

TALLINNA TEHNIKAÜLIKOOL
INSENERITEADUSKOND
Tartu Kolledž

HAPROXY JA PGBOUNCERI RAKENDAMINE

EKSAMITE INFOSÜSTEEMIS

HAPROXY AND PGBOUNCER INTEGRATION IN

EXAMINATION INFORMATION SYSTEM

RAKENDUSKÕRGHARIDUSTÖÖ

Üliõpilane: Jay Martin Ploomipuu

Üliõpilaskood: 183537EDTR

Juhendaja: Sten Aus, taristu büroo juhataja

Kaasjuhendaja: Ago Rootsi, lektor

Tartu 2020

2

 (Tiitellehe pöördel)

AUTORIDEKLARATSIOON

Olen koostanud lõputöö iseseisvalt.

Lõputöö alusel ei ole varem kutse- või teaduskraadi või inseneridiplomit taotletud. Kõik

töö koostamisel kasutatud teiste autorite tööd, olulised seisukohad, kirjandusallikatest

ja mujalt pärinevad andmed on viidatud.

“.......” 202…..

Autor: /allkirjastatud digitaalselt/

Töö vastab bakalaureusetöö/magistritööle esitatud nõuetele

“.......” 202…..

Juhendaja: /allkirjastatud digitaalselt/

Kaitsmisele lubatud

“.......”....................202… .

Kaitsmiskomisjoni esimees ...

 / nimi ja allkiri /

3

Lihtlitsents lõputöö reprodutseerimiseks ja lõputöö üldsusele kättesaadavaks

tegemiseks¹

Mina Jay Martin Ploomipuu (autori nimi) (sünnikuupäev: 27.12.1997)

1. Annan Tallinna Tehnikaülikoolile tasuta loa (lihtlitsentsi) enda loodud teose

HAProxy ja PgBounceri rakendamine Eksamite Infosüsteemis,

 (lõputöö pealkiri)

mille juhendaja on Sten Aus,

 (juhendaja nimi)

1.1 reprodutseerimiseks lõputöö säilitamise ja elektroonse avaldamise eesmärgil, sh

Tallinna Tehnikaülikooli raamatukogu digikogusse lisamise eesmärgil kuni

autoriõiguse kehtivuse tähtaja lõppemiseni;

1.2 üldsusele kättesaadavaks tegemiseks Tallinna Tehnikaülikooli veebikeskkonna

kaudu, sealhulgas Tallinna Tehnikaülikooli raamatukogu digikogu kaudu kuni

autoriõiguse kehtivuse tähtaja lõppemiseni.

2. Olen teadlik, et käesoleva lihtlitsentsi punktis 1 nimetatud õigused jäävad alles ka

autorile.

3. Kinnitan, et lihtlitsentsi andmisega ei rikuta teiste isikute intellektuaalomandi ega

isikuandmete kaitse seadusest ning muudest õigusaktidest tulenevaid õigusi.

¹Lihtlitsents ei kehti juurdepääsupiirangu kehtivuse ajal, välja arvatud ülikooli õigus lõputööd

reprodutseerida üksnes säilitamise eesmärgil.

/allkirjastatud digitaalselt/

______________ (kuupäev)

4

 TalTech Tartu Kolledž

LÕPUTÖÖ ÜLESANNE

Üliõpilane: Jay Martin Ploomipuu, 183537EDTR

Õppekava, peaeriala: EDTR17/18 - Telemaatika ja arukad süsteemid

Juhendajad: Taristu büroo juhataja, Sten Aus

 Haridus- ja Noorteamet, 730 2117, sten.aus@harno.ee

 Lektor, Ago Rootsi

Lõputöö teema:

(eesti keeles) HAProxy ja PgBounceri rakendamine Eksamite Infosüsteemis

(inglise keeles) HAProxy and PgBouncer integration in Examination Information

System

Lõputöö põhieesmärgid:

1. Eksamite Infosüsteemi võimekuse parandamine

2. Rakenduste proksi väljavahetamine

3. Andmebaaside hajutamine

4. Andmebaasi puul tarkvara rakendamine

5. Infosüsteemi võimekus teenindada 4000 üheaegset kasutajat

Lõputöö etapid ja ajakava:

Nr Ülesande kirjeldus Tähtaeg

1. Uue proksi rakendamine 11.2018

2. Andmebaaside hajutamine 07.2019

3. Puul tarkvara rakendamine 12.2019

Töö keel: eesti keel Lõputöö esitamise tähtaeg: “.....”...........202….a

Üliõpilane: Jay Martin Ploomipuu /allkirjastatud digitaalselt/ “.....”..............202….a

Juhendaja: Sten Aus /allkirjastatud digitaalselt/ “.....”..............202….a

Kaasjuhendaja: Ago Rootsi /allkirjastatud digitaalselt/ “.....”..............202….a

Kinnise kaitsmise ja/või lõputöö avalikustamise piirangu tingimused formuleeritakse pöördel

5

SISUKORD

EESSÕNA ... 7

Mõistete ja lühendite loetelu ... 8

SISSEJUHATUS ... 9

1. Rakenduse proksi tarkvarad ..10

1.1 Testsüsteemi ehitamine ..11

1.1.1 Tarkvara seadistuse kirjeldamine ...11

1.1.2 Test süsteemi seadistamine ...12

1.2 ID-kaardi tugi ..13

1.2.1 Päiste edastamine ..14

1.3 HAProxy rakendamine EISis ..16

1.4 Koormustestid peale HAProxy rakendamist ...17

2. Andmebaasi jõudluse parandamine ..19

2.1 Andmebaasi töö põhimõte ...19

2.2 Andmebaasi koormuse hajutamine ...19

2.2.1 Koormustestid hajutatud andmebaasidega ..20

2.3 Andmebaasiühenduste puulerid ...21

2.3.1 Puul tarkvara valimine ..21

2.4 Paigaldamine ...22

2.5 Testsüsteemi ehitamine ..23

2.6 Testsüsteemi koormustestid ..24

2.6.1 Testimise automatiseerimine ...25

2.6.2 PostgreSQL koormustest ...25

2.6.3 PostgreSQL ja PgBounceriga koostöö koormustest26

2.6.4 Lõplik tarkvarade koostöö tulemus ...28

2.7 PgBounceri rakendamine EISis ..29

2.8 Koormustestid peale PgBouncer rakendamist ..31

3. Infosüsteemi vastupidavus reaalsuses ..32

3.1 Loodusõpetuse ja matemaatika tasemetööd ..32

3.2 Tasemetööde kokkuvõte ...37

KOKKUVÕTE ..38

SUMMARY ..39

KASUTATUD KIRJANDUSE LOETELU ..40

LISAD ...41

Lisa 1 Testsüsteemi HAProxy esialgne seadistus ...42

Lisa 2 Testsüsteemi Apache esialgne seadistus ...42

6

Lisa 3 Testsüsteemi HAProxy täiendatud seadistus ..43

Lisa 4 Testsüsteemi Apache täiendatud seadistus ...44

Lisa 5 HAProxy domeenide nimekirja faili ülesehitus ..44

Lisa 6 Eksamite Infosüsteemi HAProxy seadistusfail ..45

Lisa 7 Andmebaasi esimene skript ..46

Lisa 8 Andmebaasi teine skript ...47

Lisa 9 Andmebaasi kolmas skript ..48

Lisa 10 JMeter koormustestid peale HAProxy rakendamist49

Lisa 11 JMeter koormustestid peale andmebaaside hajutamist50

Lisa 12 JMeter koormustestid peale PgBouncer rakendamist51

Lisa 13 Tasemetööde käigus tekkinud koormused – loodusõpetus54

Lisa 14 Tasemetööde käigus tekkinud koormused – matemaatika55

7

EESSÕNA

Lõputöö algatajaks on Haridus- ja Noorteamet, mis 2020. aasta augustikuuni kandis

nime Hariduse Infotehnoloogia Sihtasutus. Lõputöö on osa asutuse aastaplaanidest.

Ametipoolseks juhendajaks on tehnoloogia juhtimise osakonna taristu büroo juhataja

Sten Aus ning koolipoolseks juhendajaks lektor Ago Rootsi.

Autor tänab koolipoolset kaasjuhendajat Ago Rootsit ja töökohapoolset juhendajat Sten

Ausi informatiivse tagasiside ja kannatliku juhendamise eest, tiimikaaslaseid ning EISi

projektijuhti ja arendajat meeldiva koostöö eest.

8

Mõistete ja lühendite loetelu

Backend Eesti k tagakomponent, kasutajatele nähtamatu süsteemi

põhiosa, mis töötleb informatsiooni

Frontend Eeskomponent, mis on enamjaolt rakendatud HTTPS ühendusele

vastuvõtmisele ning päringute edastamise tagakomponendile

HTTP Turvamata veebiliiklusse protokoll

HTTPS Sertifikaatidega krüpteeritud veebiliikluse protokoll

Load balancing Koormuse jaotamine süsteemi komponentide vahel

Header Eesti k päis, kasutatakse info edastamiseks näiteks veebiliikluse

protokollide puhul (HTTP-HTTPS)

Pool Eesti k puul, tarkvara tüüp või funktsiooni olek, mis hoiab endas

ühendusi ning vastavalt seadistusele suunab, piirab või katkestab

ühendusi

SSL offload Ühenduse lahti kodeerimine ja edastamine sihtserverile

9

SISSEJUHATUS

Tänapäevastes infosüsteemides tõuseb kasutajate arv iga päevaga ning eriti suur tõus

toimub haridusega seotud infosüsteemides [1]. Õpilastele luuakse suures mahus

elektroonilisi materjale, mis võimaldavad luua interaktiivseid ja personaalseid

õppimisvõimalusi aidates samal ajal haridusasutustel säästa loodust vähendades

massilist õpikute ja töövihikute printimist.

Infosüsteemi populaarsuse kasvuga kaasneb mitmeid positiivseid külgi, kuid

paratamatult tuleb andmete koguse suurenemisega kaasa palju lisatööd. On hea meel

tõdeda, et hariduse poolet tekib infosüsteemidesse palju uut materjali, mis võimaldavad

õpilastel õppida kasutades uusi innovatiivseid meetodeid. Andmete koguse

suurenemisega muutuvad andmebaasid mahukamaks ning suureneb andmebaasi

tehtavate päringute arv, lisaks muutuvad keerukamaks infosüsteemide rakendused,

kuhu lisatakse juurde uusi funktsioone arendustöödega, et suurenda infosüsteemi

populaarsust ja käideldavust ning tagada parimad võimalused õpetamiseks. Koormuse

tõus infosüsteemide komponentidele suurendab vajadust uute ülesehituste

rakendamisele ja süsteemi osade optimeerimisele. Suurema kasutuskoormuse tõusu

mõjutavad suuremad sündmused - hetkelises olukorras on suureks mõjutajaks Covid-

19 levik, mis sunnib paljud koolid hübriid- või distantsõppele suunduma [1].

Lõputöö eesmärgiks on suurendada Eksamite Infosüsteemi (edaspidi EIS)

käideldusvõimet. EISi koormustaluvus ei olnud piisavalt optimeeritud, millest tulenevalt

on tarvis leida uusi võimalusi jõudluse parandamiseks. Probleemseteks kohtadeks on

ebaefektiivse koormusjaoturi rakendamine kuue infosüsteemi rakenduse ees ning

ülekoormatud andmebaasi ülesehitus. Lõputöö käigus otsitakse uusi või optimeeritud

lahendusi kahele eelnimetatud probleemile.

Lõputöö koosneb kolmest põhiosast. Esimene põhiosa keskendub infosüsteemi

rakendusete ees kasutatava Apache’i proksi väljavahetamisele ja uue tarkvara

rakendamisega kaasatulevate muudatuste rakendamisele. Teine põhiosa hõlmab

andmebaasi võimekuse tõstmist optimeerimise ja uue tarkvara rakendamise abil.

Viimases osas on võetud kokku infosüsteemi vastupidavus 2020. aasta septembri

viimases pooles toimunud tasemetöödele. Lisaks on iga süsteemi muudatuste järel

analüüsitud koormustaluvuse tõusu Apache JMeter tarkvara abil.

10

1. Rakenduse proksi tarkvarad

Eksamite Infosüsteem kasutab hetkel proksi tarkvarana Apache’i, mis omab kõiki

vajalikke funktsioone, aga ei ole võimeline vastu pidama suurele koormusele. Halb

koormustaluvus tuleneb sellest, et Apache ei ole algselt mõeldud kasutamaks kui

koormusjaotur, vaid tegemist on veebiserveriga. Põhiliseks probleemiks on asjaolu, et

tarkvara võimaldab küll suure koguse ühendusi ära teenindada, kuid edasist

arenguruumi enam ei ole ning võttes arvesse infosüsteemi populaarsuse kasvu tuleb

leida praegusele tarkvarale asendus [2].

Algset valikut proksi tarkvara puhul mõjutavad kaks funktsiooni - SSL offload ja load

balancing. SSL offloadi eesmärgiks on ühenduse lahti kodeerimine ja edastamine

sihtserverile turvalises võrgus, mis ei ole ühendatud avaliku internetiga. Kasutaja, kes

siseneb veebilehele, mis kasutab HTTPS protokolli, loob krüpteeritud ühenduse

proksiserveriga kasutades sertifikaate. SSL offloadi ei teostata enne, kui kasutaja ei ole

proksiserveriga ühendust loonud. Liigutades ühenduse krüpteerimise rakendusserverist

eraldi proksiserverisse on võimalik vähendada teenusmasina koormust, mis omakorda

võimaldab suuremat koormuse taluvust. Load balancing ehk koormusjaotus võimaldab

rakendada mitu rakendusserverit jagades sissetuleva liikluse sihtserverite vahel.

NGINX on sama populaarne ja laialdaselt kasutatud tarkvara nagu Apache. Tarkvara on

samuti kasutusel veebiserverina, kuid jõudluse poolest peaks olema parem kui Apache.

NGINXi eelis Apache’i ees seisneb selles, et tarkvara on loomisel on kohe algusest peale

arendajad pannud rõhku ka proksi toele. Apache on võimas oma funktsionaaluste

poolest, mis tulevad erinevate lisade rakendamisest, kuid funktsionaalsused on

efektiivsed teatud piirideni [3].

HAProxy on täielikult proksiserver nagu viitab ka nimi. Võimeline edasi suunama nii TCP

kui HTTP protokolli põhiseid ühendusi, mistõttu on võimeline tegema SSL offloadi. Teise

põhilise funktsionaalsuse poolest omab HAProxy koormusjaoturi tuge, võimaldades

jagada koormust serverite vahel erinevatel viisidel. Lisaks on tarkvara kogunud palju

tunnustust olles kiire ja efektiivne [4].

Proksi tarkvarasid on mitmeid ning kõiki ei ole võimalik läbi katsetada, milles tulenevalt

langeb otsus praegu HAProxy kasukus, kuna sellega on EENetis kõige vähem kogemust

ning uue tarkvara avastamine annab uusi kogemusi. HAProxy kasutuselevõtu

ebaõnnestumisel on võimalus rakendada NGINX või liikuda tagasi vana ülesehituse

juurde. HAProxy ja NGINXi eelisteks on asjaolu, et mõlemad on võimelised kasutama

11

mitut tööprotsessi korraga, mis võimaldab rakendustel kasutada protsessorit, millel on

rohkem kui üks tuum.

1.1 Testsüsteemi ehitamine

HAProxy testimiseks tuleb ehitada testsüsteem, mis peaks ideaalis koosnema vähemalt

kolmest serverist, üks server on puhtalt HAProxy käsutuses ning ülejäänud kaks serverit

tuleb seadistada rakendusserveriteks, mis töötavad Apache veebiserveri tarkvaral, koos

mõningate lisadega. Esimese ülesehitusena tuleb tööle saada esialgne seadistus kõikide

serverite puhul, et sealt edasi liikuda erinevate funktsioonide testimiseni.

1.1.1 Tarkvara seadistuse kirjeldamine

HAProxy seadistamisel peab kasutama etteantud plokke, mis võimaldavad seadistada

erinevaid funktsioone ja eesmärke. Globaalses (global) plokis on võimalik seadistada

töötamise funktsioon, mis mõjub kogu tarkvarale. Võimalus on tuunida erinevaid limiite

nagu ühenduste arv ja puhvrite suurus. Järgmiseks tähtsaks plokiks on vaikeväärtuste

(defaults) osa, mis võimaldab seadistada vaikesätted kõikidele järgnevatele

koodiplokkidele. Sissetulev liikus pannakse kirja ühendust vastuvõtvas (frontend) plokis

ning edasisuunatud liiklus, mis peab jõudma rakendusteni on kirjeldatud backend osas.

Backend ja frontend osasid saab olla mitmeid.

Frontend osas tuleb määrata millistel portidel ja IP-aadressidel rakendus kuulab ehk

ootab ühenduste saabumist. Iga porti on võimalik seadistada erinevalt, hetkel on vaja

seadistada ainult kaks porti – 80 ja 443, mis vastavad HTTP ja HTTPS veebiliiklusele.

HTTPS ehk 443 tuleb lisaks juurde määrata veebiserveri sertifikaatide asukohad.

Sertifikaat on vajalik turvalise veebiühenduse saavutamiseks, et veebilehel sisestatud

info liiguks ainult krüpteerituna. Eduka HTTPS ühenduse saavutamiseks peab

veebiserveri või ühendust vastuvõttev proksi edastama sertifikaadid ja avaliku võtme.

Iga sertifikaadi jaoks on privaatne võti, mis ei tohi sattuda kolmanda osapoole kätte.

Sertifikaadid on üles ehitatud usaldusahelale. Juursertifikaadid on operatsiooni-

süsteemides ja/või internetilehitsejates. Juursertifikaatidega on allkirjastatud n-ö

vahesertifikaat (või vahesertifikaadid) ja seejärel serverisertifikaat. Kehtiva

usaldusahela jaoks on vaja esitada serveril altpoolt alustades serverisertifikaat ja kõik

vahesertifikaadid kuni juursertifikaadini. Tavaliselt juursertifikaati ühendusega kaasa ei

12

lisata, kuna see on kliendis juba olemas. HAProxy üheks eripäraks on sertifikaatide

haldus, võimalus on lisada kõik vajalikud sertifikaadid ja võtmed ühte faili või jagada

domeenipõhiselt erinevatesse failidesse ning programmile edastada sertifikaatide

nimekiri. Sertifikaadi kontrolli tegemine ühenduse loomisel (frontend osas) võimaldab

proksil luua juba krüpteerimata ühenduse päringut teenindava rakendusserveriga.

Proksi ja rakendusserverite vaheline suhtlus toimub sisevõrgus, mis ei ole ühendatud

avaliku Internetiga, sellest tulenevalt ei pea muretsema sisevõrgus toimuva liikluse

krüpteerituse üle. Vastavalt vajadusele võib teenusserverite ühenduse eraldada

võrgusegmendiga (VLANiga).

Backend osas saab määrata rakendusserverid ja koormusjaotuse ülesehituse. Kõik ühe

infosüsteemi rakendusserverid on võimalik seadistada ühes backend osas, ideena iga

backend kujutab endast ühte infosüsteemi või rakenduse mingit osa.

Koormuse jagamiseks on erinevad võimalused:

• roundrobin – päringud jagatakse järjest erinevatele rakendusserveritele;

• static-rr – päring jagatakse järjest, kuid üks sessioon kinnistatakse ühele

rakendusele;

• leastconn – päring antakse kõige vähem koormatud serverile;

Erinevaid võimalusi koormuse jagamiseks on kokku kümme, lisaks on võimalik

koormust jaotada veel „kaalu“ (ingl k weight) põhjal, viies sunniviisiliselt koormuse

jaotuse erinevaks.

Backend osa võimaldab teha rakenduste kontrolli ehk kui tarkvara tuvastab, et rakendus

päringule ei vasta etteantud aja jooksul, siis suunatakse sama ühendus järgmisesse

rakendusserverisse. Rakenduste nimekiri koosneb rakendusele antavast nimest IP-

aadressist ja pordist. Samuti on nimepõhiselt võimalik rakendada lisareeglid – näiteks

kinda URLiga pöördumise korral suunata kindlasse rakendusserverisse (nt staatilise sisu

kuvamine vmt).

1.1.2 Test süsteemi seadistamine

Esialgse HAProxy seadistuse saavutmiseks peab rakendama kahte backend ja ühte

frontend osa. Teine backend on vajalik automaatseks serverisertifikaatide

uuendamiseks. Sertifikaatide uuendamistarkvara töötab eraldi rakendustarkvarast,

seega on tal erinev IP-aadress rakendusserveritest ja teenusele on avatud port

proksiserveri sees. Tarkvarale suunamine tehakse ACL (ingl k Access Control Lists) ehk

13

reeglite kogumikuga, mis analüüsivad HTTP päringut ja URLi alusel suunavad päringu

sertifikaatidega tegelevale backendile.

Turvalise ülesehituse tagamiseks tuleb teha automaatne suunamine HTTP pealt HTTPSi

peale (juhul kui serveriga luuakse ühendus kasutades porti 80). Esialgne ülesehitus on

välja toodud lisades (lisa 1). Rakendusepoolne seadistus on lühem, kuna Apache peab

ootama sissetulevat liiklust ja suunama õigesse kasuta vastavalt domeenile – Apache’i

esialgne seadistus on lisades (lisa 2).

Algseadistusega suudab HAProxy suunata kliendi päringud kordamööda erinevatele

rakendustele. Rakenduste päringute teenindamist saab testida näiteks erinevate lehtede

kuvamisega või lehe tiitli muutmisega. Ühenduste testimiseks saab kasutada veel

veebilehitseja lehe värskendusfunktsiooni või ühenduda serveriga mitmel korral

erinevate veebilehitseja akendega. Tulemuseks on positiivne roundrobin rakendamine,

mis tuleb rakendada Eksamite Infosüsteemis sarnaselt. HAProxy jagab sissetuleva

liikluse rakendusserverite nimekirja põhjal järjest, välja arvatud juhtudel kui mõni

rakendus ei ole käsitsi märgitud kõlbmatuks või proksi tarkvaral puudub ühendus

nimetatud rakendusega.

1.2 ID-kaardi tugi

ID-kaardiga autentimine põhineb sertifikaadi kontrollimisel. Kasutusel on kaks

sertifikaati, üks isikutuvastamiseks ja teine allkirjastamiseks. Proksis peab rakendama

isikutuvastamise sertifikaadi kontrolli. Sertifikaat põhineb salajasel võtmel, mis on

omakorda kaitstud parooliga, millest tulenevalt sertifikaadi esitamiseks tuleb sisestada

PIN kood (parool). ID-kaardiga autentimine on kahe faktoriga isiku tuvastamine,

kasutaja peab omama füüsiliselt plastikkaarti ning teadma salajase võtme parooli.

Autentimise esimeseks etapiks on sertifikaadi väljastaja kontrollimine, mille käigus

kontrollitakse, kas sertifikaat pärineb usaldatud sertifikaadiahelast. Tulenevalt töö

kirjutamise ajal kehtivatest seadustest ja kokkulepetest on Eestis kehtivad ID-kaartide

sertifikaatide koostööpartner SK ID Solutions AS [5].

SK ID Solutions AS-i poolt allkirjastatud sertifikaatide juursertifikaadid on

kättesaadavad Internetis SK ID Solutions AS veebilehelt. Peale sertifikaadi usaldusahela

kontrolli järgneb sertifikaadi kehtivuse kontroll. Sertifikaadi kehtivuse kontrollimiseks

peab proksi suutma teha kehtivuse kontrolli tühistusnimekirja vastu. Lisaks lokaalsele

14

tühistusnimekirjale on olemas OCSP (ingk k Online Certificate Status Protocol)

sertifikaatide oleku kontrollimine reaalajas võimalik rakendada proksis ja rakenduses,

kuid teenus on tasuline. Tühistusnimekirja sertifikaadid saab alla laadida SK ID Solutions

veebilehelt, failides on kirjas kõik Eestis väljastatud ID-kaartide sertifikaadid, millel on

kehtivus peatatud. Kehtivuse kaotanud sertifikaadi jõudmine nimekirja võib aega võtta

kuni 12 tundi [6]. Tühistusnimekirja negatiivseks küljeks on nimekirjas olevate

sertifikaatide uuenemine. Peale igat tühistusnimekirja täiendamist vajab proksi tarkvara

taaskäivitamast, kuna tarkvara loeb ja salvestab sertifikaatide info mällu, pidev

taaskäivitamine võib hakata segama infosüsteemi kasutamist, sest tulenevalt

tühistusnimekirja suurusest toimub proksi taaskäivitamine aeglaselt (üle ühe minuti).

ID-kaardiga sisselogimist saab rakendada ilma tühistusnimekirjata, kuid siis peab

sertifikaadi kehtivuse kontrolli rakendama kas rakenduse poolel või jätta sertifikaadid

kontrollimata.

ID-kaardi toe rakendamine on järgmine ülesanne, millega HAProxy peab hakkama

saama. Varasemalt on EISis ID-kaardiga autentinud kasutajad suunatud eraldi

domeenile, millest tulenevalt peab rakendama sarnase ülesehituse testsüsteemi proksi

puhul. Lisaks tuleb seadistada rakendusservereid kuvama informeerivat lehekülge

juhtudel, kui süsteemiadministraator on ühendatud ID-kaardiga, aga samas peab

veenduma, et turvatud veebi osa ei oleks kättesaadav avalikult liideselt.

HAProxy tarkvaraga on mitu erinevat võimalust tühistusnimekirja ja juursertifikaatide

rakendamiseks. Üheks lahenduses on seadistada domeenide nimekiri eraldi faili, kus

määrata ID-kaarti kasutavata domeeni juurde vastavad parameetrid, et toimuks ID-

kaardiga autentimine. Tulenevalt Eksamite Infosüsteemi ülesehitusest ei ole vaja

rakendada tühistusnimekirja kontrolli, kuid vastav funktsionaalsuse võimekus on

tarkvaral olemas. Testsüsteemis tuleb lisada Apache’i seadistusfaili juurde üks lisaplokk,

mis on mõeldud neile kasutajatele, kes on ennast tugevalt autentinud ehk sisenenud

ID-kaardiga. Turvatud osale on ligipääs lubatud ainult domeeni põhjal ning domeeni

külastamisel nõuab HAProxy kasutajalt ID-kaarti, vastasel juhul veebile ligipääs puudub

ning kasutajale kuvatakse veebilehitseja poolt vastav veateade.

1.2.1 Päiste edastamine

Vaikeseadistusega ei edastata rakendusele ID-kaardi sertifikaati ega muud ID-kaardiga

seotud infot (veebipäringu päistega). Eksamite Infosüsteemil on kasutusel kindlad

15

päised isiku tuvastamiseks ning millest tulenevalt seatakse üles isikupärane keskkond.

EISis kasutatavad päised on loetletud koodilõigus 1.1.

SSL_CLIENT_CERT

SSL_CLIENT_I_DN

SSL_CLIENT_I_DN_CN

SSL_CLIENT_M_SERIAL

SSL_CLIENT_S_DN

SSL_CLIENT_S_DN_CN

SSL_CLIENT_VERIFY

Koodilõik 1.1. EISis kasutatavad SSL päised

Päiste edastamiseks tuleb seadistada soovitud päiste ülesehitus proksi seadistusfailis.

Tulenevalt rakenduste eripärast on vaja osasid päiseid täiendada. Kliendi sertifikaati ehk

SSL-CLIENT-CERT päis tuleb rakendusele saata base64 vormingus, kuna sellise

ülesehitusena töötab Apache, vaikimisi edastatakse päise sisu binaarvormingus. Binaar-

vormingus saadab proksi veel SSL-CLIENT-M-SERIAL päise, mis tuleb rakenduse

toimimiseks muuta kuueteistkümnendik vormingus. SSL-CLIENT-VERIFY päis

saadetakse edasi numbrilise väärtusena – kui usaldusahel on kinnitatud, siis on väärtus

0, muudel juhtudel on väärtus midagi muud. Koodilõigus 1.2. on välja toodud HAProxy

päiste seadistused, vasakpoolne tulp on proksi poole ülesehitus koos vajaminevate

täiendustega ning paremal pool on päise seadistus koos nimega. Nimi on jäetud üks-

ühele Apache ülesehitusega, et päise sisu oleks üheti mõistetav. Kõiki EISis kasutatavaid

päiseid on võimalik edastada rakendusele, välja arvatud ühte – SSL-CLIENT-VERIFY,

mida rakendus soovib saada sõnana SUCCESS.

http-request set-header SSL-CLIENT-CERT %{+Q}[ssl_c_der,base64]

http-request set-header SSL-CLIENT-I-DN %{+Q}[ssl_c_i_dn]

http-request set-header SSL-CLIENT-I-DN-CN %{+Q}[ssl_c_i_dn(cn)]

http-request set-header SSL-CLIENT-M-SERIAL %[ssl_c_serial,hex]

http-request set-header SSL-CLIENT-S-DN %{+Q}[ssl_c_s_dn]

http-request set-header SSL-CLIENT-S-DN-CN %{+Q}[ssl_c_s_dn(cn)]

http-request set-header SSL-CLIENT-VERIFY %[ssl_c_verify]

Koodilõik 1.2. HAProxy päised

Tulenevalt süsteemi ülesehitusest kasutab Eksamite Infosüsteem päiste väärtustena

Apache’i väärtuseid, mis on vaja edastada HAProxyil samamoodi rakendusele loetavalt.

Proksi seadistusfailis saab määrata soovitud nimed päistele, kuid Apache’i tarkvara

täiendab neid nimesid veel omakorda HTTP prefiksi väärtusega, sest tegu on väliste

muutujatega. Proksi ja veebiserveri eripärast tingitult on vaja teha päiste

16

ümberseadistamist Apache’i seadistusfailis ka rakendusserveris. Sissetulevate päiste

seadistus on välja toodud 1.3. koodilõigus. Tulenevalt proksi mittevõimekusest on vaja

seadistada SSL-CLIENT-VERIFY käsitsi. Väärtuse käsitsi seadistamise tulemusena

asendatakse kliendi kontrolli väärtus alati SUCCESSiga kui sissetulev väärtus on 0.

Teistel juhtudel päringuid ei jõua rakenduseni, kuna kliendi kontroll ebaõnnestus ning

sertifikaadi kontrolli teeb HAProxy. HAProxy ülesehitus võimaldab kasutaja edasi saata

valitud veakoodide piires. Päise seadistus tehakse SetEnvIf lause põhjal, kus sissetuleva

päise väärtus lisatakse Apache’i kohaliku päise väärtuse asemele.

SetEnvIf SSL-CLIENT-CERT "(..*)" SSL-CLIENT-CERT=$1

SetEnvIf SSL_CLIENT_I_DN "(..*)" SSL-CLIENT-I-DN=$1

SetEnvIf SSL-CLIENT-I-DN-CN "(..*)" SSL-CLIENT-I-DN-CN=$1

SetEnvIf SSL-CLIENT-M-SERIAL "(..*)" SSL-CLIENT-M-SERIAL=$1

SetEnvIf SSL-CLIENT-S-DN "(..*)" SSL-CLIENT-S-DN=$1

SetEnvIf SSL-CLIENT-S-DN-CN "(..*)" SSL-CLIENT-S-DN-CN=$1

SetEnvIf SSL-CLIENT-VERIFY "0" SSL-CLIENT-VERIFY=SUCCESS

Koodilõik 1.3. Sissetulevate päiste ümberseadistamine Apache’s

1.3 HAProxy rakendamine EISis

HAProxy server tuleb EISi jaoks seadistada sarnaselt nagu sai tehtud testsüsteemis.

Kuna kasutatakse pikema kehtivusajaga sertifikaate, siis ei ole vaja eraldi backendi

veebisertifikaatide taotlemiseks. Infosüsteemi suurusest tulenevalt on vaja täienda

rakenduste backend plokki, kuhu tuleb lisada kõik kuus kasutusel olevat rakendust.

Mõned URLid on määratud kindlate rakendusserverite pihta, nende jaoks on eraldi ACLid

loodud.

Katkestus Eksamite Infosüsteemi testkeskkonnas koormusjaoturi vahetuseks on

lubatud kaks tundi tööpäeva jooksul. Katkestuse käigus vahetatakse välja Apache

HAProxy vastu. Vahetuse käigus muutub test.ekk.edu.ee domeeni IP-aadress. Apache’i

proksiserver jääb seisvas olekus alles juhuks kui üleminek peaks ebaõnnestuma.

Proksi vahetus testkeskkonna jaoks oli edukas ning järgnevalt on vaja jälgida

mälukasutuse koormusgraafikuid. Üheks põhiliseks probleemiks Apache’i proksi

rakendamise juures oli selle mälukasutus. Proksiserveril oli eelnevalt 8 GB mälu, mis

suure koormuse all kõik ära kasutati, mistõttu tipphetkedel suurendati mälu 16 GB-le.

17

Arvestades äripoolelt vajaminevat koormustaluvust on koormusjaoturi mälukasutust

vaja vähendada.

Tootekeskkonna proksi uuenduseks on kokkulepitud ajakulu üks tööpäev. Kahe nädala

jooksul testiti süsteemi ja teostati vastavad seadistusmuudatused, et süsteemi oleks

võimalik edukalt kasutada. Uuendus oli edukas, kuid edasiste päevade jooksul ilmnesid

mõned probleemid seoses üleslaetavate failide suurustega, sessioonide kestvusajaga

ning koormuse jaotuse ülesehitusega, kuid proksi vahetuse tagajärjel langes

mälukasutus tunduvalt. Seadistused ei olnud lõplikud, neid muudeti vastavalt ajale,

vajadusele ning infosüsteemi kasutuskoormusele.

1.4 Koormustestid peale HAProxy rakendamist

Eelnevalt on Eksamite Infosüsteemile koormusteste tehtud üliharva. Edasist HAProxy

rakendamise parandamist ja täiustamist saab testida Apache JMeter tarkvaraga, milles

on kirjutatud koormustestid süsteemi näitliku koormuse tekitamiseks. Koormustesti

sisuks on kasutaja tegevuse jäljendamine ehk tegevused, mida tavakasutaja võiks

süsteemis teha. Koormustestil määratakse kasutajate arv ning koormustestide sisu

(tegevusi) ei muudeta erinevate testide ajal, küll aga võimalikke kasutajate arvu.

Koormustestide tulemusest on võimalik välja lugeda tehtud päringute koguse ja palju

päringuid sekundis käivitati. Põhiliseks võrdlusarvuks on päringute kestvus

millisekundites – keskmine ja maksimaalne. Maksimaalne päringu kestvus ehk

reageerimisaeg sisaldab endas infot kui kaua kestis kõige pikem päring ning keskmine

reageerimisaeg on kõikide päringute tulemsute keskmine väärtus. Lisaks on võimalik

koormustesti tulemustest välja lugeda ebaõnnestunud päringute arv ja protsent

kogupäringutest. Ebaõnnestunud päringud tekivad kui rakendus ei saa andmebaasiga

ühendust, proksi ei suuda päringut teenindada või rakenduse protsesside arv ületas

etteantud limiidi.

Eksamite Infosüsteemis tootekeskkonnas tehti koormusteste kokku 19 korral, testide

käigus täiendati proksi seadistust ning arendaja täiendas rakenduse koodi.

Koormusteste tehti vahemikus 2018 november kuni 2019 juuli. Koormustestide

tulemused, mis tagastasid ebaõnnestunud päringuid oli kokku viis – selles ajavahemikus

tehtud testide tulemused on tabelina välja töötud lisades (lisa 10). Kõige mahukam test

tehti 16. mail 2019, kui süsteemi suunas saadeti 3000 kasutajat tehes süsteemis natuke

18

alla poole miljoni päringu, millest 441 (0.09 %) ebaõnnestusid. Süsteemi keskmise

päringu reageerimisaeg oli 7 sekundit ning kõige pikem päring võttis aega 10 minutit.

Süsteemi parimaks tulemuseks saab lugeda testi, kui ei toimunud ühtegi ebaõnnestunud

päringut ning süsteemi suunati suurim võimalik arv ühendusi, selleks oli 16. mail 2019

sooritus, kui süsteem teenindas korraga 2500 ühendust. Tulemuseks oli keskmise

päringu kestvuseks 0.7 sekundit ning kõige pikem päring võttis aega 57 sekundit. Hetke

tulemus on süsteemi võimekus, mida tuleb parandada, et süsteem toetaks korraga 4000

üheaegset kasutajat.

19

2. Andmebaasi jõudluse parandamine

Eksamite Infosüsteemis kasutatakse andmebaasimootorina PostgreSQL tarkvara.

Serveris on kokku neli erineva eesmärgiga andmebaasi. Andmebaas eisdb1 hoiab endas

infosüsteemi andmeid, eisdb1tunnistus omab infot tunnistuste kohta, eisdb1sess on

sessiooniinfo (ja vormide seadistused jmt) ning eisdb1log on infosüsteemi logide

andmebaas. Algselt olid kõik andmebaasid ühes serveris koos ja see tekitas päringute

töötlemisel piiranguid.

2.1 Andmebaasi töö põhimõte

Andmebaasi seadistuses on vaja määrata mitu ühendust andmebaasiserver korraga

suudab teenindada. Ühenduste koguarv on seotud serverile eraldatud

protsessorituumade ja mäluga. Päringute teenindamiseks jagatakse ressurss päringute

vahel võrdselt, st mida rohkem koguühendusi on lubatud, seda väiksem on kasutatav

ressurss ühele päringule. Kui ühenduste piirarv on täis, siis edastatakse rakendusele

sellekohane veateade. PostgreSQL tarkvaral puudub võimalus tekitada päringutest

ootejärjekorda, seega on selle lahendamiseks vaja kas lisatarkvara andmebaasi või

rakendusserveri juurde.

Järjekord moodustatakse päringute saabumise ajast tarkvarasse. Andmebaasi päringu

kestvust arvestatakse alates ülesande loomisest kuni eduka vastuse saatmisest

rakendusele. Päringud mõjutavad üksteise kestvust olukordades, kus ootejärjekord

hakkab kuhjuma. Suur süsteemi koormus toob endaga kaasa ummiku ning iga aeglane

päring mõjutab järjekorras olevate päringute sooritusaega, see omakorda mõjutab

kasutaja kogemust infosüsteemis

2.2 Andmebaasi koormuse hajutamine

Kerge lahendus andmebaasi jõudluse parandamiseks on serveri ressursside

suurendamine, tänu millele on võimalus suurendada sissetulevate ühenduste arvu ja

päringute mälu kasutust. Ainukeseks takistuseks on serveri maksumus ja füüsiliselt

saadaolevate ressursside kogus. Andmebaasi võimekuse piir on välja tulnud erinevate

koormustestide käigus, kui süsteem ei saavuta enam päringute kestvuses ajalisi

võitusid, isegi kui kasutatavat ressursi on saadaval. Lisaks päringute teenindamisele

20

peab baasiserver tegelema ka administratiivse tööga, mis kasutab veel omakorda

ressursse. Efektiivse andmebaasi töö tagamiseks tuleb hajutada serveri koormust

vähendades ühel ajahetkel sissetulevate ja töödeldavate päringute arvu, sest väiksem

ühenduste arv võimaldab suuremat mälukasutust protsessile ning vaba mälu olemasolu

on oluline mahukate päringute korral.

Esimene samm päringute vähendamiseks on andmebaaside jagamine erinevatesse

andmebaasiserveritesse. Tulenevalt süsteemi ülesehitusest saab eisdb1 kõige suurema

koormuse, millele järgnevad logide ja sessioonide andmebaasid. Paigutades kaks vähem

nõutud andmebaasi eraldiseisvasse serverisse, saab vähendada põhiandmebaasi serveri

koormust ning eisdb1 andmebaasil on võimalik kasutada rohkem protsesse ja seeläbi

suurendada efektiivsust. Olemas on ka neljas andmebaas eisdb1tunnistused, mille

kasutus on minimaalne, seega see jääb pragu eisdb1 andmebaasiga samasse

serverisse. PostgreSQL tarkvara kõige efektiivsema kasutamise saavutab, kui

andmebaasi suunas tehakse umbkaudu ainult sada üheaegset päringut [7]. Tegelik

infosüsteemi kasutajate arv on kümme korda suurem, mille tõttu tuleb rakendada

andmebaasi ees pool ehk puul, mis hoiaks ühenduste arvu andmebaasi suunas kindla

suuruse peal.

2.2.1 Koormustestid hajutatud andmebaasidega

Eksamite Infosüsteemi ühest suurest andmebaasi serverist tehti kaks serverit –

põhibaas sisuga eisdb1 ja eisdb1tunnistus ning logibaas andmebaasidega eisdb1log ja

eidb1sess. Andmebaaside ümberliigutamine toimus 12. juulil 2019. Süsteemi töös tehti

kolmetunnine katkestus. Andmebaaside liigutamine kõrvalisse serverisse sujus

probleemideta. Sama päeva jooksul tehti kolm koormustesti, et hinnata muudatuse

mõju päringute kiirusele. Kolmest testist üks oli andmebaasi ja rakendusserveri

peenhäälestusseadistuse mõttes edukas ning see käivitati 3000 sooritajaga, mis tegi

süsteemis kokku samapalju päringuid nagu 16. mail ebaõnnestunud 3000 sooritajaga

test. Testide käivitamisel oli üks erinevus – kolme JMeteri serveri asemel käivitati testid

kahest serverist. Tulemused olid tunduvalt paremad, keskmise päringu aeg liikus 7

sekundi pealt 0.4 sekundile ning kõige pikem päring võttis aega 73,3 sekundit võrreldes

varasema testi 10 minutiga, ühtegi ebaõnnestunud päringut ei esinenud.

Sama aasta augustis tehti veel neli testi, millest kaks ebaõnnestusid ning ülejäänud

kaks said halvema tulemuse. Väljatoomist väärib 4000 üheaegse ühendusega

koormustest, mis õnnestus vigadeta. Päringu keskmine reageerimisaeg jäi 2,5 sekundi

21

juurde ning päringu maksimaalne reageerimisaeg oli 5,2 minutit. Selle testiga tõestati,

et süsteem on võimeline teenindama ära 4000 kasutajat ning edasiseks eesmärgiks oli

saada reageerimisajad lühemaks. Kõige viimane test tehti 17. detsembril, kui käivitati

3000 sooritajaga testsüsteemi suunas. Kuna vahepeal olid infosüsteemis toimunud

arendusest tulenevalt muutused, siis muudeti testide ülesehitust. Uue testiga oli

päringute koguarv suurem, päringu keskmise aeg tõusis võrreldes juuliga, kuid päringu

maksimaalse kestvus langes kolmekordselt.

2.3 Andmebaasiühenduste puulerid

Kaks kõige levinumat PostgreSQL andmebaasi puuler tarkvara on Pgpool ja PGBouncer

[8]. Puuler tarkvara võimaldab lisada juurde funktsionaalsusi andmebaasi ühenduse

loomisel, kuid igal tarkvaral on omad plussid ja miinused. Tarkvarade erinevus seisneb

asjaolus, et PgBounceri ülesseadmine on otsekohene ja ühenduste loomiseks ei pea

seadistama midagi lisaks, kuid Pgpooli kasutamiseks peab seadistusfailis määrama

täpsed parameetrid ning tihti tegema lisakatsetusi ja koormusteste, et leida kõige parem

seadistus infosüsteemi jaoks [8].

Infosüsteemide puhul on tavapärane puul tarkvara rakendamine juba rakenduse

tasemel. Sama on varasemalt tehtud Eksamite Infosüsteemi puhul, kuid kuna

infosüsteemis on kuus rakendusserverit ja serverid omavahel ei koordineeri päringute

tegemist andmebaasi, siis kujunes varasem lahendus liiga ebaefektiivseks.

Rakendusserverisse ühenduste järjekorra vmt halduse tekitamine vähendaks

rakendusserveri efektiivsust veelgi. Rakendusserveri ülesanne on klientide päringute

töötlemine, seega oleks otstarbekas andmebaasimootori ühenduste ette rakendada

puuler lisatarkvara.

2.3.1 Puul tarkvara valimine

Võimalus on rakendada mõlemat Pgpool ja PgBouncer tarkvara koos kuid see toob

endaga kaasa erinevaid probleeme. Esiteks suureneb süsteemi ülesehituse keerukus ja

komponentide arv, seega võimaliku rakenduse vea tuvastamine läheb keerulisemaks ja

ajakulukamaks. Kuna lahenduse kasutamine tõstab keerukust ja testimine on

ajakulukas, siis otsustatakse testida neid eraldi. Samuti langeb päringu töötlemise

kiirus, kuna päring peab läbima mitmeid servereid ja tarkvarasid. Edaspidi testitakse

22

tarkvarasid eraldi ja tehakse samasuguseid koormusteste, et hinnata kas puuler

tarkvarast on kasu EISi jõudluse tõstmiseks.

PgBounceri ideaalne rakendamine tuleb kasuks siis, kui mitmed erinevad rakendused

või nende osad võtavad ühendust andmebaasiga [8]. EISis võtab andmebaasidega

ühendust kuus rakendusserverit, millest igaühel on veel omakorda kolm kasutajat (üks

iga andmebaasi jaoks). Eksamite Infosüsteemi PostgreSQL baasi kasutuse kirjelduse

järgi sobiks PgBouncer täitma puuleri rolli. Pgpool võetakse tavaliselt kasutusele tänu

oma headele lisafunktsioonidele, mis võivad võtta algul aega, et saaksid korralikult üles

seatud, kuid võivad hiljem palju jõudlust infosüsteemile juurde anda. Lisafunktsioonid

on just need, mis räägivad Pgpooli valiku kasuks, kuna sama aegselt saab vähendada

nii koormust andmebaasi suunas ning soovi korral teha tuleviks päringute optimeerimist

ja rakendada lisa funktsioone. Otsustavaks faktoriks on aeg, kuna uue süsteemi lüli

rakendamine peab olema võimalikult väikese ajakuluga ja efektiivne ning Pgpool seda

hetkeolukorras ei ole, tuleb testida PgBouncer tarkvara rakendamist [8][9].

2.4 Paigaldamine

EENetis on valdav enamus servereid paigaldatud Arch Linux operatsioonisüsteemile, mis

ehitatakse kokku ServeriVabrikus, mis on BASH ja Ruby skriptide kogum, mis võimaldab

kettale paigaldada eelseadistatud operatsioonisüsteeme, omades nii Preseedi kui

konfiguratsioonihaldustööristade (näiteks Puppet) funktsionaalsusi. Seda kasutatakse

virtuaalmasinate loomiseks ja versioonihalduseks. ServeriVabrikut hoitakse EENeti

Gitlabis, tagades töötajatele ligipääsu loodud serverite seadistusele. Vabrik lubab uue

virtuaalmasina laadimiseks vajalikke ressursse (tuumasid, pakke, konstruktoreid ja

spetsiifilisi konfiguratsioonifaile) hoida ühes asukohas, kasutades efektiivselt

andmemahtu ja lihtsustades virtuaalmasinate loomist ning haldust [10]1.

Iga serveri jaoks on Buildfile (e.k. konstruktor), milles defineeritakse sellele omistatavad

väärtused. Konstruktor käivitatakse läbi skripti, mis loob Ehitaja kettale serveri nimelise

kausta kuupäevaga, pakib sellesse lahti operatsioonisüsteemi ja konstruktori alusel teeb

konfiguratsioonimuudatused, paigaldab pakid, loob vajalikud sümbolnimed. KVM

virtualiseerimist kasutav VM sooritab alglaadimise, kasutades PXEd ja haagib

1 * Märkus 1. Tegemist on kollektiivselt loodud KKK rubriigi tekstiga, lõputöö autor on

üks teksti loojatest.

23

konstruktoriga tekitatud kausta NFS jaona külge, laadides sealt juurfailisüsteemi.

Käivitamiseks vajalikud seaded saab VM PXELinux konfiguratsioonifailist, mis on VMi

virtuaalse võrguseadme MAC aadressi nimeline. Fail sisaldab lisaks kerneli versioonile

ka parameetreid nagu külgehaagitavad kettad ja IP aadressid. VM on alglaadimise

sooritanud, võimaldades külgehaagitud ketaste initsialiseerimist, näiteks selle

partitsioneerimist, failisüsteemi loomist ja failide kopeerimist [10]1.

Eksamite Infosüsteemi puuler serveri konstruktor on lühikese ülesehitusega, kuna

serveris töötab ainult üks põhirakendus, milleks on PgBouncer. Serveri ülesehituse

säilitamiseks paigaldatakse serverisse varunduse pakk, mis on eelnevalt seadistatud

tegema kirjutavast kettast varukoopia igal öösel. Server hakkab paiknema privaatses

võrgus, mistõttu ei vaja see avalikku liidest ega tulemüüri. Serverisse ligipääsuks

lisatakse eelseadistatud administraatorite kontod ning arendaja ligipääs läbi VPN

lahenduse. Lisaks tehakse operatsioonisüsteemi ülesehituses muutatus, et lubada

süsteemil kasuda serveriga ühendust võtnud klientide porte uuesti iga sekundi tagant.

Kui rakendus võtab ühendust puul serveriga, avatakse suhtluseks eraldi port ning kui

suhtlus lõppeb jääb port veel tegelikult mitteaktiivsesse olekusse (kuni minutiks), kuni

nimetatud port vabastatakse ja lubatakse tagasi ringlusesse. Ühe päringu jaoks

avatakse kaks porti, üks ühendus on rakenduse ja puuli vahet ning teine on puuli ja

andmebaasi vahel.

2.5 Testsüsteemi ehitamine

PgBounceri testimiseks tuleb ehitada testsüsteem, mis peaks ideaalis koosnema

vähemalt kahest serverist, üks puhtalt PostgreSQL baasimoori käsutusse ning teine

server PgBounceri jaoks Funktsioonide järgi eraldatud teenusserveritel on lihtsam

jälgida ressursside kasutust. Kahe serveri rakendamine tagab võimaluse ka rakendused

tagasi lülitada nn otseühendusega andmebaasi külge. Lisaks saab jätta mõlemad

programmid kasutama PostgreSQLi vaikimisi porti 5432 ja seadistamisel ei pea

hakkama jagama serveri ressursse kahe eri tarkvara vahel. Paigutades andmebaasi ja

puuli tarkvarad ühte serverisse on vaja jälgida, et need ei kasutaks samu porte,

täiendada mõlema tarkvara konfiguratsioonifaile jm.

Peale serverite ehitamist ServeriVabrikus on võimalik teha tarkvarade seadistamised.

PostgreSQL masinas peab käivitama andmebaasi initsialiseerimise käsu, mis määrab

kuhu kausta baasimootor hakkab andmebaaside faile salvestama. Paigalduskausta

24

tekivad andmebaasi seadistusfailid, milles tuleb teha muudatusi, et optimeerida

andmebaasi tööd ja lubada ligi ühendusi teistest serveritest. PostgreSQL hakkab

ühendusi ootama kõikidel võimalikel liidestel, milleks on server ise ning külge lisatud

sisevõrgu liides, mis ei ole ühendatud avaliku internetiga. Peale seadistuste sisseviimist

tuleb taaskäivitada PostgreSQL teenus serveris.

2.6 Testsüsteemi koormustestid

PostgreSQL koormuse testimiseks saab kasutada Pgbench tarkvara, mis tuleb kaasa

andmebaasi paki paigaldamisel. Koormustestide tegemiseks võib kasutada eelnevalt

loodud andmebaasi või lasta Pgbench tarkvaral luua testide tegemiseks uus andmebaas

koos sisuga. Kõige kergem on lasta Pgbench tarkvaral luua uus andmebaas, kuna

Eksamite Infosüsteemi andmebaasi kasutamiseks tuleks kõigepealt tarkvara

testserverisse taastada. Pgbench tarkvara poolt loodav andmebaas on 16 MB suur, mis

on liiga väike ning ei ole ligilähedal EISi andmebaasi suurusega. Andmebaasi loomisel

on võimalik koormustestide tarkvarale öelda kui mitu korda suurendada algselt 16 MB

andmebaasi. Eksamite Infosüsteemi ametlik põhiline andmebaas eisdb1 on 178 GB

suur, mistõttu tuleb kasutada testandmebaasi loomisel kordajat 11125. Sellega

tagatakse enam-vähem sarnane maht.

Optimaalseks koormuseks paigaldatakse Pgbench tarkvara eraldi serverisse

andmebaasist. PostgreSQL initsialiseerimist ei pea tegema. Esimesed koormustestid

tuleb teha ilma puul tarkvarata, et leida andmebaasi kõige efektiivsem seadistus.

Eksamite Infosüsteemi andmebaasi masinal on kasutada 48 GB mälu ja 32 protsessori

tuuma, serveris hoitakse kahte andmebaasi eisdb1 ja eidb1tunnistused, millest viimane

ei saa erilist koormust. Koormustesti käivitamisel tuleb määrata sihtserver, kuna

andmebaas on eraldiseisvas masinas. Lisaks saab määrata mitmeid erinevaid väärtusi

koormustesti läbiviimiseks – loodavate ühenduste arv, palju protsesse võib luua, ühe

ühenduse poolt tehtavate transaktsioonide arv.

Efektiivse PostgreSQL seadistuse leidmises tuleb testida andmebaasi erinevate

seadistusväärtustega. Põhiliseks muutujaks on andmebaasi maksimaalsete ühenduste

arv, mis mõjutab omakorda work_mem väärtust ehk mälukasutamist protsessi kohta.

Üks koormustest võiks kesta 15 kuni 30 minutit, mis võimaldab andmebaasil tagastada

stabiilse tulemuse tänu pikaajalisele tööle ja selle aja põhjal on võimalik ka

koormusgraafikutelt mingi järeldus teha. Põhjaliku ülevaate saamiseks tuleb teha

25

koormustestid iga lisanduva 10 ühenduse kohta kuni 1000 üheaegse ühenduseni. Kui

testi tulemused näitavad, et süsteemil on veel ruumi tagastada paremaid tulemusi kui

tuhat ühendust, siis tuleb suurendada koormustesti piire. Maksimaalne ühenduste arv

1000 tähendab testi sooritamist 100 korral, mille käsitsi tegemine on ajaliselt kulukas

ja ebaefektiive, seepärast tuleb koormustestimine automatiseerida.

2.6.1 Testimise automatiseerimine

Skript tuleb paigaldada koormustestide serverisse tagades võimaluse muuta skripti

sihtserverit vastavalt kas koos või ilma puul tarkvarata. Skriptile tuleb määrata piirid,

et vältida protsessi lõpmatut töötamist. Piiriks on maksimaalsete ühenduste arv ehk

1000 ühendust, algseadena on see 10 ning suureneb iga kui-tsükliga kümne võrra. Iga

tsükli käigus tehakse SSH andmebaasi serverisse kus käivitatakse Python

programmeerimiskeeles kirjutatud PGTune skript, mis kombineerib siestatava info

põhjal optimaalse PostgreSQL seadistuse. Skripti sisendiks tuleb anda kaasa soovitud

ühenduste arvu. Serveri ressursid, mälu kogus ja protsessori tuumade arvu, tuvastab

skript iseseisvalt.

PGTune tarkvara loojaks on Greg Smith, kelle versioon põhines Python

programmeerimisele, kuid skript on tänaseks aegunud ning ei toeta enam uuemaid

PostgreSQL versioone. Seadistustarkvara põhja on kasutatud paljude uute PGTune

järglaste loomisel, paljud nendest kannavad sama nime. Koormustestide skripti

käsutuses on üks PGTune seadistustarkvara järglastest. Vastav transaktsioonide arv

arvutatakse iga uue ühenduvate klientide arvu muutumisel – andmebaasi tehakse kokku

vähemalt 30 000 ühendust. Koormustesti tulemused kirjutatakse ekraanile, mis veel

omakorda dubleeritakse serveris olevale andmeladustuskettale hilisemaks

analüüsimiseks.

2.6.2 PostgreSQL koormustest

Koormustesti tulemus põhineb kahe arvu võrdlemisel, kui palju transaktsioone suudab

andmebaas teha määratud ühenduste korral. Testi tulemused on esitatud graafikul 2.1.

Tulemuste põhjal saab öelda, et andmebaas on kõige efektiivsem 150 ühenduse juures

tehes 11 949 transaktsiooni sekundis. Peale parima tulemuse saavutamist toimub

ühtlane langus. Parim tulemus ei tähenda seda, et sellise lõppseadistusega tehakse

andmebaas, kuna tihtipeale loeb süsteemi sisene ülesehitus ja infosüsteemi ametlikud

koormustestid, et milliseks kujuneb andmebaasi lõplik seadistus. Tehtud andmebaasi

26

koormusteste saab võrrelda tulevaste infosüsteemi koormustestide tulemusega, mille

põhjal on võimalus luua seoseid ja teha edasised optimeerimisi.

Graafik 2.1. PostgreSQL koormustest

2.6.3 PostgreSQL ja PgBounceriga koostöö koormustest

Järgmiseks etapiks on rakendada andmebaasi ette PgBouncer ja testida kuidas

seadistada ja koormus jaguneb andmebaasile koos puul tarkvaraga. Eesmärgiks on

suunata puuli suunas tuhat kasutajaid ja võrrelda, kuidas saab ülesandega hakkama

andmebaas iseseisvalt ja koos puul tarkvaraga. Sarnaselt eelmise korraga teeb skript

kokku saja erineva ülesehitusega testi, lisaks andmebaasi muutmisele tuleb juurde

lisada puul tarkvara sees toimuvad tegevused – puuli seadistuses andmebaasi suunas

olevate parameetrite muutmine, et need oleksid sarnased andmebaasi maksimaalsete

ühenduste arvuga ja puul tarkvara taaskäivitamine ning päringud tuleb saata

andmebaasi asemel nüüd puul serveri suunas ehk tuleb vahetada IP-aadress. Testi

vahemik jääb samaks, aga puuli serveri suunas tehakse iga seadistuse korral 1000

ühendust.

Koostöö koormustesti tulemused on graafikul 2.2. Tulemuste põhjal saab öelda, et

olenemata andmebaasi seadistusest suudab PgBouncer hoida ühtlast transaktsioonide

arvu sekundis. Andmebaasi seadistused, mis põhinevad ühenduste arvu vahemikust 10

150, 11949.28

0

2000

4000

6000

8000

10000

12000

14000

1
0

5
0

9
0

1
3

0

1
7

0

2
1

0

2
5

0

2
9

0

3
3

0

3
7

0

4
1

0

4
5

0

4
9

0

5
3

0

5
7

0

6
1

0

6
5

0

6
9

0

7
3

0

7
7

0

8
1

0

8
5

0

8
9

0

9
3

0

9
7

0

Tr
an

sa
kt

si
o

o
n

e
 s

e
ku

n
d

is
 -

tp
s

Ühenduste arv

PostgreSQL 12.4: Transaktsioone sekundis võrreldes
ühenduste arv

27

kuni 750 said parema tulema iseseisvalt ilma puul tarkvara abiga, kuid peale 750

ühenduse arvu, suutis puul tarkvara tõsta andmebaasi transaktsioonide töötlemise

kogust sekundis. Testi tulemuste põhjal saab öelda, et toodud riistvaralise ülesehituse,

andmebaasi suuruse ja infosüsteemi kasutajate arvu poolest tasuks puuli tarkvara

ennast kindalt ära. Eksamite Infosüsteemis on oodata tulevikus samaaegsete kasutajate

arvu 2000 ja 4000 vahel, misläbi tuleb andmebaasi ülesehitust testida suuremate

ühenduste arvuga, et teha kindlaks, mis on süsteemi maksimaalne piir.

Graafik 2.2. PostgreSQL ja PgBounceriga koostöö koormustest

Andmebaasi seadistuse valmine on hetkel keerukam ning ei ole ühte kindalt ülesehitust,

mis oleks kindalt teistest parem. Viimase testi põhjal saab öelda, et andmebaasi võib

seadistada töötama vahemikus 100 kuni 370 ühendust, kuna see vahemik andis kõige

parema tulemuse – umbes 7500 transaktsiooni sekundis. Kõige kindlam on valida

väiksema ühenduste arvuga ülesehitus, kuna see võimaldab jätta protsessile suurema

koguse mälu. Kõige parema tulemuse andis 270 ühendusega ülesehitus, mis saab olema

järgmise koormustesti aluseks. Võimalus oleks veel arvestada latentsuse mõju, kuid see

väärtus suureneb pidevalt kui andmebaas on seadistatud sajast suurema maksimaalse

üheaegsete ühenduse teenindamiseks [11]. Kindalt latentsuse väärtust ei saa valida,

kuna tulemus kõigub suuresti iga testiga. Segavates teguriteks on kõikuv võrguliikluse

olukord testi tegemise hetkel ning virtualiseerimisklastris teiste virtuaalmasinate

0

1000

2000

3000

4000

5000

6000

7000

8000

1
0

4
0

7
0

1
0

0
1

3
0

1
6

0
1

9
0

2
2

0
2

5
0

2
8

0
3

1
0

3
4

0
3

7
0

4
0

0
4

3
0

4
6

0
4

9
0

5
2

0
5

5
0

5
8

0
6

1
0

6
4

0
6

7
0

7
0

0
7

3
0

7
6

0
7

9
0

8
2

0
8

5
0

8
8

0
9

1
0

9
4

0
9

7
0

1
0

0
0

Tr
an

sa
kt

si
o

o
n

e
 s

e
ku

n
d

is
 -

tp
s

Ühenduste arv

PostgreSQL 12.4: Transaktsioone sekundis võrreldes
ühenduste arv - 1000 ühendust (PgBouncer)

28

koormus. Latentsuse ja ühenduse arvu suhe viimaste testi tulemused on kajastatud

graafikul 2.3.

Graafik 2.3. PostgreSQL ja PgBouncer koostöö koormustesti latentsus

2.6.4 Lõplik tarkvarade koostöö tulemus

Maksimaalse süsteemi võimekuse leidmiseks tuleb kirjutada sarnane skript esimesega.

Erinevusteks on ühenduste arvu vahemik, milleks on 1000 kuni 5000 ja testide

vaheliseks sammuks on 100 ehk teste tehakse iga lisanduva 100 ühenduse kohta.

Maksimaalse ühenduste arvu määramine 5000 tuleneb sellest, et hetkel on eesmärgiks

toetada EISis 4000 üheaegset külastajat ning selle mõttega sai juurde lisatud 1000

ekstra ühendust. Skript ei pea andmebaasi seadistama, kuna eelmise testi põhjal

otsustati, et andmebaas ja puul tarkvara seadistatakse käsitsi 270 üheaegse ühenduse

teenindamiseks. Testi eesmärgiks on näha, kui palju langeb transaktsioonide arv

sekundis ning kui palju suureneb päringute latentsus.

Tulemused on kajastatud graafikul 2.4. Saadud info põhjab saab väita ootuspäraselt, et

transaktsioonide arv ja latentsus muutuvad halvemaks ühenduste arvu kasvuga, kuna

iga testiga suurenes PgBounceri ootejärjekorras olevate päringute kogus. Lõpliku

ülevaate annaavad JMeter koormustestid, mis aitavad kaasa andebaasi ja puul tarkvara

120

125

130

135

140

145

150

155

160

1
0

0

1
3

0

1
6

0

1
9

0

2
2

0

2
5

0

2
8

0

3
1

0

3
4

0

3
7

0

4
0

0

4
3

0

4
6

0

4
9

0

5
2

0

5
5

0

5
8

0

6
1

0

6
4

0

6
7

0

7
0

0

7
3

0

7
6

0

7
9

0

8
2

0

8
5

0

8
8

0

9
1

0

9
4

0

9
7

0

1
0

0
0

La
te

n
ts

u
s

-
m

s

Ühenduste arv

PostgreSQL 12.4: Latentsus võrreldes ühenduste arv - 1000
ühendust (PgBouncer)

29

täpse seadistuse leidmiseks, mis sobib Eksamite Infosüsteemi ülesehitusse kõige

paremini.

Graafik 2.4. Lõplik tarkvarade koostöö tulemus

2.7 PgBounceri rakendamine EISis

EISis süsteemis on kokku 18 erinevat andmebaasikasutajat, seega on vaja puul tarkvara

seadistada natukene erinevalt võrreldes eelnevate testidega. Kõik kasutajad peab

lisama puul serveri seadistuses määratud faili – iga kasutaja on omaette real koos

parooliga. Eesmärgiks on lubada igast rakendusest kindel arv ühendusi andmebaasi

suunas, tagades, et üks rakendus ei hõivaks kõiki andmebaasi ühendusi enda kasutusse.

Tulenevalt HAProxy ülesehitusest toimub koormuse jagamine rakendusserverite

nimekirja alusel ehk ühendused suunatakse serveritesse korda mööda. Võib tekkida

olukordi, kus kasutaja teeb nõudlikumaid päringuid ühes rakenduses ning selle

rakenduse andmebaasi ühendused hakkavad kuhjuma, kuid sellisele probleemile ei ole

hetkel lahendust.

Andmebaasi testide põhjal sai otsustatud, et PostgreSQL seadistus tuleb teha 270

üheaegse ühenduse teenindamiseks. Võimalus on kasutada kõik ühendused andmebaasi

suunas ära, kuid see ei jätaks ruumi olukordadeks kui ühenduste arv läheb üle lubatud

0

100

200

300

400

500

600

700

800

900

1000

0

1000

2000

3000

4000

5000

6000

7000

8000

La
te

n
ts

u
s

-
m

s

Tr
an

sa
kt

si
o

o
n

e
 s

e
ku

n
d

is
 -

tp
s

Ühenduste arv

PostgreSQL 12.4: Transaktsioone sekundis võrreldes
ühenduste arv võrreldes latentsus

Transaktsioone sekundis Latentsus

30

piiri. Testimise käigus õnnestus tekitada olukord, kus PgBouncer lubas andmebaasi

suunas rohkem ühendusi kui lubatud, millest tulenevalt hakkasid tekkima

ebaõnnestuvad päringud. Jagades 270 ühendust kuue rakenduse vahel saame 45

ühendust ning eemaldades ühe ühenduse rakenduse kohta varusse on tulemuses 44

ühendust, mis tuleb jagada kahe EISi andmebaasi vahel, milleks on eisdb1 ja

eisdb1tunnistus. Arendaja tagasiside põhja tehakse tunnistuste baasi ühendusi väga

minimaalselt, millest tulenevalt on võimalik igal rakendusel teha kaks ühendust

tunnistuse baasi suunas. Lõpptulemusena on põhibaasi suunas võimalik avada igal

rakendusel 42 ühendust, jättes PostgreSQL serveril 6 ühendust varusse.

Logiandmebaas, mis hoiab endas baase eisdb1sess ja eidb1log peab olema puuli poolest

sarnase ülesehitusega nagu esimene baasiserver. Sarnane ülesehitus on tingitud baasi-

kasutajate ülesehitusest. Sama kasutaja, mis teeb päringuid eisdb1 kirjutab sessioonide

andmebaasi infosüsteemi kasutajal hetkel pooleli olevate asjade ülesehituse. Tulenevalt

logi andmebaasi ülesehitusest ja vajadusest infosüsteemi poolt ei pea rakendama

nimetatud andmebaasi kõike efektiivsemat ülesehitust. Logi serveris asub kaks

andmebaasi ning mõlemale on vaja sarnast ühenduste arvu nagu põhi andmebaasi ehk

siis 42 ühendust andmebaasi kohta annab tulemuseks 504 ning jättes sarnaselt 6

ühendust varusse saab PostgreSQL seadistuse määrata 510 ühendusele. PgBouncer

andmebaasi ühendused on illustreerivalt esitatud koodilõigus 2.1.

[databases]

eisdb1 = host=10.64.0.2 port=5432 pool_size=42 max_db_connections=252

eisdb1tunnistus = host=10.64.0.2 port=5432 pool_size=2 max_db_connections=12

eisdb1sess = host=10.64.0.3 port=5432 pool_size=42 max_db_connections=252

eisdb1log = host=10.64.0.3 port=5432 pool_size=42 max_db_connections=252

Koodilõik 2.1. PgBounceris rakendatud puul ülesehitus

Eksamite Infosüsteemi ümberseadistamine otse ühenduselt andmebaasiga puul serveri

suunas toimus 18. detsembril 2019. Põhilise ümberlülituse tegevuse oli IP-aadressi

muutus rakenduses, mille muudatused kandis koodi sisse arendaja. Andmebaasi

seadistusete poole pealt pidi kindlaks tegema, et lubatud ühenduste vahemikus on puul

serveri IP-aadress ning seadistama põhi- ja logiandmebaasi ülesehituse vastavalt

plaanitud ülesehitusele kasutades PGTune seadistust. Väljavahetamine õnnestus koos

mõningate tagasilöökidega - mõne rakenduse seadistus jäi korrektselt muutmata ning

puul tarkvaras oli vaja peenhäälestusega seadistada päringute optimeerimist. Lõplik

Eksamite Infosüsteemi PgBounceri seadistusfaili on lisades.

31

2.8 Koormustestid peale PgBouncer rakendamist

Peale PgBouncer rakendamist on Eksamite Infosüsteemis tehtud kokku 34 koormustesti,

millest 18 on tagastanud ebaõnnestunud päringuid. Koormustest tehti ajavahemikus 19.

detsember 2019 kuni 18. september 2020. Võrreldes hajutatud andmebaasi ülesehituse

korral tehtud koormustest, kus suunati süsteemi suunas 4000 üheaegset kasutajat on

tulemus paranenud mitmekordselt – arvestama peab süsteemi muutuste ja

koormustesti skripti täiendustega. Kahekordselt on vähenenud reageerimise keskmise

päringu kestvus kahekordselt ning pikim päring vähenes 45 korda – 5 minutilt 7

sekundile. Hetkel on süsteemi maksimaalseks koormustaluvuseks 4998 ühendust, test

tehti 21. jaanuaril – päringu keskmine reageerimis aeg oli 2 sekundit ja maksimaalne

päring kestis 45 sekundit.

32

3. Infosüsteemi vastupidavus reaalsuses

Infosüsteemi kindla vastupidavuse üheks mõõdupunktiks on vastupidavus reaalsele

koormusele. Eksamite Infosüsteemis on selleks tasemetööde või eksamite sooritamine,

mis koosnevad kas automaatsest kontrollist või kõrvalise kasutaja tagasisidest. Lisaks

osade tulemuste puhul tehakse arvutusi tulemuste piiride loomiseks või

korrigeerimiseks, mis mõjutavad süsteemi tööd, kuna arvutused on mahukad. EISis

tehti septembris kokku kahes õppeaines tasemetööd – loodusõpetus ja matemaatika.

Tasemetöö sooritajateks olid 7.klassi õpilased. Kokkuvõtted tehakse koormusgraafikute

põhjal, mis on tehtud CheckMK tarkvaraga, mis kogub andmeid süsteemi protsesside

kasutuse kohta ja kuvab saadud informatsiooni graafikutel. Süsteemi tehnilised andmed

on kajastatud tabelis 3.1. Rakendusi on kokku kuus, igaüks tabelis 1 toodud

konfiguratsiooniga.

Tabel 3.1. EISi serverite ressursid

Serveri nimi Mälumaht (GB) Protsessori tuumade arv

eisproxy 8 8

eisrakendus 16 8

eispgbouncer 6 4

eisdb 48 32

eislogdb 24 8

3.1 Loodusõpetuse ja matemaatika tasemetööd

Loodusõpetuse tasemetöö toimus ajavahemikul 21. kuni 24. september – teste tehti

nimetatud päevadel kella 8:00 ja 15:00 ajavahemikul. Test oli üheosaline ehk kõik

tegevused oli võimalik teha samal päeval õpilastel arvutiklassis. Tasemetöös oli kokku

8 süsteemipoolt hinnatavat ülesannet ja 13 loomingulist ülesannet, mida pidi hindama

kooli poolt määratud kontrollija. Loodusõpetuse testi perioodi käigus saavutati

üheaegsete maksimaalsete ühenduste arvuna 3253 ühendust ning süsteemiga oli

üheaegselt ühendatud 220 erinevat IP-aadressi. Tasemetöö kasutajate arvu visuaalne

ülesehitus koos ajateljega on leitav jooniselt 3.1.

33

Joonis 3.1. EIS kasutajad - loodusõpetuse tasemetöö

Andmebaaside monitooringu põhjal saab öelda, et põhibaasi maksimaalne koormus oli

42,02% ning logibaasil 17,68%. Üldine andmebaaside kasutusprotsent oli 2% ja 3%

vahel. Põhi andmebaasi töö on joonisel 3.2. ja logibaasi kasutus on joonisel 3.3. Mõlema

andmebaasi graafikul on näha keskööl andmebaasi koormuse tõus seoses andmebaasi

varundamisega. Tulenevalt jälgimistarkvara eripärast ei ole võimalik hinnata

andmebaasi serverite mälukasutust graaflikudelt.

34

Joonis 3.2. EIS põhibaasi protsessori kasutus - loodusõpetuse tasemetöö

Joonis 3.3. EIS logibaasi protsessori kasutus - loodusõpetuse tasemetöö

Andmebaasi koormusjaoturi protsessor oli maksimaalselt kasutuses 13,58% ning mälu-

kasutus oli minimaalne. Rakenduste protsessori kasutused jagunesid kahte gruppi. Kolm

esimest rakendust said portsessori maksimaalseks koormuseks kindlal hetkel üle 60%

ning ülejäänud kolm olid alla 10 %. Kolm rakendust, mis ületasid 60 % piirid vaheldusid

35

iga päev. Tulenevalt protsessori kasutusest jagunesid rakendused mälu kasutuses

sarnaselt kahte gruppi – esimesed kolm kasutasid 6GB mälu ning ülejäänud 4,5 GB.

Viimaseks süsteemi komponendiks on HAProxy server, mis kasutas tasemetöö perioodil

3% oma protsessori koguvõimsusest ning 1,8 GB mälu, millest tulenevalt saab väita, et

HAProxy on väga efektiivne.

Matemaatika tasemetöö toimus ajavahemikul 28. september kuni 1. oktoober. Sarnaselt

loodusõpetusega sooritati testi samal ajavahemikul. Matemaatika tasemetöö läbimine

oli tunduvalt nõudlikum. Tasemetöö üheaegsete ühenduste arvuks kujunes 4118 ning

IP-aadresside arv oli seekord väiksem – 214. Matemaatika tasemetöö ühenduste

jagunemist on kujutatud joonisel 3.4.

Joonis 3.4. EISi kasutajad - matemaatika tasemetöö

Põhiliseks erinevuseks kujunes süsteemi poolt teostatud arvutuste koormus.

Kolmapäeval, 30. septembril kasutati esimese rakenduse protsessor täielikult eraldatud

ressursside piiris ära – protsessori kasutus jõudis 100%-ni. Lisaks oli sarnases olukorras

kuues rakendusserver, mis kasutas protsessori ressursi ära 80%. Kuuenda rakendusega

esines sama olukord uuesti neljapäeval. Arvutuste info võetakse ja sisestatakse

36

andmebaasi, millest tulenevalt tõusis põhiandmebaasi koormus kolmapäeval ja

neljapäeval, mis on visuaalselt kujutatud joonisel 3.5.

Joonis 3.5. EIS põhibaasi protsessori kasutus - matemaatika tasemetöö

Andmebaasi ülesehituse poolest said suurema koormuse osaliseks matemaatika

tasemetöö ajal PgBouncer ja logibaas. Kui loodusõpetuse tasemetöö ajal oli logibaasi

protsessori ressursid kasutuses 17%, siis matemaatika tasemetöö ajal oli kasutus

kasvanud kahekordseks, logibaasi koormus on märgitud joonisel 3.6. Koormuse kasvu

on võimalik tuvastada ka PgBounceri graafikutelt, kus protsessori kasutus kasvas

esimese tasemetööga võrreldes 10%. Arvutuste tegemine on süsteemi üheks suurimaks

pudelikaelaks olnud siiamaani ja saab olema veel suuremaks edaspidi. Takistus seisneb

selles, et järjest rohkem tehakse elektroonilisi test ning populaarsuse kas suurendab

töödeldavate andemete kogum, mis omakorda hakkab tulevikus veel rohkem koormama

andmebaase.

37

Joonis 3.6. EISi logibaasi protsessori kasutus - matemaatika tasemetöö

3.2 Tasemetööde kokkuvõte

Süsteem pidas vastu suurele koormusele ning saavutas uusi rekordeid üheaegsete

kasutajate teenindamises. Maksimaalsete ühenduste arv oli 4118. Reaalne kasutus

annab just kõige kindlama ülevaate süsteemi käideldavuse kohta, kuna automaat-

ja/või koormustestidega on jäigalt kirjutatud mida simuleeritud kasutaja kavatseb teha

ning see ei peegelda alati reaalse kasutaja käitumist. Sarnaselt toob reaalne kasutus

välja kitsaskohad, milleks on arvutuste tegemine, mis mõjutab süsteemi tööd ning võib

muutuda segavaks teguriks. Koormustulemused, millel puuduvad graafikud on välja

toodud koodi lõikudena lisades (lisa 13 ja 14). Graafiku puudumine tuleneb sellest, et

graafikud on kas liiga ühtlased või omavad ainult ühete ajahetke, kus koormustase

kerkis kõrgele.

38

KOKKUVÕTE

Rakenduskõrgharidustöö eesmärgiks oli Eksamite Infosüsteemi võimekuse

parandamine. Eesmärgi saavutamiseks tehti uute süsteemi komponentide testimiseks

eraldiseisvad arendusserverid, rakendati uusi ülesehitusi EISi test- ja

toodangukeskkondades, testiti süsteemi vastupidavust simuleeritud koormustestidele

ja analüüsiti vastupidavust reaalsele kasutusele. EISi võimekuse parandamiseks tuli

välja vahetada rakenduste proksiserver ja optimeerida andmebaaside ülesehitus.

Eksamite Infosüsteemi koormustaluvuse tõstmine kuulutatakse edukaks, kui süsteem

on võimeline teenindama 4000 simuleeritud kasutajat korraga.

Süsteemi lõplikuks koormustestiks oli 2020. aasta septembri viimases pooles tehtud

reaalne süsteemi kasutus, kus 7. klassi õpilased läbisid matemaatika ja loodusõpetuse

tasemetöid. Süsteem teenindas tipphetkel ära 4118 üheaegset ühendust ning

tasemetööde käigus ei esinenud ühtegi tõrget süsteemi töös. Saadud katsetulemuste

põhjal võib töö eesmärgi lugeda saavutatuks.

Optimeerimisvõimalusi on veel mitmeid nii rakenduse koodi kui ka kasutusel oleva

tarkvara seadistuse poolelt. Eksamite Infosüsteemi jõudluse taluvus on tõusnud iga uue

süsteemi komponendi rakendamisega, kuid kogu au ei kuulu rakendatud tarkvaradele.

EISi rakendusi on arendatud ja optimeeritud edasi ka Harno arendaja ja projektijuhi

poolt. Optimeerimisvõimalusi on tekkinud tänu koormustestide tegemise ja nende

tulemuste analüüsimisel. Eksamite Infosüsteemi edasiseks jõudluse tõstmiseks tuleks

uurida Redise andmebaasi rakendamist ühenduste sessioonide talletamiseks

PostgreSQL andmebaasi asemel.

39

SUMMARY

This thesis was aimed at improving the capabilities of the Examination Information

System. To fulfill the objective new application servers were built, a new setup was

implemented in both test and production environments, the system was stress tested

with simulated load and compared against real use case. To improve the system’s

capabilities application’s proxy server was swapped out and the database setup was

optimized. The thesis will be confirmed as successful if the system is able to sustain

4000 concurrent users.

The final stress test was conducted in late September 2020 when 7th grade students

performed evaluation examinations in math and biology. System maintained 4118

concurrent connections during highlight. During examinations, no errors were observed.

Based on the results of this final use case, it can be concluded thesis was successful.

Even though the thesis was successful, there are still possibilities to optimize the system

even further by improving application code as well as current software setups.

Examination Information System’s capabilities have improved with every new

component implementation, but the system’s developer and project lead have

developed and optimized the system even further as well. With every stress test and its

analysis, new possibilities of optimization have arisen for instance by considering

applying Redis database for storing session data rather than the current PostgreSQL

setup.

40

KASUTATUD KIRJANDUSE LOETELU

[1] Ilker Koksal. The rise of online learning. [Online]

https://www.forbes.com/sites/ilkerkoksal/2020/05/02/the-rise-of-online-

learning/?sh=6bbf37ca72f3 (08.12.2020)

[2] Apache – HTTP Server Project. [Online]

 https://httpd.apache.org/ (15.04.2020)

[3] Kavya. Apache Vs NGINX – Which Is The Best Web Server for You? [Online]

https://serverguy.com/comparison/apache-vs-

nginx/#:~:text=Apache%20Vs%20NGINX%202020,multiple%20requests%20within%

20one%20thread. (30.07.2020)

[4] HAProxy The Reliable, High Performance TCP/HTTP Load Balancer. [Online]

http://www.haproxy.org/ (21.01.2020)

[5] Ettevõttest. [Online]

https://www.skidsolutions.eu/ettevottest/ (05.02.2020)

[6] Tühistusnimekiri. [Online]

https://www.skidsolutions.eu/repositoorium/CRL/CRL (14.10.2020)

[7] Tuning Your PostgreSQL. [Online]

https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server (09.10.2019)

[8] PostgreSQL Connection Pooling: Part 1 – Pros & Cons [Online]

https://scalegrid.io/blog/postgresql-connection-pooling-part-1-pros-and-cons/

(08.12.2020)

[9] PostgreSQL Connection Pooling: Part 4 – PgBouncer vs. Pgpool-II [Online]

https://scalegrid.io/blog/postgresql-connection-pooling-part-4-pgbouncer-vs-pgpool/

(08.12.2020)

[10] Serverivabrik. [Online]

https://arendus.eenet.ee/w/arendusveeb/serverivabrik/ (10.11.2020)

[11] PostgreSQL-based application performance: latency and hidden delays. [Online]

https://www.2ndquadrant.com/en/blog/postgresql-latency-pipelining-batching/

(08.12.2020)

https://www.forbes.com/sites/ilkerkoksal/2020/05/02/the-rise-of-online-learning/?sh=6bbf37ca72f3
https://www.forbes.com/sites/ilkerkoksal/2020/05/02/the-rise-of-online-learning/?sh=6bbf37ca72f3
https://httpd.apache.org/
https://serverguy.com/comparison/apache-vs-nginx/#:~:text=Apache%20Vs%20NGINX%202020,multiple%20requests%20within%20one%20thread
https://serverguy.com/comparison/apache-vs-nginx/#:~:text=Apache%20Vs%20NGINX%202020,multiple%20requests%20within%20one%20thread
https://serverguy.com/comparison/apache-vs-nginx/#:~:text=Apache%20Vs%20NGINX%202020,multiple%20requests%20within%20one%20thread
http://www.haproxy.org/
https://www.skidsolutions.eu/ettevottest/
https://www.skidsolutions.eu/repositoorium/CRL/CRL
https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
https://scalegrid.io/blog/postgresql-connection-pooling-part-1-pros-and-cons/
https://scalegrid.io/blog/postgresql-connection-pooling-part-4-pgbouncer-vs-pgpool/
https://arendus.eenet.ee/w/arendusveeb/serverivabrik/
https://www.2ndquadrant.com/en/blog/postgresql-latency-pipelining-batching/

41

LISAD

42

Lisa 1 Testsüsteemi HAProxy esialgne seadistus

Global

 daemon

Defaults

 mode http

 timeout connect 5s

 timeout client 500s

 timeout server 500s

frontend proxy

 bind *:80

 redirect scheme https if !{ ssl_fc }

 acl letsencrypt path_beg /.well-known/acme-challenge/

 use_backend letsencrypt if letsencrypt

 bind *:443 ssl crt /srv/certs/haproxy.eenet.ee.pem

 default_backend rakendusserverid

backend rakendusserverid

 balance roundrobin

 server haproxyrakendus1 10.40.19.51:80 check

 server haproxyrakendus2 10.40.19.52:80 check

backend letsencrypt

 server letsencrypt 127.0.0.1:8080

Lisa 2 Testsüsteemi Apache esialgne seadistus

<VirtualHost 10.40.19.51:80>

 DocumentRoot "/srv/http/avalik"

 ServerName haproxy.eenet.ee

</VirtualHost>

43

Lisa 3 Testsüsteemi HAProxy täiendatud seadistus

Global

 daemon

defaults

 mode http

 timeout connect 5s

 timeout client 500s

 timeout server 500s

frontend proxy

 bind *:80

 # Headerid, mida edastada tagaolevale rakendusele - ID-Kaart

 http-request set-header SSL-CLIENT-I-DN %{+Q}[ssl_c_i_dn]

 http-request set-header SSL-CLIENT-I-DN-CN %{+Q}[ssl_c_i_dn(cn)]

 http-request set-header SSL-CLIENT-VERIFY %[ssl_c_verify]

 http-request set-header SSL-CLIENT-S-DN %{+Q}[ssl_c_s_dn]

 http-request set-header SSL-CLIENT-S-DN-CN %{+Q}[ssl_c_s_dn(cn)]

 http-request set-header SSL-CLIENT-S-DN-O %{+Q}[ssl_c_s_dn(o)]

 http-request set-header SSL-CLIENT-M-SERIAL %[ssl_c_serial,hex]

 http-request set-header SSL-CLIENT-CERT %{+Q}[ssl_c_der,base64]

 http-request set-header SSL %[ssl_fc]

 http-request set-header SSL-Client-SHA1 %{+Q}[ssl_c_sha1,hex]

 http-request set-header SSL-Client-NotBefore %{+Q}[ssl_c_notbefore]

 http-request set-header SSL-Client-NotAfter %{+Q}[ssl_c_notafter]

 http-request set-header SSL-Client-Version %{+Q}[ssl_c_version]

 http-request set-header X-Forwarded-Port %[dst_port]

 http-request add-header X-Forwarded-Proto https if { ssl_fc }

 redirect scheme https if !{ ssl_fc }

 acl letsencrypt path_beg /.well-known/acme-challenge/

 use_backend letsencrypt if letsencrypt

 bind *:443 ssl crt-list /srv/certs/crt-list

 # Kasutaja IP edastamine

 option forwardfor

 option http-server-close

 # Rakenduste juurde suunamine

 default_backend rakendusserverid

backend rakendusserverid

 balance roundrobin

 server haproxyrakendus1 10.40.19.51:80 check

 server haproxyrakendus2 10.40.19.52:80 check

backend letsencrypt

 server letsencrypt 127.0.0.1:8080

44

Lisa 4 Testsüsteemi Apache täiendatud seadistus

<VirtualHost 10.40.19.51:80>

 DocumentRoot "/srv/http/avalik"

 ServerName haproxy.eenet.ee

</VirtualHost>

<VirtualHost 10.40.19.51:80>

 DocumentRoot "/srv/http/id-kaart"

 ServerName haproxy-id.eenet.ee

 SetEnvIf SSL_CLIENT_I_DN "(..*)" SSL-CLIENT-I-DN=$1

 SetEnvIf SSL-CLIENT-I-DN-CN "(..*)" SSL-CLIENT-I-DN-CN=$1

 SetEnvIf SSL-CLIENT-VERIFY "0" SSL-CLIENT-VERIFY=SUCCESS

 #SetEnvIf X-SSL-CLIENT-VERIFY "(..*)" SSL-CLIENT-VERIFY=$1

 SetEnvIf SSL-CLIENT-S-DN "(..*)" SSL-CLIENT-S-DN=$1

 SetEnvIf SSL-CLIENT-S-DN-CN "(..*)" SSL-CLIENT-S-DN-CN=$1

 SetEnvIf SSL-CLIENT-S-DN-O "(..*)" SSL-CLIENT-S-DN-O=$1

 SetEnvIf SSL-CLIENT-M-SERIAL "(..*)" SSL-CLIENT-M-SERIAL=$1

 SetEnvIf SSL-CLIENT-CERT "(..*)" SSL-CLIENT-CERT=$1

</VirtualHost>

Lisa 5 HAProxy domeenide nimekirja faili ülesehitus

/srv/certs/haproxy-id.eenet.ee.pem [ca-file /srv/certs/id.crt verify required alpn h2,http/1.1] haproxy-

id.eenet.ee

/srv/certs/haproxy.eenet.ee.pem [alpn h2,http/1.1] haproxy.eenet.ee

45

Lisa 6 Eksamite Infosüsteemi HAProxy seadistusfail

Global

 daemon

 maxconn 100000

 tune.ssl.cachesize 2000000

 tune.maxrewrite 16384

 tune.bufsize 32768

defaults

 mode http

 timeout connect 5000ms

 timeout client 180000ms

 timeout server 180000ms

 errorfile 503 /srv/haproxy/comeback.html

 maxconn 20000

frontend haproxy

 # Kuulame 80 porti

 bind :80

 # Domeeni nime vahetus

 redirect prefix https://testid.edu.ee code 301 if { hdr(host) -i eis.innove.ee }

 # Ümbersuunamine HTTPS'le

 redirect scheme https if !{ ssl_fc }

 # Kuulame 443 porti ja määrame bundle sertifikaadi asukoha

 bind :443 ssl crt /srv/certs/testid.edu.ee-bundle.crt

 # Rakendusservri valiku juurde suunamine

 default_backend rakendusserverid

backend rakendusserverid

 balance roundrobin

 option forwardfor

 option http-server-close

 http-request set-header X-Forwarded-Port %[dst_port]

 http-request add-header X-Forwarded-Proto https if { ssl_fc }

 acl network_allowed src 10.40.0.31

 acl restricted_page path_beg /adapter

 http-request deny if restricted_page !network_allowed

 acl path_static path_beg /ekk/muud/clufs

 use-server rakendus01 if path_static

 server rakendus01 10.64.0.111:80 check

 server rakendus02 10.64.0.112:80 check

 server rakendus03 10.64.0.113:80 check

 server rakendus04 10.64.0.114:80 check

46

Lisa 7 Andmebaasi esimene skript

#!/bin/bash

con=10

while [$con -lt 1010]; do

echo -e "\e[96mDB masinas tegevused\e[0m"

ssh -o "StrictHostKeyChecking no" jay@10.40.19.56 -T << EOF

sudo -i

/srv/pgtune/pgtune.py -c $con -l "*" | grep -v "log" > /srv/postgres/data/tune.conf

systemctl restart postgresql

exit

exit

EOF

tran=$((30000/$con))

echo -e "\e[96m----------- $con -----------\e[0m"

i=0

while [$i -lt 20]; do

pgbench -U postgres -h 10.40.19.56 -n -c $con -j 4 -t $tran testdb

i=$(($i+1))

done

con=$(($con+10))

done

47

Lisa 8 Andmebaasi teine skript

#!/bin/bash

con=10

while [$con -lt 1010]; do

echo -e "\e[96mPOOL masinas tegevused\e[0m"

ssh -o "StrictHostKeyChecking no" jay@10.40.19.55 -T << EOF

sudo -i

/srv/conf.sh $con

systemctl restart pgbouncer

exit

exit

EOF

echo -e "\e[96mDB masinas tegevused\e[0m"

ssh -o "StrictHostKeyChecking no" jay@10.40.19.56 -T << EOF

sudo -i

/srv/pgtune/pgtune.py -c $con -l "*" | grep -v "log" > /srv/postgres/data/tune.conf

systemctl restart postgresql

exit

exit

EOF

tran=$((30000/1000))

echo -e "\e[96m----------- $con tps and latency -----------\e[0m"

i=0

while [$i -lt 20]; do

pgbench -U postgres -h 10.40.19.55 -n -c 1000 -j 4 -t $tran testdb

i=$(($i+1))

done

con=$(($con+10))

done

48

Lisa 9 Andmebaasi kolmas skript

#!/bin/bash

con=1000

while [$con -lt 10010]; do

tran=$((30000/$con))

echo -e "\e[96m----------- $con ----------- tps and latency\e[0m"

i=0

while [$i -lt 20]; do

pgbench -U postgres -h 10.40.19.55 -n -c $con -j 4 -t $tran testdb

i=$(($i+1))

done

con=$(($con+100))

done

49

Lisa 10 JMeter koormustestid peale HAProxy rakendamist

Date User Req Time reg/s Avg Min Max Err

Err

(%)

02.11

2018 1 600 94200 0:20:02 78.4 102 1 5730 0 0.00%

02.11

2018 1 2000 314000 0:22:56 228.2 539 0 100018 66 0.02%

02.11

2018 1 2500 392500 0:25:30 256.6 1433 0 100386 408 0.10%

14.05

2019 1 100 15700 0:20:37 12.7 81 1 2359 300 1.91%

14.05

2019 1 100 78500 0:20:07 65 103 0 4314 0 0.00%

14.05

2019 1 500 78500 0:21:31 60.8 437 0 35354 0 0.00%

14.05

2019 1 700 109900 0:22:56 79.9 1114 0 102692 0 0.00%

14.05

2019 1 900 141300 0:24:19 96.9 1703 0 142166 0 0.00%

14.05

2019 1 1500 235500 0:22:06 177.6 231 0 16021 0 0.00%

16.05

2019 3 1000 157000 0:38:11 68.5 6806 0 600019 133 0.08%

 1000 157000 0:38:24 68.2 6720 0 600025 138 0.09%

 1000 157000 0:39:06 66.9 6549 0 600028 170 0.11%

16.05

2019 2 1250 196250 0:21:51 149.7 694 0 57577 0 0.00%

 1250 196250 0:22:16 146.9 696 0 55285 0 0.00%

16.05

2019 2 1250 196250 0:22:34 144.9 1124 0 122605 0 0.00%

 1250 196250 0:24:10 135.3 1109 0 119987 0 0.00%

16.05

2019 2 1250 196250 0:24:43 132.3 1765 0 221524 0 0.00%

 1250 196250 0:25:06 130.3 1794 0 216256 0 0.00%

20.05

2019 2 1250 196250 0:24:47 132 1735 0 135483 0 0.00%

 1250 196250 0:24:49 131.8 1640 0 136675 0 0.00%

25.06

2019 1 500 78500 0:21:18 61.4 361 1 30339 0 0.00%

25.06

2019 1 1000 157000 0:23:11 112.8 1021 1 141270 1 0.00%

09.07

2019 1 400 62800 0:20:39 50.7 262 1 24751 0 0.00%

09.07

2019 1 400 62800 0:20:49 50.3 259 1 21684 0 0.00%

09.07

2019 1 400 62800 0:20:31 51 255 1 19117 0 0.00%

50

Lisa 11 JMeter koormustestid peale andmebaaside hajutamist

Date User Req Time reg/s Avg Min Max Err

Err

(%)

12.07

2019 2 1500 235500 0:21:23 183.6 381 0 71669 0 0.00%

 1500 235500 0:21:37 181.5 385 1 73548 0 0.00%

12.07

2019 2 2000 314000 0:46:59 111.4 9390 0 600029 8 0.00%

 2000 314000 0:47:45 109.6 9778 1 600457 23 0.01%

12.07

2019 2 1500 235500 0:32:02 122.5 4589 1 339788 3 0.00%

 1500 235500 0:32:45 119.8 4468 0 528817 4 0.00%

28.08

2019 2 1500 235500 0:23:19 168.3 1264 0 138574 0 0.00%

 1500 235500 0:24:05 162.9 1309 1 135779 0 0.00%

28.08

2019 2 2000 314000 0:30:10 173.5 3350 0 293795 0 0.00%

 2000 314000 0:30:10 173.5 3528 1 300038 1 0.00%

28.08

2019 2 2000 314000 0:27:13 192.2 2476 0 313079 0 0.00%

 314000 0:27:33 189.9 2494 1 298087 0 0.00%

29.08

2019 2 2000 314000 0:27:55 187.4 2590 1 387558 0 0.00%

 314000 0:27:53 187.6 2357 0 388284 1 0.00%

17.12

2019 2 1500 214500 0:21:56 163 490 0 24640 0 0.00%

 214500 0:21:41 164.9 584 1 25499 0 0.00%

51

Lisa 12 JMeter koormustestid peale PgBouncer rakendamist

Date User Req Time reg/s Avg Min Max Err

Err

(%)

19.12

2019 2 1500 187191 0:29:57 104.2 7118 0 300397 4255 2.27%

 189187 0:30:00 105.1 6963 0 300113 4686 2.48%

20.12

2019 2 1500 214500 0:25:58 137.7 2213 0 106639 77 0.04%

 214500 0:26:13 136.4 2255 1 108133 61 0.03%

20.12

2019 2 1500 214500 0:25:42 139.1 2298 0 99291 0 0.00%

 214500 0:26:04 137.2 2253 1 99725 0 0.00%

20.12

2019 2 1500 214500 0:23:43 150.7 1272 0 71563 143 0.07%

 214500 0:24:19 147 1323 1 68423 173 0.08%

20.12

2019 2 1500 214500 0:24:38 145.2 1493 0 216648 708 0.33%

 214500 0:25:04 142.6 1524 1 216693 716 0.33%

20.12

2019 2 1500 214500 0:23:30 152.1 1089 0 113382 672 0.31%

 214500 0:23:45 150.6 1114 1 113536 818 0.38%

02.01

2020 2 1500 214500 0:34:58 102.2 1361 1 300098 8098 3.78%

 214500 0:34:53 102.5 1184 0 300035 5653 2.64%

03.01

2020 2 1500 214500 0:28:45 124.4 1308 0 300012 6146 2.87%

 214500 0:35:47 99.9 1409 1 300066 7024 3.27%

08.01

2020 1 1500 214500 0:20:33 173.9 102 0 2206 0 0.00%

9.01

2020 2 1500 214500 0:31:15 114.4 4740 0 68762 0 0.00%

 214500 0:31:26 113.7 4699 1 67570 0 0.00%

9.01

2020 2 1500 214500 0:32:18 110.7 5473 0 66456 0 0.00%

 214500 0:32:21 110.5 5484 0 66303 0 0.00%

10.01

2020 2 2000 286000 0:43:53 108.6 10397 0 110455 0 0.00%

 286000 0:44:06 108.1 10390 0 110007 0 0.00%

14.01

2020 2 1500 147000 0:14:30 168.9 4906 0 69204 0 0.00%

 147000 0:14:33 168.4 4911 0 69159 0 0.00%

14.01

2020 2 2000 196000 0:21:56 148.9 7943 0 151862 283 0.14%

 196000 0:21:41 150.6 7949 0 151376 332 0.17%

14.01

2020 1 2000 190711 0:09:15 343.6 2129 0 47332 0 0.00%

15.01

2020 2 1500 147000 0:07:59 306.8 519 0 27422 0 0.00%

 147000 0:08:04 303.6 623 0 27725 0 0.00%

15.01

2020 2 2000 196000 0:09:50 332.2 1670 0 65200 24 0.01%

 196000 0:10:07 322.6 1619 0 65509 42 0.02%

15.01

2020 3 2000 196000 0:14:29 225.7 4652 0 154507 2014 1.03%

52

 196000 0:14:32 224.8 4683 0 148112 1986 1.01%

 196000 0:15:51 206.1 4957 1 171744 2260 1.15%

16.01

2020 2 2000 196000 0:11:02 296.2 2411 0 49227 0 0.00%

 196000 0:10:56 298.6 2452 0 48007 0 0.00%

16.01

2020 2 2000 196000 0:11:34 282.3 2851 0 55064 0 0.00%

 196000 0:11:31 283.7 2856 0 53944 0 0.00%

17.01

2020 2 2000 196000 0:09:39 338.7 1503 0 56558 0 0.00%

 196000 0:09:48 333.2 1464 0 57120 0 0.00%

21.01

2020 2 2000 196000 0:09:17 351.9 1335 0 43179 0 0.00%

 196000 0:09:21 349.5 1283 0 43137 0 0.00%

21.01

2020 2 2000 196000 0:24:47 131.8 10842 0 168639 114 0.06%

 196000 0:24:45 132 10895 0 160587 105 0.05%

21.01

2020 3 2000 196000 0:10:30 311.1 2040 0 62456 210 0.11%

 196000 0:10:37 307.6 2055 0 61330 224 0.11%

 196000 0:15:21 212.9 2982 1 130585 1994 1.02%

21.01

2020 3 1666 163268 0:09:45 278.9 1678 0 60361 47 0.03%

 163268 0:09:45 279 1610 0 60024 41 0.03%

 163268 0:15:11 179.2 2677 0 130420 1516 0.93%

21.01

2020 3 1666 163268 0:10:20 263.3 1923 0 44096 0 0.00%

 163268 0:10:21 263.1 1921 0 44647 0 0.00%

 163268 0:10:18 264.2 2112 1 44234 0 0.00%

21.01

2020 3 2000 196000 0:11:51 275.5 2847 0 68896 426 0.22%

 196000 0:11:57 273.4 2918 0 69062 446 0.23%

 196000 0:12:05 270.5 2859 0 67576 460 0.23%

21.01

2020 4 1500 147000 0:12:01 204 2919 0 76978 833 0.57%

 147000 0:11:57 205.1 2922 0 73345 811 0.55%

 147000 0:12:11 201 2941 0 93711 727 0.49%

 147000 0:11:51 206.8 2997 0 77390 781 0.53%

07.05

2020 2 2000 89803 0:02:47 537.9 756 0 132969 434 0.48%

 148553 0:03:46 656.7 306 0 3021 801 0.54%

07.05

2020 2 2000 195900 0:14:54 219 1496 0 300013 2463 1.26%

 195851 0:14:54 219.1 382 0 300042 1805 0.92%

07.05

2020 2 2000 196000 0:10:59 297.5 342 0 300018 1 0.00%

 196000 0:11:33 282.7 1501 0 300012 1495 0.76%

07.05

2020 2 2000 196000 0:09:00 363.1 1173 0 6890 0 0.00%

 196000 0:08:59 363.5 1107 0 6112 0 0.00%

17.09

2020 2 1500 103500 0:08:19 207.6 1359 1 41286 0 0.00%

 103500 0:08:20 207.2 1367 0 41007 0 0.00%

53

18.09

2020 2 2000 354000 0:22:07 266.8 1603 0 11934 0 0.00%

 354000 0:22:10 266.2 1577 0 10054 0 0.00%

54

Lisa 13 Tasemetööde käigus tekkinud koormused – loodusõpetus

Kuupäev 21.09 22.09 23.09 24.09

Maksimaalne ühenduste arv 2630.08 3109.00 3253.25 2825.00

Keskmine ühenduste arv 1476.14 1492.15 1590.97 1359.22

Maksimaalne aadresside arv 172.30 154.25 220.75 163.75

Keskmine aadressite arv 121.36 113.81 140.27 113.13

Maksimaalne eisdb CPU koormus 10.39 % 10.13 % 42.02 % 10.30 %

Keskmine eisdb CPU koormus 3.20 % 3.66 % 3.01 % 2.33 %

Maksimaalne eislogdb CPU koormus 17.68 % 10.53 % 5.57 % 11.05 %

Keskmine eislogdb CPU koormus 2.87% 2.27 % 1.77 % 1.60%

Maksimaalne rakenduste CPU koormus

Rakendus 1 8.84 % 68.45 % 9.32 % 65.16 %

Rakendus 2 11.42 % 8.51 % 60.08 % 7.55 %

Rakendus 3 9.78 % 62.78 % 9.18 % 7.69 %

Rakendus 4 7.96 % 7.82 % 8.99 % 21.12 %

Rakendus 5 8.96 % 10.44 % 8.89 % 7.19 %

Rakendus 6 7.26% 7.81 % 9.23 % 8.25 %

Keskmine rakenduste CPU koormus

Rakendus 1 4.25 % 9.56 % 3.64 % 5.63 %

Rakendus 2 3.74 % 4.11 % 5.11 % 2.89 %

Rakendus 3 3.80 % 5.29 % 3.50 % 3.02 %

Rakendus 4 3.85 % 4.34 % 3.53 % 3.11 %

Rakendus 5 4.08 % 4.44 % 3.63 % 3.14 %

Rakendus 6 3.80 % 4.12 % 3.39 % 3.00 %

Maksimaalne rakenduste RAM kasutus 21.09 – 24.09

Rakendus 1 6.0 GB

Rakendus 2 5.4 GB

Rakendus 3 6.0 GB

Rakendus 4 4.7 GB

Rakendus 5 4.4 GB

Rakendus 6 4.4 GB

Maksimaalne pgbouncer CPU koormus 13.58 %

Maksimaalne eisporxy CPU koormus 3.09 %

Maksimaalne eisproxy RAM kasutus 1.8 %

55

Lisa 14 Tasemetööde käigus tekkinud koormused – matemaatika

Kuupäev 28.09 29.09 30.09 01.10

Maksimaalne ühenduste arv 3603.53 3209.20 4118.37 3226.75

Keskmine ühenduste arv 1447.02 1300.84 1676.29 1243.80

Maksimaalne aadresside arv 171.00 153.00 214.82 153.35

Keskmine aadressite arv 119.51 113.39 122.02 92.61

Maksimaalne eisdb CPU koormus 14.35 % 10.32 % 64.48 % 99.98 %

Keskmine eisdb CPU koormus 5.38 % 2.87 % 15.17 % 4.83 %

Maksimaalne eislogdb CPU koormus 11.66 % 24.37 % 31.70 % 11.50 %

Keskmine eislogdb CPU koormus 2.32 % 3.01 % 3.89 % 1.61 %

Maksimaalne rakenduste CPU koormus

Rakendus 1 7.08 % 26.88 % 100.58 % 26.46 %

Rakendus 2 9.50 % 24.44 % 21.74 % 25.34 %

Rakendus 3 5.79 % 21.46 % 21.92 % 59.99 %

Rakendus 4 7.52 % 22.97 % 16.61 % 17.34 %

Rakendus 5 5.89 % 27.80 % 66.33 % 47.03 %

Rakendus 6 6.84 % 27.95% 80.96 % 80.13 %

Keskmine rakenduste CPU koormus

Rakendus 1 3.72 % 4.04 % 11.36 % 2.36 %

Rakendus 2 3.41 % 3.78 % 3.26 % 2.05 %

Rakendus 3 3.18 % 3.58 % 3.24 % 4.11 %

Rakendus 4 3.22 % 3.22 % 3.09 % 2.03 %

Rakendus 5 3.14 % 3.96 % 6.19 % 2.26 %

Rakendus 6 3.22 % 3.78 % 9.22 % 2.28 %

Maksimaalne rakenduste RAM

kasutus

28.09 – 01.10

Rakendus 1 6.5 GB

Rakendus 2 5.8 GB

Rakendus 3 5.0 GB

Rakendus 4 4.3 GB

Rakendus 5 5.2 GB

Rakendus 6 9.0 GB

Maksimaalne pgbouncer CPU

koormus

24.20 %

Maksimaalne eisporxy CPU koormus 3.57 %

Maksimaalne eisproxy RAM kasutus 1.8 GB

