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Abstract

For population growth in stratified environments, flagellates are known to
migrate to the nutrient-rich water layers below the thermocline to take up
inorganic nutrients and ascend to the nutrient-deficient euphotic water layer, to
photosynthesize. The present study investigated dark nutrient uptake at 4 °C
(characteristic water temperature below the thermocline in the Baltic Sea) by the
dinoflagellate Heterocapsa triquetra. The rtecovery of photosynthetic
performance and the improvement of cell growth after dark nutrient acquisition
and meeting suitable light conditions were also studied. On average, the
consumption of NO; and PO4* in the absence of light at 4 °C was 0.04 and 0.003
uM h!, respectively. N:P uptake ratios were similar during dark, cold incubation
and a following light-dark cycle. In the nutrient deficient cultures, the effective
photochemical yield was lowered to 36% while it recovered to 64% after
simultaneous dark incubation and nutrient addition. Increased photosynthetic
efficiency yielded a 34% higher cell concentration after incubation in dark, cold
nutrient enriched conditions in comparison to the parallel N-deficient cultures
that received no nutrients. The results suggest that H. triquetra can successfully
compromise between dark nutrient acquisition and the use of the internal nutrient
storage for photosynthesis later in the light field.

Keywords: dark nutrient wuptake, dinoflagellates, Heterocapsa,
photoregulation, Pulse-Amplitude-Modulation (PAM)

Introduction

During spring and summer the development of temperature stratification is
common in temperate seas. In April-May, a seasonal thermocline starts
developing in the Baltic Sea. The upper mixed layer with a typical depth of 10-
20 m and temperature of 15-20 °C becomes separated from the cold intermediate
layer of 2-4 °C by mid-June. After the spring bloom, the inorganic nutrients are
depleted in the euphotic layer, and a density gradient prevents mixing between
the nutrient poor and nutrient rich water layers. In late July, during the period of
strongest stratification and inorganic nutrient deficiency in the surface layer, high
biomass concentrations of the dinoflagellate Heterocapsa triquetra (Ehrenberg)
Stein are often found. Over the same period, layers of sub-surface and deep
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chlorophyll a maxima (DCM) are reported in different areas of the Baltic Sea
(Héllfors et al. 2011; Kononen et al. 2003; Lips & Lips 2014; Lips et al. 2010,
2011; Pavelson et al. 1999). These phytoplankton biomass maxima have mostly
been detected at the depth of the nitracline (15-35 m), which usually coincides
with the base of the seasonal thermocline (e.g. Lips et al. 2010). In the Gulf of
Finland in July/August, DCM are mostly dominated by the dinoflagellate H.
triquetra, although Dinophysis spp. and photosynthetic ciliate Mesodinium
rubrum (Lohmann) may also contribute to these maxima on some occasions
(Hallfors et al. 2011; Kononen et al. 2003; Lips & Lips 2014).

The DCM can often be an indication of phytoplankton migration patterns.
Migrations to the deep nutrient-rich layers to harvest inorganic nutrients have
been shown in flagellates to overcome nutrient limitation (Cullen & Horrigan
1981; Doblin et al. 2006; Heaney & Eppley 1981; Jephson & Carlsson 2009). At
night, cells may descend to the dark and deep nutrient-replete layers below the
thermocline to take up inorganic nutrients. Cells ascend to the nutrient-deficient
euphotic layer during the day, where they use the incident solar radiation for
photosynthesis. Vertical sampling and high-resolution autonomous vertical
profiling have demonstrated diel and bi-diurnal migration patterns for a
phytoplankton community dominated by H. triguetra (Lips & Lips 2014).
Migrations to the deeper nutrient-rich layers have been hypothesised to explain
the high biomass values of this species in the nutrient-depleted surface layer in
July in the Gulf of Finland (e.g. Lips et al. 2011; Lips & Lips, 2014). In fact, a
cost-benefit analysis by Raven & Richardson (1984) hypothesises that
dinoflagellates win energetically from the vertical migration behaviour even
when the energy and nitrogen costs (synthesis and operation of the flagellar
apparatus, transport and storage capacity for nitrate) have been taken into
account. Moreover, nutrient assimilation in the dark has been shown to support
the growth of many dinoflagellates (Cullen & Horrigan 1981; MaclIntyre et al.
1997; Olsson & Granéli 1991). The question arises — does H. triquetra perform
vertical migrations for nutrient acquisition, and does it take up sufficient nutrients
in the deep, dark, cold waters to allow it to survive and bloom in the nutrient
deficient Baltic Sea surface layer in late summer?

In laboratory conditions, the dark nutrient uptake by H. triguetra has only been
documented in a warm growth environment of 20 °C (Paasche et al. 1984). At the
same time, the maximum nutrient uptake rate of phytoplankton is known as a
function of molecular diffusivity, which is a linear function of temperature —
slower molecular diffusivity at lower temperatures (Baird et al. 2001). The
literature also does not provide any direct evidence indicating the extent to which
H. triquetra benefits from dark nutrient uptake in a way that would manifest in
either higher growth rate, biomass increase or improved photosynthetic
performance later in the light field. In the present study, our experimental
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conditions were aimed to simulate some of the main environmental factors, met
in the Gulf of Finland that influence nutrient uptake and photosynthetic efficiency
in phytoplankton: (i) light availability, (ii) temperature, and (iii) nutrient pre-
conditioning. The primary objective of this study was to indicate, in a laboratory
experiment, the ability of H. triquetra to take up inorganic nutrients (nitrate and
phosphate) in cold and dark conditions and to demonstrate that nutrients
previously taken up in dark improve cell growth and photosynthetic capacity later
in the light field.

Materials and methods
Culturing conditions and experimental design

A non-axenic monoculture of Heterocapsa triquetra was established from single
cells isolated from the Gulf of Finland in 2012. The culture was maintained in T2
medium (Spilling et al. 2011), which is modified /2 medium (Guillard 1975),
where the molar nutrient ratio, N:P, is adjusted to 16:1. The culture, with salinity
around 6, was grown at 15 °C and an irradiance of 200 umol m™ s! with the light-
dark cycle of 16:8 hours. Ten days prior the experiment, a small amount of culture
(1-2 mL) was inoculated into two 250 mL Erlenmeyer flasks prefilled with 120
mL filtered and autoclaved seawater. Nutrients were added directly into the
cultures according to Spilling et al. (2011), with a final concentration of nitrate
24 umol L' and phosphate 6 umol L. Phosphate was added in excess (N:P = 4)
to stimulate the natural environment of N-limitation in the Gulf of Finland.

To initiate the experiment 500 mL flasks (n=3; Fig. 1) were filled with the
above cultures at 820 cells mL™ and maintained at the light and temperature
conditions above. Once cell density was >1000 cells mL™! (day 2), cultures were
diluted with sterile seawater. The dilution was necessary to avoid CO; limitation
and consecutive pH rise as a result of high cell numbers in the late exponential
phase. By day 6 of the experiment, when H. triquetra cells had reached the
stationary growth phase, the cultures were split in two and poured in triplicate
into 500 mL Erlenmeyer flasks up to 230 £ 2.5 mL. One set of flasks was
maintained at the light and temperature conditions described above until the
termination of the experiment, additional nutrients were never added. The other
set of flasks was wrapped in foil, and after that nutrient-rich medium was added.
Nutrient concentration increased to a final concentration of nitrate 4.53 uM and
phosphate 0.91 uM (N:P = 5) in the nutrient amended cultures. Similar nutrient
concentration levels are found in the surface layer of the Gulf of Finland before
the formation of the thermal stratification in the water column in spring. Nutrient
concentrations at the upper part of the nutriclines (15-35 m) in the cold
intermediate layer are usually lower. However, we aimed to avoid nitrate being
depleted from the dark incubated cultures since maximum growth yield would
not be possible to show in that case. The flasks were incubated in the dark at 4 °C
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for 48 hours (Ip) and after that brought back to the previous culturing conditions
(Ip) described above. Samples for measurements of cell concentration and
photosynthetic capacity were withdrawn in every 1-2 days over 11 days. For cell
enumeration samples were fixed with acid Lugol’s solution and cells counted
using a Sedgewick-Rafter counting chamber and an inverted microscope. The
specific growth rates (u), between consecutive time points, were calculated
during exponential growth as:

_ In(Nz)-In(Ny)

= @
where N; and N, denote the abundances at time steps t; and t», respectively.
Culture pH was monitored daily directly in the flasks and was regulated with a
IM HCL solution during the first days of the experiment (pH meter Mettler
Toledo SevenEasy).

Variable chlorophyll fluorescence analysis

Standard variable chlorophyll fluorescence measurements were done using the
MULTI-COLOR-PAM chlorophyll fluorometer (Heinz Walz GmbH, Effeltrich,
Germany) following the saturation pulse method (Schreiber 2004). Parameters
used for the assessment of the photosynthetic capacity of Heterocapsa triquetra,
obtained with the saturation pulses were: effective photochemical quantum yield
(éu), regulated non-photochemical energy conversion (¢xpg), non-regulated heat
dissipation and fluorescence emission (pno), maximum photochemical quantum
yield (F./Fm) and photochemical fluorescence quenching (qP; Table 1). These
parameters provide basic information on the fate of absorbed light energy
(Klughammer & Schreiber 2008; Kramer et al. 2004). Parameters for the light
regimes used were: measuring light = 1 umol photons m=s™! at 440 nm (30 sec),
saturating light = 5 710 umol photons m?s™! at 440 nm (300 ms), actinic light =
200 pmol m?s™! at 440 nm (30 sec). All fluorescence parameters were calculated
after subtraction of the blank fluorescence, measured in filtered (GF/F glass-fibre
filter) and autoclaved seawater. Before fluorescence measurements, cells were
incubated at in situ temperature in the quartz cuvettes for 10 to 20 minutes in the
dark to allow full oxidation of the primary electron acceptor, quinone A (Qa).
Cells were stirred in the cuvette during measurements.

Inorganic nutrient measurements

Nutrient analysis was carried out from filtered and autoclaved seawater prior use
in the experiment. During the experiment, samples for nutrient analysis were
collected at five different time steps: on day 2 after culture dilutions, on day 6
before and after nutrient additions prior dark incubation period, on day 8 from
nutrient-enriched cultures after the dark incubation period, and on day 9 from
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Figure 1. The timeline of the experiment with information on subculture volume, growth
conditions and cell densities on different experimental phases. On day 6 cultures were
split into two sets of subcultures: one set was left unmodified until the end of the
experiment (arrow pointing up), and the second set received nutrients and went through
the 48-hour dark (ID) incubation period at 4 °C (arrow pointing down) before brought
back to the initial light and temperature conditions.

Table I. Chlorophyll fluorescence parameters used in this study.

PSII fluorescence parameter Calculation References

Fy/Fm Maximum photochemical
quantum yield of PSII
Effective photochemical

(Fm-Fo)/Fm Kitajima & Butler (1975)

du quantum yield of PSII (Fm’-F)/Fm’ Genty et al. (1989)
Quantum yield of non-
ono  regulated heat dissipation F/Fm Hendrickson et al. (2004)
and fluorescence emission
Quantum yield of light-
induced , .
dnro non-photochemical F/Fn’-F/Fm Hendrickson et al. (2004)
fluorescence quenching
qP Photocl}emlcal fluorescence (Fm’-F)/(Fm‘-Fo’)  Schreiber et al. (1986)
quenching
Fy’ Minimal fluorescence in the (Fm’-F)/(Fm‘-Fo’)  Oxborough & Baker (1997)

light-adapted state

nutrient-enriched cultures. Samples were analysed using the Lachat QuikChem
8500 Series 2 (Lachat Instruments, Hach Company) for NO;~ and PO4*"
according to the ISO 15681-1 method for PO4*~ and ISO 13395 method for NOs ™.
The lower detection range for POs*~ and NO;~ were 0.06 and 0.07 uM,



respectively.

The nutrient uptake rates were calculated from the decreases of the respective
nutrient concentrations. To compare the rates in units of pM h™!, nutrient uptake
was assumed to be constant over the measured periods, which differed in length.
The dark incubation period at 4 °C (Ip) of 48 hours was compared to the period
of a light-dark cycle (ILp) of 24 hours. Hence, the amount of nutrients taken up
during Ip or Irp was divided by the respective hours of the measured period.

Results
Nutrient and cell concentrations

The dynamics of the nutrient levels in the cultures and the amounts of nutrients
taken up in different experimental phases by Heterocapsa triquetra are shown in
Figure 2a. The concentration of NOs™ in the non-amended cultures was stable at
0.44 + 0.02 pM (open circles; last day of measurement in non-amended cultures
was day 6, no measurements were made on day 9). Whereas the level of PO4*
decreased by 26% down to the concentration of 0.67 + 0.1 uM by day 6 (open
rectangulars).

In the nutrient-amended cultures, the concentrations of both, NO;~ and PO,*",

decreased during dark, cold (4 °C) incubation (Ip) (group means before and after
Ip were significantly different for both nutrients; paired #-test, p < 0.05). The
average consumption rates of NO3~ during Ip was 1.04 uM d! = 0.04 uM h™! and
in following warm (15 °C) light:dark cycle (Irp) it was 1.69 uM d' = 0.07 uM h°
!. The consumption rates of PO,*~in Ip was 0.075 uM d! = 0.003 uM h™! and in
following Ip 0.14 uM d! = 0.006 uM h''. However, the differences between the
consumption rates of both nutrients in Ip and I p were not statistically significant
(t-test, p> 0.05) most probably due to the small data set. Nutrients were consumed
in similar N:P ratios of 14:1 and 12:1 during Ip and Iip, respectively.
The cell concentration in the non-amended cultures was mostly stable around
1000 cells mL"! during the whole experiment (Figure 2b). Cell abundance
decreased slightly after relocating the nutrient-amended cultures from Ip to Iip
(negative growth rate of -0.11 d"! by day 9). After that the growth rate in these
cultures increased to 0.22 d™! in two days yielding a 34% higher cell concentration
(1390 cells mL") by day 11, when compared with the non-amended cultures at
the same day (1040 cells mL™).

Variable fluorescence dynamics

The maximum PSII quantum yield (F./Fy) for the non-amended Heterocapsa
triquetra cultures declined as a function of time from 0.79 to 0.60 during the
experiment (Figure 2¢). The mean F./Fy, in the nutrient-amended cultures after
the Ip (the last three days of the experiment) was 0.77 £ 0.01; mean + SE, n=9),
being on average significantly higher than the mean in the non-amended cultures
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(0.66 £ 0.03) during the same period (¢-test, p < 0.01).

Measurements of photophysiological variables yielded more insight into the
photochemical and non-photochemical quenching processes in the non-amended
H. triquetra cultures. The effective photochemical yield (¢u) for the non-
amended cultures declined with time from 0.71 to 0.36. During the first 5 days,
the decline mainly resulted from compensatory changes in antenna
downregulation, @npq (the latter increased from 0.02 — 0.21; Figure 3a). Under
these conditions, the PSII reaction centres were essentially completely open (high
gP), and photosynthetic yield was primarily determined by changes in non-
photochemical quenching. Onwards from day 5, the capacity of @nreg to regulate
light capture was saturated, leading to the gradual decline of open reaction centres
(qP). However, from day 8 until the end of the experiment, @i was mainly
influenced by non-light induced (basal or dark) quenching processes (¢no
increased from 0.25 — 0.42; Figure 3a). Increased energy dissipation as @npq and
¢no caused a photoregulative change in the non-amended H. triguetra cultures on
days 10 — 11, i.e. n was lowered down to 0.36.

In the nutrient-amended cultures @ recovered up to 0.64 and was on average
higher when compared to the non-amended cultures (z-test, p=0.01). The decline
of pnresulted mainly from the increasing gnpeg (0.06 — 0.17) but also from a slight
decrease in qP (0.90 — 0.83; Figure 3b). Energy dissipation as ¢no was stable
(ranged from 0.29 — 0.31; Figure 3b).

Discussion

The present study documents that the dinoflagellate Heterocapsa triquetra can
take up both inorganic nitrogen and phosphorus in a dark and cold (4 °C)
environment. Similar physical conditions are characteristic of the water layers
below the seasonal thermocline in summer in the Baltic Sea. The documented
ability for dark nutrient uptake supports our hypothesis that H. triquetra
migrations from warm surface layers to the deeper cold layers could be aimed to
acquire available inorganic nutrients that are at that time lacking in the surface
layer. The described migration pattern (Lips et al. 2011) together with dark
nutrient uptake, presented in this study, explains the competitive advantage of H.
triquetra populations in the nutrient-limited surface layer and the species’ ability
to reach bloom concentrations in the summer when the Gulf of Finland is strongly
stratified. As the dark uptake of NO;~ was demonstrated to be accompanied with
the uptake of PO4*", the importance of nutrient-retrieval migrations to the nutrient
limited surface layer are even more emphasised by the present study. The
observed N:P uptake ratios by H. triquetra were similar in the dark, cold (4 °C)
and illuminated, warm (15 °C) environments —14:1 and 12:1, respectively. This
is noteworthy since significantly lower N:P uptake ratio in the dark or no
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difference in light-dark uptake of P is reported in previous studies (e.g. Miiller et
al. 2008; Riegman et al. 2000; Rivkin & Swift 1985).

While the influence of single environmental factors on nutrient uptake have
rigorously been studied in dinoflagellates, studies with combined environmental
factors on the nutrient uptake are lacking. In fact, little attention has been paid to
the dark uptake rates of nutrients in different temperatures or dark nutrient uptake
by cells previously grown in an illuminated but nutrient-poor environment. Often
higher uptake rates of nitrates in the light compared with dark uptake rates are
reported (e.g. Dortch & Maske, 1982; Riegman et al. 2000; Jauzein et al. 2011).
Heterocapsa niei (Loeblich III) Morrill & Loeblich III takes up 60% less nitrate
nocturnally as compared to the uptake during the day (Cullen 1985), whereas H.
triquetra is able to take up nitrate more or less equally in light and dark conditions
at 20 °C (Paasche et al. 1984). In general, nutrient uptake decreases with
temperature (Reay et al. 1999; Smayda 1997). In the present study, potentially
half the nutrients were taken up in the dark, cold conditions compared with the
uptake in the warm, illuminated conditions. However, as the uptake correlations
were found not to be statistically significant, most probably due to the small data
set, this issue needs to be studied further. Aditionally, the cells’ history of the
nutrient supply can play an important role. Dinoflagellates differ widely in their



ability to take up nitrogen when grown in N-sufficiency (Paasche et al. 1984).
Nitrate uptake and reduction relies on carbohydrates that are used up immediately
in the light if nitrate is available, but are stored in N-starved cells and could be
used for dark nitrate assimilation (Cullen 1985). Some earlier laboratory studies
have shown that N-deprived phytoplankton cells have greater dark uptake rates
of inorganic nitrogen compared with N-replete cells (Dortch & Maske, 1982;
Cochlan et al. 1991).

The present data also provide evidence that the nutrient uptake in the dark was
followed by improved performance of the photosynthetic apparatus of the cells
later in the illuminated conditions. The maximum PSII quantum yield (F./Fn) was
higher after nutrient additions (up to 0.76), and the majority of the absorbed light
energy was channelled into photochemical processes (¢n). In dinoflagellate
cultures, F./Fm, of 0.6 has been considered as an indication of cells with a well-
functioning photosynthetic apparatus (Lopez-Rosales et al. 2014; Suggett et al.
2009). In the present experiment, F./Fr, declined in the non-amended cultures but
was never lower than 0.6. Relatively high values of F,/F, together with the long
duration of the stationary growth phase in the non-amended H. triquetra cultures
(~9 days), may indicate that H. triquetra cells are able to acclimate to low nutrient
conditions and survive for relatively long periods in a nutrient-depleted surface
layer in the sea. The described ability may be potentially achieved by the use of
intracellular nutrient storages, as dinoflagellates can store significant amounts of
inorganic and organic nitrogen forms (e.g. review by Dagenais-Bellefeuille &
Morse 2013). It is thought, that in the stationary growth phase nutrients are
reallocated to the functions where they are most needed, and the balance between
the light harvest and electron transport are adjusted in such a way as to maximise
efficiency (Parkhill et al. 2001).

The decrease in maximum photochemical efficiency (¢u) in the nutrient-
limited cells has been reported (Lippemeier et al. 1999; Roberts et al. 2008), as
well as the recovery following nutrient re-addition after starvation (e.g. Greene
et al. 1992; Lippemeier et al. 2001; Young & Beardall 2003). Fluorescence, as
opposed to the cell division, responded faster to the nutrient additions in our
experiment, which is in agreement with nutrient spiking found in other algae
(Lippemeier et al. 2001, 2003). Decreasing ¢n and complementarily increasing
¢nrq and @no in the non-amended H. triquetra cultures, to a great part, was related
to the damage in the reaction centres. The operating efficiency of PSII (¢n) during
the final days in the non-amended cultures was sufficient (0.36 — 0.45) to maintain
the population size at a steady level. The sum of the @nro and @no contributed to
a substantial fraction (0.55 — 0.64) of the absorbed light energy lost non-
photochemically. Although, the concentration of the light-harvesting pigments in
H. triquetra have been shown to decrease heavily under nutrient starvation and
only slight changes in their relative concentration to chlorophyll a take place
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(Latasa & Berdalet 1994). The latter suggests that the general structure of the
photosynthetic apparatus does not change and in the case of nutrient re-supply, a
faster recovery of the cells may be expected. In the present study, the on
recovered up to 64% after nutrient addition. Enrichments with limiting nutrients
often restore the values of @r, implying that nutrient limitation on photosynthetic
energy conversion is common in the sea (Falkowski 1992; Falkowski et al. 1991).

In conclusion, evidence of phosphate and nitrate uptake by the migratory
dinoflagellate H. triquetra in a cold environment in the absence of light was
found. Some signs of improved photophysiology (after nutrient uptake in the
dark) and cell growth was also apparent. A recovery of the effective
photochemical efficiency after the end of the dark incubation period indicated the
potential use of intracellular nutrient reserves to improve the efficiency of PSII
reaction centres. Nearly constant cell concentration and relatively high effective
photochemical quantum yield in the potentially nitrogen-limited cultures
indicated the ability of the H. triquetra population to survive for extended periods
in low nutrient conditions. The presented data show that H. friqguetra populations
indeed win from compromises between nutrient acquisition in deep, dark, cold
layers at night and subsequent photosynthesis in the warm euphotic layer during
the day in the Baltic Sea. In order to estimate the importance of upward vertical
flux of inorganic nutrients induced by migration of H. triquetra in comparison to
the contribution of hydrophysical processes (as turbulent mixing, transport by
upwelling events etc.) further laboratory and field studies are needed.
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ABSTRACT

The ecology and photobiology of mixotrophic alveolates in the Baltic
Sea

Mixotrophic protists live a flexible lifestyle by combining autotrophic and
heterotrophic nutritional strategies. During the past decades, it has been
acknowledged that mixotrophic behaviour is widespread among protists.
However, the contribution of mixotrophs to net community production still
remains unclear. In the Baltic Sea, during the period of seasonal water column
stratification and nutrient deficiency in the upper mixed layer, a significant
proportion of the biomass of the microplankton community is formed by the
mixotrophic species. The objective of this PhD thesis was to understand better
the ecophysiology of mixotrophs; how different environmental factors and
predator-prey relationships influence the population dynamics of common
summertime species in the Baltic Sea.

Laboratory experiments were conducted to study predator-prey interactions,
feeding behaviour, regulation of kleptochloroplasts at different light fields in the
absence of prey, capacity for inorganic nutrient uptake in cold and dark
environmental conditions, improvement of the population photophysiology after
dark nutrient uptake, and population survival in nutrient deficient conditions.
The influence of mixotrophic predators on the prey population was quantified.
Direct impact via the trophic link and a major indirect impact (prey lysis) on the
prey population by the toxic predators (Dinophysis spp.) were revealed.
Synthesis of photosynthetic and photoprotective pigments and photoregulation
of kleptochloroplasts in different light fields by Dinophysis in the absence of
prey were discovered. Measurements of nutrient uptake in dark and cold
conditions support the hypothesis of nutrient-retrieval migrations to deep layers
by Heterocapsa triquetra. These results contribute to a more explicit
understanding of the success of the mixotrophic species in optimal and non-
optimal environmental conditions.
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RESUMEE

Miksotroofsete alveolaatide 6koloogia ja fotobioloogia Lainemeres

Miksotroofsetele protistidele on omane paindlik toitumisstrateegia, mis iihendab
endas auto- ja heterotroofsuse. Viimase paarikiimne aasta jooksul on leitud, et
miksotroofne eluviis on protistide seas viga levinud. Kiill aga ei ole veel selge,
milline on miksotroofsete organismide panus mikroplanktoni koosluse
netoproduktsiooni. Ladnemeres, sesoonse temperatuuri kihistumise perioodil,
mil tilemine segunenud veekiht on toitainetevaene, moodustavad miksotroofsed
liigid olulise osa suvisest mikroplanktoni biomassist. Kéesoleva doktorit6o
eesmadrk oli paremini moista miksotroofide dkofiisioloogiat — kuidas mojutavad
varieeruvad keskkonnatingimused ning kiskja ja saakorganismi omavahelised
suhted suvel esinevate miksotroofsete liikide populatsioonidiinaamikat.

Doktorit6d raames viidi 1dbi laboratoorsed eksperimendid uurimaks kiskja
ning saagi omavahelisi interaktsioone ja toitumiskditumist, kleptotkloroplastide
fotoregulatsiooni saagi puudumisel, anorgaaniliste toitainete omastamist jahedas
vees valguse puudumisel, populatsiooni fotofiisioloogilise seisundi paranemist
parast toitainete pimedas omastamist ja populatsiooni fiisioloogiat
toitainetevaestes tingimustes. Kirjeldati kvantitatiivselt miksotroofsete kiskjate
moju saakorganismi populatsioonile ning leiti, et toksilise dinoflagellaadi
Dinophysis mdju saakorganismidele voib olla nii otsene (toitumine saagist) kui
ka kaudne (saagi liiisumine). Dokumenteeriti valgust piitidvate ja valguse eest
kaitsvate pigmentide siintees ning kleptokloroplastide fotoregulatsioon
Dinophysis rakkudes saakorganismide puudumisel. Dinoflagellaat Heterocapsa
triquetra poolt toitainete, pimedas ja kiilmas keskkonnas, omastamise
registreerimine toetab eelnevat hiipoteesi, et antud liik migreerub vertikaalselt
veesamba  sligavamatesse kihtidesse pinnakihis puuduvate toitainete
omastamiseks. Doktoritoo tulemused aitavad paremini moista miksotroofsete
likkide edukust (biomassi maksimumide moodustamist) optimaalsetes ja
mitteoptimaalsetes keskkonnatingimustes.
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