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Abstract 

A new method to design for testability and evaluation of digital circuits using hybrid 

Built-In-Self-Test (BIST) is proposed. It focuses on developing, optimizing, and 

evaluating the hybrid BIST solutions for the ISCAS’85 benchmark circuits. Although 

many approaches were proposed for the optimization of the hybrid BIST, however, they 

resulted in a reduced BIST cost but not with the reduced BIST design time cost. The 

proposed new method focuses on both the minimum BIST cost and the reduced BIST 

design time, targeting also the high scalability of the optimization method. The 

experimental results demonstrated the advantage of the proposed novel algorithm based 

approach compared with the known labor-intensive method. The results of this research 

are submitted as a research paper to the 30th Annual Conference of the European 

Association for Education in Electrical and Information Engineering (EAEEIA): Elmet 

Orasson, Jerome Angel John Rozario, Margus Kruus, Raimund Ubar in the topic 

Interdisciplinary Research Lab for Project-Based Learning of Hardware and Software 

Design for Computer Engineering Students.  
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Annotatsioon 

Optimeeritud hübriidtestsüsteem digitaalskeemide 

isetestimiseks 

 

 
Käesolevas uurimistöös on välja töötatud, implementeeritud ja katsetatud uus meetod 

digitaalskeemide isetestimiseks hübriidsel testide genereerimise põhimõttel, kasutades 

nii juhuslikke kui ka deterministlikke stiimuleid testimiseks. Töö fookuseks on 

hübriidtest-süsteemi disainiprotsessi ajaline minimeerimine. Kui senised analoogsed 

uuringud on pühendatud üksnes testsüsteemi optimeeritud lahenduse leidmisele, siis 

käesoleva töö eesmärgiks on ka optimaalse lahendi leidmiseks vajaliku aja 

vähendamine. Eksperimentaalsed uuringud näitasid, et uudne optimeerimisalgoritm on 

hästi skaleeruv ja tagab ligilähedaselt samad optimeerimistulemused, mis senised 

meetodid, mis aga on palju töömahukamad. Käesoleva töö tulemused on vormistatud ka 

publikatsioonina, mis on esitatud konverentsile „30th Annual Conference of the 

European Association for Education in Electrical and Information Engineering 

(EAEEIE)“ artiklina Elmet Orasson, Jerome Angel John Rozario, Margus Kruus, 

Raimund Ubar. “Interdisciplinary Research Lab for Project-Based Learning of 

Hardware and Software Design for Computer Engineering Students”. 
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1 Introduction 

The thesis focuses on the new method for the optimization of hybrid BIST by 

combining the pseudorandom test patterns and the deterministic test patterns to perform 

the test with a minimum cost of both time, memory, and without losing in test quality. A 

novel algorithm was developed and experimented with the ISCAS’85 benchmark 

circuits. 

This chapter discusses the background and problem, followed by the goal of the thesis 

and, finally, the overview of the thesis structure. 

1.1 Background and Problem 

The exponential growth in recent years has brought many new prospects in VLSI, 

mainly in the area of integrated circuits design and manufacturing. Nowadays, 

predesigned complex functional blocks are used in the system for designing. This is 

called System-on-Chip (Soc) approach, and this leads to a shorter time to market and 

with a reduced cost. Hence this SoC approach is very inviting from the designer’s 

viewpoint. However, testing of SoC has several problems due to the presence of 

submicron chips because the complexity is increased as well as another big challenge is 

due to the protection of intellectual property [1]. 

Several test approaches were proposed, but those approaches are slow, expensive, and 

inaccurate. Therefore, Built-In-Self-Test (BIST) is another testing approach where the 

system is allowed to test itself, and this test approach is highly reliable and reduces time 

and cost. This BIST needs linear feedback shift registers (LFSR); however, the LFSR 

does not provide 100% fault coverage, and it takes a longer time to achieve 100% fault 

coverage. Therefore, a hybrid BIST approach is used to improve the fault coverage. In 

this approach, pre-computed test patterns are stored in the memory, which is called 

deterministic test patterns, and it is used to achieve maximum fault coverage. 
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The main concern of this hybrid BIST approach is to achieve maximum fault coverage 

by combining the pseudorandom test vectors (generated by LFSR) with the 

deterministic test patterns. The main objective is to find an optimal balance between the 

pseudorandom and stored test patterns along with the minimum cost of time and 

memory, and this is the main contribution to this thesis.  

1.2 Description of Task Solved 

Two algorithms had been proposed already they are ATPG-based approach and Fault-

table based approach [2]. These approaches were resulted in reducing test costs, but it is 

time-consuming for complex circuits. In order to reduce cost as well as time, this thesis 

presents the following goals: 

• Develop a new algorithm for the optimization of hybrid BIST for the ISCAS’85 

benchmark circuits, which will result in reduced cost and a huge gain in time for 

even complex circuits. 

• The second result is to propose a starting point to the Tabu search as close as 

possible to the exact optimum 
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1.3 Thesis Structure 

The thesis is organized as follows. 

In chapter 2,  an overview of digital testing is given, and the importance of digital 

testing, types involved in testing a circuit, and several other things related to digital 

testing are discussed. 

Thereafter, the concepts of  Built-In-Self-Test (BIST) and how the testing problems can 

be overcome by using a BIST strategy are discussed in chapter 3. 

In chapter 4, the development of a new method for the optimization of hybrid BIST has 

explained as well as the cost factors of hybrid BIST and already proposed optimization 

algorithms, are discussed. The implementation of the new method is discussed in the 

next chapter, and thereafter the experimental results are discussed in chapter 6. 

Finally, the summary and conclusion are discussed in chapter 7. 
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2 Overview of digital testing 

This chapter gives an overview of digital testing. Testing is one of the vital processes 

for producing a fault-free device. In this chapter, we will discuss why testing is essential 

for electronic devices and how testing is performed and stages involved during the 

process of testing. In the test generation section, types of testing are explained, and why 

structural testing is more practical compared with other types of testing is also 

discussed. The stuck-at-fault model is explained with an example, and various levels of 

abstraction in VLSI testing, types of fault simulation, and finally, digital circuit testing, 

analog, and mixed-signal testing are discussed in this chapter. 

2.1 Significance of Testing 

In today’s electronic devices, many millions of transistors used, and this shows the 

steady decrease in dimensions, which referred to as the feature size of the transistors. 

When the feature size reduces, simultaneously operating frequency, clock speed 

increases. Also, there is a high chance that a manufacturing defect in the Integrated Chip 

may result in a faulty chip. Even a tiny defect in a chip may ruin the whole device; that 

is why testing the components at each stage of the manufacturing process is very 

important. During the testing process, when the cause of defects is found, and faults are 

met, there will be an improvement in the production at every stage. There is a general 

agreement with the rule of ten, which says that the cost of detecting a faulty IC 

increases by order of magnitude as we move through each stage of manufacturing, from 

the device level to the board level, and finally to system operation in the field [3].  

Testing is done by applying the input test stimuli to the inputs of the circuit under test 

(CUT) while analyzing the output responses [3], as shown in figure 1. Those circuits 

which give the correct output responses for all the inputs applies then it is a fault-free 

circuit. Testing carried out at the various stages in the lifecycle of a VLSI device. The 

lifecycle of the VLSI device consists of various stages, such as the VLSI development 

process, the electronic system manufacturing process, and system-level operation.  
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                                                                     Figure 1 Testing process 

 

 

The VLSI development process involves testing at each stage of the process. The 

process involves design, fabrication, packaging, and quality assurance. At the design 

stage, designers are responsible for analyzing the circuit which satisfies the design 

specification and design verification. The design verification is the form of testing, and 

once verified, the VLSI design goes for fabrication. The very first testing is done during 

the manufacturing process to test the IC is fabricated on the wafer to find which device 

is defective. The IC’s, which pass the wafer-level testing, are extracted and packaged. 

2.2 Test Generation  

To test a circuit, input patterns are applied to the circuit under test (CUT), and the 

output is compared with the fault-free circuit [3]. Each input pattern in the circuit is 

called a test vector. The main goal of test generation is to find an excellent structured set 

of test vectors that can detect all the faults in the circuit. In order to test one full circuit, 

more test vectors are needed, but the number of test vectors is not precisely known. For 

that, the following testing is performed. 

2.2.1 Exhaustive testing 

If the Circuit Under Test (CUT) is an n-input combinational logic circuit [3], then all 2n  

possible input test patterns are applied for testing stuck-at-faults. This is called 

Exhaustive testing. If the circuit passes the exhaustive testing, then it is assumed that the 

circuit has no functional faults. This testing is not practical when n is significant [3] . 

2.2.2 Functional testing 

Like Exhaustive testing, all the 2n possible input test patterns are applied to the n-input 

combinational logic circuit in functional testing where each value in the truth table for 
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the combinational logic circuit is tested to check whether it produces the correct [3] 

output response. 

2.2.3 Structural testing  

Structural testing is more practical when compared with other types of testing because 

specific test patterns are selected based on the circuit structural information and a set of 

fault models. The main advantage of this structural testing is it saves time, and the test 

efficiency is improved because of the decrease in the number of test patterns as the test 

vectors targets only specific faults that would result from defects in the manufacturing 

circuit. The use of fault models provides a quantitative measure of the fault-detection 

capabilities of a given set of test vectors for the desired fault model. This type of 

measure is called fault coverage and is defined as [3] 

                      

 

Because of undetectable faults, it is impossible to get 100 percent fault coverage. So, the 

fault coverage can be modified further as fault detection efficiency which is defined as 

𝐹𝑎𝑢𝑙𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
Number  of detected  faults 

Total number of faults−number of undetectable faults
  

2.3 Fault Models 

Fault models are a must for generating and evaluating a set of test vectors. A fault 

model should accurately give back the behavior of defects, and it should be systematic 

in terms of fault simulation and test generation. However, unfortunately, not even a 

single fault model could accurately reflect the behavior of defects. So the combination 

of different models is used in the generation and evaluation of test vectors for VLSI 

devices. 

A single fault assumption is given by 

                                     Number of single faults in the circuit  = k × n 

Where k is the different types of faults, and n is the possible fault sites in a given circuit. 

𝐹𝑎𝑢𝑙𝑡 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
Number of detected faults

Total number of faults
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The multiple fault model is defined as 

                             Number of multiple faults in the circuit = (k +1)n – 1 

In the multiple fault model, sometimes the circuit could be fault-free, or it may have a 

fault, so the “-1” represents the fault-free circuit. 

2.3.1 Stuck-At Faults 

A stuck-at-fault affects the state of logic gates on lines in the logical circuit, where it 

includes all the primary inputs, primary outputs, internal gate inputs, and outputs as well 

as fanout branches. When the logic line is stuck at either a constant logic value 0 or 1, 

then it is called stuck-at-0 and stuck-at-1, respectively. 

Let us consider a pure single stuck-at-fault example circuit in figure 2 

 

                                                                 Figure 2 Single stuck-at-fault 

 

From the above logical circuit, we can able to see that there is only one line that is a 

faulty response. So, if the output is ‘0’, then it is a faulty response when the output is 

‘1’, then it is a fault-free response. 
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2.4 Levels of Abstractions in VLSI Testing 

The levels of abstraction include behavioral, register-transfer, logical, and physical 

levels. In this section, we will discuss the test generation and the use of fault models at 

each level of abstraction and testing methods. 

2.4.1 Register-Transfer Level and Behavioral Level 

The register-transfer level contains a netlist of gates, and the stuck-at-faults at this level 

are the most famous fault models in digital testing [4]. The ATPG tools cannot handle 

designs exerting blocks because the implementation details are not known. Several 

approaches are proposed for the test pattern generation at the RTL, but most of the 

approaches lack general connectivity. Some experimental results had shown that the 

fault coverage achieved at the RTL could be close to the fault coverage achieved at the 

gate level, and also stuck-at-fault coverage at the RTL will not be as high as the gate 

level. 

2.4.2 Gate Level 

At the gate-level, the stuck-at-fault model can be applied efficiently because many 

ATPG and fault simulation tools are available. Not only a stuck-at-fault model but also 

delay fault models, and delay testing is also based on the gate-level description. Since 

the gate-level model lies between the RTL and physical level, it has the advantage of 

functionality and tractability. For deep submicron designs, test development at the gate-

level is not widely used. 

2.4.3 Switch Level 

In the switch-level simulation, the whole circuit is cast as an interlink of MOS 

transistors, which are referred to as ideal switches. The logic behavior of MOS circuits 

that have no fundamental logic gate structure can be simulated by the switch-level 

simulation. For both ATPG and fault simulation, the switch-level description is more 

complicated than the gate-level description. The switch-level is used to simulate stuck-

at-short and stuck-open faults, but fault-effect propagation steps are too complicated, 

and therefore, usage of this level has been limited in the industry [4].  
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2.4.4 Physical Level 

The physical level of abstraction is crucial for VLSI testing [3].  At this level, it 

provides actual layout and routing information for the fabricated device, and therefore 

the most precise information for delay faults, crosstalk effects, and bridging faults is 

obtained. A distributed resistance-inductance-capacitance (RLC) model is used as a 

basis to characterize electrical properties of interconnections in the deep submicron IC 

chips. This is used to analyze and test for resolving crosstalk problems. The solution for 

bridging fault is to take out the capacitance between the wires, and this gives the 

accurate determination of those wires which are adjacent and, therefore, likely to 

undergo bridging faults. Hence the fault sites with the highest capacitance can be 

selected for test generation and evaluation.  

2.5 Automatic Test Pattern Generation (ATPG) 

ATPG is used to find an input or test sequence when applied to a  digital circuit, which 

automatic test equipment to distinguish between the fault-free circuit behavior and 

faulty circuit behavior that is caused by defects. Many ATPG algorithms and tools have 

been proposed, and one of the approaches (a common approach) is to begin from a 

random set of test patterns. Then fault simulation will determine the detected faults, and 

to this, additional test vectors are generated to obtain the desired fault coverage.  

One of the significant problems in the sizeable sequential circuit, when compared with 

the combinational circuit, is to identify the undetectable faults because of thousands of 

gates in the circuit, and also it is difficult to reach 100% fault coverage. 

In a naive ATPG algorithm [3], ATPG has to make some decision where it has to select 

some input vector with primary input #i, which is to set to a specific logic value, which 

will lead to a solution. In order to make a decision, a decision tree method is followed.  

2.5.1 Backtracking 

In the decision tree method, when the path leads to no solution, then it should not 

continue with the same path. Instead, it should go back to the earlier point or node, and 

it should re-decide the previous decision. If the other branch in the decision tree has not 

been explored before and if there are only two choices for a decision variable, then 
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some of the previous decision should be reversed. This type of reversal in the decision is 

called backtracks. 

Consider a decision tree in Figure 2.3 as an example [3].  

In this example, the decision made so far is a = 0, c = 1, d = 0, and suppose if this 

causes the conflict in detecting the target fault then, the most recently made decision 

should be reversed. As per this example, the most recently made decision is d = 0, and 

this should be reversed as d = 1, and all the resulted values from d = 0 should be 

undone. Then the search continues as a = 0, c = 1, d = 1. If this decision also causes 

conflict, then this path is actually could not lead to any solution that could the target 

vector. The decision on d is finally assigned as a ‘don’t care’ value. The backtracking 

mechanism should be continued by changing the previous decision or searching the 

portion of the search a = 0, c = 0, and if there is no previous decision, then the ATPG 

concludes that the target fault is undetectable. 

 

                                                        

                                                                  Figure 3 backtracking 
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2.6 Fault Simulation 

Fault simulation is the demanding task because of the complexity that is the circuit with 

all the faults that must be simulated. While simulating, the amount of computation time 

is approximately proportional to the number of faults, circuit size, number of test 

patterns, or test vectors. This becomes infeasible for larger circuits because the 

computation time will be more. In the following section, we discuss the techniques of 

fault simulation. 

2.6.1 Serial Fault simulation 

This is the most straightforward algorithm, among other simulations [4]. Fault-free 

circuits are simulated first, and the primary output values (true responses) are saved, and 

the next faulty circuits are simulated. AS the simulation continues, the output responses 

of the faulty circuit are compared with the results of the saved true responses. When the 

comparison indicates the detection of target faults, then the simulation of the faulty 

circuit is stopped soon.  

A serial fault simulator can simulate any kind of fault that is introduces in the circuit 

description. It also simulates bridging faults, dealy faults, and analog faults apart from 

stuck-at-short and stuck-at-open types [4]. 

2.6.2 Parallel fault simulation 

The idea of this type of fault simulation is to use the bit-parallelism of logical operations 

ina digital computer [4]. The circuit consists of only logic gates, and so the signals are 

assumed to have only binary 0 and 1 values, and all the gates have the same delay. 

Under these conditions, the parallel fault simulation is most effective. On considering a 

32-bit machine word, an integer consists of a 32-bit binary vector. The AND or OR 

logical operation implying two words performs simultaneous AND or OR operation on 

all pairs of bits. This makes the simultaneous simulation of 32 circuits with the same 

connectivity but with different signal values. 

Let us consider an example [4] of parallel fault simulation in Figure 2.4 

Figure 2.4 shows that the circuit is being simulated for two faults, which are c stuck-at-0 

and f stuck-at-1. As you can see from the circuit that the computer has a three-bit word. 

The left-most bit represents the signal value in the fault-free circuit, bit 1, which is the 
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middle bit represents c stuck-at-0 fault and the right-most bit, which bit 2 represents f 

stuck-at-1. When we apply a vector a =1 and b = 1, the line a and the stem b are not 

affected by any fault, and these will have the same value for all the three circuits.   

 

  

 

 

  

    

 

  

 

  

                                                     Figure 4 Parallel Fault Simulation 

 

The fault c is the first faulty circuit, and therefore it affects the middle bit. In the first 

circuit when a and c performs AND operation, we get the 3-bit word for the line e. The 

second circuit with the NOT gate which has an input 111 and the line f is the inversion 

of d where the right-most bit is affected by s-a-1 then the word is given by 001. Finally, 

the output g is obtained by bit-by-bit OR of e and f. Therefore, the output g is 101.  

From the result, we can able to see that the output of the circuit c s-a-0 is 101, and the 

output of the fault-free circuit is 111, it clearly differs. Hence the fault is detected.   
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2.6.3 Deductive fault simulation 

Deductive fault simulation is a very different approach from other simulation techniques 

because it is based on logical reasoning. This type of simulation can be very fast 

because only fault-free simulations have to be performed. Let us consider an example 

[3] figure 2.5  

 

 

    

  

  

 

 

  

  

                                             

                                             Figure 5 Deductive fault simulation 

From figure 5, Lx is the fault list, and it is related to a signal x, and also, it is shown that 

the fault list of each signal concerning the test pattern P1. For the primary input A, the 

fault list is LA, and the fault is A/1, not A/0 because the value of A remains correct 

when the fault A/0 is present. In the same way, the fault lists are derived for the inputs B 

and C. The method of obtaining the fault list of a gate output from the gate inputs is 

called fault list propagation. Thus, all the faults at the gate inputs are propagated to the 

gate output. From figure 2.5, we can conclude that the test pattern P1 directed seven 

faults in Lk. Therefore, we can see that the advantage of deductive fault simulation is 

that all the faults detected by the test pattern are acquired in one fault list propagation. 

In practice, faults are collapsed before the simulation, but only the collapsed faults are 

considered for the fault list propagation. 
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2.6.4 Concurrent fault simulation 

The fault-free circuit and faulty circuit differ in a very small part, so the concurrent fault 

simulation only makes use of this fact and simulates only the differential parts of the 

whole circuit. Hence the fault-free circuits and faulty circuits are simulated altogether. 

In this type of simulation, every gate has a concurrent fault list which comprises of a set 

of bad gates. Each bad gate contains a fault index and the related gate I/O values in the 

presence of the corresponding fault [3]. The concurrent fault list of gate 1 contains local 

faults of gate 1.  The local faults of gate 1 are faults on the inputs or outputs of gate 1. 

While the simulation proceeds, the concurrent fault simulation contains local faults, as 

well as the faults propagated from the previous stages. Local faults in gate 1 remain in 

the fault list until they are detected. 

2.6.5 Differential fault simulation 

The concurrent fault simulation has a memory problem because the size of the fault list 

changes at run time while the single fault propagation technique builds the state of the 

faulty circuit from the fault-free circuit. However, both of the techniques are not good 

for sequential fault simulation. Differential fault simulation combines the advantages of 

both the techniques in such a way to simulate only the difference between the faulty 

circuit and previously simulated one.  

In the differential fault simulation, for every test pattern, a fault-free simulation is 

accomplished first, and then the faulty circuits simulations are performed. As mentioned 

before, the states of every circuit are reinstated from the last simulation. If there is a 

difference in the outputs of faulty circuits and the good circuits, then the faults are 

detected and dropped. Every time the state difference is stored for every circuit. Also, 

the state difference of dropped faults should be collected in the state differences of the 

next undetected fault. This is repeated until there are no test patterns or no undetected 

faults are left. 
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2.7 Digital Circuit Testing 

The digital circuit testing began with the stuck-at-fault model and then followed by the 

bridging fault model, transistor fault model, and delay fault model. Digital testing uses 

the combination of tests developed for different fault models because the tests for fault 

model cannot guarantee the detection of all defects.  

Digital testing is improved by quiescent power supply current (IDDQ) and transistor 

power supply current (IDDT). The leakage of current in the CMOS circuit under a 

quiescent state is very small. When a fault occurs, it causes the conducting path from 

power to the ground, and so it might draw an excessive supply current. However, IDDQ  

testing is ineffective for larger devices because it consists of millions of transistors, and 

there will be more leakage current in the circuit. It is similar to the IDDT testing 

approach. As the number of transistors in the VLSI devices continues to grow, both IDDQ  

and IDDT testing suffer.  

2.8 Analog and Mixed-signal circuit testing 

Analog circuits are used in various applications, and mixed-signal circuits include 

analog circuitry and digital circuitry. Analog circuit testing involves two categories: 

Specification-oriented testing and waveform-oriented testing. The specification-oriented 

testing approach tests each and every specification in the datasheet to regulate the 

pass/failure of the circuit. It undergoes two types of tests which are bench test and the 

final test. The bench test is done in the laboratory for the characterization purpose while 

the final test is done in the industry before delivering it to the customers.  

The waveform-oriented testing measures selected or particular parameters of response 

waveforms to check the pass/failure of the circuit under test (CUT). The test points must 

be chosen carefully from the waveform-oriented testing. The correlation of the test 

points along with the specifications is essential for the improvement of test yield and in 

reducing the defect level. Mixed-signal circuit testing begins by converting Analog to 

digital and digital to analog. After that testing method is applied, it involves testing like 

time-domain testing, code-transition level testing, gains, and offset testing. 
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2.9 Conclusion 

This chapter provides an overview of VLSI testing. The significance and challenges of 

VLSI testing at various levels were discussed. Why do we need VLSI testing? How 

difficult is VLSI testing? Although many of these points were briefly reviewed in this 

chapter. However, the new and continuing testing challenges and advancements in 

technology need testing like Built-In-Self-Test (BIST), where the system tests on itself, 

which will result in reduced testing time, test cost, power consumption and many more. 

More about BIST is discusses in the next chapter. 
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3 Built-In-Self-Test  

The complex functional blocks, usually referred to as cores, are very different and can 

be represented in several different ways. This type of design style allows designers to 

reuse the previously designed cores, and therefore it will take a shorter time to the 

market and reduces cost. However, testing of SoC ( System-on-Chip) has some 

problems due to the protection of intellectual property, increased complexity, and higher 

density [1]. In order to test the individual cores of the system, we need test pattern 

source and sink available together with test access mechanism [2] [5] , but the sink off-

chip requires the use of external Automatic Test Equipment (ATE), but the technology 

of ATE is always one step behind when compared the internal speed of SoC which 

constantly increases and therefore the ATE solution becomes unacceptably expensive, 

inaccurate and unacceptable yield loss [2] [6].  Hence, to keep the test costs under 

control and to apply at-speed tests, on-chip solutions are needed. Such a kind of solution 

is referred to as a built-in-self-test (BIST) [2]. The SoC BIST will result in reduced 

testing time, reduced memory cost, reduced power consumption and hardware cost, and 

increased test quality. 

The first definition of BIST was given by Richard M. Sedmak which is “… the ability 

of logic to verify a failure-free status automatically, without the need for externally 

applied test stimuli (other than power and the clock), and without the need for the logic 

to be part of a running system.”   [7]. 

 

Built-In-Self-Test (BIST) is nothing but to design a circuit where the circuit can test 

itself and determine whether it is good or bad, i.e., fault-free or faulty circuit [8]. This 

needs an added circuitry and functionality to be incorporated in the circuit design to 

ease the self-testing feature. This added feature should be capable of generating test 

patterns, and also it should provide a mechanism to check the output responses of CUT 

to the test patterns correlate to that of the fault-free circuit.  

 

In this chapter, we will discuss the BIST architecture, where we will examine how the 

BIST works, BIST techniques where we will discuss the on-line BIST and off-line 

BIST, test generation methods, pseudorandom test pattern generation, fault coverage 

and finally the logic BIST. 



 

28 

 

3.1 BIST Architecture 

The BIST architecture consists of two essential functions and two additional functions 

that are necessary to facilitate the execution self-testing feature in the system. The 

architecture of the BIST is shown in figure 3.1. The two essential functions are the Test 

Pattern Generator (TPG) and Output Response Analyzer (ORA).  
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                                                    Figure 6 Basic BIST architecture 

 

 

The test pattern generator produces a sequence of patterns for testing the circuit under 

test, the output response analyzer (ORA) compress inputs from CUT and produces the 

outputs as pass/fail indication. Two other functions needed in the BIST design for the 

system-level use include the test controller and the input isolation circuitry. It requires 

additional I/O pins apart from normal pins, for activating the BIST sequence, reports the 
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results of the BIST and an optional pass/fail indication that the BIST sequence is done 

and the BIST results are valid, and it can determine the fault-free or faulty status of the 

CUT. 

3.2 Built-In-Self-Test techniques 

BIST allows complete testing at a reasonable cost [9]. The most commonly BIST 

techniques are classified as on-line BIST and off-line BIST, where on-line BIST 

comprises of concurrent and nonconcurrent techniques, where off-line BIST comprises 

of functional and structural approaches. 

3.2.1 On-line BIST 

This test occurs during normal functional operation. Below are the types of on-line 

BIST 

Concurrent online BIST  

This type of testing occurs simultaneously with the normal operation mode; coding-

techniques or duplication are usually used. It detects faults during this testing process. 

Nonconcurrent on-line BIST 

To test for faults, the testing process requires the suspension of normal system 

operation, frequently by executing diagnostic software or firmware routines. 

3.2.2 Off-line BIST 

During off-line BIST, the system will not work on its normal working mode, but it will 

be in a test mode where the test patterns are given to the circuit, and the output 

responses are analyzed. Usually, on-chip generators and test response analyzers work 

during this process. There are two types of off-line BIST, and they are explained below. 

Functional off-line BIST 

It is based on testing the system functionality that is on the functional description of the 

CUT, which is Component Under Test here, and it uses functional high-level fault 

models. 
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Structural off-line BIST 

The test is performed based on the structure of the functional circuitry. There are two 

general categories of Structural off-line BIST: 1. External BIST, where the output 

response analysis and test pattern generation are done by circuitry, which is separate 

from the functional circuitry, which is being tested. 2. Internal BIST, where the 

functional storage elements are converted into output response analyzers and test pattern 

generators [10] . 

3.3 BIST: Test Generation methods 

3.3.1 Exhaustive testing 

A BIST approach in which all the possible 2n 
 patterns are applied to n circuit inputs [4]. 

The main advantage of exhaustive tests is that no need for test pattern generation, fault 

simulation, and fault model is not needed; redundancy problem is eliminated, 100% 

fault coverage for single and multiple fault-models. However, long test length is needed, 

and also there will be a problem in CMOS stuck-open faults. 

3.3.2 Pseudo-exhaustive testing 

A BIST approach in which a particular circuit is having n number of primary inputs are 

broken into smaller, each with < n inputs. Each smaller blocks is tested exhaustively [4]. 

The pseudo-exhaustive test sets consist of types of function verifications. They are 

output function verification and module function verification. 

3.4 Pseudorandom Pattern Generation 

The linear feedback shift register (LFSR) pattern generator is commonly used in 

pseudorandom pattern generation. These patterns have all the advantageous properties 

of random numbers but algorithmically generated by the hardware pattern generator, 

and hence it is repeatable, which is more needed for BIST. Basically, pseudorandom 

pattern generation needs more test patterns than deterministic ATPG [4]. There are two 

types of LFSR, which are standard LFSR and Modular LFSR. 
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3.4.1 Standard LFSR 

A linear feedback shift register (LFSR) is a shift register where the input bit is a linear 

function of its previous state. Figure 7 shows the 4-stage standard LFSR. It consists of 4 

flipflops and one exclusive-OR gate. Normally, XOR gates are placed on the external 

feedback path, and henceforth, the standard LFSR is also called an external-XOR 

LFSR [3]. 

 

 

  

                                                        Figure 7 Standard LFSR 

 

 

 

 

3.4.2 Modular LFSR 

Figure 8 shows the 4-stage modular LFSR, where the XOR gate placed between two 

adjacent D flipflops, and it is also known as an internal-XOR LFSR. The modular 

LFSR can run faster than the standard LFSR because it has an XOR-gate delay between 

adjacent flipflops.   

 

 

 

                                                              Figure 8 Modular LFSR 
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3.5 BIST fault coverage 

The fault coverage can be regulated for the set of test vectors. The fault coverage is a 

perceptible measure of the effectiveness of  the set of test vectors in detecting the faults 

and the fault coverage, FC, is given by [8] 

                                                𝐹𝐶 =
D

T
 

 

Where D is the number of detected faults, and T is the total number of faults in the fault 

list. Achieving 100% fault coverage is difficult, but in the ISCAS’85 benchmark 

circuits, a circuit like  c880 had achieved 100%. 

3.6 Conclusion 

The chapter discussed the need for BIST, the architecture of BIST, the techniques of 

BIST, test generation methods, and BIST fault coverage. From this chapter, it is proved 

that the BIST is for cost-efficient testing; it reduces the difficulties with TPG (Test 

Pattern Generation), it reduces the test application time.  

However, few drawbacks like decreased reliability due to increased silicon area in the 

circuit and performance impact due to additional circuitry. Also, LFSR does not always 

guarantee the 100 % fault coverage. In order to overcome these drawbacks, hybrid BIST 

is introduced to achieve maximum fault coverage. In the following chapter, hybrid BIST 

is discussed in detail. 
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4 Development of a new algorithm 

In this chapter, the previous methods and the newly developed method for the 

optimization of hybrid BIST are discussed. The main concern of the hybrid BIST is to 

improve the fault coverage by mixing pseudorandom test patterns with the deterministic 

test patterns at the same time with a minimum cost of both time and memory. For 

selecting the optimal brake point from PRG mode to deterministic pattern mode, two 

algorithms are implemented in [2]. Hence, the previous methods resulted in cost 

optimization, but it is time-consuming at the same time it is not applicable for complex 

circuits. A new algorithm is developed to find the optimal balance between the 

pseudorandom and deterministic test patterns with a minimum cost of both time and 

memory, which results in a huge gain in time. 

The first section presents the general architecture of the hybrid BIST which combines 

the sources of pseudorandom and deterministic test patterns.  

The second and third section presents the main cost factors of hybrid BIST and analyzes 

two typical schemes for BIST design cost optimization, respectively. 

The fourth and fifth section presents the idea of a new algorithm and explains the new 

algorithm with an example. 

4.1 The architecture of the hybrid BIST 

The hardware architecture of hybrid BIST is depicted in figure 9, where the Multiple 

Input Signature Analyzer (MISR) and pseudorandom pattern generator (PRPG) are 

enforced inside the Core Under Test (CUT). The deterministic test pattern is pre-

computed and stored inside the system. 

Normally the cores are divided into two classes. In the first class, the core contains its 

own pseudorandom test pattern generator, and deterministic test patterns alone have to 

be transported to the core. The second class has cores with no prior BIST structures; 

therefore, pseudorandom test vectors and stored test patterns have to be shifted to the 

CUT from external sources. 
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                                                 Figure 9 Hardware architecture of hybrid BIST 

In figure 9, we considered a core-level hybrid BIST where PRPG and MISR are 

implemented inside the CUT using LFSR. The deterministic test patterns are pre-

computed and stored outside the core in a ROM.  

The pseudorandom patterns generated by LFSR do not always guarantee 100 % fault 

coverage, and sometimes for reaching maximum fault coverage, it needs longer 

pseudorandom test, which will lead to longer test application time. As mentioned earlier 

in the previous section, if the LFSR had fixed to run the patterns for a specific period of 

interval (window), it will result in a lot of hard-to-test faults that will remain behind the 

window and not detected. 
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So, the purpose of hybrid BIST is that the pseudorandom test is improved by a stored 

test set (deterministic test patterns), which is especially generated to target the random 

resistant faults. The stored test patterns will reduce the overall testing time, but it needs 

additional memory space. This hybrid BIST approach begins with the on-line generation 

of pseudorandom test sequence where the length is determined as L, and then the stored 

test approach takes place, where the pre-computed test patterns are stored in the 

memory, are applied to the CUT to achieve the 100% fault coverage. Based on 

deterministic, random, or genetic algorithms, arbitrary software generators may be used 

for off-line generation of deterministic test patterns S (number of stored test patterns) 

[11].   

4.2 Cost factors of Hybrid BIST 

The parameter L, which is the pseudorandom test patterns, is considered important 

because it determines the performance of the whole test. According to [11] and  [2], the 

shorter pseudorandom test set entails a larger deterministic test set. Therefore it shortens 

the overall testing time at the same time it requires additional memory space. On the 

other hand, a longer pseudorandom test will lead to longer test application time with 

reduced memory space. Thus it is crucial to determine the optimal length of the 

pseudorandom test set in order to minimize the total test cost. Let us discuss the cost 

factor of hybrid BIST in detail. 
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                                             Figure 10 Total cost calculation of hybrid BIST 

 

The above figure 10 demonstrates graphically the calculation of the total cost of hybrid 

BIST composed of pseudorandom test patterns ad deterministic test patterns, which are 

generated off-line. The total test cost is defined as  

                                          CTOTAL = CGEN + CMEM =  αL + βS  

Where CTOTAL is the total test cost of hybrid BIST, CGEN  is the cost associated to the 

time for generating pseudorandom test patterns L (number of clock cycles), CMEM  is the 

memory cost for storing pre-computed test patterns S (number of deterministic test 

patterns) and the constants α and β are to map the pseudorandom test length and 

memory space to the costs of two parts of the test solutions to be mixed [2] [11].  

Each value for the total cost CTOTAL is found by adding the pseudorandom test patterns L 

with the constant α and the deterministic test patterns S with the constant β. Each value 

for the cost of pseudorandom test patterns CGEN  is found by multiplying the 

pseudorandom test patterns L (number of clock cycles) with the constant α. Each value 

for the memory cost CMEM  is found by multiplying the deterministic test patterns S with 

the constant β. Likewise, all the cost values are found and plotted in the graph. From 

figure 10, we can able to see the minimum value of CTOTAL, which is considered to be 

the brake point.  

Also, Figure 10 shows how the cost of testing for pseudorandom test αL is increasing 

when striving to achieve higher fault coverage. Generally, the testing cost can be very 

expensive to achieve higher fault coverage with pseudorandom test patterns only. The 

curve βS illustrates the cost that we have to pay for storing the pre-computed test 

patterns at the given fault coverage achieved by pseudorandom testing. The sum of the 

two costs αL and βS is the total cost CTOTAL. The weights of α and β show interrelation 

between the cost and the memory size needed for storing the pre-computed test sets or 

the cost and the pseudorandom test time, i.e., the number of clock cycles. For example, 

if we take α=1, and β = B is the number of bytes of the input test vector that are given 

to the core under test (CUT).  
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A BIST simulation for the ISCAS’85 circuit c880 is carried out using the Turbo Tester 

software [12] , and the results are given below in table 1, where it shows the pseudo-

random test results. Here  

k is the number of the clock cycle, 

rDET(k) is the number of new faults detected  at the clock signal k, 

rNOT(k) is the number of faults which are not yet detected by the sequence by k clock 

signals, 

FC(K) is the fault coverage achieved by the sequence of patterns generated by k clock 

signals. 

 

Table 1 Pseudorandom test results 

k rDET(k) rNOT(k) FC(k) 
(%) 

1 298 1252 19.22 

2 494 1056 31.87 

3 619 931 39.93 

4 697 853 44.96 

50 1131 239 84.58 

100 1401 149 90.38 

250 1221 329 89.25 

500 1131 239 84.5 

1000 1498 52 96.64 

2000 1511 39 97.48 

5000 1547 3 99.8 

8000 1544 6 99.61 

10,000 1543 7 99.54 

12,000 1550 0 100 
 

The parameter k is found by generating a BIST emulator for each number of clock cycle 

along with that the number of detected faults rDET(k), and the fault coverage FC(k) is 

also generated. From the table, we can able to see that from the result of simulation for 

each clock cycle, the set of faults that were covered at this clock cycle. In the table, not 

all clock cycles are represented only the clock cycles that are interesting that cover at 

least one new fault is mentioned. At the same time, the total fault coverage for the 
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pseudorandom test sequence increases up to this clock number increases. Hence such 

clock numbers and the related pseudorandom test patterns are referred to as resultative 

clocks and resultative patterns [11]. 

Creating the curve αL is not difficult. In contrast, it is more difficult to find the values 

for S. Let t(k) be the number of stored test patterns (these patterns are pre-computed 

and use as a stored test pattern in the hybrid BIST) required to cover the not yet detected 

faults RNOT(k). Meanwhile, calculating t(k) is the most expensive procedure. Two 

algorithms were proposed [2] for calculating t(k). Let us see in detail the optimization 

algorithm in the next section.  

4.3 Optimization algorithm 

As mentioned before, calculating t(k)  is the most expensive procedure. The data for the 

circuit c880 is given below in table 2. 

                                                                   Table 2 ATPG results 

  

 

  

 

 

 

 

 

 

 

 

 

 
 

 

Two algorithms were proposed [2] to find t(k): They are ATPG based and fault table-

based approach. They have the following representations. 

 

• i is the number of the resultative clock cycle.  

k t(k) 

1 88 

2 78 

3 74 

4 77 

50 52 

100 47 

250 45 

500 52 

1000 9 

2000 6 

5000 3 

8000 2 

10000 1 

12000 0 
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ATPG 

• k(i) is the number of the clock cycle of the resultative clock i. 

• RDET (i) is the new faults detected by the pseudorandom test pattern that is 

generated at the resultative clock number i. 

• RNOT(i) is the set of not detected faults even after applying for the pseudorandom 

test pattern number i. 

• T(i) is the set of test patterns required and found by the ATPG to cover the faults 

in RNOT(i). 

• N is the number of resultative patterns created by the pseudorandom test. 

• FT is the fault table for a given set of tests T and for the given set of faults R. 

 

 

 

       

 

 

 

 

 

a)                                                                     b) 

 

                                            Figure 11 ATPG and fault-table based approach 

 

In ATPG based approach, for each breakpoint of p-sequence, ATPG is used. Figure 11 

shows how the algorithm is carried out. The steps that are carried out in the algorithm 

are given below. 
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2. Generate a test set T(i) for RNOT(i), T= T(i), t(i) = |T(i)|; 

3. For all the values of i= N-1, N-2, ….1; 

Generate a test set T(i), T := T+ T(i), t(i) := |T| for all the faults RNOT(i) not 

covered by the test T. 

      End. 

 

While in the fault table-based approach, the first deterministic test set with the fault 

table is calculated, and for each breakpoint of p-sequence, the fault table is updated 

every time, and the remaining deterministic patterns are determined. The steps that are 

carried out in the algorithm are given below. 

 

1. Take i=1; calculate the whole test T for the whole set of faults R,  

create the fault table FT(i); 

Rename T(i) = T, R(i) = R;  

2. For all i = 2,3, … N: 

Create a new fault table FT(i) by removing it from the faults RDET(i-1),  

And optimize the test T(i-1) in relation to FT(i). The optimized test set is T(i). 

End. 

For implementing the first approach for the whole set of ISCAS’85 benchmark, circuits 

are carried out within about 8 hours. However, in the case of very large circuits, both of 

these algorithms will be very expensive and time-consuming experiments. The cost 

calculation for the algorithm one is carried out as CTOTAL = CGEN + CMEM =  αL + βS 

where the weight α  was taken as 1 for the number of clocks in the PRG mode, and the 

weight β was taken as the number of bytes in the memory needed for storing the pre-

computed test patterns. For the second approach, based on the number of remaining 

faults for the resultative clocks, a cheap cost estimation function was used, and the 

coefficient was chosen as one remaining fault will be equal to 0.45 test patterns and the 

cost is given as   CTOTAL_EST = CGEN + CMEM_EST = L + 0.45F [2] where F is the 

number of remaining faults which are not covered by the PRG mode.  

 

The experimental results for these two algorithms from [2] show that the first approach 

is time-consuming, and it cannot be suggested for larger circuits while the second 

approach, which is a fast cost estimation method can give the results with acceptable 
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accuracy, but it doesn’t work for complex circuits. Therefore from these two algorithms, 

the first approach is costly and time-consuming. In this research, a new method is 

developed, which is also a fast estimation method to find the value of t(k), which works 

for even complex circuits with less time. 

4.4 Description of the idea of the new algorithm 

The goal of the thesis is to develop, evaluate, and optimize hybrid BIST solution for the 

ISCAS’ 85 benchmark circuits by combining pseudorandom and deterministic test 

sequences. For optimization of the test cost, the total cost CTOTAL of hybrid BIST was 

selected in the form  

                                        CTOTAL = CPR + CD  = L + S 

 

It is similar to the total cost that we have discussed earlier in the previous chapter. In 

this total cost, where CPR  is the cost related to the time for generating pseudorandom 

patterns L, CD  is the memory cost for storing pre-computed deterministic test patterns S. 

The constants α and β are the weights to unify the cost for CPR  and CD.  For 

simplification, the assumption is taken as α = β = 1, and the graphical representation of 

the functions  CPR(L), CD(L),  and CTOTAL(L) is shown in figure 12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                            Figure 12 Cost functions for Hybrid BIST 
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In figure 12, we can able to see that from the curve CTOTAL(L), we can easily find the 

minimum value and determine the brake point of the optimized test process with 

minimum BIST cost from the pseudorandom test sequence PR to deterministic test 

sequence D.  

The problem of implementing this BIST cost optimization measure is the high-cost 

calculation of the curve CD(L) because, at each point, a deterministic test has to be 

generated, which is very expensive. To avoid this drawback, a new algorithm is 

developed for the fast estimation of the value CD(L) for each point of  L. The main idea 

of the algorithm is given in figure 13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                Figure 13 Deterministic test length estimation 

 

Figure 13 represents the deterministic test length estimation, and the graph is plotted 

between the number of pseudorandom test patterns i (x-axis) and the fault coverage. As 
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you can see from the graph (figure 13), the pseudorandom fault coverage FPR(i) does 

not reach 100 % fault coverage, but the deterministic fault coverage FD(j) achieved 

100% fault coverage. From the graph (figure 13), for each value of i *, FPR(i *)  is 

calculated, and its corresponding deterministic test pattern j*   is found. By subtracting 

the j*  from the maximum value of deterministic test patterns, the estimated number of 

deterministic test patterns DE( j*) can be calculated. Using this estimated deterministic 

test pattern, CTOTAL(L) is calculated, and we can find the optimal brake point. Using this 

optimal point, we have to switch from PRG mode to deterministic test pattern mode, 

which allows achieving maximum fault coverage with the huge gain in time because of 

the brake point, the longer test application time of pseudorandom test pattern is stopped, 

and the stored test patterns are used. Here the Turbo Tester software is used to generate 

all the data we required. The Turbo Tester system consists of tools for Automatic Test 

Pattern Generation, fault simulation, Built-In-Self-Test(BIST), test set optimization, and 

other interesting tools [12]. The turbo tester is discussed in detail in the next chapter. 

 

4.5 Description of the algorithm 

The input of the algorithm is the full deterministic test set and the pseudorandom test 

sequence generated by the BIST emulator. The output of the algorithm is the estimated 

deterministic test patterns, which helps to reduce testing time. 

 

The following defined notations are used in the algorithm.  

 

Notations: 

 

FD(j)      -   fault coverage of deterministic test set 

DMAX       -    number of test patterns 

FPR (i)   -    fault coverage of pseudorandom test patterns 

CD(L)      -   deterministic test cost 

DE(j*)    -    estimated number of deterministic test patterns 
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The new algorithm for the optimization of BIST cost : 

 

1. Generate a full deterministic test set by a single run and calculate FD(j) and 

DMAX. 

2. Generate PR sequence with BIST simulator and calculate FPR (i). 

3. For selected values of i*, calculate FPR (i*) and find the number of 

deterministic patterns j*, so that  FD( j*) = FPR( i*). 

4. Estimated number of patterns is obtained by DE(j*) = DMAX – j* 

End 

 

Therefore from the algorithm, the full curve for estimated CD(L) can be calculated, and 

also estimated minimum value of  CD(Lopt) can also be calculated, which you can see 

from figure 12. The parameter L  is cost related to time for generating pseudorandom 

test patterns here. It is given in the form of a number of clock cycles. The constants α 

and β  are taken as one and the number of bytes of the input test vector. Let us consider 

an example for the circuit c880; the number of inputs is 60; hence the β weightage is 

60/8. The experiments are carried out for this weightage for the ISCAS’85 benchmark 

circuits, and this simplification could make the designers decide according to their 

requirements. This experiment was carried out for the benchmark  ISCAS’85 circuits 

[13] , and it is investigated, and optimized test sequences are synthesized for two 

approaches: the exact method and the new method. 

 

The exact method is the labor-intensive method where a bash Unix shell script is written 

(see Appendix 1) for each circuit which gives the results of a number of clock cycles for 

generating pseudorandom vectors k, the number of deterministic test patterns t(k) from 

this we can find the total cost for the exact method Cexact   ( see Table 3). This experiment 

is performed again for the comparison purpose, and the results are given below in table 3 for the 

circuit c880.   
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                                         Table 3  Results of the exact method and new method for c880 

 
 
 
k 

 
 
 
   t(k) 

 
 
 
Det.time 

 
 
 
   Rnot 

  
 
   DT    
estim 

 
 
 
  Cexact 

 
 
 
   Cnew 

 
 
 
Csimple 

 

1 94 0.031 1315 83 706 624 9864 
 

2 94 0.016 1260 83 707 625 9452 
 

4 85 0.016 1098 83 642 627 8239 
 

10 74 0.016 722 79 565 603 5425 
 

21 62 0.016 419 69 486 539 3164 
 

36 52 0.000 192 45 426 374 1476 
 

51 44 0.016 134 33 381 299 1056 Error 

101 28 0.016 54 17 311 229 506 0% 

209 16 0.000 52 13 329 307 599 
 

259 15 0.000 28 11 372 342 469 
 

268 12 0.000 19 10 358 343 411 
 

286 10 0.000 12 8 361 346 376 
 

300 8 0.000 10 7 360 353 375 
 

367 6 0.000 6 5 412 405 412 
 

700 5 0.000 5 5 738 738 738 
 

820 3 0.000 3 3 843 843 843 
 

1144 2 0.016 2 2 1159 1159 1159 
 

1517 1 0.000 1 1 1525 1525 1525 
 

1821 0 0.000 0 0 1821 1821 1821 
 

 

 

In table 3, the parameter k is the number of clock cycles for generating pseudorandom 

test vectors, t(k) is a number of deterministic test patterns to cover remained faults 

generated using the exact method, Det.time is the time for generating deterministic test 

patterns, Rnot is the number of remaining faults which are not detected, DT estim  is the 

number of estimated deterministic test patterns resulted from the newly developed 

method, Cexact is the total cost of exact method which is calculated as Cexact  = 1*k + 

(60/8)* t(k), Cnew is the total cost of a new method which is calculated using the 

estimated number of deterministic test patterns DT estim, and it is given as Cnew = 1*k + 

(60/8) * DT estim, Csimple  is the total cost of the not detected faults, and it is calculated 

as Csimple = 1* k + (60/8)* Rnot.  

 

From table 3, we can able to see the cost difference between the exact method and the 

new method. By using the estimated deterministic patterns, the cost of the new method 

is reduced, notably with zero % error. The calculation time for the new method is also 
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reduced, which is the huge gain for the newly developed method. We will discuss the 

experimental results more in detail for other circuits in the next chapter. 

4.6 Conclusion 

The chapter discussed the development of a new algorithm. Firstly, the architecture of 

hybrid BIST and the advantage of introducing the stored test patterns and the increase in 

fault coverage are described.  

 

The calculation of cost factors of hybrid BIST such as pseudorandom test cost, cost of 

stored test patterns, the total cost of hybrid BIST is explained with the example of the 

c880 circuit. 

 

The two previously developed methods for the optimization of hybrid BIST are 

discussed. These methods resulted in the reduced test cost, but it is time-consuming for 

complex circuits. In order to reduce the time, a new algorithm was developed. The 

development of a new algorithm was explained with an example in this chapter. 

 

 

 

 

 

 

 

 

 

 

 



 

47 

5 Experimental research of the developed method 

The chapter presents the experimental results of the newly developed method. It also 

presents the results of the exact method for comparison. The experimental results show 

a huge gain in the calculation time from the developed method for the complex circuits.  

In the first section, ISCAS’85 benchmark circuits and how the Turbo Tester software 

used in this thesis are explained in detail with the example. 

The second section presents the experimental results with the table representing the 

comparison of new hybrid BIST cost optimization with the exact method for the 

ISCAS’85 benchmark family, and it discusses the starting point to the Tabu search in 

detail. 

5.1 Experimental environment 

The experiments are performed for the ISCAS’85 benchmark circuits. These circuits 

were published at the International Symposium on Circuits & Systems 1985 to help in 

comparing the Automated Test Pattern Generation (ATPG) tools. It consists of 10 sets 

of combinational circuits, and these benchmark circuits have proven to be useful tools in 

different areas of digital design, including timing analysis, test generation, and 

technology mapping.  

The experiments are carried out using Turbo Tester software. It can be operated in both 

windows and Linux operating systems. The Turbo tester system consists of tools for 

BIST emulation, fault simulation, test set optimization, Automated Test Pattern 

Generation (ATPG), and multi-valued simulation. Fault simulators and Test pattern 

generators are available for both sequential and combinational circuits.  In addition to 

this, the package includes tools for design error localization and diagnosis [12]. For 

different tools, different syntaxes are used to get the result.  

In this thesis, we used a deterministic Test pattern Generator, Random Test Generator, 

BIST emulator from the Turbo Tester system. For example, a random pattern generator 

for combinational circuits generates random patterns in packages of 32 vectors [12]. 

The following command and syntax should be used for a random pattern generation. 
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Command : random 

Input : SSBDD model file (.agm) 

Output : test pattern file (.tst) 

Syntax: random [options] <design> 

Design : Name of the design file without .agm extension. 

Options : -failure_limit, -pack_size, -criterion, -packages, -select_max, -fault_table, -            

infile. 

The fault table for random pattern generation for the circuit c880 in the command line is 

given in figure 14 below. The syntax is given as random  -fault_table  c880. 

 

                                  Figure 14  Random pattern generation in Turbo Tester. 

 

Figure 14, as a result, it shows the number of tested faults, fault coverage, number of 

vectors generated, and the time used by the process.  
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In a similar way, deterministic test pattern generation is carried out, and the syntax for 

deterministic test pattern generation is given as generate  -fault_table  c432. In order to 

increase the fault coverage backtrack option is used. For example, the syntax is given as 

generate -fault_table -backtracks 1000 c432. By increasing the backtracks, aborted 

faults, which are the faults that are not detected, are decreased. Simultaneously, it will 

increase the fault efficiency. 

5.2 Experimental results 

The goal of this experimental results is to show that the new method is scalable, and the 

results are depicted in Table 4, where it can be seen that the errors of the developed fast 

estimation method compared with the exact method is negligible but with the huge gain 

in the calculation time. This experiment is carried out for the ISCAS’85 benchmark 

circuits. 

Table 4 Comparison of the new Hybrid BIST cost minimization method vs. exact method 

for the benchmark family ISCAS’85 circuits 

 

Table 4 presents the experimental results for 10 ISCAS’85 benchmark circuits. The 

column BIST Cost CTOTAL  presents the cost of the exact and new method along with 

error accuracy, the column calculation time presents the calculation time of exact 

method and the new method, and it is clear that the new method resulted in a huge gain 

in time, fault coverage, test efficiency, aborted faults are also presented in the table for 

 

 

Circuit 

                                Comparison of the methods: exact vs. prediction (new method) 

BIST Cost CTOTAL Calculation time   Fault 

Coverage 

(%) 

Test 

Efficiency 

    (%) 

Aborted 

faults 

Pseudorandom 

test length 

Deterministic 

test patterns 

Exact New Error 

   % 

Exact 

method 

New 

method 

Exact New Exact New 

c3540 903 834 7.6 4.5h 25m50s 95.68 98.99 54 209 203 111 101 

c2670 3044 2752 1.20 8.15h 29m11s 95.68 99.42 23 277 305 95 84 

c7552 4186 3322 0 30.8h 3h 97.79 98.65 154 563 502 140 109 

c880 311 229 0 0.558s 0.152s 100 100 0 101 101 28 17 

c499 414 429 2.10 21m57s 2m15s 99.63 99.63 8 51 106 60 63 

c1355 412 422 0 22m09s 2m21s 99.63 99.63 8 94 94 62 64 

c6288 35 39 2.9 43m6s 4m3s 99.30 99.95 4 30 31 1 2 

c5315 557 507 -3 10m82s 1m08s 99.29 100 0 201 304 48 49 

c1908 588 596 -2.70 19m29s 1m93s 99.60 99.82 5 2 10 148 142 

c432 197 161 14.87 12m22s 1m2s 95.27 100 0 102 102 21 13 
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each circuit. The pseudorandom test length and deterministic test patterns for both exact 

and new methods are also presented in table 4. 

 

From the table, it is clear that the currently developed fast estimation method is more 

effective for complex circuits such as c3540, c2670, c7552. The time difference 

between the exact method and the new method is huge, and hence new method saves 

more time for all the circuits. 

 

For the complex circuits, the exact method took more time nearly 30.8 hours with the 

bigger number of backtracks for c7552 circuit to achieve maximum fault coverage 

98.65%, but with the new fast estimation method, it took nearly 30 minutes to achieve 

the same fault coverage with the negligible error compared to the exact method. To 

have a clear look, let us consider the circuit c3540 with three different backtracks and 

see how the error will increase if we save time. 

 

              Table 5 Comparison of the new Hybrid BIST cost minimization method vs. exact method 

for the circuit c3540 with different backtracks. 

    

In table 5, in each row, different backtracks are applied, and its corresponding results 

are tabulated. By increasing the backtracks, we can see that the test efficiency or fault 

efficiency increases as well as it removes the not detected faults (aborted faults). The 

BIST cost span between the fast calculated cost and the exact cost is 3.3 and 7.6, which 

is very small and negligible. Moreover, the time difference is the huge gain here 

because it took only 25 minutes in the newly developed method, whereas the exact 

method took nearly 4.5 hours. Hence, the new method is scalable for complex circuits 

with minimal time. 

 

 

 

Number of 

backtracks 

                Comparison of the methods: exact vs. prediction (new method) 

BIST Cost CTOTAL Calculation time   Fault 

Coverage 

(%) 

Test Efficiency 

      (%) 

Aborted    

faults 

Exact New Error 

   % 

Exact 

method 

New 

method 

2264 834 722 3.3 2m50s 0.5s 95.68 96.15 213 

116703 878 722 4.7 22m18s 5.3s 95.68 98.19 98 

52098184 903 834 7.6 4.5h 25m50s 95.68 98.99 54 
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A second result of the thesis is to propose a starting point to the Tabu search as close as 

possible to the exact optimum. Tabu search was first introduced by Fred Glover [14], 

[15], [16] as a common iterative heuristic for solving optimization problems.  

 

In [11], the Tabu search was applied to the similar task of hybrid BIST optimization 

using a starting point of search – the pseudorandom test length L calculated with the 

methodology developed in [2].  

By experimental research with results in Table 6, it was shown that the method 

proposed in the thesis could be used for improving the location point of starting the 

Tabu search, by moving it closer to the exact optimum point as the target of the search.  

 

                                                   Table 6 Starting point to the Tabu search 

 

 

 

In Table 6, in column 2, the switching point from pseudorandom test session to 

deterministic test session is notated as the length of the pseudorandom test (measured in 

clock cycles). Columns 3 and 4 represent the estimated pseudorandom test lengths 

calculated by the proposed method and the method published in [2]. The entries in 

columns 2 and 3 are also shown in Table 4. In columns 5 and 6, the distances of the 

locations 3 and 4 from the exact solution to be found by Tabu search are presented, 

respectively. Column 7 shows the gain of the method proposed in the thesis, compared 

with the method in [2]. 

Circuits 

Locations of the exact solution and the 

starting point candidates for tabu search 

Distance from the exact 

solution 

Gain in the 

distance of 

the 

proposed 

method  

Exact 

solution 

Proposed 

method 
Method [2] 

Proposed 

method 
Method [2] 

1 2 3 4 5 6 7 

c3540 209 203 297 -6 88 82 

c2670 277 305 444 28 167 139 

c7552 563 502 583 -61 20 -41 

c880 101 101 121 0 20 20 

c499 51 106 78 55 27 -28 

c1355 94 94 121 0 27 27 

c6288 30 31 31 1 1 0 

c5315 201 304 711 103 510 407 

c1908 2 10 105 8 103 95 

c432 102 102 91 0 -11 11 
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6 Conclusion 

This thesis aimed to propose a new fast estimation method for the optimization of 

hybrid BIST by combining the pseudorandom test patterns and the deterministic test 

patterns to perform the test with a minimum cost of both the time and memory, without 

losing test quality. 

Chapter two emphasized the importance of digital testing and the levels of abstraction in 

VLSI testing. In chapter three, an overview of BIST and its techniques was given. 

Chapter four covers in detail the hybrid BIST and the need for the new algorithm. 

Chapters five and six covers in detail the proposed approach, implementation, and 

experimental results, respectively. 

1. A new method is proposed for hybrid BIST optimization, which outperforms the 

straightforward exact method about ten times in speed with average deviation 

from the exact optimum in average 0 – 3% and with the most important property 

of high scalability and hence well usable also for hybrid BIST of complex self-

testing systems: 

2. as the added value of the proposed method is providing a better starting point for 

the alternative optimization method of Tabu search for finding the exact 

optimum of the BIST solution, compared with the reference earlier method. 

The experimental results have shown that the proposed approach is scalable and 

efficient for finding optimized solutions for hybrid BSIT architectures in SoC. 

The results of this thesis are submitted as a research paper to the 30th Annual 

Conference of the European Association for Education in Electrical and Information 

Engineering (EAEEIA): Elmet Orasson, Jerome Angel John Rozario, Margus Kruus, 

Raimund Ubar in the topic “Interdisciplinary Research Lab for Project-Based Learning 

of Hardware and Software Design for Computer Engineering Students.”  
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Appendix 1 – Program Description and Manual   

This section describes how the experiments were performed.  

1. A bash Unix shell script was written for the exact method for the ISCAS’85 

benchmark circuits.  

2. The folders and files for the experiments can be downloaded through this link: 

https://drive.google.com/open?id=1qqdAYSgyEnABzkEIfvDPhOF0k7oEpj1v 

3. Linux terminal is recommended to perform the experiment. Each of the folders 

from the exact_method_experiments folder contains a test pattern file, 

deterministic test pattern report, pseudorandom test pattern report of the 

respective circuit. 

4. The folder name with larger_backtracks contains the report file for the complex 

circuits c3540, c432, c2670, c7552. The experiments were performed on ṭhese 

circuits to get the maximum fault coverage. 

5. getting_max_fault_coverage.py is the python code used to experiment with the 

complex circuits with larger backtracks because circuits like c7552 took nearly 

31 hours to get the maximum fault coverage. 

6. time_minimization.py is the python code for a new method, and in.txt file takes 

all the pseudorandom and deterministic report files for the circuits. 

7. The folder results contain the output results of the new method, which are in the 

Excel file format for each circuit. The excel file consists of three columns: 

pseudorandom test vectors, deterministic test vectors, and the third column is the 

estimated deterministic number of patterns CD(L). 

8. The file Experiments.xlsx contains the experimental results of the ISCAS’85 

benchmark circuits. It contains nine columns where the column k  is the 

pseudorandom test vectors, the column t(k) is the deterministic test vectors; the 

column Det.time is the time taken to generate deterministic test patterns, the 

column Rnot  is the number of not detected faults, the column DT estim is the 

estimated deterministic number of patterns, the column Cexact is the total test cost 
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for the exact method, the column Cnew is the total test cost for the new method, 

the column  Csimple is the total cost for not yet detected faults, Ctotal(k) is the cost 

calculation for tabu search. 

9. The file Experiments_larger_backtracks.xlsx  contains the experimental results 

for the complex circuits with larger backtracks. 

10.  The file c3540_comparison.xlsx shows all three cases with different backtracks. 

 

Appendix 2 – Source 

import sys,re, time 

files = open("C:\\Users\\Admin\\PycharmProjects\\untitled\\in.txt", "r") 

for file in files: 

    start_time = time.time() 

    splitted_file_list = file.split() 

    dt_file = open(splitted_file_list[0], "r") 

    pt_file = open(splitted_file_list[1], "r") 

    output_file = open(splitted_file_list[0].split("\\")[-1]+".csv","w") 

    # pt_file = open(sys.argv[2], "r") 

    dt_list = [] 

    r = r"-?d+\.?\d*" 

    for dt_line in dt_file: 

        number_list = re.findall("\d+\.?\d*",dt_line) 

        if len(number_list) != 0: 

            dt_list.append([number_list[0], number_list[1]]) 

 

 

    # print("===================================") 

    pt_list = [] 

    for pt_line in pt_file: 

        number_list = re.findall("\d+\.?\d*", pt_line) 

        if len(number_list) != 0: 

            pt_list.append([number_list[0], number_list[1]]) 

    x = 0 
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    last_dt = dt_list[len(dt_list) - 1][0] 

    for pt in pt_list: 

        min_number = 100000000 

        dt_row = [] 

        for dt in dt_list: 

            if abs(float(dt[1]) - float(pt[1])) < min_number: 

                min_number = abs(float(dt[1]) - float(pt[1])) 

                dt_row = dt 

        # print(pt[1] + " " + dt_row[1] + " " + str(float(last_dt) - 

float(dt_row[0]))) 

        output_file.write(pt[0] + "," + dt_row[0] + "," + str(float(last_dt) 

- float(dt_row[0])) + ",\n") 

    end_time = time.time() 

    print((end_time-start_time)) 

 

 

 

 


