
Tallinn 2022

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Yuzhou Liu 221144 IAFM

Using Reinforcement Learning for Multiple

Way-points Path Planning of Single Mobile

Robot in the Dynamic Obstacle Environment

Master's thesis

Supervisor: Andreas Bresser

 Dipl.-Inf

 Laura Piho

 Ph. D

 Pascual Campoy

 Prof.

Tallinn 2022

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Yuzhou Liu 221144 IAFM

Stiimulõppe Rakendamine Mobiilse Roboti

Mitmepunktilise Teekonna Planeerimiseks

Dünaamilises Takistuskeskkonnas

Magistritöö

Juhendaja: Andreas Bresser

 Dipl.-Inf

 Laura Piho

 Ph. D

 Pascual Campoy

 Prof.

i

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Yuzhou Liu

08.08.2022

ii

Abstract

Nowadays, mobile robots are applied to increasingly complex scenarios. Whether it is a

closed scenario, such as the transportation of goods or medical supplies in large

supermarkets, factories and hospitals, or an open scenario, such as the delivery of

unmanned vehicle delivery service in urban roads, all of them put forward higher

requirements for the multi-destination(waypoint) path planning performance of the

mobile robot. The purpose of this thesis is to design and prove a multi-waypoint path

planning algorithm for the mobile robot, which combines reinforcement learning and

heuristic search algorithm. so that the mobile robot can carry out continuous multi-

waypoint path planning in a dynamic environment with multiple moving obstacles.

The algorithm first selects the next waypoint through the Q-learning algorithm, and then

performs path planning between the current position of the robot and the next waypoint

through the Anytime Repairing A* (ARA*) algorithm as the global planner. At the same

time, the Two-Step Vector Field Histogram with Look-Ahead Verification with Recovery

method (2S-VFH*-R) algorithm is used as the local planner to plan the avoidance or

escape path when the mobile robot encounters a moving obstacle.

This thesis builds a simple Q-learning problem model to solve the Traveling Salesman

Problem (TSP). The performance of Q-learning algorithm is evaluated, which proves the

feasibility of using Q-learning combined with heuristic search algorithm to solve the multi

waypoint path planning problem in static simulation environment. Finally, the thesis

analyses the performance of the multi-waypoint path planning algorithm and draws a

conclusion that in the unknown dynamic environment, the algorithm has better

performance than the traditional greedy method (local optimal solution) with the

minimum overall time taken as the optimization objective.

This thesis is written in English and is 48 pages long, including 7 chapters, 21 figures and

3 tables.

iii

Annotatsioon

Stiimulõppe Rakendamine Mobiilse Roboti Mitmepunktilise Teekonna

Planeerimiseks Dünaamilises Takistuskeskkonnas

Tänapäeval rakendatakse mobiilseid roboteid üha keerukamate stsenaariumide jaoks.

Olgu tegemist suletud stsenaariumiga, nagu kaupade või meditsiinitarvete transport

suurtes supermarketites, tehastes ja haiglates, või avatud stsenaariumiga, nagu

mehitamata sõidukite kohaletoimetamise teenuse osutamine linnateedel, kõik need

esitavad kõrgemad nõuded mobiilse roboti mitme sihtkoha (teekonnapunkti) tee

planeerimise jõudlus. Käesoleva lõputöö eesmärk on kavandada ja tõestada mobiilse

roboti jaoks mitme teekonnapunktiga teeplaneerimise algoritm, mis ühendab endas

armeerimisõppe ja heuristilise otsingu algoritmi. et mobiilne robot saaks dünaamilises

keskkonnas, kus on palju liikuvaid takistusi, teostada pidevat mitme teekonnapunkti tee

planeerimist.

Algoritm valib esmalt järgmise teekonnapunkti läbi Q-õppealgoritmi ja seejärel planeerib

roboti praeguse asukoha ja järgmise teekonnapunkti vahel teed globaalse planeerijana läbi

Anytime Repairing A* (ARA*) algoritmi. Samal ajal kasutatakse kaheastmelist

vektorvälja histogrammi koos taastamismeetodiga ettevaatava kontrolliga (2S-VFH*-R)

algoritmi kohaliku planeerijana vältimis- või põgenemistee kavandamisel, kui mobiilne

robot satub liikuva takistusega. .

See lõputöö koostab lihtsa Q-õppe probleemimudeli, mis lahendab reisiva müügimehe

probleemi (TSP). Hinnatakse Q-õppe algoritmi jõudlust, mis tõestab Q-õppe kasutamise

teostatavust koos heuristilise otsingu algoritmiga mitme teekonnapunkti tee planeerimise

probleemi lahendamiseks staatilises simulatsioonikeskkonnas. Lõpuks analüüsib lõputöö

mitme teekonnapunktiga teeplaneerimise algoritmi jõudlust ja teeb järelduse, et

tundmatus dünaamilises keskkonnas on algoritm parema jõudlusega kui traditsiooniline

ahne meetod (lokaalne optimaalne lahendus), mille optimeerimiseks kulub minimaalne

koguaeg. objektiivne.

iv

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 48 leheküljel, 7 peatükki, 21

joonist, 3 tabelit.

v

List of abbreviations and terms

RL Reinforcement Learning

DRL Deep Reinforcement Learning

PPO Proximal Policy Optimization

DQN Deep Q-Learning

MPNet Motion Planning Network

TSP Traveling Salesman Problem

NPC Non-deterministic Polynomial Complete problem

VRP Vehicle Routing Problem

ARA* Anytime Repairing A*

AD* Anytime Dynamic A*

IMUs Inertial Measurement Units

AMCL Adaptive Monte Carlo Localization

DWA Dynamic Window Approach

DWB Dynamic Window B

VFH* Vector Field Histogram with Look-Ahead Verification

2S-VFH*-R Two-Step VFH* with Recovery method

MDP Markov Decision Process

TD Temporal Difference

ROS Robot Operating System

XML eXtensible Markup Language

URDF Unified Robot Description Format

SDF Simulation Description Format

vi

Table of contents

List of figures .. viii

List of tables ... x

1 Introduction ... 1

1.1 Motivation .. 1

1.2 Related Work .. 3

1.3 The MiR100 Robot ... 6

1.3.1 Localization ... 8

1.3.2 Navigation ... 9

2 Fundamentals ... 15

2.1 The Traveling Salesman Problem (TSP) .. 15

2.2 Greedy algorithm .. 15

2.2.1 Greedy algorithm to solve TSP ... 16

2.3 Reinforcement Learning (RL) .. 17

2.3.1 Markov Decision Process (MDP) .. 19

2.3.2 Discounted Return for long-term strategies .. 20

2.3.3 Q-Learning: Learning optimal action-value function 21

2.3.4 Explore-exploit dilemma: Epsilon-greedy exploration 24

2.3.5 Transforming the TSP to a RL problem .. 25

3 Simulation Environment .. 26

3.1 Gazebo simulator .. 26

3.1.1 Static Environment .. 28

3.1.2 Moving Obstacles .. 29

4 Methods and Setup .. 30

4.1 Navigation Stack Setup .. 30

4.2 Task Setup .. 30

4.2.1 Static Environment Setup .. 32

4.2.2 Dynamic Environment Setup .. 33

4.3 Experimental Group Setup (RL-Agent) ... 35

4.3.1 Observation Space ... 36

vii

4.3.2 Action Space .. 36

4.3.3 Reward Functions .. 36

4.3.4 Hyperparameters .. 37

4.4 Control Group Setup (Greedy Method) .. 38

5 Evaluation .. 39

5.1 Static Environment ... 40

5.1.1 RL-Agent ... 41

5.1.2 Greedy Method .. 42

5.2 Dynamic Environment .. 42

5.2.1 RL-Agent ... 43

5.2.2 Greedy Method .. 44

6 Conclusion ... 45

7 Future Work ... 47

7.1 Improvement 1 .. 47

7.2 Improvement 2 .. 47

Reference .. 49

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 52

viii

List of figures

Figure 1. MiR100 robot of the company Mobile Industrial Robots [14] 6

Figure 2. Sensor setup of the mobile MiR100 robot [15] ... 7

Figure 3. The failed and successful localization [16] .. 9

Figure 4. Flow chart of the navigation and robot system [17]....................................... 10

Figure 5. Local costmap and global cost map .. 11

Figure 6. Two-step VFH*: The thick curve (white) is the global path the robot should

have followed, and the thick line (dark blue) and thin line (green) connected to it are the

global path the robot has travelled.[9] .. 14

Figure 7. Reinforcement learning in dog training [31] .. 18

Figure 8. Formulate the RL problem [32] .. 19

Figure 9. The Q learning algorithm process [35] .. 24

Figure 11. The 3D map of the simulation environment .. 28

Figure 10. The 2D map of the simulation environment (Area: 1435 m2; Length: 41 m,

Width: 35 m) ... 28

Figure 12. The 3D model of the moving obstacle (Purple cuboid: 1×1×1.8 m). The

yellow arrow indicates the direction in which the obstacle moves. 29

Figure 13. The location of the 6 waypoints in the global map 31

Figure 14. Legend for waypoints in gazebo（The locations of the waypoints in the

diagram are for illustration purposes only, not the actual locations in the simulated

environment.） ... 32

Figure 15. The static environment (The blue floating spheres represent the waypoints) 33

Figure 16. The dynamic environment with traffic congestion areas (yellow area) 33

Figure 17. The trajectories and directions (green dashed arrow) of all 7 moving

obstacles (blue square) ... 34

Figure 18. RL-agent training results in static environment, including rewards, overall

time and exploration rate ... 40

Figure 19. Test results of RL-agent in static environment (10 episodes) 41

Figure 20. Test results of Greedy method in static environment (10 episodes) 42

https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900682
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900683
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900684
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900685
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900686
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900687
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900687
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900687
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900688
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900689
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900690
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900691
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900692
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900692
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900693
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900693
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900694
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900695
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900695
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900695
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900696
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900697
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900698
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900698
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900699
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900699
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900700
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900701

ix

Figure 21. RL-agent training results in dynamic environment, including rewards,

overall time and exploration rate ... 43

https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900702
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900702

x

List of tables

Table 1. Comparison of machine learning methods [30] ... 17

Table 2. Q-table for static environment (1000 episodes) ... 41

Table 3. Q-table for dynamic environment (1000 episodes) .. 44

https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900703
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900704
https://livettu-my.sharepoint.com/personal/yuzliu_ttu_ee/Documents/Master%20thesis/上交/Thesis_Liu_221144%20IAFM.docx#_Toc110900705

1

1 Introduction

This chapter provides a comprehensive introduction to the topic of the dissertation. In

section 1.1, the motivation for using a combination of reinforcement learning and

heuristic search algorithms in the multi-waypoint path planning process of mobile robots

is presented. In Section 1.2, the state-of-the-art research results and challenges brought

by the application of reinforcement learning to solve the multi-waypoint path planning of

mobile robots are introduced, and the research gaps in this field are discussed in order to

indicate the value and potential contribution of the selected topic of the thesis. Section

1.3 introduces the sensor parameter configuration, localization algorithm, and navigation

algorithm of the MiR100 robot.

1.1 Motivation

In recent years, driven by multiple factors such as increasingly personalized consumer

demand, shortage of work force, and the continuous maturity of the new generation of

information technology, intelligent logistics and intelligent manufacturing have become

important means for enterprises to reduce costs, increase efficiency and improve quality.

Mobile robots have begun to appear, and the market demand continues to rise. In the

existing industrial applications, mobile robots have been running in a very satisfactory

way in static unmanned environments, such as warehouses and factories.

Mobile robots are applied to increasingly complex scenarios. Whether it is a closed

scenario, such as the transportation of goods or medical supplies in large supermarkets,

factories and hospitals, or an open scenario, such as the delivery of unmanned vehicle

delivery service in urban roads, all of them put forward higher requirements for the mobile

robot to complete the task of transporting goods to multiple destinations under the

constraints of multiple factors, such as unknown obstacles, traffic congestion, time,

distance, cost and energy consumption. This is also known as the problem of multi-

waypoint path planning in the dynamic environment.

2

The multi-waypoint path planning problem is widespread in many areas, such as in a

factory production line where spare parts need to be transported to multiple areas in an

unpredictable situation full of equipment and moving workers, or in a large hospital where

robots need to traverse crowded corridors to deliver medicines to multiple wards.

This thesis attempts to explore a potential solution that combines classic heuristics search

algorithms with Reinforcement Learning (RL) algorithms to solve the multiple waypoints

path planning problem in the dynamic environment. More precisely, the multi-waypoint

path planning problem is defined as a Travelling Salesman Problem (TSP), and then the

TSP problem is transformed to a RL problem. As a combination problem, TSP was

proved to have Non-deterministic Polynomial Complete problem (NPC). A brief

description of the problem is: Suppose a travelling salesman wants to visit multiple cities,

he need find the shortest path that can pass through each city once.

In this thesis, a mobile robot within a supermarket environment is considered as a use

case. The mobile robot needs to deliver goods to several waypoints with the shortest time

in a space full of unknown dynamic/static obstacles (such as people, carts, and goods

accidentally dropped on the aisle).

Existing state-of-the-art research focuses on end-to-end application of reinforcement

learning to solve the problem of multi-waypoint navigation, which means that the two

steps in the traditional TSP solution (1- Calculate the shortest path between every two

waypoints; 2 - Find the order of tour visits) are replaced by a semi-blind manual process

that lacks the interpret-ability of the decision-making process. It would be

computationally expensive for reinforcement learning to simultaneously solve multiple

tasks of navigation, obstacle avoidance, and multi-waypoint sequencing. Most of research

is based on the 2D simulation environment, which cannot completely draw on their

research results for the 3D environment with complex or even unexpected physical

influence factors.

Most of the research focuses on finding the shortest path through all waypoints in static

environment rather than the minimum time. Some researchers try to improve path

planning or navigation problems in dynamic environments by setting multi-objective

(shortest time and shortest path) reinforcement learning methods. However, designing a

3

"super-powerful" reward function that balances multiple objectives would be challenging

enough and lack interpretability.

The goal here is not to beat the current state-of-the-art solvers of TSP problem, in fact,

won't even come close to their solutions. Instead, the training environment with some

extreme cases will be considered to test the performance of the RL algorithm: a Q-

learning method combined with the ARA* algorithm will be built, and the robot will find

the optimal path without any prior knowledge of the TSP structure. The model is guided

by only one "signal", which is the observed cumulative "reward" -- in this case, the overall

time it takes to reach all the waypoints.

1.2 Related Work

With the increasing popularity of service robots, sweeping robots and automated guided

vehicles, path planning, as the core of mobile robot technology, has become a research

hotspot. In the face of complex environment, mobile robots need autonomous learning to

complete the task of path planning. With the popularity of deep reinforcement learning

(DRL) research and its excellent performance in some fields in recent years, more and

more scholars and research teams apply deep reinforcement learning to the field of mobile

robot path planning.

In the existing research results, many mature algorithms have been accumulated in the

field of single-waypoint path planning between waypoints for mobile robots, including

particle swarm optimization algorithm [1], genetic algorithm [2], fuzzy logic algorithm

[3], artificial potential field method [4] and so on.

The traditional multi-destination (waypoint) path planning is an integration and

improvement of single-destination (waypoint) path planning. In the existing research

results, the idea of transforming the choice of target location into the Traveling Salesman

Problem (TSP) appears. The particle swarm optimization path planning proposed by this

method [5] combines the fast convergence characteristics of the ant colony algorithm, and

optimizes it through the ant colony algorithm. As one of the most widely used algorithms,

the multi-destination path planning algorithm [6] could obtain optimal path planning

because it combines global statics and local dynamics. It enables the mobile robot to avoid

static obstacles in time and move to the destination accurately.

4

However, the biggest disadvantage of traditional multi-destination path planning

algorithms is that it is easier to fall into local optimum. Moreover, in the global path

planning, the existing algorithms have the problems of low utilization rate of

environmental information, complex calculation structure and low sorting efficiency.

The publication of [7] shows a unique approach of implementing multiple destination

global path planning strategy based on improved Q-learning algorithm without using

more complex DRL algorithm. However, they only considered a 2D lattice map

containing known static obstacles as a simulation environment for the training of

algorithm. This makes the model lack of realistic environmental information that can be

used as important feedback for algorithm optimization.

Pengyuan Wei [8] proposed a robot motion planning algorithm based on deep learning,

which enables the robot to perform continuous multi-target motion planning in 2D and

3D static environments. The algorithm first uses the Deep Q-Learning algorithm to help

the robot select the next target point, and then uses the Motion Planning Network (MPNet)

to allow the robot to navigate from the current position to the next target waypoint. Here

the author focuses on the shortest total distance after the robot reaches all the waypoints

and returns to the starting point. The task requirement does not force the RL-agent to

reach all the waypoints but uses DQN to make the robot realize how many waypoints it

needs to reach in the task. In addition, the authors also did not test the performance of the

algorithm in a dynamic obstacle environment, which is what this thesis will take into

account.

The decision of this thesis to use a traditional heuristic search algorithm to deal with the

path planning task between waypoints is inspired by Güldenring’s thesis [9]. She

mentioned the idea of combining traditional planner with RL-agent for navigation in the

chapter of future work. In her thesis, the reinforcement learning-based navigation

algorithm is trained and tested in both static and dynamic environments, in which the

local planning is realized with the state-of-the-art Deep Reinforcement Learning approach

-- Proximal Policy Optimization (PPO). Although the author only uses DRL to solve

single-waypoint path planning, his setup details and empirical skills for dynamic

environments provide a supportive reference for this thesis.

5

In addition to referencing research results in academia, this thesis also get a lot of

inspiration from open-source projects in industry. First, Costa shared his ideas and

experience in solving the traveling salesman problem with reinforcement learning in his

blog [10]. This provides confidence in the decision of this thesis to transform the multi-

waypoint path planning into the TSP problem, as well as solve the TSP problem with Q-

learning. In addition, the thesis also references his method of setting a “traffic zone” area

in a simulated environment to increase the time the robot spends passing through. His

open-source code also provides an important reference for the algorithm implementation

of this thesis.

Herzen [11] proposes a more elegant reinforcement learning solution to the TSP problem.

He iteratively builds a neural network capable of generating relevant routing decisions on

new random graphs by combining neural networks that learn random graph embeddings

with reinforcement learning.

Amazon Sagemaker [12] extended the TSP problem to more complex Vehicle Routing

Problem (VRP) problems. The Clipped Proximal Policy Optimization (Clipped PPO)

algorithm is used, which relies on specialized clipping of the objective function to remove

the incentive for new policies to eliminate old policies. Unfortunately, their model took

at least 5,000,000 training steps to converge. It is worth noting that the three reward

functions they proposed provide important references for the design of reward functions

in this thesis.

From the above research, it can be concluded that most of the existing research is about

the application of reinforcement learning to achieve waypoint to waypoint navigation and

obstacle avoidance. Even if there is research on multi-waypoint path planning, it only

considers the problems in the static environment, and focuses on using multi-objective

deep reinforcement learning to provide end-to-end multi-waypoint navigation. This

makes the design of reward function full of skills very complex and low interpretability.

This thesis will try to combine the traditional single-waypoint heuristic search algorithm

with the reinforcement learning algorithm to solve the TSP problem, that is, let the RL

algorithm with strong exploration ability be responsible for solving the high-dimensional

multi-waypoint path planning problem, and the more reliable traditional heuristic search

algorithm be responsible for the low-dimensional single-waypoint navigation and

6

obstacle avoidance task. This will be a proof process of applying heuristic algorithm and

reinforcement learning to solve the robot multi-waypoint path planning problem in the

dynamic environment, so the basic Q-learning algorithm is chosen to start with.

In addition, the thesis will consider that it is necessary for the robot to pass all waypoints

to complete the task by default, so reinforcement learning algorithm is not responsible for

helping the robot understand how many waypoints there are in the task. Furthermore, the

endurance mileage of the robot will not be considered as a limiting factor, because limited

by the loading capacity of the cargo frame, the number of shelves that need to be

replenished in a single trip of the robot in the actual supermarket will not exceed 8.

1.3 The MiR100 Robot

As shown in Figure 1, the MiR100 robot [13] is a mobile robot designed and

manufactured by Mobile Industrial Robots Aps MiR, located in Oden se, Denmark.

Mainly used in internal transportation and logistics applications, the MiR100 robot is

designed to optimize operational processes, reduce employee workload, and allow users

to reduce costs while improving efficiency. The internal positioning system of the

MiR100 robot allows it to recognize the driving area and the surrounding environment,

and it can also input a 3D map of the building layout. In addition, the MiR100 robot has

Figure 1. MiR100 robot of the company Mobile Industrial Robots [14]

7

built-in sensors and cameras for cooperative operation, maintaining a safe environment

with humans and automatically stopping when it encounters obstacles in the route.

MiR100 is 35.2cm in height, 58cm in width and 89cm in length. The device weighs 70kg.

1.5 m/s (maximum 2.0 m/s) is the average speed of the robot.

Figure 2 shows the configuration details of the sensors of the MiR100 robot. In general,

the robot has a total of 6 wheels, two differentially controlled driving wheels (see No. 3

in Figure 1) are in the middle of the robot body, and the other four corners are Swivel

wheels (see No. 2 in Figure 1).

There are three sensor types responsible for detecting obstacles:

1. The S300 safety laser scanner installed on the left side of the front (see No. 9 in

Figure 1) and another one in its diagonal direction (see No. 14 in Figure 1). Each

safety laser scanner has a detection field of view of up to 270°, which overlaps and

thus provides a complete 360° vision protection around the robot. But they can

only detect objects that intersect a plane 200mm high from the ground, and do not

detect transparent obstacles well.

Figure 2. Sensor setup of the mobile MiR100 robot [15]

8

2. Two 3D depth cameras (see No. 7 in Figure 1) installed in front of the robot's

driving direction. The two 3D depth cameras can see objects up to 1800mm

vertically at 1950mm in front, as well as horizontally at angles of 118° and 180mm

from the first view of the ground. Those 3D depth cameras are for navigation only.

They are not part of the robot's safety system.

3. Two ultrasound sensors for detecting transparent objects are installed on the side

(see No. 6 in Figure 1) and rear (see No. 12 in Figure 1) of the robot. Those

ultrasound sensors are used to detect objects that cannot be seen by cameras or

laser scanners.

In addition, it has internal sensors such as gyroscope, accelerometer and motor controller,

as well as wheel encoders.

1.3.1 Localization

The robot's current position is resolved with Adaptive Monte Carlo Localization (AMCL),

which rely on the particle filter using input data from motor encoders, inertial

measurement units (IMUs), and safety laser scanners to determine the robot's most likely

position on the map. In more detail:

1. The initial position of the robot serves as a reference point for the method of

determining the position of the robot.

2. The data collected by the IMUs, and the motor encoders are used to determine and

how fast it has moved over time from its initial position. Considering both sets of

data inputs at the same time makes the deduced robot's current position more

accurate.

3. Laser scanners data is used as input for particle filter algorithm, which will decide

the possible location of the robot by comparing the data to nearby walls or any

objects on the map.

However, the limitation of the above method is that the localization is very dependent on

the correct initial position of the robot (see Figure 3 for an example). The robot cannot

determine where the red point cloud (laser scanner data) matches the black point cloud

on the map. When the robot can successfully locate itself, it determines a set of possible

9

positions, represented by the blue dots in the image above. Because the motor encoders

and IMUs data will only be compared from the area where the robot computer expects

the robot to be. If there are too many dynamic obstacles around the robot, it will make it

unable to detect any static landmarks and thus unable to approximate the current position.

AMCL is the only specified localization algorithm in the ROS [18] Navigation Stack, a

probabilistic localization system for robots moving in a two-dimensional environment.

To briefly summarize its principle, by scattering particles in the global map, the particles

can be understood as the possible poses of the robot. According to the evaluation criteria,

such as how well the lidar data matches the map, the particles are scored. The higher the

score, the more likely the robot is in this position. After passing through the particle filter,

the particles with high scores are left behind. After scattering particles for many times,

the particles will be concentrated to the places where the robot's position is likely to be

high, which is called particle convergence. In fact, the simple understanding of self-

adaptation is to increase or decrease the number of particles according to the average

score of particles or whether the particles converge. It can effectively solve the problem

of robot abduction and fixed number of particles.

1.3.2 Navigation

The diagram shown in Figure 4 describes the processes in navigation and system of

control. The implementation of the navigation function is based on the Navigation Stack

in ROS. By inputting odometer, sensor information and target pose, it outputs safe speed

Figure 3. The failed and successful localization [16]

10

commands that control the robot to reach the target state. The move_base package [19] is

the top layer of the entire ROS Navigation Stack. It combines various functional modules,

receives target waypoints through SimpleActionServer and completes navigation tasks.

As can be seen in Figure 4, move_base provides the configuration, operation, and

interaction interface of ROS navigation. It mainly includes two parts:

1. Global path planning (global_planner): The global planner is responsible for long-

distance path planning. According to the global costmap, it plans an optimal path

from the starting position to the target position. The global costmap is everything

the robot knows from previous visits and stored knowledge, for example, the

provided map of the environment and obstacles detected by sensors that are not

marked on the map before. However, it needs to know the accurate information of

the environment in advance. When the environment changes, such as unknown

obstacles, this method is powerless. It is a kind of pre-planning, so it does not

require high real-time computing power of the robot system. Although the

planning result is global and relatively better, it has poor robustness to the errors

and noise of the environment model.

Figure 4. Flow chart of the navigation and robot system [17]

11

2. Local real-time planning (local_planner): The local planner is responsible for

short-range path planning and obstacle avoidance. Based on the local costmap, a

new local path is planned to avoid nearby obstacles, and the replanning is

continued during the global planned navigation path. The local costmap is

everything that can be known from the current position. For instance, walking

people and other moving objects, as well as every wall etc. that can be detected by

sensors. This kind of planning needs to collect environmental data, and the

dynamic update of the environmental model can be corrected at any time. The local

planning method integrates the modelling and search of the environment and

requires the robot system to have high-speed information processing and

computing capabilities. Environmental errors and noise have high robustness and

can feedback and correct the planning results in real time. However, due to the

lack of global environmental information, the planning results may not be optimal,

and the correct path or complete path may not even be found.

The costmap of ROS is a grid map where each cell is assigned a specific value or cost in

the range of 0 to 255, with a higher cost indicating a smaller distance between the robot

and the obstacle. In the Figure 5, the coloured gradient around the robot is the local

costmap, while the lightly coloured portion of the map around the edges of the black block

fill is the global costmap. The cell costs are divided into three states: occupied (with

obstacles), free space (without obstacles), unknown.

Figure 5. Local costmap and global cost map

12

For the global planner, it adopts an improved version of SBPL (Search-Based Planner)

lattice planner. The sbpl_ lattice_ Planner [20] is the ROS wrapper of SBPL [21] lattice

environment. It applies the graph search method to generate the global path from the

current position of the robot to the desired target position or waypoint. The search-based

planner can generate a path from the start to the target configuration by combining a series

of "motion primitives". Motion primitives [22] are pre-calculated motions that robots can

take. By transforming the state space into a discrete graph. Each possible state (x, y,

theta/yaw) of the robot will be represented by different nodes, which helps to produce a

smooth path that takes the orientation of the robot into consideration in the planning. This

is particularly important if the robot is not assumed to be circular or has incomplete

constraints. In addition, if the probability value corresponding to the costmap in this state

is very low, the node will be given a valid mark, otherwise it will be marked as invalid.

There are two planning algorithms to choose from: ARA* (Anytime Repairing A*)

planner or AD* (Anytime Dynamic A*) Planner. By default, ARA* algorithm [24] is

applied here for global path planning. This algorithm is suitable for situations where the

best possible path planning is made in a limited time. The method is to quickly obtain a

sub-optimal path, and then continuously optimize this path within the range allowed by

time.

The inflated heuristic A* algorithm (A* search with inflated heuristics, hereinafter

referred to as: “weighted A*”) is an algorithm that is proved to be faster in most cases but

cannot guarantee to find the optimal solution. “Weighted” refers to multiplying the

heuristic function of the traditional A* algorithm by an inflation factor  greater than 1.

The parameter  defines the degree of suboptimal: the length of the suboptimal path is not

greater than  times the length of the optimal path. In this way, the algorithm can use  to

characterize the quality of the corresponding suboptimal solution (which may be the

optimal solution, and the suboptimal solutions below have this meaning and will not be

repeated here). Therefore, in order to construct an arbitrary-time planning algorithm that

can evaluate the pros and cons of the suboptimal solution, the weighted A* can be run

iteratively while continuously decreasing  so that the suboptimal solution keeps getting

closer to the optimal solution. This simple idea can lead to a series of suboptimal solutions

with a suboptimal factor (i.e., the inflation factor , which is used to measure the quality

of the suboptimal solution mentioned above). But only this still doesn't solve the problem,

13

because simply running weighted A* repeatedly will have many nodes that have already

been calculated repeatedly, which will waste a lot of computing time.

The ARA* algorithm uses the idea of running weighted A* iteratively but reuses

previously computed results while preserving suboptimal factors. In the range allowed by

time, the inflation factor  will become smaller and smaller until it becomes 1; when time

is not enough, the  will be as close to 1 as possible, because when the  is 1, the ARA*

algorithm is close to the A* algorithm, The A* algorithm is theoretically optimal. The

advantage of not having to repeat the calculation for nodes that have been calculated

before and the results are correct is that the efficiency of the algorithm is greatly improved,

which is what this thesis expect.

For the local planner, the dwb_local_planner [25] package realizes the DWB (Dynamic

Window B) algorithm which is a modular implementation of the DWA (Dynamic

Window Approach) algorithm for local robot navigation on the 2D map. Based on the

map data, this package searches multiple routes to the target by algorithm, uses some

evaluation criteria (whether it will hit the obstacle, the time required, etc.) to select the

optimal path, and calculates the required real-time speed and angle. For an

omnidirectional robot like the MiR100, there is an x-direction velocity, a y-direction

velocity, and an angular velocity. DWB samples from the set of achievable velocities for

only one simulation step given the acceleration limits of the robot. This means, DWB is

a more efficient algorithm because it can sample a smaller space.

Among them, the main ideas of the Dynamic Window B algorithms are as follows:

1. Sampling the current control space of the robot (dx, dy, dtheta) discretely.

2. For each sampled speed, calculate the state of the robot after driving at this speed

for a period of time, and obtain a driving route.

3. Score multiple routes using some evaluation criteria, such as: proximity to

obstacles, proximity to targets, proximity to the global path, and speed.

4. According to the score, choose the optimal path.

5. Repeat the above process.

14

Here, a motion planning method combining Pure Pursuit Path Tracking algorithm [26]

and Vector Field Histogram with Look-Ahead Verification (VFH*) [27] is adopted to

implement the local planner. The Pure Pursuit Path Tracking algorithm is responsible for

keeping track of the route made by the global planner without losing it when using VFH*

to avoid local unmarked obstacles. VFH* is triggered when the distance between the robot

and the obstacle falls below a certain threshold. It will build a grid map (Active Window)

with the current position of the robot as the centre, establish the reliability probability of

obstacles based on the detection information of real-time sensors, and evaluate the density

of obstacles in each direction of the robot for the units in the Active Window. Then it will

form a histogram based on this and select a route less than the threshold for planning.

In this thesis, a variant of VFH* algorithm is applied, further referred to as 2S-VFH*-R

(two-step VFH* with a recovery method), in the MiR100 robot. As shown in Figure 6, in

the first step, a discrete number of possible arcs (green) generated by the robot are spread

out. Arcs that do not collide with inflated light blue obstacles above and below are

considered valid arcs. These effective arcs are expanded into discrete number of possible

arcs through a second finer VFH* expansion (purple). Finally, the extended arc closest to

the global path is chosen as the best path around the obstacle. If the robot is trapped by

an obstacle and the local planner cannot get it out of the way, the recovery method is

triggered, which re-plans the path using the global planner and new local objects (The

original map and all new obstacles encountered by the robot) are considered during the

re-planning.

Figure 6. Two-step VFH*: The thick curve (white) is the global path

the robot should have followed, and the thick line (dark blue) and thin

line (green) connected to it are the global path the robot has

travelled.[9]

15

2 Fundamentals

This chapter summarizes the relevant basic knowledge to further deepen the reader's

understanding of the thesis objective. In Section 2.1, the basic concepts of the Traveling

Salesman Problem (TSP) are introduced. In Section 2.2, the use of the classical greedy

algorithm to solve the TSP problem is introduced. Section 2.3 covers the basics of

traditional Reinforcement Learning (RL) and presents ideas for the problem of translating

TSP into RL.

2.1 The Traveling Salesman Problem (TSP)

The Traveling Salesman Problem [28] is a classic combinatorial optimization problem.

The classic TSP can be described as: a salesman is going to sell products in several cities.

The salesman starts from one city and needs to go through all the cities before returning

to the place of departure. The salesman needs to figure out how to choose the route of

travel so that the overall path is the shortest. From the perspective of graph theory, the

essence of the problem is to find a Hamilton circuit with the smallest weight in a weighted

completely undirected graph.

This is an NP-hardness problem. In the worst case, the time complexity of the TSP

problem will become super polynomial as the number of cities increases, and the amount

of computation will also increase exponentially. This means that the optimal combination

of 6 waypoints (6! = 720) can be found by brute force method, but there are already more

than 470 million permutations to calculate for 12 waypoints. If it increases to 600

waypoints, it becomes almost impossible to solve by brute force.

2.2 Greedy algorithm

As a simple and fast algorithm commonly used to solve optimization problems, the greedy

algorithm makes an optimal choice based on a certain optimization measure based on the

current situation, without considering all possible overall situations, which saves a lot of

time that must be spent to exhaust all possibilities to find the optimal solution. It adopts

16

the top-down method to make successive greedy choices in an iterative method. Each

time a greedy choice is made, the problem is reduced to a smaller sub-problem. Although

it is necessary to ensure that the local optimal solution can be obtained at each step, the

resulting global solution is sometimes not necessarily optimal, so the greedy algorithm

should not backtrack.

Greedy algorithm solution has the following properties:

1. Greedy choice property: The overall optimal solution of a problem can be achieved

by a series of local optimal solutions, and each choice can depend on the previous

choices, but not on the choices to be made later. This is the nature of greedy choice.

For a specific problem, to determine whether it has the greedy choice property, it

must be proved that the greedy choice made at each step ultimately leads to the

overall optimal solution of the problem.

2. Optimal substructure property: When the optimal solution of a problem contains

the optimal solution of its subproblems, the problem is said to have optimal

substructure property. The optimal substructure property of the problem is the key

to solving the problem by the greedy method.

The greedy algorithm does not have a fixed algorithm framework. The key to the

algorithm design is the choice of the greedy strategy. The premise of the greedy strategy

is that the local optimal strategy can lead to the generation of the global optimal solution.

The greedy algorithm also has the following problems:

1. There is no guarantee that the final solution obtained is the best.

2. It cannot be used to find the maximum and minimum solutions.

3. It can only be used under certain conditions, such as the greedy strategy must have

no effect, etc.

2.2.1 Greedy algorithm to solve TSP

The basic idea of greedy strategy [29]: Take the case of this thesis as an example, the

robot traverses all the next waypoints that can be reached from the starting point, and it

will select the nearest waypoint as the next waypoint to go. Then mark the current

17

waypoint as "reached", the next waypoint as the current waypoint, repeat the greedy

strategy, and so on until all the waypoints are marked as "reached", then the loop ends.

The above strategy provides an idea for finding local optimal solutions for the problem

of multi-waypoint navigation of robots in the environment full of unknown dynamic

obstacles. There is an assumption here, that is, the shortest path corresponds to the shortest

time. However, in the actual unknown environment, the shortest path and the shortest

time are not linearly related.

2.3 Reinforcement Learning (RL)

In machine learning, people are more familiar with supervised learning and unsupervised

learning, and another major category is reinforcement learning. Table 1 compares the

main differences between these three machine learning categories so that readers can gain

a clearer understanding of RL:

◼ Supervised learning is like having a mentor beside the students while they study.

Mentors know what's right and what's wrong, but in many real-world problems

like chess, Go, where there are thousands of combinations, it's impossible for one

mentor to know all possible outcomes. At this time, reinforcement learning will

get a result by first trying to make some behaviours without any labels and adjust

the previous behaviour through feedback on whether the result is right or wrong.

With this continuous adjustment, the algorithm can learn to choose what action to

choose under what circumstances to get the best results.

◼ Both learning methods (supervised learning and reinforcement learning) will learn

a mapping from input to output. Supervised learning is the relationship between

Table 1. Comparison of machine learning methods [30]

18

them, which can tell the algorithm what kind of input corresponds to what kind of

output. What reinforcement learning produces is the feedback reward function to

the machine, which is used to judge whether the behaviour is good or bad. In

addition, there is a delay in the feedback of reinforcement learning results.

Sometimes it may take many steps to know whether the choice of a previous step

is good or bad. In supervised learning, if a bad choice is made, it will be

immediately fed back to the algorithm.

◼ Unsupervised is not learning a mapping from input to output, but a pattern. For

example, in the task of recommending news articles to users, the unsupervised

method will find similar articles that the user has read before and recommend one

to them, while reinforcement learning will recommend a small amount of news to

the user first, and continuously obtain feedback from the user. Feedback, and

finally build a "knowledge graph" of articles that users might like.

The essence of RL is to solve the problem of decision making, where decisions are made

automatically and can respond to a dynamic environment by taking a series of actions to

maximize the cumulative reward of the agent.

Figure 7 shows a close-to-life example: as the owner, you have an untrained puppy, and

you want to train it to follow the command to “raise the right hand for a handshake”. The

goal of reinforcement learning is to train a dog (agent) to perform tasks in an environment

(the environment around the puppy and the owner). First, the owner will give commands

and the puppy will observe (observation). The puppy then responds by taking an “action”.

If the puppy moves close to the expected behaviour, the owner will offer a “reward”, such

as food or toys; otherwise, the owner will offer no reward, or even a penalty, such as

reducing the number of tasty foods. At the beginning of the training, when the command

Figure 7. Reinforcement learning in dog training [31]

19

given was "raise the right hand to shake hands", the dog may take more random actions,

such as sitting down or raise the left hand. Puppies will try to associate specific

observation states and actions with rewards. This association or mapping between

observations and actions is called a strategy.

2.3.1 Markov Decision Process (MDP)

The mathematical basis and modelling tool of reinforcement learning is Markov Decision

Process. Almost all RL problems can be formulated by MDP. MDP follows Markov

Assumption: the next state 𝑠𝑡+1 only depends on the current state 𝑠𝑡 and the performed

action 𝑎𝑡. In theory, any reinforcement learning problem or task that satisfies the Markov

assumption can be represented as five-tuple Markov Decision Process (𝑆, 𝐴, 𝑃𝑠,𝑠′
𝑎 , 𝑅𝑠

𝑎, 𝛾).

◼ 𝑆 represents a finite number of state sets.

◼ 𝐴 represents a finite number of action sets in state 𝑆.

◼ 𝑃𝑠,𝑠′
𝑎 are transition probabilities from state 𝑠 to 𝑠′ when action 𝑎 is taken at time

step 𝑡. 𝑃𝑠,𝑠′
𝑎 = ℙ(𝑆𝑡+1 = 𝑠

′ | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎).

◼ 𝑅𝑠
𝑎 are reward probabilities. It returns a scalar (real number), which means:

Assuming the current state is 𝑆𝑡, and action is 𝑎, how much reward 𝑅𝑠
𝑎 (Immediate

Reward) can be obtained from the next state 𝑆𝑡+1. 𝑅𝑠
𝑎 = Ε[𝑅𝑡+1 | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

is the only thing to be considered.

◼ As the discount factor, 𝛾 is used to calculate the discounted expected return. 𝛾 ∈

[0,1], 𝛾 = 0 means to only look at the present, 𝛾 = 1 means that the long-term is

Figure 8. Formulate the RL problem [32]

20

as important as the present. The degree of emphasis on the long-term is controlled

by adjusting the value of 𝛾.

Episodes are often mentioned in reinforcement learning, especially in game scenes. The

concept of "episode" comes from the game, which refers to the process from the

beginning of the game to the clearance or end of the agent. In reinforcement learning,

every continuous series of States, actions and rewards is called an episode. As shown in

the following sequence:

𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, 𝑟2, 𝑠2, ⋯ , 𝑠𝑡−1, 𝑎𝑡−1, 𝑟𝑡, 𝑠𝑡 (1)

One episode of the MDP forms a finite sequence of states, actions and rewards. Take

Figure 8 as an example, at time 𝑡, state 𝑠𝑡 is observed, then the action 𝑎𝑡 is taken, and the

reward 𝑟𝑡+1 is obtained later, and the new state is transformed into 𝑠𝑡+1 until the final

state 𝑠𝑓𝑖𝑛𝑎𝑙 is reached (terminal state).

RL requires a high number of samples. Even a simple game requires tens of thousands of

rounds of games to learn good strategies. Epoch is a similar but different concept, which

is often used in supervised learning. An epoch means that all training data are used for

forward calculation and back propagation, and each data is used just once.

2.3.2 Discounted Return for long-term strategies

The return of the current step won’t be focused, but the sum of the total long-term benefits,

which called the Discounted Return (Expected Cumulative Reward), expressed by 𝐺𝑡:

starting from the moment 𝑡, the sum of the total discounted returns in the future:

𝑈𝑡 = 𝑅𝑡 + 𝛾 ∙ 𝑅𝑡+1 + 𝛾
2 ∙ 𝑅𝑡+2 +⋯ =∑𝛾𝑘

∞

𝑘=0

∙ 𝑅𝑡+𝑘 (2)

𝛾 ∈ [0,1] is the discount factor. The further into the future, the bigger the discount on

rewards. In finite-duration MDPs, the discount can be absorbed into the reward function,

i.e., treat 𝛾𝑖 ∙ 𝑅𝑡+𝑖 as a new reward function 𝑅𝑡+𝑖. Note that the new reward function is no

longer stationary at this point, even though the original reward function was stationary.

In an infinite MDP, the discount factor plays an important role, which together with the

boundedness of the reward function guarantees the convergence of the infinite summation

series above. Whether it is a finite-term MDP or an infinite-term MDP, this thesis always

21

considers discounted rewards whenever the reward function is assumed to be stationary.

The goal of reinforcement learning is to find a strategy that maximizes the Discounted

Return. This policy is called the optimal policy (𝜋∗).

2.3.3 Q-Learning: Learning optimal action-value function

Q-learning is a value-based model-free reinforcement learning algorithm. The value-

based algorithm updates the value function according to the Bellman equation, and

outputs the value of all actions. Actions are selected according to the highest value. Such

methods cannot select continuous actions. Since real-world environments may lack any

prior knowledge of the environment's dynamics, model-free RL methods come in handy

in such situations. Model-free means the agent doesn’t try to understand the environment,

but waits step by step for real-world feedback, and then takes the next action based on the

feedback.

Q-learning is an off-policy learner. Meaning it learns the value of the optimal policy. The

expected value (cumulative discounted future reward) of doing action 𝑎 in state 𝑠 is

represented by the function 𝑄∗(𝑠, 𝑎). Matiisen [33] provides an apt explanation for the Q-

function, which is "the best possible score at the end of the game after action 𝑎 in state

𝑠". It's called the Q-function because it represents the "Quality" of taking action 𝑎 in the

state 𝑠. The Q-function is also known as the optimal action-value function. Equation 3

expresses the relationship between the optimal action-value function and the general

action-value function:

𝑄∗(𝑠𝑡, 𝑎𝑡) = max
𝜋
𝑄𝜋 (𝑠𝑡, 𝑎𝑡), ∀ 𝑠𝑡 ∈ 𝑆, 𝑎𝑡 ∈ 𝐴. (3)

That is, the optimal action-value function is the maximum of the action-value function

under all policies. Through such a definition, the uniqueness of the optimal action value

can be achieved, so that the entire MDP can be solved. Here π denotes the policy, which

summarizes how the agent choose to act in each state. There are many policy functions π

to choose from, and here the best policy function 𝜋∗ is chosen:

𝜋∗ = argmax
𝜋

𝑄𝜋 (𝑠𝑡, 𝑎𝑡), ∀ 𝑠𝑡 ∈ 𝑆, 𝑎𝑡 ∈ 𝐴. (4)

22

It excludes the influence of policy π, and only evaluates the quality of the current state 𝑠𝑡

and action 𝑎𝑡.

In reinforcement learning, the agent interacts with the environment, record observed

states, actions, rewards, and use these experiences to learn a policy function. In this

process, the strategy that controls the agent's interaction with the environment is called

the behaviour policy. The role of behaviour policy is to collect experience, that is, the

observed environment, actions, and rewards. The Q-learning algorithm collects four-tuple

like (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) with arbitrary behaviour policy, and then record them into an array.

This array is called the “experience replay buffer”. These experiences are used repeatedly

to update (train) the target policy, and this training method is called “experience replay”

Temporal Difference (TD) algorithm is used to estimate the value of 𝑄∗(𝑠, 𝑎). TD is that

an agent learns from the environment through episodes without prior environmental

knowledge [34]. In the simplest case, the Q function is implemented as a table of 𝑄[𝑆, 𝐴],

which is also called Q-table, with rows and columns as set of states 𝑆 and set of actions

𝐴 respectively:

If there is only the current state and action, and the future state and action has not yet

occurred, how to estimate the return Q at the end of the episode? The answer is obtained

iteratively through the Bellman equation:

𝑄∗(𝑠𝑡, 𝑎𝑡)⏟
expectation of 𝑈𝑡

= 𝔼𝑆𝑡+1~𝑝(∙|𝑠𝑡,𝑎𝑡) [𝑅𝑡 + 𝛾 ∙ max𝐴∈𝒜
𝑄∗(𝑆𝑡+1, 𝐴)⏟

expectation of 𝑈𝑡+1

 | 𝑆𝑡 = 𝑠𝑡, 𝐴𝑡 = 𝑎𝑡] (5)

The idea of Q Learning is completely based on value iteration. But it needs to be clear

that value iteration updates all Q values every time, that is, all states and actions. In fact,

it’s not possible to traverse all the states, and all the actions, instead, only a limited series

of samples can be achieved. Therefore, only limited samples can be used to operate. Q

Learning proposes a way to update the Q value: Below is the Q-value update rule that is

the core of the Q-learning algorithm:

23

𝑄(𝑠𝑡, 𝑎𝑡)⏟
new value

← (1 − 𝑎) ∙ 𝑄(𝑠𝑡, 𝑎𝑡)⏟
old value

+ 𝛼⏟
learning
rate

∙

(

𝑟𝑡⏟
reward

+ 𝛾⏟
discount
factor

∙ max
𝑎
𝑄(𝑠𝑡+1, 𝑎)⏟

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑓
 𝑜𝑝𝑡𝑖𝑚𝑎𝑙

𝑓𝑢𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒)

⏞
𝑙𝑒𝑎𝑟𝑛𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

(6)

Although the target Q value is calculated according to the value iteration, this Q value

(which is the estimated value) is not directly assigned to the new Q, but a "gradual"

method similar to random gradient descent is adopted, that is, each time a small step is

taken towards the target Q, the "step size" of each small step depends on the learning rate

𝛼, which can reduce the impact caused by the estimation error, and finally ensure that the

model can converge to the optimal Q value.

After the training, the policy function (Q table) is used to control the agent. In simple

words, the agent only needs to choose the action with the largest Q value at each step.

Based on the current state 𝑠𝑡, the formula used by the agent to make a decision is:

𝑎𝑡 = argmax
𝑎∈𝐴

𝑄∗ (𝑠𝑡, 𝑎) (7)

It means to find the row corresponding to 𝑠𝑡 (one of the 3 rows), find the maximum value

of the row, and return the action corresponding to the element. See Table 2 as an example,

the current state 𝑠𝑡 is the state 2, then the agent will look at the second row and find that

the maximum value of the row is 210, corresponding to the fourth action. Then the action

𝑎𝑡 that should be performed is the action 4.

As shown in Figure 9, the execution flow of the Q-learning algorithm is as follows:

1. Initialize the Q-values 𝑄(𝑠, 𝑎) arbitrarily for all state-action pairs.

2. For life until learning is finished…

a) Choose an action 𝑎 in the current world state 𝑠 based on current Q-value

estimates 𝑄(𝑠,∙)

b) Take the action 𝑎 and observe the outcome state 𝑠′ and reward 𝑟

24

c) Update 𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼 ∙ (𝑟 + 𝛾 ∙ max
𝑎
𝑄(𝑠′, 𝑎) − 𝑄(𝑠, 𝑎)) . New Q

value = Current Q value + learning rate * [Reward + discount rate * (highest

Q value between possible actions from the new state 𝑠′) — Current Q value].

2.3.4 Explore-exploit dilemma: Epsilon-greedy exploration

In order to build an optimal policy, the agent is faced with the dilemma of exploring new

states while maximizing its overall reward. This is called the Explore-exploit dilemma,

as known as the exploration-exploit trade-off. Exploration will try a lot of different things

to see if they are better than what you have tried before. While exploitation tries the most

efficient behaviour from the past experience. To balance those two, the best overall

strategy may involve short-term sacrifices. Therefore, the agent should gather enough

information to make the best overall decision in the future.

Should the agent leverage existing strategies or explore new ones? In Q-learning, after

the Q table is randomly initialized, the Q value (prediction) obtained with the initialized

model must also be random. At this time, when the agent chooses the action with the

highest Q value, it is equivalent to randomly selecting an action. At this time, the agent is

actually exploring. When the algorithm gradually converges and the estimated value of

Q becomes more and more stable, for each state, the corresponding action with the highest

Q value becomes more and more fixed, which also means that the strategy becomes more

and more stable. At this point, the agent is exploiting. Therefore, Q learning itself already

has a certain "exploration", but this "exploration" is very short-lived and "greedy". It only

Figure 9. The Q learning algorithm process [35]

A number of iterations

– result a good Q-table

25

explores at the beginning of training but stops exploring after the first stable policy is

explored, which makes it easy to get a local rather than a global optimal policy.

A simple and effective way to solve this problem is the epsilon (𝜖)-greedy exploration

strategy. That is, each time an action is selected, an action is randomly selected with a

certain probability 𝜖, and in other cases, the action with the largest Q value is selected.

DeepMind has adopted the method [36] of decreasing 𝜖 from 1 to 0.01, so that a large

number of state spaces can be explored in the early stage of training, and then gradually

stabilized to a smaller exploration ratio in the later stage.

𝑎𝑡 {
argmax
𝑎∈𝐴

𝑄 (𝑠𝑡, 𝑎), with probability (1 − 𝜖);

𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑠𝑒𝑙𝑒𝑐𝑡 𝑎𝑛 𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝒜, with probability 𝜖.
(8)

In detail:

1. An exploration rate “𝜖” is specified, which is initially set to 1. This is the step size

will be randomly taken. Each time the agent performs an action, it is regarded as a

“step”, and the new exploration rate is equal to the current exploration rate

multiplied by an exploration decay rate (for example, set to 0.999 in this thesis),

and so on. In the beginning, this exploration rate should be at the maximum value

(for example, set to 1.0 in this thesis), since the Q-table is empty. This means that

a lot of exploration need to be done by randomly choosing actions.

2. Generate a random number. If this number is greater than epsilon, then the agent

will "exploit" (meaning the agent uses the information it knows already to choose

an action at each step). Otherwise, it will keep exploring.

3. When first training the Q-function, a large epsilon is needed. The epsilon will

decrease gradually until the minimum exploration rate (for example, set to 0.01 in

this thesis) as the agent becomes more confident about the estimated Q value.

2.3.5 Transforming the TSP to a RL problem

In the classic version of the TSP problem, the salesman would choose to start in one city,

travel through the remaining cities and return to the city from which he originally started.

An instance is given by the set of cities and their paired distances. [37]

26

In this thesis, the problem is redefined as a mobile robot that needs to complete the task

of restocking multiple shelves in a supermarket in the shortest possible time. The robot

carrying the goods will start from the warehouse and transport the goods to each

designated shelf position (waypoint). From a practical point of view, the robot needs to

respond to the needs of shoppers in the supermarket as quickly as possible, so when the

robot reaches the last shelf position without return to the warehouse (the starting point),

the task is considered complete, then the timer ends.

Each time the robot reaches a waypoint, it will get a corresponding reward, and the reward

is inversely proportional to the time it takes to perform this action (choose the next

waypoint). In this way, the robot will be able to figure out an optimal order to visit all the

waypoints in order to obtain the maximum cumulative reward, which is the shortest total

time to complete the task. In this thesis case, an episode of RL is one instance of the TSP.

3 Simulation Environment

This chapter presents a 3D model of a virtual supermarket built for training and testing

the algorithm. The modelling parameters of stationary objects and dynamic obstacles in

this 3D environment are described in detail. The training is limited to 3D space, and two

safety laser scanner sensors installed along the diagonal of the robot are used to detect the

surrounding static and dynamic obstacles. Here, Gazebo [38] is used as a 3D physics

simulation platform. The robot must have a map for each area it operates. It is important

to create a complete and reliable map so that the robot can perform effectively and safely.

3.1 Gazebo simulator

Gazebo is a powerful 3D physics simulation platform with powerful physics engine, high-

quality graphics rendering, convenient programming and graphics interface, and most

importantly, its open source and free features. The robot model in gazebo is the same as

the model used by RViz (the Robot Visualization tool), but the physical properties of the

robot and the surrounding environment, such as mass, friction coefficient, elastic

coefficient, etc., need to be added to the model. Although RViz and Gazebo are very

27

similar in terms of interface, they are actually very different. Gazebo implements

simulation and provides a virtual world, while RViz implements visualization and

presents received Information. The plug-in on the left is equivalent to a subscriber, RViz

receives information and displays it.

The sensor information of the robot can also be added to the simulation environment in

the form of plug-ins and displayed in a visual way. It can accurately and efficiently

simulate the functions of robot work in complex indoor and outdoor environments and is

usually used in conjunction with ROS to provide developers with an excellent simulation

environment. gazebo supports URDF/SDF format files. The difference between the two

will be mentioned later. They are both used to describe the simulation environment. The

official also provides some integrated and commonly used model modules, which can be

imported and used directly.

The Unified Robot Description Format (URDF) is an eXtensible Markup Language

(XML) file format used by ROS to describe all elements of a robot. To use a URDF file

with gazebo, some emulation specific tags must be added to work properly with gazebo.

Although URDF is a useful and standardized format in ROS, they lack many features and

have not been updated to meet the evolving needs of robotics. URDF can only specify the

kinematics and dynamics of a single robot alone, not the pose of the robot itself in the

world. It is also not a universal description format, as it cannot specify joint rings (parallel

connections) and lacks friction and other properties. Also, it cannot specify non-robots

such as lights, heightmaps, etc.

In terms of implementation, the URDF syntax makes heavy use of XML attributes to

break proper formatting, which in turn makes the URDF more inflexible.

To address this, a new format called Simulation Description Format (SDF) was created

for use by gazebo to address the shortcomings of URDF. The SDF is a complete

description of everything from world-class to robotics, capable of describing every aspect

of robotics, static and dynamic objects, lighting, terrain, and even physics. SDF can

accurately describe various properties of robots. In addition to traditional kinematics, it

can also define sensors, surface properties, textures, joint friction, etc. SDF also provides

methods to define various environments, including ambient lighting, terrain, etc. SDF is

28

also described in XML format. In conclusion, SDF is an evolution of URDF that better

describes real simulation conditions.

3.1.1 Static Environment

Figure 10 is a floor plan of a 41 × 35 m supermarket built by the author of the thesis. The

location marked with a red flag is the entrance of the supermarket warehouse, which will

also serve as the starting point for the robot to start replenishment task. A 2D map of a

static environment is created by loading a defined map from a yaml file, which contains

all the relevant information for the map: floor plan, resolution and origin.

Figure 11 shows the 3D map defined by the SDF file, where the shortest passable distance

between static obstacles (shelves) is 1.2 meters.

Figure 11. The 2D map of the simulation environment

(Area: 1435 m2; Length: 41 m, Width: 35 m)

Figure 10. The 3D map of the simulation environment

29

3.1.2 Moving Obstacles

The moving obstacles in the simulated environment are also defined by the SDF files, and

these moving obstacle objects are designed to abstract the behaviour of shoppers and staff

in the supermarket. They will move along a predetermined trajectory or stay in one

position for a certain period. As shown in Figure 12, the moving obstacles are purple

cuboids, which are easy to distinguish from the grey static environment. The dimensions

of the purple cuboid are: 1 meter long, 1 meter wide, and 1.8 meters high. Their moving

speed varies from 0.6 meters per second to 1.5 meters per second.

Each moving obstacle will have a sensing range with a radius of 2 meters. Whenever the

robot enters this range, the moving obstacle the robot encounters will stop until the robot

leaves this sensing range. This is to prevent the robot from colliding with moving

obstacles, which will force the training process to stop.

Additionally, in order to prevent the robot from being completely blocked by moving

obstacles and unable to find a way out, a "jumping mechanism" is set for moving obstacles:

suppose a moving obstacle moves along a square path. The four vertices of the square are

set as the waypoints of the moving obstacle. When the obstacle stops for more than 30

seconds after encountering the robot, the obstacle will be teleported to two waypoints

further, that is, it will be spawned in the diagonal direction of the square path, which can

help the robot get out of trouble. This is in line with the purpose of this thesis, that is, the

case that moving obstacles trap the robot completely should be avoided, instead, the

Figure 12. The 3D model of the moving obstacle (Purple

cuboid: 1×1×1.8 m). The yellow arrow indicates the

direction in which the obstacle moves.

MiR100 Robot

Moving obstacle

30

obstacles should delay the robot's way to the waypoint, so that the robot can recognize

the traffic congestion the area in the global map.

4 Methods and Setup

This chapter describes the methods used and the specific training settings. Section 4.2

contains information on setting up static and dynamic environment tasks. Section 4.3

presents the parameter settings of RL-agent inspired by the OpenAI-Gym [39]

environment design framework, including different observation spaces, action spaces,

reward functions, and hyperparameters. Section 4.4 introduces the parameter settings of

the Greedy method as a control group.

4.1 Navigation Stack Setup

RL-agent will integrate global planner and local planner in traditional navigation software

introduced in Section 1.3.2. This means that in low-dimensional tasks, the navigation

between waypoints will rely on the ARA* algorithm in the SBPL lattice planner to

provide global planning, while the local obstacle avoidance part relies on the 2S-VFH*-

R algorithm in dwb_local_planner to generate the local obstacle avoidance route. The Q-

learning algorithm will be responsible for solving the high-dimensional TSP problem

defined in this thesis, that is, the shortest time-consuming path planning task of multiple

waypoints. Furthermore, in order to avoid performance impacts due to the global planner,

and to isolate other possible sources of errors, the AMCL localization disable and instead

provide perfect localization.

4.2 Task Setup

The task of the agent (MiR100 robot) is to plan a route through all 6 waypoints in a given

1435 m2 simulated environment with the shortest total time. Shelves (global static objects)

in the simulation environment are fixed objects listed in the global map, so they are

considered by the global planner. Moving obstacles (local dynamic objects) are objects

in the global map that are not marked ahead of time. The robot's laser scanning sensors

31

will detect and record these most challenging moving objects. This is also the most

interesting part of this thesis, because the dynamic environment will test the forward-

looking behaviour of the agent.

In this thesis, two environmental settings, which are static and dynamic, will be used to

test and compare the decision-making performance of reinforcement learning and greedy

methods. Both setups will share the same global map with 6 fixed-position waypoints

(see Figure 13). A robot is considered to have reached a target waypoint if its centre point

is within a 0.6 m radius of its target waypoint.

An episode is considered successfully completed if the robot has reached all 6 waypoints.

The reason why the robot is not forced to reach the precise position of the target waypoint

is because, due to various interference factors in the simulated environment, when the

robot has reached the target waypoint, it always takes a lot of time to Iteratively adjust

the position and orientation to match the exact position. Therefore, it is unnecessary for

Figure 13. The location of the 6 waypoints in the global map

Waypoint 0 Waypoint 1

Waypoint 2

Waypoint 3
Waypoint 4

Waypoint 5

32

the robot to reach the precise location of the target waypoint, and it will also increase the

complexity of the learning problem.

In order to achieve a good visual interaction experience, different colours are used to

represent the status of waypoints. As shown in Figure 14, the spheres with a diameter of

one meter floating in the air represent waypoints for the task:

⚫ Blue sphere: those waypoints that have not been visited yet

⚫ Green sphere: those waypoints that have been visited

⚫ Red sphere: the waypoint that the robot is currently heading to

In addition, a maximum time value is set in consideration of unexpected situations such

as the robot getting stuck on obstacles in the simulated environment. If the total time

exceeds this maximum, the episode will be stopped and then restarted.

4.2.1 Static Environment Setup

For each episode, the static objects (the shelves) are spawned into the 3D environment.

As shown in Figure 15, in the initial state of each new episode, 6 blue spheres representing

waypoints with collision-free properties will be spawned at a height of 2 meters above

the ground plane. The current episode ends when the robot reaches all the waypoints. The

Figure 14. Legend for waypoints in gazebo（The locations of the

waypoints in the diagram are for illustration purposes only, not

the actual locations in the simulated environment.）

33

global cost map will then be reset and the robot will be teleported to the initial position

(the entrance of the warehouse) for starting the new episode.

4.2.2 Dynamic Environment Setup

The same global map and known static environment (shelf) as the static environment are

used here. The difference is that here moving obstacles are placed deliberately in the area

around 3 non-adjacent waypoints (waypoint 1, 3, 5) among the 6 waypoints (See Figure

16), and these areas are defined as "traffic congestion areas". And every time the robot

starts a new episode, the moving obstacles in the environment are not reset to the initial

Figure 15. The static environment (The blue floating spheres represent

the waypoints)

Figure 16. The dynamic environment with traffic congestion areas

(yellow area)

34

position synchronously, which means that in each episode, if the robot chooses to follow

a different order to visit the waypoints, the moving obstacles will appear at different

positions at the same time step. This is in line with the task specification of this thesis,

that is, from the perspective of the TSP problem, RL is expected to help the robot "learn"

how to identify which are more time-consuming congested areas (requires repeated stops

or re-planning of local routes to avoid moving obstacles) , which are non-congested areas

(without stopping or avoiding unknown obstacles), o that the robot will eventually

intelligently arrange the order of waypoint visits to achieve the goal of least time

consuming.

Figure 17 shows the detailed settings of all 7 dynamic obstacles in the simulation space.

The blue squares in the figure represent moving obstacles, and the green dashed arrows

represent the moving trajectories and directions corresponding to each moving obstacle.

It is worth noting that there are some trajectories of moving obstacles that pass the

waypoints multiple times, which means that the waypoints are occupied at certain times,

and the robot (RL-agent) needs to learn how to adapt to such situations.

Figure 17. The trajectories and directions (green dashed arrow) of all 7 moving

obstacles (blue square)

35

In addition, the costmap is cleared once every new episode starts. The purpose of this is

to avoid misleading the global planner with the expired position information about the

dynamic obstacle, because the actual position of the dynamic obstacle is different at each

moment.

4.3 Experimental Group Setup (RL-Agent)

The pseudo-code (see Algorithm 1) shown below demonstrates how the Epsilon-Greedy

Q-learning algorithm [40] used in this thesis works.

Algorithm 1: Epsilon-Greedy Q-learning Algorithm

 Data: 𝛼: learning rate, 𝛾: discount factor, 𝜖: exploration rate, 𝜖𝑚𝑖𝑛: minimum exploration rate, 𝜆:

exponential decay rate, Q: Q-table generated so far, S: current state

 Result: A Q-table containing Q(S, A) pairs defining estimated optimal policy 𝜋∗

A Q-table containing Q(S, A) pairs defining estimated optimal policy 𝜋∗

 Function: SELECT-ACTION(Q, S, 𝜖) is

 𝑛 ← uniform number between 0 and 1;

 if 𝑛 > 𝜖 then

 A ← argmax Q(S, .);

 else

 A ← select a discrete random action with uniform distribution in the action space;

 end

 Return selected action A

 end

 /* Initialization */

 Initialize an empty Q(S, A), except Q(terminal, .);

 Q(terminal, .) ← 0;

 /* For each step in each episode, calculate the Q-value and update the Q-table */

 for each episode do

 /* Initialize state S = the starting point, by resetting the environment */

 Initialize state S;

 for each step in episode do

 do

 /* Choose action A from S using epsilon-greedy policy derived from Q */

 A ← SELECT-ACTION(Q, S, 𝜖);

 Take action A then observe reward R and next state S′;

 Q(S, A) ← Q(S, A) + 𝛼 [R + 𝛾max
𝑎
Q(S′, a) −Q(S, A)];

 /* Reduce epsilon until the minimum value, because less and less exploration is needed */

 if 𝜖 > 𝜖𝑚𝑖𝑛 then

 𝜖 ← 𝜖 ∗ 𝜆;

 else

 𝜖 ← 𝜖;

 end

 S ← S′;

36

 while 𝑆 is not terminal;

 end

 end

An empty Q-table is created at the beginning. The action value of the terminal state is set

to zero.

After initialization, in each step, the Epsilon-Greedy action selection is applied, i.e., select

an action A from the Q value in the Q-table with a certain probability, or randomly select

any action A. When the agent takes action A, its state changes from S to S′. In this way, it

gets the reward R. These values are then used to update the Q-table entry Q(S, A). The

above steps are repeated in this way until the agent reach a terminal state, that is, all

waypoints have shown the status of arrival.

4.3.1 Observation Space

RL-agent needs to obtain all the environmental information that can help it make

decisions, because the multi-objective point path planning problem is defined as a TSP

problem in this thesis. To demonstrate the feasibility of this definition, a simple definition

of the observation space is decided to start with, that is, the point where all robots will

stop and visit: the starting point, waypoint 0, waypoint 1, waypoint 2, waypoint 3,

waypoint 4, waypoint 5. Here the starting point refers to the warehouse entrance as the

initial location of the robot.

4.3.2 Action Space

Here, the action space consists of 6 discrete actions, i.e., 6 waypoints as the robot's

moving target: waypoint 0, waypoint 1, waypoint 2, waypoint 3, waypoint 4, waypoint 5.

When the robot is in each state, it will correspond to 6 action choices with different

probabilities, and the robot will not choose the waypoint it has reached as the action.

4.3.3 Reward Functions

In order to verify the feasibility of the proposed framework, this thesis decided to try the

simplest reward function first, that is, the overall time taken to complete the task, rather

than the total path distance. In each episode, the robot will receive -1 reward for every 1

37

second it consumes, that is, the reward is inversely proportional to time. The longer the

robot takes to complete the task, the smaller the reward.

4.3.4 Hyperparameters

In order to verify the feasibility of the proposed framework, this thesis decided to use the

same hyperparameters for the static environment and the dynamic environment:

⚫ Learning rate (𝛼): 0.8. Here, the learning rate is also called the step size. It

determines the update speed of the Q value, which affects the "speed of learning

Q" of the RL-agent. As shown in Equation (6), the new Q value of the state is

calculated by multiplying the old Q value by alpha (𝛼) multiplied by the Q value

of the selected action. So, higher 𝛼 value makes the Q value change faster, but this

makes the RL-agent overly sensitive to misleading (false) knowledge in noisy

environments.

Alpha is a real number between 0 and 1. If alpha is set to 0, the agent does not

learn the "knowledge" that comes with the new action. Conversely, if alpha is set

to 1, the agent completely ignores prior knowledge and only focuses on new

knowledge.

⚫ Discount factor (𝛾): 0.95. Gamma (𝛾) determines the weight to be considered for

the best estimate of future rewards. gamma is also a real number between 0 and 1.

When gamma is equal to 0, the RL-agent will completely ignore future rewards

and short-sightedly consider current rewards. If gamma is set to 1, the RL-agent

keeps looking for high reward values in the long term, which will result in blocked

transitions [41]: summing up non-discounted rewards results in high Q values.

⚫ Exploration rate (𝜖): 1.0. As shown in Equation (8), the Epsilon (𝜖) parameter

determines whether the exploration behaviour of the epsilon-greedy action

selection process in the Q-learning algorithm is aggressive or not. It is because of

the randomness that epsilon introduces into the algorithm, which forces the RL-

agent to try an action that is different from the existing Q-table corresponding to

a specific action. This helps the agent not settle for local optima only.

38

⚫ Minimum exploration rate: 0.01. The exploration rate will be reduced all the way

to the minimum value of it, which also contributes to avoid the problem of

prematurely trapping the agent in local optima.

⚫ Exponential decay rate: 0.999. This parameter determines how fast the exploration

rate exponentially decreases. The higher the exponential decay rate, the slower the

exploration rate decreases, and the more sufficient the exploration.

4.4 Control Group Setup (Greedy Method)

The pseudo-code (see Algorithm 2) shown below is the implementation of the Greedy

algorithm [42] used in this thesis.

Algorithm 2: Greedy Algorithm

 Data: 𝑛: number of waypoints, 𝑟: the position of the robot, 𝑤: the position of one waypoint

 Result: Output a series of waypoint coordinates in sequence, which will be used to complete the

route planning of multiple waypoints.

A Q-table containing Q(S, A) pairs defining estimated optimal policy 𝜋∗

 Function: PATH-DISTANCE-LIST(P) is

 P ← list of unreached waypoints;

 for each unreached waypoint in 𝑃 do

 /* Use global planner to calculate the distance between the robot and one waypoint */

 dist ← global_planner(𝑟, 𝑤);

 D ← list . append(dist);

 end

 end

 Function: SELECT-NEXT-WAYPOINT(D) is

 shortest_distance ← min(D);

 A ← D. index(shortest_distance);

 end

 /* For each step in each episode, calculate the distance from the current position of the robot to the

remaining waypoints that have not been reached and select the waypoint with the shortest distance as

the target to go. */

 for each episode do

 /* Initialize the position of robot to the starting point, by resetting the environment */

 Teleport robot to the starting point;

 i = 0;

 while i < 𝑛 do

 Reset the list of distance before move to each waypoint;

 if Number of waypoints that have arrived > 1 then

 /* Calculate the distance from the current position of the robot to the remaining unreached

waypoints, and save those distance to a list D */

 D ← PATH-DISTANCE-LIST(P);

39

 /* Pick the waypoint A with the shortest distance as the next waypoint to go */

 A ← SELECT-NEXT-WAYPOINT(D);

 else

 If there is only one waypoint left, then directly pick that one as the last waypoint to go;

 end

 i ← i + 1;

 end

 end

The core principle is the robot departs from the starting point, each time to find the point

that is closest to the current point among the points that have not been passed, as the point

to be traversed in the next step, until all points are traversed, and return to the starting

point.

The global_planner in move_base introduced in the navigation Section 1.3.2 is used to

calculate the distance from the robot to the waypoint. At the same time, the local_planner

is used to complete the obstacle avoidance task.

Although our goal is to minimize the total time spent, for Greedy algorithm, determining

the access order of waypoints by distance can help the robot find the local optimal solution

in the environment with obstacles that are not pre-recorded.

5 Evaluation

In this chapter, the RL agent and the Greedy method are tested in both static and dynamic

environments to test their decision-making performance and compare the results of the

two methods and summarize the possible reasons for their results.

40

5.1 Static Environment

The RL-agent model is trained based on a static environment without obstacles as the one

introduced in Section 4.2.1, and test the performance of the RL-agent and Greedy method.

In the training phase, the RL-agent will guide the robot to find the Q-table of the global

optimal solution after 1000 episodes of training output. In the testing phase, both RL-

agent and Greedy method will go through 10 episodes (rounds) and calculate the average

time for completing the task. This average time will be used to compare the decision-

making performance of these two algorithms.

Figure 18. RL-agent training results in static environment, including rewards, overall time and

exploration rate

41

5.1.1 RL-Agent

Figure 18 shows three blocks of results, namely rewards over training, overall time taken

over training, and exploration rate.

After about 500 episodes, the model started to converge, at which point the exploration

rate dropped to around 0.1. Then the model tends to stabilize at around the 800th episode,

but also with very individual exploration behaviour, which is that the exploration rate is

already very close to the minimum value (0.01). In the end, the overall time for the RL-

agent to complete the task stabilized at around 190 seconds, which saves about 42% of

the time compared with the time consumption of nearly 330 seconds at the beginning. It

took a total of 207633.25 seconds to train the model for 1000 episodes, which is about

57.68 hours.

Table 2 shows the Q table after training, the columns represent the 7 states in the state

space, and the rows represent the 6 actions in the action space. The robot finally chose

such a "shortest time-consuming path": Starting point→waypoint 5→waypoint 0→

waypoint 1→waypoint 2→waypoint 3→waypoint 4.

Table 2. Q-table for static environment (1000 episodes)

Figure 19. Test results of RL-agent in static environment (10 episodes)

42

It is worth noting that the RL-agent will not select the waypoint corresponding to the

current state as the next action target, so the Q value corresponding to the same state and

action in the Q table is 0.0 to avoid selecting repeated actions.

Figure 19 shows the performance after testing 10 episodes on the RL-agent that has been

trained on 1000 episodes. Except for the last episode where the time fluctuated greatly,

in the remaining episodes, the overall time for the RL-agent to complete the task was

controlled within 190 seconds. Finally, the average time taken by RL-agent to complete

the multi-waypoint path planning task is 191.037 seconds.

5.1.2 Greedy Method

As shown in Figure 20 that after the Greedy method has been tested with the same 10

episodes as the RL-agent, the average time to complete the task is 257.876 seconds, which

is 1 minute (66 seconds) more than the average time of the RL-agent. It can be seen that

the RL-agent has better decision-making performance than the Greedy method in a static

environment without non-recording obstacles.

5.2 Dynamic Environment

The RL-agent model is trained based on a dynamic environment with 7 moving obstacles

as the one introduced in section 4.2.2, and test the performance of the RL-agent and

Greedy method. In the training phase, the RL-agent will guide the robot to find the Q-

table of the global optimal solution after 1000 episodes of training output. In the testing

Figure 20. Test results of Greedy method in static environment (10 episodes)

43

phase, both RL-agent and Greedy method will go through 10 episodes (rounds) and

calculate the average time for completing the task. This average time will be used to

compare the decision-making performance of these two algorithms.

5.2.1 RL-Agent

Figure 21 also shows three blocks of results, namely rewards over training, overall time

taken over training, and exploration rate.

Figure 21. RL-agent training results in dynamic environment, including rewards, overall time and

exploration rate

44

This thesis did not complete the RL agent training in the dynamic environment before the

deadline for submission, so the latest process results are shown in Figure 22, the model

has undergone 416 episodes of training. Due to the addition of moving obstacles in the

environment, the time consumed by RL agent to complete the multi waypoint path

planning task increases a lot. At the same time, the convergence speed of the model also

slows down. The overall time taken is reduced from about 600 seconds to around 250

seconds, but still unstable because RL-agent is still exploring. Moreover, the training of

416 episodes has taken more than 4 days which is unexpected in this thesis.

Table 3 shows the Q table after training, the columns represent the 7 states in the state

space, and the rows represent the 6 actions in the action space. Starting point→waypoint

0→waypoint 5→waypoint 3→waypoint 2→waypoint 1→waypoint 4. Compared with

the "optimal" path obtained in the static environment, after starting from the starting point,

the robot first selects the waypoint 0 which has no moving obstacles, and then goes to the

waypoint 5 which has only one moving obstacle. From this behaviour, RL agent shows

the ability of "pre perception" for the traffic jam area.

However, the robot then chooses to go to waypoint 3 which has three moving obstacles

instead of the nearest waypoint 4 with no moving obstacles. This is most likely because

the model has not converged yet. And the reason can be known only after the training of

more episodes.

5.2.2 Greedy Method

In the simulation environment with moving obstacles spawned, MiR100 robot appears to

be unable to recover navigation with a certain probability when it is blocked by moving

obstacles, and the robot is knocked down by the “remnants” of obstacles due to the defects

of Gazebo simulator. At this time, a program for restarting the episode needs to be

manually set. The test speed of algorithm is particularly slow due to multiple restarts

Table 3. Q-table for dynamic environment (1000 episodes)

45

(about one episode per hour). Therefore, the test of greedy method in dynamic

environment has not been completed as expected.

6 Conclusion

In this thesis, Reinforcement Learning, more precisely Q-learning algorithm, is applied

to multi-waypoint path planning in dynamic environment. Its objective is to react to the

"traffic congestion area" set with unknown moving obstacles, which are not recorded in

the global planner. Different from that most related research, here, the shortest time rather

than the shortest distance is regarded as the key indicator to measure the performance of

the algorithm. Moreover, the robot is required to reach all the waypoints before the task

is completed instead of reaching as many waypoints as possible.

The main idea of this thesis is to retain the traditional global and local planner used for

single-waypoint navigation but use RL-agent to be responsible for multi-waypoint path

planning as the upper layer. So here, the multi-waypoint path planning problem is

transformed into TSP problem instead of navigation problem. For comparison, greedy

algorithm was selected to be tested in static and dynamic environments together with

reinforcement learning.

In this thesis, a learning architecture has been developed, that integrates the move_base

[19] Navigation Stack in the ROS framework and a simulation environment based on

gazebo with a self-developed dynamic obstacle simulator.

In the static environment, RL-agent is trained in the low complexity environment without

dynamic obstacles. By comparing the overall time taken by greedy method and RL-agent

to complete the same multi-waypoint path planning task, it can be found that there is a

significant difference between those two: Although RL agent takes about one minute less

than the greedy method, RL agent needs nearly two and a half days of training while the

greedy method does not.

In the dynamic environment, RL-agent is trained in a more complex environment, in

which the moving obstacles are not recorded in the global planner, and they are all in

46

different positions at different time stamps. Here, the gap between the overall time of RL

agent and the greedy method to complete the task is further widened, although the overall

time taken of both to complete the task is inevitably increased due to the introduction of

moving obstacles.

In addition, the performance bottleneck of both hardware and simulation engine also has

a significant impact on the overall time of training. As a physical engine simulator, gazebo

can only run programs with a single core in the CPU, and Q learning itself follows an

empirical learning mode, which determines that it cannot realize parallel operation.

During the training process of single episode, ROS messages are generated to

communicate with Gazebo simulator multiple times per second, and Gazebo listens to

these messages and translates them back into its internal format which is responsible for

controlling the movement of obstacles. In this thesis, gazebo shows that it is not the best

option to handle such "heavy" communication tasks.

To sum up, through the experimental demonstration in Chapter 5, the framework of

combining reinforcement learning with traditional heuristic search algorithm to solve the

shortest time-consuming multi-waypoint path planning proposed in this thesis has been

preliminarily proved to be feasible. Although due to the deadline of the thesis, the

optimization of hyperparameters to control the convergence speed of the model is not

involves, it can be regarded as one of the future works.

The flexibility of RL's framework is reflected in the fact that it can quickly insert different

reward functions for different problems. Therefore, the same algorithm can be used on

different variants of TSP that deviate significantly from Euclidean. This thesis is a

representative example, that is to consider minimizing the travel time rather than the

shortest distance.

Another advantage of reinforcement learning is that when some extremely complex

problems cannot be directly solved by mathematical modelling in a partially observed

environment, which is common in real world, the RL's framework can deal with those

“chaos”.

47

7 Future Work

An important disadvantage of Q-Learning is that for many real-world problems, the Q-

table has too many input entries to learn, sometimes even more than the number of all

atoms in the universe. In this case, the subject cannot access and learn all the entries in

the Q-table. And many states in the Q-table never occur and take a long time to discover

through training. For this thesis, in the application scenario of goods replenishment in the

supermarket tested, due to the limitation of the MiR100 robot’s transportation capacity,

which the number of waypoints will not exceed 10 at most, so Q-learning in this

application will not face the problem of dimensional disaster.

7.1 Improvement 1

Adding attributes about obstacles, e.g., “Static”, “Dynamic”, “None”) recognized by the

3D cameras in the observation space, and the action space is changed to update the action

every second (select the waypoint to go in the next second).

The advantage of this is that the finer the granularity of the environmental information,

the more detailed the representation, which makes the robot's decision-making more

flexible. In theory, robots can behave more intelligently—when the robot encounters a

“congested area”, it will temporarily abandon the current waypoint and choose an

opportunity to visit the unreached waypoint in the future.

At the same time, if the position and number of moving obstacles have changed while the

static map has not changed, the robot can still adapt to these changes and find the shortest

route through all waypoints. In other words, the generalization of "model-free"

reinforcement learning will be improved.

7.2 Improvement 2

More broader application scenarios should be considered in the future. For example, a

large-scale unmanned express delivery robot will carry hundreds of packages to different

addresses every day. It will face the congestion caused by tens of thousands of moving

obstacles in the city. The congested area changes with time. If the delivery robot wants to

avoid the congested area, it involves the processing of time series data. The objectives of

48

delivery robots may be multiple, such as saving electricity, shortening delivery time, and

completing as many delivery goals as possible. So, both the environmental inputs and the

multi-objective become incredibly large and complex.

In the face of the exponentially increasing dimensional problem of environmental input

information, Deep Q-Learning (DQN) proposed by the DeepMind team in 2013 [36]

provides an effective way to solve the problem of dimensional disaster [43]. Ideally, one

would also want to have a good guess at the Q-values of never-before-seen states. Due to

the shortcomings of Q-Learning, people tend to use Deep Q Network (also known as

Deep Q-Learning) to solve this problem. As a combination of deep learning and

reinforcement learning, DQN uses a neural network instead of a Q-table, which takes the

state of the agent as input and returns the Q-values corresponding to all the actions the

agent can take. In this case, when using good learning techniques such as experience

replay and target network separation, it can well approximate the untraversable Q-table

using a simple neural network model.

However, for multi-objective problems like multi-waypoint path planning, designing a

reward function that can efficiently balance overall time taken, obstacle avoidance, and

navigation can be a challenging work. As recently debated by academic groups [36], it's

worth noting that this would be a semi-blind manual process, and it compromises the

interpretability of the decision-making process which would place an undue burden on

the engineer to understand the real-world decision problem at hand.

49

Reference

[1] N. Ahmed, C. Pawase and K. Chang. “Distributed 3-D Path Planning for Multi-

UAVs with Full Area Surveillance Based on Particle Swarm Optimization”. In:

Applied Sciences, vol. 11, no. 8, p. 3417. 2021.

[2] C. Zeng, Q. Zhang and X. Wei, “GA-based Global Path Planning for Mobile Robot

Employing A* Algorithm”, In: Journal of Computers, vol. 7, no. 2. 2012.

[3] J. Guo, C. Li and S. Guo, “A Novel Step Optimal Path Planning Algorithm for the

Spherical Mobile Robot Based on Fuzzy Control”. In: IEEE Access, vol. 8, pp. 1394-

1405. 2020.

[4] S. Wang, J. Zhang and J. Zhang, “Artificial potential field algorithm for path control

of unmanned ground vehicles formation in highway”, In: Electronics Letters, vol. 54,

no. 20, pp. 1166-1168. 2018.

[5] V. Sangeetha et al. “A Fuzzy Gain-Based Dynamic Ant Colony Optimization for

Path Planning in Dynamic Environments”. In: Symmetry, vol. 13, no. 2, p. 280. 2021.

[6] M. Li, G. Hua and H. Huang. “A Multi-Modal Route Choice Model with Ridesharing

and Public Transit”. In: Sustainability, vol. 10, no. 11, p. 4275. 2018.

[7] H. Zhuang, K. Dong, Y. Qi, N. Wang and L. Dong, “Multi-Destination Path Planning

Method Research of Mobile Robots Based on Goal of Passing through the Fewest

Obstacles”. In: Applied Sciences, vol. 11, no. 16, p. 7378. 2021

[8] P. Wei. “Robot Motion Planning Algorithm Based on Deep Reinforcement

Learning”. In: Bachelor thesis, China Agricultural University. 2021

[9] R. Güldenring. “Applying Deep Reinforcement Learning in the Navigation of Mobile

Robots in Static and Dynamic Environments”. In: Master Thesis, Universität

Hamburg, April. 2019

[10] T. Costa. Solving the Traveling Salesman Problem with Reinforcement Learning |

Eki.Lab. [Accessed: 31-07-2022] URL:

https://ekimetrics.github.io/blog/2021/11/03/tsp/#q-learning-for-a-tsp-with-traffic-

zones.

[11] J. Herzen. Routing Traveling Salesmen on Random Graphs using Reinforcement

Learning, in PyTorch. [Accessed: 01-08-2022]. URL: https://medium.com/unit8-

machine-learning-publication/routing-traveling-salesmen-on-random-graphs-using-

reinforcement-learning-in-pytorch-7378e4814980.

[12] Amazon Sagemaker. Traveling Salesman Problem with Reinforcement Learning —

Amazon SageMaker Examples 1.0.0 documentation. [Accessed: 01-08-2022]. URL:

https://sagemaker-

examples.readthedocs.io/en/latest/reinforcement_learning/rl_traveling_salesman_ve

hicle_routing_coach/rl_traveling_salesman_vehicle_routing_coach.html.

https://ekimetrics.github.io/blog/2021/11/03/tsp/#q-learning-for-a-tsp-with-traffic-zones
https://ekimetrics.github.io/blog/2021/11/03/tsp/#q-learning-for-a-tsp-with-traffic-zones
https://medium.com/unit8-machine-learning-publication/routing-traveling-salesmen-on-random-graphs-using-reinforcement-learning-in-pytorch-7378e4814980
https://medium.com/unit8-machine-learning-publication/routing-traveling-salesmen-on-random-graphs-using-reinforcement-learning-in-pytorch-7378e4814980
https://medium.com/unit8-machine-learning-publication/routing-traveling-salesmen-on-random-graphs-using-reinforcement-learning-in-pytorch-7378e4814980
https://sagemaker-examples.readthedocs.io/en/latest/reinforcement_learning/rl_traveling_salesman_vehicle_routing_coach/rl_traveling_salesman_vehicle_routing_coach.html
https://sagemaker-examples.readthedocs.io/en/latest/reinforcement_learning/rl_traveling_salesman_vehicle_routing_coach/rl_traveling_salesman_vehicle_routing_coach.html
https://sagemaker-examples.readthedocs.io/en/latest/reinforcement_learning/rl_traveling_salesman_vehicle_routing_coach/rl_traveling_salesman_vehicle_routing_coach.html

50

[13] Mobile Industrial Robots A/S. MiR100. [Accessed: 14-07-2022]. URL:

https://www.mobile-industrial-robots.com/solutions/robots/mir100/

[14] Mobile Industrial Robots A/S. MiR100 User Guide. [Accessed: 14-07-2022].

URL:https://gibas.nl/wp-content/uploads/2021/01/mir100-user-guide_31_en.pdf,

p.11.

[15] Mobile Industrial Robots A/S. MiR100 User Guide. [Accessed: 14-07-2022].

URL:https://gibas.nl/wp-content/uploads/2021/01/mir100-user-guide_31_en.pdf,

p.60.

[16] Mobile Industrial Robots A/S. MiR100 User Guide. [Accessed: 14-07-2022].

URL:https://gibas.nl/wp-content/uploads/2021/01/mir100-user-guide_31_en.pdf,

p.65.

[17] Mobile Industrial Robots A/S. MiR100 User Guide. [Accessed: 14-07-2022].

URL:https://gibas.nl/wp-content/uploads/2021/01/mir100-user-guide_31_en.pdf,

p.54.

[18] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A.

Y. Ng, “Ros: an open-source robot operating system,” In: ICRA Workshop on Open-

Source Software. 2009.

[19] E. M.-Eppstein. Move_base package. [Accessed: 16-07-2022]. URL:

http://wiki.ros.org/move_base

[20] M. Phillips. sbpl_lattice_planner package. [Accessed: 16-07-2022]. URL:

http://wiki.ros.org/sbpl_lattice_planner

[21] Search-Based Planning Lab. sbpl package. [Accessed: 17-07-2022]. URL:

https://wiki.ros.org/sbpl

[22] Search-Based Planning Lab. Kinematic Constraints and Motion Primitives.

[Accessed: 17-07-2022]. URL: http://sbpl.net/node/48

[23] E. M.-Eppstein. move_base package. [Accessed: 17-07-2022]. URL:

http://wiki.ros.org/move_base?action=AttachFile&do=view&target=overview_tf.pn

g.

[24] M. Likhachev, G. Gordon and S. Thrun. “ARA*: Anytime A* with Provable Bounds

on Sub-Optimality”, In: Advances in Neural Information Processing Systems 16: 6:

Proceedings of the 2003 Conference (NIPS-03). 2004

[25] D. Lu. dwb_local_planner package. [Accessed: 18-07-2022]. URL:

https://github.com/locusrobotics/robot_navigation/tree/master/dwb_local_planner

[26] R. C. Coulter. “Implementation of the Pure Pursuit Path Tracking Algorithm”. In:

Tech. Report, CMU-RI-TR-92-01, Robotics Institute, Carnegie Mellon University,

January. 1992

[27] I. Ulrich and J. Borenstein. “VFH*: Local Obstacle Avoidance with Look-Ahead

Verification”. In: Proceedings 2000 ICRA. Millennium Conference. IEEE

International Conference on Robotics and Automation. Symposia Proceedings (Cat.

No.00CH37065), vol. 3. April 2000, pp. 2505–2511 vol.3. 2000

[28] M. M. Flood. “The Traveling-Salesman Problem”. In: Operation Research, Vol.4,

No. 1. 1956

https://www.mobile-industrial-robots.com/solutions/robots/mir100/
https://gibas.nl/wp-content/uploads/2021/01/mir100-user-guide_31_en.pdf,%20p.11.
https://gibas.nl/wp-content/uploads/2021/01/mir100-user-guide_31_en.pdf,%20p.11.
https://gibas.nl/wp-content/uploads/2021/01/mir100-user-guide_31_en.pdf,%20p.60.
https://gibas.nl/wp-content/uploads/2021/01/mir100-user-guide_31_en.pdf,%20p.60.
https://gibas.nl/wp-content/uploads/2021/01/mir100-user-guide_31_en.pdf,
https://gibas.nl/wp-content/uploads/2021/01/mir100-user-guide_31_en.pdf,
https://gibas.nl/wp-content/uploads/2021/01/mir100-user-guide_31_en.pdf,%20p.54.
https://gibas.nl/wp-content/uploads/2021/01/mir100-user-guide_31_en.pdf,%20p.54.
http://wiki.ros.org/move_base
http://wiki.ros.org/sbpl_lattice_planner
https://wiki.ros.org/sbpl
http://sbpl.net/node/48
http://wiki.ros.org/move_base?action=AttachFile&do=view&target=overview_tf.png
http://wiki.ros.org/move_base?action=AttachFile&do=view&target=overview_tf.png
http://wiki.ros.org/move_base?action=AttachFile&do=view&target=overview_tf.png
https://github.com/locusrobotics/robot_navigation/tree/master/dwb_local_planner

51

[29] D. Raju. Travelling Salesman Problem via the Greedy Algorithm. [Accessed: 18-07-

2022]. URL: https://medium.com/ivymobility-developers/algorithm-a168afcd3611.

[30] Z. Ullah, Z. Xu, Z. Lei, L. Zhang, W. Ullah. “RL and ANN Based Modular Path

Planning Controller for Resource-Constrained Robots in the Indoor Complex

Dynamic Environment”. In: IEEE Access. PP. 1-1. 10.1109. 2018

[31] E. Tzorakoleftherakis. Three Things to Know About Reinforcement Learning.

[Accessed: 19-07-2022]. URL: https://www.kdnuggets.com/2019/10/mathworks-

reinforcement-learning.html.

[32] S. Bhatt. Reinforcement Learning 101: Learn the essentials of Reinforcement

Learning. [Accessed: 19-07-2022]. URL:

https://towardsdatascience.com/reinforcement-learning-101-e24b50e1d292.

[33] T. Matiisen. Demystifying Deep Reinforcement Learning. [Accessed: 21-07-2022].

URL: https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/.

[34] C. Shyalika. A Beginners Guide to Q-Learning. [Accessed: 21-07-2022]. URL:

https://towardsdatascience.com/a-beginners-guide-to-q-learning-c3e2a30a653c.

[35] S. Thomas. Diving deeper into Reinforcement Learning with Q-Learning

(freeCodeCamp.org, 2018). [Accessed: 19-07-2022]. URL:

https://www.freecodecamp.org/news/diving-deeper-into-reinforcement-learning-

with-q-learning-c18d0db58efe.

[36] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M.

Riedmiller. “Playing Atari with deep reinforcement learning”. In: ArXiv preprint

arXiv:1312.5602. 2013

[37] S. Hougardy and X. Zhong. "Hard to solve instances of the Euclidean Traveling

Salesman Problem". In: Mathematical Programming Computation, vol. 13, no. 1, pp.

51-74. 2020.

[38] N. Koenig and A. Howard. “Design and use paradigms for Gazebo, an open-source

multi-robot simulator”. In: 2004 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), vol. 3 pp. 2149–2154. 2004

[39] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang and W.

Zaremba. “OpenAI Gym”. arXiv:1606.01540 [cs.LG], 5 Jun. 2016

[40] Parkinson, A. The Epsilon-Greedy Algorithm for Reinforcement Learning. [Accessed:

07-08-2022]. URL: https://medium.com/analytics-vidhya/the-epsilon-greedy-

algorithm-for-reinforcement-learning-5fe6f96dc870.

[41] baeldung. Epsilon-Greedy Q-learning. [Accessed: 28-07-2022]. URL:

https://www.baeldung.com/cs/epsilon-greedy-q-learning

[42] D. Xiang, H. Lin, J. Ouyang and D. Huang. “Combined improved A* and greedy

algorithm for path planning of multi-objective mobile robot”. In: Scientific Reports,

vol. 12, no. 1. 2022.

[43] A. H. Qureshi, A. Simeonov, M. J. Bency, M. C. Yip. “Motion planning networks”.

In: 2019 International Conference on Robotics and Automation. 2019.

https://medium.com/ivymobility-developers/algorithm-a168afcd3611
https://www.kdnuggets.com/2019/10/mathworks-reinforcement-learning.html
https://www.kdnuggets.com/2019/10/mathworks-reinforcement-learning.html
https://towardsdatascience.com/reinforcement-learning-101-e24b50e1d292
https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/
https://towardsdatascience.com/a-beginners-guide-to-q-learning-c3e2a30a653c
https://www.freecodecamp.org/news/diving-deeper-into-reinforcement-learning-with-q-learning-c18d0db58efe
https://www.freecodecamp.org/news/diving-deeper-into-reinforcement-learning-with-q-learning-c18d0db58efe
https://medium.com/analytics-vidhya/the-epsilon-greedy-algorithm-for-reinforcement-learning-5fe6f96dc870
https://medium.com/analytics-vidhya/the-epsilon-greedy-algorithm-for-reinforcement-learning-5fe6f96dc870
https://www.baeldung.com/cs/epsilon-greedy-q-learning

52

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Yuzhou Liu

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Using Reinforcement Learning for Multiple Way-points Path Planning of

Single Mobile Robot in the Dynamic Obstacle Environment”, supervised by Andreas

Bresser, Laura Piho, and Pascual Campoy

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

08.08.2022

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

