
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Karl Raud 193632IAIB

DATASET FILTERING FOR IMAGE CLASSIFICATION AND

OBJECT DETECTION MODELS

Bachelor’s Thesis

Supervisor: René Pihlak
MSc

Tallinn 2023

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Karl Raud 193632IAIB

ANDMESTIKU FILTREERIMINE PILDI

KLASSIFITSEERIMISE JA OBJEKTITUVASTUSE

MUDELITELE

Bakalaureusetöö

Juhendaja: René Pihlak
MSc

Tallinn 2023

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Karl Raud

22.05.2023

1

Abstract

Dataset filtering can reduce the training times of a model, lower the annotation costs of the
dataset, and occasionally even improve the resulting model’s performance in cases of poor
dataset quality.

In this thesis, multiple clustering methods are employed to filter an image dataset on a
semantic level. This is achieved by extracting features from a trained model to compare the
specific neural network’s perception of the data, as opposed to comparing the raw images
themselves or letting other models create their own understanding of the dataset.

The proposed method categorizes the redundant images in the dataset into two types:
images that are semantically too similar and outliers. Since the amount of filtered data is
determined by the user, an application is also developed to facilitate a better understanding
of the dataset’s semantic content.

The proposed method is tested on multiple models and datasets, demonstrating that redun-
dancies can be found in many datasets.

The thesis is written in English and is 36 pages long, including 6 chapters, 18 figures and 2
tables.

2

Annotatsioon
Andmestiku filtreerimine pildi klassifitseerimise ja objektituvastuse

mudelitele

Andmestiku filtreerimine võib vähendada masinõppemudeli treenimise aega, andmestike
annoteerimistasusid ning halva andmestiku kvaliteedi korral võib ka parendada mudeli
tulemusi.

Selles töös kasutatakse mitmeid klasterdamis meetodeid, et filtreerida pildiandmestikku
tähenduslikul tasemel. Seda tehakse treenitud närvivõrgu vahekihtidelt andmete võrdlemisega,
et arvestada seda, mida just see närvivõrk andmetes tähenduslikult näeb.

Pakutud meetod poolitab mittevajalikud pildid andmestikus kahte osasse: liiga sarnased
pildid tähenduslikus mõttes ja võõrväärtuslikud pildid, mis ei sobi ülejäänud andmestikku.
Ka rakendus on loodud et kasutaja saaks andmestikku paremini hoomata ning hinnata, et
kui palju pilte andmestikust välja filtreerida.

Pakutud meetod on testitud mitmete mudelite ja andmestikkudega, mille tulemused vi-
itavad, et mittevajalikke pilte leidub paljudes andmestikkudes.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 36 leheküljel, 6 peatükki, 18
joonist, 2 tabelit.

3

List of Abbreviations and Terms

3D Three Dimensional
CPU Central Processing Unit
GPU Graphical Processing Unit
HDBSCAN Hierarchical Density-Based Spatial Clustering of

Applications with Noise
mAP Mean Average Precision
PCA Principal Component Analysis
ReLU Rectified Linear Unit
RGB Red-Green-Blue
SGD Stochastic Gradient Descent
UMAP Uniform Manifold Approximation and Projection
YOLO You Only Look Once algorithm

4

Table of Contents

1 Introduction . 9

2 Background . 10
2.1 Neural networks . 10
2.2 Image datasets . 12

2.2.1 Redundant images in the dataset 13
2.2.2 Outliers in the dataset . 13

3 Related works . 14
3.1 The 10 % you don’t need . 14
3.2 FiftyOne . 14

4 Proposed method . 16
4.1 Model and dataset . 16
4.2 Filtering the feature maps . 17

4.2.1 Outlier detection . 19
4.2.2 Semantic similarity detection . 19
4.2.3 Visualising the left out images 20

4.3 Application . 20
4.4 Filtered dataset evaluation . 22

5 Analysis . 23
5.1 Image classification . 23

5.1.1 CIFAR-10 & CIFAR-100 . 23
5.1.2 Animal classification . 26

5.2 Object detection . 28
5.2.1 Cityscapes . 28
5.2.2 Traffic signs . 30

6 Summary . 32

References . 33

Appendix 1 – Non-Exclusive License for Reproduction and Publication of a
Graduation Thesis . 37

Appendix 2 – Filterable interface . 38

5

Appendix 3 – Found redundancies in CIFAR-10 dataset 39

Appendix 4 – Found redundancies in cityscapes dataset 41

Appendix 5 – Found redundancies in traffic lights dataset 44

6

List of Figures

1 An example of a neural network. 10
2 Predictions of a underfitted, robust and a overfitted model. 12
3 A 3D array and the resulting RGB image. 13

4 A pair of images from the traffic signs dataset. 15

5 A flowchart of the proposed method. 16
6 Visualization of a 2D point cloud being transformed to 1D by PCA. 18
7 Visualization of a 3D point cloud being transformed to 2D by UMAP. . . 18
8 2D point cloud and its minimum spanning tree. 19
9 CIFAR-10 dataset as a three dimensional point cloud. 21

10 Resnet32 model for CIFAR datasets. 23
11 CIFAR-10 filtered with %outlier = 50 %. 24
12 Comparison of different dataset filtering methods on the CIFAR-10 dataset. 25
13 Comparison of different dataset filtering methods on the CIFAR-10 dataset. 26
14 Comparison of different dataset filtering methods on animal classification

task. 27
15 Comparison of model scores trained with different dataset filtering methods

on the cityscapes dataset. 29
16 Semantically similar images in Cityscapes dataset. 29
17 Comparison of model scores trained with different dataset filtering methods

on the traffic signs dataset. 30
18 Outliers in traffic signs dataset. 31

7

List of Tables

1 Average test accuracy over 5 trials on the CIFAR-10 dataset. 25
2 Average test accuracy over 5 trials on the CIFAR-100 dataset. 26

8

1 Introduction

Neural networks are widely used to solve various complex tasks from facial recognition to
weather forecasting. The global market size was over $14.35 B in 2020 and is expected
to reach $152.61 B by 2030. [1] Neural networks mimic the human brain and in order to
teach it, neural networks need to be trained on data. [2]

Data science communities such as Kaggle [3] provide many datasets for training neural
network models. As the amount of available datasets increases, machine learning engineers
will value the quality of the dataset over quantity.

One of the quality metrics is the accuracy of the annotations which will impact the resulting
model negatively [4]. The quality control of annotations is usually done by humans [5]
and, therefore, is not easily automated.

Another metric is the quality of the dataset contents on a semantic level. Too many
duplicate or similar images of the same scenario, as well as irrelevant images, can worsen
the results of the trained model. [6]

The goal of this work is to detect and remove unneeded images from a dataset, comparing
the contents on a semantic level. The resulting subset should represent the original dataset
as accurately as possible, while improving or maintaining comparable model training
results and reducing the number of irrelevant and similar images. Additionally, the
algorithm must be generalized to work with any model and any dataset, even those without
annotations. Therefore, the specifics of a single problem are not considered.

This paper consists of six sections. Introduction concludes the first. The second section
describes the background information on the topic theoretically. The third section describes
related works and other dataset analysis tools. The fourth section explains the proposed
method. The fifth section presents the analysis of the method using multiple models and
datasets. The last section provides a summary.

9

2 Background

This section describes the necessary details and technologies to help understand the
proposed method.

2.1 Neural networks

Neural networks are a multi-layer networks of neurons that make a series of transformation
on the data to generate their own understanding of it. It consists of three types of layers:
input layer, hidden layers and output layer. [7] See Figure 1 for an illustration.

Figure 1. An example of a neural network. [7]

Hidden layers are responsible for learning the mapping between input and the desired
output. Each neuron has multiple inputs, weights, and an output, which is computed as
shown in equation 2.1. The activation function f(x) = y maps the resulting value into
a desired range. Examples include Rectified Linear Unit (ReLU) f(x) = max(0, x) and
Linear f(x) = x activation functions. [8] A feature map is the output of a specific hidden
layer. [9]

output = activation
(∑

(Weighti · Inputi) +Weightbias

)
(2.1)

10

Loss function computes the distance (loss) between the current and the expected output as
shown in equation 2.2. [10] Cross-entropy loss is usually used in classification tasks, where
the output of the network consists of probabilities. It is calculated as shown in equation 2.3
where M denotes the number of classes, yo,c is a binary indicator if class label c is the
correct classification for observation o and po,c is the predicted probability that o is of class
c. [11]

loss = loss_function(Outputcurrent, Outputexpected) (2.2)

−
M∑
c=1

yo,c log po,c (2.3)

Optimizer is an algorithm that minimizes the loss by gradually adjusting the weights
of the model. [12] This is done using back-propagation algorithm which calculates
gradients for each parameter of the model. An example of Stochastic Gradient Descent
(SGD) optimization is shown in equation 2.4 where C is the loss function, w denotes the
weights of the model and ϵ is the learning rate. The gradient ∂C

∂w
describes the direction

that the weights must be adjusted towards, to minimize the loss function. [13]

w = w − ϵ
∂C

∂w
(2.4)

Models are trained, by first randomizing all of the weights. The dataset is split into
batches. In each step, one batch of data is forwarded through the model. After each step,
the loss and the gradients are calculated and the weights are adjusted. An epoch is over,
when the whole dataset has been forwarded through once.

As seen on Figure 2, an underfit model does not learn the relation between input and output
enough, resulting in inaccurate guesses. An overfit model has learned the relation too well,
so it does not generalize the task in order to do well on new data. The model is typically
trained until the loss no longer decreases or the model has reached a state at which it could
overfit. The latter can be detected by evaluating the model on another dataset (test dataset)
after each epoch, which is not used for training.

11

Figure 2. Predictions of a underfitted, robust and a overfitted model. [14]

Training performance

Training neural networks on the Central Processing Unit (CPU) is slower than on the
Graphical Processing Unit (GPU) because they can handle more tasks at a time due to the
much higher core counts and memory bandwidth. [15] GPU cluster is a shared group of
computers that have a GPU on every node. [16]

To accelerate training, Taltech AI-LAB GPU cluster was used in this work. [17] It has six
nodes that are controlled by Slurm workload manager. Software for the jobs is prepared on
the head node and then the job is passed on to the workload manager which assigns the
required hardware resources to run it. An example Slurm job with 40 % of a GPU, 8 CPU
cores and 16 GB of memory is shown below.

s b a t c h −− g r e s mps : 4 0 −−cpus −per − t a s k =8 −−mem=16G . / t a s k . sh

2.2 Image datasets

Dataset size and quality are usually in direct correlation with the model’s results. An image
dataset usually consists of Red-Green-Blue (RGB) images and annotations.

RGB images are represented as 3D arrays, where one dimension describes color and the
others represent locations of each pixel. See Figure 3 for an example.

Annotations are descriptions that reflect the visual contents of each image. For classifica-
tion tasks, it can be an integer or a string describing the type of the image. Object detection
annotations need to describe the location and type of the objects present. Location is often
described as a bounding box, polygon or an anchor point. The majority of annotation is
done by humans with a market over $1 B. [18]

12

 (0, 0, 0) (1, 1, 1) (1, 0, 0)
(0, 1, 0) (0, 0, 1) (1, 1, 0)
(0, 0, 0.5) (0.5, 0.5, 0) (0, 0, 0)



Figure 3. A 3D array and the resulting RGB image.

2.2.1 Redundant images in the dataset

It is proven, that 10 % of the CIFAR-10 [19] and ImageNet [20] datasets are not needed for
image classification because of the semantic similarity of the images. [21] If the dataset
has too many similar images, the model is in risk of getting biased. It will focus more
on learning a specific scene or feature and it will reduce the generalization factor of the
result, thus reducing test accuracy. These redundancies can occur more often on video
datasets [22] and synthetic datasets, where multiple transformations of the same image or
scene are used.

2.2.2 Outliers in the dataset

Outliers are images, that stand out from the rest of the dataset. These could include images
that are incorrectly annotated, corrupted or noisy. FiftyOne [23] is a interactive tool to
detect these anomalies. In this approach, images that are not semantically similar to rest of
the dataset are considered as outliers.

13

3 Related works

This section describes other related approaches to the problem and discusses their potential
shortcomings.

3.1 The 10 % you don’t need

Semantic Redundancies in Image-Classification Datasets: The 10 % You Don’t Need [21]
filters the dataset by removing semantically similar images out of CIFAR-10, CIFAR-100
and ImageNet datasets. This was done using agglomerative clustering on the feature maps
taken from the last layers of the Resnet32 network.

The results were positive on the CIFAR-10 and ImageNet datasets. It was proved that upon
removing 5 % to 10 % of the dataset, the resulting model would have no drop in validation
accuracy on average.

The mentioned approach filters the data belonging to each class independently, so it
requires the dataset to be annotated. Also as some models can output feature maps with
over 100 000 dimensions, the performance of agglomerative clustering could get worse.

3.2 FiftyOne

FiftyOne [23] is a tool which can detect similar images, annotation faults and datapoint
uniqueness.

Similar image detection and uniqueness detection are done by comparing either the outputs
of the model or the raw RGB images. Because the output of the model can contain less
information about the semantic meaning of an image, this could lead to worse results than
using middle layers of the network. [21]

Searching for similarities in RGB images themselves does detect duplicates but similarity
detection can be inaccurate due to similar pixel values but different meanings of the image.
An example of a potentially misleading pair is shown in Figure 4 in which the images look
similar but the annotations of the signs are from different classes.

14

Figure 4. A pair of images from the traffic signs [24] dataset. The left image contains only
“other” classified signs and the right image contains only "prohibitory" classified signs.

15

4 Proposed method

This section describes the details of the method used. The implementation is done using
Python 3. PyTorch library is used to implement or import neural network models.

Sections 4.1 and 4.2 describe the proposed method in detail and a summarizing flowchart
of the method is shown in Figure 5.

Figure 5. A flowchart of the proposed method.

4.1 Model and dataset

The method proposed assumes that there already exists a model and a dataset. For the
model to create as accurate semantic representations of the dataset as possible, a part of
the dataset must be initially annotated. The annotated dataset was divided into train and
test datasets. The model is initially trained on the annotated train dataset until it converges.
To avoid overfitting, the best performing model of the training process, chosen by test
accuracy, will be considered as the baseline model.

Feature map extraction is done by using a forward hook in the baseline model in order to
extract feature maps of all images in a chosen layer. These images are not required to be
annotated.

The chosen layer to extract feature maps from should represent the whole input image on

16

a semantic level. Layers toward the start of the model tend to contain more information
about the pixel values of the image. As the output of the network contains only semantic
information about the image, a layer towards the end of the model should be chosen. Due
to the last layer often being low in dimensionality, often containing too little information
about the original image, it should also not be chosen. Fully-connected layers before the
output layer have shown the best performance. [21]

4.2 Filtering the feature maps

To filter the extracted feature maps, the user must specify the percentage %outlier of which
outliers are removed and the percentage %similar of which semantically similar images are
removed from the dataset. These numbers should be estimated by the user based on the
quality of the dataset.

Since the amount of memory and time required process and store the feature maps scales
with their amount Nmaps and their dimensionality Nfeatures like Nvariables = Nmaps ·
Nfeatures, feature map dimensionality Nfeatures is reduced with Principal Component
Analysis (PCA) or Uniform Manifold Approximation and Projection (UMAP).

Depending of the amount of memory available, the user can specify a parameter
Nreduce, the reduced feature count. The final dimensionality is calculated as Ndim =

min(Nreduce, Nmaps, Nfeatures). It is assumed that if more dimensions are kept then the
feature map will retain more accurate semantic information. So Nreduce is a trade-off
parameter between computational cost and the accuracy of the filtering process.

Principal Component Analysis

PCA rotates the angle of the point cloud in order to find a good fit to represent the data in
lower dimensions. Figure 6 illustrates a 2D point cloud being rotated. In the rotated point
cloud pc2 axis contains little information about the rotated dataset so it is eliminated. We
can represent the original 2D dataset with a single dimension pc1 that retains most of the
information.

Uniform Manifold Approximation and Projection

UMAP [26] reduces the dimensionality of a point cloud by first creating a graph represen-
tation of it and then optimizes a lower-dimensional graph to be as structurally similar as
possible to the original one. [27] Figure 7 shows how UMAP reduces the point cloud of a
3D elephant to a 2D point cloud while preserving the global relative structure of the points.

17

Figure 6. Visualization of a 2D point cloud being transformed to 1D by PCA. [25]

Figure 7. Visualization of a 3D point cloud being transformed to 2D by UMAP. [27]

18

4.2.1 Outlier detection

Outliers in the dataset should stand out by their dissimilarity (distance) to other feature
maps. To detect these outliers, Hierarchical Density-Based Spatial Clustering of Ap-
plications with Noise (HDBSCAN) was used. It is chosen due to its performance on
high-dimensional data. Because HDBSCAN is much slower on the CPU [28, 29], RAPIDS
core library cuml [30] was used to accelerate the computation on the GPU.

Considering the feature maps in Ndim-dimensional space as a complete graph weighted
with euclidean distances, HDBSCAN creates a minimum spanning tree. [31] A 2D illustra-
tion is show on Figure 8. After the vertexes are sorted decreasingly by distances to their
neighbors, outliers can be detected by taking the first ⌈%outlier ·Nmaps⌉ feature maps. The
rest of the points were detected as a single cluster.

Figure 8. 2D point cloud and its minimum spanning tree. [31]

4.2.2 Semantic similarity detection

Semantic similarity appears when multiple feature maps are close to each other. This can
be detected by using agglomerative clustering. [21, 30]

Agglomerative clustering starts by assigning each feature map to its own cluster. Two
closest clusters by cosine distance (equation 4.1) are merged until ⌊(100% −%outlier −
%similar) · Nmap⌋ clusters are left. In each cluster, the feature map closest to the cluster
center is kept. The rest are discarded as too semantically similar to it.

Distance(M1,M2) = 1− M⃗1M⃗2

||M1|| · ||M2||
(4.1)

19

4.2.3 Visualising the left out images

Due to the high dimensionality of the images and feature maps, visualising the whole
dataset on a semantic level is hard. [32] To counteract this, PCA or UMAP was used to
reduce the data to three dimensions. In three dimensions, the dataset can be plotted. In all
of dataset visualization plots, green points represent feature maps that are not filtered out.
Red points represent outliers. Blue points represent too semantically similar datapoints.
The lines from blue points point to the feature map that is in the center of its cluster. An
example can be seen on Figure 9.

Due to the finding of semantically similars and outliers is done with feature maps of Ndim

dimensions, the representation and locations of the left-out feature maps is not completely
accurate. As we lower Ndim, less information about the feature maps is retained so it is
assumed that filtering the dataset in higher dimensions is more accurate. For illustration,
filtering at Ndim = 3 the representation becomes accurate as shown in the lower image of
Figure 9.

4.3 Application

An application with a graphical user interface was made using Python tkinter [33] library.
The application requires the user to first create an implementation of an interface as shown
in Appendix 2. The PyTorch model returned should be trained so once the dataset is
forwarded through the model, the feature maps extracted contain as accurate semantic
information as possible. The filterable dataset returned should be an iterable of batches of
data. Each batch must also have metadata attached which describes each item in the batch.
This could be a file name, an index or anything else unique.

After the user has chosen the layer for the feature maps to be extracted from, has specified
%outlier and %similar and optionally the parameter Nreduce, the dataset can be filtered. The
application plots the dataset as a three dimensional point cloud with colored outliers and
similars. If optional get_image function in the Python interface is also implemented, the
application shows the left-out images and the reason (other image) why it is filtered out.
Finally, the user can export the metadata of each item in the filtered dataset to a text file.

The application is open source and publicly available in a GitHub repository. [34] The
repository includes a "readme" file that describes the setup process and a detailed descrip-
tion of the usage. Two example models with datasets are provided to either be filtered
using the application or with Python code.

20

Figure 9. CIFAR-10 [19] dataset as a three dimensional point cloud filtered with %outlier =
5 % and %similar = 5 %. Upper image Ndim = Nfeatures. Lower image Ndim = 3.
Downscaled using PCA.

21

4.4 Filtered dataset evaluation

To compare the quality of a found filtered dataset by the proposed method, the dataset is
also filtered by other methods: FiftyOne [23] and random subsampling.

Random subsampling involves dropping random images from a dataset until the target
dataset size is attained.

To filter a dataset using FiftyOne, image uniqueness computation was used to find similar
images from a dataset. For each image, a uniqueness value was calculated, and the least
unique images were dropped until the target dataset size is attained.

Neural network models are trained on a training dataset, separately filtered by each filtering
method.

For image classification tasks, the test accuracy was measured. Higher test accuracy
indicates a better trained model, thus a higher quality dataset. For object detecion tasks, a
score metric (see Section 5.2) on a test dataset was measured. Higher model score indicates
a higher quality dataset.

22

5 Analysis

This section evaluates and compares the method proposed on multiple models and datasets.
Analysis of the results are also provided with visual explanations.

5.1 Image classification

5.1.1 CIFAR-10 & CIFAR-100

For CIFAR-10 and CIFAR-100 [19] datasets, a Resnet32 model [35, 36] was used. SGD
was used with momentum coefficient of 0.9, weight decay of 0.0001, and the learning rate
was cosine annealed from 0.1 to 0 over 100 000 steps with a linear warmup for the first
2 500 steps. The training was done for 100 000 steps with a batch size of 128, and the best
model based on test accuracy was chosen to avoid overfitting. For filtering, the layer to
extract features from was the output of the average pooling layer. An image that shows
the location of average pooling layer in Resnet32 model is seen on Figure 10. The feature
maps extracted contained 64 features, so dimensionality reduction was not necessary. The
training process was identical to [21] but the results are not directly comparable because in
the experiments done in this work, the average test accuracies were consistently higher.

Figure 10. Resnet32 model for CIFAR datasets. [37]

CIFAR-10

CIFAR-10 dataset consists of 60 000 RGB images with dimensions of 32 pixels × 32 pixels
and ten classes. 10 000 images are used for testing and 50 000 for training. During training,
each image was normalized. To increase the variability of the dataset, during each epoch,

23

the training images were sometimes horizontally flipped or cropped from a random side by
four pixels.

Table 1 compares the average test accuracy measured over five trials in multiple dataset
sizes and subset finding methods. Using randomly chosen subsets of the dataset (random
subsampling) shows that the drop in test accuracy is linear. Using the FiftyOne uniqueness
method, mostly greater results are found over random subsampling.

With the proposed method, filtering only outliers from the dataset gives greater results
when %outlier is not over 10 %. This indicates that there are not many outliers in the dataset.
It should also be noticed that by removing over 10 % of outliers, the model performs very
poorly. This could be due to HDBSCAN detecting a whole part of the dataset as an outlier
cluster so part of the dataset representation is completely lost as seen in Figure 11.

Figure 11. CIFAR-10 filtered with %outlier = 50 %. A part of the dataset circled with blue
is detected as an outlier cluster.

Filtering semantically similar images from the dataset generally results in the best resulting
model accuracies. When filtering both types of redundancies equally at %outlier = 10 %
and %similar = 10 %, the resulting model accuracy is still higher compared to using the
whole dataset. Some redundant images can be seen in Appendix 3.

24

Table 1. Average test accuracy over 5 trials on the CIFAR-10 dataset.

Dataset
percentage

Random sub-
sampling

FiftyOne Semantically
similar

Outliers Half outliers,
half semantically
similar

100 % 93.12 - - - -

95 % 93.09 92.93 93.25 93.05 93.08

90 % 92.76 93.20 93.20 93.17 93.13

80 % 92.67 92.92 93.00 89.30 93.19
50 % 90.75 91.06 91.97 59.43 86.75

Figure 12 illustrates the resulting model accuracy comparison when filtering the dataset
with Random subsampling, FiftyOne uniqueness method and the proposed method.

Figure 12. Comparison of different dataset filtering methods on the CIFAR-10 dataset.

CIFAR-100

CIFAR-100 dataset has the same shape and size as the CIFAR-10 dataset but it has images
of 100 classes. The image preprocessing used was also identical.

Table 2 represents the average test accuracy measured over five trials with multiple dataset
sizes and subset finding methods on the CIFAR-100 dataset. As seen in the table, redun-
dancies in the dataset were mostly found on similar images. Removing outliers impacted
the results negatively.

25

It should be noted that random subsampling outperformed both filtering methods using
only 50 % of the dataset. This could be due to removing too many images of a single class
which is less likely to occur with random subsampling.

Table 2. Average test accuracy over 5 trials on the CIFAR-100 dataset.

Dataset
percentage

Random sub-
sampling

FiftyOne Semantically
similar

Outliers Half outliers,
half semantically
similar

100 % 68.86 - - - -

95 % 68.74 68.74 69.21 68.24 68.68

90 % 68.28 68.08 68.79 67.69 68.59

80 % 67.16 66.88 67.56 65.95 67.51

50 % 62.13 61.11 59.18 58.41 61.58

Figure 13 compares the resulting model accuracy when filtering the dataset with random
subsampling, FiftyOne uniqueness method and the proposed method.

Figure 13. Comparison of different dataset filtering methods on the CIFAR-10 dataset.

5.1.2 Animal classification

Due to the worse results on the CIFAR-100 dataset when finding a smaller (≤ 50 %) subset
of a dataset, an animal classification dataset was tested. Similarly to [38], only 3 classes
(Cheetah, Hyena and Tiger) were used from the Cheetah, Hyena, Jaguar and Tiger [39]

26

dataset. The resulting dataset consists of 2 700 training and 300 testing RGB images with
dimensions 400 pixels × 400 pixels.

For the neural network, a pretrained Resnet18 model [36, 40] was used. Similarly to
Resnet32, the last avgpool layer was used for extracting feature maps. For training the
model, SGD optimizer was used with a learning rate of 0.001. The model was trained until
no test accuracy improvement was found during the last five epochs. For each following
result, the model was trained 15 times and the median test accuracy was measured.

The model achieved a maximum accuracy of 99.33 % with the full dataset. Figure 14
summarizes the results of finding smaller subsets of the dataset. It is seen that the proposed
and FiftyOne filtering methods are significantly worse compared to random subsampling.

Figure 14. Comparison of different dataset filtering methods on animal classification task.

This behaviour is similar to the 50 % result with the CIFAR-100 dataset (Table 2). Not
retaining the ratios of the image classes causes these results. For example, the animal
classification dataset has 900 images of each class and if one of the classes is sparsely
represented in the filtered dataset, the resulting trained model can not distinguish this class
from the others well enough.

A solution to this would require the dataset to be annotated in order for each class to be
represented more equally in the filtered dataset. Another solution is to first annotate the
dataset as accurately as possible with the model itself. Then it is possible to filter using
these approximated annotations. However, using ground truth values for input data filtering
is outside of the scope of this thesis.

27

5.2 Object detection

For object detection tasks, YOLOv5 [41] model was used. During feature map extraction
for the proposed method, the output of the detect layer in the head of YOLOv5 model
is chosen. Similarly to section 5.1, the datasets are filtered with various parameters: all
similars, all outliers and half of each.

For training YOLOv5 models, SGD optimizer was used with a learning rate of 0.01. All
images were scaled to 640 × 640 resolution. After each training, the best performing model
was picked by the Mean Average Precision (mAP) metric. A combination of mAP50 and
mAP50-95 scores weighted 0.1 and 0.9 were used respectively and the total score of the
model is calculated as shown in equation 5.1.

score = 0.1 · scoremAP50 + 0.9 · scoremAP50−95 (5.1)

5.2.1 Cityscapes

A part of the Cityscapes dataset [42] is used with 2 500 images for the train and 475 images
for the test dataset. The YOLOv5 model was trained for 120 epochs. For each result, the
average score was measured over 3 trials. As the extracted feature map dimensionality
Nfeatures = 327 600 was large, the feature maps were reduced to Ndim = 2 500 using PCA
or UMAP.

The results are shown in Figure 15. It is apparent that PCA mostly outperformed UMAP. It
should be noted that by filtering the dataset with the proposed method, the model’s results
are consistently higher compared to random subsampling, especially when ≥ 80 % of the
dataset is retained.

Figure 16 shows resized similar images detected in cityscapes dataset. The left image was
the center-most of its cluster during agglomerative clustering so it is kept in the dataset.
The others (on the right) are discarded due to being too similar to it. Additional redundant
images can be seen in Appendix 4.

28

Figure 15. Comparison of model scores trained with different dataset filtering methods on
the cityscapes dataset.

Figure 16. Semantically similar images in Cityscapes dataset.

29

5.2.2 Traffic signs

The traffic signs dataset [24] contains 630 training images and 111 test images with
4 different classifications for traffic signs. The extracted feature map dimensionality
Nfeatures = 226 800 was large, they were reduced to Ndim = 630 using PCA or UMAP.
For each result, the YOLOv5 model was trained five times for 300 epochs and the average
result was calculated.

Results for the traffic signs dataset are shown in Figure 17. By removing 2.5 % of similars
and 2.5 % of outliers, the model indicates significant improvement in measured score using
UMAP dimensionality reduction.

Figure 17. Comparison of model scores trained with different dataset filtering methods on
the traffic signs dataset.

Some of the detected outliers are shown in Figure 18. The left-most image is blurry, so it
may stand out. The center image has too bright lighting compared to the rest of the dataset.
Right image has the traffic sign barely visible due to the darkness. Additional redundant
images can be seen in Appendix 5.

30

Figure 18. Outliers in traffic signs dataset.

31

6 Summary

Filtering an image dataset for training a neural network is useful when the quality of
the dataset contents is not thoroughly checked. The purpose of this work was to remove
redundancies in datasets that minimally reduce the performance of a neural network model
trained on it. To find these redundancies, an algorithm with an application was proposed.

The proposed algorithm creates a semantic representation of a dataset from the perspective
of the trainable neural network. The representation can be used to analyse the dataset
visually and computationally. Multiple clustering and high-dimensional data algorithms
with GPU acceleration were used to effectively detect outliers and semantically too similar
images in the dataset that potentially reduce the quality of the dataset.

Multiple datasets and models were tested and it was observed that upon removing cer-
tain amounts of the detected redundancies, the model’s accuracy does not decrease. In
contrast, when a random subset of a dataset is found, the drop in model accuracy was in
correlation with the decreasing subset sizes. The proposed method was also compared
with FiftyOne [23] image uniqueness filtering method and it was found that in most cases,
the proposed method significantly outperformed it.

The proposed solution could be improved in multiple ways. Firstly, the user must specify
multiple hyperparameters about how much of the dataset is filtered. Finding these param-
eters is a time consuming task because for accurate results, it requires the model to be
trained with each generated subset and the resulting models must be compared. Secondly,
the algorithm can be improved by including generated annotations in the filtering process
to avoid removing too much data of a single type. This is detailed and demonstrated
in Section 5.1.2 where the proposed method failed to find a sufficient small subset of a
dataset.

As the proposed method is as generalized as possible: it works with any deep neural
network and with any (including unannotated) dataset, the results should also be verified
in other machine learning applications such as natural language processing or numerical
analysis.

32

References

[1] Y Beesetty et al. Neural Network Market Statistics: 2030. [Accessed: 22-05-
2023]. URL: https://www.alliedmarketresearch.com/neural-
network-market.

[2] Larry Hardesty. Explained: Neural networks. [Accessed: 22-05-2023]. URL:
https://news.mit.edu/2017/explained-neural-networks-

deep-learning-0414.

[3] Kaggle: Your Machine Learning and Data Science Community. [Accessed: 19-04-
2023]. URL: https://www.kaggle.com.

[4] Andreas Lindholm, Luca Caltagirone, and Olof Wahlström. Why more training data

cannot make up for poor annotations. [Accessed: 19-04-2023]. URL: https://
www.kognic.com/articles/why-more-training-data-cannot-

make-up-for-poor-annotations/.

[5] Jordan Carlson. Will AI Replace the Humans In the Loop? [Accessed: 19-04-
2023]. URL: https://blog.cloudfactory.com/will-ai-replace-
humans-in-loop.

[6] SelectStar. Creating the Best Quality Image Dataset. [Accessed: 19-04-2023]. URL:
https://selectstar- ai.medium.com/creating- the- best-

quality-image-dataset-720f612944ed.

[7] Prince Canuma. Understanding Neural Networks. [Accessed: 19-04-2023]. URL:
https://prince-canuma.medium.com/understanding-neural-

networks-22b29755abd9.

[8] Pragati Baheti. Activation Functions in Neural Networks [12 Types & Use Cases].
[Accessed: 19-04-2023]. URL: https://www.v7labs.com/blog/neural-
networks-activation-functions.

[9] Chris Kevin. Feature Maps. [Accessed: 19-04-2023]. URL: https://medium.
com/@chriskevin_80184/feature-maps-ee8e11a71f9e.

[10] Christophe Pere. What are Loss Functions? [Accessed: 19-04-2023]. URL:
https://towardsdatascience.com/what-is-loss-function-

1e2605aeb904.

[11] Loss Functions. [Accessed: 19-04-2023]. URL: https://ml-cheatsheet.
readthedocs.io/en/latest/loss_functions.html.

33

https://www.alliedmarketresearch.com/neural-network-market
https://www.alliedmarketresearch.com/neural-network-market
https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
https://www.kaggle.com
https://www.kognic.com/articles/why-more-training-data-cannot-make-up-for-poor-annotations/
https://www.kognic.com/articles/why-more-training-data-cannot-make-up-for-poor-annotations/
https://www.kognic.com/articles/why-more-training-data-cannot-make-up-for-poor-annotations/
https://blog.cloudfactory.com/will-ai-replace-humans-in-loop
https://blog.cloudfactory.com/will-ai-replace-humans-in-loop
https://selectstar-ai.medium.com/creating-the-best-quality-image-dataset-720f612944ed
https://selectstar-ai.medium.com/creating-the-best-quality-image-dataset-720f612944ed
https://prince-canuma.medium.com/understanding-neural-networks-22b29755abd9
https://prince-canuma.medium.com/understanding-neural-networks-22b29755abd9
https://www.v7labs.com/blog/neural-networks-activation-functions
https://www.v7labs.com/blog/neural-networks-activation-functions
https://medium.com/@chriskevin_80184/feature-maps-ee8e11a71f9e
https://medium.com/@chriskevin_80184/feature-maps-ee8e11a71f9e
https://towardsdatascience.com/what-is-loss-function-1e2605aeb904
https://towardsdatascience.com/what-is-loss-function-1e2605aeb904
https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html
https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html

[12] Musstafa. Optimizers in Deep Learning. [Accessed: 19-04-2023]. URL: https:
//medium.com/mlearning-ai/optimizers-in-deep-learning-

7bf81fed78a0.

[13] Simeon Kostadinov. Understanding Backpropagation Algorithm. [Accessed: 19-04-
2023]. URL: https://towardsdatascience.com/understanding-
backpropagation-algorithm-7bb3aa2f95fd.

[14] Anup Bhande. What is underfitting and overfitting in machine learning and how

to deal with it. [Accessed: 19-04-2023]. URL: https : / / medium . com /
greyatom / what - is - underfitting - and - overfitting - in -

machine-learning-and-how-to-deal-with-it-6803a989c76.

[15] Shachi Shah. Do we really need GPU for Deep Learning? - CPU vs GPU. [Accessed:
19-04-2023]. URL: https://medium.com/@shachishah.ce/do-we-
really-need-gpu-for-deep-learning-47042c02efe2.

[16] How to Build Your GPU Cluster. [Accessed: 19-04-2023]. URL: https://www.
run.ai/guides/multi-gpu/gpu-clusters.

[17] Oluwandabira Alawode et al. Taltech AI-LAB documentation. [Accessed: 19-04-
2023]. URL: https://gitlab.cs.ttu.ee/ai-lab/doc.

[18] Cognilytica. “Data Engineering, Preparation, and Labeling for AI”. In: (2019).

[19] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features from
tiny images”. In: (2009).

[20] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE

conference on computer vision and pattern recognition. Ieee. 2009, pp. 248–255.

[21] Vighnesh Birodkar, Hossein Mobahi, and Samy Bengio. “Semantic Redundancies
in Image-Classification Datasets: The 10% You Don’t Need”. In: arXiv preprint

arXiv:1901.11409 (2019).

[22] Anas. How to filter redundant data. [Accessed: 19-04-2023]. URL: https://www.
lightly.ai/post/how-redundant-is-your-dataset.

[23] FiftyOne 0.18.0 documentation — voxel51.com. https://voxel51.com/
docs/fiftyone/. [Accessed 19-04-2023].

[24] Valentyn Sichkar. Traffic Signs Dataset in YOLO format. [Accessed: 19-04-2023].
URL: https://www.kaggle.com/datasets/valentynsichkar/
traffic-signs-dataset-in-yolo-format.

[25] Victor Powell and Lewis Lehe. Principal Component Analysis Explained Visually.
[Accessed: 19-04-2023]. URL: https://setosa.io/ev/principal-
component-analysis/.

34

https://medium.com/mlearning-ai/optimizers-in-deep-learning-7bf81fed78a0
https://medium.com/mlearning-ai/optimizers-in-deep-learning-7bf81fed78a0
https://medium.com/mlearning-ai/optimizers-in-deep-learning-7bf81fed78a0
https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd
https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd
https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76
https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76
https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76
https://medium.com/@shachishah.ce/do-we-really-need-gpu-for-deep-learning-47042c02efe2
https://medium.com/@shachishah.ce/do-we-really-need-gpu-for-deep-learning-47042c02efe2
https://www.run.ai/guides/multi-gpu/gpu-clusters
https://www.run.ai/guides/multi-gpu/gpu-clusters
https://gitlab.cs.ttu.ee/ai-lab/doc
https://www.lightly.ai/post/how-redundant-is-your-dataset
https://www.lightly.ai/post/how-redundant-is-your-dataset
https://voxel51.com/docs/fiftyone/
https://voxel51.com/docs/fiftyone/
https://www.kaggle.com/datasets/valentynsichkar/traffic-signs-dataset-in-yolo-format
https://www.kaggle.com/datasets/valentynsichkar/traffic-signs-dataset-in-yolo-format
https://setosa.io/ev/principal-component-analysis/
https://setosa.io/ev/principal-component-analysis/

[26] Leland McInnes, John Healy, and James Melville. “Umap: Uniform manifold
approximation and projection for dimension reduction”. In: arXiv preprint

arXiv:1802.03426 (2018).

[27] Andy Coenen and Adam Pearce. Understanding UMAP. [Accessed: 21-05-2023].
URL: https://pair-code.github.io/understanding-umap/.

[28] Nick Becker and Corey Nolet. Faster HDBSCAN Soft Clustering with RAPIDS

cuML. [Accessed: 19-04-2023]. URL: https://developer.nvidia.com/
blog/faster-hdbscan-soft-clustering-with-rapids-cuml/.

[29] Sebastian Raschka, Joshua Patterson, and Corey Nolet. Machine Learning in Python:

Main developments and technology trends in data science, machine learning, and

artificial intelligence. 2020. arXiv: 2002.04803 [cs.LG].

[30] Nvidia. Cuml 23.02.00 API reference. [Accessed: 19-04-2023]. URL: https:
//docs.rapids.ai/api/cuml/stable/api.html.

[31] Leland McInnes, John Healy, and Steve Astels. How HDBSCAN Works. [Accessed:
19-04-2023]. URL: https://hdbscan.readthedocs.io/en/latest/
how_hdbscan_works.html.

[32] Mario Köppen. “The curse of dimensionality”. In: 5th online world conference on

soft computing in industrial applications (WSC5). Vol. 1. 2000, pp. 4–8.

[33] tkinter — Python interface to Tcl/Tk. [Accessed: 21-05-2023]. URL: https://
docs.python.org/3/library/tkinter.html.

[34] Karl Raud. Dataset filterer. [Accessed: 21-05-2023]. URL: https://github.
com/Kiili/DataFilterer.

[35] Yerlan Idelbayev. Proper ResNet Implementation for CIFAR10/CIFAR100 in

PyTorch. https : / / github . com / akamaster / pytorch _ resnet _
cifar10. [Accessed: 19-04-2023].

[36] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings

of the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–
778.

[37] Pablo Ruiz. ResNets for CIFAR-10. [Accessed: 19-04-2023]. URL: https://
towardsdatascience.com/resnets-for-cifar-10-e63e900524e0.

[38] Shubhankar Nandakumar. Animal Classification using PyTorch and Convolutional

Neural Networks. [Accessed: 03-03-2023]. URL: https://towardsdatascience.
com/animal-classification-using-pytorch-and-convolutional-

neural-networks-78f2c97ca160.

35

https://pair-code.github.io/understanding-umap/
https://developer.nvidia.com/blog/faster-hdbscan-soft-clustering-with-rapids-cuml/
https://developer.nvidia.com/blog/faster-hdbscan-soft-clustering-with-rapids-cuml/
https://arxiv.org/abs/2002.04803
https://docs.rapids.ai/api/cuml/stable/api.html
https://docs.rapids.ai/api/cuml/stable/api.html
https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html
https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html
https://github.com/Kiili/DataFilterer
https://github.com/Kiili/DataFilterer
https://github.com/akamaster/pytorch_resnet_cifar10
https://github.com/akamaster/pytorch_resnet_cifar10
https://towardsdatascience.com/resnets-for-cifar-10-e63e900524e0
https://towardsdatascience.com/resnets-for-cifar-10-e63e900524e0
https://towardsdatascience.com/animal-classification-using-pytorch-and-convolutional-neural-networks-78f2c97ca160
https://towardsdatascience.com/animal-classification-using-pytorch-and-convolutional-neural-networks-78f2c97ca160
https://towardsdatascience.com/animal-classification-using-pytorch-and-convolutional-neural-networks-78f2c97ca160

[39] TODO. Cheetah, Hyena, Jaguar and Tiger. [Accessed: 21-05-2023]. URL: https:
//www.kaggle.com/datasets/iluvchicken/cheetah-jaguar-

and-tiger.

[40] Deep residual networks pre-trained on ImageNet. [Accessed: 21-05-2023]. URL:
https://pytorch.org/hub/pytorch_vision_resnet/.

[41] Glenn Jocher et al. ultralytics/yolov5. [Accessed: 19-04-2023]. URL: https://
github.com/ultralytics/yolov5.

[42] Marius Cordts et al. “The cityscapes dataset for semantic urban scene understand-
ing”. In: Proceedings of the IEEE conference on computer vision and pattern

recognition. 2016, pp. 3213–3223.

36

https://www.kaggle.com/datasets/iluvchicken/cheetah-jaguar-and-tiger
https://www.kaggle.com/datasets/iluvchicken/cheetah-jaguar-and-tiger
https://www.kaggle.com/datasets/iluvchicken/cheetah-jaguar-and-tiger
https://pytorch.org/hub/pytorch_vision_resnet/
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5

Appendix 1 – Non-Exclusive License for Reproduction and
Publication of a Graduation Thesis1

I Karl Raud

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my
thesis “Dataset Filtering for Image Classification and Object Detection Models”,
supervised by René Pihlak
1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library
of Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to
be entered in the digital collection of the library of Tallinn University of
Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection Act
or rights arising from other legislation.

22.05.2023

1The non-exclusive licence is not valid during the validity of access restriction indicated in the student’s
application for restriction on access to the graduation thesis that has been signed by the school’s dean,
except in case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation
thesis is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted,
by the set deadline, the student defending his/her graduation thesis consent to reproduce and publish the
graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive
license shall not be valid for the period.

37

Appendix 2 - Filterable interface

1 class FilterableInterface:

2
3 def get_model(self) -> torch.nn.Module:

4 """

5 :return: pytorch model

6 """

7 raise NotImplementedError

8
9 def get_filterable_dataset(self) -> Iterable:

10 """

11 batch: 1 batch of input to model.

12 Batch contents must be with constant shape

13
14 args: any metadata for each element in :batch:

15
16 :return: Iterable. Each item like (batch, args)

17 """

18 raise NotImplementedError

19
20 def get_image(self, arg) -> np.ndarray:

21 """

22 optional for viewing images in the application

23
24 If :arg: is used as image file path, it can be implemented:

25 PIL: np.array(PIL.Image.open(arg))

26 OpenCV: cv2.imread(arg)[:,:,::-1] # BGR to RGB

27
28 :return: channels-last RGB image from the

29 filterable dataset specified by its :arg:

30 """

31 raise NotImplementedError

38

Appendix 3 – Found redundancies in CIFAR-10 dataset

Redundant similar cars

Redundant similar airplanes

39

Redundant similar ships

Redundant outliers

40

Appendix 4 – Found redundancies in cityscapes dataset

Redundant similarities

Redundant similarities

41

Redundant similarities

Redundant similarities

42

Redundant similarities

Redundant outliers

43

Appendix 5 – Found redundancies in traffic lights dataset

Redundant similarities

Redundant similarities

44

Redundant similarities

Redundant similarities

45

Redundant outliers

46

	Introduction
	Background
	Neural networks
	Image datasets
	Redundant images in the dataset
	Outliers in the dataset

	Related works
	The 10 % you don't need
	FiftyOne

	Proposed method
	Model and dataset
	Filtering the feature maps
	Outlier detection
	Semantic similarity detection
	Visualising the left out images

	Application
	Filtered dataset evaluation

	Analysis
	Image classification
	CIFAR-10 & CIFAR-100
	Animal classification

	Object detection
	Cityscapes
	Traffic signs

	Summary
	References
	Appendix 1 – Non-Exclusive License for Reproduction and Publication of a Graduation Thesis
	Appendix 2 – Filterable interface
	Appendix 3 – Found redundancies in CIFAR-10 dataset
	Appendix 4 – Found redundancies in cityscapes dataset
	Appendix 5 – Found redundancies in traffic lights dataset

