TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Raul Ezequiel Jimenez Haro 1772331VCM

FORENSIC TOOL TO STUDY AND CARVE
VIRTUAL MACHINE HARD DISK FILES

Master’s thesis

Supervisor: Pavel Laptev

Tallinn 2019

TALLINNA TEHNIKAULIKOOL
Infotehnoloogia teaduskond

Raul Ezequiel Jimenez Haro 177233IVCM

KOHTUEKSPERTIISI TOORIIST
VIRTUAALMASINA KOVAKETTA FAILIDE
UURIMISEKS JA VALJAVOTMISEKS

Magistritoo

Juhendaja: Pavel Laptev

Tallinn 2019

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.
Author: Raul Ezequiel Jimenez Haro

13.05.2019

Abstract

Virtualization has gained rapid adoption in the last few years across all user levels, from
large organizations to end-users. Digital forensic methods to analyse the virtualization
platforms have not keep up with that implementation pace. This thesis focuses on hosted
virtual machine hard disk sparse files. The aim is to study its structure, develop a tool to
help with the understanding of how they work, and evaluate the feasibility of carving
them. The research found that it is possible to leverage the structure of the files to carve
them, obtain important metadata and extract data contained within the virtual disk. To
achieve these results a set of experiments were designed to test the tool and knowledge
about the structure of the virtual machine hard disk files. The tool helped to improve the
comprehension about the files, evaluate how they can be carved and support the analysis

of the files along with its forensic value.

This thesis is written in English and is 38 pages long, including 5 chapters, 26 figures
and 9 tables.

List of abbreviations and terms

CLI Command Line Interface

DFRWS Digital Forensics Research Workshop
FBI Federal Bureau of Investigation

GD Grain Directory

GDE Grain Directory Entry

GT Grain Table

GTE Grain Table Entry

GUI Graphical User Interface

JPEG Joint Photographic Experts Group
NIST National Institute of Standards and Technology
(0N Operating System

TTU Tallinn University of Technology
USA United States of America

VM Virtual Machine

VMDK Virtual Machine Disk

Table of contents

LISt OF FIGUIES ..eeuvieiiieiieeie ettt ettt ettt e st eeaeeseaeenbaessaeenbeessseenseeesseenne 8
LSt OF £ADIES ..ttt 9
1 INEPOAUCTION ..ttt ettt ettt e st e et esaaeeeeen 10
| LY (075 1 5 [) s AP U SUPRRSORR 10
1.2 Problem StatemeENtccuieriirieriieiieieeee ettt 11
1.3 RESEArCh QUESTIONSvvieiiieiiieiieeiie ettt ettt ettt e aeestae b e seeeeaseessaeesseennnas 11
Li4 SCOPE ettt ettt st e e b s 11
1.5 Outline of the thesiS.......ccoiiiiiieiiie e 12

2 BaCKGIOUNG.ooiiiiiiieiieieceeee ettt st et e e e sse e e baeenaeenbeeneas 13
2.1 Di@ital fOTENSICS .. eevvieiiieiieeiieiieeteeete et erire ettt e et e eeebeestaeesbeeseseensaessseenseensnas 13
2.2 VATTUALZATION ...ttt ettt ettt e st eebe e 14
2.3 FIl@ CAIVINZ .ttt ettt ettt et e et e e e eateesneeenbeesaeas 16
2.4 Related WOTKSooiiiiiiiiie s 16

I 15T o O RR 19
3.1 Virtual Machine Hard Disk (VMDK) format............ccccoeoiiiiiiniiiiieniieienieeee 19
3.1.1 DeSCIIPLOr fIlEeeiiiiiiiiieiiiieeieee s 19

3. 1.2 VIMDK 1@ttt et e 21

3.2 Carving helper tOO]ioiiiieiie et 24
3.2.1 AIZOTTRIM Lottt 24

3.3 MethOAOIOZY .. .eeuviiiiiiiieniieeee ettt 27
3.3.1 EXPeriment dESIZNcccuuieeiuieeeiieeeiieeeieeeeieeeereeesireeeseveeesareeeseseesnseesnseesnnns 28
3.3.2 Experimental CONfiUIationcccuveeriuieeeiieeniieeeieeeereeeeieeeeeveesaeeeeeaee e 28
3.3 3 TEST CASES .ttt ettt ettt ettt st s 30
3.3.4 SOftWATE tOOIS ..c.uveiieiiiieciteecee e s 32

4 Results and analySiS.......c.ceeeeeiieriieniiieiie ettt et 34
4.1 Test €ase TC — O et 34
4.2 Test CaSE TC — 02 .ot s 35
4.3 Test Case TC — 03 ..ot 42
4.4 Test Case TC — 04 ..ottt 43

5 CONCIUSIONS .o ereeeeeaaeereaararaeereraaeeenaaanas 47

RETETEICES ...ttt ettt et b et 49
Appendix 1 — VMDK carving tool source code..........ccverviieniiieriiieeeiieeeiee e 51
YN0 153316 10 K O OB S <) 010 o SR 57
Appendix 3 — TC — 02 header summary filecccoeeviieiieniiiiiieiiieeeeee e 58
Appendix 4 — TC — 03 header summary fileccceevviieiiiriiiinieiiieece e 60
Appendix 5 — TC — 04 header summary fileccceeeviieeiiiicciieee e 62

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.

List of figures

DFRWS Digital Investigation Framework.ccccoovveevieniiieiieniecieeee, 14
Hosted virtualization[6].cc.oooviiieiiiiieiieeeee e e 15
Descriptor file €Xample.ccueeeiiiieiiieeieeee e e 20
VMDK file Structure [15]...ccuieiieieeiieeieee e 21
Header structure characterization.ceeovevueerienienieenieeieneeeeee e 21
Metadata Structure.[15] ..ocouviieiieeie e e 22
Header eXample........ccoviiiiiieeiiececee et aae e 23
VMDK file carving helper tool algorithm.ccccoiiiiniininiiniinieineee, 24
Header output @Xamplec.ooovieiiiiriieeiieiiecie e 26

Second stage csv file output example.ccceeeiieiiieriieiiienie e 27
Third stage csv file output additional columns example............ccceevueeneenne 27
VMDK carving tool output for TC-01.cccoeviiriiiiniiniiiiiiniicnicneeee 34
Search results for "KDMV" from the hex editor.ccccoooeiiiininnnnnen 35

VM files on evidence SYSTEML.ceevuveeriiieeeiieeeiieeeieeeeiee e e e 35

Figure 15. Evidence drive on FTK Imager.........ccccocevieiiniiniiniiiiicieccccceee 36
Figure 16. Carving tool output for header search.ccocevieviiiiiniinniiniiieee, 37
Figure 17. Header summary output file example.cccccveeviiiieniiiiniiiinie e 37
Figure 18. Header COMPATISON.c..eoiiiiiiiiriiiiiienieeeee ettt 38
Figure 19. Boot sector from virtual disk.cccceevieniininiiiniiiiiceceee 39
Figure 20. Grain metadata eXample.........cccoooveriiiiiiinieninieieecece e 40
Figure 21. Boot sector on evidence drive image file...........cooceviiiiiiiiiiniiiiiinicceeee, 41
Figure 22. Headers comparison between evidence drive and image file. 41
Figure 23. Files found by Photorec.cocooiiiiiiiiiiieeeeee e, 42
Figure 24. Text file inside the VIVcoiiiiiiiiiiiiiiiicceeee e 44
Figure 25. File found on evidence drive..........cocooeriiriiniiieiieniceneeeeeeeseeee 45
Figure 26. File located among the unallocated space.cccceeeeuieeeciieencieeeeieeeiee e, 45

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

List of tables

Header fields description [15]. c.ccoiiiiieiiieiieiieeieeeeee e 22
Header example ValUes.cccuieiiiiiiieiiieeii ettt 23
Experiment elements SpeCifiCations.cecevveeviieeriiieeriieesiee e 29
TESE CASES. -ttt ettt ettt e ettt 30
Reference data set files.ooouiiierieriiiierieeeeeee e 30
Files sector offset location on evidence drive.ccccoeeveveeiienieneesienieneenens 36
Headers offsets found by the carving tool.cocceiiiiiiiiiiiieneeeee 37
Grain 0 OFFSELS. ..eeeuiieiieieeeee ettt ettt et e e 40
Offsets in evidence iIMage file.coevieeiieiieiiieiecieeee e 45

1 Introduction

The advancement in information technology not only has brought new opportunities for
education, entertainment, or communication to name a few, but has also enabled illicit
activities to be performed with a higher sophistication level and complexity with easily
available resources. At the same time, the investigative methods needed have struggled

to keep up with the rhythm of this evolution.

Virtualized systems are among the technologies that have seen a rapid adoption increase
in the last years, which also has enhanced its application with malicious intent. It is of
big relevance the ability to retrieve and understand data from digital sources for digital

investigations.

Therefore, digital forensics has become an important part of incident management in
organizations and a special taskforce among law enforcement. There is a major
requirement of being able to conduct a thorough investigation with the best available

methods and tools to have the right level understanding of all emerging technologies.

1.1 Motivation

First, contrasting the easiness to deploy virtualization, forensic examination of such
environments poses an additional layer of complexity for investigators, in which there

are many unknowns originated from the different platforms and types of virtualization.

Although not a new technology, virtualization has gained much traction in the last
decade. As a result, virtualization poses a new challenge for existing forensic methods

and tools.

Second, file recovery and data carving are commonly focused on media files, overall
there is a lack of specialization in carving other specific types of file. Common file
recovery tools are not able to recover complex file structures and carving tools for
specific type of files are rare. Data carving can make a crucial difference in both

incident response and digital investigations.

10

Finally, there is a need in the digital forensic area to be able to recognize artefacts from
virtual machines; furthermore, identify and recover the data from the virtual disks has

become a crucial task, and a difficult one.

From these necessities arises the desire to research solutions that contributes to the

improvement of the digital forensic practice.

1.2 Problem statement

Utilization of virtual machines has increased at a faster pace than the methods digital
investigators have at hand to analyse them. The present research will study the structure
of the Virtual Machine Disk (VMDK) files, to improve the current understanding,
evaluate the feasibility of carving and study the forensic value they can provide. A tool
will be developed to provide insight about the structure and contents of the files. First it
will be tested to verify its contribution to the study of the file structure, then will be used
against test cases designed to evaluate the feasibility of carving the files and its forensic

value.

1.3 Research questions

This research aims to answer the following questions:

= What elements are needed to carve a VMDK file?
= What metadata can be obtained from the structure of a VMDK files?
= What are the advantages of doing file carving versus file recovery of VMDK

files?

1.4 Scope

The scope of the research is focused on the VMDK files created by standard
configuration of a hosted virtual machine (VM), which creates a set of uncompressed

and unencrypted sparse files. It has three main points:

= The file format structure will be studied.

= A tool will be developed to provide a deep insight to study the files.

11

= [t will study how the structure of the files works and how they behave in certain

scenarios designed to test the feasibility of carving the VMDK files.

The developed tool is limited to find potential VMDK files and output metadata of the
files identified, give insight into them and evaluate a possible carving procedure. With
the output provided by the tool, a manual carving should be possible if the structure of

the VMDAK file is found to be fit for carving.

1.5 Outline of the thesis

Chapter 2 introduces the major concepts used for the thesis and reports a general review
of existing related literature . Chapter 3 lays the theory part of the research along with
the methodology employed. Chapter 4 discusses the results of the experiments
performed. Chapter 5 presents a summary of the thesis, concludes achieved results and

suggests future work.

12

2 Background

The purpose of this chapter is to give an overview of the three major concepts used for
the development of the research. It begins giving a brief overview of digital forensics,
followed by the definition of virtualization and file carving, ending with a short review

of related existing works.

2.1 Digital forensics

With the dawn of personal computing in the late 70’s the computers inevitably became
criminal instruments. By the end of the next decade, the first programs that caused
disruption over large networks began to appear. Moreover law enforcement identified

the trend and foresaw the problems ahead that the investigators would face[1].

Those events prompted the Federal Bureau of Investigation (FBI) in the United States to
create the Computer Analysis and Response Team (CART). The team identified several
issues during the examinations and established a set of guidelines for processing
computer evidence. This was one of the first efforts to have a group of people dedicated

to computer-related evidence examination.

In 2001, the Digital Forensic Research Workshop (DFRWS) was established with the
main goal of applying the scientific method to come up with solutions driven by the
requirements at that moment and considering long term needs, with the input from
university researchers, computer forensic examiners and analysts[2]. Further, there are
many frameworks that cover the processes for digital investigation, they all share
similar paths and have common goals. In particular, the DFRWS Digital Investigation

Framework will be used. This framework consists of 6 major steps shown in Figure 1.

The first two steps, identification and preservation consist in recognizing the evidence,
and taking the steps to preserve its state; the goal is, once the evidence has been

identified, prevent any type of modification or deletion before its acquisition. The next

13

step, collection, is where the digital evidence is acquired, it is important to distinguish

the volatility to be able to acquire it accordingly.

The examination phase applies specific tools and techniques employed to find and
extract data from the digital evidence acquired, after the extraction. After the extraction,
the analysis phase starts to study the data and if needed it is cross-examined it with other
pieces of potentially relevant data. The last step, the presentation phase is responsible of
reporting all the findings along with every step taken through all the process, the report

needs to be accurate, detailed and without bias.

Figure 1. DFRWS Digital Investigation Framework.

2.2 Virtualization

Virtualization in the information technology domain is a concept that has existed since
the 60’s, where the mainframes needed to have solutions to share the usage of computer
resources among a group of users, with the objective of increasing efficiency for both

the users and the computer resources being shared [3].

The main advantage of the model is costs savings. In the last couple of years,
virtualization has become a trend in the industry. It has turn out to be the best solution
for data centres and organizations alike to improve the use of their resources while

simplifying management and enhancing scalability.

Virtualization has transformed into a staple in modern computing, it not only has
allowed organizations and data centres to lower costs, improve management and
administration, to name a few, but thanks to its evolution, it has reached the average
user whom can use it for example to keep running legacy systems, have a secure layer

to execute untrusted software or improve debugging.

Virtualization can have different approaches when being defined, this work will use the

definition from VMware will be used:

14

“A virtual machine is a software computer that, like a physical computer, runs an
operating system and applications. The virtual machine is comprised of a set of
specification and configuration files and is backed by the physical resources of a host.
Every virtual machine has virtual devices that provide the same functionality as

physical hardware” [4].

Complementing the definition of virtualization, we need to add a component which
controls the creation and operation of the virtual machine itself, this component is called

hypervisor, or virtual machine monitor. The hypervisor can be defined as:

“a process that creates and runs virtual machines (VMs). A hypervisor allows one host
computer to support multiple guest VMs by virtually sharing its resources, like memory

and processing ”’[5].

Two types of hypervisors can be distinguished, the ones that have direct access to
hardware resources, also known as “bare-metal” or type 1 hypervisors, and the hosted
approach which run just as another computer program inside an operating system (OS),
this are called type 2 hypervisors, or “hosted”[6]. A concept visualization of hosted

virtualization is shown in Figure 2.

Application

Guest Operating System

Virtualization Layer
. /s

Application

Host Operating System

x86 Architecture

Figure 2. Hosted virtualization[6].
However, visualization can be can also be used with malicious purposes, therefore, it is
also a tool used for cybercrime, it provides a good layer of obfuscation, it can be used as
a disposable environment to perform illegal activities, it can serve as a covert storage, or
portable environment that can be easily shared, to list a few examples, and the result of
all of these is that makes it difficult for investigators to analyse and extract evidence.

This is how virtualization is of particular interest for digital forensics.

15

2.3 File carving

File carving, as defined by Garfinkel [7] “File carving reconstructs files based on their
content, rather than using metadata that points to the content”, this means that it only
looks at the raw data, based on characteristics of the file format, regardless of the
filesystem metadata that may or may not be present. It is important to stress this
difference with file recovery, because file recovery depends on file metadata. For digital

investigations, file carving is commonly applied to unallocated space.

File carving is widely used in digital forensics as it can help discover data that
previously wasn’t identified, or that when applying common data recovery techniques
wasn’t completely recovered, for example due to anti-forensic techniques applied,
intentional deletion or faulty hardware, but the data might still be in the media and could

be obtained.

2.4 Related works

To the best of my knowledge, there aren’t any works focusing on carving of virtual
machine hard disk sparse files, however there are several studies analysing
virtualization and file carving independently. Therefore, the literature relevant for this
research was reviewed from two standpoints: first, works studying virtualization with a

forensic approach; second, research done related to file carving.

On [7], Garfinkel presents detailed statistics about file system fragmentation showing
that in modern file systems fragmentation is rare, fact that is important for this research.
Additionally, this work also contributes the method of fast object validation proofing
that carving can return better results when using a multi-tier method validating or

discarding byte strings according to the file format being carved.

[8] proposes a structured analysis of a file format leading to a set of software
requirements for a file carver. This analysis considers factors such as file format,
available time, engineering capacity and data set characteristics to lead to a decision of

which file carving technique to implement.

[9] makes an analysis of the existing file carving techniques used for obtaining Joint

Photographic Experts Group (JPEG) files, a contribution of this work relevant for this

16

research is the classification of carving techniques. The study classifies different file
carving techniques in file header, header-footer, file structure and metadata carving
based. According to that classification, this research will have a hybrid approach,

applying file header and file structure carving based techniques.

[10] gives an overview of how file carving has evolved and how FAT32 and NTFS file
system work. Following, analyses the fragmentation problem and presents the wear-
levelling problem, which will become more prevalent in the future with next-generation
storage devices. Then continues with an in-depth examination of different file carving

algorithms with its benefits and problems.

Analysis of virtual machines with a forensic perspective has been explored by [11]. This
work describes the files that are created for a hosted virtual machine and establishes a
scenario to study the VM where anti-forensic techniques were used. The anti-forensic
technique analysed in the scenario is the use of snapshots, they mention the possibility
of a deleted VM. The analysis mostly focuses on the artefacts that can be extracted from
a system to identify VM activity. Nonetheless, they distinguish the need of having
advanced file carving techniques for the VMDK files.

[12] present a forensic method to acquire and analyse virtual machine hard disks. Their
main contribution is a comparison from two different states of the virtual hard disk to
find the changes in between. Their main limitation is that a live system is used and

relies on the file’s metadata to identify the differences.

[13] aims to provide a point of reference for file recovery within virtual machines. They
mainly present the difficulties found when trying to recover data from a virtual machine,
stating that “The recovery of data from a VM is a complex task and specific,
standardized, and comprehensive methods are still in the future.”, so it helps to highlight

the necessity of tools and methods to obtain data from virtual machines.

[14] presents a more comprehensive approach as it tries to find what evidence can be
recovered from a destroyed virtual machine in the designed scenario, it outlines a
method to do it, additionally it leverages information from all the virtual machine

artefacts such as log files and registry entries, not only the virtual machine hard disk.

17

[15] suggest a procedure to investigate and a method to recover a damaged virtual
machine image. Although they do cover more specific aspects of the virtual machine
hard disk, their method still relies on file metadata and does not explore the carving

possibilities.

The main gap I recognized in the literature is that there are no studies that analyse the
possibilities of carving the VM files, let alone VMDK files specifically, this is just
mentioned as a need. The works that tackle virtualization, talk about recovering
artefacts in general from VMs, and when talking specifically about the virtual hard
disks, they are focused in using the filesystem metadata if needed for recovery, and do
not specify the type of virtual hard disk, whether it is one file or divided across several

sparse files.

Most of the works about file carving focus on techniques that can be applied to the
recovery of media files, while studies on general file carving centre around analysing
different algorithms, all these works emphasize the problems inherent with file recovery
from file system metadata alone, and highlight the importance of having a correct

technique applied for each type of file.

Nevertheless, all these works highlight the importance of having an adequate knowledge
of how the virtual machine disk structure works as virtualization have increased its
usage for illicit activities meanwhile it has become harder for investigators to acquire

evidence from these files with reliable methods and tools.

18

3 Theory

This chapter will present the theory on which the practical part of this research is based,
detailing how the Virtual Machine Hard Disk (VMDK) files work, presenting at a high-
level the algorithm for the carving helper tool and the methodology followed by the

research.

3.1 Virtual Machine Hard Disk (VMDK) format

This work will investigate the files created by virtual machines (VM) under type 2
hypervisors, specifically, I will study the virtual machine hard disk (VMDK) type files,
these files have the extension “.vindk”, and hereinafter will be referred to as “VMDK

files”.

The VMDK file format is an open format developed by VMWare and used by all major
virtualization platforms, it is also used by the Open Virtualization Format (OVF) which

is an open standard for packaging and distribution of virtualization solutions.[16]

The VMDK files can have a combination of the following two major characteristics: the
virtual disk can be contained in one file, or it may be spread across two or more files;
and the disk space for the virtual disk can be allocated at time of creation or it may start
small and grow as needed. The VMDK files are also accompanied by a descriptor file,
which can be embedded within the file itself or can be saved as a separate file. The

descriptor file describes the layout of the data in the virtual disk[17].

When creating a VM these options can be defined, this research will study the virtual
disks that grow as needed with sparse files, which are the default options when creating

a VM, thus, is the most common configuration that can be found.

3.1.1 Descriptor file

The descriptor file is a flat text file formed of three main parts: header, extent
description and disk data base. An example of a descriptor file can be seen in Figure 3,

showing its three sections: (1) header, (2) extent description and (3) disk database.

19

The header gives information about the version of the format being used, the content id
(CID), and the type of the disk, which indicates how the virtual disk files will be
allocated, it can be a single growable virtual disk, growable virtual disk split in 2GB
files, pre-allocated virtual disk or pre-allocated virtual disk split in 2GB files.

In the examples shown in Figure 3, the main information in the header section is the
“twoGbMaxExtentSparse” which indicates that the virtual disk is formed by 2 or more

VMDK files and that they will be allocated as the space is needed.

Disk DescriptorFile

verszion=1
encoding="windows—-1252"

CID=6ESallde
parenctCID=ffffffff
createType="twoGbMaxExtentSparse™

Extent description

EW 8323072 SPARSE "Ubuntu &£4-bitc-s001.vmdk™

RW 8323072 5PARSE "Ubuntu &4-bit-=s002.vmdk"

EW 8323072 S5PARSE "Ubuntu &4-bit-s003.vmdk" o
BW 8323072 SPARSE "Ubuntu &4-bit—s004.vmdk"™

EW 8323072 SPARSE "Ubuntu &4-bit-s005.vmdk"™

RW 327680 5PARSE "Ubuntu 64-bit-s006.vmdk"

The Disk Data Base
#DDB

ddb. adapterType = "lsilogic™ o

ddb.geometry.cylinders = "2&610"

ddb. geometry.heads = "255"

ddb. geometry.sectors = "&3"

ddb. longContentID = "cl2ff351d7c807758d02eds4685a014e™

ddb.toolsInstallType = "4"

ddb. toolsVersion = "10336"

ddb.uuid = "60 00 C2 9f 2e ad4 21 bec-0d 27 02 ae 20 &7 &2 3c™

ddb.virtualHilVersion = "16"

Figure 3. Descriptor file example.

In the extent description section, the file or files that form the virtual disk are listed
along its access permissions, size in sectors, type and file name. The example in Figure
3 shows 6 files that can be read and written, the size of 5 files is 8323072 sectors and
one file of 327680 sectors, all of them of “SPARSE” type, and their respective file

names, which include a sequential indicator.

The disk data base section includes information about the geometry of the disk, such as

number of cylinders, heads and sectors.

The descriptor file also has the extension “.vindk”™ the same as the virtual disk, but in the
case of the files that form the virtual disk the file names has a “-sXXX” suffix, where

the “XXX” represents a 3-digit sequence number of the files to form the virtual disk.

20

3.1.2 VMDK file

The structure of the VMDK file is show in Figure 4, its main components are the

header, grain directories, grain tables, and grains.

Sparse header
Embedded descriptor
Redundant grain directory

Redundant grain table #0

Redundant grain table #n
Grain directory

Grain table #0

Grain table #n
(Padding to grain align)
Grain

Grain

Figure 4. VMDK file structure [17].
The header is 1 sector long, which is 512 bytes, the information of the header only takes
79 bytes and its zero-padded with 449 bytes. A characterization of the header can be

seen in Figure 5.

0Ox{ 00 01 02 03 04 05 06 07 08 09 A B C D E F
00 Magic number Version Flags Capacity

10 Capacity Grain size Descriptor offset

20 Descriptor offset Descriptor size GTEs per GT

30 Redundant grain directory Grain directory offset

40 QOverhead Integrity Compression

Figure 5. Header structure characterization.
A complete description of each of the fields can be seen on Table 1, the value of the

offset and size fields are in sectors.

The format defines two levels of metadata, a level 0 called Grain Directory (GD) and a
level 1 called Grain Table (GT), each entry in the GD, called Grain Directory Entry
(GDE), points to a GT. Following, each entry in the GT is called Grain Table Entry
(GTE) and points to a grain, a grain is where the data itself from the virtual disk is

allocated. A concept diagram is shown on Figure 6.

21

The file keeps two copies of the grain directories and grain tables to help protect the

data in case of file corruption.

GDE#0 | GDE#1 | GDE#2 | GDE#3 | GD:level 0
GTE#0 GTE#0 GTE#0
GTE#1 GTE#T GTE#1
GTE#2 GTE#2 GTE#2
GTE#3 GTE#3 GTE#3 GTs: level 1

Figure 6. Metadata structure.[17]

Both the GDE and GTE are offsets which point to a GT and to a grain respectively, they

are 32-bit quantities. The number of GTE in a GT is always 512, meaning that the
length of each GT is 2KB. Each grain is 128 sectors long or 64KB of data. The size of

the GD depends on the size of the extent.

Table 1. Header fields description [17].

Field

Description

Magic number.

The magic number is used to verify the validity of each sparse extent
when the extent is opened.

Version. The version number can be 1 or 2.

Flags. Contains bits of information in the current version of the sparse
format.

Capacity. The capacity of this extent in sectors, it should be a multiple of the
grain size.

Grain size. The size of a grain in sectors. It must be a power of 2 and must be
greater than 8 (4KB).

Descriptor Offset. The offset of the embedded descriptor in the extent. It is expressed in

sectors.

Descriptor Size.

Valid only if the descriptor file is embedded is non-zero.

Number of GTE’s per
GT.

The number of entries in a grain table. The value of this entry for
virtual disks is 512.

Redundant GD offset.

Points to the redundant level 0 of metadata. It is expressed in sectors.

GD offset.

Points to the level 0 of metadata. It is expressed in sectors.

22

Field

Description

Overhead.

The number of sectors occupied by the metadata.

Unclean Shutdown.

Flag for consistency check.

Integrity. Four entries are used to detect when an extent file has been corrupted
by transferring it using FTP in text mode.

Compression Designates the algorithm to compress every grain in the virtual disk.

algorithm.

For example, following the sample descriptor file shown in Figure 3, the first extent

named “Ubuntu 64-bit-s001.vmdk™ has a size of 8,323,072 sectors, dividing the size

between the grain size in sectors, we know that it can allocate a total of 65,024 grains,

furthermore, dividing the number of grains between the default number of GTEs per GT

we get that 127 GTs are needed to arrange them.

The representative 79 bytes of the header corresponding to that same file is shown in

Figure 7 highlighting the fields that are relevant for characterizing the file.

offset (k)

00000000
Q00000010
Qoooo00zo
00000030
Q0Q000040

00 01 02 03 04 05 06 07 08
48/44/4D'S€ 01 00 00 00 O3
00 00 00 00 80 0O 00 00 00
00 00 00 00 00 00 00 00 00
01 00 00 00 0O 00 00 00 -=
00 04 00 00 00 00 00 00 OO

09
00
0o
0o
01

on

0n
00
0o
0o
00

20

0B
g
Qg
oo
00

oD

oc
o0
0o
0o
00

0n

Figure 7. Header example.

oD
o0
0o
0z
00

00

0E

1E
00
0o

00

The interpretation of the highlighted values is presented in Table 2 using little endian

byte order.

Table 2. Header example values.
Field Value
Header “KDMV”
Version 01
Capacity 8,323,072 sectors
Grain size 128 sectors
Number of GTEs per GT 512
Redundant GD offset 1 sector
GD offset 510 sectors
Overhead 1,024 sectors

23

3.2 Carving helper tool

The tool developed for this research aims to aid the investigator in the understanding of
VMDK files, the tool doesn’t output a fully carved file, but provides elements to study
the files, and for a manual carving procedure. When applied to unallocated space, the
output of the tool identifies possible locations for a VMDK file and its contents; if

applied to allocated files it helps the study of the data within the virtual disk.

The command line interface (CLI) tool was developed to explore the possibilities of
VMDK file carving, the tool was build using Python programming language version

3.7.2, no external libraries were used.

3.2.1 Algorithm

The algorithm revolves around three basic functions needed to obtain the information of
a VMDK file. First, a valid header needs to be correctly identified; this is the most
important part, as the header contains the offsets to the metadata and data itself of the
virtual disk. The second and third function is to parse the GD and GTs respectively,
based on the data provided by the header. A high-level flow diagram of the overall

algorithm is shown in Figure 8.

Search for Go to byte
“KDMV” offset where
string. “KDMV” is.

Discard offset D8] val}d Nm 4 Parse header
header?

Parse GTs and Parse GD and
redundant GTs redundant GD

Grain metadata
in CSV format
output

Figure 8. VMDK file carving helper tool algorithm.

24

The developed tool has 3 stages, in each stage the basic input is the image file, which
can be from unallocated space or a whole disk image. In each stage it outputs a report
file containing information hashes of the files processed, start and end time of the

processing, summary of the results, and optional case information.

The first stage outputs a summary report containing the information of the headers of
the VMDK files identified within the image file, and a binary file containing the header
of each identified VMDK file, this binary file will serve as input for the next stages. For
the second and third stage, the output is a couple of csv files per header per stage

containing the metadata corresponding to the GDs, GTs and GTEs.

The initial step of the algorithm is to identify where a header might be within the disk,
the algorithm searches for the bytes “\x4b\x44\x4d\x56”, equal to the string “KDMV”
which are the first 4 bytes of the header of the file, this is also known as the magic
number, it is a signature that helps identifying the files. The byte offset where this string

is found is saved.

After all the disk image has been searched and a list of possible disk headers has been
created, each byte offset is explored selecting 79 bytes, which is the size of a header.
Within that structure it checks for the values corresponding to the version, grain size
and number of GTEs per GT fields of the header, those values are defined by the file
format and should always be the same, those are the conditions that help identify a valid

header.

The value of the version should be 1 or 2, the value of the grain size is 128 and the
number of GTEs per GT is 512, an additional element that helps validate a valid header

is the capacity field which must be a multiple of the grain size.

Once all the possible headers are checked, the tool produces a binary file which contains
the 79 bytes of each valid header, at the end of it, an 8-byte number containing the byte
offset of the beginning of the header and 41 zero padding is added, so each valid header
is 128 byte long in the output binary file. This is to maintain an easy way to identify and
loop through the known headers for the next stages.

This binary file will serve as input for the next two stages of the tool, it contains all the

offsets necessary to lookup the grain directories and grain tables. The second stage

25

parses the GD and redundant GD and the third stage parses the GTs and its grains. The

output is a pair of csv files per header for each stage.

To parse the GDs, the tool first takes the capacity of the disk and calculates how many
grains, GTs and GDE the disk should have, and then it moves to each GD offset and
with the previously calculated value extracts the GDEs. This process is repeated for the
redundant GD. Then it parses each GTE calculating its initial and final byte offset and

sector.

To parse the GTs, the tool moves to the offset of each GT, takes each GTE and calculate
the coverage for each grain, then outputs the values for each allocated grain found in csv

format, including header, GD, GT, and grain byte a sector offset.

In the first stage the tool receives the disk image file as input, looks for the VMDK file
headers and returns as output a binary file containing the headers found, a plain text file

containing a summary of the headers found and a report file of the stage.

An example of one 128-byte header from the output binary file is shown in Figure 9.
The red section corresponds to the 79 bytes from the identified header as it is. The
yellow section is the byte offset where the header is found within the disk image file
used as input. The blue section is a 44-zero padding, which was added to facilitate the
processing of the headers in the following stages.

Cffset(h) 00 01 0OZ2 03 O4 05 O6 OTF 08 0% OA OB OC OD OE OF
00000000 4B 44 4D 56 01 00 00 OO0 03 OO0 OO0 OO OO0 OO 7F OO EDMV............

Qoo0oo91d 00 00 00 00 80 OO0 OO0 OO0 00 OO0 00 00 00 00 00 00 ... €. . .00 uurean
QooooozZd 00 00 00 00 00 00 00 00 00 00 00 00 00 02 00 00o
Qoooo93d 01 00 00 00 OO0 00 OO0 OO0 FE O1 00 OO0 00 00 00 00 = TR
Qooooo4d 00 04 00 00 OO0 00 00 00 00 0OA 20 OD OB OO 00 22ttt ewweees aasan
00000050 30 03 3C O6/ 00 00 00 OO0 OO0 OO0 OO0 OO0 OO0 00 00 00 O.<..ccenieennnns

00000060 00 00 OO0 OO0 OO0 OO0 OO0 00 00 OO0 00 OO0 00 00 00 00cee e annrnas
QQQOQ0T0 00 00 00 OO0 00 00 00 00 00 00 00 00 00 00 00 00 ... emeennnns

Figure 9. Header output example
The second stage of the tool processes the binary file generated at the first stage, it first
uses the offset saved to look for the header. Then, for each header uses the information
contained in it to look for the GD and redundant GD within the disk image file. It
produces as output the stage report file and a pair of csv files containing the information

of each GD including the header byte offset, GD, GT and GTE byte and sector offset.

26

Each file corresponds to the GD and redundant GD. Figure 10 shows an example of the

csv file fields with the GD and GT's information.

Header at byte offset GD at byte offset GD at sector offset GDE GT at byte offset GT at sector offset

26776645632 26776646144 52298137 0 26776646656 52298138
26776045632 26776046144 52298137 1 26776648704 52298142
267760645632 26776046144 52298137 2 26776650752 52298146
26776645632 26776646144 52298137 3 26776652800 52298150
26776645632 26776046144 52298137 4 26776654348 52298154

Figure 10. Second stage csv file output example.
The third stage also receives the binary file generated at the first stage along with the
disk image file, using the same procedure as before, it looks for the grains and produces
the stage report and a pair of csv files containing the metadata for each grain. The
metadata files include the header, GD, GT and coverage, all these values are presented
in its byte and sector offset, each file corresponds to the GTs and redundant GTs. Figure

11 displays the fields with the grain information.

Grain Grain starts at byte offset Grain starts at sector offset Grain ends at byte offset Grain ends at sector offset

13 Unallocated Unallocated Unallocated Unallocated
14 Unallocated Unallocated Unallocated Unallocated
15 Unallocated Unallocated Unallocated Unallocated
16 9692229632 18930136 9692295167 18930263
17 9692295168 18930264 9692360703 18930391

Figure 11. Third stage csv file output additional columns example.
Each stage 1s executed independently, given the necessary inputs. The hash value of the
input image file is calculated at the first stage to ensure its integrity, for following stages

only the hashes of the output files are calculated.

3.3 Methodology

An experimental research will be conducted to help evaluate the feasibility of carving
VMDK files, the developed tool will be tested following digital forensic principles. The
first goal is to verify that the tool can correctly identify the VMDK files based on its
structure. The second goal is to verify that VMDK files can be located among the
unallocated space of a drive, and after the analysis of the results conclude whether the

VMDK files can be successfully carved.

In the following sections, the setup for the experiments is shown, the steps of the

experiments are explained and finally, the tools that will be used are briefly described.

27

3.3.1 Experiment design

The experimental setup will consist of two systems, designated as the analysis system
and the evidence system. A pair of external storage drives to save the image file and

process it, plus a set of software tools to perform the needed tasks.

The experiments to be conducted consist of four main steps as follows:
1. Prepare the evidence system as required for the test case.
2. Image the evidence system into a file.
3. Execute the file carving helper tool with the image file as input.
4. Analyse the results.

3.3.2 Experimental configuration

The purpose of having two systems is to emulate a real-life digital forensics laboratory
to be able to follow forensic principles, as the research does not focus on live evidence
acquisition, at least two systems are needed; one system to work as the evidence source,

and one system to function as the laboratory system.

The evidence system is where the test configurations will be created according to the
test cases and will be imaged into a disk image file to be processed. The analysis system

1s where the carving helper tool will be executed, and the output will be analysed.

Both systems have similar technical specifications, however, the analysis system has
more capabilities on processing power and memory capacity, which can help to speed

up the processing times of the evidence acquired.

The aim of the evidence system is to represent the most common type of system which
could be encountered on real life digital investigations; therefore, its specifications can
be considered as standard, including the default OS installation without any

customization.

For the research purposes, having these two systems also facilitate the workflow,

focusing the processing and analysis work on one system, and having other system

28

available to create the different scenarios without the need of having to swap different

hard disk drives.

The specifications of each of the experiment elements are showed in Table 3.

Table 3. Experiment elements specifications.

Element Specifications

Evidence system Fujitsu Lifebook S761

Processor: Intel(R)Core(TM) i5-2520M CPU @ 2.50GHz, 2501
MHz, 2 Core(s), 4 Logical Processor(s)

Installed Physical Memory (RAM): 10.0 GB

Analysis system Lenovo ThinkPad X230

Processor: Intel(R)Core(TM) i7-3520M CPU @ 2.90GHz, 2901
MHz, 2 Core(s), 4 Logical Processor(s)

Installed Physical Memory (RAM): 16.0 GB

Evidence drive Model: HGST HTS545025A7E380
Disk Size: 232.33 GB (249,464,614,912 bytes)
Volume Serial Number: 806686FC

External drive #1 Model: Seagate Expansion Desk SCSI Disk Device
Volume Name: Seagate Expansion Drive

Size: 4.55 TB (5,000,845,586,432 bytes)

Volume Serial Number: A4DOBF9A

External drive #2 Model: WD My Passport 0741 USB Device
Volume Name: My Passport

Size: 931.48 GB (1,000,169,533,440 bytes)
Volume Serial Number: 1AEA6007

The evidence drive is installed in the evidence system, it will not be extracted for the
imaging, a software write blocker will be used to maintain the integrity of the data. The
external drive #1 is where the image from the evidence system will be saved at the
moment of creation. A copy of this image will be made to the external drive #2 which
the analysis system will use for processing. Preserving the original image file in the
external drive #1 has the purpose of preserving the original data intact to adhere to

forensic principles procedure.

29

3.3.3 Test cases

To evaluate the file carving helper tool, a set of test cases was designed to be certain
that the tool performs as expected and that the output can be useful for a digital
investigation. Each test case has an expected result and a validation procedure. A

summary of the test cases can be seen in Table 4.

Table 4. Test cases.

Test case | Description Expected result

TC-01 System clean. No VMDK files should be found.

TC—-02 | System installed with one clean VM. VMDK files of the VM should be found.

TC-03 System with deleted VM. VMDK files of the VM should be found.
TC-04 | System with deleted VM and a file. Locate file using the information
provided by the tool.

In the test case TC — 01 the evidence system is a system freshly installed with Microsoft
Windows 10 OS with default installation, no additional software is installed; however, a
reference data set was added for the drive to have some content and help testing the
accuracy of the tool. The disk image generated for this test case will also serve as a

control image.

The reference data set is comprised of forensic images available by NIST to test
software applications with file carving capabilities[18], [19], these images contain
graphic, video, document, archive, and audio files. The full set of files used for this

research is shown on Table 5.

Table 5. Reference data set files.

File SHA-1

graphic-src.zip 26B6641FC41834ACFBDDI9BCSEC4A8C57033CFF71
graphic-image-files.zip D2F703CES537E0632414F907E08C65EED67A3F17F
video-src.zip A93E5ACA9CBS55BD7116921E1A2CF8E69AOF4392A
LO Documents.dd 4767425B6BF0A9D21089546FBEC938AED401B8Al
LO_Archive.dd 83D14584277DF44667A7E2242F1744A62F60B3B3
LO_Audio.dd 3BC5375227E48E489F48AFASC9D39DCBCI9DA308D
images.zip FO09E84B8F27B22BDE4D593B85A50946FE1C9603

30

The results from the TC-01 will be validated by comparing the results of a string search
on the image file, the search for “KDMV” string might return some results. The
expected result is that the carving helper tool will not find any indication of a VMDK
file.

In test case TC — 02, using the previously installed system for TC-01, VMWare Player
will be installed, this is the type 2 hypervisor. Next, a VM will be installed on it; the
goal is that the tool identifies the VMDK files created by the VM in evidence system.

The VM to be installed will use the default configuration provided by the hypervisor,
the OS to be installed is Ubuntu 18.10, the latest version, and the default virtual disk
created by it is a 20 GB disk, which is divided in 6 VMDK sparse files, these are the
files that the tool needs to identify.

The expected result is that the tool can identify all the VMDK files created by the VM.
To validate the TC-02, before the imaging, the byte offset location of the 6 VMDK files
will be logged, these offsets should match the output files of the carving helper tool.

In test case TC — 03 the VM created for TC — 02 will be deleted from the hypervisor, the
unallocated space will then be imaged, the goal is that the tool identifies the VMDK
within the unallocated space of the evidence system. To help validate this result, a data
recovery tool will be used on the unallocated space, so that a result can be compared
with the output from the carving helper tool. This will help compare how a data

recovery works versus a possible carving.

For test case TC — 04 the evidence system will be returned to a known state using the
image from TC — 01, then the same procedure for TC-02 will be followed to have a VM
installed on the system, additionally a plain text file will be saved in the VM disk, and
the file will be located to know its byte offset within the virtual disk.

The content of the plain text file is “This is my evidence file. REJH” which is just a
simple unique string that will allow me to locate the file easily with a search in a hex
editor to log the byte offset location within the virtual disk. The purpose of the file is to
be able to have a known byte offset location of a file within the virtual disk to locate it

after using the output from the carving helper tool.

31

The evidence system will be imaged, and the carving helper tool will be executed on
each sparse file of the VM prior to is deletion; following, the VM will be deleted from

the evidence system and the unallocated space imaged.

Using the file carving helper tool output, I should be able to map the location of the file
within the virtual disk to an exact grain in a VMDK file. First, the carving helper tool
will be executed on the image prior to deletion, this should confirm that the output is
helping in finding the actual file created within the virtual disk. This will help validate

the next step.

Finally, knowing that the output does help to map the location, the carving helper tool
will be executed on the unallocated space after the VM deletion and using the results I
should be able to locate the same file among the sparse files identified on the

unallocated space.

3.3.4 Software tools

To conduct the experiments adhering to a forensic procedure, software that complies
with the same principles is needed. I need software that assures the integrity of the data,
in this case, I need to make sure that the image file is the same as the evidence drive,

and through the process of analysis I need to maintain that certainty.

Paladin bootable Linux distribution will be used, this distribution includes the tools with
the needed characteristics. It is a distribution that provides a forensic environment to
perform several tasks, it has passed tests by the National Institute of Standards and
Technology (NIST) which provide us with a certain level of confidence that the

environment will perform as expected.

It will be used for imaging, including hashing and logging of the process. For imaging,
the distribution provides a software-write blocker, it achieves this by disabling auto
mounting the connected drives, and mounting in read-only mode the drive to image, this
helps assuring that the evidence drive will not be modified and will be imaged

untampered.

The distribution integrates hashing during the process of imaging, it calculates the hash
of the drive as it is being imaged, at the end hashes the generated image. Then, the

hashes can be compared to verify that the output file is the same as the data on the

32

evidence drive. Every command executed for the process of imaging is logged along of

the hashing process.

The type 2 hypervisor to be used is VMWare Player version 15, from the developers of
the VMDK file format. According to each test case specification, a virtual machine will

be created using default configuration.

At the moment, there isn’t any tool that specializes in carving VMDK files, most of the
carving tools available focus on media files, nevertheless there are tools that while not
specialized in VMDK files, they are able to attempt it. To aid in the validation of the
results, PhotoRec will be used, which is a data recovery tool that has passed forensic file
carving tests from NIST [20], and is capable of carving 480 file extensions based on

their signature [21], without the need of further customization of the tool.

Additionally, the research “The analysis of file carving process using Photorec and
Foremost”[22] have proofed that PhotoRec overall is a better tool when compared with
Foremost. More specific, PhotoRec is faster and can return a larger number of valid

files.

Other tools that will be used are a hex editor, HXD editor will be used in Windows
environment in the analysis system, and WxHexeditor will be used in Linux
environment both in the analysis system and in the VM created in the evidence system.
The hex editor helps to visualize the raw data from files and drives, inside I can locate

the position within the file or drive using the byte or sector offsets.

Access Data FTK imager will be used in the analysis system to load the images, this
tool enables to explore the image or file loaded in a hexadecimal view, it also interprets

the filesystem which allows to navigate within the file tree structure.

This chapter presented the workflow and configuration for the experiments. It also
detailed the test cases to be executed and the tools to be used. The following chapter

will present the results and discuss the findings.

33

4 Results and analysis

This chapter will present a detailed analysis of the results obtained for each test case,

along with additional tasks performed to extend the study of the VMDK files.

4.1 Test case TC — 01

This test case was designed to verify that the tool could successfully identify where a
header is and distinguish it from any other “KDMV” string which in any system could

be found several times.

The output of the tool (Figure 12) showed that there were no headers found, which
matches the expected result. The full output report can be seen on Appendix 2 — TC —

01 report.

Avmdk_carving.py - A\TC
item information

8 J
Evidence number: 001

Unique description: TC-01
Examiner: Raul Jimenez
Notes: Test case 01, clean system

Image file:

File size:

Hash SHA-1:
Find 0 headers

Figure 12. VMDK carving tool output for TC-01.
To validate the result the image file of the evidence system was loaded into a hex editor
and a search for “KDMV” was performed, the search returned 37 results, this means
that inside the disk image the string “KDMV” is found at 37 locations. The results from

the hex editor are shown on Figure 13.

This result confirms that the tool is performing as expected, it is successfully
distinguishing a common existing string from a string belonging to a VMDK header. It
also gives an initial certainty that the tool will be able to identify valid VMDK files

starting from its headers.

34

The next test case will help to verify that the tool is able to recognize valid headers in
which not only the magic number is searched, but additional parameters are validated to

confirm that the section starting corresponds to a possible VMDK file.

TC-01.000 + |[Search Resuits. =
offset 80 01 02 ©3 04 65 86 67 68 89 OA @B OC BD OF 6F 10 11 12 13 14 15 16 17 18 19 1A 0123456789ABCDEFB123456789A | 1. Offset 37221818924 [
037221818706 |C1 83 07 3F 81 BB 4A DA EF AE 83 4F 2F BE 3B 5A AB 3D FB 40 D3 88 F6 65 1C 71 16 lé'?ﬂﬂj[ﬂ«EU/ i h=lelerelqm 2. Offset 51316670410
937221818733 (87 15 2B C3 CA 71 3C CO 47 F5 A4 C9 64 AB D8 38 06 56 6B 5B F3 71 58 B3 75 EB C9 |c5+Hig<lg nrd&j&lvk[<qx\uﬁr
637221818760 6D DB 4E 8E FF 84 8F CE OF CF OC OF FF A4 BE 1E EA EB 9F CC 8D 3E 86 86 D7 52 0B mlNA aAkfieos i a06fFi>aafRe O e It 23650
037221818787 (77 EE 60 43 24 45 37 EF DD B1 D6 6C A4 A9 05 D7 EE 59 CC 2F D8 BD 89 30 E1 56 F2 wemC$E7n| Byli-shev /4l aogu= 4. Offset 65980506611
037221818814 62 F3 1E 6E 25 AE C9 OF B9 8E D8 4B EC C7 1E D5 5D 2D 6D 87 A6 5D 68 70 21 2C 58 @sants«riAtkefarl-mcelhp!, 1| |l offset 85362509626
037221818841(02 SE 72 79 2F F4 B3 E1 BE 6D 70 EQ 56 D8 BF 1E 14 02 32 DB 86 AG 1F 7A BA D1 00 @"ry/[{RAnpav atezfladvz
937221818868 [2C F5 AG DB F7 Al 6B F6 A 3B E1 B6 Al D9 1B 3E FO (8 C6 4D 69 B6 58 E1 15 BE 64 aie; +4; B 11 ess L \[B§]d 6. Offset 93428788335
037221818895 4D 53 FC AB 2F F9 F7 35 26 32 AC 67 3B FD AD OA 22 1F DO 76 19 31 50 99 44 04 4A HS"h/e=562%g; * (B"vhvi1Y0Ds] 7. Offset 93694087133
037221818922 4A AA [B] 44 4D 56 B3 95 B3 32 12 03 E7 ©A DA 9E AB 5D 8B AA 75 64 C2 1F 0C AB A2 |J-KDMV|0|2:¥tB b1 i-udrveh0 = || g offset 101822263632
837221818949 1A F6 16 3B 16 15 59 0B 63 OC D3 39 A7 10 2F 36 37 73 38 28 3A E7 37 D6 D =5YIcE ooy /6758 (1 17pFiM
037221818976 A8 BF 13 30 EC FD B6 AC 7D OF 92 F6 F9 DC B7 AC 8A D7 ED F6 €9 17 3E BS k L2 5. Offset 132345940120
837221819003 54 52 (8 BD 2C 53 53 AD 29 03 EA D4 C5 BS 6F DF 3E 74 9E 15 8D 16 AC BC 4 10. Offset 13938405455
037221819830 |94 54 D2 42 5B 38 89 75 9A DB C7 9A E6 95 1C 64 AD C3 E3 51 95 50 4C 8E B9 3D 8C nTIE[EEquﬂ»uunL nosPLA]=1 11. OFfset 140552875030
037221819057 (84 25 15 F4 D6 44 FC 21 C1 6A 13 79 DA E3 FD 05 A2 F1 AC EA E4 25 71 D2 8C 64 6F ;351D 11lly n=asakomiarido
937221819084 |C6 E9 FO BB D1 4A 6D F7 43 AB 86 DB 02 AD F3 86 F6 7C 98 65 2D A4 CO DB 6D 26 A3 +Im=Ch 3| |ye- iﬂn&u 12. Offset 140575569932
037221819111 13 CB ED AS 17 5F FC D7 B3 67 09 EC 57 4D 63 7F 41 BE 49 45 08 38 01 C5 BD 73 13 tyoNs_"}|gomhiicard IFB;2H st 13. Offset 145573064718
037221819138 |51 AC 26 7E 60 8B 3B Al 42 65 92 28 16 F5 21 07 A5 73 58 07 99 @6 67 BA BC 54 02 (Q4&~ i;iBef(m)!-HsX-0agEiTe T .
037221819165 |FC B5 10 A1 CC 30 41 22 97 D9 40 BA 72 E@ 4C 02 43 F8 32 38 @4 1D 13 85 31 28 CO i»lkaA”uJ@ raLec28e-ia1(L
937221819192 A5 D4 97 83 E3 D3 6E 8C 61 24 D3 C5 10 FE 66 1E 5D 86 F1 5F 35 2F 93 48 D2 19 4F |ituanlniasli-mfalds 5/6Hyi0 15. Offset 151669797962
937221819219 [2F EA OE 6B B2 Do 9C 2F EQ 43 5F 68 OF 89 00 4A FL 10 8C CO EE 66 ED 6B 30 55 DE |/okfiLe/ac_hfé Jx-ilefgkou] 16. Offset 153928117106
037221819246 (69 06 FB 07 61 A7 D7 ES 8F F9 DC O D7 FS 2E 84 19 58 02 5F A3 01 80 BC FO 95 BC is/-achul-gt] 51 [0 ung o 17. Offset 162913347946
837221819273 |AA AF 88 67 79 F3 A2 AE 9E 6@ 64 78 ES 6A 03 6F 11 B6 AC BA 2A BA 49 58
037221819300 |FF DB 64 62 64 6F 4F CF BA 38 CD 31 56 D9 EB 81 DB E6 99 8C 26 D2 38 5C MR TARPTE L)
937221819327 3¢ OE A7 07 @7 87 86 OF 46 6C 7E 5B 30 AA BA 95 11 C9 25 AA F5 BC 11 57 19. Offset 167891661745
037221819354 1B AF DF 7A DD 46 9F D9 C2 71 E9 AB D6 AC 58 Bl 76 38 C7 E@ 76 14 1B DE N T T
037221819381|13 FD 98 E7 OF 23 EB C7 3D 29 89 5D A9 88 B3 BF 0D 37 C6 65 C4 06 62 6B 1
8372218194688 B4 34 AB 79 DB D6 BE 25 6A O1 54 B2 A8 2E OE 99 24 66 7B 92 08 18 SE 88 21. Offset 175753408899
837221819435 |45 0B A9 4C C7 DC 86 12 72 A8 B 09 15 BA AB 15 CA F3 Al 4A AS 6B 21 95 22. OFfset 176633422888
837221819462 D6 CO D2 AB 60 90 1A 82 45 EB A 87 FA 7D 36 F5 8D 61 4D 20 30 3D A5 8D 23. Offset 197710684233
037221819489 |6E 5B 86 20 99 8F EL D9 C5 26 F5 12 C6 47 11 1F DF 36 61 F2 F8 E8 51 56
937221819516 (93 2F D4 72 OC 6B F6 84 A2 OA EA 56 C4 9A 5A DA 6@ 24 13 79 57 CD ES 8D FO 3F OA /Ler acgav-Uzr] 24. Offset 199011373063
037221819543 @8 7F DI A4 BD @1 3F D6 58 68 66 B8 BD 52 39 75 EA 54 FO F4 EO D3 E8 83 F6 99 15 Bo! rth1ﬂR9unT-falw 05 25. Offset 199742974665
037221819570 96 BB FO BE 84 48 79 6A B2 A8 45 A4 4D 66 5B CD CO F2 B8 C1 48 33 FE 5C 43 42 3B [y _aHngLEn@f 5 AT TG
837221819597 BD 3F 1D AO 108 2F 88 98 49 6B 58 1F 83 9A 54 6A 60 DF BE 58 3A BD 5F FB AF A@ 4E 1 7.d DyTk[valTj ®x:! e
937221819624 E1 C3 AD F8 35 5C 2A Al 60 13 1E 25 32 GC 14 4C B4 09 19 97 A5 BB BB 7B 7B 75 1E [B}j°5*1 Ma%299L]c1iyy{{ua 27. Offset 219542425757
837221819651 |8B 8D BD BC 79 2C BE 33 E3 92 DB 1D 21 1E C1 FQ 9D DA BA 65 D6 93 13 5E £7 26 97 (i1 iy, A3nafl-1ale¥ |4 pontan
837221819678 [3F OC BD 64 OF 02 4E 6C 72 87 61 CF 6E 74 C9 E6 5C 68 68 33 A4 BF 91 DF 33 AD 6D [79)dfeNLrcatntpu\hh3i=3im | Clear

Cursor Offset: 37221818924 Cursor Value: 75 Selected Block: N/A Block Size: N/A

Figure 13. Search results for "KDMV" from the hex editor.

4.2 Test case TC — 02

For TC-02 the installation of the VM on the evidence system resulted in 6 VMDK files,
these files are accompanied by the descriptor file which is not embedded and describe
these 6 files. As seen on Figure 14 where: (1) is the descriptor file, its contents, (2) is
the description of each sparse disk that build the whole virtual disk, including the
capacity, from the 6 files, 5 files are 8,323,072 sectors long and 1 file 327,680 sectors

long; (3) the files described are shown in the file tree.

MNVRAM File o

VMware virtual disk file
VMSD File

4 Disk DescriptorFile

version=1

encoding="windows-1252"
CID=a832350b

parentCID=ffffffff
createType="twoGbMaxExtentcSparse”

Name Type

\J Ubuntu 64-bit.nvram
& Ubuntu 64-bit

[Ubuntu 64-bitwmsd
[T Ubuntu 64-bit

| Ubuntu 64-bitamf

VMware virtual machine confi
VMXF File

4 Extent description

& ; RW 8323072 SPARSE "Ubuntu 64-bit-s001.vmdk"
? Ubuntu 64-bit-s001 VMware virtual disk file RW 8323072 SEARSE 64-bit-s002. X
= Ubuntu 64-bit-s002 VMware virtual disk file RH 8323072 SBARSE 64-bit-=5003.vmdk
& Ubuntu 64-bit-s003 VMuware virtual disk file RW £§323072 SPARSE 64-bit-s004. vmdk
& ; RW 8323072 SPARSE "Ubuntu 64-bit-s005.vmdk"
= Ubuntu 64-bit-s004 VMware virtual disk file RW 327680 SPARSE "Ubuntu 64-bit_s006. -

& Ubuntu 64-bit-s005
& Ubuntu 64-bit-s006

VMware virtual disk file
Vhware virtual disk file

The Disk Data Base

#DDB

ddb.adapterType "lsilogic™

ddb.geometry.cylinders "Zg10™

ddb.geometry.heads nass"

ddb.geometry.sectors = "63"

ddb.longContentID = "0436d71304677£72224bfbcaad32950b"
ddb.toolsInstallType ngm

ddb.toolsVersion "10336"

ddb.uuid "g0 00 CZ S8 B89 &3 20 f£5-7a 31 &3 ac &b b0 4f 31"
ddb.virtualHWVersion "ig"

Figure 14. VM files on evidence system.

35

Using FTK imager it is possible to locate each file to know its position in the disk, this
will be compared with the output of the tool. The evidence drive is loaded on FTK
imager, navigating in the file tree to the location of the VM files, and selecting each file
will show at the bottom status bar the location of the file, to compare with the carving

tool.

The analysis on FTK imager is shown in Figure 15, (1) show the evidence drive loaded;
(2) shows the file located; (3) shows the positions of that file, I will be logging the

physical sector offset for each file.

Evidence Tree File List
-6 \\PHYSICALDRIVE2 Name Size Type
1wl Basic data partition (1) [450MB] &
EFl system partition (2) [100MB] ? Ubuntu 84-bit-s001vmdk 3,116,086 Regular File
Microsoft reserved partition (3) [16MB] & Ubuntu 64-bit-s002 vmdk 1,413,760 Regular File
Basic data partition {4) [237508MB] % Ubuntu 64-bit-s003 vmdk o 522,944 Regular File
-T2 NONAME [NTFS] &, Ubuntu 64-bit-s004.vmdk 890,816 Regular File
23 [orphan]
&0 foct] 00000000 [4B 44 4D 56 01 00 00 00-03 00 00 00 00 00 7F 0O |KDMV
8 SBadCius 00000010 (00 00 00 00 80 00 00 00-00 00 00 00 00 00 00 00| -« rrerenreene-
5 sBaend 00000020 (00 00 00 00 00 00 00 00-00 0O 00 00 00 02 00 00
00000030 (01 00 00 00 00 00 00 00-FE 0L 00 00 00 00 00 00
10 SRecycle.Bn 00000040 (00 04 00 00 00 00 00 00-00 OA 20 OD OA 00 00 00
~I§ $5ecure 00000050 |00 00 00 00 00 00 00 00-00 00 00 0O 00 00 00 00
~l8 $lpCase 00000060 (00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00| -« rrnrenreenee-
12 intel 00000070 (00 00 00 00 00 00 00 00-00 0O 00 00 00 00 00 00
A2 OneDriveTemp 00000080 (00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00| - ronrenreesse-
A2 Perflogs 00000050 (00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00| -« rrvrevreesee-
0P Branram Elae 0000000 (00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
Evidence Tree 000000b0 (00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00| -« rrnrenreene-
000000c0 (00 00 00 00 00 00 00 00-00 0O 00 00 00 00 00 00
Hex Value Interpreter 00000040 (00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00| - rrnvenreene-
00000020 (00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00| -« rrnrenreese-
Type Sze Value 000000£0 |00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00| - --e-exvmenc---
signed integer 18 00000100 (00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00| -« rrerenreesee-
wcigned rteger 14 00000110 (00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
ALETMETE) & 00000120 (00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00000130 (00 00 00 00 00 00 00 00-00 0O 00 00 00 00 00 00
FILETIME flacal] & 00000140 (00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
DOS date 2 00000150 (00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
D0 time 2 00000160 (00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
time_t (UTC) 4 00000170 (00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00| - rrnrenreene-
tirne_t (lacal] 1 00000180 (00 00 00 00 00 00 00 00-00 0O 00 00 00 00 00 00
00000150 (00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00| -« ronvenreeseo-
00000120 (00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00| -« rrerenreenee-
000001b0 (00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
000001cd (00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00| - rrnvenreenee-
00000140 (00 00 00 00 00 00 00 00-00 0O 00 00 00 00 00 00
00000120 (00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00| <« - ronvenreeseo-
Byte order. (®) Little endian () Big endian 000001£0 |00 00 00 OO0 00 00 00 00-00 OO 00 00 00 00 ggo
Hex Value Interpreter tursur pos = 0; dus = 9193316; log sec = 73546528; phy sec = 74707744

The sector offsets for each file is shown on Table 6. These offsets will be used to

validate the output from the carving tool.

Figure 15. Evidence drive on FTK Imager.

Table 6. Files sector offset location on evidence drive.

File

Sector offset

Ubuntu 64-bit-s001.vmdk

74,707,744

Ubuntu 64-bit-s002.vmdk

79,612,224

Ubuntu 64-bit-s003.vmdk

82,276,632

Ubuntu 64-bit-s004.vimdk

85,954,896

Ubuntu 64-bit-s005.vmdk

83,674,296

Ubuntu 64-bit-s006.vmdk

6,191,608

36

The tool output shows that 6 headers were found, and two files were created, the
summary file of the headers and the binary file containing the headers information for
the next stage, this is shown on Figure 16.

Image file: TC-82.0880

File size: 258,859,358,0816 bytes

Hash SHA-1: 8397b44948b87ebcdcf5f8a7aabedf3ad8dae91?2

Find © headers

Output files:

TCB2_headers.txt with hash SHA-1 7de@7cbc981647292d6522e631b898ace98e3384
TCB2_headers.bin with hash SHA-1 197faf@8e2d7d5ed7ccacalddf391729a811168b

Figure 16. Carving tool output for header search.
The header summary file (TCO02 headers.txt) gives the byte and sector offset,
additionally it outputs the main fields from each found header, on Figure 17 the

information related to the first header found is displayed.

Header is at byte offset: 3178183296
Header is at sector offset: 6191688
Magic number: 1447984331

Version: 1

Capacity: 327680

Grain size: 128

Number of GTEs per GT: 512

Redundant grain directory offset: 1
Grain directory offset: 22

Overhead: 128

Figure 17. Header summary output file example.
Using the information from the output file TC02 headers.txt generated by the carving
tool, I can extract the offsets of the headers found and compare them to the ones
obtained manually from the evidence drive. Table 7 shows the information extracted

from the headers summary file generated by the carving tool.

Table 7. Headers offsets found by the carving tool.

Header Capacity(sectors) Sector offset Byte offset
Header 1 327,680 6,191,608 3,170,103,296
Header 2 8,323,072 74,707,744 38,250,364,928
Header 3 8,323,072 79,612,224 40,761,458,688
Header 4 8,323,072 82,276,632 42,125,635,584
Header 5 8,323,072 83,674,296 42,841,239,552
Header 6 8,323,072 85,954,896 44,008,906,752

37

The full header summary output file for TC-02 can be seen on Appendix 3 — TC — 02

header summary file.

The comparison of the 6 headers found by the tool matches the offsets of the 6 files
generated by the VM, this shows that the tool is correctly identifying 6 existing VMDK

files, and its known location within the disk.

At this point I cannot identify which found header corresponds to which file, and the
outputs shows that files are not allocated in order, meaning that to order the files I

cannot consider the offset at which they are located.

Continuing with the first header as example, with the information provided at this point
by the tool I can only identify the smallest file, which is 327,680 sectors long, I can
validate this information by looking into the evidence drive and look for the smallest
sparse file created by the VM. On Figure 18 a comparison between the data shown by
FTK imager (1) and with the output file TC02 headers.bin (2) is shown, the header data

matches.

File List

Name Size Type

% Ubuntu 64-bit-s003.vmdk 521,934 Regular File

% Ubuntu 64-bit-s004.vmdk 890,816 Regular File

% Ubuntu 64-bit-s005.vmdk 647,360 Regular File

% Ubuntu &4-bit-s006.vmdk 64 Regular File o

0000 4B 44 4D 56 01 00 00 00-03 OO0 00 OO0 00 00 05
0010 |00 00 OO0 00 50 00 00 00-00 OO0 00 OO0 00 00 00
0020 |00 00 OO0 00 00 00 00 00-00 OO0 00 00 00 02 00
0030 |01 00 00 OO0 00 00 OO0 00-16 00 OO0 00 00 00 00
0040 |50 00 00 00 00 00 OO0 00-00 ORA 20 OD OR 00 00

[TC02_headers.bin 9
Offset (n) 00 O1W®Z 03 04 05 06 07 08 09 OA OB OC OD OE OF

00000000 4B 44 4D 56 01 00 00 00 03 00 OO 00 OO 00 05 00 EDMV............
OOOOb 00 00 00 00 50 00 00 00 00 00 0O Q0 Q0 00 00 00€...........

0ooo 00 00 00 00 00 00 00 00 00 00 00 00 Q0 02 00 00
0oooo 01 00 00 00 00 00 00 00 16 00 00 00 Q0 00 00 00
00000040 80 00 00 00 00 00 OO0 QOO0 00 OA 20 OD OA 00 00 00 €.........
00000050 FO F3 BC 00 00 00 OO0 00 00 0O OO0 00 Q0 Q0 00 00 BdM...eeeesasans
00000060 ©O0 0O 00 00 00 00 OO0 OO0 00 00 00 00 00 00 00 00 ..icvevravannanns
Q0000070 00 00 00 OO0 00 OO 00 OO0 OO0 OO0 OO0 00 00 00 00 00 ... eiivennennns

Figure 18. Header comparison.
With this successful verification, I can validate that the carving tool is identifying and

saving the valid headers information for further processing.

So far, I have proofed that the tool is correctly identifying where a valid header is,
discerning it from strings that could’ve been considered as valid, also, the headers found
as valid correspond to an actual valid file and the information being generated by the

tool matches the files created by the VM.

38

At this point, the main identified challenge is distinguishing the different files, the tool
is correctly identifying where there is a header, thus marking where there is a VMDK
file, but using only the information obtained there is no way to distinguish the order of
the sparse files, meaning that the files potentially can be carved but cannot be arranged

without additional input.

However, analysing the information further, there is a way in which at least the first and
last sparse files can be identified, the last disk is the sparse file with the least capacity,

and the first sparse file should have the boot sector in it.

The VM at the boot process looks for the boot sector on the first sparse file, in this case
Ubuntu 64-bit-s001.vimdk. In this disk the grain 0 should correspond to the first 512
bytes on the virtual disk.

This analysis can be performed using the output from third stage which shows the
location of the grains and comparing it to the output from the actual boot sector from the
virtual disk on the VM. The search can be done by looking for the grain 0 on all GDEs
0, which means to search the first grain of the first grain table on each identified file,

and one of these offsets should point to where the boot sector of the virtual disk is.

First, I extract the boot sector from the virtual disk in the VM to compare it after. Figure
19 shows the hexadecimal dump for the first 512 bytes of the disk.

user@ubuntu:~$ sudo hexdump -
[sudo] password for user:
eb 63 90 16 8e do©
fb be @@ 7c bf ee |
00 be be 07 38 04 |
f3 eb 16 b4 02 be |
4c 082 cd 13 ea 60 |
00 00 00 00 00 00 |
00 00 60 00 ff fa |
74 02 b2 80 ea 79 |
00 20 fb a@ 64 7c |
f6 07 83 74 06 be |
bb aa 55 cd 13 5a |
el 01 74 32 31 co ao ..D.@.D..D.
c7 04 10 00 66 8b 1le 66 66 e A-Fol
60 7c 66 89 5c Oc . |
05 bb @0 70 eb 76 |
83 do @@ be 93 7d e |
40 66 89 44 04 of |
89 44 @8 of b6 c2 |
66 09 c@ 75 4e 66 |
d1 31 d2 66 f7 74 |
30 cO cl e8 02 08 |
c3 31 db b8 01 82 |
01 8e db 31 f6 bf |
|

26 5a 7c be 8e 7d e e e e 8 Thn%aoo
7d e8 2e 00 cd 18 e e 6 GRUB .Ge|
6f 6d @0 48 61 72 6 6 6 65 61 m.Hard Disk.Rea|
64 00 20 45 72 72 6 ssoo
cd 10 ac 3c @0 75
21 00 83 fe ff ff
00 00 00 00 00 00

00 00 60 00 00 0O

Figure 19. Boot sector from virtual disk.

39

The boot sector from the virtual disk corresponding to the first sector, is the same data I

should find on a grain 0 within the files located by the carving tool.

The next step is to find the grain 0 of all the files found by the tool, to do this, I will use
the files generated in the third stage of the tool, which parses the GTEs and gives me the

location of each grain.

The carving helper tool outputs a csv file for each GD, therefore there are 2 csv files per
header, one for the redundant grain directory and one for the grain directory. The

information I’1l be looking is highlighted in Figure 20.

GT at sector offset Grain Grain starts at byte offset Grain starts at sector offset Grain ends at byte offset Grain ends at sector offset

6191610 0 Unallocated Unallocated Unallocated Unallocated
6191610 1 Unallocated Unallocated Unallocated Unallocated
6191610 2 Unallocated Unallocated Unallocated Unallocated
6191610 3 Unallocated Unallocated Unallocated Unallocated
6191610 4 Unallocated Unallocated Unallocated Unallocated

Figure 20. Grain metadata example.
Extracting all the offsets for grain O from the output files, Table 8 is created, as shown,
there are only two possibilities, as the other ones are unallocated, which means no data

is stored on those grains.

Table 8. Grain 0 offsets.

Header Byte offset of grain 0 beginning
Header #1 Unallocated

Header #2 38,250,889,216

Header #3 41,465,184,256

Header #4 Unallocated

Header #5 Unallocated

Header #6 Unallocated

Looking into the possible options, the boot sector is found on the header #2, show in
Figure 21. The sector found with the information given by the carving helper tool
matches the boot sector within the VM, the last step is to verify that this sector is found

on the first sparse file Ubuntu 64-bit-s001.vimdk.

40

The verification can be seen on Figure 21, where (1) is the output sector on the

evidence drive, and (2) is the sector on the image file, and both matches the previously

sector extracted from the virtual disk within the virtual machine.

File List

Name

£2 Ubuntu 64-bit-sD01.vmdk
& Ubuntu 64-bit-sD02.vmdk
& Ubuntu 64-bit-s003.vmdk
& Ubuntu 64-bit-s004.vmdic

Size
3,114,048
1,413,760
521,984
290,816

Type
Regular File

Regular File

Regular File

Regular File

[Tc-02.000 ‘IE"

00080000
00080010
00080020
00080030
00080040
00080050
0gos00e0
00080070
00080080
00080090
000800a0
000800b0
000800c0
00080040
000800e0
000800£0
00080100
00080110
00080120
00080130
00080140
00080150
00080160
00080170
00080180
00080180
000801al
000801b0
000801cO
000801d0
000801e0
000801£0

EB
FB
oo
F3
4c
oo
oo
T4
oo
Fé
BB
El
c1
€0
as
83
40
8%
66
D1
30
C3
01
26
D
6F
€4
cD
21
oo
oo
oo

€3
BE
BE
EB
[o
oo
oo
0z
20
07
AR
01
04
ic
BB
Do
(13
44
09
31
<o
31
8E
S
E8
€D
oo
10
oo
oo
oo
oo

a0
oo
BE
le
cD
oo
oo
B2
FB
03
55
T4
10
(17
L)
oo
89
oz
co
D2
cl
DB
DB
7c
2E
oo
20
AC
83
oo
oo
oo

10
1c
a7
B4
13
oo
0o
80
o
T4
cD
32
oo
B89
70
BE
44
aF
75
(13
EB
B8
31
BE
oo
48
45
3C
FE
0o
0o
oo

BE
BF
38
0z
ER
0o
FF
ER
64
06
13
31
66
5C
EB
493
04
Be
4E
F7
0z
01
Fé
BE
foir]
61
72
a0
FF
0o
0o
0o

Do
oo
04
BO
a0
oo
FA
79
ic
BE
S
co
8B
oc
76
D
oF
c2
66
T4
08
02
BF
)
18
72
72
5
FF
oo
oo
oo

BC
06
75
a1
c
aa
S0
ac
3ac
52
89
1E
c7
B4
ES
B&
co
1
04
Cl
cD
aa
EB
EB
64
€F
F4
aa
a0
a0
aa

00-BO
Bg-00
0B-83
BB-00
00-00
00-00
90-F&
00-00
FF-T74
TD-E8
72-3D
44-04
5C-7C
44-08
05-CD
82-00
D1-Cl1
EB-02
5C-7C
3B-44
88-D0
13-72
80-8E
03-BE
FE-47
20-44
72-0D
C3-ES
08-00
00-00
00-00
00-00

B8
02
cé
ic
EB
oo
c2
31
02
17
28
40
66
oo
13
66
E2
[
66
08
S
1E
cé
SD
52
69
0
oc
oo
oo
oo
oo

oo
F3
10
B2
FE
oo
g0

=@

=) measg
ERrR=Rr R R

0z
8%
31
)
8C
FC
)
55
73
oo
5
oo
oo
oo
oo

0o
24
81
80
ag
80
T4
BE
c2

BE
ERL
FE
BR
ag
o1
0s
D8
52
s
AR
FF
o8
42
SR
Cé
EB
(13
66
FE
BB
&0
s
34
20
oo
o1
ag
TF
0o
0o
oo

D8
21
FE
74
s}
oo
Fé
BE
BB
ic
1%
8e
66
1]

 m oo
Eom oo

F7
Cl
0oQ
1E
1F
0oQ
oo
52
0oQ
g
02
0oQ
0oQ
oo

BE
06
07
01
a0
oo
c2
Do
17
B4
37 83
44 02
8B 1E

(Cursor pos = 524288; dus = 9193444; log sec = 73547552; phy sec = 74708768

»*T1 -ZRr= 40207 -

&-t21A.D-@-D¥-D-

[2EE SRVE R I8

“1£-\-¢D- p'Bi r
gv -1

SZI%-}8 % 184 He
1&. -1-2pGRUB -Ge
om-Hard Disk-Rea

Offset (d)
038250889200
038250889216
038250889232
038250889248
038250889264
038250889280
038250889296
038250889312
038250889328
038250889344
038250889360
038250889376
038250889392
038250889408
038250889424
038250889440
038250889456
038250889472
038250889488
038250889504
038250889520
038250889536
038250889552
038250889568
038250889584
038250889600
038250889616
038250889632
038250889648
038250889664
038250889680
038250889696
038250889712

00
00
Es
FB
00
F3
4c
a0
00
74
00
Fé
BB
El
c7
&0
05
83
40
89
66
D1
30
c3
o1
26
)
6F
64
cp
21
a0
00
00

0o
Q0
a0
BE
16
CcD
[s1]
a0
B2
FB
03
55
T4
10
L1
[s1]
[s1]
89
o8
ca
D2
[ea
DB
DB
7c
2E
a0
20
AC
a3
[s1]
00
00

oo
10
1<
o7
B4
13
oo
a0
80
RO
T4
CcD
32
o0
89
70
BE
44
oF
75
66
Es
B8
31
BE
oo
48
45
3c
FE
oo
o0
o0

€6
5C
EB
a3
04
Be

F7
o0z
o1
Fe

co
&l
T2
oo
FF
oo
oo
oo

0s
0o
Do
a0
04
BO
[s1]
[s1]
Fn
79
Tc
BE
5B
co
8B
oc
76
7D
oF
cz
€6
74
as
0z
BF
7D
13
72
72
75
FF
[s1]
00
00

1
0o
BC
ae
75
o1
7c
[s1]
S0
Tc
3C
a3
52
89
1E
c7
B4
ES
Bé
co
a1l
04
[ea
cD
00
EB
EB
&4
&F
F4
[s1]
[s1]
00
00

o7
oo
oo
B9
0B
BB
oo
oo
an
oo
FF
7D
T2
44
5C
44
o8
82
D1
EB
5C
3B
&8
13
B0
03
FE
20
T2
C3
o8
oo
oo
oo

oo
BO
o
83
oo
00
00
Fe
oo
74
E3
3D
04
Tc
0é
CcD
00
Ccl
0z
7c
44
DO
72
BE
BE
47
44
oD
ES
00
00
oo
oo

09
0o
B3
az
ce
Tc
EB
[s1]
cz
31
0z
17
81
40
L1
0o
13
€6
E2
L1
€6
03
sn
1E
ce
<D
52
&9
on
oc
[s1]
[s1]
00
00

Figure 21. Boot sector on evidence drive image file.

oo
oo
F3
10
B2
FE
oo
B0
co
BB
o1
FB
BB
89
70
73
oF
oz
89
31
7D
&8
B8C
FC
7D
55
73
oo
75
oo
oo
oo
oo

00
00
A4
Bl
80
00
80
T4

cz
BE
55
44
5C
B4
oD
Bé
88
04
D2
37
Ce
c3
F3
E3
42
€B
BB
F2
Fo
00
oo
oo

0o
8E
EA
FE
En
[s1]
o1
as
D8
52
as
AR
FF
o8
42
5B
cé
E8
L1
€6
FE
BB
&0
AS
34
20
a0
o1
0o
TF
[s1]
00
00

oo
D8
21

T4
oo
oo
Fe

BB
7c
75
89
€6
CcoD
84
88
BB
A1
F7

oo
52
oo
oo
0z
oo
oo
oo

&.t214%D. Q" Dy%D.
C...Ec N ERN £
*1£%\.¢D. .p°Bi.x
».pév’.T.5.2,0.
FDUNCE, L ELQET AV
@Ef%D..9RAS."&~48
%D..9AAS. £%. £ 7|

. ¢ .EIEUO¥.ay
&Z|%E}E. %N, 184 %0
}&..1.2pGRUB .Ge
om.Hard Disk.Rea
d. Exror...s..".

By looking at the summary of the headers, of the six headers identified, five of them

have the same size and one is of lower capacity, this matches with the information on

the descriptor file, the header with the least capacity should correspond to the file

Ubuntu 64-bit-s006.vmdk, in this case, header #1 shown by the summary report.

The comparison between the headers of the files from the evidence drive and with the

image file using the offsets found is shown in Figure 22.

File List
Mame Size Type
% Ubuntu 64-bit-s003.vmdk 521,984 Regular File
% Ubuntu 64-bit-s004.vmdk 290,816 Regular File
& Ubuntu 64-bit-s005.vmdk 647,360 Regular File o
& Ubuntu 64-bit-s006.vmdk 64 Regular File
0000 |4B 44 4D 56 01 00 00 00-03 OO0 0O 0O 00 OO O5 OO0 |BEDMV------------
0010 |00 00 00 00 80 00 00 00-00 OO0 00 00 00 00 00 Q0| ----rrvemmeeern
0020 (00 00 OO0 00 OO0 Q0 00 00-00 OO0 Q0 QO 00 02 00 Q0| ---------vv-rnn-
0030 |01 00 00 00 OO0 00 00 00-16 OO0 00 00 00 00 00 Q0| -------vmvvennn-
0040 |80 00 00 00 OO0 00 00 00-00 OR 20 OD OR OO0 OO0 QO ------vvmv oo
8] TC-02.000
Cffset (d) 00 01 02 03 04 05 06 07 08 08 10 11 12 13 14 15
003170103264 00 00 00 QO 00 00 Q0 GO 00 0O 00 00 00 00 00 Q0
Q03170103280 00 00 00 QO 00 Q0 Q0 CO 00 QO 00 Q0 QO 0O 00 QO
003170103296 hB 44 4D 56 01 00 QO 00 O3 00 00 00 QO QO 05 00
003170103312 00 00 OO0 OO 80 00 00 OO 0O OO0 00 00 0O OO 00 00
003170103328 00 00 00 OO 00 00 Q0 OO 00 00 00 00 00 02 00 00
003170103344 01 00 00 OO 00 00 Q0 OO0 16 OO0 00 OO0 QO OO 00 00
003170103360 80 00 00 0O 00 00 Q0 OO 00 OA 20 OD OA 0O 00 00

Figure 22. Headers comparison between evidence drive and image file.

41

This analysis can help narrowing the search for the correct arrangement of the files, but
with external information this can be completed. In this analysis I am just considering
the output of the carving tool, however if the investigator also has additional
information, such as the descriptor file, or filesystem metadata, then the order has more

possibilities of being found.

In the next test cases I will evaluate if the tool can locate the VMDK files among the

unallocated space and what information could be useful for a forensic investigation.

4.3 Test case TC — 03

For the TC-03 the VM created for the previous case was deleted directly from the
hypervisor, which causes the files from the VM to be deleted without passing by the

recycling bin.

The carving tool returned 5 found headers on the unallocated space, which without
looking further, is one file less than it should have recognized. The full header summary

from the carving tool can be seen on Appendix 4 — TC — 03 header summary file.

The file recovery tool used was Photorec, and it returned 4 found files (Figure 23), the

headers from these files match with the files found by the carving tool

=fileobject>
<filename>f73546528.vimdk</filenames>
<file=size>2511093760</filesize>
<byte_runs>
é <byte_run offset="'0" img_offset='38250364928"' len='2511093760'/>
</byte_runs>

</fileobject>

<fileobject>
<filename>f78451008. vindk</filename>
<filesize>1364176896</filesizex
<byte_runs>
E <byte_run offset="0" img offset="40761458688" len="1364176896" />
</byte_runs:>

</fileobject>

=fileobject>
<filename>f81115416.vmdk</filenams>
<filesize>T715603968</filesizex
<byte_runs>
; <byte_run offset='0" img_offset='42125635584' len='715603968"'/>
</byte_runs>

</fileobject>

<fileobject>
<filename>fB2513080. vindk</filenames>
<filesize>1167667200</filesizex
<byte_runs>
; <byte_run offset="0" img offset='42841239552" len="1167667200" />
</byte_runs:>

</fileobject>

Figure 23. Files found by Photorec.

42

In a common file deletion, where the file goes to the recycle bin, according to [10] the
cluster links are preserved and the cluster where the file was found is just marked as

available, this facilitates the recovery if needed.

The file that was not identified by the carving helper tool was the smallest sparse file, it
is uncertain how the deletion of the files is being done by the hypervisor, one possibility
could be that it attempts to delete the header, which is why this file was not found, while
some data related to it might still be present. However, if this would be the case, neither

file would likely to be found.

Another possibility is that the geometry of the disk is having some effect and somehow
the header could still be present within the allocated space. Although further testing is
needed to study how the deletion from the hypervisor is working, the files identified by
the carving helper tool hold most of the VM information, which for the purposes of an

investigation could be sufficient enough.

On the other hand, in the files recovered by Photorec, it recovered a file larger than the
size of the virtual disk, which is incorrect, it is identifying a file of 96 GB, while the

whole virtual disk is 20 GB, and the maximum size for each sparse file is 4 GB.

Analysing the results from the file recovery tool it seems as it correctly identifies the
header of the files, to recover the files relies on file system data, such as cluster size, in
this case it is recovering more data than it should as it is not reading the metadata of the

VMDK file.

Judging by the results, filesystem-based recovery can be less accurate than a manual
carving attempt using the helper tool, as it only considers the structure of the file and
moves within those limitations and it can provide a more exact result, additionally the

carving tool identified one additional file to the recovery tool.

The next test case will try to evaluate how useful is the information provided by the

carving tool to find data within the identified files in the unallocated space.

4.4 Test case TC — 04

For TC-04 I am trying to verify if a known location within the virtual disk can be

located within the unallocated space using the output generated by the tool.

43

Within the VM the plain text file was created to be easily identified in a search with a
hex editor, the file is located at the bye offset 6,754,312,200 in the virtual disk (Figure
24). The goal is to map this location to a grain and check if that grain is recoverable

from the unallocated space.

06754312082 47 4E 4F 4D 45 2D 53 75 6E 64 72 79 00 ©F 00 61 73 0@ 00 60 00 00 00 00 B0 00 00 @@ 00 6@ GNOME-Sundry = as
06754312112 00 00 00 €0 00 00 00 OO OO €0 OO 0P 00 @0 0P @0 OO0 0P OO B0 OO 00 OO 0@ 0O @O 60 00 B0 0O

06754312142 00 60 00 B0 60 00 00 6O GO G0 B0 GO 00 B0 60 00 6O GO 00 8O OO 00 PO OO 00 A0 @0 0O B0 68

06754312172 00 00 08 60 B0 B0 00 00 GO B0 B0 A0 00 GO 60 O 00 A0 AE 00 4 68 69 73 20 69 73 20 BO] 79 his is
06754312202 20 65 76 69 64 65 6E 63 65 20 66 69 6C 65 2E OA 52 45 4A 48 OA 00 00 08 00 00 00 60 90 00 evidence file.EREJHE
06754312232 00 60 00 00 00 00 00 6O 0O G0 OO GO OO0 B0 00 OO0 6O GO 0O B0 0O 00 OO 0O 00 0O 6O 00 60 60

06754312262 00 00 00 B0 €0 00 00 PP 0O 0 PO 0P 00 B0 0P OO0 PO 0P OO B0 0P 00 PO OO 00 @O 60 PO B0 6

Figure 24. Text file inside the VM.
To conduct the analysis, I need to state some facts about the geometry of the sparse
files. Each sparse file has a maximum size of 8,323,072 sectors, which are organized in
127 GDEs which in turn are 127 GTs. Each GT contains 512 grains and each grain is

128 sectors long. Each grain is 65,536 bytes long and consequently each GT is
33,554,432 bytes long.

To obtain the exact location within the image the following equations are needed:

= Equation (1) is and integer division between the known location (X) and the GT
coverage, in this case the known location is the offset of the text file. This result is

the GT to look for.

6,754,312,200 // 33,554,432 =201 (1)
= Equation (2) is the modulo operation between the known location (X) and the
coverage of each GT. Equation (3) is an integer division between the previous
result and the coverage of each grain. This result is the grain to look for.
6,754,312,200 mod 33,554,432 = 9871368 (2)
9,871,368 // 65,536 = 150 3)
= Equation (4) is the modulo operation between the known location (X) and the grain
coverage to know the exact position in the grain. This is the offset within the grain.
6,754,312,200 mod 65,536 = 40,968 4)

According to these results, the file should be at offset 40,968 in the grain 150 on GT
201. As previously indicated, each file has a maximum of 127 GTs, so an extra modulo

operation is needed to obtain that the GT to look for, to which the result is 74 indicating

the GDE to look for.

44

Executing the carving tool on the evidence drive before the files are deleted helps me

confirm that the values found are correct to locate the file, as show in Figure 25.

GDE

74
Name
& Ubuntu 64-bit-s001.vmdk
<& Ubuntu 64-bit-sD02.vmdk
& Ubuntu 64-bit-sD03.vmdk
& Ubuntu 64-bit-s004.vmdk

x| GT at byte offset

152576
Size
3,144,192
947,968
963,840
478,656

~|GT at sector offset

Type
Regular File
Regular File
Regular File
Regular File

~|Grain
298
Date Modified
09/04/2019 0.
09/04/2019 04:..
09/04/2019 04:...
09/04/2019 0.

_1| Grain starts at byte offset
150 966590464

Ei

399d9£30
399d9£40
399d9£50
399d9£60
399d9£70
399d9£80
3949d9£90
3949d9fal
394d9fb0
3949d%fco
3949d9£d0
3949d9fed
398d9ff0
399dadoo
399dadlo
399dad20
399dad30
399dal40
399dals0
399dalen
399dal70
399dals0
399da090
399dalal
399da0b0
399da0c0 | O
399da0d0 | 0
399da0e0 | OC
399da0£0 | C
399daloo |00
3949dallo0 |00
3949dal20 |00

22 00
74 6F
0F 0
78
6F
1E

i}

00 02
oF 24
00 73
75
72
63
4F
oo
oo
oo
oo
oo
0o
20
66
0o
oo
oo
0o
0o
0o
0o
0o
0o
0o

6C
00
2D 47

€
00

61
a0
a0
a0
a0
00
(1
€3
oo
oo
oo
0o
0o
0o
0o
0o
0o
oo

73
oo
oo
oo
oo
oo
€9
€5
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

00
00
a0
a0

00 ¢
00
oo
oo

Cursor pos = 966631432

00
00
&F
73
73
61
4D
L]

00 00-0%
00 00-05
75 72-€3
00 04-0:
2F 00-06
74 65-67
45 2D-53
00 00-00
00 00-00
00 00-00
00 00-00
00 00-00
00 00-00
73 20-€D
€C 65-2E
00 00-00
00 00-00
00 00-00
00 00-00
00 00-00
00 00-00
00 00-00
00 00-00
00 00-00
00 00-00

o0
€9
€3
o

oo
oo
oo
oo
o0

00
00
L]
L]

00
00
oo
oo

00-00
00-00
00-00

00
00
€5
00
00
6F
75
L]
L]
L]
L]
L]
00 00
7% 20
oA 52
o0 0o
o0 00
o0 00
00 0o
00 0o
00 0o
00 0o
00 0o
00 0o
oo

i}
00
73
61
00
72
6E
oo
oo
oo
oo
oo

00

00
69
64
0o
0o
0o
0o
0o
0o
€5
45
0o
0o
0o
0o
0o
0o
0o
0o
0o
0o

00-00 00 0OC

00
o0
o0

oo
0o
0o

0o
00
00

&4

0 00

&5
00

73 EB| ¥ desk

sources
xkbus---a(ss)f
olders/ -« -=

00| -+ - -categories
OF | X-GNOME-Sundry
00| -ag-----nnnn-

00| «eeenn---
L

29
00

73
00
73
74
L]
L]
L]
L]
L]
o0
€9
48
o
o
o
oo
oo
oo
oo
oo
oo
o0

00
oo
oo
oo
oo
oo
oo
oo
€4
0A 00
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

This is my evide
nee file. BEJH--

00
o0
o0

oo
0o
0o

Figure 25. File found on evidence drive.

The next step is to investigate the output files from the carving tool executed on the
unallocated space of TC-04, in which although it didn’t identify the 6 files, the data

might be within the 5 found files. The compiled offsets are shown in Table 9.

Table 9. Offsets in evidence image file.

Header

Start offset for grain 150 in GT 74

Header #1

9,734,828,032

Header #2

10,913,030,144

Header #3

12,841,140,224

Header #4

13,428,867,072

Header #5

18,461,372,416

Testing all the possible values, the file is found on the space related to header #3, as

shown on Figure 26.

& UnallocatedD

Cffset (d) 00 01 02 03 04 05 06 07 08 0% 10 11 12 13 14 15
012841181168 00 00 00O 00 OO0 00 OO 00 OO OO0 00 OO 00 00 00 00 PR
012841181184 54 68 €9 73 20 69 73 20 FD 79 20 65 76 €69 64 65 This is ﬁy evide
012841181200 6E 63 65 20 66 69 6C 65 ZE 0OA 52 45 44 48 0ORA 00 nce file..REJH..

Figure 26. File located among the unallocated space.

45

This confirms that data can be found within the VM files from unallocated space,
although not all files are identified, still valid data can be extracted. Additionally, it
validates the output from the tool can be used to have a deep insight about the VMDK
files, not only for carving purposes on unallocated space, but to analyse allocated
VMDK files. Moreover, it shows that the data generated by the tool can be used to map

known locations inside the virtual disk and an image file with the VMDK sparse files.

For data within unallocated space it can help to perform a manual carving if enough
data can be found, or it can uncover previously unknow metadata about the files, which
in a digital investigation every bit of data obtained can be helpful. It can point to where
is more likely to found data belonging to the disk, by providing start and end offsets,
using this information an investigator could potentially do a manual carving of the

VMDK sparse files or at least identify data found within.

46

5 Conclusions

Digital forensics has a big challenge keeping up with emerging and evolving
technologies, virtualization is one of these technologies that needs a new set of tools and
methods to analyse them. File carving is a technique to extract files from raw data based
on its structure; it is commonly used in media files. However, its application to other

type of files can result in valuable evidence being discovered.

This thesis aimed to study the structure of virtual machine disk (VMDK) files, to
improve the understanding about them, develop a tool to aid in the analysis, evaluate the

feasibility of a carving operation and assist in such procedure.

The research proofed that the structure of VMDK files can be used to carve them, it has
a two-layer structure. To locate these two layers, the header of the file is the basic piece
of data that needs to be obtained to be able to perform the carving. The header provides
the necessary information to locate the first layer of the file that contains the metadata

needed for the second layer which contains the actual data of the virtual disk

The tool developed for this research aims to aid the investigator in carving VMDK files,
the tool doesn’t output a fully carved file, but with the information provided a manual
carving can be done, additionally the output of the tool provides additional insight into
the structure of the file, it can be applied to both allocated files or to find data in
unallocated space. The main identified limitation is that although it can identify the
different sparse files, it cannot order them, and this may become a major challenge

when multiple VMs exist in a source.

The tool facilitates the handling of the different offsets needed to analyse data within the
VMDK files. In a normal operation, the investigator would need to be constantly
converting and adding the offsets to move within the file, the tool gives sector and byte
offsets for each GD, GT and grain found. The tool can also help to map a known

location within the virtual disk to a location inside the sparse VMDK files.

47

The first contribution of this research is that it expands the current knowledge about the
files that comprise a virtual disk and proofs that their structure can be leveraged to carve
them. The virtual machine hard disk (VMDK) files present a challenge in which they do
not have a flat structure that can be identified by a header and a footer, it is comprised
by two dependent layers in its structure. The carving of VMDK files needs to be a two-
layer carving; first it needs to recover the metadata part of the file, the GDs and GTs,
with this information it then can recover the second layer, the grains; which are the data

part of the file and can only be located with the help of the metadata information.

The second contribution is a tool that aids the study of the VMDK files. Its application
can be foreseen in two scenarios, it can be applied to existing VMDK files to help with
its analysis, or it can be used to look for traces of VMDK files in unallocated space and,

if found, use the output to do a manual carving operation.

Future work concerns a deeper development of the tool, where it can output fully carved
files based on the information previously obtained. Further exploration is needed to
overcome the limitation of how to order the identified sparse files. Moreover, a tool
which leverages both the file system metadata and the file structure could represent a

bigger improvement for current investigations methods.

Additionally, research on how wvirtual disks from bare-metal virtualization are
implemented using the VMDK file format as starting point is needed to complement the

current knowledge about virtualization platforms.

48

References

(4]

[3]

[6]
[7]

[9]

[10]
[11]
[12]

[13]

[16]

[17]
[18]

[19]

[20]

M. G. Noblett, “Computer Analysis and Response Team (CART): The Microcomputer
as Evidence,” Crime Lab. Dig., vol. 19, no. 1, p. 6, 1992.

DFRWS, “A Road Map for Digital Forensic Research,” Proc. 2001 Digit. Forensics Res.
Work. (, pp. 1-42, 2001.

Oracle, “1.1. Introduction to Virtualization,” Oracle VM User’s Guide for Release 3.1.1,
2013. [Online]. Available: https://docs.oracle.com/cd/E27300 01/E27309/html/vmusg-
virtualization.html.

VMware, “What Is a Virtual Machine?,” ESXi and vCenter Server 5 Documentation,
2016. [Online]. Available: https://pubs.vmware.com/vsphere-
50/topic/com.vmware.vsphere.vm_admin.doc_50/GUID-CEFF6D89-8C19-4143-8C26-
4B6D6734D2CB.html.

VMware, “Hypervisor,” VMware Glossary. [Online]. Available:
https://www.vmware.com/topics/glossary/content/hypervisor.

VMware, “Virtualization Overview- white Paper.” pp. 1-11, 2006.

S. L. Garfinkel, “Carving contiguous and fragmented files with fast object validation,”
Digit. Investig., vol. 4, no. SUPPL., pp. 2—-12, 2007.

L. Aronson and J. Van Den Bos, “Towards an engineering approach to file carver
construction,” Proc. - Int. Comput. Softw. Appl. Conf., pp. 368-373, 2011.

E. Alshammary and A. Hadi, “Reviewing and evaluating existing file carving techniques
for JPEG files,” Proc. - 2016 Cybersecurity Cyberforensics Conf. CCC 2016, pp. 55-59,
2016.

A. Pal and N. Memon, “The Evolution of File Carving,” no. March, pp. 59-71, 2009.

H. Riaz and M. A. Tabhir, “Analysis of VMware virtual machine in forensics and anti-
forensics paradigm,” 6¢h Int. Symp. Digit. Forensic Secur. ISDFS 2018 - Proceeding,
vol. 2018-Janua, no. Isdfs, pp. 1-6, 2018.

M. Hirwani, Y. Pan, B. Stackpole, and D. Johnson, “Forensic Acquisition and Analysis
of VMware Virtual Hard Disks,” no. July, pp. 255-259, 2012.

N. J. Healey, O. Angelopoulou, and D. Evans, “A discussion on the recovery of data
from a virtual machine,” Proc. - 4th Int. Conf. Emerg. Intell. Data Web Technol. EIDWT
2013, pp. 603—606, 2013.

Y. Prayudi, “Virtual Machine Forensic Analysis And Recovery Method For Recovery
And Analysis Digital Evidence,” 2018.

S. Lim, B. Yoo, J. Park, K. Byun, and S. Lee, “A research on the investigation method of
digital forensics for a VMware Workstation’s virtual machine,” Math. Comput. Model.,
2012.

DMTF, “Open Virtualization Format White Paper,” DMTF Virtualization Manag.
Initiat., pp. 1-39, 2009.

VMware, “Virtual Disk Format 5 . 0-VMware Technical Note,” pp. 1-14, 2011.

NIST, “Forensic Images for File Carving.” [Online]. Available:
https://www.cfreds.nist.gov/FileCarving/index.html.

NIST, “Forensic Images Used for NIST/CFTT File Carving Test Reports.” [Online].
Available: https://www.cfreds.nist.gov/filecarvingtestreports.html.

Office of Law Enforcement Standards of the National Institute of Standards and
Technology, “Test Results for Graphic File Carving Tool: PhotoRec v7.0- WIP,” 2014.

49

CGSEcurity, “PhotoRec - Known file formats,” 2019. [Online]. Available:
https://www.cgsecurity.org/wiki/PhotoRec#Known_file formats.

Nurhayati and N. Fikri, “The analysis of file carving process using PhotoRec and
Foremost,” Proc. 2017 4th Int. Conf- Comput. Appl. Inf. Process. Technol. CAIPT 2017,

vol. 2018-Janua, pp. 1-6, 2018.

50

Appendix 1 — VMDK carving tool source code

"t Imports™t

import argparse

import csv

import hashlib

import io

import struct

import time

from pathlib import Path

SECTOR_SIZE = 512

BLOCK_SIZE = io.DEFAULT_BUFFER_SIZE
HEADER_BIN_SIZE = 128

GRAIN_TABLE_SIZE = 4 = SECTOR_SIZE
GRAIN_SECTORS = 128

GRAIN_COVERAGE = GRAIN_SECTORS * SECTOR_SIZE

def arguments():

"""Return the definition of the arguments for the argument parser”""

parser = argparse.ArgumentParser(description="VDMK file carving helper')

parser.add_argument('file', type=str, help='Name of the disk image file to process')

options_group = parser.add_mutually exclusive group()

options_group.add_argument(’'-H', '--header’, help="Look for possible headers of VMDK files®

, action="store_true")

options_group.add_argument('-D', '--directory", type=str, help='lLook for possible grain °
‘directory data from an input
‘file containing headers’
' information’,

metavar="input_file"')
options_group.add_argument(’'-T', '--table', type=str, help='Look for possible grain table’
, metavar='input file')
parser.add_argument('-o', '--output', type=str, required=True,
help="Base name for the output file', metavar='basename’)
args = parser.parse_args()
return args

def arguments_validation(args):
"tt"Werifies that arguments have been entered in the command line
if args.header is False and args.directory is None and args.table is None:
print(’'Please specify an option to process the file or use -h to see the help\n®)

def file_initialization(args_file):
"""Initializes file wvalues™""

file_size = Path(args_file).stat().st_size
file = open(args_file, 'rb")

file.seek(@)

return file, file size

def search_headers(image file, file size):

"""Search for KDMV string in the image file, outputs offsets of possible headers™""
read_block = image_file.read(BLOCK_SIZE)
file_hash = hashlib.shal()
blocks = file_size // BLOCK_SIZE
offset = @
position = @
possible headers_offsets = []
if blocks ¥ BLOCK_SIZE != @:

blocks += blocks + +1
print(*Searching...\n")

51

for block in range(blocks):
file hash.update(read_block)
find_offset = -1
while find_offset == -
find_offset = read_block.find(b'\x4b\x44\x4d\x56", offset, len(read_block))
if find_offset != -1:
possible_headers_offsets.append(position + find_offset)
offset = find_offset p 4
find_offset = -1
else:
read_block = image_file.read(BLOCK_SIZE)
position += BLOCK_SIZE
offset = position % BLOCK_SIZE
find_offset = @
return possible headers_offsets, file_hash.hexdigest()

def create_descriptor_file(header_descriptor_offset, header_descriptor_size, image_file, offset):
"""Create descriptor file if found embedded"™"
if header_descriptor_offset != 8:
descriptor = image file.read(header descriptor_size*512).strip(b'\x8@")
try:
descriptor_file = open(descriptor_" + str(offset) + ".txt"', 'wb’)
except OSError as file_error:
print(file_error)
else:
descriptor_file.write(descriptor)
descriptor_file.close()
else:
pass

def possible headers_parsing(possible_headers_offsets, image file, output_file):
"""Parses the possible headers, and outputs the headers which met the conditions
to be considered walid headers™"”
headers = []
try:
headers_output_file = open(output_file + '_headers.txt', ‘'w')
headers_bin_file = open(output_file + '_headers.bin’, 'wb')
except OSError as error:
print(error)
else:
for offset in possible_headers_offsets:
if offset ¥ SECTOR_SIZE != @:
pass
else:
image_file.seek(offset)
header = image_file.read(79)
header_struct = struct.unpack('<3I14Q13Q?4cH", header)
if (8 < header_struct[1l] < 3) and (header_struct[4] == GRAIN_SECTORS) \
and (header_struct[7] == 512) and (header_struct[3] % GRAIN_SECTORS == 8):
headers.append(header_struct)
headers_output_file.write('Header is at byte offset:\t" + str(offset)
+ "\n' + "Header is at sector offset:\t' +
(str{offset//512)) +
‘\n' + header_output_formatting(header_struct))
header_offset = header + int(offset).to bytes(8, byteorder='little’)
headers_output_file.flush()
headers_bin_file.write(header_offset +
struct.pack('x" *
(HEADER_BIN_SIZE - len(header_offset))))
headers_bin_file.flush()
if header_struct[5] != @:
create_descriptor_file(header_ struct[5], header_ struct[6], image file
, offset)
alse:
pass
headers_output_file.close()
headers_bin_file.close()
headers_report = "\nFind {8} headers’.format{len(headers))
if headers:
headers_report += "\nOutput files:\nm\t{@} with hash SHA-1 {1}\n\t{2} with " \
“hash "\
"SHA-1 {3}".format(headers_output_file.name,
hash_files(output _file + '_headers.txt")
, headers_bin_file.name,
hash_files(output_file + '_headers.bin'))

52

def

def

def

def

else:
Path({output_file+' headers.txt').unlink()
Path({output_file + '_headers.bin’).unlink()

return headers_report

header_output_formatting(header_struct):
"""Format the headers for presenting in the output file™™"

header_output = 'Magic number:\t{@}\nVersion:\t{1}\nCapacity:\t{2}\nGrain size:\t{3}" \
"\nMumber of GTEs per GT:\t{4}\nRedundant grain directory offset:%t{5}" \

"\nGrain directory offset:\t{6}\nOverhead: \t{7}\n\n"\

.format(header_struct[@], header_struct[1], header_struct[3], header_struct[4],
header_struct[7], header_struct[8], header_struct[9], header_ struct[16])

return header_output

hash_files(file_name):
"""File hashing function receives file as an input returns the hash™""
try:
file = open(file_name, "rb")
except 05Error as file _error:
print(file_error)
else:
file_hash = hashlib.shal()
file size = Path(file_name).stat().st_size
blocks = file_size // BLOCK_SIZE
if blocks < BLOCK_SIZE:
blocks = 1
elif blocks ¥ BLOCK_SIZE != @:
blocks = blocks + 1
file.seek(8)
for block in range(blocks):
search = file.read(BLOCK_SIZE)
file _hash.update(search)

return file hash.hexdigest()

headers_file_read(headers_input_file):
""""Read binary input file and returns all the headers information™""
try:
headers_file = open(headers_input_file, ‘rb")
headers = []
except OSError as error:
print(error)
else:
for index, header in enumerate(struct.iter_unpack(<3I4QI3Q?4cHQ41x",
headers_file.read(
Path(headers_input_file)
.stat().st_size))):
headers.append(header)
headers_file.close()
return headers
gd_files generation(header_input file, output_name, image file):
""""Generate the files with the grain directory information™""
try:

headers_bin_file = open(header_input_file, "rb")

except 05Error as error:
print(error)
else:
headers_bin_file.seek(8)
headers = headers_file read(header_input file)
file_hash = []
gd_report = "\nOutput files:"
for header in headers:
gd_total_entries = ((header[3] // GRAIN_SECTORS) // 512)
print(\nHeader at:\t{®} with redundant grain directory at\t{l1} and® \
* grain directory at\t{2}".format(header[17],

header[17] + header[8] * SECTOR_SIZE,
header[17] + header[9] *

SECTOR_SIZE))

53

file_hash.append(gd_parsing(image_file, header[17], header[8], header[3],
gd_total entries, output_name))
file_hash.append(gd_parsing(image_file, header[17], header[9], header[3],
gd_total_entries, output_name))
for file in file_hash:
gd_report += '\n{@}\twith hash SHA-1:\t{1}".format(file[8], file[1])
headers_bin_file.close()
return gd_report

def gd_parsing(image_file, header, gd_offset, disk_size, gd_total_entries, output_name):
"""Parses the grain directory™""
try:
gd_csv_file = open(output_name + '_GD_" + str{header * SECTOR_SIZE) + '_' +
str(gd_offset * SECTOR_SIZE) + ".csv', 'w', newline="'")
file_hash = [gd_csv_file.name, MNone]
except OSError as error:
print(error)
else:
csv_file writer = csv.writer(gd_csv_file, delimiter=",")
csv_file writer.writerow(['Header at byte offset", 'GD at byte offset’, 'GD at sector *
‘offset’, 'GDE', 'GT at byte offset’, 'GT at sector offset'])
image file.seek(header + (gd_offset * SECTOR_SIZE))
for index, gde in enumerate(struct.iter_unpack('<I",
image_file.read(gd_total_entries * 4))):
if @ < gde[@] < disk_size:
csv_file writer.writerow([header, header + (gd_offset * SECTOR_SIZE),
(header + (gd_offset * SECTOR SIZE)) // SECTOR_SIZE,
index, header + (gde[®] * SECTOR_SIZE),
(header + (gde[®] * SECTOR_SIZE)) // SECTOR_SIZE])
else:
csv_file writer.writerow([header, header + (gd_offset * SECTOR_SIZE),
(header + (gd_offset * SECTOR SIZE)) // SECTOR_SIZE,
index, 'Unallocated', 'Unallocated'])
gd_csv_file.close()
file_hash[1] = hash_files(file_hash[@])
return file_hash

def gt_files_generation(header_input_file, image_file, output_name):
""""Generates the files with the grain table information™""
try:
headers_bin_file = open(header_input_file, 'rb")

except 05Error as error:
print(error)
else:
headers_bin_file.seek(8)
headers = headers_file read(header_input_file)
headers_gd = [[header[17], header[8] * SECTOR_SIZE, header[9] * SECTOR_SIZE, header[3]]
for header in headers]

file_hash = []

gt_report = "\nOutput Files:'

for gd in headers_gd:
file_hash.append(gt_parsing(image_file, gd[®], gd[1], gd[3], output_name))
file hash.append(gt_parsing(image file, gd[@], gd[2], gd[3], output_name))

for file in file_hash:
gt_report += '\n{@}\twith hash SHA-1:\t{1}".format(file[8], file[1])
headers_bin_file.close()

return gt_report

def gt_parsing(image_file, header, gd_offset, disk_size, output_name):
""""Parses Grain table""”
try:
gt_csv_file = open(output_name + '_GT_' + str(header * SECTOR_SIZE) + '_' +
str(gd_offset) + ".csv', "w', newline='")
file_hash = [gt_csv_file.name, MNone]
except OSError as error:
print(error)
else:
csv_file writer = csv.writer(gt_csv_file, delimiter=",")
csv_file writer.writerow(
[‘Header at byte offset’, 'GD at byte offset”, 'GDE', 'GT at byte offset’,
'GT at sector offset’, 'Grain’, 'Grain starts at byte offset”,
'Grain starts at sector offset’, 'Grain ends at byte offset’,
‘Grain ends at sector offset'])
image file.seek(header + gd_offset)

54

def

def

def

for gde_index, gde in enumerate(struct.iter unpack(’'<I', image file.read(SECTOR_SIZE))):
for gte_index, gte in enumerate(struct.iter_unpack('<I", image_file.read(
GRAIN_TABLE_SIZE))):
if B « gte[B] <« disk size:

csv_file writer.writerow([header, header + gd_offset, gde index,
header + (gde[®] * SECTOR_SIZE),
(header + (gde[@®] * SECTOR_SIZE)) // 512, gte_index,
header + (gte[B] * SECTOR_SIZE),
(header + (gte[@] * SECTOR_SIZE)) // SECTOR_SIZE,
(header + (gte[@] * SECTOR_SIZE)
+ GRAIN_COVERAGE) - 1,
(header + ((gte[@] * SECTOR_SIZE) + GRAIN_COVERAGE)
- 1) // SECTOR_SIZE])
else:
csv_file writer.writerow([header, header + gd_offset, gde index,
header + (gde[®] * SECTOR_SIZE),
(header + (gde[®] * SECTOR_SIZE)) // 512, gte_index,
‘Unallocated’, 'Unallocated’, "Unallocated®,
‘Unallocated’])
gt _csv_file.close()
file hash[1] = hash_files(Path(file hash[B]).name)
return file hash

get_case_info():
""""Get case information from user input
case_info = [['Case Number:\t", *'], ['Evidence number:\t", '],
["Unique description:\t’, *'], ["Examiner:\t’, *'], ['Notes:\t', "']]
print(*Please provide evidence item information')
for info in case_info:
info[1] = input(info[8])
return case_info

report(case_info, phase, report_filename):
""""Generate file for final report™"”
try:
file = open(report_filename, 'w')
except O5Error as error:
print(error)
else:
file.write('VMDK file carving helper - processing report\nin’)
for info in case_info:
file.write(info[B] + info[1l] + "\n")
file.write(phase)
file.close()

main():
"""Main function™™"
args = arguments()
arguments_validation(args)
case_info = get_case_info()
try:
start_time = time.time()
image file, image file size = file initialization(args.file)
print(*\nImage file: {B}\nFile size: {1:,} bytes'.format(image file.name, image file size))
except O5Error as file_error:
print(file error)
else:
if args.header:
possible headers offsets, image hash = search_headers(image file, image file size)
headers_report = "\nImage file: {@}\nFile size: {1:,} bytes\nHash SHA-1:\t{2}' \
.format(image file.name, image file size, image_hash)
headers_report += possible headers_parsing(possible headers_offsets, image file,
args.output)

end_time = time.time()

headers_report += '\n\nProcess started at:\t{@}\nProcess ended at:\t{1}'.format(
time.ctime(start_time), time.ctime(end_time))

print(headers_report)

report(case_info, headers_report, args.output +

_report' + '.txt")

55

if args.directory:

headers_bin_file size = Path(args.directory).stat().st size
print('\nNumbers of headers to process: {@}".format(headers_bin_file size //
HEADER_BIN_SIZE))

gd_report = gd files generation(args.directory, args.output, image file)

end_time = time.time()

gd_report += '\n\nProcess started at:%t{@}\nProcess ended at:\t{1}'.format(
time.ctime(start_time), time.ctime(end_time))

print(gd_report)

report(case_info, gd_report, args.output + "_GD _report’ + '.txt')

if args.table:

headers_bin_file size = Path(args.table).stat().st_size

print('\nNumbers of headers to process: {B}\nProcessing...’
.format(headers_bin_file size // HEADER_BIN_SIZE))

gt_report = gt files_generation(args.table, image file, args.output)

end_time = time.time()

gt_report += '\n\nProcess started at:\t{@}\nProcess ended at:\t{1}".format(

time.ctime(start_time), time.ctime(end_time))
print(gt_report)
report(case_info, gt_report, args.output + *_GT_report® + '.txt')

image_file.close()

finally:

print(\nProcess finished")

if _ name__
main()

== "_main__":

56

Appendix 2 — TC - 01 report

VMDK file carving helper - processing report

Case Number: 001

Evidence number: 001

Unique description: TC-01
Examiner: Raul Jimenez

Notes: Test case 01, clean system

Image file: .\TC-01.000

File size: 250,059,350,016 bytes

Hash SHA-1: 0c28eb77cc73dffc06d82353f9e72279111c8726
Find 0 headers

Process started at: Sun Mar 31 02:52:54 2019
Process ended at: Sun Mar 31 04:28:08 2019

57

Appendix 3 — TC — 02 header summary file

Header is at byte offset: 3170103296
Header is at sector offset: 6191608
Magic number: 1447904331

Version: 1

Capacity: 327680

Grain size: 128

Number of GTEs per GT: 512

Redundant grain directory offset: 1
Grain directory offset: 22

Overhead: 128

Header is at byte offset: 38250364928
Header is at sector offset: 74707744
Magic number: 1447904331

Version: 1

Capacity: 8323072

Grain size: 128

Number of GTEs per GT: 512

Redundant grain directory offset: 1
Grain directory offset: 510

Overhead: 1024

Header is at byte offset: 40761458688
Header is at sector offset: 79612224
Magic number: 1447904331

Version: 1

Capacity: 8323072

Grain size: 128

Number of GTEs per GT: 512

Redundant grain directory offset: 1
Grain directory offset: 510

Overhead: 1024

Header is at byte offset: 42125635584
Header is at sector offset: 82276632
Magic number: 1447904331

Version: 1

Capacity: 8323072

Grain size: 128

Number of GTEs per GT: 512

Redundant grain directory offset: 1
Grain directory offset: 510

Overhead: 1024

Header is at byte offset: 42841239552
Header is at sector offset: 83674296
Magic number: 1447904331

Version: 1

Capacity: 8323072

58

Grain size: 128

Number of GTEs per GT: 512

Redundant grain directory offset: 1
Grain directory offset: 510

Overhead: 1024

Header is at byte offset: 44008906752
Header is at sector offset: 85954896
Magic number: 1447904331

Version: 1

Capacity: 8323072

Grain size: 128

Number of GTEs per GT: 512

Redundant grain directory offset: 1
Grain directory offset: 510

Overhead: 1024

59

Appendix 4 — TC — 03 header summary file

Header is at byte offset: 38250364928
Header is at sector offset: 74707744
Magic number: 1447904331

Version: 1

Capacity: 8323072

Grain size: 128

Number of GTEs per GT: 512

Redundant grain directory offset: 1
Grain directory offset: 510

Overhead: 1024

Header is at byte offset: 40761458688
Header is at sector offset: 79612224
Magic number: 1447904331

Version: 1

Capacity: 8323072

Grain size: 128

Number of GTEs per GT: 512

Redundant grain directory offset: 1
Grain directory offset: 510

Overhead: 1024

Header is at byte offset: 42125635584
Header is at sector offset: 82276632
Magic number: 1447904331

Version: 1

Capacity: 8323072

Grain size: 128

Number of GTEs per GT: 512

Redundant grain directory offset: 1
Grain directory offset: 510

Overhead: 1024

Header is at byte offset: 42841239552
Header is at sector offset: 83674296
Magic number: 1447904331

Version: 1

Capacity: 8323072

Grain size: 128

Number of GTEs per GT: 512

Redundant grain directory offset: 1
Grain directory offset: 510

Overhead: 1024

Header is at byte offset: 44008906752
Header is at sector offset: 85954896
Magic number: 1447904331

Version: 1

Capacity: 8323072

60

Grain size: 128
Number of GTEs per GT: 512

Redundant grain directory offset:

Grain directory offset: 510
Overhead: 1024

61

Appendix 5 — TC — 04 header summary file

Header is at byte offset: 1715712000
Header is at sector offset: 3351000
Magic number: 1447904331

Version: 1

Capacity: 8323072

Grain size: 128

Number of GTEs per GT: 512

Redundant grain directory offset: 1
Grain directory offset: 510

Overhead: 1024

Header is at byte offset: 1715732480
Header is at sector offset: 3351040
Magic number: 1447904331

Version: 1

Capacity: 8323072

Grain size: 128

Number of GTEs per GT: 512

Redundant grain directory offset: 1
Grain directory offset: 510

Overhead: 1024

Header is at byte offset: 1761800192
Header is at sector offset: 3441016
Magic number: 1447904331

Version: 1

Capacity: 8323072

Grain size: 128

Number of GTEs per GT: 512

Redundant grain directory offset: 1
Grain directory offset: 510

Overhead: 1024

Header is at byte offset: 1762050048
Header is at sector offset: 3441504
Magic number: 1447904331

Version: 1

Capacity: 8323072

Grain size: 128

Number of GTEs per GT: 512

Redundant grain directory offset: 1
Grain directory offset: 510

Overhead: 1024

Header is at byte offset: 1762058240
Header is at sector offset: 3441520
Magic number: 1447904331

Version: 1

Capacity: 327680

62

Grain size: 128
Number of GTEs per GT: 512

Redundant grain directory offset:

Grain directory offset: 22
Overhead: 128

63

