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Abstract

The main subject for this thesis is to develop a system, which predicts traffic blockages

in  near  real-time  with  convolutional  neural  network  from  camera  stream  on  the

intersection. When a blockage is predicted, the system sends a signal to the traffic light

controller  so it will stop the green light cycle proactively.  This should reduce traffic

congestions, because the green light will not go to waste. This thesis focuses only on the

Sõpruse-Tammsaare intersection, but the system can later be expanded.

Previously Epp Mauring developed a model in TensorFlow. In this thesis the model was

converted  to  PyTorch.  A  whole  new  dataset  for  training  the  model  was  obtained,

because  Tondi  intersection  was rebuilt  between this  and Epp Mauring’s  thesis.  The

prediction time was increased to ten seconds. The architecture of the model was also

improved, which in turn increased the accuracy. The final achieved accuracy was 83%.

Raspberry Pi 3 B+ was chosen as the hardware for the system. It is relatively cheap, but

offers enough computation power and has the ability to run multiple tasks at once.

Although a thorough system design was developed, it could not be tested on the real

intersection.

This thesis is written in English and is 52 pages long, including 6 chapters, 26 figures

and 7 tables. 
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Annotatsioon

Reaalajalähedane ristmike kinnisõitmiste ennustamine kasutades

konvolutsioonilisi närvivõrke

Töö  põhieesmärgiks  oli  arendada  süsteem,  mis  ennustab  ristmiku  kinnisõitmisi  ette

peaaegu  reaalajas.  Ennustamiseks  kasutatakse  konvolutsioonilisi  närvivõrke,  kuhu

antakse  sisendiks  ristmikul  olevast  kaamera  voogedastusest  välja  lõigatud  pilt.  Kui

mudel  ennustab  ristmiku  kinnisõitmist,  siis  saadetakse  signaal  ristmiku

foorikontrollerile,  mis  omakorda  paneb  koheselt  rohelise  tule  vilkuma.  See  peaks

vähendama liiklusummikuid, sest roheline tuli ei lähe teiselt suunalt tulevatel autodel

raisku. See töö keskendub eelkõige Sõpruse-Tammsaare ristmikule.

Eelnevalt on Epp Mauring enda bakalaureusetöö raames arendanud närvivõrgu mudeli

antud probleemi lahendamiseks kasutades TensorFlow raamistikku. Antud töö raames

vahetati raamistikku ja lõplik mudel treeniti PyTorch raamistikuga. Kuna Tondi ristmik

ehitati  kahe  töö  vahel  ümber,  oli  vaja  ka  uuesti  koguda  treening-  ja  testandmestik

mudeli  treenimiseks.  Mudeli  ennustamise  aega  suurendati  neljalt  sekundilt  kümne

sekundini. Samuti täiendati närvivõrgu arhitektuuri, mille tulemusena paranes ka mudeli

täpsus. Lõplikuks täpsuseks saavutati 83%.

Töö raames töötati välja ka süsteemi riistvaraline pool. Mudeli käivitamiseks valiti välja

Raspberry  Pi  3  B+,  sest  see  on  suhteliselt  odav,  kuid  suudab  korraga  paralleelselt

jooksutada mitmeid programme.

Kahjuks süsteemi ristmikule siiski ei  olnud võimalik paigaldada ja seetõttu  ei  olnud

võimalik seda reaalajas testida.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 52 leheküljel, 6 peatükki, 26

joonist, 7 tabelit. 
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List of abbreviations and terms

Blocked intersection The intersection is read as blocked, when at least half a car 
stops at the pedestrian crossing

CNN Convolutional Neural Network

CPU Central Processing Unit

Epoch One cycle of training

F1 score A value for model accuracy by it’s recall and precision

Hyperparameters Parameters in machine learning, which values are set before the 
learning process begins. For example learning rate, number of 
epochs, etc.

IoT Internet of Things

IP Internet Protocol

L2 regularization Neural network regularization method – restrains the weights of
the neurons

Learning rate The rate in which the neural network neuron updates its weights

Near real-time Refers to the time delay introduced in an automated process.

Neuron Elementary unit of a neural network

OS Operating System

Over-fitting When a Machine Learning model highly adjusts to training data
and the accuracy on test data is too low

RPi Raspberry Pi

RTSP Real Time Streaming Protocol

SSH Secure Shell

SWA Stochastic Weight Averaging

TalTech Tallinn University of Technology

TCA Tallinn City Administration

Test data Data used to validate the model

Training data Data used to train the model’s weights

Traffic lights cycle Total time necessary to complete a sequence of signalization for
all movements

VDSL cable Very-high-bit rate Digital Subscriber Line cable
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1 Introduction

Regulating intersection traffic in big cities can be a challenge. Even though traffic lights

regulate  intersections,  they  are  not  sufficient  to  guarantee  an  optimal  traffic  flow.

Drivers do not always notice, when a section becomes full ahead of a green light and

thus have to stop in the center  of the intersection.  As a consequence,  when another

direction gets a green light, that direction may not cross the intersection, because of the

blocking car. A full traffic lights cycle may be wasted for that direction. It does not only

affect other cars, the pedestrian crossings are blocked as well. If people try to cross the

intersection between the cars, it is potentially dangerous to them if the driver suddenly

starts moving.

Using machine learning to predict ahead of time is one way of solving the problem. The

neural network model can predict whether the intersection gets blocked before the end

green cycle. By shortening the green cycle for some seconds, the blocking could be

prevented. If the prediction is correct and the blocking of the intersection is prevented,

the other direction can cross the intersection successfully instead of having to wait with

a green light without being able to move.

Previously Epp Mauring has collected some test/training data from a camera in Sõpruse

and  Tammsaare  intersection  [1].  In  her  thesis  she  stated  that  convolutional  neural

networks (CNN) are the best fit for this problem  [1]. As the result of her thesis, she

managed to get the algorithm to predict congestion 4 seconds ahead of time  [1]. Epp

Mauring’s neural network test set accuracy was 80% [1].

In this thesis CNN will still be used, but the possibility of using sequence models will

be researched. The main goal is to increase accuracy and prediction time of the current

model.  It  isn’t  currently  known,  what  is  the  best  prediction  time  to  predict  the

congestion. This will be analyzed. Also getting a higher accuracy can be challenging,

because  the  quality  of  the  stream  from  the  intersection  camera  can  vary  [2].
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Alternatively,  there  may  arise  a  need to  adapt  a  third  party  model.  The  need  and

possibilities will be researched in the thesis.

The output for the main goal will be a neural network model, that predicts blockage of

the  intersection  before it  happens.  The trained model  needs  to  be as  lightweight  as

possible, because this is a real-time and time-critical problem. It also needs to have at

least 85% accuracy and the false prediction rate should be balanced. 

The secondary goal of the thesis will be to build an installable computer system that is

able to communicate with a traffic light controller. The computer system needs to be

able to access streams from the intersection cameras through a secure network.  The

system needs to read input and also write output to a relay.

This system runs the trained model near real-time. The hardware receives the camera

stream through a network cable and outputs the probability of the blockage. Total time,

in which the inference takes place, should be less than a second. If it takes longer, the

efficiency of the prediction drops, because the cut of the green light will not be earlier

than it was statically designed.

Thesis output will be dated and then installed in the real intersection. The number of

congestions before and after the use of the new system will be compared. Tallinn City

Administration (TCA) is supporting this research. Because of that, the outcome of the

thesis is permitted to be tested on the Tammsaare and Sõpruse intersection.

The author thanks Tallinn City Council for granting the “Raestipendium” for this work,

and Sulev Sirkel and Raimond Nõugast for giving a lot of input for the thesis.
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2 Background

2.1 Intersections

The blockage of intersections is a world-wide problem and real-time solutions have not

completely solved the problem. In Tallinn, most of the intersections have cameras, that

stream video  [3], which can be analysed. In this thesis, the stream is used to predict,

whether the intersection gets blocked.

Traffic light cycle is the total time necessary to complete a sequence of signalization for

all movements [4]. Normal length of the traffic light cycle could go from 30 seconds to

120 seconds  [5].  In  rush hour,  the  length of  the  traffic  light  cycle  in  Tallinn  is  90

seconds and outside the rush hour it is 72 seconds [3]. This means, that in this 90 or 72

seconds, every traffic light on the intersections has a moment, where all the lights will

light up (one at a time). 

In  this  thesis,  only  one  direction  is  taken  into  further  research  –  Tammsaare  from

Õismäe  side  to  Järvevana  road  (seen  on  figure  1).  This  direction  causes  the  most

blockages on the intersection  [3]. Within this thesis, the author was granted access to

three cameras on the intersection. As a result of this work, a final configuration used

streams  from  two  cameras  to  train  the  models  –  one  that  is  facing  the  Järvevana

direction  (marked  black  on figure  1)  and the  other  that  faces  the  Õismäe  direction

(marked blue on figure 1).
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Currently the traffic light cycle is defined to the second [3]. It means that if any traffic

light duration is extended or shortened by even a second, it changes the traffic of the

intersection remarkably [3], [5]. Also the cycle length of the whole intersection can not

fluctuate,  because this will  cause synchronization issues with other intersections and

may  cause  big  blockages  in  rush  hour  [3],  [5]. The  length  of  every  traffic  light is

calculated  from a conflict  matrix,  which is  constructed for  every intersection  [5] in

Tallinn [3]. 

2.1.1 Current intersection technology

Currently there are cameras placed to the intersection so that every direction can be

seen. The cameras are connected to a switch with a VDSL cable  [3]. The switch and

traffic light controller are in a weather proof box next to the intersection itself [3]. The

cameras are also connected to the police network [3], which means it can be accessed

outside, but as this is a very safe line, the authorization is not granted lightly. Due to the
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Figure 1. Intersection visualization and camera placements. The red arrow represents the traffic
direction, which is optimized. The gray dots are cameras. The blue and black fields represent

the field of view of the cameras. (Author’s drawing. Base map: Google Maps)



thesis,  access was granted to  the network for a  static  IP,  so that  test  data  could be

collected from some of the cameras.

All the hardware have special relays in between. This is because when lighting strikes

on the equipment, it will not damage everything that is connected [3]. This ensures that

even if one intersection may malfunction, others will not go down with it.

2.2 Real-time traffic optimization

Static traffic light cycle configuration is not optimal in every situation [6]. Dynamic

regularization not only saves time, but in the long run, it saves also fuel [6], [7], which

is more eco-friendly. Models and simulations have been created to solve this issue [6]–

[9], but a fully fitting solution to every situation is yet to be discovered.

One  way  of  optimizing  traffic  lights  is  to  create  a  multi-agent  system  [8],  [9].  A

solution,  which would fit this kind of problem really well  in theory, because it  is a

larger system, which is meant to be run at all times and situations [9]. In practice, this is

a huge and expensive system to build into a city, which needs a lot of computational

power [8], [9]. 

There is proposed an Internet of Things (IoT) solution as well [10]. Internet connection

is needed between intersections, which try to apply green wave theory [10]. The green

wave theory is when multiple intersections allow a continuous traffic flow in a given

direction  [11].  This  solution  seems  promising,  but  enhancing  most  of  the  cars  to

communicate with the intersections, can get tricky. It seems like the multiagent systems

also need some sort of communication between them, but that is not mentioned on the

research paper yet.

Another way is to train a model that detects moving vehicles on the intersection [12]. If

some lanes have high density of vehicles, then the lane is prioritized over others and the

green light is switched on [12]. Vehicle movement detection had a very high accuracy

(at daylight) [12], but the system itself is very complex and requires a lot of computing

and decision making logic. Moving the same logic to different intersection is going to

be troublesome, because of all the business logic in the intersection. Also as this takes
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control of the whole intersection,  it  may result  in synchronization issues of adjacent

intersections.

The IoT solution and the multiagent solution require large investments as well as years

of research. These solutions are unlikely to go into production in the coming years. The

solution provided in this thesis is easier to put into work, because it does not require any

additional devices than the hardware the system runs on.

2.3 Convolutional neural networks

This  work  will  use  convolutional  neural  networks  (CNN)  which  were  introduced

decades  ago  [13],  [14] and has  become  the  main  technique  to  tackle  many  image

recognition  problems  [13]–[18].  CNN  works  by  extracting  features  from  the  input

image  [13]. Every subsequent convolutional layer extracts more complicated features

[13]. 

For example the first layer may extract lines in a certain angle, the second layer extracts

the interaction of those lines. Finally the last layer may extract some really complicated

features or shapes like a flower or a human face. The feature extraction is done via

kernels – a weight matrix with defined dimensions [13]. By moving the kernel over an

image and doing computations, the spatial relationship between pixels are preserved and

thus are the features extracted [13]. Since every pixels is taken into account, the more

pixels the image has, the more computations are done. This means, that the smaller the

image, the faster the model runs on it.

Thanks  to  the  accessibility  of  huge  number  of  annotated  datasets,  the  CNN  has

progressed a lot  [15], [19]. While it is better to train on larger datasets, the minimal

necessary dataset to train a successful model doing image classification has decreased

significantly [19], [20]. Depending on the given problem, that the model tries to solve.

Also the efficiency compared to a normal neural  network is  higher  [17],  [20], [21],

because it usually has parameters and connections [15].

Getting  the  right  architecture  for  a  neural  network  is  crucial.  Even  if  one  layers  is

modified  or removed, it  may significantly  decrease the accuracy of the model  [15].
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Processing high-resolution images takes longer time, but does not give any accuracy

boost  [22]. Running the model on a low computational hardware may get advantages

from this.

2.3.1 Optical flow

An alternative would be to analyze optical flow. Optical flow is a method for detecting

object inter-frame movements [1]. In our research group, Epp Mauring proved with her

research, that it does not provide better results, but raises the complexity [1]. One of the

reasons would be that the motion does not help by much. To understand and explain

this,  images  were  visually  assessed  in  this  work.  While  not  rigidly  provable,  our

explanation  is  that  a  lot  of  short-term motion  information  can  be  obtained only  by

reading a picture as well. For example, if cars have a longer cap between them, it means

that  they  are  moving with  a  higher  speed,  if  a  very  short  cap,  then  they  might  be

standing still. This can be seen from figure 2.

Our explanation is that the spacing between the cars also encodes also the speed of

movement.
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2.4 Deep learning platforms

Currently  there  are  many  frameworks  for  machine  learning.  Epp  Mauring  started

previously her research on Tensorflow [1], [23], but this work uses PyTorch [24]. Both

frameworks are documented well, but since PyTorch uses dynamic graph definition, it

makes it easier to debug the network [25]. It is also integrated more to Python language,

which makes it feel more native  [25]. Debugging in Tensorflow requires more effort,

because it requires special tools, which don’t really debug python code, only the model

itself [25]. 

The model needs to run on a smaller hardware at the end, but training on it is extremely

slow [26], because the hardware that is meant only for inference is relatively weak [27].

In terms of porting the model to production hardware, both Tensorflow and PyTorch

have sufficient tutorials and community behind it [28], [29]. 

2.5 Weather effects

Sometimes the picture cut out from the stream may be blurry or some weather effect has

altered it. There are some ways of cleaning out the image. Unblurring an image can be

done with a model [30]. There is also ways to remove shadow[31] or rain[32], [33]. 

To use these methods, the traffic image needs to be ran through these models developed

in these papers. This can be considered, if enough training data can not be found and the

model fails to classify the images on those circumstances. Before using these methods,

the compute time needs to carefully considered. If the calculations take too long on the

hardware, it is not beneficial.

19



3 Model development

This chapter describes the implementation of the model training, which consists of three

parts: 

1. Data processing to create datasets for training and validating the model

2. Framework conversion to PyTorch

3. Optimizing accuracy and prediction time of the model

3.1 Parsing training and test data

Getting the training and test data for machine learning project is a very important step,

because the more diverse is a training (and of course the test set), the better results the

neural network will give. Parsing this data in this project can be divided into multiple

steps.

3.1.1 Camera stream parse

TCA has  authorized  a  certain  Tallinn  University  of  Technology  (TalTech)  Internet

Protocol  (IP)  address  to  access  the  camera  streams  of  Sõpruse  and  Tammsaare

intersection. The stream comes over Real Time Streaming Protocol (RTSP) – a network

protocol designed for use in entertainment and communications systems [34]. Over the

protocol, it is possible to record media streams [34].

A script was created to download record these streams into TalTech server. Ffmpeg is a

software that takes RTSP stream URL as input and some additional parameters can be

declared, like the duration of the stream to save and the format of the output file.  To

automate this process, crontab was used: the shell script is executed daily at rush hour.
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Another  alternative to parse streams,  that  was tested,  is  OpenRTSP, but it  does not

provide a comfortable interface to save streams for user-defined durations, so it does not

work well with the setup of this project.

The  default  rtsp  transport  channel  does  not  work  for  downloading  streams  -  ‘-

rtsp_transport tcp’ needs to be added to the command. The basic script to parse stream

can be seen on figure 3.

The basic script defines the basic flags to use ffmpeg. It accepts two parameters: first

parameter is the stream rtsp url and the second one is identifier, which will be used as a

folder name to save the video files into. The example base script usage can be found on

figure 4.

The connection is not always stable and because of that, the ffmpeg script is interrupted.

To ensure that we get a full hour of training data from each day, another script, that

polls, whether ffmpeg is still running, was necessary. It uses ps aux and grep to check,

whether ffmpeg is running and starts the stream parsing script again in case it is not.

The example stream parse polling can be found on figure 5.
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#!/bin/bash

now=$(date +"%d_%m_%Y")

ffmpeg -rtsp_transport tcp -i "$1" -c:v copy -t 3600 
"/path/to/videos/$2/traffic-$now.mp4"

Figure 3. Stream parsing – base script

#!/bin/bash

/path/to/stream_parse/parser.sh "rtsp://rtsp_url" "to_jarvevana"

Figure 4. Stream parsing – base script usage

#!/bin/sh

ps_out=`ps aux | grep '[f]fmpeg' | grep 'to_jarvevana'`

if [ "$ps_out" = "" ];then

    /path/to/parsing/script.sh

fi

Figure 5. Stream parse polling



3.1.2 Stream slicing

The  automated  stream parser  saves  around  200MB chunks  of  videos  (one  hour  of

material per file). This can not be used for training data directly, so the data needs to be

sliced and proper images need to be cut out for the neural network algorithm. 

A python script using framework called moviepy was developed for this purpose. It

provides an interface to extract subclip from videos by defining start time, end time and

of course the file name itself.

Every  video’s  name  needs  to  be  in  exact  format:  {first_cycle_start_in_seconds}-

{label}-{date}.mp4. The first_cycle_start_in_seconds is used to pinpoint the start of the

first clip. If the label contains “NV”, the cycle length is considered to be 72 seconds,

otherwise it will be 90 seconds. The date is necessary to distinguish the clips afterwards.

Every  clip  generated,  will  have  the  name in  format:  {annotation}-{date}-{id}.mp4.

Annotation is defaulted to unknown so the unannotated clips can be found quickly, if

needed. The date is just for identification, and the  id  is for file name uniqueness. For

every date, the id starts from number 1. 

Configurable parameters in the script are the following:

• large_clips_path: Path where the slice-able video is located

• videos_path: Path where to save the sliced videos

3.1.3 Cutting images from sliced videos

The  images  were  cut  using  opencv  framework  for  python.  There  is  a  very

straightforward function for doing so.  By giving the method type (which can be by

milliseconds or by frames) and the time unit of where to do the cut. For this project,

cutting by milliseconds made more sense and it provided the results needed.

Before  cutting  the  images  out  of  the  clips,  all  the  sliced  videos  need  to  be

renamed/annotated  properly.  Every clip  needs  to  be in  format  {start_of_red_cycle}-

{annotation}-{date}-{id}.mp4. The  annotation,  date and  id are just for identification

and are not as important in image cutting. The most important parameter in the name is
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start_of_red_cycle,  because  this  is  used  to  calculate  the  correct  moment,  when  the

image should be cut. 

In the created script, there are some configurable parameters.

• videos_path: Path from where to read the video clips

• images_path: Path to where the script saves the cut images

• time_before_red_cycle: Time in milliseconds before the red cycle to cut out the

image

• with_validation: Whether the validation mode is active

The with validation cuts out three images of each video with a 500 millisecond gap.

When  time_before_red_cycle is  set  to  0,  it  can  be  used  to  validate,  whether  the

start_of_red_cycle in the video file name was correct. At least one of the three images

needs to be yellow and one of them red. The third one can be either one.

3.1.4 Dataset parsing

The dataset parser, which constructs hdf5 files for model training and validation, was

developed by Epp Mauring in her thesis  [1]. In this thesis, another similar algorithm

was created for multiple image input datasets to test different network configurations. 

In these scripts, the image was resized. The final image needs to be 64 pixels on both

width and height. It needs to be as small as possible for the model to run fast on low

performing  hardware  [2.3].  If  it  would  be  too  small,  the  traffic  would  not  be

distinguishable and the model may not do the correct conclusions.

In a hdf5 file, one has to define, which data types will be used for the saved values. In

the previous parser, the data type used for pixel values was int8. The problem with it is,

that the int8 allows numbers from range -128 to 127 [35], but pixel values go from 0 to

255. Because of the wrong data type, the colours of the loaded images from the created

hdf5 files were distorted. When training and testing the model, it  did not come out,

because the model adjusted to the new colours. But when the model was exported and

used on hardware, it  did not give correct output on the original images, which were
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directly read into the program. After changing the data type for pixel values to uint8,

which allows values from 0 to 255 [35], recreating datasets and retraining the models,

the problem is fixed.

3.2 Converting the base model from TensorFlow to PyTorch

The existing Epp Mauring’s prediction model [1] will be used as a baseline to assess the

performance and quality of the new model.  The baseline model was converted from

Tensorflow neural network training code to PyTorch to allow comparison in directly

comparable  conditions  and  eliminate  possible  effects  that  may  be  caused  by  the

framework.

3.2.1 Project structure

Unlike PyTorch, Tensorflow does not really encourage object oriented programming.

Because of that, it is really easy to write all of the code in to the same file instead of

encapsulating the classes in to separate files for better reading.

By converting the previous code into PyTorch, instead of one single file per training,

there came three smaller files, which encapsulate the logic a lot better. One file for the

network structure, one for dataset loading and one for training the actual model. Having

this structure is also highly recommended by PyTorch documentation and examples. It

makes the future development a lot easier and the code is a lot more maintainable.

3.2.2 Network

The network file contains a single class, which extends PyTorch’s Model class, which is

the base class for all neural network modules. In the constructor, one can define all the

different layers of the network. 

For  this  project  five  different  layers  were  needed:  two  convolutional  layers,  two

(max)pooling layers and one fully connected layer. A convolutional layer needs to know

the number of inputs, the number of outputs and the kernel size. A (max)pooling layer

only needs to know the kernel size. Both of those layers can receive some additional
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parameters like stride or padding. The last used layer is the fully connected layer, which

needs only the number of inputs and outputs to construct the layer. 

All the functional layers, like “sigmoid” or “softmax” for example, can be used as well,

but these do not need to be pre-constructed in the network.

The initial  Pytorch model  after  conversion from TensorFlow can be seen  on figure

Error: Reference source not found and the convolutional layer is described on figure 7.

3.2.3 Dataset

Parsing data files with PyTorch is preferably done in a separate class to enable the usage

of  batch  processing1.  The  framework  offers  multiple  ways  to  do  this.  One  way  is

1 Batch processing in machine learning means that a group of training samples will be used at once 
during the learning and optimization process [36]
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Figure 6. Model visualization after converting to PyTorch. Convolutional layer is described on
figure 7.

Figure 7. Initial model convolutional layer



extending the Dataset  class.  By extending the class,  one has to  overwrite  two main

methods. One, which returns the size of the whole dataset, and the other, which returns

one certain item from the whole dataset.

Each item of the data set contains an image and the label, whether the intersection gets

blocked. Parsing the label was straight-forward, but there was a problem with image

parsing.  Since  Tensorflow  uses  images  in  shape  of  (width,  height,  channels)  and

PyTorch  uses  images  in  shape  of  (channels,  width,  height),  some additional  helper

functions that reshaped the image structure were necessary. All the images from a data

file were reshaped at parse time, so iterating speed would be faster.

DataLoader  subclass  is  used to  feed  datasets  into  the  model.  There  are  some extra

configurable parameters like minibatch size, number of workers and whether to shuffle

the dataset.

3.2.4 Model training

Finally there is the main file, where training the model happens. In this file, the network

and dataset files are used. In the start of the model training function, there is the loss

function  defined,  network  model  object  constructed  and  the  optimization  strategy

defined.  After these three main elements  have been defined,  the model  is  ready for

training  –  processing  training  data  for  given  iterations  and  updating  the  network

parameters. After the training, model is validated against test data.

Hyperparameters are parameters that can be configured to optimize the neural network.

Sometimes  better  results  can  be  achieved  by slightly  changing only  one  parameter.

Hyperparameters available for configuration are:

• lambda – regularization parameter (also known as L2 regularization parameter)

• learning_rate – learning rate of the neural network parameters

• minibatch_size – size of training data to be processed at once in every epoch

• num_epochs – number of optimization iterations done in the training
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• Learning rate adjustment  step – After every # of epochs, the learning rate is

adjusted

• Learning rate adjustment multiplier

3.3 Increasing prediction time

Increasing prediction time could only be done by training the model with new images,

which  were  cut  out  from the  video  at  an  earlier  time  step.  One  possible  negative

outcome was that by increasing the prediction time even by some seconds, the accuracy

of the model would drop below our criteria. However this was not the case. By using

the same model, the prediction even improved in some cases.

Since  Tondi  intersection,  the  next  intersection  after  Sõpruse  and  Tammsaare,  was

rebuilt last year, this might have affected the traffic flow. Hence, it was decided to use

only newly collected data to train the new model with increased prediction time. As

previously  Epp  Mauring  accessed  only  one  camera  and  in  this  thesis,  three  were

accessed. This opened up the possibility to train the model using three images from

three different streams. 

By using different images from different angles, it  could be possible to increase the

accuracy of prediction. As one of the three cameras was on an angle, that showed us

only a glimpse of the direction that needs to be optimized, the stream was not used.

There were two ways to group the data: by test and training data and by input data. The

input data groupings are: 

• single image – only one image facing Tondi intersection

• horizontal image positioning – two images are sided horizontally, where the left

one is facing Tondi intersection (as seen on figure 8)

• vertical image positioning – two images are sided vertically, where the upper

one is facing Tondi intersection (as seen on figure 9)

The distribution of training and test data can be found on table 1.
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Table 1. Distribution of training and test data.

Training data Test data

Blockage of intersection 100 22

Successful crossing 100 22
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Figure 8. Example of horizontal image positioning.

Figure 9. Example of vertical image positioning.



3.3.1 Accuracy

It is one important aspect to measure accuracy on both the training and test data set.

Besides showing how likely a model is to output a correct answer, it could also indicate,

whether a model may be over-fitting. 

Analysing figure 10, predicting by a single image shows the best results predicting five

and ten seconds ahead. Both the test data accuracy and training data accuracy are over

90%. Surprisingly,  predicting four seconds ahead is a lot  harder for the model than

predicting  5 seconds.  The then second model  offers both better  prediction  time and

better accuracy.
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Figure 10. Accuracy – Single image

Figure 11. Accuracy – Horizontal image positioning



Analysing figure 11, it  seems that putting two images side by side horizontally lowers

the accuracy of the model significantly. In many cases (5, 8, 9 and 10 seconds), the

model over-fits to training data.

By figure 12 it seems, that placing images vertically has almost 10% better on the test

data than the horizontal approach. Over-fitting to the training set is still a problem, but

the overall test data accuracy has improved.

Based on these figures, predicting with two images seems to be harder for the neural

networks, a single image prediction by ten seconds is the most promising model yet.

3.3.2 False prediction ratio

Comparing the accuracy is important, but making decisions only based on that, could be

misleading. The false prediction ratio needs to be satisfying as well. If the model mostly

predicts blockage, it may have a great accuracy, but on a real intersection, it means that

most of the times, it may cut the green traffic light shorter. This could instead make

larger blockages.
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Figure 12. Accuracy – Vertical image positioning



From figures  13 and  14 can  be read, that the worst model to use, is the nine second

model. Both the training data and test data have a lot more false positives. The best

models  seem to  be  five  and ten  second  model.  They  have  the  overall  lowest  false

predictions. If the single image prediction would be chosen, the ten second model would

be the best choice.
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Figure 13. False predictions – Single image test data

Figure 14. False predictions – Single image training data



From figures 15 and 16 it seems that predicting more time ahead has a better ratio. The

four  second  model  and  the  seven  second  model  produce  more  false  positives  and

opposingly, the five second model seems to produce more false negatives, but only on

the test data. The best ratios are on the nine and ten second models.

32

Figure 15. False predictions – Horizontal image positioning test data

Figure 16. False predictions – Horizontal image positioning training data



It can be seen from figure 17 that most of the models have a good ratio on the test data

with the exception of eight second model.  Figure  18 confirms that the eight  second

model is the worst performing model with the vertical image positioning. On training

data, the four and six second model have a rather bad ratio as well. Since all the other

models perform rather well, it is the most beneficial to use ten second prediction.
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Figure 17. False predictions – Vertical image positioning test data

Figure 18. False predictions – Vertical image positioning training data



3.3.3 Conclusion

One of the goals was to increase prediction time to at least seven seconds. Both the

single image and the vertical image positioning offer a great model for predicting ten

seconds ahead. Both of the models have a good ratio, but the single image model has

better  overall  accuracy on the test  data.  Another  perk of  choosing the single image

model is that in production, only one image needs to be parsed from the stream. This

loses the need to synchronize time between two stream parses. Parsing only one image

also is cheaper for the Central Processing Unit (CPU) to compute. 

Some of the training and test  data  were blurry,  because of rain on the camera.  The

model still seems to correctly predict from it. This could be because the red break lights

on the cars can still be seen through the blur. The weather effect removal proposed on

the chapter 2.5 is not necessary.

The numerical results of figures 10-18 can be found from tables 2-4.

Table 2. Single image results

Single image Training data Test data

Prediction time
(s)

Accuracy 
(%)

False 
positives

False 
negatives

Accuracy
(%)

False 
positives

False 
negatives

4 81.50 27 10 77.27 5 5

5 98.00 4 0 90.91 2 2

6 77.00 26 20 81.82 2 6

7 92.50 10 5 84.09 2 5

8 87.00 19 7 81.82 3 5

9 75.00 40 10 79.55 7 2

10 99.50 1 0 90.91 1 3
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Table 3. Horizontal image positioning results

Horizontal image
positioning

Training data Test data

Prediction time 
(s)

Accuracy
(%)

False 
positives

False 
negatives

Accuracy
(%)

False 
positives

False 
negatives

4 75.00 46 4 79.55 8 1

5 97.00 3 3 84.09 0 7

6 83.00 23 11 77.27 4 6

7 73.00 48 6 81.82 5 3

8 86.00 19 9 75.00 4 7

9 97.00 5 1 81.82 3 5

10 99.50 1 0 75.00 5 6

Table 4. Vertical image positioning results

Vertical image 
positioning

Training data Test data

Prediction time 
(s)

Accuracy
(%)

False 
positives

False 
negatives

Accuracy
(%)

False 
positives

False 
negatives

4 82.50 29 6 79.55 4 5

5 97.50 5 0 86.36 2 4

6 86.50 22 5 81.82 3 5

7 89.50 11 10 84.09 3 4

8 64.50 69 2 79.55 8 1

9 96.00 7 1 81.82 3 5

10 94.50 7 4 81.82 3 5
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3.4 Neural network improvement

The network model can not be too complicated or it will not perform on the hardware.

In  this  thesis,  a  batch2dnorm  function  was  added  as  a  second  step  to  every

convolutional layer. The first step is still conv2d and the last step is a ReLU.

Since it was necessary to process the concatenated images, the fully connected layer’s

number of input features needed to be increased for those training sessions. The number

of output features from the first convolutional layer was increased from 8 to 16. When

more data was added to the training and test set, it gave higher accuracy.

The final architecture can be seen on figure 19 and the convolutional layer is described

on figure 20.

Another  regulation  method  tried  in  the  process  of  training  was  Stochastic  Weight

Averaging  (SWA)1.  It  is  basically  an  optimizer  wrapper,  which  should  average  the

weights of neurons at the end of the training [37]. By using SWA, the accuracy of the

test  set  should improve at  least  a few percentages  [37], but it  did not work for our

model. On the contrary, the accuracy dropped by eight percent.

1 The method is thoroughly described in PyTorch blog found on https://pytorch.org/blog/stochastic-
weight-averaging-in-pytorch/ 
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Figure 19. Model visualization after improvements from this thesis. Convolutional layer is
described on figure 20.

https://pytorch.org/blog/stochastic-weight-averaging-in-pytorch/
https://pytorch.org/blog/stochastic-weight-averaging-in-pytorch/


Hyperparameter values used for the training of the final model can be seen in table 5.

Table 5. Final model hyperparameters.

Hyperparameter Value

Learning rate 0.001

Number of epochs 108

Minibatch size 30

Lambda 0.0001

LR –  adjustment 
step

10

LR – adjustment 
multiplier

0.8

3.5 Exporting model

The export of Pytorch model for python use is a straightforward process, but cannot be

used  in  this  case  as  Python  is  an  interpreted  language,  which  adds  unnecessary

overhead.  Since  the  model  will  be  used  on  a  low  performance  hardware,  a  faster

approach is necessary to achieve the goal of near real-time predicting. Torch can also be

used in C++ [24], which should be a faster language overall. Exporting a model, that

can be used in C++ torch library is more complicated. Pytorch’s TorchScript offers a

way to serialize the model from Python code  [24]. This model can then be loaded in

another environment, where there is no Python dependency [24].

Pytorch  internally  reuses  some  of  the  weights  between  neurons,  if  possible.  This

functionality created some problems for jit tracking. This was solved by deep copying

layers using the copy library – it ensures, that all the weights are copied even tough

there may be some identical weights on another neuron.

37

Figure 20. Improved model convolutional layer



4 System development and integration

4.1 Board analysis

There are multiple choices for the hardware that will be used. Arduino, Raspberry Pi

(RPi) and Jetson will be analyzed in this chapter.

4.1.1 Arduino

Arduino is simple board made for running one program at a time [38], [39]. Arduino is

more suitable for repetitive tasks  [38] like for example locking and unlocking a door.

For  more  complex  projects,  multiple  different  boards  may  be  needed  [39].  The

community is very active and there are many resources available to get started [39]. The

price is relatively cheap for the separate parts.

4.1.2 Raspberry Pi

The RPi is a bit  more complex than an Arduino and has the ability  to run multiple

programs at a time  [38], but in terms of computing power they are in the same level

[39]. It is more of a full-fledged computer [38] – it has all the components a computer

needs already [39], so no extra assembly is needed. The community is slightly smaller

than Arduinos [39], but more can be obtained for almost the same price. The Raspberry

Pi 3 B+ is the preferred model, because it is the most powerful of the them.

4.1.3 Jetson

The Jetson Nano is well suited for deep learning and neural network tasks  [40]. The

specs are considerably more powerful compared to RPi, but the Jetson Nano does not

have Wi-Fi support and attaching a third-party dongle is not an easy task  [40]. While

the board is more powerful, it is also larger and it requires even more space for the heat
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sink  [40]. Jetson Nano uses Linux4Tegra for OS, which is a version of Ubuntu 18.04

[40]. The price of the board is almost three times of the RPi.

4.1.4 Conclusion

Arduino and RPi have the same price class and computational power, but since Arduino

can not execute multiple tasks at the same time, it is not sufficient for this project. The

Jetson Nano on the other hand is a very powerful board, but the price is higher as well.

Since  price  is  one  of  the  criteria  for  the  choice  and  RPi  should  have  enough

computational power for our needs, the choice will be the latter. If it turns out that the

model needs to run on the device in under a second. It may be necessary to switch to the

Jetson Nano instead.

4.2 System design

When placing  the  RPi on the  intersection,  it  does  not  just  start  predicting  by itself

automagically.  One  naive  method  is  to  execute  the  algorithm on  an  interval  –  the

inference happens after every given time. It needs some kind of input signal to know,

where the correct time for prediction is. 

The traffic light controller receives a signal and can forward it, when any traffic light

lights up. Only the info, when a light lights up is known to the traffic light controller,

not the countdown, when another light lights up. This signal will be forwarded to an

input relay, which is in turn connected to the RPi pins. The pins can be read in a script

that was developed in this thesis.

Getting  a  signal  from the  controller  is  a  more  reliable  plan  than  a  simple  interval,

because it is more prone to different anomalies. Sometimes some lights stay on longer

or the cycle length is changed. 

To be more immune to cycle length changes, there is a dynamic adjustment solution

available that all the pedestrian traffic lights with counters use. The length of the cycle

is measured every time the cycle starts. If the cycle length has stayed the same for three

times,  the  length  defined  in  RPi  will  be  updated  and  further  calculations  for  the

inference start will be done with the new number.
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If an active signal is received through the input relay, a timeout will be used to execute

the inference script given seconds before the red light. Since the RPi is connected to the

police network, it can directly access the RTSP stream to download the image of the

intersection. With ffmpeg the image can be downloaded with correct dimensions.

Once the image has been downloaded, the model will be ran on it immediately. If the

model does not predict  congestion, nothing is done. If the opposite happens, a brief

signal is sent through the RPi pins to the output relay, which in turn is connected to the

traffic light controller’s detector. As a result the green light is cut shorter. A simplified

circuit can be seen on figure 21.

Overall there are two relays connected to the RPi – one for input and one for output.

There is also the power supply and the network cable. RPi connected to the input and

output relays can be found on figure 22.
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Figure 21. System design. TLC – Traffic Light Controller, RPI – Raspberry Pi, D – detector.
Components and wiring marked with green colour are added to the existing system.



4.3 Setup of Raspberry Pi

For  the  operating  system,  Raspbian  Stretch  Lite  was  used.  It  is  the  most  minimal

Operating System (OS), that RPi offers. It has is terminal based (no desktop) and has

less applications installed at the start. From the user perspective, once the command line

is familiar, it is also faster.

The first things that should be done after OS installation are wifi configuration, default

password change (for better security over Secure Shell (SSH) connection) and the SSH

configuration. Ssh configuration opens the opportunity to connect to the RPi from other

devices over network, so further configuration can be done remotely and it does not

require a separate screen and a keyboard for RPi.

4.3.1 Pytorch build

The pytorch installation tutorial1 by Amrit Das has been followed in this thesis and the

steps described in this subsection are following it closely [41].

Once remote connection is established, Pytorch can be installed. Since RPi has an ARM

type CPU and no pre-compiled PyTorch is available for this type of CPU, it has to be

built  itself.  Before  building,  some  main  dependencies  need  to  be  installed  with  a

command shown on figure 23. Python 3 is pre-installed on the OS.

1 https://medium.com/hardware-interfacing/how-to-install-pytorch-v4-0-on-raspberry-pi-3b-odroids-
and-other-arm-based-devices-91d62f2933c7
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Figure 22. RPi connected with input and output relays. RPi with output relay on top of it on the
left and input relay directly connected to the Raspberry’s pin on the right. Author’s image.



Pytorch  installation  requires  more  memory  than  the  default  Raspbian  configuration

allows and results in the “Virtual memory exhausted” error. Because of this, the swap

memory size of RPi needs to be increased. This can be done by modifying /etc/dphys-

swapfile file  [42] and changing CONF_SWAPSIZE from 100 to 1024. After that the

swapfile service needs to be restarted with commands shown on figure 24.

Next  step  is  to  clone  recursively  pytorch’s  git  repository  from

https://github.com/pytorch/pytorch. After navigating to the cloned pytorch folder, some

environment variables need to be set for correct configuration of the build. Finally the

build command can be executed. This takes a long time and may fail in the middle, but

executing the same command resumes from almost the same place and does not seem to

cause errors in pytorch functionality. The final command validates all the files. All the

commands necessary for the installation can be found on figure 25.

Finally the swapfile configuration needs to be returned to default. When the swap size is

left to 1024, it may shorten the life of the SD card significantly. After the change is

done to the configuration file, the service needs to be started with the commands shown

on figure 24.
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sudo apt-get install libopenblas-dev libblas-dev m4 cmake cython python3-dev
python3-yaml python3-setuptools

Figure 23. Installing dependencies necessary for Pytorch build [41]

sudo /etc/init.d/dphys-swapfile stop

sudo /etc/init.d/dphys-swapfile start

Figure 24. Swapfile service restart [42]

git clone --recursive https://github.com/pytorch/pytorch

cd pytorch

export NO_CUDA=1

export NO_DISTRIBUTED=1

export NO_MKLDNN=1 

export NO_NNPACK=1

export NO_QNNPACK=1

sudo python3 setup.py build

sudo -E python3 setup.py install

Figure 25. Pytorch installation [41]

https://github.com/pytorch/pytorch


4.4 Inference

Exporting a C++ executable model was explained in chapter 3.5. For running the model

on  RPi,  another  C++  project  was  created.  The  best  model  found  on  the  Python

repository was added to the C++ project. There is a test script, which executes a built

C++  file,  that  loads  the  model  and  runs  a  sample  image  through  it  and  measures

execution time. The biggest worry is that the model doesn’t perform fast enough to give

prediction on time, which makes the prevention less effective.

4.4.1 Image reading

Most of the solutions for image reading on the web suggested openCV for its simple

usage, but as it is very heavy-weight framework, it just does not make sense to include it

in the project just for reading capabilities. Torch needs the image in a slightly different

format as well,  from how it is usually presented.  Usually the pixels are in shape of

(width,  height,  channels),  but  Torch  needs  the  image  in  shape  of  (channels,  width,

height).

Image  processing  library  stb_image  met  the  requirements  for  this  project.  It  is

lightweight and easy to use. All that was needed, was just the header file, which could

be added to the project. The header file provided image load function, which returned a

char pointer. With the pointer, all the pixel values could be read. 

4.4.2 Filling tensor with pixel values

To read image into a tensor, an empty one needs to be created first in the correct shape,

which would be (image_nr, channels, width, height). The image_nr comes from training

with minibatches; in this file, it will always be size one. To read values into a tensor, an

accessor1 is necessary. Finally through the accessor, the pixel values could be read into

the tensor,  but in  the reverse order.  Worth mentioning is  also,  that  the pixel  values

should be between zero and one, which means that all the values should be divided by

255. Example can be seen on figure 26.

1 An accessor is a wrapper for a tensor, providing a comfortable way to change multidimensional 
tensor values.
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r = (int)image[(x + y*width) * comps1 + 0] / 255.0;

g = (int)image[(x + y*width) * comps1 + 1] / 255.0;

b = (int)image[(x + y*width) * comps1 + 2] / 255.0;

accessor[0][0][y][x] = b;

accessor[0][1][y][x] = g;

accessor[0][2][y][x] = r;

Figure 26. Reading pixels into a tensor



5 Validation

Validation  was  done  on  Sõpruse  and  Tammsaare  intersection  in  collaboration  with

Tallinn City Administration. The validation was done theoretically.

5.1 Plan

Neural networks can be validated with proper test data, which in this case are video

samples from the camera of the intersection. When those results are promising, then the

next step is using neural network on a piece of hardware (In this case the RPi), on the

intersection.  Altough a real on-site testing was planned, unfortunately testing on the

intersection could not be done, because the Tallinn Transportation Agency had some

other important last minute tasks to attend to. Although this thesis is highly supported

by them and the system will be implemented in the coming months.

The RPi’s computation time needs to be measured, to ensure that the prediction is done

fast enough to make a difference on the intersection.  The faster the scripts runs, the

more impact it may have.

Since the real impact of the thesis can not be seen, it is still possible to evaluate how

many cars it  may save from a “wasted” green light.  This result  can be achieved by

counting the cars that tried to make the left turn to TalTech direction with and without

the intersection blockage. From that, we can calculate the average number of cars per

some period that the solution provided from this thesis could have saved.

5.2 Model validation

One  of  the  main  goal  was  to  improve  the  prediction  time.  This  was  achieved

successfully  – the former four second prediction  was increased  to  ten  seconds.  The
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whole sequence from four seconds to ten seconds were tested and the accuracy change

was not linear. The figures can and result interpretation can be seen in chapter 3.3.

The six to nine second predictions are harder to learn for model than the ten second

prediction. This may be because it is hard to distinguish the cars that were waiting from

last cycle and the cars that just arrived there. This draws out more clearly by predicting

ten seconds ahead.

Next the model was tested against a whole new dataset – freshly gathered clips and old

unused clips.  It  is  important  to  note  that  none of  those clips  were used  in  model’s

training or test set. There were in total 1182 clips. The model’s accuracy was 72% on

the new test set. This could be because the new clips had a very sunny weather and the

network did not have this kind of data before. After re-constructing and updating the

training  and  test  datasets,  the  accuracy  on  953  clips  was  slightly  over  83%.  The

distribution of improved training and test data can be seen from table 6. The f1 score on

the training set was 0.99 and on the test set 0.82.

Table 6. Distribution of improved training and test data for ten second prediction.

Training data Test data

Blockage of intersection 195 23

Successful crossing 195 23

5.3 Computation time

The computation  time can be measured with  time function on RPi.  It  outputs  three

numerical values:

• Real – Elapsed time from the start of the call to the finish [43]

• User – Total CPU time spent in user mode [43]

• Sys – CPU time spent in kernel mode [43]

The “Real” parameter is the one, that gives us the most information.
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Table 7. Computation time by model

Model type Real User Sys

Single image ~0.640 ~1.674 ~0.030

Concatenated image ~0.763 ~1.791 ~0.040

From table 7 we can conclude that both model types match our criteria of running under

a second. Running the single image model has a slight advantage over the concatenated

image model.

5.4 Thesis potential impact

To analyze the potential impact properly, all work days must be considered, because the

number of cars blocked from crossing the intersection could vary from the intensity of

the traffic. The footage used for this potential impact analysis was collected 29.04.2019-

03.05.2019 from 17:00 to 18:00. At this time the rush hour has it’s peak and the traffic

is the most intense. 

A  total  of  198  cycles  were  analyzed  on  the  given  time  period.  57 of  them  had  a

blockage.  Most  of  those blockages  only disturbed the pedestrian crossing,  but there

were 5 larger  ones that  halted car movement as well.  On a successful crossing,  the

average of 19 cars cross the intersection. On a large blockage the average drops to 11. It

means that on the average, 8 cars would not have had to wait for another cycle. Per

week it makes a total of 40 cars, that would have not have to wait for another cycle. If

the prediction performs well on the intersection, it means that in four weeks, which is

roughly a month, an average of 160 cars could avoid waiting for another cycle because

of the blockage.

Taken that a car takes roughly five meters with spacings in traffic whilst standing still, it

means that the eight cars that did not cross the intersection,  take away 40 meters of

space from the intersection. 20 meters if there are two lanes like in Tammsaare-Sõpruse

intersection.  As  traffic  density  in  rush  hour  is  already  high,  the  20  meters  make  a

difference, when new cars are arriving from the previous intersection.
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On 29.04.2019 there was car crash on intersection. Although no blockages happened on

that day, the model registered a lot of positives. This may be because of the car crash.

This had a large negative impact on the total accuracy of the model, which was only

50% on the given week.

5.5 Conclusion

One of the main goals were to increase prediction time and the accuracy of the model. A

sub-goal was to increase the accuracy of the model over 85%. The goal of increasing

prediction  time  was  successfully  met  –  the  new  prediction  time  is  10  seconds.

Unfortunately the model accuracy was just under our optimistic goal – 83%, but is still

a very good result which can be used in practice. 

The secondary goal was to build an installable computer system. This was completed:

the system design was developed and the model execution was tested on Rpi. All the

relays were connected and the system is ready for on-site installation.  The inference

script also successfully gives a signal through the output relay. Unfortunately, the full

cycle  could not be tested,  because the on-site  installation could not be done due to

circumstances that were not under our control.

5.6 Future works

Because the system could not be tested on the real intersection, this will be the main

goal  for  the  future  works.  If  the  solution  works  well  on  the  Tammsaare-Sõpruse

intersection, another future goal is to expand on other problematic intersections. This

probably requires new training and test data parsing and model training, but the tools

necessary were developed in this thesis.
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6 Summary

This project was done in cooperation with Tallinn City Administration to find a solution

for reducing intersection blockages. The goals were to increase the model prediction

time,  increase model accuracy and develop the hardware system design,  so that  the

solution can be installed on-site. 

The solution was to predict the blockage ten seconds before the red traffic light starts.

Because the motion to the red light starts 5 seconds before (two seconds of blinking

green light and three seconds of yellow light), the ten second prediction only saves five

seconds.

Because  the  Tondi  intersection  was  rebuilt  between  this  thesis  and  Epp  Mauring’s

thesis, the training and test data had to be re-gathered. To facilitate the expanding to

other intersections, the scripts to parse and slice videos, extract images from them and

create new datasets were developed.

In this thesis the previous model trained in TensorFlow was converted to PyTorch. The

model  architecture  and  input  were  enhanced  considerably.  Prediction  time  was

increased from four seconds to ten seconds and the accuracy of the model was increased

from 80% to 83 %.

The hardware choices that were compared for the system were: Arduino, RPi and Jetson

Nano.  The  final  choice  was  RPi,  because  it  allows  multiple  running  tasks  unlike

Arduino and has enough computing power to run the model fast enough. While Jetson

Nano is even more powerful, the price goes up as well. It can be considered as a back-

up choice or to reduce computation time even further.

While the system could not be installed in this thesis, because the Tallinn Transportation

Agency had to reallocate their planned resources, the fully functional system was still

developed. A signal is sent on the green light from the traffic light controller through an

input relay to the RPi, which starts the inference script and outputs a signal through the
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output  relay  back  to  the  traffic  light  controller.  When  the  traffic  light  detects  the

received signal from RPi, it starts the light switch to red traffic light immidiately.

The potential impact of this thesis was theoretically evaluated. On average, 19 crossed

the intersection per cycle, when there was no blockage. 11 did cross the intersection on

average per cycle when there was a blockage.  On the analysis period we had 5 big

blockages, which means that 40 could have saved from waiting for another cycle on the

given week. 

As one car takes roughly five meters with spacings in traffic, those eight cars per cycle

took about 40 meters of space away from just one intersection. This is more problematic

to longer vehicles as there is already too little space in the rush hour.

Because the system could not be installed on the intersection, this will be left to future

works. Given that after the installation the traffic congestions reduce, the expansion to

other  intersections  can  be  considered.  The  tools  and  systems  necessary  for  the

expansion were developed in this thesis.
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