

Tallinn 2018

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Jerome Angel John Rozario 184634IASM

HYBRID BIST BASED ON COMBINING OF

PSEUDO-RANDOM AND DETERMINISTIC

PATTERNS

 Master’s thesis

 Supervisor: Prof. Raimund-Johannes Ubar

 D.Sc. Institute of Computer Engineering, Tallinn University

 of Technology

 Professor, Chair of Computer systems Test and Verification

2

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature, and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Jerome Angel John Rozario

13.05.2020

3

Abstract

A new method to design for testability and evaluation of digital circuits using hybrid

Built-In-Self-Test (BIST) is proposed. It focuses on developing, optimizing, and

evaluating the hybrid BIST solutions for the ISCAS’85 benchmark circuits. Although

many approaches were proposed for the optimization of the hybrid BIST, however, they

resulted in a reduced BIST cost but not with the reduced BIST design time cost. The

proposed new method focuses on both the minimum BIST cost and the reduced BIST

design time, targeting also the high scalability of the optimization method. The

experimental results demonstrated the advantage of the proposed novel algorithm based

approach compared with the known labor-intensive method. The results of this research

are submitted as a research paper to the 30th Annual Conference of the European

Association for Education in Electrical and Information Engineering (EAEEIA): Elmet

Orasson, Jerome Angel John Rozario, Margus Kruus, Raimund Ubar in the topic

Interdisciplinary Research Lab for Project-Based Learning of Hardware and Software

Design for Computer Engineering Students.

4

Annotatsioon

Optimeeritud hübriidtestsüsteem digitaalskeemide

isetestimiseks

Käesolevas uurimistöös on välja töötatud, implementeeritud ja katsetatud uus meetod

digitaalskeemide isetestimiseks hübriidsel testide genereerimise põhimõttel, kasutades

nii juhuslikke kui ka deterministlikke stiimuleid testimiseks. Töö fookuseks on

hübriidtest-süsteemi disainiprotsessi ajaline minimeerimine. Kui senised analoogsed

uuringud on pühendatud üksnes testsüsteemi optimeeritud lahenduse leidmisele, siis

käesoleva töö eesmärgiks on ka optimaalse lahendi leidmiseks vajaliku aja

vähendamine. Eksperimentaalsed uuringud näitasid, et uudne optimeerimisalgoritm on

hästi skaleeruv ja tagab ligilähedaselt samad optimeerimistulemused, mis senised

meetodid, mis aga on palju töömahukamad. Käesoleva töö tulemused on vormistatud ka

publikatsioonina, mis on esitatud konverentsile „30th Annual Conference of the

European Association for Education in Electrical and Information Engineering

(EAEEIE)“ artiklina Elmet Orasson, Jerome Angel John Rozario, Margus Kruus,

Raimund Ubar. “Interdisciplinary Research Lab for Project-Based Learning of

Hardware and Software Design for Computer Engineering Students”.

5

Acknowledgments

Firstly, I would like to thank my almighty God for His unconditional love, grace, and

guidance, which encouraged me to complete this thesis.

Secondly, I would like to thank my supervisor, Prof. Raimund-Johanned Ubar, for his

full guidance and support, even in this difficult situation throughout this research. It was

a great pleasure working with you. I would also like to thank Prof. Elmet Orasson for

his guidance in practical work.

To my lovable mother, who had always stood by me, encouraged me and supported me

throughout my studies. Everything I am now is because of her prayers. To my dad, who

has been my support system always. Thanks, both of you.

I’m eternally grateful to my uncle Sekar, who always believed in me when no one else

does. Thank you for your valuable advice and guidance that you are giving to me

always.

A special thanks to my lovely sisters' Mercy, Marilyn, and Mira, who always had there

for me and encouraged me whenever I feel down. I must say a very big thank you to

Shanthi chitha, Rani chitha, Sheela chitha, and to my entire family and friends, who

prayed for me and checked on me and encouraged me throughout this journey.

Finally, none of this would have been possible without my brother Vinod. My deep and

sincere thanks to him.

God bless you all.

6

List of abbreviations and terms

BIST Built-In-Self-Test

CUT Circuit Under Test

ATPG

FC

VLSI

ATG

IC

TPG

PRPG

MISR

Automated Test Pattern Generation

Fault Coverage

Very Large Scale Integration Circuit

Automated Test Generation

Integrated Circuit

Test Pattern Generation

Pseudorandom Pattern Generator

Multiple Input Signature Analyzer

7

 Table of Contents

Author’s declaration of originality .. 2

Abstract .. 3

Annotatsioon ... 4

Acknowledgments .. 5

List of abbreviations and terms ... 6

List of figures.. 9

List of tables ... 10

1 Introduction ... 11

1.1 Background and Problem .. 11

1.2 Description of Task Solved.. 12

1.3 Thesis Structure ... 13

2 Overview of digital testing ... 14

2.1 Significance of Testing .. 14

2.2 Test Generation ... 15

2.2.1 Exhaustive testing ... 15

2.2.2 Functional testing ... 15

2.2.3 Structural testing ... 16

2.3 Fault Models ... 16

2.3.1 Stuck-At Faults ... 17

2.4 Levels of Abstractions in VLSI Testing ... 18

2.4.1 Register-Transfer Level and Behavioral Level .. 18

2.4.2 Gate Level .. 18

2.4.3 Switch Level... 18

2.4.4 Physical Level .. 19

2.5 Automatic Test Pattern Generation (ATPG) .. 19

2.5.1 Backtracking .. 19

2.6 Fault Simulation .. 21

2.6.1 Serial Fault simulation .. 21

2.6.2 Parallel fault simulation .. 21

2.6.3 Deductive fault simulation .. 23

2.6.4 Concurrent fault simulation .. 24

8

2.6.5 Differential fault simulation .. 24

2.7 Digital Circuit Testing ... 25

2.8 Analog and Mixed-signal circuit testing .. 25

2.9 Conclusion .. 26

3 Built-In-Self-Test ... 27

3.1 BIST Architecture ... 28

3.2 Built-In-Self-Test techniques ... 29

3.2.1 On-line BIST .. 29

3.2.2 Off-line BIST ... 29

3.3 BIST: Test Generation methods ... 30

3.3.1 Exhaustive testing ... 30

3.3.2 Pseudo-exhaustive testing ... 30

3.4 Pseudorandom Pattern Generation ... 30

3.4.1 Standard LFSR ... 31

3.4.2 Modular LFSR.. 31

3.5 BIST fault coverage... 32

3.6 Conclusion .. 32

4 Development of a new algorithm .. 33

4.1 The architecture of the hybrid BIST .. 33

4.2 Cost factors of Hybrid BIST .. 35

4.3 Optimization algorithm ... 38

4.4 Description of the idea of the new algorithm ... 41

4.5 Description of the algorithm .. 43

4.6 Conclusion .. 46

5 Experimental research of the developed method ... 47

5.1 Experimental environment ... 47

5.2 Experimental results .. 49

6 Conclusion ... 52

References .. 53

Appendix 1 – Program Description and Manual .. 55

Appendix 2 – Source ... 56

9

List of figures

Figure 1 Testing process ... 15

Figure 2 Single stuck-at-fault .. 17

Figure 3 backtracking.. 20

Figure 4 Parallel Fault Simulation ... 22

Figure 5 Deductive fault simulation .. 23

Figure 6 Basic BIST architecture .. 28

Figure 7 Standard LFSR .. 31

Figure 8 Modular LFSR .. 31

Figure 9 Hardware architecture of hybrid BIST ... 34

Figure 10 Total cost calculation of hybrid BIST .. 36

Figure 11 ATPG and fault-table based approach ... 39

Figure 12 Cost functions for Hybrid BIST ... 41

Figure 13 Deterministic test length estimation ... 42

Figure 14 Random pattern generation in Turbo Tester. ... 48

10

List of tables

Table 1 Pseudorandom test results... 37

Table 2 ATPG results .. 38

Table 3 Results of the exact method and new method for c880 45

Table 4 Comparison of the new Hybrid BIST cost minimization method vs. exact

method .. 49

Table 5 Comparison of the new Hybrid BIST cost minimization method vs. exact

method .. 50

Table 6 Starting point to the Tabu search .. 51

11

1 Introduction

The thesis focuses on the new method for the optimization of hybrid BIST by

combining the pseudorandom test patterns and the deterministic test patterns to perform

the test with a minimum cost of both time, memory, and without losing in test quality. A

novel algorithm was developed and experimented with the ISCAS’85 benchmark

circuits.

This chapter discusses the background and problem, followed by the goal of the thesis

and, finally, the overview of the thesis structure.

1.1 Background and Problem

The exponential growth in recent years has brought many new prospects in VLSI,

mainly in the area of integrated circuits design and manufacturing. Nowadays,

predesigned complex functional blocks are used in the system for designing. This is

called System-on-Chip (Soc) approach, and this leads to a shorter time to market and

with a reduced cost. Hence this SoC approach is very inviting from the designer’s

viewpoint. However, testing of SoC has several problems due to the presence of

submicron chips because the complexity is increased as well as another big challenge is

due to the protection of intellectual property [1].

Several test approaches were proposed, but those approaches are slow, expensive, and

inaccurate. Therefore, Built-In-Self-Test (BIST) is another testing approach where the

system is allowed to test itself, and this test approach is highly reliable and reduces time

and cost. This BIST needs linear feedback shift registers (LFSR); however, the LFSR

does not provide 100% fault coverage, and it takes a longer time to achieve 100% fault

coverage. Therefore, a hybrid BIST approach is used to improve the fault coverage. In

this approach, pre-computed test patterns are stored in the memory, which is called

deterministic test patterns, and it is used to achieve maximum fault coverage.

12

The main concern of this hybrid BIST approach is to achieve maximum fault coverage

by combining the pseudorandom test vectors (generated by LFSR) with the

deterministic test patterns. The main objective is to find an optimal balance between the

pseudorandom and stored test patterns along with the minimum cost of time and

memory, and this is the main contribution to this thesis.

1.2 Description of Task Solved

Two algorithms had been proposed already they are ATPG-based approach and Fault-

table based approach [2]. These approaches were resulted in reducing test costs, but it is

time-consuming for complex circuits. In order to reduce cost as well as time, this thesis

presents the following goals:

• Develop a new algorithm for the optimization of hybrid BIST for the ISCAS’85

benchmark circuits, which will result in reduced cost and a huge gain in time for

even complex circuits.

• The second result is to propose a starting point to the Tabu search as close as

possible to the exact optimum

13

1.3 Thesis Structure

The thesis is organized as follows.

In chapter 2, an overview of digital testing is given, and the importance of digital

testing, types involved in testing a circuit, and several other things related to digital

testing are discussed.

Thereafter, the concepts of Built-In-Self-Test (BIST) and how the testing problems can

be overcome by using a BIST strategy are discussed in chapter 3.

In chapter 4, the development of a new method for the optimization of hybrid BIST has

explained as well as the cost factors of hybrid BIST and already proposed optimization

algorithms, are discussed. The implementation of the new method is discussed in the

next chapter, and thereafter the experimental results are discussed in chapter 6.

Finally, the summary and conclusion are discussed in chapter 7.

14

2 Overview of digital testing

This chapter gives an overview of digital testing. Testing is one of the vital processes

for producing a fault-free device. In this chapter, we will discuss why testing is essential

for electronic devices and how testing is performed and stages involved during the

process of testing. In the test generation section, types of testing are explained, and why

structural testing is more practical compared with other types of testing is also

discussed. The stuck-at-fault model is explained with an example, and various levels of

abstraction in VLSI testing, types of fault simulation, and finally, digital circuit testing,

analog, and mixed-signal testing are discussed in this chapter.

2.1 Significance of Testing

In today’s electronic devices, many millions of transistors used, and this shows the

steady decrease in dimensions, which referred to as the feature size of the transistors.

When the feature size reduces, simultaneously operating frequency, clock speed

increases. Also, there is a high chance that a manufacturing defect in the Integrated Chip

may result in a faulty chip. Even a tiny defect in a chip may ruin the whole device; that

is why testing the components at each stage of the manufacturing process is very

important. During the testing process, when the cause of defects is found, and faults are

met, there will be an improvement in the production at every stage. There is a general

agreement with the rule of ten, which says that the cost of detecting a faulty IC

increases by order of magnitude as we move through each stage of manufacturing, from

the device level to the board level, and finally to system operation in the field [3].

Testing is done by applying the input test stimuli to the inputs of the circuit under test

(CUT) while analyzing the output responses [3], as shown in figure 1. Those circuits

which give the correct output responses for all the inputs applies then it is a fault-free

circuit. Testing carried out at the various stages in the lifecycle of a VLSI device. The

lifecycle of the VLSI device consists of various stages, such as the VLSI development

process, the electronic system manufacturing process, and system-level operation.

15

Input

Test

Stimuli

 Figure 1 Testing process

The VLSI development process involves testing at each stage of the process. The

process involves design, fabrication, packaging, and quality assurance. At the design

stage, designers are responsible for analyzing the circuit which satisfies the design

specification and design verification. The design verification is the form of testing, and

once verified, the VLSI design goes for fabrication. The very first testing is done during

the manufacturing process to test the IC is fabricated on the wafer to find which device

is defective. The IC’s, which pass the wafer-level testing, are extracted and packaged.

2.2 Test Generation

To test a circuit, input patterns are applied to the circuit under test (CUT), and the

output is compared with the fault-free circuit [3]. Each input pattern in the circuit is

called a test vector. The main goal of test generation is to find an excellent structured set

of test vectors that can detect all the faults in the circuit. In order to test one full circuit,

more test vectors are needed, but the number of test vectors is not precisely known. For

that, the following testing is performed.

2.2.1 Exhaustive testing

If the Circuit Under Test (CUT) is an n-input combinational logic circuit [3], then all 2n

possible input test patterns are applied for testing stuck-at-faults. This is called

Exhaustive testing. If the circuit passes the exhaustive testing, then it is assumed that the

circuit has no functional faults. This testing is not practical when n is significant [3] .

2.2.2 Functional testing

Like Exhaustive testing, all the 2n possible input test patterns are applied to the n-input

combinational logic circuit in functional testing where each value in the truth table for

Circuit

Under

Test

(CUT)

Output

Response

t

Input1

Inputn

Output1

Outputn

Pass/Fail

16

the combinational logic circuit is tested to check whether it produces the correct [3]

output response.

2.2.3 Structural testing

Structural testing is more practical when compared with other types of testing because

specific test patterns are selected based on the circuit structural information and a set of

fault models. The main advantage of this structural testing is it saves time, and the test

efficiency is improved because of the decrease in the number of test patterns as the test

vectors targets only specific faults that would result from defects in the manufacturing

circuit. The use of fault models provides a quantitative measure of the fault-detection

capabilities of a given set of test vectors for the desired fault model. This type of

measure is called fault coverage and is defined as [3]

Because of undetectable faults, it is impossible to get 100 percent fault coverage. So, the

fault coverage can be modified further as fault detection efficiency which is defined as

𝐹𝑎𝑢𝑙𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
Number of detected faults

Total number of faults−number of undetectable faults

2.3 Fault Models

Fault models are a must for generating and evaluating a set of test vectors. A fault

model should accurately give back the behavior of defects, and it should be systematic

in terms of fault simulation and test generation. However, unfortunately, not even a

single fault model could accurately reflect the behavior of defects. So the combination

of different models is used in the generation and evaluation of test vectors for VLSI

devices.

A single fault assumption is given by

 Number of single faults in the circuit = k × n

Where k is the different types of faults, and n is the possible fault sites in a given circuit.

𝐹𝑎𝑢𝑙𝑡 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
Number of detected faults

Total number of faults

17

The multiple fault model is defined as

 Number of multiple faults in the circuit = (k +1)n – 1

In the multiple fault model, sometimes the circuit could be fault-free, or it may have a

fault, so the “-1” represents the fault-free circuit.

2.3.1 Stuck-At Faults

A stuck-at-fault affects the state of logic gates on lines in the logical circuit, where it

includes all the primary inputs, primary outputs, internal gate inputs, and outputs as well

as fanout branches. When the logic line is stuck at either a constant logic value 0 or 1,

then it is called stuck-at-0 and stuck-at-1, respectively.

Let us consider a pure single stuck-at-fault example circuit in figure 2

 Figure 2 Single stuck-at-fault

From the above logical circuit, we can able to see that there is only one line that is a

faulty response. So, if the output is ‘0’, then it is a faulty response when the output is

‘1’, then it is a fault-free response.

Output

A

B

C

D

 Stuck-at-0

0

0

1

1

1

0

18

2.4 Levels of Abstractions in VLSI Testing

The levels of abstraction include behavioral, register-transfer, logical, and physical

levels. In this section, we will discuss the test generation and the use of fault models at

each level of abstraction and testing methods.

2.4.1 Register-Transfer Level and Behavioral Level

The register-transfer level contains a netlist of gates, and the stuck-at-faults at this level

are the most famous fault models in digital testing [4]. The ATPG tools cannot handle

designs exerting blocks because the implementation details are not known. Several

approaches are proposed for the test pattern generation at the RTL, but most of the

approaches lack general connectivity. Some experimental results had shown that the

fault coverage achieved at the RTL could be close to the fault coverage achieved at the

gate level, and also stuck-at-fault coverage at the RTL will not be as high as the gate

level.

2.4.2 Gate Level

At the gate-level, the stuck-at-fault model can be applied efficiently because many

ATPG and fault simulation tools are available. Not only a stuck-at-fault model but also

delay fault models, and delay testing is also based on the gate-level description. Since

the gate-level model lies between the RTL and physical level, it has the advantage of

functionality and tractability. For deep submicron designs, test development at the gate-

level is not widely used.

2.4.3 Switch Level

In the switch-level simulation, the whole circuit is cast as an interlink of MOS

transistors, which are referred to as ideal switches. The logic behavior of MOS circuits

that have no fundamental logic gate structure can be simulated by the switch-level

simulation. For both ATPG and fault simulation, the switch-level description is more

complicated than the gate-level description. The switch-level is used to simulate stuck-

at-short and stuck-open faults, but fault-effect propagation steps are too complicated,

and therefore, usage of this level has been limited in the industry [4].

19

2.4.4 Physical Level

The physical level of abstraction is crucial for VLSI testing [3]. At this level, it

provides actual layout and routing information for the fabricated device, and therefore

the most precise information for delay faults, crosstalk effects, and bridging faults is

obtained. A distributed resistance-inductance-capacitance (RLC) model is used as a

basis to characterize electrical properties of interconnections in the deep submicron IC

chips. This is used to analyze and test for resolving crosstalk problems. The solution for

bridging fault is to take out the capacitance between the wires, and this gives the

accurate determination of those wires which are adjacent and, therefore, likely to

undergo bridging faults. Hence the fault sites with the highest capacitance can be

selected for test generation and evaluation.

2.5 Automatic Test Pattern Generation (ATPG)

ATPG is used to find an input or test sequence when applied to a digital circuit, which

automatic test equipment to distinguish between the fault-free circuit behavior and

faulty circuit behavior that is caused by defects. Many ATPG algorithms and tools have

been proposed, and one of the approaches (a common approach) is to begin from a

random set of test patterns. Then fault simulation will determine the detected faults, and

to this, additional test vectors are generated to obtain the desired fault coverage.

One of the significant problems in the sizeable sequential circuit, when compared with

the combinational circuit, is to identify the undetectable faults because of thousands of

gates in the circuit, and also it is difficult to reach 100% fault coverage.

In a naive ATPG algorithm [3], ATPG has to make some decision where it has to select

some input vector with primary input #i, which is to set to a specific logic value, which

will lead to a solution. In order to make a decision, a decision tree method is followed.

2.5.1 Backtracking

In the decision tree method, when the path leads to no solution, then it should not

continue with the same path. Instead, it should go back to the earlier point or node, and

it should re-decide the previous decision. If the other branch in the decision tree has not

been explored before and if there are only two choices for a decision variable, then

20

some of the previous decision should be reversed. This type of reversal in the decision is

called backtracks.

Consider a decision tree in Figure 2.3 as an example [3].

In this example, the decision made so far is a = 0, c = 1, d = 0, and suppose if this

causes the conflict in detecting the target fault then, the most recently made decision

should be reversed. As per this example, the most recently made decision is d = 0, and

this should be reversed as d = 1, and all the resulted values from d = 0 should be

undone. Then the search continues as a = 0, c = 1, d = 1. If this decision also causes

conflict, then this path is actually could not lead to any solution that could the target

vector. The decision on d is finally assigned as a ‘don’t care’ value. The backtracking

mechanism should be continued by changing the previous decision or searching the

portion of the search a = 0, c = 0, and if there is no previous decision, then the ATPG

concludes that the target fault is undetectable.

 Figure 3 backtracking

a

c

 d

0

1

Conflict

0 1

 backtrack

21

2.6 Fault Simulation

Fault simulation is the demanding task because of the complexity that is the circuit with

all the faults that must be simulated. While simulating, the amount of computation time

is approximately proportional to the number of faults, circuit size, number of test

patterns, or test vectors. This becomes infeasible for larger circuits because the

computation time will be more. In the following section, we discuss the techniques of

fault simulation.

2.6.1 Serial Fault simulation

This is the most straightforward algorithm, among other simulations [4]. Fault-free

circuits are simulated first, and the primary output values (true responses) are saved, and

the next faulty circuits are simulated. AS the simulation continues, the output responses

of the faulty circuit are compared with the results of the saved true responses. When the

comparison indicates the detection of target faults, then the simulation of the faulty

circuit is stopped soon.

A serial fault simulator can simulate any kind of fault that is introduces in the circuit

description. It also simulates bridging faults, dealy faults, and analog faults apart from

stuck-at-short and stuck-at-open types [4].

2.6.2 Parallel fault simulation

The idea of this type of fault simulation is to use the bit-parallelism of logical operations

ina digital computer [4]. The circuit consists of only logic gates, and so the signals are

assumed to have only binary 0 and 1 values, and all the gates have the same delay.

Under these conditions, the parallel fault simulation is most effective. On considering a

32-bit machine word, an integer consists of a 32-bit binary vector. The AND or OR

logical operation implying two words performs simultaneous AND or OR operation on

all pairs of bits. This makes the simultaneous simulation of 32 circuits with the same

connectivity but with different signal values.

Let us consider an example [4] of parallel fault simulation in Figure 2.4

Figure 2.4 shows that the circuit is being simulated for two faults, which are c stuck-at-0

and f stuck-at-1. As you can see from the circuit that the computer has a three-bit word.

The left-most bit represents the signal value in the fault-free circuit, bit 1, which is the

22

middle bit represents c stuck-at-0 fault and the right-most bit, which bit 2 represents f

stuck-at-1. When we apply a vector a =1 and b = 1, the line a and the stem b are not

affected by any fault, and these will have the same value for all the three circuits.

 Figure 4 Parallel Fault Simulation

The fault c is the first faulty circuit, and therefore it affects the middle bit. In the first

circuit when a and c performs AND operation, we get the 3-bit word for the line e. The

second circuit with the NOT gate which has an input 111 and the line f is the inversion

of d where the right-most bit is affected by s-a-1 then the word is given by 001. Finally,

the output g is obtained by bit-by-bit OR of e and f. Therefore, the output g is 101.

From the result, we can able to see that the output of the circuit c s-a-0 is 101, and the

output of the fault-free circuit is 111, it clearly differs. Hence the fault is detected.

a

1 1 1

b

bit 0: Fault-free circuit

bit 1: Circuit with c s-a-0

1 0 1

1 0 1

0 0 1

1 0 1

0 0 0

1 1 1

 bit 2: Circuit with f s-a-1

c
g

d

f s-a-1

e

s-a-0

23

2.6.3 Deductive fault simulation

Deductive fault simulation is a very different approach from other simulation techniques

because it is based on logical reasoning. This type of simulation can be very fast

because only fault-free simulations have to be performed. Let us consider an example

[3] figure 2.5

 Figure 5 Deductive fault simulation

From figure 5, Lx is the fault list, and it is related to a signal x, and also, it is shown that

the fault list of each signal concerning the test pattern P1. For the primary input A, the

fault list is LA, and the fault is A/1, not A/0 because the value of A remains correct

when the fault A/0 is present. In the same way, the fault lists are derived for the inputs B

and C. The method of obtaining the fault list of a gate output from the gate inputs is

called fault list propagation. Thus, all the faults at the gate inputs are propagated to the

gate output. From figure 2.5, we can conclude that the test pattern P1 directed seven

faults in Lk. Therefore, we can see that the advantage of deductive fault simulation is

that all the faults detected by the test pattern are acquired in one fault list propagation.

In practice, faults are collapsed before the simulation, but only the collapsed faults are

considered for the fault list propagation.

LA=(A/1)

(A/1, H/1)

1 B

C

A
0

0

H

K

1
L 1

E F J

Lc = (C/1)

(B/0, E/0, L/0)

0

G2

G4

G3

G1

1

0

(A/1, H/1, B/0,
E/0, F/0, J/0, K/0)

1

(B/0, E/0)

(B/o, E/0, F/0)

(B/0, E/0, F/0, J/1)

La =(B/0)

24

2.6.4 Concurrent fault simulation

The fault-free circuit and faulty circuit differ in a very small part, so the concurrent fault

simulation only makes use of this fact and simulates only the differential parts of the

whole circuit. Hence the fault-free circuits and faulty circuits are simulated altogether.

In this type of simulation, every gate has a concurrent fault list which comprises of a set

of bad gates. Each bad gate contains a fault index and the related gate I/O values in the

presence of the corresponding fault [3]. The concurrent fault list of gate 1 contains local

faults of gate 1. The local faults of gate 1 are faults on the inputs or outputs of gate 1.

While the simulation proceeds, the concurrent fault simulation contains local faults, as

well as the faults propagated from the previous stages. Local faults in gate 1 remain in

the fault list until they are detected.

2.6.5 Differential fault simulation

The concurrent fault simulation has a memory problem because the size of the fault list

changes at run time while the single fault propagation technique builds the state of the

faulty circuit from the fault-free circuit. However, both of the techniques are not good

for sequential fault simulation. Differential fault simulation combines the advantages of

both the techniques in such a way to simulate only the difference between the faulty

circuit and previously simulated one.

In the differential fault simulation, for every test pattern, a fault-free simulation is

accomplished first, and then the faulty circuits simulations are performed. As mentioned

before, the states of every circuit are reinstated from the last simulation. If there is a

difference in the outputs of faulty circuits and the good circuits, then the faults are

detected and dropped. Every time the state difference is stored for every circuit. Also,

the state difference of dropped faults should be collected in the state differences of the

next undetected fault. This is repeated until there are no test patterns or no undetected

faults are left.

25

2.7 Digital Circuit Testing

The digital circuit testing began with the stuck-at-fault model and then followed by the

bridging fault model, transistor fault model, and delay fault model. Digital testing uses

the combination of tests developed for different fault models because the tests for fault

model cannot guarantee the detection of all defects.

Digital testing is improved by quiescent power supply current (IDDQ) and transistor

power supply current (IDDT). The leakage of current in the CMOS circuit under a

quiescent state is very small. When a fault occurs, it causes the conducting path from

power to the ground, and so it might draw an excessive supply current. However, IDDQ

testing is ineffective for larger devices because it consists of millions of transistors, and

there will be more leakage current in the circuit. It is similar to the IDDT testing

approach. As the number of transistors in the VLSI devices continues to grow, both IDDQ

and IDDT testing suffer.

2.8 Analog and Mixed-signal circuit testing

Analog circuits are used in various applications, and mixed-signal circuits include

analog circuitry and digital circuitry. Analog circuit testing involves two categories:

Specification-oriented testing and waveform-oriented testing. The specification-oriented

testing approach tests each and every specification in the datasheet to regulate the

pass/failure of the circuit. It undergoes two types of tests which are bench test and the

final test. The bench test is done in the laboratory for the characterization purpose while

the final test is done in the industry before delivering it to the customers.

The waveform-oriented testing measures selected or particular parameters of response

waveforms to check the pass/failure of the circuit under test (CUT). The test points must

be chosen carefully from the waveform-oriented testing. The correlation of the test

points along with the specifications is essential for the improvement of test yield and in

reducing the defect level. Mixed-signal circuit testing begins by converting Analog to

digital and digital to analog. After that testing method is applied, it involves testing like

time-domain testing, code-transition level testing, gains, and offset testing.

26

2.9 Conclusion

This chapter provides an overview of VLSI testing. The significance and challenges of

VLSI testing at various levels were discussed. Why do we need VLSI testing? How

difficult is VLSI testing? Although many of these points were briefly reviewed in this

chapter. However, the new and continuing testing challenges and advancements in

technology need testing like Built-In-Self-Test (BIST), where the system tests on itself,

which will result in reduced testing time, test cost, power consumption and many more.

More about BIST is discusses in the next chapter.

27

3 Built-In-Self-Test

The complex functional blocks, usually referred to as cores, are very different and can

be represented in several different ways. This type of design style allows designers to

reuse the previously designed cores, and therefore it will take a shorter time to the

market and reduces cost. However, testing of SoC (System-on-Chip) has some

problems due to the protection of intellectual property, increased complexity, and higher

density [1]. In order to test the individual cores of the system, we need test pattern

source and sink available together with test access mechanism [2] [5] , but the sink off-

chip requires the use of external Automatic Test Equipment (ATE), but the technology

of ATE is always one step behind when compared the internal speed of SoC which

constantly increases and therefore the ATE solution becomes unacceptably expensive,

inaccurate and unacceptable yield loss [2] [6]. Hence, to keep the test costs under

control and to apply at-speed tests, on-chip solutions are needed. Such a kind of solution

is referred to as a built-in-self-test (BIST) [2]. The SoC BIST will result in reduced

testing time, reduced memory cost, reduced power consumption and hardware cost, and

increased test quality.

The first definition of BIST was given by Richard M. Sedmak which is “… the ability

of logic to verify a failure-free status automatically, without the need for externally

applied test stimuli (other than power and the clock), and without the need for the logic

to be part of a running system.” [7].

Built-In-Self-Test (BIST) is nothing but to design a circuit where the circuit can test

itself and determine whether it is good or bad, i.e., fault-free or faulty circuit [8]. This

needs an added circuitry and functionality to be incorporated in the circuit design to

ease the self-testing feature. This added feature should be capable of generating test

patterns, and also it should provide a mechanism to check the output responses of CUT

to the test patterns correlate to that of the fault-free circuit.

In this chapter, we will discuss the BIST architecture, where we will examine how the

BIST works, BIST techniques where we will discuss the on-line BIST and off-line

BIST, test generation methods, pseudorandom test pattern generation, fault coverage

and finally the logic BIST.

28

3.1 BIST Architecture

The BIST architecture consists of two essential functions and two additional functions

that are necessary to facilitate the execution self-testing feature in the system. The

architecture of the BIST is shown in figure 3.1. The two essential functions are the Test

Pattern Generator (TPG) and Output Response Analyzer (ORA).

 Test Controller

Test Pattern Generator

 (TPG)

 Output Response

 Analyzer

 (ORA)

 Input Isolation Circuit Under Test

 Circuitry (CUT)

 Figure 6 Basic BIST architecture

The test pattern generator produces a sequence of patterns for testing the circuit under

test, the output response analyzer (ORA) compress inputs from CUT and produces the

outputs as pass/fail indication. Two other functions needed in the BIST design for the

system-level use include the test controller and the input isolation circuitry. It requires

additional I/O pins apart from normal pins, for activating the BIST sequence, reports the

BIST Start BIST Done

Pass/Fail

System Outputs

System Inputs

29

results of the BIST and an optional pass/fail indication that the BIST sequence is done

and the BIST results are valid, and it can determine the fault-free or faulty status of the

CUT.

3.2 Built-In-Self-Test techniques

BIST allows complete testing at a reasonable cost [9]. The most commonly BIST

techniques are classified as on-line BIST and off-line BIST, where on-line BIST

comprises of concurrent and nonconcurrent techniques, where off-line BIST comprises

of functional and structural approaches.

3.2.1 On-line BIST

This test occurs during normal functional operation. Below are the types of on-line

BIST

Concurrent online BIST

This type of testing occurs simultaneously with the normal operation mode; coding-

techniques or duplication are usually used. It detects faults during this testing process.

Nonconcurrent on-line BIST

To test for faults, the testing process requires the suspension of normal system

operation, frequently by executing diagnostic software or firmware routines.

3.2.2 Off-line BIST

During off-line BIST, the system will not work on its normal working mode, but it will

be in a test mode where the test patterns are given to the circuit, and the output

responses are analyzed. Usually, on-chip generators and test response analyzers work

during this process. There are two types of off-line BIST, and they are explained below.

Functional off-line BIST

It is based on testing the system functionality that is on the functional description of the

CUT, which is Component Under Test here, and it uses functional high-level fault

models.

30

Structural off-line BIST

The test is performed based on the structure of the functional circuitry. There are two

general categories of Structural off-line BIST: 1. External BIST, where the output

response analysis and test pattern generation are done by circuitry, which is separate

from the functional circuitry, which is being tested. 2. Internal BIST, where the

functional storage elements are converted into output response analyzers and test pattern

generators [10] .

3.3 BIST: Test Generation methods

3.3.1 Exhaustive testing

A BIST approach in which all the possible 2n
 patterns are applied to n circuit inputs [4].

The main advantage of exhaustive tests is that no need for test pattern generation, fault

simulation, and fault model is not needed; redundancy problem is eliminated, 100%

fault coverage for single and multiple fault-models. However, long test length is needed,

and also there will be a problem in CMOS stuck-open faults.

3.3.2 Pseudo-exhaustive testing

A BIST approach in which a particular circuit is having n number of primary inputs are

broken into smaller, each with < n inputs. Each smaller blocks is tested exhaustively [4].

The pseudo-exhaustive test sets consist of types of function verifications. They are

output function verification and module function verification.

3.4 Pseudorandom Pattern Generation

The linear feedback shift register (LFSR) pattern generator is commonly used in

pseudorandom pattern generation. These patterns have all the advantageous properties

of random numbers but algorithmically generated by the hardware pattern generator,

and hence it is repeatable, which is more needed for BIST. Basically, pseudorandom

pattern generation needs more test patterns than deterministic ATPG [4]. There are two

types of LFSR, which are standard LFSR and Modular LFSR.

31

3.4.1 Standard LFSR

A linear feedback shift register (LFSR) is a shift register where the input bit is a linear

function of its previous state. Figure 7 shows the 4-stage standard LFSR. It consists of 4

flipflops and one exclusive-OR gate. Normally, XOR gates are placed on the external

feedback path, and henceforth, the standard LFSR is also called an external-XOR

LFSR [3].

 Figure 7 Standard LFSR

3.4.2 Modular LFSR

Figure 8 shows the 4-stage modular LFSR, where the XOR gate placed between two

adjacent D flipflops, and it is also known as an internal-XOR LFSR. The modular

LFSR can run faster than the standard LFSR because it has an XOR-gate delay between

adjacent flipflops.

 Figure 8 Modular LFSR

 x x2
x3 x4

x3 x x2 x4

32

3.5 BIST fault coverage

The fault coverage can be regulated for the set of test vectors. The fault coverage is a

perceptible measure of the effectiveness of the set of test vectors in detecting the faults

and the fault coverage, FC, is given by [8]

 𝐹𝐶 =
D

T

Where D is the number of detected faults, and T is the total number of faults in the fault

list. Achieving 100% fault coverage is difficult, but in the ISCAS’85 benchmark

circuits, a circuit like c880 had achieved 100%.

3.6 Conclusion

The chapter discussed the need for BIST, the architecture of BIST, the techniques of

BIST, test generation methods, and BIST fault coverage. From this chapter, it is proved

that the BIST is for cost-efficient testing; it reduces the difficulties with TPG (Test

Pattern Generation), it reduces the test application time.

However, few drawbacks like decreased reliability due to increased silicon area in the

circuit and performance impact due to additional circuitry. Also, LFSR does not always

guarantee the 100 % fault coverage. In order to overcome these drawbacks, hybrid BIST

is introduced to achieve maximum fault coverage. In the following chapter, hybrid BIST

is discussed in detail.

33

4 Development of a new algorithm

In this chapter, the previous methods and the newly developed method for the

optimization of hybrid BIST are discussed. The main concern of the hybrid BIST is to

improve the fault coverage by mixing pseudorandom test patterns with the deterministic

test patterns at the same time with a minimum cost of both time and memory. For

selecting the optimal brake point from PRG mode to deterministic pattern mode, two

algorithms are implemented in [2]. Hence, the previous methods resulted in cost

optimization, but it is time-consuming at the same time it is not applicable for complex

circuits. A new algorithm is developed to find the optimal balance between the

pseudorandom and deterministic test patterns with a minimum cost of both time and

memory, which results in a huge gain in time.

The first section presents the general architecture of the hybrid BIST which combines

the sources of pseudorandom and deterministic test patterns.

The second and third section presents the main cost factors of hybrid BIST and analyzes

two typical schemes for BIST design cost optimization, respectively.

The fourth and fifth section presents the idea of a new algorithm and explains the new

algorithm with an example.

4.1 The architecture of the hybrid BIST

The hardware architecture of hybrid BIST is depicted in figure 9, where the Multiple

Input Signature Analyzer (MISR) and pseudorandom pattern generator (PRPG) are

enforced inside the Core Under Test (CUT). The deterministic test pattern is pre-

computed and stored inside the system.

Normally the cores are divided into two classes. In the first class, the core contains its

own pseudorandom test pattern generator, and deterministic test patterns alone have to

be transported to the core. The second class has cores with no prior BIST structures;

therefore, pseudorandom test vectors and stored test patterns have to be shifted to the

CUT from external sources.

34

 Figure 9 Hardware architecture of hybrid BIST

In figure 9, we considered a core-level hybrid BIST where PRPG and MISR are

implemented inside the CUT using LFSR. The deterministic test patterns are pre-

computed and stored outside the core in a ROM.

The pseudorandom patterns generated by LFSR do not always guarantee 100 % fault

coverage, and sometimes for reaching maximum fault coverage, it needs longer

pseudorandom test, which will lead to longer test application time. As mentioned earlier

in the previous section, if the LFSR had fixed to run the patterns for a specific period of

interval (window), it will result in a lot of hard-to-test faults that will remain behind the

window and not detected.

CORE UNDER TEST

MISR

PRPG

B
IS

T

C
o
n
tr

o
ll

er

ROM

Pseudorandom

Patterns

SoC

Core

 Deterministic Patterns

35

So, the purpose of hybrid BIST is that the pseudorandom test is improved by a stored

test set (deterministic test patterns), which is especially generated to target the random

resistant faults. The stored test patterns will reduce the overall testing time, but it needs

additional memory space. This hybrid BIST approach begins with the on-line generation

of pseudorandom test sequence where the length is determined as L, and then the stored

test approach takes place, where the pre-computed test patterns are stored in the

memory, are applied to the CUT to achieve the 100% fault coverage. Based on

deterministic, random, or genetic algorithms, arbitrary software generators may be used

for off-line generation of deterministic test patterns S (number of stored test patterns)

[11].

4.2 Cost factors of Hybrid BIST

The parameter L, which is the pseudorandom test patterns, is considered important

because it determines the performance of the whole test. According to [11] and [2], the

shorter pseudorandom test set entails a larger deterministic test set. Therefore it shortens

the overall testing time at the same time it requires additional memory space. On the

other hand, a longer pseudorandom test will lead to longer test application time with

reduced memory space. Thus it is crucial to determine the optimal length of the

pseudorandom test set in order to minimize the total test cost. Let us discuss the cost

factor of hybrid BIST in detail.

.

Number of remaining

faults after applying

k pseudorandom test

patterns rNOT(k)

Total

Cost

CTOTAL

Cost of

Pseudorandom test

patterns CGEN

Cost of stored

test CMEM

Number of pseudorandom

test patterns applied, k

Brake point

Min CTOTAL

36

 Figure 10 Total cost calculation of hybrid BIST

The above figure 10 demonstrates graphically the calculation of the total cost of hybrid

BIST composed of pseudorandom test patterns ad deterministic test patterns, which are

generated off-line. The total test cost is defined as

 CTOTAL = CGEN + CMEM = αL + βS

Where CTOTAL is the total test cost of hybrid BIST, CGEN is the cost associated to the

time for generating pseudorandom test patterns L (number of clock cycles), CMEM is the

memory cost for storing pre-computed test patterns S (number of deterministic test

patterns) and the constants α and β are to map the pseudorandom test length and

memory space to the costs of two parts of the test solutions to be mixed [2] [11].

Each value for the total cost CTOTAL is found by adding the pseudorandom test patterns L

with the constant α and the deterministic test patterns S with the constant β. Each value

for the cost of pseudorandom test patterns CGEN is found by multiplying the

pseudorandom test patterns L (number of clock cycles) with the constant α. Each value

for the memory cost CMEM is found by multiplying the deterministic test patterns S with

the constant β. Likewise, all the cost values are found and plotted in the graph. From

figure 10, we can able to see the minimum value of CTOTAL, which is considered to be

the brake point.

Also, Figure 10 shows how the cost of testing for pseudorandom test αL is increasing

when striving to achieve higher fault coverage. Generally, the testing cost can be very

expensive to achieve higher fault coverage with pseudorandom test patterns only. The

curve βS illustrates the cost that we have to pay for storing the pre-computed test

patterns at the given fault coverage achieved by pseudorandom testing. The sum of the

two costs αL and βS is the total cost CTOTAL. The weights of α and β show interrelation

between the cost and the memory size needed for storing the pre-computed test sets or

the cost and the pseudorandom test time, i.e., the number of clock cycles. For example,

if we take α=1, and β = B is the number of bytes of the input test vector that are given

to the core under test (CUT).

37

A BIST simulation for the ISCAS’85 circuit c880 is carried out using the Turbo Tester

software [12] , and the results are given below in table 1, where it shows the pseudo-

random test results. Here

k is the number of the clock cycle,

rDET(k) is the number of new faults detected at the clock signal k,

rNOT(k) is the number of faults which are not yet detected by the sequence by k clock

signals,

FC(K) is the fault coverage achieved by the sequence of patterns generated by k clock

signals.

Table 1 Pseudorandom test results

k rDET(k) rNOT(k) FC(k)
(%)

1 298 1252 19.22

2 494 1056 31.87

3 619 931 39.93

4 697 853 44.96

50 1131 239 84.58

100 1401 149 90.38

250 1221 329 89.25

500 1131 239 84.5

1000 1498 52 96.64

2000 1511 39 97.48

5000 1547 3 99.8

8000 1544 6 99.61

10,000 1543 7 99.54

12,000 1550 0 100

The parameter k is found by generating a BIST emulator for each number of clock cycle

along with that the number of detected faults rDET(k), and the fault coverage FC(k) is

also generated. From the table, we can able to see that from the result of simulation for

each clock cycle, the set of faults that were covered at this clock cycle. In the table, not

all clock cycles are represented only the clock cycles that are interesting that cover at

least one new fault is mentioned. At the same time, the total fault coverage for the

38

pseudorandom test sequence increases up to this clock number increases. Hence such

clock numbers and the related pseudorandom test patterns are referred to as resultative

clocks and resultative patterns [11].

Creating the curve αL is not difficult. In contrast, it is more difficult to find the values

for S. Let t(k) be the number of stored test patterns (these patterns are pre-computed

and use as a stored test pattern in the hybrid BIST) required to cover the not yet detected

faults RNOT(k). Meanwhile, calculating t(k) is the most expensive procedure. Two

algorithms were proposed [2] for calculating t(k). Let us see in detail the optimization

algorithm in the next section.

4.3 Optimization algorithm

As mentioned before, calculating t(k) is the most expensive procedure. The data for the

circuit c880 is given below in table 2.

 Table 2 ATPG results

Two algorithms were proposed [2] to find t(k): They are ATPG based and fault table-

based approach. They have the following representations.

• i is the number of the resultative clock cycle.

k t(k)

1 88

2 78

3 74

4 77

50 52

100 47

250 45

500 52

1000 9

2000 6

5000 3

8000 2

10000 1

12000 0

39

ATPG

• k(i) is the number of the clock cycle of the resultative clock i.

• RDET (i) is the new faults detected by the pseudorandom test pattern that is

generated at the resultative clock number i.

• RNOT(i) is the set of not detected faults even after applying for the pseudorandom

test pattern number i.

• T(i) is the set of test patterns required and found by the ATPG to cover the faults

in RNOT(i).

• N is the number of resultative patterns created by the pseudorandom test.

• FT is the fault table for a given set of tests T and for the given set of faults R.

a) b)

 Figure 11 ATPG and fault-table based approach

In ATPG based approach, for each breakpoint of p-sequence, ATPG is used. Figure 11

shows how the algorithm is carried out. The steps that are carried out in the algorithm

are given below.

1. Take i=N;

All PR patterns?

Next PR

pattern

No Yes

Detected

Faults

Fault table

update

 End Next PR

pattern

ATPG

All PR patterns?

No Yes

End

40

2. Generate a test set T(i) for RNOT(i), T= T(i), t(i) = |T(i)|;

3. For all the values of i= N-1, N-2, ….1;

Generate a test set T(i), T := T+ T(i), t(i) := |T| for all the faults RNOT(i) not

covered by the test T.

 End.

While in the fault table-based approach, the first deterministic test set with the fault

table is calculated, and for each breakpoint of p-sequence, the fault table is updated

every time, and the remaining deterministic patterns are determined. The steps that are

carried out in the algorithm are given below.

1. Take i=1; calculate the whole test T for the whole set of faults R,

create the fault table FT(i);

Rename T(i) = T, R(i) = R;

2. For all i = 2,3, … N:

Create a new fault table FT(i) by removing it from the faults RDET(i-1),

And optimize the test T(i-1) in relation to FT(i). The optimized test set is T(i).

End.

For implementing the first approach for the whole set of ISCAS’85 benchmark, circuits

are carried out within about 8 hours. However, in the case of very large circuits, both of

these algorithms will be very expensive and time-consuming experiments. The cost

calculation for the algorithm one is carried out as CTOTAL = CGEN + CMEM = αL + βS

where the weight α was taken as 1 for the number of clocks in the PRG mode, and the

weight β was taken as the number of bytes in the memory needed for storing the pre-

computed test patterns. For the second approach, based on the number of remaining

faults for the resultative clocks, a cheap cost estimation function was used, and the

coefficient was chosen as one remaining fault will be equal to 0.45 test patterns and the

cost is given as CTOTAL_EST = CGEN + CMEM_EST = L + 0.45F [2] where F is the

number of remaining faults which are not covered by the PRG mode.

The experimental results for these two algorithms from [2] show that the first approach

is time-consuming, and it cannot be suggested for larger circuits while the second

approach, which is a fast cost estimation method can give the results with acceptable

41

accuracy, but it doesn’t work for complex circuits. Therefore from these two algorithms,

the first approach is costly and time-consuming. In this research, a new method is

developed, which is also a fast estimation method to find the value of t(k), which works

for even complex circuits with less time.

4.4 Description of the idea of the new algorithm

The goal of the thesis is to develop, evaluate, and optimize hybrid BIST solution for the

ISCAS’ 85 benchmark circuits by combining pseudorandom and deterministic test

sequences. For optimization of the test cost, the total cost CTOTAL of hybrid BIST was

selected in the form

 CTOTAL = CPR + CD = L + S

It is similar to the total cost that we have discussed earlier in the previous chapter. In

this total cost, where CPR is the cost related to the time for generating pseudorandom

patterns L, CD is the memory cost for storing pre-computed deterministic test patterns S.

The constants α and β are the weights to unify the cost for CPR and CD. For

simplification, the assumption is taken as α = β = 1, and the graphical representation of

the functions CPR(L), CD(L), and CTOTAL(L) is shown in figure 12.

 Figure 12 Cost functions for Hybrid BIST

L

Length of BIST

Cost

CTOTAL(L) = CPR(L) + CD (L)

CPR(L)

CD (L)

 Lopt

C(Lopt)

42

In figure 12, we can able to see that from the curve CTOTAL(L), we can easily find the

minimum value and determine the brake point of the optimized test process with

minimum BIST cost from the pseudorandom test sequence PR to deterministic test

sequence D.

The problem of implementing this BIST cost optimization measure is the high-cost

calculation of the curve CD(L) because, at each point, a deterministic test has to be

generated, which is very expensive. To avoid this drawback, a new algorithm is

developed for the fast estimation of the value CD(L) for each point of L. The main idea

of the algorithm is given in figure 13.

 Figure 13 Deterministic test length estimation

Figure 13 represents the deterministic test length estimation, and the graph is plotted

between the number of pseudorandom test patterns i (x-axis) and the fault coverage. As

Brake

point

search

DMAX DE(j*)

 i *

FPR (i)

Fault

Coverage

100%

Patterns i j*

FD (j)

F

Deterministic test (D)

Pseudorandom test (PR)

43

you can see from the graph (figure 13), the pseudorandom fault coverage FPR(i) does

not reach 100 % fault coverage, but the deterministic fault coverage FD(j) achieved

100% fault coverage. From the graph (figure 13), for each value of i *, FPR(i *) is

calculated, and its corresponding deterministic test pattern j* is found. By subtracting

the j* from the maximum value of deterministic test patterns, the estimated number of

deterministic test patterns DE(j*) can be calculated. Using this estimated deterministic

test pattern, CTOTAL(L) is calculated, and we can find the optimal brake point. Using this

optimal point, we have to switch from PRG mode to deterministic test pattern mode,

which allows achieving maximum fault coverage with the huge gain in time because of

the brake point, the longer test application time of pseudorandom test pattern is stopped,

and the stored test patterns are used. Here the Turbo Tester software is used to generate

all the data we required. The Turbo Tester system consists of tools for Automatic Test

Pattern Generation, fault simulation, Built-In-Self-Test(BIST), test set optimization, and

other interesting tools [12]. The turbo tester is discussed in detail in the next chapter.

4.5 Description of the algorithm

The input of the algorithm is the full deterministic test set and the pseudorandom test

sequence generated by the BIST emulator. The output of the algorithm is the estimated

deterministic test patterns, which helps to reduce testing time.

The following defined notations are used in the algorithm.

Notations:

FD(j) - fault coverage of deterministic test set

DMAX - number of test patterns

FPR (i) - fault coverage of pseudorandom test patterns

CD(L) - deterministic test cost

DE(j*) - estimated number of deterministic test patterns

44

The new algorithm for the optimization of BIST cost :

1. Generate a full deterministic test set by a single run and calculate FD(j) and

DMAX.

2. Generate PR sequence with BIST simulator and calculate FPR (i).

3. For selected values of i*, calculate FPR (i*) and find the number of

deterministic patterns j*, so that FD(j*) = FPR(i*).

4. Estimated number of patterns is obtained by DE(j*) = DMAX – j*

End

Therefore from the algorithm, the full curve for estimated CD(L) can be calculated, and

also estimated minimum value of CD(Lopt) can also be calculated, which you can see

from figure 12. The parameter L is cost related to time for generating pseudorandom

test patterns here. It is given in the form of a number of clock cycles. The constants α

and β are taken as one and the number of bytes of the input test vector. Let us consider

an example for the circuit c880; the number of inputs is 60; hence the β weightage is

60/8. The experiments are carried out for this weightage for the ISCAS’85 benchmark

circuits, and this simplification could make the designers decide according to their

requirements. This experiment was carried out for the benchmark ISCAS’85 circuits

[13] , and it is investigated, and optimized test sequences are synthesized for two

approaches: the exact method and the new method.

The exact method is the labor-intensive method where a bash Unix shell script is written

(see Appendix 1) for each circuit which gives the results of a number of clock cycles for

generating pseudorandom vectors k, the number of deterministic test patterns t(k) from

this we can find the total cost for the exact method Cexact (see Table 3). This experiment

is performed again for the comparison purpose, and the results are given below in table 3 for the

circuit c880.

45

 Table 3 Results of the exact method and new method for c880

k

 t(k)

Det.time

 Rnot

 DT
estim

 Cexact

 Cnew

Csimple

1 94 0.031 1315 83 706 624 9864

2 94 0.016 1260 83 707 625 9452

4 85 0.016 1098 83 642 627 8239

10 74 0.016 722 79 565 603 5425

21 62 0.016 419 69 486 539 3164

36 52 0.000 192 45 426 374 1476

51 44 0.016 134 33 381 299 1056 Error

101 28 0.016 54 17 311 229 506 0%

209 16 0.000 52 13 329 307 599

259 15 0.000 28 11 372 342 469

268 12 0.000 19 10 358 343 411

286 10 0.000 12 8 361 346 376

300 8 0.000 10 7 360 353 375

367 6 0.000 6 5 412 405 412

700 5 0.000 5 5 738 738 738

820 3 0.000 3 3 843 843 843

1144 2 0.016 2 2 1159 1159 1159

1517 1 0.000 1 1 1525 1525 1525

1821 0 0.000 0 0 1821 1821 1821

In table 3, the parameter k is the number of clock cycles for generating pseudorandom

test vectors, t(k) is a number of deterministic test patterns to cover remained faults

generated using the exact method, Det.time is the time for generating deterministic test

patterns, Rnot is the number of remaining faults which are not detected, DT estim is the

number of estimated deterministic test patterns resulted from the newly developed

method, Cexact is the total cost of exact method which is calculated as Cexact = 1*k +

(60/8)* t(k), Cnew is the total cost of a new method which is calculated using the

estimated number of deterministic test patterns DT estim, and it is given as Cnew = 1*k +

(60/8) * DT estim, Csimple is the total cost of the not detected faults, and it is calculated

as Csimple = 1* k + (60/8)* Rnot.

From table 3, we can able to see the cost difference between the exact method and the

new method. By using the estimated deterministic patterns, the cost of the new method

is reduced, notably with zero % error. The calculation time for the new method is also

46

reduced, which is the huge gain for the newly developed method. We will discuss the

experimental results more in detail for other circuits in the next chapter.

4.6 Conclusion

The chapter discussed the development of a new algorithm. Firstly, the architecture of

hybrid BIST and the advantage of introducing the stored test patterns and the increase in

fault coverage are described.

The calculation of cost factors of hybrid BIST such as pseudorandom test cost, cost of

stored test patterns, the total cost of hybrid BIST is explained with the example of the

c880 circuit.

The two previously developed methods for the optimization of hybrid BIST are

discussed. These methods resulted in the reduced test cost, but it is time-consuming for

complex circuits. In order to reduce the time, a new algorithm was developed. The

development of a new algorithm was explained with an example in this chapter.

47

5 Experimental research of the developed method

The chapter presents the experimental results of the newly developed method. It also

presents the results of the exact method for comparison. The experimental results show

a huge gain in the calculation time from the developed method for the complex circuits.

In the first section, ISCAS’85 benchmark circuits and how the Turbo Tester software

used in this thesis are explained in detail with the example.

The second section presents the experimental results with the table representing the

comparison of new hybrid BIST cost optimization with the exact method for the

ISCAS’85 benchmark family, and it discusses the starting point to the Tabu search in

detail.

5.1 Experimental environment

The experiments are performed for the ISCAS’85 benchmark circuits. These circuits

were published at the International Symposium on Circuits & Systems 1985 to help in

comparing the Automated Test Pattern Generation (ATPG) tools. It consists of 10 sets

of combinational circuits, and these benchmark circuits have proven to be useful tools in

different areas of digital design, including timing analysis, test generation, and

technology mapping.

The experiments are carried out using Turbo Tester software. It can be operated in both

windows and Linux operating systems. The Turbo tester system consists of tools for

BIST emulation, fault simulation, test set optimization, Automated Test Pattern

Generation (ATPG), and multi-valued simulation. Fault simulators and Test pattern

generators are available for both sequential and combinational circuits. In addition to

this, the package includes tools for design error localization and diagnosis [12]. For

different tools, different syntaxes are used to get the result.

In this thesis, we used a deterministic Test pattern Generator, Random Test Generator,

BIST emulator from the Turbo Tester system. For example, a random pattern generator

for combinational circuits generates random patterns in packages of 32 vectors [12].

The following command and syntax should be used for a random pattern generation.

48

Command : random

Input : SSBDD model file (.agm)

Output : test pattern file (.tst)

Syntax: random [options] <design>

Design : Name of the design file without .agm extension.

Options : -failure_limit, -pack_size, -criterion, -packages, -select_max, -fault_table, -

infile.

The fault table for random pattern generation for the circuit c880 in the command line is

given in figure 14 below. The syntax is given as random -fault_table c880.

 Figure 14 Random pattern generation in Turbo Tester.

Figure 14, as a result, it shows the number of tested faults, fault coverage, number of

vectors generated, and the time used by the process.

49

In a similar way, deterministic test pattern generation is carried out, and the syntax for

deterministic test pattern generation is given as generate -fault_table c432. In order to

increase the fault coverage backtrack option is used. For example, the syntax is given as

generate -fault_table -backtracks 1000 c432. By increasing the backtracks, aborted

faults, which are the faults that are not detected, are decreased. Simultaneously, it will

increase the fault efficiency.

5.2 Experimental results

The goal of this experimental results is to show that the new method is scalable, and the

results are depicted in Table 4, where it can be seen that the errors of the developed fast

estimation method compared with the exact method is negligible but with the huge gain

in the calculation time. This experiment is carried out for the ISCAS’85 benchmark

circuits.

Table 4 Comparison of the new Hybrid BIST cost minimization method vs. exact method

for the benchmark family ISCAS’85 circuits

Table 4 presents the experimental results for 10 ISCAS’85 benchmark circuits. The

column BIST Cost CTOTAL presents the cost of the exact and new method along with

error accuracy, the column calculation time presents the calculation time of exact

method and the new method, and it is clear that the new method resulted in a huge gain

in time, fault coverage, test efficiency, aborted faults are also presented in the table for

Circuit

 Comparison of the methods: exact vs. prediction (new method)

BIST Cost CTOTAL Calculation time Fault

Coverage

(%)

Test

Efficiency

 (%)

Aborted

faults

Pseudorandom

test length

Deterministic

test patterns

Exact New Error

 %

Exact

method

New

method

Exact New Exact New

c3540 903 834 7.6 4.5h 25m50s 95.68 98.99 54 209 203 111 101

c2670 3044 2752 1.20 8.15h 29m11s 95.68 99.42 23 277 305 95 84

c7552 4186 3322 0 30.8h 3h 97.79 98.65 154 563 502 140 109

c880 311 229 0 0.558s 0.152s 100 100 0 101 101 28 17

c499 414 429 2.10 21m57s 2m15s 99.63 99.63 8 51 106 60 63

c1355 412 422 0 22m09s 2m21s 99.63 99.63 8 94 94 62 64

c6288 35 39 2.9 43m6s 4m3s 99.30 99.95 4 30 31 1 2

c5315 557 507 -3 10m82s 1m08s 99.29 100 0 201 304 48 49

c1908 588 596 -2.70 19m29s 1m93s 99.60 99.82 5 2 10 148 142

c432 197 161 14.87 12m22s 1m2s 95.27 100 0 102 102 21 13

50

each circuit. The pseudorandom test length and deterministic test patterns for both exact

and new methods are also presented in table 4.

From the table, it is clear that the currently developed fast estimation method is more

effective for complex circuits such as c3540, c2670, c7552. The time difference

between the exact method and the new method is huge, and hence new method saves

more time for all the circuits.

For the complex circuits, the exact method took more time nearly 30.8 hours with the

bigger number of backtracks for c7552 circuit to achieve maximum fault coverage

98.65%, but with the new fast estimation method, it took nearly 30 minutes to achieve

the same fault coverage with the negligible error compared to the exact method. To

have a clear look, let us consider the circuit c3540 with three different backtracks and

see how the error will increase if we save time.

 Table 5 Comparison of the new Hybrid BIST cost minimization method vs. exact method

for the circuit c3540 with different backtracks.

In table 5, in each row, different backtracks are applied, and its corresponding results

are tabulated. By increasing the backtracks, we can see that the test efficiency or fault

efficiency increases as well as it removes the not detected faults (aborted faults). The

BIST cost span between the fast calculated cost and the exact cost is 3.3 and 7.6, which

is very small and negligible. Moreover, the time difference is the huge gain here

because it took only 25 minutes in the newly developed method, whereas the exact

method took nearly 4.5 hours. Hence, the new method is scalable for complex circuits

with minimal time.

Number of

backtracks

 Comparison of the methods: exact vs. prediction (new method)

BIST Cost CTOTAL Calculation time Fault

Coverage

(%)

Test Efficiency

 (%)

Aborted

faults

Exact New Error

 %

Exact

method

New

method

2264 834 722 3.3 2m50s 0.5s 95.68 96.15 213

116703 878 722 4.7 22m18s 5.3s 95.68 98.19 98

52098184 903 834 7.6 4.5h 25m50s 95.68 98.99 54

51

A second result of the thesis is to propose a starting point to the Tabu search as close as

possible to the exact optimum. Tabu search was first introduced by Fred Glover [14],

[15], [16] as a common iterative heuristic for solving optimization problems.

In [11], the Tabu search was applied to the similar task of hybrid BIST optimization

using a starting point of search – the pseudorandom test length L calculated with the

methodology developed in [2].

By experimental research with results in Table 6, it was shown that the method

proposed in the thesis could be used for improving the location point of starting the

Tabu search, by moving it closer to the exact optimum point as the target of the search.

 Table 6 Starting point to the Tabu search

In Table 6, in column 2, the switching point from pseudorandom test session to

deterministic test session is notated as the length of the pseudorandom test (measured in

clock cycles). Columns 3 and 4 represent the estimated pseudorandom test lengths

calculated by the proposed method and the method published in [2]. The entries in

columns 2 and 3 are also shown in Table 4. In columns 5 and 6, the distances of the

locations 3 and 4 from the exact solution to be found by Tabu search are presented,

respectively. Column 7 shows the gain of the method proposed in the thesis, compared

with the method in [2].

Circuits

Locations of the exact solution and the

starting point candidates for tabu search

Distance from the exact

solution

Gain in the

distance of

the

proposed

method

Exact

solution

Proposed

method
Method [2]

Proposed

method
Method [2]

1 2 3 4 5 6 7

c3540 209 203 297 -6 88 82

c2670 277 305 444 28 167 139

c7552 563 502 583 -61 20 -41

c880 101 101 121 0 20 20

c499 51 106 78 55 27 -28

c1355 94 94 121 0 27 27

c6288 30 31 31 1 1 0

c5315 201 304 711 103 510 407

c1908 2 10 105 8 103 95

c432 102 102 91 0 -11 11

52

6 Conclusion

This thesis aimed to propose a new fast estimation method for the optimization of

hybrid BIST by combining the pseudorandom test patterns and the deterministic test

patterns to perform the test with a minimum cost of both the time and memory, without

losing test quality.

Chapter two emphasized the importance of digital testing and the levels of abstraction in

VLSI testing. In chapter three, an overview of BIST and its techniques was given.

Chapter four covers in detail the hybrid BIST and the need for the new algorithm.

Chapters five and six covers in detail the proposed approach, implementation, and

experimental results, respectively.

1. A new method is proposed for hybrid BIST optimization, which outperforms the

straightforward exact method about ten times in speed with average deviation

from the exact optimum in average 0 – 3% and with the most important property

of high scalability and hence well usable also for hybrid BIST of complex self-

testing systems:

2. as the added value of the proposed method is providing a better starting point for

the alternative optimization method of Tabu search for finding the exact

optimum of the BIST solution, compared with the reference earlier method.

The experimental results have shown that the proposed approach is scalable and

efficient for finding optimized solutions for hybrid BSIT architectures in SoC.

The results of this thesis are submitted as a research paper to the 30th Annual

Conference of the European Association for Education in Electrical and Information

Engineering (EAEEIA): Elmet Orasson, Jerome Angel John Rozario, Margus Kruus,

Raimund Ubar in the topic “Interdisciplinary Research Lab for Project-Based Learning

of Hardware and Software Design for Computer Engineering Students.”

53

References

[1] E. J. Marinissen and Y. Zorian, “Challenges in Testing Core-Based System ICs,” in

IEEE Communications Magazine, June 1999.

[2] G. Jervan, Z. Peng and R. Ubar, “Test cost minimization for hybrid BIST,” in

Proceedings IEEE International Symposium on Defect and Fault Tolerance in

VLSI Systems, Yamanashi, Japan, Japan, 25-27 Oct. 2000.

[3] L.-T. Wang, C.-W. Wu and X. Wen, VLSI Test Principles And Architectures:

Design For Testability, Morgan Kaufmann Publishers, 2006.

[4] M. L. Bushnell and V. D. Agarwal, Essentials of Electronic Testing for Digital,

Memory & Mixed-Signal VLSI Circuits, USA: Kluwer Academic Publishers,

2002.

[5] Y. Zorian, E. J. Marinissen and S. Dey, “Testing Embedded Core-Based System

Chips,” in IEEE International Test Conference (ITC), Washington, DC, October

1998.

[6] "The National Technology Roadmap for Semiconductors," San Jose, California:

Semiconductor Industry Association, 1997, 1998.

[7] R. Sedmak, “Design for Self-Verification: An Approach for Dealing with

Testability Problems in VLSI-Based Designs,” in IEEE International Test

Conference, 1979.

[8] C. E. Stroud, A Designer's Guide to Built-In-Self-Test, USA: KLUWER

ACADEMIC PUBLISHERS, 2002.

[9] McCluskey and E. J., “Built-In-Self-Test Techniques,” in IEEE, 1985.

[10] J. Kim and H. Shin, "Algorithm & SoC Design for Automotive Vision Systems:

For Smart Safe Driving System," Springer Publishing Company, Incorporated,

2014.

[11] H. Kruus, R. Ubar, G. Jervan, and Z. Peng, “Using Tabu Search Method for

Optimizing the Cost of Hybrid BIST,” in Conference on Design of Circuits and

Integrated Systems, Porto, Portugal, Nov. 20-23, 2001.

[12] “Turbo Tester Reference Manual. Version 3.99.03.,” Tallinn Technical University,

1999.

54

[13] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational benchmark

circuits and a target translator in Fortran,” in ITC, 1985, pp. 785-794.

[14] E. Orasson, R. Raidma, R. Ubar, G. Jervan, and Z. Peng, “Fast Test Cost

Calculation for Hybrid BIST in Digital Systems,” Tallinn, Estonia.

[15] G. Jervan, R. Ubar, and Z. Peng, “Test Cost Minimization for Hybrid BIST,” in

IEEE International Symp. on Defect and Fault Tolerance in VLSI Systems., Tokyo,

October 25-28, 2000, pp.283-291.

[16] R. Ubar, G. Jervan, Z. Peng, E. Orasson, and R. Raidma, “Fast Test Cost

Calculation for Hybrid BIST in Digital Systems,” in EUROMICRO Symposium on

Digital Systems Design, Warsaw, September 4-6, 2001, pp.318-325.

[17] H. Kruus, G. Jervan, and R. Ubar, “Using Tabu search for optimization of memory-

constrained Hybrid BIST,” in 11th IEEE Biennial Baltic Electronics Conference,

Tallinn, Estonia, October 6-8, 2008, pp. 155 - 158.

[18] R. Ubar and H. D. Wuttke, “Research and Training Scenarios for Design and Test

of SoC,” in Proc. of the World Congress on Engineering and Technology

Education, Guaruja/Santos, Brasil, pp.320-324, March 14-17, 2004.

[19] H. Kruus, R. Ubar, and J. Raik, “Defect-Oriented BIST Quality Analysis,” in Baltic

Electronics Conference, Oct 4-6, 2010, pp. 153-156.

[20] S.Kostin, R.Ubar, G.Mägi, and M.Gorev, “Comparison of two approaches to

improve functional BIST fault coverage,” in Proceedings of Baltic Electronics

Conference, Tallinn, October 6-8, 2014, pp.1-4.

[21] M. Sugihara, H. Date, and H. Yasuura, “Analysis and Minimization of Test Time

in a Combined BIST and External Test Approach,” in Design, Automation & Test

in Europe Conference, Paris, France, March 2000.

[22] F. Glover and M. Laguna, “TAbu search,” kluver, MA, 1997.

[23] F. Glover, “Tabu Search - Part 1,” 1(3): 190-206, 1989, ORSA Journal on

Computing.

[24] F. Glover, E. Thailand, and D. d. Werra., “A user's guide to tabu search,” in Annals

of Operations Research, 41: 3-28, 1993.

55

Appendix 1 – Program Description and Manual

This section describes how the experiments were performed.

1. A bash Unix shell script was written for the exact method for the ISCAS’85

benchmark circuits.

2. The folders and files for the experiments can be downloaded through this link:

https://drive.google.com/open?id=1qqdAYSgyEnABzkEIfvDPhOF0k7oEpj1v

3. Linux terminal is recommended to perform the experiment. Each of the folders

from the exact_method_experiments folder contains a test pattern file,

deterministic test pattern report, pseudorandom test pattern report of the

respective circuit.

4. The folder name with larger_backtracks contains the report file for the complex

circuits c3540, c432, c2670, c7552. The experiments were performed on ṭhese

circuits to get the maximum fault coverage.

5. getting_max_fault_coverage.py is the python code used to experiment with the

complex circuits with larger backtracks because circuits like c7552 took nearly

31 hours to get the maximum fault coverage.

6. time_minimization.py is the python code for a new method, and in.txt file takes

all the pseudorandom and deterministic report files for the circuits.

7. The folder results contain the output results of the new method, which are in the

Excel file format for each circuit. The excel file consists of three columns:

pseudorandom test vectors, deterministic test vectors, and the third column is the

estimated deterministic number of patterns CD(L).

8. The file Experiments.xlsx contains the experimental results of the ISCAS’85

benchmark circuits. It contains nine columns where the column k is the

pseudorandom test vectors, the column t(k) is the deterministic test vectors; the

column Det.time is the time taken to generate deterministic test patterns, the

column Rnot is the number of not detected faults, the column DT estim is the

estimated deterministic number of patterns, the column Cexact is the total test cost

56

for the exact method, the column Cnew is the total test cost for the new method,

the column Csimple is the total cost for not yet detected faults, Ctotal(k) is the cost

calculation for tabu search.

9. The file Experiments_larger_backtracks.xlsx contains the experimental results

for the complex circuits with larger backtracks.

10. The file c3540_comparison.xlsx shows all three cases with different backtracks.

Appendix 2 – Source

import sys,re, time

files = open("C:\\Users\\Admin\\PycharmProjects\\untitled\\in.txt", "r")

for file in files:

 start_time = time.time()

 splitted_file_list = file.split()

 dt_file = open(splitted_file_list[0], "r")

 pt_file = open(splitted_file_list[1], "r")

 output_file = open(splitted_file_list[0].split("\\")[-1]+".csv","w")

 # pt_file = open(sys.argv[2], "r")

 dt_list = []

 r = r"-?d+\.?\d*"

 for dt_line in dt_file:

 number_list = re.findall("\d+\.?\d*",dt_line)

 if len(number_list) != 0:

 dt_list.append([number_list[0], number_list[1]])

 # print("===================================")

 pt_list = []

 for pt_line in pt_file:

 number_list = re.findall("\d+\.?\d*", pt_line)

 if len(number_list) != 0:

 pt_list.append([number_list[0], number_list[1]])

 x = 0

57

 last_dt = dt_list[len(dt_list) - 1][0]

 for pt in pt_list:

 min_number = 100000000

 dt_row = []

 for dt in dt_list:

 if abs(float(dt[1]) - float(pt[1])) < min_number:

 min_number = abs(float(dt[1]) - float(pt[1]))

 dt_row = dt

 # print(pt[1] + " " + dt_row[1] + " " + str(float(last_dt) -

float(dt_row[0])))

 output_file.write(pt[0] + "," + dt_row[0] + "," + str(float(last_dt)

- float(dt_row[0])) + ",\n")

 end_time = time.time()

 print((end_time-start_time))

