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Abstract

Motor insurance clients risk level evaluation using Artificial Neural

Networks and Deep Learning

Risk calculation is a fundamental part of the insurance industry. Previous research showed

that the main problem of the currently used methods lies in ineffective use of available

data.

The main objective of this work is to evaluate usage of artificial neural networks for

estimating accident probability of motor insurance clients. Along with a grid search of

the hyperparameters for the best performing neural network a comparison of different

data preprocessing techniques is presented.

The results show that the use of artificial neural networks in the insurance industry is fully

justified and should not be overlooked.

This thesis is written in English and is 46 pages long, including 5 chapters, 16 figures and

7 tables.
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Annotatsioon

Liikluskindlustuse klientide riskitaseme hindamine Tehisnärvivõrku-

de ja Sügava Õppimise abil

Riski hindamine on põhiline osa kindlustussektorist. Varasemad uuringud on näidanud, et

tänapäeval kasutuselevõetud meetodite peamiseks probleemiks on ebaefektiivne olemas-

olevate andmete kasutamine.

Käesoleva töö peamine eesmärk on hinnata tehisnärvivõrkude kasutamist liikluskindlus-

tuse klientide liiklusõnnetuse tõenäosuse arvutamiseks. Kirjeldatud nii töö tähtsuse õigus-

tus kui ka üldine tehisnärvivõrkude tööprintsiip ja erinevate koostisosade eksisteerimine.

Töös on võrreldud erinevad tehisnärvivõrkude parameetrid ning andmete eeltöötluse mee-

todid. Eesmärgiks on saada ennustamissüsteem, mis kindlustuslepingu andmete sisesta-

misel väljastaks liiklusavarii tõenäosust selle lepingu jooksul. Lõplikud tulemused on tes-

titud eraldiseisva andmete kogumi põhjal. Uuringute protsessis saadud tehisnärvivõrk on

valmis teiste süsteemitega integreerimiseks.

Tulemused näitavad, et tehisnärvivõrkude kasutamine kindlustussektoris on igati õigusta-

tud.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 46 leheküljel, 5 peatükki, 16

joonist, 7 tabelit.

5



List of abbreviations and Terms

ANN Artificial Neural Network

MLP Multilayer Perceptron
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Chapter 1

Introduction

1.1 Problem Statement and Objectives

Risk calculation is at the heart of the insurance industry. Auto insurance companies set

their rate depending on how likely a client is to file a claim in the future, and each use a

number of different factors to evaluate that risk. Starting from the first time compulsory

car insurance policy was introduced in 1930 [4] it became a costly obligation for millions

of car drivers.

Using a constant premium to charge all clients from an insurance company’s point of

view is a good method to alienate their most important customer base — safe drivers who

are less likely to cause an accident in the future. Such drivers will most likely choose

some other company that recognizes their good history of driving by offering a smaller

insurance cost. It is essential for an insurance company to have a good method of dis-

crimination among different insurance buyers in order to be successful in the industry.

In the insurance business, the two most important factors are considered when analysing

losses: probability of loss and severity of loss. Because severity of loss is not available in

the source data acquired from the thesis supervisors, the focus of this work lays solely on

the probability of loss.

The main objective of this work is to find an effective way of evaluating motor insurance

clients risk level using Artificial Neural Networks (ANNs). Output of the final ANN

should be easy to interpret for a non-expert user. Results of the work have to be evaluated

in a trustworthy way, reproducible and ready for export in order to integrate in a more
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user-friendly system or for any other purposes.

In ideal (but impossible) scenario the insurance company could confidently predict whether

an accident is going to happen with a 100% accuracy. If it is known that an accident is

going to happen then it should refuse to underwrite such client. On the contrary, if it is

known that no losses will be caused by this client, the insurance company should offer

him the lowest price compared with offers from other insurance companies.

1.2 Current Solutions and Limitations

Conventional rating systems are primarily based on past realized losses and the past record

of other drivers with similar characteristics. These include information about both vehicle

(age, manufacturer, model, value) and driver (age, sex, marital status, driving record, place

of residence, etc.). Although machine learning methods do not offer any groundbreaking

methods in terms of gathering new data it has been studied that the main problem of cur-

rent methods lies in ineffective use of available data [5] resulting in a very poor precision

attributable to variables with stronger predictive power being completely overlooked. Ar-

tificial neural networks should be able to achieve better predicting performance thanks to

their lack of bias and greater flexibility that allows them to use all the data available [6].

There are several limiting factors that hinder our ability to estimate probability of an

insurance claim by any particular client. Firstly, uncertainty is a big factor in our everyday

life that affects accidents’ occurrence and makes them hard to foresee. Secondly, the

source data available for this study is far from being perfect: less than a couple of dozens

variables for each data point with questionable predictive power (measure of relevance to

risk level). Finally, although the goal of this work is to calculate a risk level measure in

real numbers — as the ideal scenario described above is just impossible — the source data

contains information indicating only whether any accidents occurred as integer number.

From a machine learning perspective it would be easier if instead of “0”/“1” value each

data point had a human expert given risk estimation with a goal to train an automated

system matching this expert.
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Chapter 2

Theoretical Background

The field of Artificial Neural Networks and Machine Learning heavily relies on such fields

as Linear Algebra, Multivariate Calculus and Probability Theory to name a few. Although

in-depth explanation of underlying theory is out of scope of this work, in this chapter we

shortly explain the basic theory behind ANNs with an aim for a reader not familiar with

the field.

2.1 Brief Overview of Artificial Neural Networks

The human brain is a very powerful and complex system which is able to think, remember

and solve different problems. No surprise that scientists see the path to general AI through

simulation of its structure. Although it is indisputable that artificial neural networks are

one of the most promising areas of artificial intelligence research, with average human

brain consisting of approximately 86 billion neurons [7] current ANNs are still far away

from reaching our brain’s capabilities.

The inventor of the first neurocomputer, Dr. Robert Hecht-Nielsen, defines an artificial

neural network as “...a computing system made up of a number of simple, highly intercon-

nected processing elements, which process information by their dynamic state response

to external inputs.” [8]. In biology terms, a neuron is a cell that can transmit and pro-

cess chemical or electrical signals. Figure 2.1 below illustrates the similarities between a

biological neuron’s structure and an artificial neuron’s structure.
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Figure 2.1: (a) A Biological Neuron, and (b) An Artificial Neuron, from [1]

To put it more formally, each artificial neuron has n inputs x1... xn forming input vector

X . Each input is multiplied by its corresponding synaptic weight value w1... wn forming

n products x1w1... xnwn. Each neuron also has a randomly initialized bias parameter b

which is added to the sum of these products. The bias value is usually viewed as a part

of a weight matrix W with each layer (except for the output layer) having an additional

constant unit input. Neuron’s output y is calculated using this weighted sum as an input

to an activation function f : R→ R which is used to transform the activation level of a

neuron into an output signal.

y = f
(
b + W ×X

)
= f

(
b + [w1...wn]×


x1

.

.

.
xn


)

= f

(
b +

n∑
i=1

wixi

)
. (2.1)

2.2 Activation Functions

There are several common activation functions in use with artificial neural networks.

Some desirable properties in an activation function include:

• Non-linear (meaning function cannot be expressed in form y = a + bx): neural

network with a single hidden layer can be proven to be a universal function approx-

imator (i.e. it can approximate any function given enough neurons in the hidden

layer) if the activation function is non-linear [9].

• Continuously differentiable: necessary property for enabling gradient-based opti-

mization methods [10] (learning method used in this work is gradient-based).
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• Monotonic: with this condition the error surface associated with a Single Layer

Perceptron model (i.e. no hidden layers) is guaranteed to be convex [11] (has no

more than one minimum).

Selection of an activation function for a neural network or its part is an important task

because different activation functions result in different training outcomes [12]. Listed

below are the five main activation functions that were used during this work:

1) Identity function. Always returns the same value that was used as its argument.

Figure 2.2: Identity function

f(x) = x. (2.2)

2) Standard logistic sigmoid function. Often called the sigmoid function. Historically, a
common choice of activation function since it takes a real-valued input and squashes it to
a range between 0 and 1. Thanks to this property it has a nice interpretation as the firing
rate of a biological neuron: from not firing at all (0) to fully-saturated firing at an assumed
maximum frequency (1).

Figure 2.3: Standard logistic sigmoid function

f(x) =
1

1 + exp(−x)
. (2.3)
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3) Hard sigmoid function. Approximated standard logistic sigmoid used for faster train-
ing by excluding computation of the exponential function which is computationally ex-
pensive.

Figure 2.4: Hard sigmoid function, per [2]

f(x) = max(0,min(1, 0.2x + 0.5)). (2.4)

4) Hyperbolic tangent function. Although it is just a scaled and shifted version of the stan-
dard logistic sigmoid it has better properties for optimization (learning) purposes resulting
in a faster training [13].

Figure 2.5: Hyperbolic tangent function

f(x) = tanh(x) =
2

1 + exp(−2x)
−1. (2.5)

5) Rectifier function. Also known as a ramp function or positive linear transfer function.
Recent research has found that this activation function often works better in practice for
deep neural networks greatly accelerating the learning process (e.g. by a factor of 6
in [14]).

Figure 2.6: Rectifier function

f(x) = max(0, x). (2.6)
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We also use two more practical variations of the aforementioned activation functions:

1) Scaled hyperbolic tangent function.

Figure 2.7: Scaled hyperbolic tangent function

f(x) = A tanh(Sx), (2.7)

where A is the amplitude and S determines
function’s slope at the origin. For our work
we use recommended values A = 1.7159 and
S = 2

3
[15]. With these parameters equali-

ties f(1) = 1 and f(−1) = −1 are satisfied
which makes the segment between these two
points almost linear thus theoretically acceler-
ating the training process.

2) Leaky rectifier function. Allows a small, non-zero gradient which could facilitate
ANN’s learning.

Figure 2.8: Leaky rectifier function

f(x) =

{
x if x ≥ 0

ax if x < 0
, (2.8)

where a is a small constant. Some recent re-
ports indicate that larger a yields better results
so we experiment with a = 0.18 [16].

It can be observed that all activation functions mentioned in this section can be divided

into two distinct groups based on whether they have a finite range of output.

2.3 Neural Network Architecture

A neural network is put together by hooking together many of neuron units so that the

output of one neuron can be the input of another. Although there exist many different

types of ANNs’ architectures (meaning patterns of connectivity between neurons), only

Multilayer Perceptron models (Figure 2.9) were studied in this work.
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hidden layers

output layer

input layer

Figure 2.9: Structure of a multilayer perceptron (MLP)

The Multilayer Perceptron model consists of 3 consecutive parts: input layer, hidden

layer(s) and output layer. All adjacent layers are fully connected between each other —

every neuron from one layer has a connection with every neuron from the other layer,

as shown in Figure 2.9. There is no connection between any non-adjacent layers. To

calculate the output signal of the network we first need to calculate the output signal of

the first hidden layer which is done by calculating output of each neuron in this layer using

its weights vector (Equation 2.1). We then use this layer as an input to the next layer and

repeat this process until we reach the final layer which outputs the target values.

We have observed that for a fixed MLP network the output signal depends entirely on

ANN’s weight matrix W and the input provided, i.e. y = f(W,X). If we are not satisfied

with its performance the only way of improving it is by adjusting the weights in the

network as input is typically given from the outside and considered to be fixed. Given this

we can see there are two things are still missing: a function to evaluate ANN’s current

performance (i.e. feedback) and a process to optimize ANN’s performance with regard to

that function.
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2.4 Loss Functions

The task of evaluating ANN is accomplished by a loss function which is used to evaluate

the performance of the neural network. Given a prediction ŷ and a known correct value

y, a loss function measures the discrepancy between the networks’s prediction and the

desired output. We can see the loss as the average amount of errors in our predictions

which is the reason loss functions are often called error or cost functions.

When the target is to predict whether some event is going to occur it is a standard practice

to use a cross-entropy loss function which is given by

CE = − 1

N

N∑
n=1

[yn log ŷn + (1− yn) log(1− ŷn)] , (2.9)

where N is the number of forecast-verification pairs. The cross entropy function is proven

to accelerate the learning process and to provide good overall network performance with

relatively short stagnation periods [17].

Although the cross-entropy error is preferred when we deal with classification problem

(will an accident occur or not), the goal of this thesis is to evaluate risk level using a con-

tinuous scale, i.e. we are solving a probabilistic classification problem. The Brier Score

was developed by Brier [18] as a means of assessing the relative accuracy of probabilistic

forecasts. It is given form:

BS =
1

N

N∑
n=1

(ŷn − yn)2. (2.10)

The Brier Score values fall in range from 0 to 1 where lower value denotes better fore-

caster which means we can also use it as a loss function. It can be decomposed into 3

additive components: Reliability, Resolution, and Uncertainty [19]:

BS = REL−RES + UNC =

1

N

K∑
k=1

nk

(
ŷk − ȳk

)2 − 1

N

K∑
k=1

nk

(
ȳk − ȳ

)2
+ ȳ
(
1− ȳ

)
, (2.11)

where the data set is partitioned into K bins according to the forecast. ȳk is the observed

frequency of occurrence of the event in bin k and ȳ is the base rate for the event to occur.

The reliability term measures how close the forecast probabilities are to the true proba-
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bilities. The resolution term measures the ability of the forecast to distinguish situations

with distinctly different frequencies of occurrence. The uncertainty term represents the

variability of the observations which depends entirely on the data set. The last property is

the reason why it is misleading to compare Brier scores on different data sets.

2.5 Learning Process

The purpose of learning is to find the optimal solution to a weight matrix W so that

no solution has a lower loss, i.e. to minimize the loss function L(W ). The algorithm

performed to calculate MLP’s output given some input by pushing it through the network

is called forward propagation. It leads to the generation of an output prediction which in

our case is a single real number.

Backpropagation is the most widely used iterative algorithm to adjust neural network’s

parameters. Basically it takes the output of the neural network ŷ, compares it to the desired

value y and calculates how much wrong the output neuron was. Using the calculated error

it calculates the error associated with each neuron from the preceding layer. This process

is then repeated until the input layer is reached.

Next we use a gradient descent optimization algorithm to minimize the loss function’s

value. Using the error measurements for each neuron the algorithm calculates the par-

tial derivatives (also called gradients) — vectors pointing in the direction of the greatest

increase rate of the loss function. To find a local minimum of a function using gradient

descent the weight matrix is adjusted proportionally to the negative of the gradient of the

function at the current point.

2.6 Overfitting and Underfitting

A major issue in choosing a neural network model for a given problem is selecting the

level of its complexity which determines model fit. Understanding model fit is important

for understanding the root cause for poor model accuracy. We can determine whether a

neural network is underfitting or overfitting the training data by looking at the prediction

error on the training data and the test data. Simple visual explanation of model fit is

presented in Figure 2.10.
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Figure 2.10: (a) Underfitting, (b) Good fit, and (c) Overfitting

The network is underfitting the training data when the model performs poorly on both

the training data and the test data. This is because the model is unable to capture the

relationship between the input X and the target Y . The model is overfitting the training

data when the model performs well on the training data but does not perform well on the

test data. This is because the model is memorizing the data it has seen and is unable to

generalize to unseen examples.

Poor performance on the training data could be attributable to the neural network being

too simple and its performance can be improved by increasing model’s complexity and

increasing the training time. If the model tends to overfit several good countermeasures

exist as well: stopping the training early (before the model learned the training data too

well), reducing model’s complexity, keeping some neurons turned off during each training

stage, and adding some form of regularization.

Regularization prevents any single weight from being given too positive or too negative

value thus encouraging smoother network mappings. The strength of regularization can

be finely tuned. More regularization means lower fit while less regularization means

higher fit. If regularization is too strong the model will underfit and if the regularization

is too weak the model is more likely to overfit.

2.7 Deep Learning

Deep Learning is a machine learning technique that tries to extract high-level abstract

data representations through hierarchically combining simple features into more complex

features layer by layer [20]. In context of Artificial Neural Networks deep learning refers

to the usage of neural networks with more than 1 hidden layer. As opposed to shallow

networks which have only one hidden layer deep neural networks perform far better on

many problems, especially on problems such visual pattern recognition [21], [22].
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The main problems experienced with deep architectures is that they are harder/longer to

train and are more prone to stuck in local minima of a loss function. Although several

different techniques exists to overcome this problem in this work we use the stacked

autoencoders method which is a 2-phase process (Figure 2.11).

First we greedily train each layer to reconstruct its input with a restriction that the number

of inputs to every layer is larger than the number of its neurons. This way each layer

is intended to learn an increasingly abstract feature representation of the input. We also

pretrain the output layer to estimate accident probability. In the second phase (fine-tuning)

the whole network is trained to minimize the prediction error.

hidden layers

output layer
input layer

x1
x2
x3
x4
x5
x6x6

x5
x4
x3
x2
x1

h2(1)
h1(1)

h3(1)

h4(1)

h1(1)

h2(1)

h3(1)

h4(1)

h1(1)

h2(1)

h3(1)

h4(1)

h1(2)

h2(2)

h3(2)

h1(2)

h2(2)

h3(2)
y

x6
x5
x4
x3
x2
x1

h1(1)

h2(1)

h3(1)

h4(1)

h1(2)

h2(2)

h3(2)

y

Figure 2.11: Stacked Autoencoders technique. Pretraining and fine-tuning phases.

Initializing ANN’s weights in this manner has been shown to decrease training times and

start the training process much closer to good loss function minima than the usual random

weight initialization.
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Chapter 3

Tools

Focus of this chapter lies on the tools used to store/process data and conduct experiments

with different artificial neural network models.

3.1 Programming Language

The two most popular languages in the field of data science and machine learning at

the moment of writing this paper are R and Python. Python is a general-purpose, high-

level programming language that emphasizes code readability and expressing concepts in

fewer lines of code than is possible in languages such as C++ or Java. R is a program-

ming language and software environment for statistical computing and data visualization,

which Python also supports. Each of the two languages is stronger than the other in some

aspect [23].

For this paper the only programming language used was Python. This decision was made

mainly because of author’s familiarity and previous experience with Python. It is worth

mentioning that current job trends (Figure 3.1) indicate that both currently and in the

future Python’s presence in the field is stronger. Although popularity does not necessarily

reflect quality, having a vibrant community that works on further advance of the language

is a major key.
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Figure 3.1: Job trends for R and Python according to [3]

3.2 Libraries

Owing to Python being a widely used general-purpose programming language [24] there

is an enormous amount of different software packages available. As of May 2016, the

Python Package Index, the official repository of third-party software for Python, contains

almost 82,000 packages offering a wide range of functionality [25].

The fundamental open source package for numerical computation in Python is NumPy,

which defines the multidimensional numerical array and matrix types and basic operations

on them.

scikit-learn is a popular open source machine learning library for Python. The package

contains various machine learning and data analysis algorithms and designed to interop-

erate with NumPy. This library was used to analyse performance of our neural network

models.

For interactive experimenting we used IPython, a rich interactive interface for processing

of data and quick testing of ideas. The IPython Notebook is a web-based interactive

environment for creating IPython notebooks. An IPython notebook is a JSON document

containing an ordered list of input/output cells which can contain code, text, mathematics,

plots and rich media.

Matplotlib is probably the most popular open source 2D plotting library for Python. It
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can be used in both python scripts and IPython Notebook environment. We also used

vector graphics editor Inkscape to create or modify all the graphic content presented in

this work.

Keras is a young minimalist, highly modular neural networks library for Python which

was developed with a focus on enabling fast experimentation. It also allows persisting of

neural network models and their parameters in a simple format in order to use them on

another machine without any training. Keras is built to work on top of one of the sup-

ported backend machine learning libraries. In this work we used Theano library backend.

Theano is a Python library that allows you to define, optimize, and evaluate mathemat-

ical expressions involving multidimensional arrays efficiently. One of the main features

of Theano is its ability to perform efficient symbolic differentiation: the user composes

mathematical expressions in a high-level description which allow Theano to provide sym-

bolic differentiation.

Lastly, we introduce a library used in this work for saving, storing and loading of all

data used for the purpose of training and testing ANN models. The h5py package is a

Pythonic interface to the HDF5 binary data format [26]. HDF5 stands for Hierarchical

Data Format and supports an unlimited variety of datatypes. It was designed for flexible

and efficient I/O and for high volume and complex data. Originally developed at the Na-

tional Center for Supercomputing Applications, it is supported by The HDF Group [27],

a non-profit corporation working to ensure continued development of HDF5 technologies

and the continued accessibility of data stored in HDF.
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Chapter 4

Methods

There are several steps that need to be performed before the network is trained. They

can be grouped into three categories: selection of data, data preprocessing, and choice of

network type and architecture. We also need to pick several training parameters before we

can start the process: loss function, number of maximum epochs to perform, optimization

algorithm and its parameters. Finally, a method to evaluate the results of training an ANN

is required in order to compare neural networks between each other and pick the best of

them.

4.1 Data Selection

Neural networks represent a technology that is at the mercy of the data — the network

will be only as good as the data that is used to train it. For a source data we have a MAT-

LAB file that contains different information about ~540 000 insurance contracts from the

last five years. Only the parameters listed next were deemed to be relevant and helpful in

order to achieve this work’s goals: duration of the contract, vehicle’s engine power, age

of the driver, age of the vehicle, loyalty rating given by the insurance company, vehicle’s

category, vehicle’s type of usage, region of driver’s residence, mass of the vehicle, manu-

facturer of the vehicle, model of the vehicle, fuel type used by the vehicle, whether it was

an extension of a previous policy or a new client, bonus-malus rating of the driver, gender

of the driver and whether any accident was caused by the driver during this insurance

policy.

Information that was excluded from consideration include insurance contract version, pol-
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icyholder’s national identification number, vehicle registration plate, accident dates and

similar irrelevant information. It is worth mentioning that risk class given by the insur-

ance company was excluded as well because the main reason for this project was to create

an independent risk evaluation system, not an aide to the existing one.

4.2 Data Preprocessing

The main purpose of the data preprocessing step is to assist network training. Data pre-

processing consists of such steps as normalization, non-linear transformations, feature

extraction, coding of discrete inputs/targets, handling of missing data, etc. The idea is

to perform preliminary processing of the data to make it easier for the neural network to

extract the relevant information. After collecting the data, we generally divide it into three

sets: training, validation (selecting best model) and testing (evaluating final results). In

this work the training set makes up 80% of the full data set, with validation and testing

making up 10% each. Although it is very important that each of these sets represents the

full data set — that the validation and test sets cover the same region of the input space as

the training set — it is a rather difficult goal to achieve. As a simple good-enough method

all data was randomly shuffled before splitting it into the sets. Additionally, each neural

network model is trained four times using different portion of the training set: 20%, 50%,

80% and 100% of the training data.

Often the data on which a multilayer perceptron (MLP) is to be trained has inputs that

are categorical rather than quantitative. Examples of categorical variables in our data are

gender, model of the vehicle, usage type, etc. Categorical variables may be broken up

into two types: ordinal and non-ordinal. Ordinal variable values may be ordered. A non-

ordinal categorical variable will be a label of a category without ordering property as is

true in the case of the examples listed above where no ordering can be placed. A quan-

titative variable on the other hand is one that assumes numerical values corresponding to

the points on a real line, e.g. mass of the vehicle or age of the driver.

A MLP requires that all inputs are represented in numeric, continuously valued variables.

One method of dealing with the problem of categorical inputs, which seems rather harm-

ful, is to replace the categorical values by numeric ones and treat them as if they were

continuously valued. This type of encoding creates an ordering of the values that does
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not exist, there is no meaningful relation between the continuous quantities generated

this way and the original categorical values. Therefore, categorical variables should be

distinguished from the continuous variables.

While it is worth mentioning that there exist rather promising but quite difficult methods

for dealing with categorical variables [28] in this work we use simultaneously two quite

simple methods of dealing with problem of categorical variables. The first technique is

1-of-C encoding: one input variable gets transformed into C variables where C is the

number of feature’s possible values. In 1-of-C encoding we set only one variable to value

1 and all other variables are set to 0. For example, transforming gender variable {male,

female} we get two input variables where male can be represented by a pair (0, 1) and

female by a pair (1, 0).

The second used technique is to encode categorical features using average response [29].

Explained shortly, we calculate the average accident rate for every given category (e.g.

for every vehicle fuel type) and add this variable to our input vector. For the purposes of

better performance the training set is assigned “all but one” average response, i.e. for each

training data point the mean response is calculated excluding this particular data point

itself. Furthermore, we also add a shifted version of this variable where we subtract the

overall accident rate from the mean response in order to center data around zero point. It

is worth to emphasize that all statistics (averages) were calculated using only the training

data.

SPLIT FUEL TYPE ACCIDENT ACCIDENT RATE

Training Diesel 1 0.333
Training Diesel 0 0.666
Training Diesel 1 0.333
Training Diesel 0 0.666

Validation Diesel — 0.500
Test Diesel — 0.500

Table 4.1: Illustrative example of the average response encoding

It is a standard practice to normalize the quantitative data before using it in an ANN.

This way initializing the network weights to small random values ensures that the weight-

input product will be small thus avoiding the saturation zone of an activation function.

Saturation at the asymptotes of an activation function is a common problem with neural

networks. Saturation occurs if the asymptote(s) of a function are parallel to the input axis,
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meaning that the first derivative is (or almost) 0. In this case the neuron can neither learn

nor propagate the error any further. Additionally, when the input values are normalized,

the magnitudes of the weights have a consistent meaning which further facilitates the

training process.

There are two standard methods for normalization [30], both were used in this work. The

first method called rescaling normalizes the data so that all feature’s variables fall into a

standard range — typically −1 to 1. This can be done with a simple transformation (4.1)

where xmin and xmax are respectively the minimum and the maximum values of each

element of a particular feature in the data set, and xn is the resulting normalized input

variable.

xn =
2 · (x− xmin)

xmax − xmin

− 1. (4.1)

An alternate normalization procedure called standardization is to adjust the data so that

it has a specified mean and variance — typically 0 and 1. This can be done with another

transformation (4.2) where xmean is the average value of the feature in the data set, and

xstd is the standard deviation of the feature.

xn =
x− xmean

xstd

. (4.2)

Additionally, a third rather simple transformation (4.3) was used in order to rescale data

so that it falls only in the range from 0 to 1. This can be done with a simple division by

a constant value of a maximum value. This method’s benefit compared with the previous

ones is that it does not shift any values and as a result we avoid losing any information.

xn =
x

xmax

. (4.3)

The result of the methods presented above applied to the source data is a data set which

contains 135 input features (not counting the target variable denoting whether an accident

has occurred). Additionally, we have 2 simpler data sets in order to measure efficiency of

the preprocessing techniques applied. In the first variation we omit the 1-of-C encoding

which results in 100 features less in the input data (35 remaining).

The third data set is created using the most commonly used method which is done in

two steps. First categorical data is simply transformed to consecutive integer numbers

without any order. After that all features (both categorical and quantitative) are rescaled

using transformation (4.4) which normalizes the data so that all variables fall into a range
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between 0 and 1. This data set does not contain any statistical information which is a big

reason to favour such ANN which does not rely on externally provided statistics.

xn =
x− xmin

xmax − xmin

. (4.4)

4.3 Architecture Selection

The next crucial step in the ANN training process is the choice of a network architecture.

The basic type of network architecture is determined by the kind of problem we are trying

to solve. Once the basic architecture is chosen, we need to decide such specific details as

how many outputs the network should have, what type of output we want to receive and

how many neurons and layers we want the neural network to have.

As was mentioned previously (Section 2.3) the only type of ANN architecture used in this

work was MLP. The first reason for that is purely practical one: this structure is one of the

simplest to work with. Furthermore, it can be argued that in our case more complex archi-

tecture types will not bring any improvements to ANN’s performance. This is explained

by having inputs as independent values (contrary to visual data) without any particular

ordering and lack of any connection among different data points (contrary to time series

data). The purpose of our neural network is to represent a function approximating the

mapping between a set of inputs and a corresponding real value representing the accident

probability. For this and similar problems MLP is the standard neural network architec-

ture.

The output of our ANN must be a single number ideally defining an estimated probability

of an accident for a particular client. Since this value has to be in a standard range 0 to 1

(1 denoting 100% accident probability) we will use the standard logistic sigmoid function

for a single output neuron. Other variants of output layer were taken into consideration as

well, e.g. an output in range between −1 and 1 or even two outputs denoting probability

of both outcomes “accident” and “no accident”, but were dismissed due to their complex

mapping to the objective value of an accident probability.

It is much more difficult to make a single choice in the remaining parts of ANN’s archi-

tecture: number of hidden layers, number of neurons in each of the hidden layers and an

activation function used in each neuron of the hidden layer. There is an infinite amount of

possibilities for this choice and little to no indications of which is the best one. To shrink
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the choice space we will consider activation function choice not per individual neuron or

layer but for all hidden layers of the network at once. Next we select 40 different struc-

tures representing the hidden layers using our own judgment of what a promising structure

could be or at least is worth to try. The full list of the selected structures is presented in

Appendix A. The resulting 200 hidden layers structures are achieved by combining these

hand-picked structures with each of the 5 main activation functions that we have covered

earlier (Section 2.2).

4.4 Evaluating Performance

After the training of a neural network is finished, we need to express its performance

in a simple form in order to select the model performing the best. In our perception

of “goodness” a good assessor is both accurate and bold in his predictions. The first

quality reflects how close to each other are predicted and true probabilities. The second

quality is expressed by how well are different cases discerned. It has been proven that

both loss functions mentioned in Section 2.4 are applicable as a scoring rules to reflect

a summary of these two properties using a single value [31]. Nevertheless, later it has

been shown that using the Brier Score yields better results, especially when working with

small probabilities and rare classes [32] which is the case in this work. For these reasons

the Brier Score is used to rank the neural networks. It is also possible to quantify both of

the properties mentioned above using Equation (2.11).

The properties described above can be visualized for easier understanding of ANN’s per-

formance. Reliability diagram is a graphical method for assessing reliability, resolution,

and sharpness of a probability prediction. First we plot a calibration curve which maps the

predicted probability to the observed accident rate, where the range of predicted proba-

bilities is divided into K bins. Several straight lines are plotted as reference: the diagonal

(represents perfect reliability), the no-resolution line (corresponds to the mean probability

prediction as probability estimation), and the no-skill lines (predictions where the resolu-

tion and reliability components cancel each other out). Additionally, we plot prediction

frequency histogram to show sharpness (the tendency to predict extreme values).
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Figure 4.1: Example of a reliability diagram

Now we explain what does the reliability diagram tell us about ANN’s performance. Re-

liability is indicated by the proximity of the plotted calibration curve to the diagonal.

Points of the curve below the diagonal indicate overestimation (predicted probabilities are

too high) and points of the curve above the diagonal indicate underestimation (predicted

probabilities are too low). Points between the no-skill lines contribute positively to the

Brier Score. The flatter the curve in the reliability diagram, the less resolution the neural

network has. Sharpness is determined by how close our predictions are distributed to the

end-points. A predicting system with good sharpness would output accident probabilities

close to 0 and 1.

Reliability diagram is a great diagnostic tool to get an insight about performance of a

prediction system. The biggest drawback is that for an accurate representation of the

metrics described above it is required to provide a reasonably large data set to get useful
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and accurate results. Even then, if some bins contain only a few of the data points the

visual representation gets heavily skewed and misleads the reader.

4.5 Training Parameters

There is a number of challenges connected to training ANN with the most basic types

of gradient descent. For instance, the error gradient often applies too large of a change

to the weight matrix and jumps over a possible optimum spot. Additionally, when the

learning rate (i.e. training parameter that controls the size of weight changes) is too low

the changes applied to the weight matrix can be too small resulting in an unnecessary

long training process. Adadelta [33] is an algorithm for a gradient-based optimization that

dynamically adapts the learning rate over time. The method requires no manual selection

of a learning rate and appears robust to different model architecture choices and selection

of training parameters, which is why it is the optimization algorithm used in this work.

As recommended in Keras documentation [34] we leave the parameters of the optimizer

as their default values.

Another important parameter when training ANN model is the number of training cycles

i.e. epochs we perform. Epoch is a single pass through the entire training set, followed by

testing on the validation set. As ANN learns the training data more and more it tends to

overfit. The method used here to select the best parameters of the network is a variation of

Early Stopping. The training process uses training data but after each epoch we calculate

the loss function’s value for the validation data set. Network parameters that result in the

smallest validation error are selected for the evaluation process.

The number of epochs we need to perform before the network starts overfitting totally

depends on the data used. For our data set it was found empirically that most of the

models are starting to overfit after ~30 epochs (example in Figure 4.2). For this reason it

was decided that each neural network would be trained for 30 epochs. Additionally, the

training process was halted each time it was detected that the network is failing to discern

the validation data for 5 epochs in a row which happens mostly with the deeper models

when the network’s weight matrix was disadvantageously initialized resulting in a strong

underfit.
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Figure 4.2: Example of a ANN’s training history, validation minimum at epoch #26

In Section 2.4 we have described two widely used loss functions. As it is not clear which

one will yield better result we use both of them, i.e. train each network first with the Brier

Score loss function and then using the cross-entropy error function.

4.6 Running Experiments

To summarize, we explicitly define all the variations of experiments that we have con-

ducted in order to find the best artificial neural network to solve our problem. Here is the

list of parameters (also called hyperparameters) that we combine with each other:

• 2 loss functions;

• 3 differently preprocessed data sets;

• 4 training set portions;

• 5 activation functions;
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• 40 hidden layers structures.

In total using this systematic approach there were performed 40·5·4·3·2 = 4800 different

training sessions. This method is called a grid search algorithm and has been a traditional

way of performing hyperparameter optimization. At the end of each training session we

save neural network’s performance on the validation data set. After all ANNs have been

trained and validated we select the model with the best results on the validation data set

as our final neural network which we evaluate using the testing data set.
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Chapter 5

Analysis of Results

Considering the large amount of different components combined in order to train the

4800 different neural networks there is a lot of data to learn from. In this chapter we

look at each training parameter variations on a one-by-one basis to find out which options

outperform their alternatives and finally which combination resulted in the most accurate

neural network. We use results on the validation data set to analyse performance of the

training parameters keeping the test data for evaluation and more detailed analysis of the

best performing model.

5.1 Comparison of Different Training Parameters

In order to avoid taking poorly performing models into calculation we use the 10 best

models in each category to calculate the average performance. For example for compar-

ison of the Brier score loss function with the cross-entropy error function we take the

average of the 10 best models that use the former and the average of the 10 best mod-

els that use the latter. The complete table of results in a numerical form is provided in

Appendix B.

Benefits of more complex preprocessing

From a standpoint of realization and later usage as a commercial product it is desirable

that the data requires as less complex preprocessing steps as possible. In our work we

used 3 different methods of preprocessing described in Section 4.2. The results of our
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tests undoubtedly confirm that in our case the most complex form of preprocessing yields

better results while the simplest preprocessing method achieves the weakest results.

Training set size

In Section 4.2 we explained the reason to train each neural network with 4 different por-

tions of the training set. Contrary to our concerns the results confirm a widely known

notion that the more data is used, the better performance is achieved.

Loss functions

Despite the fact that we have selected the Brier Score loss function to rank the neural

networks we still used cross-entropy error function as a variant of ANN training function.

This decision was made mainly because of the theoretical boost of the training process

provided with usage of the cross-entropy error function [35]. In line with the rational-

ization presented in Section 4.4 our tests showed cross-entropy error function’s poorer

performance.

Activation functions

In terms of activation functions we have found that hyperbolic tangent has the best prop-

erties for optimization out of the five main functions listed in Section 2.2. Currently the

most popular rectifier activation function [36] comes second which is probably explained

by the fact that the better performing neural networks we have trained were not deep

enough to show its strength.

Rest of the activation functions are ordered by performance as follows: sigmoid, hard

sigmoid, and identity function coming last as expected.

5.2 Performance of Deeper Neural Networks

Although we will not compare all the concrete variations we have tried as the structures

of the hidden layers, it is still worth to take a look at the average performance of ANNs

with different number of layers. Out of the ANNs we have trained the networks with

two hidden layers have the most optimal structures. The second worst performance yield
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neural networks with one hidden layer which means that the layers were either too small

or the function we are trying to learn is hard to approximate using only one hidden layer.

The worst performance is achieved by models with the maximum number of hidden lay-

ers we have tried which is six. The most probable reason is the problem of vanishing

gradients [37]. Explained shortly, the error signal received at the output layer is getting

more dilute with each next layer while propagating backwards. This results in the first

hidden layers learning exponentially slower than the next layers.

To address this issue we conducted additional experiments that utilize the technique for

training deeper neural networks described in Section 2.7. Using the observations laid

out earlier in this chapter we shrank the additional search space to only 140 experiment

configurations. These are achieved by combining 35 hidden layer structures listed in Ap-

pendix C with four activation functions: the two best performing activation functions (one

from each group observed in Section 2.2) and their respective more practical variations.

The rest of the parameters were set to their best performing options.

5.3 Final Results

The best performing neural network was achieved during the additional experimenting

which made use of the pretraining technique. This network was trained on 100% portion

of the data set created using the most complex preprocessing technique. The training

algorithm used the Brier Score function as a loss function. There are 4 hidden layers in

the structure of this network (120, 90, 60, 30 neurons respectively) which use the leaky

rectifier activation function. The visual representation of the network’s performance on

the test data set (which was completely uninvolved in the process of training and model

selection) is shown in Figure 5.1.
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Figure 5.1: Performance on test data

As can be seen the network is making rather accurate predictions for the test set in the

region from near 0 to ~12%. In Section 4.4 it was mentioned that the fewer data points

are contained in the bin the less accurate the presented visual information is. The test data

set has ~54 000 data points and the reliability plot shown before is created using bins of

size 0.5% each. There is an exponential decline in the size of the bins from the lower risk

bins to the higher risk bins as shown on the prediction frequency histogram. We have ~16

000 data points in the lowest risk bucket and approximately 700 data points in the bin

representing range 6-6.5%. In the range from 10 to 10.5% there is already only 81 data

points which is already quite a low number to adequately evaluate predictors accuracy.

It was calculated that 99.9% of the predictions lay in range from 0 to 12% which stresses

once again how negligible are the errors past that point no matter how large they look.
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Nonetheless, the bracket for the 12.5-13% range contains only 10 data points and is still

quite on point with 10% observed accident rate. It is also worth mentioning that we

are dealing with event probability evaluation which means that two adjacent peaks on

opposite sides of diagonal in reality partially cancel each other out. For example, as

illustrated below in Table 5.1 (which contains a part of the reliability diagram shown

before) two adjacent bins with substantial errors to the opposite sides can cancel each

other out really well when looked at as a single bin.

Bin range (%) Bin size Observed accidents Observed rate of accidents (%)
6.5-7.0 560 33 5.9
7.0-7.5 480 40 8.3
6.5-7.5 1040 73 7.0

Table 5.1: Adjacent erroneous bins can correct each other

To portray a more general picture the resulting neural network’s performance on the whole

data set (training + validation + test) without any adjustments to the network is presented

below in Figure 5.2.

40



Figure 5.2: Performance on whole data set

In practice, calibration curve can also be used to improve the prediction model’s perfor-

mance. If it is noticed that the observed accident rate follows some linear or quadratic

function of the predicted accident probability this knowledge can be used to modify the

prediction system so that output is post-processed with that knowledge in mind. For

example, our prediction system works really well on the whole data set until ~10% pre-

diction probability. From that point on the neural network tends to underestimate the risk

probability. One could use this knowledge to handle ANN’s predictions past that point

accordingly.
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Conclusions

The goal of this thesis was to create a prediction system which would be able to evaluate

motor insurance clients. More precisely, given data vector containing information about

a person and his vehicle it would output the probability of an accident.

An extensive research was conducted in order to build such system using artificial neural

networks. The final system outputs real values in range from 0 to 1 which are interpreted

as a probability of an accident. The results were tested using a separate hold-out data set

which was completely uninvolved in the process of this work up until the point of final

evaluation. The produced neural network and its parameters can be easily saved and used

as a motor insurance clients risk level evaluator on another machine.

All in all it can be concluded that the objectives of this work have been achieved. One

of the possible directions for the future research is usage of more advanced algorithms

to train deeper neural networks. It is also reasonable to try more advanced feedforward

architectures of ANNs rather than the MLP architecture used in this work.
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Appendix A

Hidden Layers Structures List

Here we present a list of structures used to create the hidden layer(s) of the tested neural

network models. To simplify their representation a simple notation is used: each layer

is noted by the number of neurons it consists of delimited by an ’x’ mark. For example,

12x5 structure represents 2 hidden layers with the first layer consisting of 12 neurons and

the second layer consisting of 5 neurons.

1 hidden layer: 5, 10, 25, 50, 100, 300

2 hidden layers: 5x5, 10x5, 10x10, 25x5, 25x25, 50x10, 50x50, 100x25, 100x100,

300x10

3 hidden layers: 5x5x5, 10x10x10, 25x25x25, 25x10x5, 50x25x10, 50x50x50,

100x50x10, 100x100x100

4 hidden layers: 5x5x5x5, 10x10x10x10, 25x25x25x25, 50x25x10x5, 50x50x50x50,

100x50x25x10

5 hidden layers: 5x5x5x5x5, 10x10x10x10x10, 25x25x25x25x25, 50x50x50x50x50,

100x50x25x10x5

6 hidden layers: 5x5x5x5x5x5, 10x10x10x10x10x10, 25x25x25x25x25x25,

50x50x50x50x50x50, 100x50x25x12x6x3
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Appendix B

Tests Results Statistics

All tables are sorted ascending by the average Brier Score. As a reminder, lower value

corresponds to better performance. Statistics below are composed using ANNs’ perfor-

mance on the validation data set. The best result achieved is a neural network described

in Section 5.3 and the achieved Brier Score on the validation set is 2.066577 · 10−2.

Preprocessing technique Top 10 Average Brier Score (10−2)
Normalization + Mean Response + 1-of-C 2.067980

Normalization + Mean Response 2.075667
Rescaling Only 2.078897

Table B.1: Performance by preprocessing technique

Training set portion Top 10 Average Brier Score (10−2)
100% 2.067992
80% 2.068690
50% 2.070298
20% 2.071387

Table B.2: Performance by training set portion

Loss function Top 10 Average Brier Score (10−2)
Brier Score 2.067980

Cross-Entropy 2.068933

Table B.3: Performance by loss function
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Activation function Top 10 Average Brier Score (10−2)
TanH 2.068091

Rectifier 2.068508
Sigmoid 2.069189

Hard Sigmoid 2.069766
Identity 2.071281

Table B.4: Performance by activation function

Number of hidden layers Top 10 Average Brier Score (10−2)
2 2.068376
3 2.068485
4 2.068764
5 2.068805
1 2.068973
6 2.069279

Table B.5: Performance by number of hidden layers
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Appendix C

Additional Hidden Layer Structures

Here we present a list of structures used to create the hidden layers of the additionally

tested neural network models. Same notation as in Appendix A is used.

3 hidden layers: 200x100x50, 100x75x50, 100x60x30, 100x50x25, 100x40x10,

75x50x25, 70x50x30, 75x40x20, 50x30x15, 50x25x10, 40x25x10, 25x10x5

4 hidden layers: 200x150x100x50, 200x100x50x25, 120x90x60x30, 100x75x50x25,

100x50x25x10, 80x60x40x20, 75x55x35x15, 75x50x25x10, 50x25x10x5, 40x30x20x10

5 hidden layers: 200x150x100x50x25, 200x100x50x25x12, 150x100x75x50x25,

100x85x70x50x35, 100x75x55x35x15, 100x75x50x25x10, 100x50x25x10x5,

75x50x25x10x5

6 hidden layers: 200x150x100x75x50x25, 100x85x70x55x40x20, 100x75x55x35x15x5,

100x75x50x25x15x5, 100x50x25x12x6x3

50


	Abstract
	Introduction
	Problem Statement and Objectives
	Current Solutions and Limitations

	Theoretical Background
	Brief Overview of Artificial Neural Networks
	Activation Functions
	Neural Network Architecture
	Loss Functions
	Learning Process
	Overfitting and Underfitting
	Deep Learning

	Tools
	Programming Language 
	Libraries

	Methods
	Data Selection
	Data Preprocessing
	Architecture Selection
	Evaluating Performance
	Training Parameters
	Running Experiments

	Analysis of Results
	Comparison of Different Training Parameters
	Performance of Deeper Neural Networks
	Final Results

	Conclusions
	Bibliography
	Hidden Layers Structures List
	Tests Results Statistics
	Additional Hidden Layer Structures

