functioned correctly under

varied conditions. Manual testing was pivotal in identifying and rectifying unforeseen

errors and usability issues.

51

Feedback was exclusively collected from the client during the testing phase. The client

conducted thorough reviews and provided insights that were instrumental in the final tuning

of the system. Feedback from client confirmed that the solution meets all the functional

requirements at this project stage.

52

4 Analysis of Results

This chapter presents a comprehensive analysis of the results obtained from the

implementation of the project. It evaluates the performance and effectiveness of the

technological solutions.

4.1 Technology and Tools

As detailed in Chapter 2.3 (Technology Description), the technology stack for the project

was chosen with the necessity of flexibility and scalability in mind. In this context, Node.js

was selected for the server side of the project due to its asynchronous, event-driven

architecture, which is ideal for developing scalable network applications. Currently, only a

portion of the server capabilities have been implemented, which allowed for the testing of

asynchronous data processing and basic functions under controlled conditions. This decision

provided the opportunity to dynamically add new features and services as the project

developed.

At the front end, the Vue.js framework combined with Bootstrap was chosen based on

recommendations outlined in the same chapter. Vue.js is noted for its incremental

adaptability and modularity, allowing it to be used in both small and large-scale projects. At

present, only the basic framework of the interface has been developed, which includes a few

basic user interactions. This allows for flexible responses to changes in requirements and user

feedback in the early stages of development. Bootstrap added ergonomics and ease of use to

the interface, which is critically important for gathering initial consumer feedback.

During the interface layout development process, Figma was used, as described in Chapter

2.3. This tool allowed for quick creation and modification of design in line with the project's

evolving needs. Working in Figma facilitated effective interaction between developers and

designers, which is especially important at a stage when the product has not yet been released

and significant revisions are forthcoming.

53

Thus, although the full implementation of the project and the product launch are not yet

complete, the choice of technologies, based on the analysis in Chapter 2.3, allows for the

efficient development of the project, quickly adapting to changing requirements and

responding to preliminary user feedback. This ensures the creation of a flexible and

scalable system capable of gradually integrating new features and improvements.

4.2 Project Workflow

Throughout the project, several conclusions were drawn that significantly impacted its

progression. Initially, the project did not progress as planned due to the absence of strict

deadlines and a structured workflow, hindering the effective completion of tasks. This lack

of structure not only delayed project milestones but also affected the overall scope of

functionalities that could be achieved.

To address these issues, we adopted Jira for task planning and resource allocation. Jira

facilitated the structuring of workflows and organization of tasks, which improved the

project's overall efficiency. Additionally, GitHub was utilized to monitor code changes

effectively, allowing for better version control and collaboration across the development

team.

Despite the technological tools in place, the project faced several challenges in terms of

feedback collection and requirements validation. The feedback process primarily involved

the client, and while this ensured that the project adhered to their specifications, it limited

broader input from potential end users. This was a significant drawback as user feedback is

crucial for tailoring solutions that genuinely meet user needs and enhance usability.

The development process was reviewed to determine if it was effectively aided by these

tools. While Jira and GitHub provided substantial assistance in managing tasks and code

respectively, the overall benefit to the project needed to be critically assessed. In retrospect,

while these tools helped in some areas, the absence of a more comprehensive feedback

system involving end users was a missed opportunity for gathering invaluable insights.

54

In conclusion, while the project met the basic requirements set forth by the client, the lack

of structured deadlines initially and limited user feedback were major challenges. Future

projects should consider these as areas for improvement, ensuring that deadlines are clearly

defined from the beginning and that a mechanism for extensive user feedback is integrated

into the project workflow to enhance the relevance and usability of the solution.

4.3 Requirements

The requirements for the developed system were formulated to address specific educational

and administrative needs while considering the feedback from stakeholders to optimize

functionality and user satisfaction.

Positive Aspects:

Improved Access to Information:

The system centralizes all educational materials and resources, making them easily

accessible to students in one location. This centralization aims to simplify the learning

process and enhance the interaction between students and teachers, thus contributing

positively to the educational environment.

Automation of Educational Processes:

One of the key requirements was the automation of routine educational processes. The

system integrates features such as course enrollment, performance tracking, and task

distribution. These automated processes are designed to minimize manual labor and reduce

the occurrence of errors, thereby increasing the efficiency of administrative procedures and

allowing educators more time to focus on teaching and student interaction.

Risks and Challenges:

Integration Process:

Integrating the new system into the existing infrastructure poses significant challenges.

There are concerns about potential technical errors that might hinder the platform's

55

functionality, especially during the initial period after launch. Mitigating these risks

requires careful planning and testing to ensure compatibility and smooth transition from old

systems.

Resistance to Change:

Another critical requirement was addressing the potential resistance from users accustomed

to the previous system. The change management strategy includes comprehensive training

sessions, user support, and gradual implementation phases to ease the transition. Ensuring

user adoption is crucial for the new system to be effective and for it to enhance the overall

educational experience.

The requirements for the new system were designed to leverage technological

advancements to enhance educational outcomes and administrative efficiency. However,

the potential risks associated with integration and user adoption are recognized as

significant factors that could impact the success of the implementation. These elements will

need to be managed carefully to ensure the system delivers its intended benefits without

disrupting the existing educational processes.

4.4 Implemented Functionalities

This chapter provides an overview of the key features that have been successfully

integrated into the system.

4.4.1 Welcome Page

The Welcome Page (Figure 27) serves as the entry point to the application and offers users

two main options: logging in and registering. The page design was implemented with

minimalism, centering the key controls for user convenience.

56

Figure 27. Welcome page

4.4.2 Login and Registration Pages

The Login Page (Figure 29) and Registration Page (Figure 28) are designed for authentication

and registration of new users, respectively. Both pages follow a unified style and design,

providing clean forms with a minimal set of fields: username and password. Vue.js and

Bootstrap have facilitated data form validation and handling.

Figure 28. Register page

57

Figure 29. Login page

4.4.3 Calendar

In the EDUKOHT project (Figure 30), the calendar is a key component of the user interface,

designed for managing and scheduling events. The calendar integration was accomplished

using the Schedule-X.dev library [15]. This library provides the flexibility to display the

calendar in various views: daily, weekly, and monthly, as illustrated in Figure 31.

Figure 30. Dashboard page with calendar

58

Figure 31. Calendar views

Adding a new event to the calendar (Figure 32) is critically important for the usability of the

application. The event addition form allows users to input details such as the title, date, start

and end times, and a description. After filling out the form and pressing the "Save" button,

the event is added to the calendar and becomes visible (Figure 33). Hovering over an event

in the calendar displays additional information about it. The form is developed using the

Vue.js framework, ensuring its integration with the calendar and the instant display of added

events.

The implementation of the calendar functionality and the event addition form using

Schedule-X and Vue.js significantly simplifies the scheduling and time management process

for users, enhancing the functionality and convenience of the application for daily use.

Figure 32. New event form

59

Figure 33. Event information

4.4.4 Mentor Page

As part of the project, a "Mentors" page was also implemented, which allows managing

information about mentors in the educational environment. This page includes the following

functionalities: viewing a list of mentors, adding, removing, and editing already saved

mentors.

Viewing the list of mentors (Figure 34) is presented on the "Mentors" page as a list of all

mentors with basic information about each, including their first name, last name, email, and

city. The interface provides buttons for editing and deleting each mentor and the ability to

add a new mentor.

Figure 34. Mentor page

60

Using the "Create New Mentor" form (Figure 35), users can enter details for a new mentor,

such as first name, last name, email, and city. After filling out the form, pressing the "Save"

button adds the mentor to the system, allowing them to participate in the educational process.

When selecting a mentor from the list on the "Mentors" page, the "Mentor Details" form

opens, where existing information can be changed. The form allows updating the mentor's

data, including their first name, last name, email, and city. Changes are saved in the system

upon pressing the "Save Changes" button (Figure 36).

The "Mentors" page interface also includes a function for removing a mentor. This is done

by pressing the "Delete" button next to each mentor in the list. The deletion of a mentor from

the system occurs with confirmation of the action to avoid accidental removal.

Figure 35. Create new mentor form

Figure 36. Mentor details page

61

4.5 Testing and Validation

Testing and validation of the technical solution were initially conducted manually, which

provided a basic level of assurance that the system met its design specifications. However,

to enhance the quality of the testing process, it is recommended to integrate automated

testing (unit tests) to ensure thorough coverage and identify defects more efficiently.

Additionally, mockups were used to validate the system with potential users to identify any

usability issues. Despite this, there remains a need for more robust user feedback to assess

whether the requirements truly address user problems. Implementing more comprehensive

user testing, including larger focus groups and usability tests, will help in obtaining more

detailed feedback, thereby ensuring that the system is not only functional but also user-

friendly and effective in solving the problems it is designed to address.

This dual approach of integrating both automated and manual testing, along with extensive

user involvement, will significantly enhance the reliability and usability of the system,

providing a more accurate assessment of its performance in real-world scenarios.

4.6 Further Work

Based on the analysis, it can be assumed that the implementation of the proposed solution

could bring significant improvements to the learning process at EDUKOHT school.

However, to minimize potential risks, the following is recommended:

1. Conducting Testing: Organize system testing at all stages of development to identify

and rectify technical defects early on.

2. Training and Adaptation Programs: Develop and implement user support programs

to facilitate the transition to the new system.

3. Regular Updates and Testing: Implement a schedule for regular updates and

thorough testing to ensure the platform remains functional and user-friendly.

4. User Feedback Integration: Collect and integrate feedback from users to

continuously improve the platform and meet their needs more effectively.

62

Summary

The goal of the project was to propose a solution for EDUKOHT programming school

intranet.

The expected results were :

1. New intranet system requirements

2. Mock-ups

3. Some implemented features

During the work, the following results were achieved. Firstly, the functional requirements

were formulated based on the analysis of previously used platforms. A use case diagram was

developed, which included three main roles: administrator, mentor, and client. It is important

to note that the project is still under development, and the requirements may change or be

supplemented in the future.

Secondly, user interface mockups were created in Figma. A dashboard mockup with a

calendar was created, as well as mockups for the course page, mentor page, and forms for

adding events and mentors.

Thirdly, some components defined earlier as functional requirements were partially

implemented. The author developed the functionality to register and log in to the platform

using a username and password. Additionally, a calendar was implemented, allowing the

addition and viewing of events. A mentor page was developed with a table containing

information about each mentor, such as first name, last name, email, and the city they work

in. The ability to view detailed information about a mentor on a separate page, where data

can also be edited, was implemented. The functionalities to add new mentors and delete

existing mentors were also realized.

Author described future work and made suggestions on the project further implementation.

By implementing those suggestions, the platform can evolve to better meet its objectives and

provide enhanced value to its users.

63

References

[1] “EDUKOHT” official website [Online material]. Available: https://www.edukoht.ee/. [Used:

06.03.2024].

[2] “What is an LMS? Learning management systems explained”, 31.012022 [Online material].

Available: https://moodle.com/news/what-is-an-lms-learning-management-systems-explained/.

[Used: 06.03.2024].

[3] Figma Design [Online material]. Available: https://www.figma.com/design/.[Used:06.03.2024]

[4] Vue.js, “The Progressive JavaScript Framework” [Online material]. Available: https://vuejs.org/

[Used: 06.03.2024]

[5] Node.js, “Run JavaScript Everywhere” [Online material]. Available: https://nodejs.org/en

[Used:14.03.2024]

[6] git Documentation [Online material]. Available: https://git-scm.com/doc . [Used:14.03.2024]

[7] GitHub,” GitHub Docs” [Online material]. Available: https://docs.github.com/en .

[Used:14.03.2024]

[8] Jira, “Welcome to Jira” [Online material]. Available:

https://www.atlassian.com/software/jira/guides/getting-started/introduction [Used: 10.04.2024]

[9] “Getting started with WebStorm” 11.02.2024 [Online material]. Available:

https://www.jetbrains.com/help/webstorm/getting-started-with-webstorm.html

[Used:20.04.2024]

[10] “IntelliJ IDEA overview”, 19.04.2024 [Online material]. Available:

https://www.jetbrains.com/help/idea/discover-intellij-idea.html [Used:20.04.2024]

[11] Express.js [Online material]. Available: https://expressjs.com/ [Used: 20.04.2024]

[12] “About SQLite”, 10.10.2023 [Online material]. Available: https://www.sqlite.org/about.html

[Used: 20.04.2024]

[13] “Get started with Bootstrap” [Online material]. Available:

https://getbootstrap.com/docs/5.3/getting-started/introduction/ [Used:17.05.2024]

[14]”What is Use Case Diagram” [Online material]. Available: https://www.visual-

paradigm.com/guide/uml-unified-modeling-language/what-is-use-case-diagram/ [Used:17.05.2024]

[15] shedule-x [Online material]. Available: https://schedule-x.dev/docs/calendar

[Used:17.05.2024]

https://www.edukoht.ee/
https://moodle.com/news/what-is-an-lms-learning-management-systems-explained/
https://www.figma.com/design/
https://vuejs.org/
https://nodejs.org/en
https://git-scm.com/doc
https://docs.github.com/en
https://www.atlassian.com/software/jira/guides/getting-started/introduction
https://www.jetbrains.com/help/webstorm/getting-started-with-webstorm.html
https://www.jetbrains.com/help/idea/discover-intellij-idea.html
https://expressjs.com/
https://www.sqlite.org/about.html
https://getbootstrap.com/docs/5.3/getting-started/introduction/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-use-case-diagram/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-use-case-diagram/
https://schedule-x.dev/docs/calendar

64

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Anna Ivanova

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my thesis

“Solution Proposal for the EDUKOHT Programming School Intranet”, supervised by

Bahdan Yanovich

1.1. to be reproduced for the purposes of preservation and electronic publication of the

graduation thesis, incl. to be entered in the digital collection of the library of Tallinn

University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be entered

in the digital collection of the library of Tallinn University of Technology until

expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-exclusive

licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act or

rights arising from other legislation.

23.05.2024

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation thesis that

has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis is based on the

joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her graduation thesis consent to

reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive license shall not be valid for the

period.

65

Appendix 2 - Login and registration buttons example

<template>

 <div
 class="home d-flex flex-column flex-grow-1 align-items-center

justify-content-center"

 >

 <h1 class="text-center">Welcome to our intranet!</h1>

 <p>Please login or register to reach your dashboard.</p>

 <div class="buttons d-flex flex-row">

 <router-link class="router-link-button" to="/login">

 <button class="btn btn-success btn-lg">Login</button>

 </router-link>

 <router-link class="router-link-button" to="/register">

 <button class="btn btn-primary btn-lg">Register</button>

 </router-link>

 </div>

 </div>

</template>

66

Appendix 3 - Registration form example

<template>

 <div class="register-form">

 <h2>Register</h2>

 <form @submit.prevent="register">
 <div>

 <label for="username">Username:</label>

 <input type="text" id="username" v-model="username" required />

 </div>

 <div>

 <label for="password">Password:</label>
 <input type="password" id="password" v-model="password" required

/>

 </div>

 <button type="submit">Register</button>

 </form>

 </div>
</template>

<script>

import { ref } from 'vue';

import { useAuthStore } from "@/store/auth.store";

export default {

 setup() {

 const authStore = useAuthStore();

 const username = ref('');

 const password = ref('');

 const register = async () => {
 try {

 await authStore.register({ username: username.value, password:

password.value });

 } catch (error) {

 console.error('Registration failed', error);

 }

 };

 return {

 username,

 password,

 register,
 };

 }

}

</script>

