TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Vladislav Sidorenko 1928961VSB

A Method for Bypassing the Valve Anti-Cheat

System in Video Games

Bachelor's thesis

Supervisor: Kaido Kikkas

Doctor of Philosophy
(Ph.D.) in Engineering

Tallinn 2023

TALLINNA TEHNIKAULIKOOL
Infotehnoloogia teaduskond

Vladislav Sidorenko 1928961VSB

Meetod Valve Anti-Cheat kaitsesiisteemist

moodapaisemiseks videomangudes

Bakalaureuset6o

Juhendaja: Kaido Kikkas

Tehnikateaduste
doktor

Tallinn 2023

Author’s declaration of originality

I hereby certify that | am the sole author of this thesis. All the used materials, references
to the literature, and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.
Author: Vladislav Sidorenko

24.12.2022

Abstract

Game cheats have existed in almost all of video game history, and the attitude towards
them nowadays is very controversial. Cheats are developed by hackers and could be used
to gain unfair advantage in games. This thesis paper aims to show a method for bypassing
Valve Anti-Cheat system in video games that are based on Valve’s “Source” game
engine, show how to create both external and an internal exploit for a video game, create
dynamic link library manual mapping injector to use with the internal exploit,
differentiate between cheat types. The thesis paper shows the usage of such important

game-hacking tools as Cheat Engine, ReClass.NET, and IDA Pro.

This thesis is written in English and is 37 pages long, including 6 chapters, 36 figures,
and 1 table.

Annotatsioon

Mainguhékid on olemas olnud peaaegu koigi videomangude ajaloos ja nende kohta on
tdnapdeval véga vastakaid arvamusi. Hikke arendavad vilja ménguhikkerid ja neid

voidakse kasutada mingudes eeliste saamiseks.

Selle t66 eesmirk on pakkuda vilja meetod Valve Anti-Cheat kaitsesiisteemist
moddapadsemiseks videomdngudes, mis pdhinevad Valve "Source" méangumootoril.
Néidatakse, kuidas teha mingusiseseid ja -véliseid riindeid, luua méngusisese riinde
kiivitamiseks vajalikku DLL -teeki ning eristada erinevaid manguhdkkide tiitipe. T60s
néidatakse ka mitmete oluliste mdnguhékkimisvahendite (Cheat Engine, ReClass.NET ja

IDA Pro) kasutamist.

Loputod on kirjutatud inglise keeles ning sisaldab teksti 37 lehekiiljel, 6 peatiikki, 36

joonist, 1 tabelit.

List of abbreviations and terms

AC Software An Anti-Cheating software that prevents hackers from using
cheats
Aimbot A type of game cheat that moves the cursor to the correct position

(e.g., the head of an enemy)

Autonomous bot

A type of game bot that is playing the game independently

C#

A high-level programming language of the C family

C++ A high-level programming language of the C family
Cave bot A type of autonomous bot that explores locations and brings loot
Cheat With “hack” and “game exploit” — usually means either an

external or internal program that is capable of giving an
advantage to the person that uses it

Cheat Engine

A memory scanner

Cheating tool

A tool for hackers such as Cheat Engine or IDA Pro

CS: GO

Counter-Strike: Global Offensive, Valve Software game

DLL

A Dynamic Link Library

DLL injection

A four-step attack that allows a hacker to execute code inside the
target process

ESP A type of game cheat that usually can draw overlay such as boxes
that will display the entity’s location, health bar, other
information

eSports Electronic sports, video games competition

External exploit

Software that creates a process on the hacker's device, which
manipulates values in the target process. It usually uses Windows
API

Flash games Web-Browser games

FPS First-person shooter

Game exploit See “Cheat”

Hack See “Cheat”

HEX Hexadecimal, a number with a radix of 16
IDA Pro An interactive disassembler

Injector

A tool that is used to insert an internal exploit code into a game's
memory or any other process's memory

Internal exploit

Hacking a game internally involves inserting DLL (dynamic link
library) files into the game process, which allows the hacker to
directly access the process's memory for faster and easier
performance

IT Internet Technologies

Java A high-level programming language

JNA A Java library that allows to access process memory

MMORPG Massively multiplayer online role-playing game

ReClass.NET Ported to .NET ReClass memory scanner

Triggerbot A type of game cheat that toggles if some trigger was received
(e.g., the enemy is close)

VAC Valve Anti-Cheat

Wallhack A type of game cheat that allows a cheater to see through other
objects

War bot A type of autonomous bot that fights

White hat hacker

(also ethical hacker) A security specialist who aims to identify
vulnerabilities in a system and fix them

Table of contents

Author’s declaration of OriZINALILYccvviiviiiiiiiiiii 3
N 0L = Tod SRR USPPROPRRN 4
N g] r=] [T o OSSPSR 5
List of abbreviations and terMScoiiiiiiiiiriiee e e 6
TabIE OF CONTENTS ...ttt bbb nneas 8
LISE OF FIQUIES. ...ttt bbbttt 10
10T 11T [OSSPSR 12
1.1 Problem DeCIarationcccoeiiieieiisisieieiesie e 12
1.2 GOal O the TNESISecviiiieiieiee e 12

2 MELNOAOIOGY ...t 13
2.1 IMAAIN SOUICES ...evveveeteeniesieesieeseesieestaeseesseesteeseesseesseeneesseesseaseeaseesseeneeaseenseeneenneesees 13
2.2 Cheat ENQINE.....c.eiiiieiie ettt te e re e teennesneenrs 13
2.3 Programming languages to create a Cheatcccccevieceeie s 13
A (=T - 1S A | S 14
1228 1 7 = o TSRS 14

S BACKGIOUNG.......cvieieitiecie et et te e re e be e nneenas 14
3.1 History of game hacking.........cccooveiiiiiiicie e 14
3.2 Game Hacking and Cracking difference ... 15
3.3 TECNNOIOQY .. 16
3.4 CNEAL LYPES ...ttt aa e be e ae e re e 16
AL ESP NACKSvcviiiiece e 17
KB AN | 1o To] £ SRS RR 17

B 4.3 THIGUEIDOLS ... 17
344 AN ASSISE ..ttt ettt b e ettt nne e 18
3.4.5 AULONOMOUS DOTS.....oviiiiiiiiiiiiee e 18

3.5 AdVaNCed NaCKINGcoviiiiiiiie 18
3.5.1 REVEISE BNGINEETING ...ovviueerieeeieesiente ettt sttt se bbb snenneas 18
3.5.2 DLL INJECLION ..ttt sttt 20

3.5.3 Confidentiality, Integrity, and Accessibility violationcccccovennnne. 20

3.6 ANti-Cheating SOTIWAIEcoov i 21
3.7 Hackers and MAarket...........couiiiiiiiiiiiie e 22

4 ANAIYSIS ..ottt e re e e e rn 23
4.1 ASSAUITCUDEot 23
4.1.1 Memory Scanning: THEOMYccvoviiiiiiee e s 23
4.1.2 Memory Scanning: Practice in AssaultCube.........c.ccccocvivevieveciece e 24
4.1.3 Pointer SCanning: THEOIYcovveiiiieieece e 27
4.1.4 Pointer Scanning: Practice in Assault Cubecccooviiiiiiii 28
4.1.5 Creating Assault Cube EXploit usSing C#........ccoocoviiiiininiieee e 29

4.2 Counter-Strike: Global OffeNSIVE..........ccoiiiiriiii i 33
4.2.1 Scanning for ENtity ODJECTcocviiiiieie e 33
4.2.2 Using ReClass.NET to Reverse CS: GO Entity LiSt.........ccooeveiirencnininnne. 38
4.2.3 Disassembling Binaries and Finding Network Variables Offsets with IDA Pro
.. 42

5 SOIULION. ...ttt b e bbb 44
5.1 EXternal EXPIOIT.......oouiiiiiiiiieeee e 45
5.2 Internal EXPIOIT........oiviiiiiiieieee e 46
5.3 DLL INJECION ...ttt et re e te e eneennas 47
5.4 How Long Can Hackers Stay Undetected?cccccevvveveeieiicieec e 48
TSI O 11T o= 1 [0 o SR 48
5.6 White Hat POINt OF VIBWc..ooiiiieiiee e 48

B SUIMIMAIY ...ttt ettt et e e s st e e sa b e e sa b e e e ss b e e e ss b e e e snb e e e nsbeeenbneeenbeennnneas 49
RETEIBNCES ...ttt b e b bbbt esbe e 50

L1 TC]SSR 56
Appendix 2 — Getting ENity LISccooiiiiiiiiiiiiseeieee e 57
Appendix 3 — Show Entity Health DLL HacK..........cccccoeeiiiiiiiiic e, 60
Appendix 4 — Setting UP IDA PO ...covi ittt 63
Appendix 5 — Memory Read and Wcccooiiiiiiiiieeese e 65

List of Figures

FIQUIE L WAITNACK ..ottt 17
FIQUrE 2 IDA PrO 100KSooiieii ettt 20
Figure 3 Cheat ENQINE MAIN SCIEENccveiiieieeeieiteeie e st ste et re e e ste e sreesre e e 25
Figure 4 Select ASSAUITCUDE PrOCESS........cceiiiiiriiiiiieiee s 26
Figure 5 Memory address TiSt..........ooviiiiiiiieeee s 26
Figure 6 Narrowed down t0 tWO addreSSESc.ccverueiieiierie e 27
FIQUIE 7 POINTEIS.....eiiieceiece ettt st et et e st e e esaeesreenreeneesneenee s 28
Figure 8 Selected pointers in the cheating table pane ..., 29
Figure 9 Pointer and itS OFFSEcoviiiiiiiiiee s 29
Figure 10 Visual Studio "Create a NeW Project” PAgeccevvveveereesreerieseeseerieseesseennens 30
Figure 11 Visual Studio created fOrm.........cccovvieiieiiic e 30
Figure 12 Add memory.dll PACKAgEccoiviiiiiiiiiiiee s 31
Figure 13 Add application manifest file ... 32
Figure 14 Activate infinite ammO...........ccooiiiiiii e 33
Figure 15 Scan for health Value.............ccooiiiii i 34
Figure 16 RemMaining ad0rESSES.......cueueiiriiriirierieeiesiieee ettt 35
Figure 17 See what accesses Memory adaressccoeovierereeiineneienenee e 35
Figure 18 Assembly instructions that access address..........covevveveeieerieiieveeie e 36
Figure 19 Find out StatiC a0AreSSES........ccveiieiieiieiieeie et 36
Figure 20 assembly instructions at 70F4F850...........ccouiiieiiiiiirieeeee s 37
Figure 21 Entity health daresscoooeiiiiieiiiiseee s 37
Figure 22 Attach process in RECIASS.NEL.........cccviiiiiiiieec s 38
Figure 23 Insert correct Memory addressccveeveeiieeiiee e 39
Figure 24 Pointer to player ODJECTc.coiiiiiie e 39
Figure 25 Entity information ODJECTcccoiiiiiiiiiicc s 39
Figure 26 Offset OX100 Nealthcccovoiiiiiiiii s 40
Figure 27 Fully reversed StIUCTUIE..........oiiiiiie e 40
Figure 28 Generated CH+ COUB.......cciiiiiieiieie e 41

Figure 29 Show health NACKccviiiiiiiii e 41

Figure 30 Search iN IDA PrOccuiiiiiie ettt 42
Figure 31 Network variablesccoooiieiici e 42
Figure 32 Jump to cross-reference Operand............cccccveveiveiicieiiiese e 43
Figure 33 Offset of “m_iHealth” variablecc.cooiiiiiiiiiice 43
Figure 34 Offset of "m_ArmorValue” variable...........cccoooriiiiniinii e 44
Figure 35 Added armor offset to local player entitycccccceviieiieie s 44
FIGUIE 36 GIOW NACKocuieiicic et 45

11

1 Introduction

Game cheats have existed in almost all of video game history, and the attitude towards
them nowadays is very controversial. This thesis paper aims to tell about cheating in video
games, create an open-source video game cheating tool, explain the technology behind
cheating, show how easy it is to create such a tool, and show who is benefitting dealing

with cheats and what might be the reasons for someone cheating.

This thesis will strive to create an open-source video game cheating tool. Show various

ways of exploiting a game.

The relevance of the topic is driven by the latter growth of game cheats and hackers.
Gaming is a big industry, and the market behind developing and selling cheats is growing

with this industry.

1.1 Problem Declaration

Anti-Cheating systems in many games are not strong enough, a tech-savvy person with
no background in hacking can bypass them by studying game hacking over some time.

According to the old game hacking web forum “UnKnoWnCheaTs”, a big number of
Valve's games are hackable.[46] One of the reasons for that is the public code of their
game engine, “Source”. As will be demonstrated in the practical part of this thesis, one
studying the Source engine’s public code can develop a game hack that will bypass the

Valve Anti-Cheat system. This affects players’ experience in Valve’s online games.

1.2 Goal of the thesis

This thesis aims to show a method to bypass the Valve Anti-Cheat system. Describe in
practice the ways for making a cheating exploit on the example of Counter-Strike: Global
Offensive, and compare C++, C#, and Java for creating such an exploit.

12

2 Methodology

The methodology part will describe chosen literature, and tools, and explain the
difference between C++, C#, and Java for hacking.

2.1 Main Sources

The author of this thesis has chosen various books that describe: the topic background,
and general game hacking ways:
e Mark J. P. Wolf and Bernard Perron. 2014. The Routledge Companion to Video
Game Studies
e Cano, Nick. 2016. Game Hacking: Developing Autonomous Bots for Online
Games.
e Consalvo, Mia, 2007. Cheating: Gaining Advantage in Videogames
e McGraw, Gary and Hoglund, Greg. 2006. Cheating Online Games.

Besides, the author studied a closed web forum GuidedHacking that the author gained
access to by buying a subscription, and the oldest game hacking web forum. Forum has
hundreds of users, including game hackers with many years of experience in this area:

e https://guidedhacking.com

e https://www.unknowncheats.me

2.2 Cheat Engine

The main tool for creating game hacks is the Cheat Engine memory scanner. Cheat Engine
is a tool that helps to figure out how a game/application works and make modifications
to it. The scripting tools of Cheat Engine can create an exploit for many games without

using any additional software.

2.3 Programming languages to create a cheat

For making a cheat it is necessary to access the game’s memory, such languages as C++,

C#, and Java programming languages are all capable of game hack development.

13

https://guidedhacking.com/

For manipulating game memory, lower-level languages like C++ and C# are better, as
they provide direct memory access, and no additional libraries are needed, unlike Java
which needs the JNA library.

2.4 ReClass.NET

ReClass is a tool for reversing the structure of classes, intending to make it easier to
understand and analyze memory, define data types, and assign variable names. It is

particularly helpful when examining player classes and other objects.

2.5 IDA Pro

IDA, also called IDA Pro, is a tool that helps to understand compiled programs by
breaking them down into more easily readable forms. IT professionals and security
experts often use it to analyze software and is a favorite among elite game hackers. IDA
Pro is a disassembler that converts complex data types and binary instructions into simpler
code for analysis and investigation. It can also create maps of execution to show the
instructions in a more human-readable form and can be used to analyze software on

multiple architectures.

3 Background

The background part will cover the roots of game hacking, show various game cheat

types, and describe game hacking tools.

3.1 History of game hacking

The earliest game cheats appeared a very long time ago when the game industry started
to develop. At first, game developers created and used them in the form of “cheat codes”.

These codes were secret passwords or a combination of controller buttons pressed in a

14

particular order. Codes were a normal part of a game environment, as they allowed
developers to skip levels, and rooms, delete monsters or add weapons. This way it was
easier to check a game for bugs and glitches.[1] In the year 1981 the game called
“Wizardry: Proving Grounds of the Mad Overlord” came into the light, and it quickly
became one of the most popular games for Apple Il computers.[2] Soon after the game's
release, third-party vendors started to offer programs that could alter characters’ statistics
and rescue dead characters left in the dungeon. Such programs were so popular, that when
the second game from the Wizardry series was released, the Sir-tech? inserted a sheet into

the game boxes, contents of this sheet were the following:

[It has come to our attention that some software vendors are marketing so-called “cheat
programs.” These programs allow you to create characters of arbitrary strength and
ability. While it may seem appealing to use these products, we urge you not to succumb
to the temptation. It took more than four years of careful adjustment to properly balance
Wizardry. These products tend to interfere with this subtle balance and may substantially

reduce your playing pleasure. ...][2]

Such commercialized cheat programs were then sometimes advertised in computer games
magazines.[3] TV shows such as “Cheat!” appeared, and the show description was
saying: [Cheat! keeps gamers ahead of the game with strategies, secrets, and cheats for

their favorite video games.][4] The community of cheaters started to grow and develop.

3.2 Game Hacking and Cracking difference

Speaking about the difference between game hacking and game cracking, the main
difference is that crackers are not willing to get any advantage in a game, both hackers
and crackers indeed use similar tools for doing their job, however, whilst hackers try to
find specific values, disassemble them and understand how to get an advantage using their

code, crackers try to get through a license authentication process. Thus, crackers are

! Sir-tech Software, Inc. - video game developer and publisher founded by Norman Sirotek and Robert
Woodhead.[2]

15

trying to get a game for free. However, white hat hackers and cracker reports found
vulnerabilities in the software owner and often get bounties for that.[47]

3.3 Technology

Games consist of thousands of lines of code, which consist of sets of functions and
variables carrying values. Some of them represent a player’s health, other ones are
responsible for in-game currency. It depends on the game and how secure it is. Basically,
for Flash games,! it is only a deal of installing special software like Cheat Engine? and

changing specific values. The Internet has plenty of tutorials for these kinds of games.[5]

The situation for more advanced game types is slightly different, professional game
hackers spend hundreds of hours trying to find the vulnerabilities and develop game
cheats.[6]

3.4 Cheat types

Advanced game cheats include different kinds of extrasensory perception (ESP) hacks,
which give the advantage to see enemies before they see a player e.g., wallhacks (seeing
enemy through the wall), radar hacks (seeing enemy on minimap or radar when he is
supposed to be hidden), etc. The second important side of hacks are responsive hacks,
which react to in-game events or help a cheater to react to them, they include e.g., aim
assists (similar to console games aim assist), aimbots (hacks that aim for the player (and
sometimes even attack)), trigger bots (attack when an enemy is at gunpoint), etc. On top
of that, there are also autonomous bots, usually, it is a piece of software that pretends to
be real gamer and performs tasks depending on the settings (e.g., farming gold, going to
the dungeon, completing quests, etc.). These bots can either work with other types of
hacks (ESPs, responsive hacks) or behave like a legit gamer.

! Flash games - web browser games, usually they have from little to no cheat protection.

2 Cheat Engine - a game memory scanner that searches for values like player’s health, level, in-game money,
etc.

16

3.4.1 ESP hacks

ESP (Extra Sensory Perception) hacks give players an advantage by intensifying their
ability to percept the game world. For example, cheaters can see enemies before they see

cheaters, here’s an example:

Middle

+5150; Award ft y with the Glock-18.
+5150: Award f iy with the Glock-18.

@& B0 emmm @ 95—

Figure 1 Wallhack
Figure 1 shows that a player sees other players through the object. More advanced ESP
hacks can also help find items & loot, the enemy's health, and other tactical information.

3.4.2 Aimbots

An aimbot is a piece of software that locks a player's cursor on the enemy. It helps to
maximize the damage, it can, for example, instantly move a cursor to the enemy's head
or any other vulnerable spot. Aimbots rely on accessing the game memory to detect

information such as the position or visibility of other players to function. [11]

3.4.3 Triggerbots

Triggerbot is a similar software to aimbot, however, instead of moving and locking the
player’s cursor on the enemy, it triggers some actions, when the player on one’s own
places the cursor on a desired spot. Example: the player moves a cursor on the enemy,
triggerbot clicks a fire button.[37]

17

3.4.4 Aim assist

Gamers are arguing about this type of cheat, from one hand — aim assists legally exist for
the controller players, since it may take years of practice to make precise movements
using controller thumb sticks. On the other hand — to a lot of players, it gives people an
unfair advantage. According to game developers, this goal assist is not cheating.
However, aimbots for keyboard and mouse players can be configured to act exactly as

aim assist for controllers. Properly configured, this type of cheat is hard to detect.

In the ESports scene pro players from time to time get caught using this type of cheat,

since there’s big prize money in the tournaments, for some, it is tempting to use it.[36]

3.4.5 Autonomous bots

This type is often used in MMORPG games, such as World of Warcraft, RuneScape, or
Lineage — these games consume a lot of gamers’ time to achieve goals. MMORPG games
require players to gain in-game values, like gold, treasures, supplies, clothes, etc.

Bots are configured to automatically play games for hours on end, they are usually
separated into two groups:
1. Cavebots, which can explore caves and bring home the loot

2. Warbots, which fight enemies

3.5 Advanced hacking

Making a hack is not only limited to searching for some address in memory and changing
it, advanced hacking techniques require reverse engineering skills[8], being able to code

a DLL (dynamic link library) injector, and bypassing anti-cheating software.

3.5.1 Reverse engineering

By itself, reverse engineering means understanding how something works. In the case of
software, a reverse engineer should have experience in reading and write in both high-
level and low-level languages, where high-level means any programming language that
is considered for software developers (C#, Ruby, Python, Java, etc.), and low-level

usually means machine code or assembly language.

18

Whilst manipulating game memory is not by itself an illegal action, but more than often
IS just a violation against “Terms of Service”, reverse engineering software might have
some serious legal consequences, because it allows not only to manipulate game code and
get a fancy gun but also to defeat copy protection or digital rights management
schemes.[9](see 3.2)

When it comes to reverse engineering a game, more often than not the following tools are
being used:

1. IDA

2. x64dbg

3. Ghidra

4. OllyDbg (for 32-bit games)

Out of these tools, IDA has the most powerful functionality — it has a disassembler,

debugger, and, as an additional plugin, a decompiler.

19

20110921 09116201 29110009 20110092 20110200 22112000 2011920¢ 20112001 09110201 22110920 99119200 92110001 22110991 20118221 02110091 22110990 09091218
20110828 00116201 29110000 20110881 00112600 PA112008 £2110288 @0118800 62110208 22110931 20118801 98110008 28110891 20118221 02110008 22110881 80621818
208110881 09116201 29110001 201108381 00112600 PA112008 £2119382 G01122008 02110201 22110231 80118200 9811080081 22110021 20118221 03110008 22110808 99021218
20110021 ealleael 22110001 20110222 00112800 20112001 22112222 20112201 62112201 20110231 29112201 29118801 22110021 20112220 02110091 22110021 22021218
22116821 0alléaed 00110002 20110081 00112800 20110000 £2119302 20112201 42110208 20110231 20110200 28110001 22110021 28110221 02110001 22110001 20821218
eellogee 0011220l 99112001 22110201 00lleee0 99110000 £211920l GOllecod 92119009 22119020 98112200 @2110001 22110201 98lleeel 02110001 22110020 eos2lele
@9lloael 001le00l @91l000l 09110201 001le009 99110001 00119201 0Ollec00 92119001 22119991 98112201 @2110001 22110801 98110001 02110000 221109091 20821010
@01lo20l 00112201 29112002 20110221 00lleeol 92112202 £2110221 GOlleeod 02110201 22112920 28112200 02110001 22112290 28112001 02110001 22110021 22821210
20110920 09110000 29110001 20110091 20110201 292112001 20119291 20112000 09110201 22110920 99119201 92110001 22110991 20112221 02110091 22110991 99091218
20110881 00116208 B9110001 201108828 00118601 23110008 22110881 20118801 621182808 281102881 99118881 A3110801 282110281 20118800 041160000 228110881
2000181200112621 03112001 42110088 G0116260 @P112200 28110038 281188280 90112021 /2110021 28118320 02116000 B2110001 20118821 00112001 22110031 £0112828
20001212 ealleaes 22110001 20110222 00112201 20110000 £2112222 20112200 02110200 20110222 22112221 22110001 22110208 20112201 02110021 22110022 ealldaal
2eealale ealleanl 40110001 20110081 00112801 23110006 £2119302 20112200 42110208 20110231 22118201 281128208 242110821 281182021 02110001 22110802 02113228

eee il DECOMPILER pal
200’ 1100¢ L
2o 1lleee pele]
200 ; CODE XREF: 1108 dword_Se4F78@ = 2 * (v9 != 8) + 1; 21
20 s j 1108¢ if (stretr(dword_884FFD4, "unzip") || strstr(dword_8BaFFD4, a1
20 mov [esp+28htvar_24], offset aUnzip ; 1108€ "UNZIP")) 121
200 "unzip” 11888 dword_S24FBAC = 2; el
000 xor eax, eax if (strstr(dword_SB4FFD4, "z2
test esi, esi | strstr{dwerd_S84FFD4, "
setnz sl | strstr(dwerd_sesFro4, "
mov edx, 1 | strstr{dword_S84FFD4,
mov ds:dword_B@4FBAC, edx {
lea eax, axt+eaxtl] dword_BO4FBAC = 2;
mov ds:dword_S@4F788, eax dword_BB4F780 = (v3 != 8) + 1
mov eax, ds rd_S@4FFD4
mov esp+28htvar_28], eax dword_884F780 = 2 * (v9 != @) + 1;
call _strstr if (strstr(dwerd_824FFD4, "unzip") || strstr(dwerd_B884FFD4,
test eax, eax "UNZIP"))
jz loc_824C4F1 dword_8B4FBAC = 2;
if (strstr{dword_Se4FFD4, "z
loc B@4BCFF: 3 CODE XREF: | retr(dword_824FFD4, "
sub_8@4BB16+9F8j | strstr(dword_824FFD4,
mov eax, 2 | strstr(dword_S@4FFD4, "
mov ds:dwerd_Be4ar eax i
vierd S04FBAC = 2}
loc_B@4BDO9: ; CODE XREF: dwerd_804F780 = (vO !=8) + 1

sub_834BB18+9FE]

Figure 2 IDA Pro look
3.5.2 DLL Injection

DLL injection is a four-step attack:
1. Attach to the process
2. Allocate Memory within the process
3. Copy the DLL into the process’s memory

4. Instruct the process to execute DLL

DLL files may contain any malware code in them.

3.5.3 Confidentiality, Integrity, and Accessibility violation

Looking carefully, it is obvious that a hacker can, and actually, many of them do violate
confidentiality, integrity, and accessibility.

Using tools that were described earlier (like Cheat Engine or more like Wireshark), it is

possible to find the server's address and player’s IP addresses, which can allow a hacker

20

to determine the geolocation of a player, its client properties, etc. Also, it can be a target
for DDoS Botnet attacks.[35] This is a violation of accessibility and confidentiality.

Perhaps the easiest in implementation, though a dangerous spam bot can also be made
using a chat message game address and writing there basically anything, including fishing
websites, which are dangerous in terms of all CI1A principles.

3.6 Anti-Cheating Software

If before cheats were something new, even something that was advertised in newspapers
and on TV, then now the majority of people condemn cheating and big game companies
like Valve or Electronic Arts focus on taking some measures against cheating and
developing sophisticated detection suites called anti-cheat software. The purpose of these
anti-cheats is to detect cheats and prevent gamers from utilizing cheats, usually punishing
them by using a banhammer, sometimes for a lifetime.[10]

The concept of anti-cheat technology is developing, some older AC software were
performing quite simple tasks, e.g., Intel anti-cheat technology as of 2007 was working
like this — chipset records all input from the keyboard and mouse, and the game does the
same. If they don’t match, and something is manipulated within in-game values, then a

cheater is caught.

Some of the notable modern AC software are BattleEye, GameGuard, PunkBuster, VAC
(Valve Anti-Cheat), and EasyAntiCheat.

For example, the VAC system scans a player's computer in the background for cheats
while the game is running. In this sense it works similarly to anti-virus software, it has a
database of known cheats to detect, and it also detects game file modifications and

dynamic link libraries.[16]

21

In the real world, bypassing anti-cheating software is relatively easy to do. First and the
most important rule — do not be a “script kiddie”* and write a hack code manually. There
are a ton of cheats on the Internet, however using own, the personal cheat will already

help to avoid 99% of bans.

There are different ways of bypassing anti-cheat, however, if speaking more modern anti-

cheats, everything comes to mapping a cheating driver before the anti-cheat loads.[17]

3.7 Hackers and Market

However, whilst getting a few extra gold coins in a flash game is like fun, making

advanced game cheats usually has other purposes and intentions.

Gaming is a big industry, with a revenue of $131 billion (in 2018)[8] and 2.6 billion video
gamers around the world.[9] In such a big money pit there are a variety of opportunities
to earn money. Game studios sell their games, gamers record themselves playing them,
some of them even making a decent living participating and winning in global eSports

tournaments,[10] and some are making a pretty penny developing and selling cheats.[6]

Let's take MMORPG games as an example. These types of games usually have in-game
currency (e.g., golden coins) and/or items, and to obtain them, players have to spend
hours, days, and weeks farming. The gamer communities often have an interest in buying
gold or items (e.g., because of the item statistics or item rarity). This is why hackers can
either use their software to farm themselves and then sell their in-game profits or sell their
software to players who wish to seamlessly obtain levels or farm gold and items with
minimal interference. Due to the massive communities surrounding popular MMORPGs,

these game hackers can make between six and seven figures annually.[6]

If speaking about competitive types of games, then it is even more clear, as many of them

have eSports tournaments, a prize pool which is increasing from year to year and

L Usually a “script kiddie” is a person who is using already existing solutions/software/scripts to perform a
hacking attack.

22

sometimes can reach as much as millions of USD.[11] Taking that into consideration, the
price eSports players can pay to get private, timely updated, undetected hacks to win

tournaments can be very high.

One more example is Twitch streamers and YouTubers that lure an audience by showing
how “skillful” they are. Live streamers and video content creators gain popularity not
only because of how fun they are but also because of their skills. Professional gamers (not
necessarily eSports players) are known to become popular and get some donations from
viewers for being good at games, and some of them resort to cheating to achieve that
popularity (sometimes achieving a ban).[12]

4 Analysis

The analysis part will describe game hacking, first in Assault Cube, a common game to
start practicing game hacking, it does not have any anti-cheating software, then in

Counter-Strike: Global Offensive, which is protected by Valve Anti-Cheat.

The Assault Cube part is a brief example of scanning memory and looking for pointers,
creating an external trainer.[22] The CS: GO part is thorough, where besides Cheat

Engine the author will use an Ida Pro disassembler, and ReClass memory scanner.

4.1 AssaultCube

AssaultCube is a free multiplayer FPS game, it can be downloaded from the original
website.[18] Assault Cube is a recommended game to start learning game hacking. In this

paper, the author uses the 1.2.0.2 version of the game.

4.1.1 Memory Scanning: Theory

Unlike humans, the software cannot determine a game's state just by looking at the screen.
Games are built using code, our computers “perceive” it as thousands of lines of zeros

and ones.[19] Our computers can understand numeric representation of a game’s state,

23

thus when a hacker wants to know which piece of code represents our game health, ammo,
or character moving speed, they need to use memory scanners.[6]

Memory scanning can help hackers with creating a cheating exploit, for example, if they
were playing a game with shooting mechanics, perhaps they would first seek for ammo
value location in the game's memory using a memory scanner, then create software to

change this value according to their needs. Take a look at the next pseudocode:

ammo = readMemory(game, Ammo_Location);
loop (true)
if (Infinite_Ammo_Checkbox == true)
WriteMemory(ammo, 8000);
Wait(2);

In the pseudocode above, the hacker first writes read memory of ammo in a game, then
they create a loop, which rewrites the value into this part of memory.[6]

4.1.2 Memory Scanning: Practice in AssaultCube

For the practice part, the author is going to use Cheat Engine version 7.4 as a memory
scanner, and AssaultCube as a game to be hacked.

Cheat Engine is freeware and can be easily downloaded and installed from the original

website.[20] Let’s take a look at this software’s main screen.

24

File Edit Table D3D Help

o]

Mo Process Selected

Advanced Options

Found: 0
Lddress Value Pre... First Scan Mext Scan Undo Scan | g
Settings
Value:
Hex
Scan Type| Exact Value ~ Lua formula
Value Type 4 Bytes ~ Not
Memory Scan Options Unrandomizer
All N Enable Speedhack
Start oooooooaaooaaoon
Stop OO00FEEEffEE£££F
< Writable Executable
CopyOnWrite
Alignment
| Fast Scan | 4 . -
Last Digits
Pause the game while scanning
" Memory View %) | Add Address Manually |
Active Description Address Type Value
Table Extras

Figure 3 Cheat Engine main screen

25

AssaultCube
File

Applications Processes Windows

i —

o
% Attach debugger to process ‘
5rhsiios Nework |

Figure 4 Select the AssaultCube process
As can be seen in Figure 4., the author has 100 health points and 20 bullets of ammo
loaded. Then the author created a new scan for ammo value, thus scanning the game

process for value “20”.[21]

Found: 5,445

Bddress Veee Puu. Fouuo ™ | Mew Scan | | Mext Scan
00180FFC 20 20 20 Value:
00191580 20 20 20 Hex [J[20
00ls3acse 20 20 20
00193R44 20 20 20 5can TI-'PE| Exact Value v
00193C5C 20 20 20 Value Type [HENES "
nolsszsc 20 200 20 [] Compare to first scan
00158678 20 20 20 .

Memory Scan Options
0018DF4C 20 20 20

All ~
0018EQ7TC 5 20 20
0019E14s 0 20 20 Start gooooooooooooono
00158F4CC] 20 20 Stop Qo007 ffffff££££ £
0013FeE0 l... 20 20 Writable Executable
0019FAS0 3... 20 20 CopyOnWrite
001F0BCY 20 20 20 Alignment
001FO0D0S 20 20 20 Fast Scan | 4 Last Digits
001FOE4QD 20 20 20 . .

Pause the garme while scannin

001 F20FN 20 20 20N 7 \' g -

Figure 5 Memory address list

26

Initially, the author got 5,445 addresses with the same value. Now one would want to
narrow down the amount of these addresses. The author spent some ammo and created a
next scan for an updated value. The author has to perform this action until as few

addresses as possible.

W 000010C0-ac_client.exe
UL)
Found: 2
Bddress Value Previous First MNew Scan MNext Scan Undo Scan
00EB21D0 17 17 20 Value:
122F73FC 17 17 20 Hex I:||1-?
Scan Type|Exact Value ~ | [JLua formul;
Value Type| 4 Bytes []Net
[] Compare to first scan
) [JUnrandomi
Memory Scan Options [Enable Spes
All
Start Ooooooooooooooon

Stop OOOD7EEEEEE£E£EE

Figure 6 Narrowed down to two addresses
After several scans, the author got two addresses, which could possibly represent the
ammo. Let’s add both of these values to our cheat table pane by double-clicking them.
Next, a hacker wants to perform some actions with these values, so they would know
which value is the ammo value. This can be simply done by modifying the value number
or freezing this value by clicking the “Active” checkbox. Now in-game ammo quantity is

either updated or frozen, depending on the actions performed.

At this point, the memory value is already modified.

4.1.3 Pointer Scanning: Theory

Games often store values in dynamically allocated memory, before this paper was dealing
with static memory, which by itself is not beneficial, since one would need to scan a game
for static address after every game restart. To make a working cheating tool, one needs to
get a dynamic memory address of the desired game value.

The static address always points to another static address, which points to another static

address and so further on.[22] This is called a chain of offsets (or a pointer chain).

27

4.1.4 Pointer Scanning: Practice in Assault Cube

Cheat Engine has the functionality to scan pointers. To do this, one would need to right-

click on the ammo address and then on “Pointer scan for this address”.[23]

Pointer scan : AmmoPointer.PTR

File Distributed pointer scan Pointer scanner

4 Bytes ~ Pointer paths:947

Base Address Offset 0 Offset 1 Offset 2 Offset 3 Points to: 2
“ac_client.exe"+00156344 64 3C tle 0 ODGE21D0 = 13
“ac_client.exe"+0015B3B0 64 ac Ele 0 006B21D0 = 13
"libpngl1e-16.dIl"+0002E... &4 3C Ele 0 00BE21D0 = 13
"SDL2.dII"+D00F507C &4 3C tle 0 00BE21D0 = 13
"SDL2.dII"+ 001034 CC &4 3C tle o 0D6E21D0 = 13
"SOL2.dII"+001094E8 64 Ele Ele 0 DDBE21D0 = 13
“THREADSTACK"-00000... 2C C tle 0 DDBE21D0 = 13
"ac_client.exe"+0008750C BED C tle 0 ODGE21D0 = 13
“ac_client.exe"+001000A4 BED C tle o 0D6E21D0 = 13
“libvorbis.dil"+00011B2C BBO C Ele 0 DDBE21D0 = 13
“libvorbis.dll"+00011CC8 BED C tle 0 DDBE21D0 = 13
“libvorbis.dll"+00011D60 BEO C tle 0 ODGE21D0 = 13
“libvorbis.dil"+00011F24 BED C ic 0 DDGE21D0 = 13
"SOL2.dII"+D00ADDAD BBO C Ele 0 DDBE21D0 = 13
"SOL2.dII"+000B35SAC BED C tle 0 00BE21D0 = 13
"SDL2.dII"+D00B3ASE BED C tle 0 ODGE21D0 = 13
"SOL2.dII"+ 00054304 BDO C Ele 0 006B21D0 = 13
"SOL2.dII"+ 00064584 BDO C Ele 0 00BE21D0 = 13
"ac_client.exe"+00126CT0 3C0 FC tle 0 00BE21D0 = 13
"libvorbisfile.dll"+ 000044, 444 FC tle o 0D6E21D0 = 13
"ac_client.exe"+0017D848 68 34 44 0 DDBE21D0 = 13
"ac_client.exe"+00170854 68 34 44 0 DDBE21D0 = 13
"ac_client.exe"+00170848 12 64 44 0 006E21D0 = 13
“ac_client.exe"+001708534 18 64 44 o 0D6E21D0 = 13
“THREADSTACKD"-00000... 138 02475F10 = 601665252

Figure 7 Pointers
A lot of pointers are shown, which point to the ammo memory address. Again, one would
need to narrow down the number of results. For this, restart the game and find the ammo

memory address once again.
The next step is to rescan the pointers list (Pointer scanner => Rescan pointer list) with

the new value, this will throw away wrong pointers. Ideally, this step should be redone a

few times, so one would get not more than twenty pointers.

28

When this step is done, one would want to get some addresses into the cheating table

pane and reset the game again. Test the pointers like the author did previously with an

ammo memory address by clicking the “Active” checkbox.

Memory View

%

Add &ddress Manually

ctive Description

Mo description

Mo description

pointerscan result
pointerscan result
pointerscan result
pointerscan result
pointerscan result
pointerscan result
pointerscan result
pointerscan result

OO0000000O0XROC &

pointerscan result

Advanced Options

Address
DOEB21D0
DO7AIFTD
->00922BCE
->00922BCE
->00922BCE
-»T26F6381
->00922BCE
->0052E48C
->00922BCE
->00922BCE

=R = Ry = iy = iy = iy = [y = = Iy |
'

Type Yalue
4 Bytes [

4 Bytes i

4 Bytes 20

4 Bytes 20

4 Bytes 20

4 Bytes i

4 Bytes 20

4 Bytes i

4 Bytes 6646395
4 Bytes 20

4 Bytes 20

Table F_xtrasi

Figure 8 Selected pointers in the cheating table pane

It is necessary to check every pointer until the right one is found.

1

Change address

Address:

|m9125c5

=20

Description

| pointerscan resu Iﬂ

Type
4 Bytes

[]Hexadecimal

Pu:uinter

Add Offset

ac_ C|IEﬂt exe"+001 '-"EDAS _]

[Signed

Remov

Cancel

00922438+ 140 = 00022BCE

-»00922A88

et

Figure 9 Pointer and its offset

Write down pointer (2) and its offset (1), it is needed to create the exploit.[21]

4.1.5 Creating Assault Cube Exploit using C#

This paper will show an example of creating an exploit application based on .NET

Windows Forms.

29

Create a new project

Recent project templates C All platforms All project types

ows Forms App
t template for creating a .NET Windows Forms (WinFarms) App.

Windows Forms App ((NET Framework)

Mobile App (Xamarin.Forms) c# Windows Desktop

Windows Forms App (.NET Framewaork)
A project for creating an application with a Windows Forms (WinForms) user
interface

Console App

\ e Deckdon Wiz
Windows Desktop Wizard s Windows Desktop

Empty Project
» use in Windows Forms (WinForms) applications

Desktop Library

(WinForms).

c# Windows Desktop Library

t template for creating a control library that targets MET Windows Forms
orms).

Figure 10 Visual Studio "Create a new project” page

The author has created a window for the exploit, added a checkbox, and named it “Infinite

Ammo”.

Solution Explorer < Form1.cs [Design]* & X

Search o orer (Ctrl+:) o¥ AssaultCube Trainer EI@

B3 s | e (1 of 1 project] [Infinite Ammo
4 [c# AssaultCubeHack
b #& Dependencies
4 [Forml.c
P C#® Forml.Designer.cs
& Form1l.n

b C# Program

Figure 11 Visual Studio created form
In the load method of the form, the author made a string “Infinite ammo™ and gave it a

value of the pointer and its offset.

public static string InfiniteAmmo = “ac_client.exe+0x0017EQA8,140”;

30

Add memory.dll class from the NuGet packages repository. It’s needed to write to a

memory address.

NuGet: AssaultCubeHack + X >

Browse Installed Updates NuGet Package Manager: AssaultCubeHack

memory.dl x- 0 Include prerelease Package source: nugetorg ~ &

Memory.dll.x64
Memory.dil
Read and Write

Version: Latest stable 1.2.23

Memory.dll.x64 by NeWaGe, hollows7, 8,36K downloads

Read and Write to process memory. Make PC cheat trainers easily! ¥ Options

Description

Figure 12 Add memory.dll package

Initialise class:
Mem memory = new Mem();

In the form load method check if the game is already opened, if it is — start a new thread

for the write method and let it run in the background.

private void Forml_Load(object sender, EventArgs e)

{
int ProcessID = memory.GetProcIdFromName("ac_client");
if (ProcessID > 0)
{
memory.OpenProcess(ProcessID);
Thread WA = new Thread(WriteAmmo) { IsBackground = true
}s
WA.Start();
}
}

Write method:

private void WriteAmmo()

{
while (true)
{
if (checkBox1.Checked)
{
memory .WriteMemory(InfiniteAmmo, "int", "8888");
Thread.Sleep(100);
}
Thread.Sleep(100);
}
}

The last step is to add an app manifest file to the solution:

31

Add New Itern - AssaultCubeHack

4 |nstalled Sort by: Default g Search (Ctrl+E)

4 Visual C# ltems — - - c . .

= = Application Manifest File (V Vicual C# [tems
Code)
Data
General

b

Assernbly Information File Visual C# ltems
Bitrap File Visual C# tems
Code Analysis Rule Se Visual C# ltems
Code File Visual C# ltems

Graphics - . . =
P Cursor File Visual C# ltems

P Online

Custom Contro ws Forms) Visual C# ltems
DataSet Visual C# ltems
Debugger Visualizer Visual C# ltems
editerconfig File (NET) Visual C# ltems
editerconfig File (default) Visual C# ltems

ontext Generator Visual C# ltems
EF 6 DbContext Generator Visual C# ltems

Icon File Visual C# ltems

Mame: appl.manifest

Figure 13 Add application manifest file

Inside the application manifest file, edit the next line from:
<requestedExecutionLevel level="asInvoker" uiAccess="false" />
To:

<requestedExecutionlLevel level="requireAdministrator” uiAccess="false"

/>

32

v
/v\

i

5 AssaultCube Trainer — O X

Infinite Ammo

.ly'

B

Figure 14 Activate infinite ammo

Exploit now sets ammo at 8888 every 100 milliseconds.[24]

4.2 Counter-Strike: Global Offensive

CS: GO is one of Valve’s games that can be hacked. Since the game is running under the
Source game engine, the methods are applicable (and sometimes similar) for other Source

engine games, like Team Fortress 2, Counter-Strike: Source, Half-Life, etc.

4.2.1 Scanning for Entity Object

Before any scanning/memory manipulation, the game has to be started without the VAC

module by providing an -insecure startup setting.[25]

In the game entity object means class, like a class in programming.[26] To start, in CS:
GO a hacker needs to find a static entity list memory pointer. They do so by finding entity
health dynamic addresses in the Cheat Engine. Then they will create a hypothesis, where
they could find static entity object and static health address.

33

It is obvious that entities start health is 100, thus in Cheat Engine attach the “csgo.exe”

process and scan for the exact value 100, 4 Bytes type.

File Edit Table

o=

Found: 85,682

D30 Help

Lddress

00792804
O07CZERS
007CRDO4
00BG35D4
00B&3BEC
00BG40BO
O0B&40BS
00BG40C4
Q0B7DERD
O0BTET1E
00BSD514
O0BRLZ&C
00C30860
00C35544
00C3R200
00C3REEC
O0C3RAEN

Memory View

000044DC-csgo.exe

Mew Scan Mext Scan

Value:

Undo Scan
Settings

Hex |:||1DU|

Scan Type Exact Value

Value Type| 4 Bytes [INot
[] Compare to first scan
M 5 Ot []Unrandomizer
emory 3can Options []Enable Speedhack
All
Start nogoogooaoooaoonn
Stop DOOO7fEffEE£fEE££E
Writable Executable
CopyOnWrite
Fast Scan| 4 ixlignr'!'u':.nt
Last Digits

\ Pause the game while scanning

%)

Figure 15 Scan for health value

~ | []Lua formula

Add Address Manually

A quite huge number of results will be shown. To narrow it down, the enemy can be shot

at, then the next scan for the exact value is performed. The process should be repeated

until the minimum number of dynamic addresses is left.[6] They all are related to health,

if modified, some of them (server-side addresses) can change entity health if the server is

hosted by a player. Add all remaining addresses to the address list.

34

File Edit Table D30 Help

B B 0000440 C-cego.exe

Found: 8
Lddreas Valus Previous First Mew Scan Mext Scan
0DB221D4 22 a2 140 Malise
0FEFFB28 82 82 100 Hex (][22
35CBO454 g2 g2 140
604D30CC g2 g2 100 5Scan Type| Exact Value
EEORSARC a2 a2 100 Value Type 4 Bytes
GEFESE38 g2 g2 1oo [] Compare to first scal
OF4Fa5]) 8 an
All
Start pooooooo
Stop DO0O7fff
Writable

CopyOn\Write
Alignrme

Last Dig
\ Pause the game while scann

Fast Scan | 4

Figure 16 Remaining addresses
The next step is to check what accesses these addresses by right-clicking on them and
choosing “Find out what accesses this address”. There is not a straightforward simple way
to find the needed address, however more often than not it is intuitive, most likely
following game logic.[27]

TR ¢ o ¢ e w ¢ rmarie wa - g e [s ——— [

OURSEDDSC 77AA140 7TAR... T7AA... Toggle Selected Records Space
ORSEDESS 77AR140 7TAR... T7AR... .

0RRF5050 77MA8140 TTMA... 77BA... | Conemiepointermap

0B325253 77AA3140 77AR... 77AA... | 4 Pointerscan for this address

0B3252B4 77RAZ140 77RA... T7RRE... . Find out what accesses this address F5
0B325310 TTARAS140 77ARA... TTAA... E Find out what writes to this address F&
NMR3253aAC TTARRTAN TTRA. .. TTRA. .. Y

DBYM Find out what writes or accesses this address
Memory View 5
Recalculate new addresses

Active Description f Force recheck symbols

|:| Mo description 0

[] Mo description 0| < Cut Ctrl+X
[] Ne description 3N Copy Ctrl+C
D Mo description B [Paste Ctrl+V
|:| Mo description B

[] Mo description 6l + Addto new group

Mo description M 4 Create Header

Mo description

Figure 17 See what accesses the memory address

35

The following

C Instruction Replace
94, 79422022 - 83 BF 20020000 00 - cmp dword ptr [edi+00000230],00
94... T94F3A50 - 83 BY 30020000 00 - cmp dword ptr [ecx+00000230],00 Show disassembler
94.. TI4F3A0A - 83 B 30020000 00 - crp dword ptr [ec+000002301,00
94.. 794F3C9B - 83 B9 30020000 00 - cmp dword ptr [eod+D0000230],00 Add to the codelist
94... TO4FTCOY - 83 BE 20020000 00 - cmp dword ptr [esi+00000230],00 ; ;
94.. 79427AGB - 8B BT 30020000 - mov esi, [edi+D0000230] R |
36... T934AEBG - 8B 08 - mov ecx,[eax] compare two operands |
15... 79439093 - 8B 87 30020000 - mov eax, [edi+0D0000230]
~
EAX=T9B54CCO
EBX=77AA9I208
ECX=TTAAR140
EDX=7775A850
ESI=T7AAR140
EDI=79C07DCO
ESP=00BTDCE0 |
EBP=00BTDCE4 v

Figure 18 Assembly instructions that access address
These assembly instructions say that something happens at pointers [ecx+00000230],
[edi+00000230], [esi+00000230]. Below, are the addresses of these ECX, EDI, and ESI
registers, they are all the same. Now, let’s scan for the Hex address 77AA8140.

Cheat Engine 7.4

File Edit Table D3D Help

L& B 000044DC-csgo.exe

Found: 50
Lddress Valus Prev... First ~ Mew Scan Mext Scan Undo Scan _
0DEDTTAC 77RRE140 77AA... T7RRL... Value: ettings
ODBRCO03E 77RRE140 TTAA... T7RL... Hex |??AA314C1
ODBC2R9% 77RAS140 77AA... T74A4...
OF42FTRD TTAR5140 7TAR... T7AR... Scan Type Exact Value | [JLua formula
0F79E420 77RRE140 77AA... T7LRL... Value Type 4 Bytes [Mot
OFBS0L04 77RES140 77AA... T7RRL... e — .
OFFE7L64 77RES140 77AA... T7RRL... Memory Scan Options (] Unrandamizer
15198260 77RRS140 77AA... T7RR... [Enable Speedhack
35CES1CC 77RRE140 77AA... T7RRL... -
TTRAS15E TTARS140 TTAR... TTRA... Start nooogooooaooooan
77BAG238 77RAS140 77AA... T74A4... Stop NO007ffEffffefeef
77AA5390 77RAS140 77AA... T7RA4... Writable Erearell
77RADAEC 77RRE140 77AA... T7LRL... CopyOnWrite
server.dl... TTRRE140 TURR... TTRR... Alignment
server.dl... T7BAS140 77AR... T7RA... FastScan | 4 Last Digits
server.dl... TTARE140 T7RR... TTRR... . \ Pause the game while scanning
Memory View @ Add Address Manually

Figure 19 Find out static addresses
Green address in Cheat Engine means static address.[28] The static address will not

change after the game restart. However, this static address is from the “server.dll” game

36

module. This game module will change only server-sided values, which is irrelevant in

case one would want a cheat to work online.

So, repeat the process with the next dynamic address (70F4F850).

The following opcodes accessed TOF4FE50

C... Instruction

Replace
... 26B2C9E0 - 8B &1 00010000 - mov eax, [eca+00000100]
1 26BC145C - 8908 - mov [eax],ecx Show disassembler
Add to the codelist
Mare information
26B2COAF - CC - int 3 - copy memaory

26B2C9B0 - 8B 81 00010000 - mov eax,[ecc+00000100] <<
26B2C9B6 - C3 - ret
26B2C9BY - CC - int 3

EAX=00000064
EBX=2BBT0000
ECX=TOF4F750
EDX=26E4DFAS b

Stop

Figure 20 assembly instructions at 70F4F850
Again, it shows, that something happens at [E** + offset] pointer. ECX is 70F4F750. Hex
scan this address, and the output is nearly 200 results of dynamic addresses, however,
there is one static address “client.dll+4DFCE84”, which is a static address of the bot entity

object. Now, from the above figure take offset and add a pointer manually.

It now leads to a static bot health address.

Add address

Address:

[70FaFeso @ HE ﬂ LTH

Description

|N0 description

Type
4 Bytes v

[JHexadecimal []Signed

Pointer
< 1w QfF m—‘ > | 70F4F750+ 100 = 70F4
| lient.dll- ADFCEa4 - |- TOF4F750
Add Offset Remove Offset
Cancel

Figure 21 Entity health address

37

Performing similar manipulations with the local entity (player) will be helpful to find the
entity list (see Appendix 2 — Getting Entity List).[29]

4.2.2 Using ReClass.NET to Reverse CS: GO Entity List

ReClass.NET is a powerful game-hacking tool that allows users to easily view and modify
variables in video games. It ranks as the third most important tool of its kind, behind
Cheat Engine and IDA Pro. One of its key features is the ability to display variables in
various formats, such as 32-bit hexadecimal, integer, and float, which makes it easy to
identify the variables associated with the player's in-game entity. Additionally,
ReClass.NET can generate classes with padding that can be copied and pasted into hack
source code, allowing users to access variables using class object pointers rather than
offsets.[30]

After attaching ReClass.NET to CS: GO process (File -> Attach to Process...), the entity
list static address (<client.dlI>+4DFFF04) can be passed in, which will then show a

memory region.

® ReClass.NET (x26)

File | Process Project Help

| -, Aftach to Process.., |k
] & Detach
Open Project... Ctrl+0
g Merge with Project...

% Clear Project

B Save Ctrl+5

IFH Saveas.. Ctrl+5hift+5

@ Settings...

€Y Plugins...

@ Quit

Figure 22 Attach process in ReClass.Net

38

10064)

% HEX HEY HEW INT INT INT IMT | UINT LUINT UIMT UIMT | BOOL EITS EMUH
E ! ; E : ; 37 B A

1>+4DFFFO4gClass NOOOOO004E [2112]
. oo 90 BS A0 13 // C
0004 ZASIFFOE F7 01 00 00 //
0003 ZASIFFOC 00 00 00 00 //

Figure 23 Insert correct memory address
Investigating Source Engine public code, it is obvious that the entity list is a linked
list.[31][32] Entity info object has the following structure:

class CEntInfo{
IHandleEntity *entityPtr // 0x©
int serial_number // ©x4
CEntInfo *previousEntityPtr // 0x8
CEntInfo *nextEntityPtr // ©xC

}; // ox1e

It is also obvious, that some pointers point to in-game entities, which can be proven by

adding or kicking players (bots) from the session since the pointers will also appear and

disappear.
«ct Help
T T B 1k] M x b] R’] Y4 El I P UL = FTR PTR NsT PTR
"’\%3 .client. d__. +4DFFF04 Class NOOOOOO4E [&<] //
0000 80 B9 AO 13 // 0,000 329300363 0x13R0B950 -> <HEAP>13R0B990
F7 Q1 00 00 // 0,000 503 OX1F7

Qg Qo 00 00 /S 0.000 0
14 FF 51 2R // 7
20 00 74 50 //

4 -» client.dll.2AS1FF14
> <HEAP>50740020 X

38 AD BF 47 //
FO BS 38 QC //

Figure 24 Pointer to the player object

Changing values according to previously acknowledged entity info object structure,
T‘%guu 0 ZL51FF14 Instance]'_|:|c.ilE'1t:Lt.5.r <CEntInfo> () //

@l 0004 s
P op 0003 Z Ptr PreviousEntity C:J -
B o OOOC ZRS1FFZ0 Prtr NextEntity C:J —-> DOx2A5203

Figure 25 Entity Information object

39

it is now possible to dissect into entity class, where 0x100 offset will show entity health.

SUSSULIUL WU UU UY uU g DUy
50740110 00 00 00 Q0 S/ 0D.000 i
50740114 02 00 00 00 0.000 2 0Ox2
5 02 00 00 00 0.000 2 0Ox2
C FF _FF_FF_FF 2444 -1 OxFFFFFFFF
¥] 50740120 Imt32 Health = 30 0Ox5C |
1% Int32 SerialNumber . KZFE

20 Ptr NextEntity <void
60 F1 B3 3€
BE 02 00 00
94 1F 52 2A
14 06 52 28 // 0.00C 710018580
00 00 00 00 S/ ©0.000

®x36B3Flel ->» <HEAP>3€EBE3]

ASZ1F%4 -> client.dll
206l4 -> client.dll

@ B0 wem-| @ 0

Figure 26 Offset 0x100 health
Now, changing the instance type to an array of entity info objects will allow going back
and forth in that linked list.

The reversed structure looks like this:

¥om00l0 2A51FF14 Array Entities[64][4] (0)[F] <Size=1024> {0

¥ “4gooo FF14 Instance <CEntInfo: (o

v\%geo- 0 Class CEntInfo [LE&]
¥ ool 0000 ZAS1FF14 Ptr EmticyPtr il —>» 0=x50740020
740020 Imstance <Entitvys> {J
0 Class Entity [2c0]
& Imt32 SerialWumber = TgZ 0Ox
1C Ptr PreviousEntity ¢3 -» O®x2ZAS1FFO4
FFJ4 Imstance <CEntInfo>)

0 Class CEntInfo [1lg]
20 Ptr NextEntity (g -> Ox2A520314
520314 Imstance <CEntInfo> [
000 Class CEntInfo [Ll&]

Figure 27 Fully reversed structure

And the generated C++ code:

40

® ReClass.MET - Code Generator

. Code Generator

o The classes transformed into sourc

/¢ Created with ReClass.NET 1.2 by KN4CK3R

class CEntInfo

1

public:
class Entity *EntityPtr; //oxbeee
int32_t SerialNumber; //@x8864
class CEntInfo *PrevicusEntity; //exBees
class CEntInfo *NextEntity; //@xeseC

}; //5ize: exeale

class CBaseEntitylist
1
public:
char pad_@ees[16]; //exbeed
class CEntInfo Entities[64]; //exeald
}; //5ize: exp4ln

class Entity

1

public:
char pad_eeese[256]; //oxpooe
int32 t Health; //ex@les

T //5ize: BxBlBﬂ

Figure 28 Generated C++ code
This code could be pasted into Visual Studio IDE (see Appendix 3 — Show Entity Health

DLL Hack), and after some coding and injecting, the following result will be shown:

¥# D:\Steam\steamapps\common\Counter-Strike Global Offensive\csgo.exe

4 health: 100
health: 10
health:
health:
health:
health:

© health:

Figure 29 Show a health hack

This is a simple hack that shows entities’ health.

41

4.2.3 Disassembling Binaries and Finding Network Variables Offsets with IDA Pro

To properly display an entity on a client, it is necessary to have certain variables, such as
position, angle, or health, transmitted over a network. These variables, known as

networked variables, represent the essential properties of the entity.[33]

IDA Pro provides functionality to find offsets of these variables by attaching the
“client.dll” game module (see Appendix 4 — Setting Up IDA Pro) and searching for

strings.

In the IDA Pro window, the “SHIFT + F12” button combination will generate a list of

strings, which can be used to find network variables by pressing “CTRL+F”.

List of CS: GO network variables is available online; as a proof of concept the author

has decided to find health and armor variables.[34]

[L. IDA - client.dll D:\Steam'\steamapps\common\Counter-5trike Global Offensive\csgo\bin\client.dll

File Edit Jump Search View Debugger Lumina Options Windows Help

Bh e fdnE & YA A Q) g @ F e X P O O Nedebugger v % ik : & #F B
1

; I |

Library function [l Regular function Il Instruction Data Unexplored External symbol [l Lumina function
z Functions m & X% DA View-A [x] Strings [x] @ Hex View-1 B
Function name Seg A I%dredss Length Type Strmg‘m
(s’ .rdsta:1089.. 0000000A c m_iHeal

| sub_10001000 e = . .

< 1000050 = [s] .rdata:10BA.. 0O0DOOOOD c m_iHealth[0]

| sub_100025C0 Ltex

1| sub_100024C0 e

| sub_10002800 e

| sub_10002020 Ltex

| sub_10002090 Ltex

| sub_10003430 Jdex w
< > #® | m_iHealth|

Line 2 of 51728
= v

Figure 30 Search in IDA Pro

apps\commen\Counter-Strike Global Offensive\csgo\bin\client.dll

ew Debugger Lumina Options Windows Help

0@ & 3 [Alv @ & oled @ F v e X P O O Nodebugger | % A R
ction [l Instruction || Data [Unexplored External symbol [l Lumina function
o & x IDA View-A %] Strings o @ Structures oD B Enums
5 DATA

Seg * ecabsvelocit db 'm_vecabsvelocity',e ; DA

e ;d

tex align 1eh

Jex aMIhealth db ‘m_iHealth',@

tex r

tex . align 4

tex .rda aMFlfriction db 'm_flFriction’,@

tex .rda

tex v .rda align 4

By .rda etworkori db 'm_vecletworkOrigin',@

00B933F0 10B945F0: _rdata:aMIhealth (Synchronized with Hex View-1)

Figure 31 Network variables
Now, jumping to cross-reference to operand will lead to exact instruction and variable

offset.

42

Windows

ons Help

D off g @ F - i X P> @ O nodebugger

v| % BB B

Jnexplored External symbol [l Lumina function
x IDA View-A 8 Strings B © Hex View-1 B Structures (x|
= .rdata:18B8945CC ; DATA XREF: .data:18DA7624lo
1" .rdata:18B9450C aMVecabsvelocit db 'm_vecAbsVelocity',® ; DATA XREF: sub_1@1E3@18491Tc
s .rdata:18B9450DC ; .data:18DA74BClo
C .rdata:18B945ED align 1eh
r .rdata:18B945F@ aMIhealth db 'm iHealth',@ ; DATA XREF: sub_1@@3A558+25Efo
¢ .rdata:18B945F@ I_ﬁ EEname N ub_1@8@4EF3@+25ET0 ...
C .rdata:1@B945FA
3 .rdata:18B945FC ; Uy [SaEns Enter ATA XREF: sub_1@@@BBS@+20DTo
¢ .rdata:10B945FC e data:18DA769C 0
[.rdata: 18894689 Jump in a new window Alt+Enter
.rdata:18B9468C | - -
| et E Jumelnanewhﬁwlndow o R
O0BS33F0 10BS45F0: Jumptoxrefto operand... X ew-1)

List cross references to... Ctrl+X
..... o
_____ oK :#' Array... MNumpad+*
----- oK @ Data D
..... oK
_____ oK X Undefine u

@ Add breakpoint F2

Copy address to command line
..... oK
1l offensivelbin\parsifal.dll is u B xeefs graph to...
jule wWs2_32...
1time BN Xrefs graph from...
runtime

Synchronize with L4

Lurnina L4

Font...

mov dword_
mowv dword_
mov dword_
mov dword_
mov dword_
mowv dword_
mov dword_
mov dword_
mov

mov

mov dword_
mow dword_
mowv dword_
mov dword_
mov dword_
mowv dword_
mov dword_
mov dword_
mow dword_
mowv dword_
mov dword_
mov

mov

mov dword_

Figure 32 Jump to cross-reference operand

LAl

1535ECFC,
1535ED2C,
1535ED3C,
1535ED48,
1535ED4C,
1535ED48,
1535ED38@,
1535ED34,

w

B
B
B
1

5]
2]

byte 1535ED28, @
Hword_153sED18,

1535ED44,
1535ED1C,
1535ED28,
1535ED38,
1535ED58,
1535ED78,
1535ED7C,
1535ED38,
1535ED34,
1535ED6C,
1535ED78@,

B
B

5]
B
B
1

5]
5]

byte 1535EDG4, @
dword_1535ED54, offset aMImaxhealth ; "m_iMaxHealth"

Figure 33 Offset

offset sub_183CAT7EE

@FFFFFFFFh

offset aMIhealth ; “m_iHealth™

lesh <=pffset

offset sub_ 1B2A2AF@

BFFFFFFFFh

of “m_iHealth” variable

The same can be done with other variables:

43

Strings 8 @ Hex View-1 B8 Structures B8 [33 Enums B E
mav dword_1536@138, offset aMIclass ; "m_iClass”
mov dword_1536@164, 117Csh
mov dword_1536@13C, @
mov dword_1536814a, @
mov dword_1536@158, offset sub_182A24F8
call sub_182A2898
mov ecx, offset dword_153681B8
maov klwor‘d_153&al?4, offset aMArmorvalue ; "m_ArmorValus”
mov dword_1536814@, 117CCh <=0FFSET
mav dword_1536@178, @
mav dword_1536@17C, @
mov dword_1536@194, offset sub_182A2AF@
call sub_182A2898
mov ecx, offset dword_153681EC
mov dword_153681B8, offset aMAngeyeangles ; "m_angEyefngles”
mov dword_153601DC, 11708h
mov dword_1536@184, 2

Figure 34 Offset of "m_ArmorValue" variable
Offsets can be proven by adding them to the local entity address base
(client.dll+4DFFF14 + 117CC), it will show armor value.

Change address

Address:
|35571 B7C

Description
IArmorValue

Type

[MPointer g .

B 117CC > | 355603B0+117CC = 35571B7C
lient.dll+4DFFF14) ->355603B0

Add Offset Remove Offset

Figure 35 Added armor offset to local player entity

5 Solution

Valve Software made the source code for the Source Engine and other information
publicly available, which allows hackers to use special tools and techniques such as
reverse engineering to gain an unfair advantage in the game by accessing and

manipulating the game's memory structure.[38]

44

5.1 External Exploit

C++ programming language provides all the necessary features to access the game’s
memory and change its values. External hacks interact with the game process's memory
by using WriteProcessMemory (WPM) and ReadProcessMemory (RPM). To use these
functions, hackers must obtain a handle to the process by requesting access through the
kernel with OpenProcess and the necessary Process Access Rights, usually
PROCESS_ALL_ACCESS. This handle is necessary for RPM and WPM. See “Appendix
5 — Memory Read and Write”.

Since CS: GO has an entity glowing effect inside the game, to create a “wallhack” cheat,
a hacker could use in-game variables like team number, glow object manager, glow index,

local player, and previously reversed entity list.

After getting the handle to the process, the author assigned memory addresses to the
abovementioned variables changed the Boolean value of the glowing effect turned it on,

and set RGB values depending on the entity team (red or blue).[43]

i counter-s

Stairs

D:\Thesis\csgo_exploit\csgo_exploit\Debug\csgo_... —

No

Figure 36 Glow hack

45

5.2 Internal Exploit

Internal hacks involve injecting a DLL into the game process, which gives direct access
to the process's memory for fast and easy manipulation. To make these injected DLLs
harder to detect by VAC, hackers can use various injection methods, such as manual
mapping.[39]

Although everything done by making an internal hack is achievable by external hacks, an

internal hack’s main advantage is its performance.

The author's internal exploit, besides the glow hack, has a “bunny hop’ hack, which forces
a player to jump at the exact moment of hitting the ground. This allows a player to gain
more moving speed than usual. “Bunny hop” hack required such variables as m_fFlags
to check whether the player is staying on the ground, ducking, jumping out of the water,

etc., and dwForceJump which is a force jump variable specifically.

These flags can be seen in the “Source” Engine’s public code [40]:

FL_ONGROUND (1<<@) // At rest / on the ground
FL_DUCKING (1<<1) // Player is fully crouched
FL_WATERJUMP (1<<2) // Player jumping out of water
FL_ONTRAIN (1<<3) // Player is _controlling a train,

so movement commands should be ignored by the client during prediction.

FL_INRAIN (1<<4) // Indicates the entity is standing
in rain

FL_FROZEN (1<<5) // Player is frozen for 3rd person
camera

The “bunny hop” code:

val.flag = *(BYTE*)(val.localP + offsets.m fFlags);

if (GetAsyncKeyState(VK_SPACE) && val.flag & (1 << 9))

{
(DWORD) (val.csgoModule + offsets.dwForcelump) = 6; //

force jump is 6 (0110 in binary)
}

46

The “bunny hop” is activated when the “space” button is being held, and as it can be seen
from the abovementioned flags, “val.flag & (1 << 0)” checks whether bit 0 is set, which

means player touches the ground, and force jumps if so.[41]

The solution can be found in the official V. Sidorenko GitLab repository.[44]

5.3 DLL Injector

DLL injection is a method of running code within the memory space of another process
by forcing it to load a dynamic library. This technique is often used by external programs
to alter the behavior of the target program in unexpected ways, such as by intercepting
function calls or copying data variables. A program that injects code into processes is
called a DLL injector. DLL injectors are used to inject internal hacks into the target

process.

Manual mapping is a technique used to load and execute a dynamic-link library (DLL)
within the memory of another process. It involves emulating the LoadLibrary function

and performing a series of steps:
e Map sections into the target process
e Inject shellcode
e Do relocations
e Fix imports
e Do TLS callbacks
e Call DIl main function

In this thesis, the paper author has created a DLL injector using manual mapping
injecting. Manual mapping is often used for bypassing anti-cheat measures because it
allows the DLL to be loaded without being visible to ToolHelp32Snapshot or other
methods for enumerating loaded modules, such as walking the module linked list in the

process environment block (PEB) or using NtQueryVirtualMemory.

The author's manual mapping injector can be found on the project’s GitLab page.[42]

47

5.4 How Long Can Hackers Stay Undetected?

In CS: GO, when a hacker is coding their hack, and they have done everything the right
way, meaning a hacker is not executing memory scanners and disassemblers while VAC
IS running in the background, they are very safe. 100% safety is never achievable since
VAC can update anytime. Game updates will not lead to a ban; however, a hacker would

have to freshen up their memory address offsets.

Using publicly available hacks will probably lead to a ban as soon as Valve adds exploit

signatures to their database.

Another point is that CS: GO has the “Overwatch” system, where peers check each other's
games and can report suspicious players. Thus, hackers should moderately use their
hacks. Doing so and updating exploit each time game updates will result in very high

safety rates.

5.5 Observation

The author has performed a cheat test by himself, and also cheat was given to another

person.

The author has run his cheat with both “bunny hop” and “glow” hacks. Aside from the
time for cheat development, total online game time was rough ~10 hours, during this time

and about 10 days while offline, no VAC ban was received.

The person that received a copy of the exploit, has played about ~3 hours using it, a week

after no VAC ban was received.

5.6 White Hat Point of View

Taking a side of a white hat hacker, the author would say that solution Valve Software
should come to is to port Valve online games like Counter-Strike: Global Offensive to
their new Source 2 game engine, which would increase game security. The public code
of the Source engine is one of the reasons it is possible to develop game hacks that would

bypass the Valve Anti-Cheat system.

48

6 Summary

Cheating in video games has a long-lasting history, firstly cheats were invented by game
developers, and only then hackers began to develop their own cheats. Cheating in online
games is possible because of the weaknesses in the game code, or its publicity. Due to the
publicity of the Source Engine, such games as TF2, Half-Life 2, Left 4 Dead, Counter-
Strike: Global Offensive, etc. can be hacked, VAC Anti-Cheat system is hard to stop the
kind of cheating shown in this paper, at least at the moment of writing this paper.

This paper was intended to show methods to develop hacks that could get past the Valve
Anti-Cheat system. The author of this thesis has performed manipulations with Counter-
Strike: Global Offensive game memory utilizing public Source Engine code created both
external and internal versions of the hack and coded a dynamic link library injector for
the internal hack. The author has shown the use of such hacker tools as Cheat Engine,
ReClass.NET, and IDA Pro. The goal to create cheats that work online was accomplished,
the cheats successfully bypass the Valve Anti-Cheat system and can be safely run. The
author and one more person had played the game for a total of ~13 hours, no VAC ban

was received by either of them.

49

References

[1] Wolf, Mark J. P. & Perron, Bernard. 2014. The Routledge Companion to Video Game
Studies. Routledge, New York. 518pp.
[https://books.google.ee/books?redir_esc=y&hl=ru&id=P43HBQAAQBAJ&g=cheati

ng#v=snippet&qg=cheating&f=false] [last visited: 23/12/2022]

[2] Maher, Jimmy. 2012. The Wizardry Phenomenon. [https://www.filfre.net/2012/03/the-

wizardry-phenomenon/] [last visited: 19/12/2022]

[3] Computer Gaming World. Vol. 4 no. 1. February 1984. p. 15.

[http:/imww.cgwmuseum.org/galleries/issues/cgw_4.1.pdf] [last visited: 31/12/2022]

[4] Stafford, Brent & Malone, Michael. Cheat! Pringles Gamers Guide: Brand Integration
Case Study. 9pp. [https://brentstafford.com/wp-content/uploads/2015/10/Pringles-Case-

Study vertical BS_FIN.pdf] [last visited: 16/12/2022]

[5] Masood, Dawood Khan. 2019. Hacking Online Games using Cheat Engine.

[https://hackhex.com/how-to/hacking-online-games/] [last visited: 21/12/2022]

[6] N. Cano, Game Hacking. No Starch Press, 2016. 304pp.
[https://learning.oreilly.com/library/view/game-hacking/9781492017462/] [last visited:

31/12/2022]

[7] Wallhax, ESP, 2022. [https://wallhax.com/what-are-esp-cheats/mem] [last visited:

02/01/2023]

[8] Kovidomi, GitHub repository, 2020. [https://github.com/kovidomi/game-reversing] [last

visited: 23/12/2022]

50

https://books.google.ee/books?redir_esc=y&hl=ru&id=P43HBQAAQBAJ&q=cheati%20ng%23v=snippet&q=cheating&f=false
https://books.google.ee/books?redir_esc=y&hl=ru&id=P43HBQAAQBAJ&q=cheati%20ng%23v=snippet&q=cheating&f=false
https://www.filfre.net/2012/03/the-wizardry-phenomenon/
https://www.filfre.net/2012/03/the-wizardry-phenomenon/
http://www.cgwmuseum.org/galleries/issues/cgw_4.1.pdf
https://brentstafford.com/wp-content/uploads/2015/10/Pringles-Case-Study_vertical_BS_FIN.pdf
https://brentstafford.com/wp-content/uploads/2015/10/Pringles-Case-Study_vertical_BS_FIN.pdf
https://hackhex.com/how-to/hacking-online-games/
https://learning.oreilly.com/library/view/game-hacking/9781492017462/
https://wallhax.com/what-are-esp-cheats/mem
https://github.com/kovidomi/game-reversing

[9] GamingSection, Are game hacks illegal? 2019. [https://gamingsection.net/news/are-
game-hacks-
illegal/#:~:text=1t%20is%20illegal.,as%20COD%20etc%20is%20copyrighted] [last

visited: 22/12/2022]

[10] Elizabeth Wolfe and Brian Ries, 2019. A Fortnite superstar has been banned for
life for cheating. [https://edition.cnn.com/2019/11/06/entertainment/faze-jarvis-fortnite-

ban-trnd/index.html] [last visited: 31/12/2022]

[11] Wallhax, Aimbots, 2022. [https://wallhax.com/aimbots/] [last visited:
16/12/2022]
[12] Video from YouTube. 2017. Girl live streaming catch cheating in CS: GO.

Available at: [https://www.youtube.com/watch?v=mA5SNUOTuURFo] [last visited:

29/12/2022]

[13] Gaming Section, 2021. What is a Triggerbot?

[https://gamingsection.net/news/what-is-a-triggerbot/] [last visited: 21/12/2022]

[14] Josse Van Dessel, 2021. These are the most infamous VAC-banned CSGO pros
[https://win.gg/news/these-are-the-most-infamous-vac-banned-csgo-pros/] [last visited:

21/12/2022]

[15] Ron, GameNews24, 2021 [https://game-news24.com/2021/09/25/what-is-aim-

assist-and-is-it-cheating/] [last visited: 28/12/2022]

[16] Steam Docs. Valve Anti-Cheat (VAC) System
[https://help.steampowered.com/en/fags/view/571A-97DA-70E9-FF74] [last visited:

31/12/2022]

[17] Salfu, 2022. How to bypass EAC [https://hackvshack.net/threads/how-to-

bypass-eac.733/] [last visited: 19/12/2022]

51

https://gamingsection.net/news/are-game-hacks-illegal/#:~:text=It%20is%20illegal.,as%20COD%20etc%20is%20copyrighted
https://gamingsection.net/news/are-game-hacks-illegal/#:~:text=It%20is%20illegal.,as%20COD%20etc%20is%20copyrighted
https://gamingsection.net/news/are-game-hacks-illegal/#:~:text=It%20is%20illegal.,as%20COD%20etc%20is%20copyrighted
https://edition.cnn.com/2019/11/06/entertainment/faze-jarvis-fortnite-ban-trnd/index.html
https://edition.cnn.com/2019/11/06/entertainment/faze-jarvis-fortnite-ban-trnd/index.html
https://wallhax.com/aimbots/
https://www.youtube.com/watch?v=mA5NUOTuRFo
https://gamingsection.net/news/what-is-a-triggerbot/
https://win.gg/news/these-are-the-most-infamous-vac-banned-csgo-pros/
https://game-news24.com/2021/09/25/what-is-aim-assist-and-is-it-cheating/
https://game-news24.com/2021/09/25/what-is-aim-assist-and-is-it-cheating/
https://help.steampowered.com/en/faqs/view/571A-97DA-70E9-FF74
https://hackvshack.net/threads/how-to-bypass-eac.733/
https://hackvshack.net/threads/how-to-bypass-eac.733/

[18] AssaultCube, Official Website [https://assault.cubers.net] [last visited:

19/12/2022]

[19] Timothy Edward Downs and Ron White, How Computers Work, Ninth Edition.
Que, 2007. 464pp. [https://learning.oreilly.com/library/view/how-computers-

work/9780789736130/?ar=] [last visited: 25/12/2022]

[20] Cheat Engine, Official Website [https://www.cheatengine.org] [last visited:

01/01/2023] [last visited: 16/12/2022]

[21] Rake, Beginner Cheat Engine Tutorial, GuidedHacking, 2017.
[https://guidedhacking.com/threads/beginner-cheat-engine-tutorial-video-guide.9690/]

[last visited: 23/12/2022]

[22] N. Toppo and H. Dewan, Pointers in C. Apress, 2013.
[https://learning.oreilly.com/library/view/pointers-in-c/9781430259114/?ar=] [last

visited: 26/12/2022]

[23] Rake, Cheat Engine How To Pointer Scan with Pointermaps, GuidedHacking,
2017. [https://guidedhacking.com/threads/cheat-engine-how-to-pointer-scan-with-

pointermaps.9739/] [last visited: 17/12/2022]

[24] V. Sidorenko, GitHub repository, 2022. [https://gitlab.com/visido/thesistrainer]

[last visited: 02/01/2023]

[25] Rake, How to Bypass VAC, GuidedHacking, 2016.
[https://guidedhacking.com/threads/how-to-bypass-vac-valve-anti-cheat-info.8125/]

[last visited: 19/12/2022]

[26] M. Lee, C++ programming for the absolute beginner, 2nd ed. Boston (Mass.)
[etc.]: Course Technology/Cengage Learning, 2009.

[https://www.ester.ee/record=b2754408*eng] [last visited: 25/12/2022]

52

https://assault.cubers.net/
https://learning.oreilly.com/library/view/how-computers-work/9780789736130/?ar=
https://learning.oreilly.com/library/view/how-computers-work/9780789736130/?ar=
https://www.cheatengine.org/
https://guidedhacking.com/threads/beginner-cheat-engine-tutorial-video-guide.9690/
https://learning.oreilly.com/library/view/pointers-in-c/9781430259114/?ar=
https://guidedhacking.com/threads/cheat-engine-how-to-pointer-scan-with-pointermaps.9739/
https://guidedhacking.com/threads/cheat-engine-how-to-pointer-scan-with-pointermaps.9739/
https://gitlab.com/vlsido/thesistrainer
https://www.ester.ee/record=b2754408*eng

[27] Game Hacking Academy, A Beginner’s Guide to Understanding Game Hacking
Techniques, 2021, 511pp. [https://gamehacking.academy/GameHackingAcademy.pdf]

[last visited: 19/12/2022]

[28] G. Balakrishnan and T. Reps, “Analyzing Memory Accesses in x86
Executables,” in Compiler Construction, 2004, pp- 5-23.
[https://link.springer.com/chapter/10.1007/978-3-540-24723-4_2] [last visited:

31/12/2022]

[29] Rake, Reverse Engineering, GuidedHacking, 2019.
[https://guidedhacking.com/threads/reverse-engineering-how-to-find-the-csgo-entity-

list.13313/] [last visited: 21/12/2022]

[30] KN4CK3R, Reclass.NET GitHub repository, 20109.

[https://github.com/ReClassNET/ReClass.NET] [last visited: 29/12/2022]

[31] Valve Corporation, Source Engine SDK Entity List, 2013.
[https://github.com/ValveSoftware/source-sdk-

2013/blob/master/mp/src/game/shared/entitylist_base.h] [last visited: 22/12/2022]

[32] Microsoft, Using Singly Linked Lists, 2021. [https://learn.microsoft.com/en-

us/windows/win32/sync/using-singly-linked-lists] [last visited: 17/12/2022]

[33] Valve Corporation, Networking Entities, 2019.
[https://developer.valvesoftware.com/wiki/Networking_Entities] [last visited:
28/12/2022]

[34] Namazso & zbe, NetVar & DataProp dump, 2017.

[https://www.unknowncheats.me/forum/counterstrike-global-offensive/211333-current-

netvar-dataprop-dump-classes-header-format.html] [last visited: 28/12/2022]

53

https://gamehacking.academy/GameHackingAcademy.pdf
https://link.springer.com/chapter/10.1007/978-3-540-24723-4_2
https://guidedhacking.com/threads/reverse-engineering-how-to-find-the-csgo-entity-list.13313/
https://guidedhacking.com/threads/reverse-engineering-how-to-find-the-csgo-entity-list.13313/
https://github.com/ReClassNET/ReClass.NET
https://github.com/ValveSoftware/source-sdk-2013/blob/master/mp/src/game/shared/entitylist_base.h
https://github.com/ValveSoftware/source-sdk-2013/blob/master/mp/src/game/shared/entitylist_base.h
https://learn.microsoft.com/en-us/windows/win32/sync/using-singly-linked-lists
https://learn.microsoft.com/en-us/windows/win32/sync/using-singly-linked-lists
https://developer.valvesoftware.com/wiki/Networking_Entities
https://www.unknowncheats.me/forum/counterstrike-global-offensive/211333-current-netvar-dataprop-dump-classes-header-format.html
https://www.unknowncheats.me/forum/counterstrike-global-offensive/211333-current-netvar-dataprop-dump-classes-header-format.html

[35] Datadome, What is a botnet attack and how does it work? 2022
[https://datadome.co/learning-center/what-is-botnet-how-does-botnet-attack-work/] [last

visited: 28/12/2022]

[36] Josse Van Dessel, 2021. These are the most infamous VAC-banned CSGO pros
[https://win.gg/news/these-are-the-most-infamous-vac-banned-csgo-pros/] [last visited:

23/12/2022]

[37] Wallhax, Triggerbot, 2022. [https://wallhax.com/hacks/csgo/triggerbot/] [last

visited: 26/12/2022]

[38] Valve Corporation, Source Engine SDK 2013 edition, Github, 2013.

[https://github.com/ValveSoftware/source-sdk-2013] [last visited: 23/12/2022]

[39] UnKnoWnCheaTs, “Best resources to learn manual mapping injection?” thread,
2020. [https://www.unknowncheats.me/forum/general-programming-and-
reversing/404055-resources-learn-manual-mapping-injection.html] [last visited:

16/12/2022]

[40] Valve Corporation, Source Engine SDK Constants, Github, 2013.
[https://github.com/ValveSoftware/source-sdk-2013/blob/master/mp/src/public/const.h]

[last visited: 03/01/2023]

[41] Microsoft, C Bitwise Operators, 2022. [https://learn.microsoft.com/en-us/cpp/c-

language/c-bitwise-operators?view=msvc-170] [last visited: 25/12/2022]

[42] V. Sidorenko, Manual Mapping Injector, GitLab, 2022.

[https://gitlab.com/visido/manual-mapping-injector] [last visited: 05/01/2023]

[43] V. Sidorenko, External CS: GO Exploit, GitLab, 2022.

[https://gitlab.com/visido/external-csgo-exploit] [last visited: 05/01/2023]

54

https://datadome.co/learning-center/what-is-botnet-how-does-botnet-attack-work/%5d
https://win.gg/news/these-are-the-most-infamous-vac-banned-csgo-pros/
https://wallhax.com/hacks/csgo/triggerbot/
https://github.com/ValveSoftware/source-sdk-2013
https://www.unknowncheats.me/forum/general-programming-and-reversing/404055-resources-learn-manual-mapping-injection.html
https://www.unknowncheats.me/forum/general-programming-and-reversing/404055-resources-learn-manual-mapping-injection.html
https://github.com/ValveSoftware/source-sdk-2013/blob/master/mp/src/public/const.h
https://learn.microsoft.com/en-us/cpp/c-language/c-bitwise-operators?view=msvc-170
https://learn.microsoft.com/en-us/cpp/c-language/c-bitwise-operators?view=msvc-170
https://gitlab.com/vlsido/manual-mapping-injector
https://gitlab.com/vlsido/external-csgo-exploit

[44] V. Sidorenko, Internal CS: GO Exploit, GitLab, 2022,

[https://gitlab.com/vlsido/internal-csgo-exploit] [last visited: 05/01/2023]

[45] V. Sidorenko, External CS: GO Show Health Hack, GitLab, 2022.

[https://gitlab.com/visido/csgo-show-health] [last visited: 05/01/2023]

[46] UnKnoWnCheaTs, Game Hacking Web-Forum

[https://www.unknowncheats.me] [last visited: 05/01/2023]

[47] D. Georgiev, “What Is a White Hat Hacker?”, 2022.

[https://techjury.net/blog/what-is-a-white-hat-hacker] [last visited: 05/01/2023]

55

https://gitlab.com/vlsido/internal-csgo-exploit
https://gitlab.com/vlsido/csgo-show-health
https://www.unknowncheats.me/
https://techjury.net/blog/what-is-a-white-hat-hacker

Appendix 1 — Non-exclusive licence for reproduction and

publication of a graduation thesis’

| Vladislav Sidorenko

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my
thesis"A Method for Bypassing the Valve Anti-Cheat System in Video Games" ,
supervised by Kaido Kikkas
1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of
Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be
entered in the digital collection of the library of Tallinn University of Technology
until expiry of the term of copyright.

2. | am aware that the author also retains the rights specified in clause 1 of the non-
exclusive licence.

3. | confirm that granting the non-exclusive licence does not infringe other persons'
intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

24.12.2022

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation thesis
that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis is based
on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her graduation thesis
consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive license shall not be

valid for the period.

56

Appendix 2 — Getting Entity List

Firstly, Cheat Engine scans the local player's 100 health, then proceed to damage the local

player and scan for new values until the minimum amount of addresses is left.

Cheat Engine 7.4

File Edit Table D3D Help
00003DCO-csgo.exe

Rddress MNew Scan Mext Scan Undo Scan -

OSSBEZDC Value: Settings
OBE4&453 i I:l|_"'q |
0BE4&510
OBE4§358 Scan Type | Exact Value » | [Luafermula

OBE4£910 Value Type 4 Bytes LR

LBE4ELSE] Compare to first scan .
0BE46D10 . Unrandomizer
° Memory Scan Options
OBE47058 [[]Enable Speedhack
All
OBE47110

DBE47452 Start gooooooooooaoonn
OBE47510 Stop 00007ffffEEEE££1F

§| OBESB4C3 Writable Executable
OBEBCEDC CopyOnWrite
13220E70 Alignment

352DED2C fot e A Digits

a
39377D08 \ Pause the game while scanning
3938ROFO

Memonry View @ Add Address Manually

Active Description Address Type Value

Advanced Options

Figure 2-1 Cheat Engine health addresses

Find the most appropriate address and check what accesses it.

57

The following opcodes accessed B4BEBD20

C... Instruction Replace
29... 274CE060 - 8B 81 00010000 - mov eax,[ecx+00000100]
b3 27DETBI9 - 8917 - mov [edi],edx Show disassembler
665 27DETB3D - F3 OFTF 4F 10 - movdqu [edi+ 10]xmm]1
446 276CE051 - 83 B9 00010000 00 - crp dwerd ptr [ecx+00000100],00 Add to the codelist
446 276CH008 - 83 BS 00010000 00 - cmp dword ptr [ecd+00000100],00 : :
446 276CH29C - B3 BY 0DD10000 00 - cmp dword pir [eck+00000100],00 More information
445 276C99F1 - 83 BO 00010000 00 - cmp dwerd ptr [ecc+00000100],00 compare two operands
612 27DETB5T7 - 8B 16 - mov edx, [esi]
778 27DATE34 - F3OFEF 4E 10 - movdgu xmmi, [esi+10]
8 2770463C - 8B 8F 00010000 - mov ecx,[edi+00000100]
L
EAX=00774220
EBX=64BEBC20
ECH =T
EDX=0D000DED
ESI=00000000
EDI=2C51AFTD
ESP=0077D940
EBEP=0077D930 v Stop

Figure 2-2 Opcodes that access address
Scan the registered HEX address, and find a static address, the right one should be almost
similar to that of the entity object, thus if the entity object is 4ADFFF24, the local entity
object is most likely 4DFFF14%,

! The addresses have changed since the last game update. Now, at the moment of writing this paper, the
entity object is 4DFFF24, and the local entity object is 4DFFF14.

58

Cheat Engine 7.4

File Edit Table D3D Help

@ E B 00003DCO-csgo.exe

Found: 1,283
Address Valus Prev... |™ Mew Scan Mext Scan Undo Scan [Chei Bagioe
Settings
OCCE40ES G4BEBC20 G64BE... Value: -
OCCE49%eC 64BEBC20 64BE... Hex |545EBC2‘D
OCD34B20 G4BEBC20 G4BE...
OCES1024 G4BERC20 G4BE... Scan Type| Exact Value ~ | [Lua formula
OCEA3C483 G4BEBC20 64BE... Value Type 4 Bytes ~ [Not
14C1B5SE4 G4BEBC20 G64BE... D Compare to first scan -
client.dl11+DERSE4 64BEBC20 64BE... : DUnrandomlzer
. - —- Memory Scan Options
client.dl1+4DFFF14 64BEBC20 un] Enable Speedhack
client.dl1+525BDC4 G4BEBC20 G64BE... Al -
client.d11+52B2424 £4BEBC20 64BE... Start oooooooonooonooon
2D772130 64BEBC20 64BE... Stop OO0O7EEfffEfe££t
20772134 €4BEBC20 €4BE... Writable Executable
20772144 §4BEBC20 64BE... CopyOnWiite
20772150 64BEBC20 64BE... Alignment
20772154 £4BEBC20 64BE FastScan| 4 .
e ! Last Digits

20772164 §4BEBC20 64BE... ¥ . .
< > \ Pause the game while scanning

Memory View @ Add Address Manually

Figure 2-3 Static addresses
Choosing “Find out what accesses this address” will show the entity list static address,
which is “client.dlI+4DFFF04”.

The following opcodes accessed 2C0BFF14

.. Instruction 2

Replace

226 277F051B - 8B 88 04FFOB2C - mov ecx, [eax+2COBFFQ]
229 27TFOES3 - BB 0D - mov eax,[eax] Show disassembler
225 277EFB46 - 8B 39 - mov edi [ecx]
229 277EFDSC - 8B 00 - mov eax,[eax] Add to the codelist
B33 2746367E - 3B 08 - mov ecx,[eax] W

Mare information
ZTTHIS1B - 8B 83 MMFFOB2C - mov ecx, [ed+ e[Sy fs (|EFIN R EI] < - ﬂ

2TTF0521 - 85 C9 - test ecx, ecx Copy memuory

2770523 - 74 31 - je client.dll+ 530556

EAX=00000010

EBX=2C51E0M

ECX=64BEBC20

EDX=051B000C

ESI=B4BEEC20 hd

Stop

|:| Dynamic Health Address B4BEED20 4 Bytes 70
Lecal Entity Object 2COBFF14 B4BEBC20

Figure 37 Entity list static address

59

Appendix 3 — Show Entity Health DLL Hack

After creating a DLL project in Visual Studio 2022 and pasting previously found code as

an “ent.h” header, under project properties following options have to be set:

entitylist Property Pages

Configuration: | Active(Debug) ~ | Platform: | Active(Win32) w Configuration Manager...
4 Configuration Properties v Advanced Properties G
Advanced Extensions to Delete on Clean *.cdf;*.cache™.obj;*.obj.enc"ilk*.ipdb;*.ichj;*.resources; ™|
Debugging Build Log File §(IntDir)3(MSBuildProjectMame).log
i gEcton= Preferred Build Tool Architecture Default
b ch’ Use Debug Libraries Yes
B Uiz Enable Unity (JUMEQ) Build Mo
L ASERE Copy Content to OutDir Mo
I XML Document Generator - -
b Browse Information Copy Project References to OutDir Mo
b Build Events Copy Project References’ Symbols to Ou Mo
b Custom Build Step Copy C++ Runtime to QutDir Mo
I Code Analysis Use of MFC
Character Set
Whaole Program Optimization
MSVC Toolset Version
~ C++/CLI Properties
Common Language Runtime Support Mo Commen Language Runtime Support
MET Target Framework Version
| Enable Manaaed Incremental Build Mo hd
Target File Extension
Specifies a file extension that the program will have. (Example: .exe or .dll)
£ >

_entitylist Property Pages

Figure 3-1 DLL project settings part |

Configuration: | Active(Debug])

Browse Information
External Includes

I Manifest Tool
I XML Document Genera
b Browse Information o,

~ | Platform:

Active(Win32) w

Configuration Manager...

4 Configuration Properties A Output File §(OutDir)§(TargetName)S(TargetExt)
General Show Progress Mot Set
Advanced Version
Dzl Enable Incremental Linking Yes (/INCREMENTAL) |
VC++ Directories Incremental Link Database File S(IntDhir)5(TargetMame).ilk
4 GG Suppress Startup Banner Yes (/NOLOGO)
General .
o Ignere Import Library Ne
Optimization ;
Register Output MNo
Preprocessor P Redirecti N
Code Generation Errusernedirection °
L Additional Library Directories
anguage o -
Precompiled Heade Link Library Dependencies Yes
Output Files Use Library Dependency Inputs MNo

Link Status
Prevent DIl Binding

Advanced Treat Linker Warning As Errors

All Options Force File Qutput

Command Line Create Hot Patchable Image
I Linker Specify Section Attributes

Output File

The /OUT option overrides the default name and location of the program that the linker creates,

Figure 3-2 DLL project settings part 11

60

Besides, the project has to be built in x86 mode, since the game is x32 bit.

#include "stdafx.h"
#include <iostream>
#tinclude "ent.h"
#include <Windows.h>

struct vars
{

DWORD csgoModule;
} vars;

void hack(HMODULE hModule)
{
//Create Console
AllocConsole();
FILE* f;
freopen_s(&Ff, "CONOUT$", "w", stdout);

// Assign module HEX value to a variable

vars.csgoModule = (DWORD)GetModuleHandle("client.dll");

// Add entity list offset to csgo module

CBaseEntitylList* entityList = (CBaseEntityList*)(vars.csgoModule
+ Ox4DFFFO4);

while (true)
{

int x = 1;
for (auto entity : entitylList->Entities)

{
if (entity.EntityPtr)
{
if (x == 1)
{

std::cout << "My health:" <<
entity.EntityPtr->Health << std::endl;
}

else {
std::cout << "Entity " << x << " health:

" << entity.EntityPtr->Health << std::endl;

}
X += 1;
}
}
std::cout << "=============" << "\n";
Sleep(1000);

61

fclose(f);
FreeConsole();
FreeLibraryAndExitThread(hModule, 0);

}

BOOL APIENTRY D11lMain(HMODULE hModule,
DWORD ul reason_for call,
LPVOID lpReserved

)
{
switch (ul reason for call)
{
case DLL_PROCESS_ATTACH:
{

HANDLE hThread = nullptr;

hThread = CreateThread(nullptr, 0,
(LPTHREAD_START_ROUTINE)hack, hModule, @, nullptr);

if (hThread)

{
}

CloseHandle(hThread);

case DLL_THREAD ATTACH:

case DLL_THREAD DETACH:

case DLL_PROCESS_DETACH:
break;

}

return TRUE;

The project is available in the GitLab repository.[45]

62

Appendix 4 — Setting Up IDA Pro

In IDA, select “New” to attach the “client.dll” file, which is located under
D:\Steam\steamapps\common\Counter-Strike Global Offensive\csgo\bin\client.dll
(path may be different).

% IDA: Quick start

Go Wark on your own

Load the old disassembly

D\ Steam’steamappsicommoent Counter-Strike Global Offensivelcsgo

L4 >

¥ Display at startup

Figure 4-1 IDA Pro Quick start screen
IDA will ask for the parsifal.dll file, which is located under
D:\Steam\steamapps\common\Counter-Strike Global Offensive\bin (the path may be
different).

63

4 Select file for module 'parsifal’ to resolve import names

€« v 4 <« Steam » steamapps » commeon > Counter-Strike Global Offensive » bin v O Mowck &: bin »
¥nopagounTs ¥ Hogana nanka ==~ N o
S
~ mas Jata usmeHenun Tun Pazmep s
[panurdrmd.an 14 L EUEE G0 FALLIMPEHAE PR, £ S0U hD

anorama_text_pango.dll 14.12.2022 8:43 Pacumperne npu... 663 Kb
E anoramauiw 14.1@ 43 PEC&M[}EHME npu.. 1461 KB
E arsifal.dll 15.04.2020 22:43 PaclUMpEHNE NpK.. 94KEI
E honen.dll 15.04.2020 22:43 Pacwmperue npu... 24571 Kb
d cenefilecache.dll 14.12.2022 8:43 Pacwmperne npu... 38 Kb
| | serverbrowser.dll 14.12.2022 8:43 Pacuwmperue npu... 1010KB
E W serverplugin_empty.dil 14.12.2022 8:43 Pacwmperne npu... 246 Kb v
WA daiina: | parsifal.dll ~ DLL files (*.dll) w

Figure 4-2 Select the "parsifal" module

After that, IDA will ask to look for another file and dismiss this confirmation window.

% Please confirm

The input file was linked with debug information
o and the symbol filename is:
“ehbuildslave\csgo_pcbeta_win32\build\src gamehclient\Release_client'.client.pdb”
Do you want to lock for this file at the specified path
and the Microsoft Symbol Server?

[] Don't display this message again

Figure 4-3 Dismiss this window

The preparation of IDA Pro is done.

64

Appendix 5 — Memory Read and Write

Contents of “ReadWriteMem.h” class:

#pragma once
#include <Windows.h>
#include <vector>
class ReadWriteMem

{
public:
ReadWriteMem();
~ReadWriteMem();
template <class val>
val readMemory(uintptr_t addr)
{
val x;
ReadProcessMemory(handle, (LPBYTE*)addr, &x, sizeof(x),
NULL);
return Xx;
}
template <class val>
val writeMemory(uintptr_t addr, val x)
{
WriteProcessMemory(handle, (LPBYTE*)addr, &x, sizeof(x),
NULL);
return x;
}
uintptr_ t getModule(uintptr t, const wchar_t*);
uintptr_t getProcess(const wchar_t*);
uintptr_t getAddress(uintptr_t, std::vector<uintptr t>);
private:
HANDLE handle;
}s5

Contents of “ReadWriteMem.cpp”:

#include "ReadWriteMem.h"

#include <T1lHelp32.h>

#include <iostream>

#include <iomanip>

ReadWriteMem: :ReadWriteMem(){handle = NULL;}
ReadWriteMem: :~ReadWriteMem()

{
}
uintptr_ t ReadWriteMem::getProcess(const wchar_t* proc)

{

9);

CloseHandle(handle);

HANDLE hProcessId = CreateToolhelp32Snapshot(TH32CS_ SNAPPROCESS,

65

uintptr_t process;
PROCESSENTRY32 pEntry;
pEntry.dwSize = sizeof(pEntry);

do
{
if (! _wcsicmp(pEntry.szExeFile, proc))
{
process = pEntry.th32ProcessID;
CloseHandle(hProcessId);
handle = OpenProcess(PROCESS_ALL_ACCESS, false,
process);
}

} while (Process32Next(hProcessId, &pEntry));
return process;

}
uintptr t ReadWriteMem::getModule(uintptr t procId, const wchar_t*

modName)

{

HANDLE hModule = CreateToolhelp32Snapshot(TH32CS SNAPMODULE |
TH32CS_SNAPMODULE32, procId);

MODULEENTRY32 mEntry;

mEntry.dwSize = sizeof(mEntry);

do

{

if (! _wcsicmp(mEntry.szModule, modName))

{
CloseHandle(hModule);

return (uintptr_t)mEntry.hModule;

}
} while (Module32Next(hModule, &mEntry));

return 0;

}
uintptr_t ReadWriteMem::getAddress(uintptr t addr,

std::vector<uintptr t> vect)

{

for (int i = @; 1 < vect.size(); i++)

{
ReadProcessMemory(handle, (BYTE*)addr, &addr,
sizeof(addr), 0);
addr += vect[i];

}

return addr;

66

