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Abstract 

The maximum clique problem is one of the known NP-complete problems.  Although 

there is a number of solutions to this problem, which are both relatively cost efficient in 

terms of computing power as well as execution time, scientists continue to look for 

better ways to solve this problem since even small improvement gives huge benefits for 

NP-complete family tasks. 

The IT company Denikum OÜ, which develops different optimization algorithms was 

interested in porting the efficient maximum clique finding algorithm to web. The main 

goal is to allow the user to run the algorithm smoothly in the browser on a modern PC, 

without the need to load the server with heavy and time-consuming operations. It was 

decided to port the VRecolor-BT-u algorithm because it is currently one of the best 

algorithms to solve the maximum clique problem. 

The thesis starts with a brief description of graph theory as well as the main goals of this 

work. After that VRecolor-BT-u algorithm and its predecessors are presented. Next, the 

key points of development process are shown along with the description of the 

technology stack. 

The main contribution of this thesis is the parallelization of VRecolor-BT-u algorithm 

using Web Workers, which greatly improved the performance of the algorithm on graph 

densities of 30% and more. The second big goal that was achieved in this work was to 

combine the parallelized VRecolor-BT-u-parallel algorithm with VRecolor-u algorithm, 

which improved the algorithm performance on lower density graphs, making it efficient 

on all graph densities. 

At last the newly improved algorithms are compared with their predecessors on both 

randomly generated as well as DIMACS graphs. The results are presented in a series of 

charts, which display the relation of the number of vertices to the time taken for 

different algorithms to find the result. The results show that the combined algorithm 

performs better than all previously created algorithms on all densities on randomly 
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generated graphs. The paper is concluded by some of the interesting ideas for future 

research. 

This thesis is written in English and is 53 pages long, including 4 chapters, 31 figures 

and 2 tables. 
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Annotatsioon 

Mitmelõimeline veebirakendus suurima kliki probleemile 

Maksimaalse kliki probleem on üks teadaolevatest NP-täielikkuse probleemidest. Ehkki 

sellele probleemile on mitmeid lahendusi, mis on nii arvutusvõimsuse kui ka täitmisaja 

poolest suhteliselt kulutõhusad, otsivad teadlased endiselt selle probleemi 

lahendamiseks paremaid viise, sest isegi väike täiustamine annab NP-täielikkuse 

perekondlike ülesannete puhul suured eelised.  

Mitmesuguseid optimeerimisalgoritme arendav IT-ettevõte Denikum OÜ oli huvitatud 

tõhusa maksimaalse kliki leidmise algoritmi veebi porteerimisest. Peamine eesmärk on 

võimaldada kasutajal tänapäeva arvuti brauseris algoritmi sujuvalt kasutada, ilma 

vajaduseta serverit laadida keerukate ja aeganõudvate toimingutega. Otsustati porteerida 

VRecolor-BT-u algoritm, sest see on praegu üks parimatest algoritmidest maksimaalse 

kliki probleemi lahendamiseks. 

Lõputöö algab graafiteooria lühikirjeldusega, samuti selle töö peamiste eesmärkidega. 

Seejärel tutvustatakse VRecolor-BT-u algoritmi ja selle eelkäijaid. Järgmisena 

näidatakse arendusprotsessi põhipunkte koos tehnoloogiapinu kirjeldusega. 

Selle lõputöö peamine panus on VRecolor-BT-u algoritmi paralleelistamine 

veebitöötajate abil, mis täiustas oluliselt algoritmi tulemuslikkust graafi tihedusel 30% 

ja enam. Teine selles töös saavutatud suur eesmärk oli paralleelse VRecolor-BT-u-

parallel algoritmi ühendamine VRecolor-u algoritmiga, mis täiustas algoritmi 

tulemuslikkust väiksema tihedusega graafidel, muutes selle tõhusaks kõigil graafi 

tihedustel. 

Lõpuks võrreldakse hiljuti täiustatud algoritme nende eelkäijatega nii juhuslikult 

genereeritud kui ka DIMACS-graafide abil. Tulemused on esitatud diagrammisarjana, 

mis näitavad tippude arvu seost ajaga, mis kulub eri algoritmidele tulemuse leidmiseks. 

Tulemused näitavad, et kombineeritud algoritm genereeritud graafide puhul toimib 
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kõigil tihedustel paremini kui kõik varem loodud algoritmid. Töö lõpus on mõned 

huvitavad ideed edaspidiseks uurimistööks. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 53 leheküljel, 4 peatükki, 31 

joonist, 2 tabelit. 
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List of abbreviations and terms 

AJAX Asynchronous JavaScript and XML – a set of web development 

techniques used on the client side to create asynchronous web 

applications 

Angular Platform for building mobile and desktop web applications 

API Application Programming Interface – a set of definitions and 

protocols for building and integration application software 

CPU Central Processing Unit – the unit which performs most of the 

processing inside a computer 

DIMACS Center for Discrete Mathematics and Theoretical Computer 

Science 

DOM Document Object Model – object model for HTML 

FIFO First-In, First-Out – a method of processing and retrieving data 

HTML5 HyperText Markup Language, version 5 – markup language for 

the structure and presentation of World Wide Web contents 

JavaScript The programming language for the Web 

NP-complete The problem can be solved in Polynomial time using a Non-

deterministic Turing machine 

TypeScript A typed superset of JavaScript that compiles to plain JavaScript 

UI User Interface 

VColor-BT-u Vertex Color Backtrack unweighted – algorithm name 

VColor-u Vertex Color unweighted – algorithm name 

VRecolor-BT-u Vertex Recolor Backtrack unweighted – algorithm name 

VRecolor-BT-u-parallel Vertex Recolor backtrack unweighted parallel – algorithm 

name 

VRecolor-u Vertex Recolor unweighted – algorithm name 

Web Workers A JavaScript that runs in the background, independently of 

other scripts 
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1 Introduction 

The graph theory became known for the first time after the publication of the paper 

written in 1736 by L. Euler on the Seven Bridges of Königsberg problem. The graph 

theory solved an entertaining problem, which was presented there.  

Graph theory is a section of discrete mathematics that studies the graphs, which are 

structures used to represent relationships between objects. Graphs got their name from 

the fact that they can be depicted graphically. Anything that looks like the interrelated 

components can be represented as a graph, where components are vertices and relations 

between them are edges. In practice, graphs are used to solve problems of different 

complexity from various fields of science and real life, as well as just for representing 

complex things in the form of graphs. The great advantage of graphs usage is the 

possibility to simplify problems by omitting the irrelevant details, thereby concentrating 

only on the core details. Graph theory is widely used in social networks, information 

networks, GPS navigation, planning the transportation routes, networks of neurons and 

so on. Graphs are also successfully used to resolve complete and NP-complete decision 

tasks. Some of the most known NP-complete problems are graph coloring and 

maximum clique finding [1]. 

1.1 Graph theory 

A graph G is a collection of objects, i.e. vertices V, and edges E that represents 

relationships between these objects. A number of vertices in G is called the order of G 

and denoted by |V|, and the number of edges is the size of G, denoted by |E| [2].  

Two vertices v and w of G are called adjacent if there is an edge vw joining them, and 

both vertices are incident with edge vw. If two distinct edges have a vertex in common, 

they are also called adjacent. Loop is an edge connecting vertex v to itself [3].  

The degree of a vertex v of G is the number of edges incident with v – deg(v) [3].  
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Figure 1. Degrees of the vertices. 

 

A directed graph is a graph in which every edge is directed, and a graph in which every 

edge is undirected is called an undirected graph. Graphs can also be weighted and 

unweighted. Each edge in a weighted graph has a weight – a number (usually positive) 

assigned to it, respectively, edges of an unweighted graph do not have numerically 

represented weights.  

 

Figure 2. Directed weighted graph and undirected unweighted graph. 

 

Graph is called simple when it is undirected, without loops and multiple edges between 

two vertices. A simple graph where each pair of vertices is adjacent is a complete graph. 

A graph with no adjacent pairs of vertices is called edgeless [3]. A clique is a complete 

graph of G, whereas an edgeless subgraph of G is an independent set [2]. This work will 

consider only undirected, unweighted and simple graphs.  
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Figure 3. Complete graph. 

 

Complement graph G’ of a simple graph G is a graph with vertex set V(G) where two 

vertices are adjacent if they are not adjacent in G. Accordingly, edgeless graph is a 

complement to complete graph [3].  

A vertex set K is called vertex cover of a graph G, when each edge of G is incident to at 

least one vertex from K [2]. 

Graph coloring is a process of assigning colors to each vertex so that adjacent vertices 

have different colors. A graph without loops is said to be k-colorable, if it can be 

properly colored using k colors. The chromatic number of G, write χ(G) = k, is the 

minimum number of colors required to color a graph G [3]. A set of verices with the 

same color is a color class. Since the vertices with the same color are not connected to 

each other, the color class is nothing more than an independent set.  

The following problems are stated from the definitions mentioned above [1]: 

▪ Maximum clique problem – a problem of finding maximum possible complete 

subgraph of a graph G. 

▪ Independent set problem – a problem of finding maximum possible edgeless 

subgraph of a graph G. 

▪ Minimum vertex cover – a problem of finding the smallest possible vertex cover 

of a graph G. 

▪ Graph coloring - a problem of finding a chromatic number of a graph G. 

All these problems are NP-complete, moreover they are computationally equivalent and 

one problem can be transformed into another one [4].  
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1.2 Goals of the study 

1. Port VRecolor-BT-u algorithm to the web environment. 

2. Improve VRecolor-BT-u by applying multithreading techniques. 

3. Implement algorithm that executes VRecolor-BT-u-parallel algorithm and 

VRecolor-u from different ends of the graph in parallel threads. 

4. Compare execution performance of VRecolor-BT-u, VRecolor-BT-u-parallel 

and combination of VRecolor-BT-u-parallel and VRecolor-u. 

During the work, in order to achieve the stated goals, we will have to do also: 

1. Study one of the best maximum clique finding algorithm – VRecolor-BT-u and 

related. 

2. Study Web Workers that make it possible to implement a multithreaded 

application. 

1.3 Work overview 

Current work consists of four main chapters. In the beginning of the first chapter graph 

theory is introduced as well as some of the main problems, which can be solved with it. 

The goals of the thesis are presented afterwards. The second chapter starts with the 

presentation of the two main maximum clique finding algorithms, which are the base for 

many modern algorithms. Afterwards a few modern algorithms are presented, namely 

VColor-u, VColor-BT-u and VRecolor-BT-u. The third chapter begins with the 

description of the chosen technology stack and porting algorithm to web. The next topic 

is dedicated to multithreading and its usage in the web environment. The last two 

sections of the third chapter give an overview of two approaches to improve 

performance of the VRecolor-BT-u algorithm by applying multithreading, the 

description of the development process and the analysis of the test results, carried on the 

random and DIMACS graphs. The last chapter includes the conclusion of the thesis as 

well as the ideas for future research. 
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2 Maximum clique algorithms 

The maximum clique problem is one of the known NP-complete problems. The goal of 

this problem is to find the maximum possible complete subgraph in graph G. This 

problem is considered as NP-complete due to the difficulty of finding the best result 

with usual methods. The first exact solutions with good computational performance 

were presented in the ’90s, however, the maximum clique problem still remains popular 

among scientists. Nowadays there is a lot of interesting and operative solutions that are 

already implemented. Nevertheless, scientists continue to look for better ways to solve 

this problem [1]. 

This chapter presents two basic branch and bound algorithms for finding the maximum 

clique by applying the different approaches of traversing the graph. Three modern 

algorithms, which are based upon the upper mentioned, are described after that. 

2.1 Basic algorithms 

The basic concepts of how a clique can be found were given in an algorithm invented by 

Randy Carraghan and Panos M. Pardalos. It was presented in the article “An exact 

algorithm for the maximum clique problem” published in 1990 [5]. The algorithm itself 

is simple but very efficient, moreover, even nowadays it gives great results on lower 

density graphs. It is based on a branch construction and a good pruning formula. The 

main point of the algorithm is the notion of depth. At first, the first vertex from all 

vertices of graph S – vertex v1 (depth 1) is considered. The next depth will be formed 

from vertex v1 and all vertices adjacent to v1. At depth 3 all vertices from depth 2, 

which are adjacent to the first vertex in current depth v3 are considered, and so on. In 

this way, every expanded vertex forms a new branch (until there are no vertices left to 

expand) and the reached depth considers as a current maximum clique. The pruning 

formula is carried out on each branch, and in case it does not hold, the branch will be 

truncated. Consequently, the analyzed graph will be covered much faster. However, this 

formula is very efficient on low-density graphs, but on high densities it is almost useless 
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[5]. In short, the approach used in Carraghan and Pardalos algorithm considers all 

vertices at the start and traverses the graph by building the branches.  

The second efficient approach was given by Östergård’s algorithm, introduced in the 

article “A fast algorithm for the maximum clique problem” [6]. This algorithm is based 

on the previous one with important addition as a backtrack search and extra pruning 

formulas. The previous algorithm searches for the maximum clique by first considering 

cliques in S1 that contain v1, then cliques in S2 that contain v2, and so on. In this 

algorithm the ordering is reversed: at first cliques in Sn that contain vn, are considered, 

then cliques in Sn−1 that contain vn−1 [6]. The obtained clique size for each subgraph Si 

are stored in a cache that is later used to apply the new pruning formula. The 

performance of this approach does not differ much from the previous one on low 

densities, but on high densities it is about 30%-50% faster. Furthermore, if the density is 

very close to one, the speed of the algorithm is increased even more [6]. 

2.2 VColor-u 

In 2005 Deniss Kumlander introduced VColor-u algorithm in his thesis “Some practical 

algorithms to solve the maximum clique problem” [7]. This algorithm is based on 

Carraghan and Pardalos approach and the idea of using independent sets by performing 

initial vertex coloring. Before the maximum clique is being searched for, the graph is 

analyzed and results gained from the analysis are stored for later use. Compared to the 

two previous branch and bound algorithms VColor-u demonstrates better results: about 

15% faster on low densities (20% – 50%) and up to 50% faster on density 90%. 

Nevertheless, VColor-u is slower than Carraghan and Pardalos algorithm on densities 

about 10% and lower, since graph coloring and vertices ordering are useless on low 

densities and extra pruning formula is not that efficient [4]. 

2.3 VColor-BT-u 

In the same dissertation another algorithm VColor-BT-u was also introduced. This 

algorithm differs from the previous one by the traversing approach – VColor-BT-u is 

based on powerful backtracking idea from Östergård algorithm [6]. At the start of the 

program initial vertex coloring is applied and then the graph is backtracked on a higher 

level than Östergård algorithm: by independent sets instead of individual vertices [7]. 
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The computational speed of VColor-BT-u is approximately two times higher than 

VColor-u on almost all densities. The combination of pruning formula from 

backtracking idea and pruning technique based on the usage of independent sets made 

this new algorithm also faster than Östergård’s algorithm: 50%-100% on lower densities 

and 13-25% on dense graphs [4]. 

2.4 VRecolor-BT-u 

In his master’s thesis “Reversed search maximum clique algorithm based on recoloring” 

[4] Aleksandr Porošin introduced a new algorithm to solve maximum clique problem, 

which was also presented on the 6th World Congress on Global Optimization (WCGO 

2019) this year. This algorithm is a successor of VColor-BT-u algorithm with additional 

recoloring on each depth – idea inherited from the MCQ algorithm (firstly introduced in 

2003 by Tomita and Seki and its’ successors [8]). Algorithms from Tomita proved that 

initial coloring is not enough as the deeper search goes the more diffused initial color 

classes become [4]. On high levels, the recoloring is needed to obtain precise 

information about independent sets on current depth. Considering that reversed search is 

built around initial color classes, efficient pruning formulas on recoloring cannot be 

applied. The solution to this conflict was to use a new skipping technique instead of 

pruning the branches immediately basing on recoloring.  

VRecolor-BT-u is described using the following steps (Figure 4):  

Algorithm for the maximum clique problem – “VRecolor-BT-u” 

CBC – current best clique, largest clique found by so far. 

d – depth. 

c – index of the currently processed color class. 

di – index of the currently processed vertex on depth d. 

b – array to save maximum clique values for each color class. 

Ca – initial color classes array. 

Cb – color classes array recalculated on each depth. 

𝐺𝑑 - subgraph of graph G induced by vertices on depth d. 

cn – number of color classes recalculated on each depth. 
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CanBeSkipped(𝑣𝑑𝑖 , 𝑐) - function that returns true if a vertex can skipped without 

expanding it. 

1. Graph density calculation. If graph density is lower than 35% go to step 2a, 

else go to step 2b. 

2. Heuristic vertex greedy coloring. There should be two arrays created to store 

initial color classes defined only once (Ca) and color classes recalculated on 

each depth (Cb). During this step both arrays must be equal. 

a. Before coloring vertices are unordered and colored with swaps. 

b. Before coloring vertices are in decreasing order with response to their 

degree and colored without swaps. 

3. Searching. For each color class starting from the first (current color class index 

c). 

3.1. Subgraph (branch) building. Build the first depth selecting all the 

vertices from color classes whose number c is equal or smaller than 

current. Vertices from the first color class should stand first. Vertices at 

the end should belong to c color class. 

3.2. Process subgraph.  

3.2.1. Initialize depth. d = 1. 

3.2.2. Initialize current vertex. Set current vertex index 𝑑𝑖 to 

be expanded (initially the first expanded vertex is the 

rightmost one). 𝑑𝑖 = 𝑛𝑑. 

3.2.3. Bounding rule check. If current branch can possibly 

contain larger clique than found by so far. If 𝐶𝑎(𝑣𝑑𝑖) <  𝑐 

and 𝑑 − 1 + 𝑏[𝐶𝑎(𝑣𝑑𝑖)] ≤ |𝐶𝐵𝐶| then prune. Go to step 

3.2.7. 

3.2.4. Vertex skipping check. If current vertex can possible 

contain larger clique than found by so far. If 𝑑 − 1 +

𝐶𝑏(𝑣𝑑𝑖) ≤ |𝐶𝐵𝐶| and CanBeSkipped(𝑣𝑑𝑖 , 𝑐) skip this 

vertex. Decrease index i = i -1. Go to step 3.2.3. 

3.2.5. Expand current vertex. Form new depth by selecting all 

the adjacent vertices (neighbors) to current vertex 𝑣𝑑𝑖 

(𝐺𝑑+1 = 𝑁(𝑣𝑑𝑖)). Set the next expanding vertex on 

current depth 𝑑𝑖 = 𝑑𝑖 − 1. 
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3.2.6. New depth analysis. Check if new depth contains 

vertices.  

a. If 𝐺𝑑+1 =  ∅ then check if current clique is the 

largest one it must be saved. Go to step 3.3. 

b. If 𝐺𝑑+1 ≠  ∅ then check graph density. If 

graph density is lower than 55% apply greedy 

coloring with swaps to 𝐺𝑑+1, else use greedy 

coloring without swaps. Save number of color 

classes (cn) acquired by this coloring. If 

number of color classes cannot possibly give 

us a larger clique then prune. If 𝑑 − 1 + 𝑐𝑛 ≤

|𝐶𝐵𝐶| decrease index i = i - 1 and go to step 

3.2.3, else increase depth d = d + 1. Go to 

step 3.2.2. 

3.2.7. Step back. Decrease depth d = d – 1. Delete expanding 

vertex from the current depth. If d = 0 go to step 3.3, else 

go to step 3.2.3. 

3.3. Complete iteration. Save current best clique value for this color. b[c] = 

|CBC|. 

4. Return maximum clique. Return CBC. 

Figure 4. VRecolor-BT-u algorithm [4]. 

 

Compared to VColor-BT-u and “MCS Improved” (the last successor of MCQ algorithm 

[9]) VRecolor-BT-u algorithm shows the best results on densities until 75%. On highly 

dense graphs the “MCS Improved” is still the fastest one [4]. 
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3 Implementation 

According to the nature of the problem and the technology stack of the company, for 

whom the multithreaded algorithm is being developed, it was decided to create the 

algorithm using following technologies: Angular 8, TypeScript, Web Workers. Next, 

above-mentioned technologies will be examined in more detail and their use will be 

justified. Finally, the practical part of this work will be presented – developed solutions 

and overview of the results.  

3.1 Technology stack 

The company Denikum OÜ has a strong request to implement solution for the 

maximum clique problem web based, but without the backend part, since algorithms 

developed in this work is going to be applied within the cloud-based products and many 

of them do require optimization of the cost by minimizing the server-side load. 

Additionally, the company would like to add the algorithms to be developed into the 

demo package and again likes to avoid additional charges related to the server load.  

Since the customer company uses Angular framework for creating web applications, it 

was requested to develop our solution with Angular (version 8.2.1) as well. Angular is a 

JavaScript framework developed by Google, and currently is one of the best solutions 

for web development. With great features like templating, two-way binding, 

hierarchical dependency injection, AJAX handling and so on, Angular makes it possible 

to build modern, interactive and dynamic web pages and applications. With Angular the 

applications can be built for any deployment target: for web, mobile web, native mobile 

and native desktop [10]. The proper use of all the features of this framework does not 

just significantly increases the speed of development, but also aids in creating quality 

and efficient software. Other advantage of Angular framework is, that it’s TypeScript-

based. TypeScript is a superset of JavaScript, which ensures higher security by 

supporting types. Typed languages help us catch and fix errors early in the process of 

writing the code or performing maintenance tasks. Furthermore, the TypeScript code 

can be directly debugged in the browser, which also simplifies the development process.  
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Web Workers are used to execute tasks in separate threads. This mechanism solves the 

concurrency problem in JavaScript. With the help of Web Workers it is possible to 

execute scripts in background threads, separately from the main thread, which prevents 

it from being blocked. It will be discussed in more detail in the upcoming chapter. 

3.2 Porting VRecolor-BT-u to web 

The VRecolor-BT-u algorithm was first introduced in Aleksandr Poroshins’ master’s 

thesis, and was implemented with C# programming language. One of the goals of this 

work is to port VRecolor-BT-u to web. It’s worth to note that the structure and work 

principle of the algorithm will remain the same, since the algorithms used in the thesis 

have one very important nature: those were written one by one inheriting each 

consequent implementation from the previous one as the algorithm evolved through 

several improvement rounds. Therefore, every possible improvement in base algorithm 

is applicable to the next algorithm and therefore, on the high level, even if there are 

small improvements possible, it will not change the compatibility of the algorithm, 

which is the most important point of this work. It is also worth mentioning that the 

algorithms were carefully checked through all rounds by all involved authors 

[Kumlander, Porosin] including results comparison and the probability of finding large 

scale improvements is low and therefore can be omitted due the fact we do compare 

algorithms.  

3.3 Multithreading 

As already noted, VRecolor-BT-u algorithm is going to be improved with the use of 

multithreading. Essentially, JavaScript by its nature is single threaded environment – it 

executes only on a single processor thread. This means that every executed line of code 

blocks further code execution i.e. only one command is processed at a time. This is not 

a problem for the majority of websites, because it is possible to create pretty fast web 

apps without the use of multithreading. Sometimes, however, we encounter more 

complicated computations or time-consuming procedures, which might require the 

client to wait for too long. Computational operations that can be executed independently 

from other logic potentially is executable in a separate thread, thus leaving the main 
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thread as well as UI unblocked. In order to solve this problem with blocking, the 

asynchronous features were introduced in JavaScript, but even using those the code is 

still executed in the same thread. Therefore, we still need a true multithreading features 

for our implementation. 

As it was mentioned earlier, parallel processing in web development is achieved with 

the use of Web Workers, which were introduced in HTML5. It is possible to transfer 

execution of some independent scripts to the background threads with the aid of so-

called workers. Worker is an object, which is created using the Worker() constructor, 

which runs a separate JavaScript file with the code, executed in an isolated browser 

thread. In order to make use of the worker thread, the scopes of worker thread and main 

thread need to be able to communicate. It is done by using a messaging system. A 

worker subscribes to a message. When the message is received, the worker processes it 

and optionally sends another message back to the main thread. The main thread also has 

to subscribe to the message event if it needs to react on it. 

There are certain specifics and restrictions making web workers challenging to apply. 

The success of the work at whole depends on the proper choice of solutions to these 

limitations. 

First of all, workers have some difficulties with data transfer. The data passed to the 

worker directly will be shallow cloned, leading to the loss of some data. In the interest 

of preserving the data, it should be serialized and cloned with the use of the structured 

cloning algorithm or transferable objects. Structured cloning means that all of the 

properties of an object must be iterated through and the values of those properties 

duplicated. In short, this process is called deep cloning. Transferable objects are objects 

that implement the Transferable interface [11] and can be moved to a different 

JavaScript context (i.e. another window or worker). Although the content of transferable 

objects is transferred from one context to another with a zero-copy operation, it is 

literally moved to the new context. For example, when passing an ArrayBuffer (which 

belongs to transferable objects) from the main thread to a worker, the original 

ArrayBuffer is cleared and will no longer be available in the original context [12].  

It can be noticed that both approaches have downsides. The deep cloning and the 

transferring of the data is significant overhead to the message transmission, since the 
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larger amount of data is, the bigger the message gets, and the longer it takes to send it. 

The drawback of using the transferable object is the loss of the object from the original 

thread. In order to avoid these disadvantages, which are unprofitable for the 

performance, it is possible to use SharedArrayBuffer for sharing the data between 

threads - it is done without any loss of data in the parent thread and without time and 

memory consuming cloning. As it was written in one of the source materials: 

“The SharedArrayBuffer object is used to represent a generic, fixed-length raw binary 

data buffer, similar to the ArrayBuffer object, but in a way that they can be used to 

create views on shared memory. Unlike an ArrayBuffer, a SharedArrayBuffer cannot 

become detached“ [13]. Shared memory can be created and updated simultaneously in 

multiple threads. Atomic operations need to be used to synchronize those modifications 

and to be sure that shared data in any of the threads are up to date. Those guarantee that 

read and write operations will always be completed before the next operation is 

executed. The Atomics object embedded into JavaScript represents atomic operations in 

form of static functions, which are used together with the SharedArrayBuffer object.  

Another aspect that needs to be accounted for is the fact that productivity might suffer 

from the creation of workers and their excessive amount. The initialization of one 

worker takes about 40ms [14], which means that improper use of workers might 

decrease the overall productivity due to their initialization. Furthermore, it is worth 

considering the number of cores (the basic computation units of the CPU) the system 

where the algorithm will be run has. If there are more workers spawned than there are 

cores, it will slow down the workload, as the workers will be queued. Due to this fact, 

we need to use a reasonable number of workers in order to get the maximum benefit 

from them.  

Multithreading is used to improve initial algorithms. In order to get the most from the 

use of workers it is crucial to understand the structures of the algorithms to find the 

proper place for workers to be added into. The first idea is to find out a recurring part in 

the algorithm, which could be processed as an independent task, and run those parts 

simultaneously in the separate threads. It is also important to set up the parallel task 

execution system and try to minimize the necessary performance costs to run workers. 

The second idea is to run two maximum clique algorithms simultaneously, which will 

traverse the graph from different ends. To make this idea work, both algorithms have to 

http://man.hubwiz.com/docset/JavaScript.docset/Contents/Resources/Documents/developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer.html
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be based on the same approach of the initial vertex coloring and ordering. After 

execution, those algorithms will reach the same vertex and after analyzing that one the 

further traversing of the graph will be useless. Therefore, the execution of the 

algorithms should be interrupted, and the largest clique is picked from the maximum 

cliques found in both algorithms. The challenge in this approach is to properly set up 

communication between threads, by use of shared data. It is crucial since two 

algorithms need to share the information about their current positions to determine the 

moment of termination. 

3.4 Multithreaded VRecolor-BT-u 

The branch and bound algorithms’ computational speed can be significantly increased 

by parallelizing the process of the traversing branches. When we are on the first level 

(depth 1), no matter if the algorithm is using the reversed search or not, each expanded 

vertex forms a separate branch. VRecolor-BT-u algorithm is based on backtrack search 

and operates with independent sets divided by the color classes instead of single 

vertices. It starts searching for a clique from the vertices of the first color class, 

increasing the analyzed graph by one independent set (step 3 from Figure 4) on 

backtracking iteration. At first glance, it may seem logical to parallelize the processes 

by processing in separate threads each subgraph formed for each backtracking iteration. 

Unfortunately, certain pruning formulas are based on backtracking, i.e. are using the 

information gained from previously traversed subgraphs. It means, that these iterations 

cannot be multithreaded, as they depend on each other. If we look deeper at the logic 

that is performed inside the iterations, it will be found, that the processing of the 

subgraphs is nothing other than the simple branch and bound algorithm, which is based 

on Carraghan and Pardalos approach. In the mentioned approach all the vertices are 

considered one after another. The analyzed graph is decreased on each iteration by 

removing the processed vertex from it. This particular place is excellent for parallelizing 

the process: being at the first level, where we have all the vertices from the current set 

of independent sets, it is possible to process branches formed from each first level 

vertex independently. 

The code, which is going to be executed in parallel threads, is located in separate 

workers’ file v-recolor-bt-u-parallel.worker.ts. All the data, related to the graph and 
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analysis, is prepared before the processing by the worker: graph, initial colors, current 

maximum clique size, cache and others needed in these workers. As some of the data 

can be quite massive, the copying and the passing operations may take too long. In 

order to decrease the time spent to minimum, we are creating a shared memory area for 

this data with the use of SharedArrayBuffer, and then send that memory to workers. In 

workers, as well as in the main thread, we create an array-like view on top of that shared 

memory (binary data buffer), to work with shared data as with a simple array. 

As seen in Figure 5, the data, which will be later sent to workers, is prepared before the 

search for the maximum clique is started. Static functions of Atomics object are used to 

synchronize the read/write operations to the shared data. There are the following steps 

inside the backtrack search for-loop: 

1. Wait until the independent sets of the current color classes is processed. 

2. Save the current maximum clique size to cache. 

this._sharedBufferMaxCliqueSize = new SharedArrayBuffer(2); 

let sharedMaxCliqueSize = new Uint16Array(this._sharedBufferMaxCliqueSize); 

Atomics.store(sharedMaxCliqueSize, 0, 0); 

 

this._sharedBufferJsonGraphValues = SharedArrayBufferUtil.str2sharedArrayBuff
er(JSON.stringify(this._graph.values)); 

 

this._sharedBufferInitialColors = new SharedArrayBuffer(this._initialColors.l
ength * 2); 

let sharedInitialColors = new Uint16Array(this._sharedBufferInitialColors); 

sharedInitialColors.set(this._initialColors, 0); 

 

this._sharedBufferMaxCliqueCache = new SharedArrayBuffer(initialColorsNumber 
* 2); 

let sharedMaxCliqueCache = new Uint16Array(this._sharedBufferMaxCliqueCache); 

 

for (let initialColor = 0; initialColor < initialColorsNumber; initialColor++
) { 

    await this.analyseColorSetAsync(initialColor); 

    let currentMaxClique = Atomics.load(sharedMaxCliqueSize, 0); 

    Atomics.store(sharedMaxCliqueCache, initialColor, currentMaxClique) 

} 

Figure 5. Data preparation in the main thread. 

 

In the first step we are waiting for all the threads spawned for the subgraph processing 

to finish their work. After that, the gained maximum clique is saved to cache and the 
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next iteration is activated. The obtained result from the previous analysis will be used in 

subsequent calculations. 

private async processColorSetAsync(initialColor: number): Promise<void> { 

    return new Promise(async (res) => { 

        let numberOfNodes = 0; 

        let depthNodes = []; 

        for (let i = 0; i <= initialColor; i++) { 

            for (let j = 0; j < this._initialNodesNumInColorClass[i]; j++) { 

                depthNodes[numberOfNodes] = this._initialColorClasses[i][j]; 

                numberOfNodes++; 

            } 

        } 

 

        for (let i = numberOfNodes - 1; i >= 0; i--) { 

            this._jobsQueue.push({ 

                startNodeIndex: i, 

                firstLevelNodes: depthNodes, 

                initialColor: initialColor, 

            }) 

        } 

 

        await this.startJobs(res); 

    }); 

} 

Figure 6. The process of building the first level and isolating jobs. 

 

The process of building the first level and isolating jobs is shown on the Figure 6. We 

start from building the first level, afterwards a separate job, containing necessary 

information for the branch processing, is created for each vertex on this depth. The jobs 

list represents the queue which follows the FIFO approach, so the first job from the list 

will be processed first and the new job will be placed in the end of the list and executed 

last. After the jobs for each branch are created, we need to initialize the worker threads, 

where the jobs will be executed. As already mentioned before, each worker initialization 

takes about 40ms, besides the time for transferring data to the worker also adds up. 

Since we are interested in the maximum profit of using the workers, it would not be 

rational to create a new worker each time the job is started and remove it after the job is 

finished. It definitely will impact performance negatively, so it was decided to create a 

fixed number of workers, depending on system CPU cores number, and make them 

reusable. The number of CPU cores can be obtained from the 

window.navigator.hardwareConcurrency object. Next, when some job is finished, the 

worker is released and may be re-used by the next job.  Figure 7 shows that the number 
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of required workers is set in accordance with the limit based on available cores and the 

number of jobs to be processed, as it doesn’t make sense to spawn more threads than 

necessary at the moment. If there will be more jobs in future iterations, and the limit 

will not be reached, additional workers will be created. 

const jobsToStart = Math.min(scope.workersLimit, scope.jobsQueue.length); 

let missingWorkers = jobsToStart - scope.workers.length; 

if (missingWorkers) 

    await initWorkers(missingWorkers); 

Figure 7. Initialization of the limited number of workers. 

 

Figure 8 demonstrates the initialization of the workers. 

 

async function initWorkers(amount: number): Promise<void> { 

    return new Promise((res, rej) => { 

        scope.workersToInit = amount; 

 

        const idStartPoint = scope.workers.length; 

        for (let i = 0; i < amount; i++) { 

            const worker = new Worker('../v-recolor-bt-u-parallel/v-recolor-
bt-u-parallel.worker', { type: 'module' }); 

 

            worker.onmessage = (event: MessageEvent) => { 

                scope.workersToInit--; 

                if (!scope.workersToInit) 

                    res(); 

            }; 

 

            worker.onerror = () => { 

                console.log("ERR"); 

            }; 

 

            worker.postMessage({ 

                workerId: idStartPoint + i, 

                graphOrder: scope.graphOrder, 

                graphDensity: scope.graphDensity, 

                sharedBufferMaxCliqueSize: scope.sharedBufferMaxCliqueSize, 

                sharedBufferMaxCliqueCache: scope.sharedBufferMaxCliqueCache, 

                sharedBufferInitialColors: scope.sharedBufferInitialColors, 

                sharedBufferJsonGraphValues: scope.sharedBufferJsonGraphValue
s 

            }); 

 

            scope.workers.push(worker); 

        } 

    }); 

} 

Figure 8. Workers initialization. 
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The jobs are started then and only then, when the separate workers are created and all 

the required data for the logic of branch traversal is prepared. When all jobs are 

completed, the algorithm returns to the original backtrack search process, where the 

current found maximum clique is saved. Thereafter the algorithm proceeds to the next 

iteration. At the end of all backtrack iterations previously created threads are deleted. 

3.4.1 Results 

In this chapter the performance of VRecolor-BT-u algorithm and its multithreaded 

version – VRecolor-BT-u-parallel algorithm is compared. The algorithms are tested on 

randomly generated graphs, as well as, on DIMACS graphs. The tests give us an 

overview of how the use of multithreading affects the speed of complex calculations. 

Both algorithms are implemented in TypeScript using Visual Studio Code. 

Multithreading is implemented with the use of Web Workers API. All tests are run in 

Chrome browser (version 76). System information: 

▪ Processor: Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, 1992 Mhz, 4 Cores, 

8 Logical Processors 

▪ RAM: 16GB 

▪ System type: 64-bit operating system 

▪ Operating system: Microsoft Windows 10 Pro 

All tests on random graphs are divided by graph densities. 10-20 tests were run on 

different random graphs to obtain more accurate results for each density and a certain 

number of vertices. 

Figure 9 demonstrates how the random graph is generated. It is based on the algorithm 

described in Kumlanders’ work [7] with minor adjustments. The function takes two 

numeric parameters: order and density of the expected graph. The return value of the 

function is the Graph object, which represents a graph. 
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public generateGraph(order: number, density: number): Graph { 

    if (density < 0 || density > 1) 

        return null; 

 

    const graph = new Graph(`gen_${order}_d${density}_${new Date().getTime()}
`, order); 

    graph.edges = Math.round(order * (order - 1) * density / 2); 

 

    for (let i = 0; i < graph.edges; i++) { 

        let x: number; 

        let y: number; 

 

        do { 

            x = this.getRandomInt(order); 

            y = this.getRandomInt(order); 

        } while (x == y || graph.values[x][y]); 

 

        graph.setValue(x, y, true); 

        graph.setValue(y, x, true); 

    } 

 

    return graph; 

} 

 

private getRandomInt(max: number): number { 

    return Math.floor(Math.random() * Math.floor(max)); 

} 

Figure 9. Random graph generation function. 

 

As can be seen from the Figure 10, at a very low graph density (10%) the multithreaded 

algorithm is significantly slower in speed to the single threaded VRecolor-BT-u 

algorithm. However, already at a density of 20%, VRecolor-BT-u-parallel catches up 

with VRecolor-BT-u when the number of graph vertices reaches 1900 (Figure 11). The 

explanation of the lag of VRecolor-BT-u-parallel to VRecolor-BT-u at very low 

densities is simple: the time spent on going through the graph is supplemented by the 

time spent preparing data for additional threads, creating the threads themselves and 

transferring data between them, thereby making the multithreaded algorithm inefficient 

on densities 10%  and also on 20% for the small number of vertices graphs. 
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Figure 10. VRecolor-BT-u and VRecolor-BT-u-parallel randomly generated graph test results. Density 

10%. 

Figure 11. VRecolor-BT-u and VRecolor-BT-u-parallel randomly generated graph test results. Density 

20%. 
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However, when the graph density is more than 30%, these additional time costs from 

workers execution become insignificant compared to the graph traversal process. As we 

see from Figure 12 to Figure 18, already at densities of 30%-90%, the multithreaded 

algorithm is more efficient than the single threaded one. 
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Figure 12. VRecolor-BT-u and VRecolor-BT-u-parallel randomly generated graph test results. Density 

30%. 
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Figure 13. VRecolor-BT-u and VRecolor-BT-u-parallel randomly generated graph test results. Density 

40%. 

Figure 14. VRecolor-BT-u and VRecolor-BT-u-parallel randomly generated graph test results. Density 

50%. 
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Figure 15. VRecolor-BT-u and VRecolor-BT-u-parallel randomly generated graph test results. Density 

60%. 

Figure 16. VRecolor-BT-u and VRecolor-BT-u-parallel randomly generated graph test results. Density 

70%. 
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It is also worth noting that with an increase in the number of graph vertices, where the 

density varies from 30% to 90%, the VRecolor-BT-u-parallel algorithm becomes more 

and more efficient compared to VRecolor-BT-u. 
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Figure 17. VRecolor-BT-u and VRecolor-BT-u-parallel randomly generated graph test results. Density 

80%. 

Figure 18. VRecolor-BT-u and VRecolor-BT-u-parallel randomly generated graph test results. Density 

90%. 
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DIMACS graph is the graph presented in the standard format, which has been defined 

by DIMACS for problems in undirected graphs. DIMACS graphs have special 

structures representing the specific real problems. This standard was also chosen for 

several DIMACS Computational Challenges [15]. 

DIMACS graph test result (Table 1) demonstrate that the specificity of structures can 

negatively affect the speed of a multi-threaded algorithm. We see its superiority only on 

a small number of graphs.  
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Table 1. VRecolor-BT-u and VRecolor-BT-u-parallel DIMACS graph test results (ms). 

Graph Order Density VRecolor-BTu 
VRecolor-

BTuParallel 

 Time(ms) 

c-fat500-1.clq 500 0,04 7 613 

c-fat500-2.clq 500 0,07 6 372 

c-fat500-5.clq 500 0,19 31 734 

c-fat500-10.clq 500 0,37 107 1457 

DSJC500_5.clq 500 0,5 8809 4345 

DSJC1000_5.clq 1000 0,5 758014 306383 

gen200_p0.9_44.clq 200 0,9 10456 5749 

gen200_p0.9_55.clq 200 0,9 1104 1254 

hamming6-2.clq 64 0,9 4 88 

hamming6-4.clq 64 0,35 1 35 

hamming8-2.clq 256 0,97 108 693 

hamming8-4.clq 256 0,64 50 203 

hamming10-2.clq 1024 0,99 24444 33051 

johnson8-2-4.clq 28 0,56 2 336 

johnson8-4-4.clq 70 0,77 6 58 

johnson16-2-4.clq 120 0,76 641 401 

keller4.clq 171 0,65 52 232 

MANN_a9.clq 45 0,93 2 48 

MANN_a27.clq 378 0,99 5077 5985 

san200_0.7_1.clq 200 0,7 1472 370 

san200_0.7_2.clq 200 0,7 3 109 

san200_0.9_1.clq 200 0,9 28 377 

san200_0.9_2.clq 200 0,9 769 751 

san1000.clq 1000 0,5 466 893 

p_hat300-1.clq 300 0,24 66 765 

p_hat300-2.clq 300 0,49 191 483 

p_hat300-3.clq 300 0,74 8307 4240 

p_hat500-1.clq 500 0,25 160 719 

p_hat500-2.clq 500 0,5 5405 4059 

p_hat1000-1.clq 1000 0,24 1722 3135 
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3.5 Multithreaded VRecolor-BT-u and VRecolor-u in parallel  

From the previous result, we see that the VRecolor-BT-u-parallel algorithm shows good 

results at densities above 30%, but is still slower than the single threaded graphs on very 

low density. 

The second approach of how the performance can be improved even more by using 

multithreading was to execute two algorithms from different families in parallel: with 

backtrack search and without it. Thus, the search for maximum clique will be performed 

from both sides of the graph and stopped when these algorithms meet. The hypothesis 

regarding the performance improvement applying that approach was that the speed of 

execution the VRecolor-BT-u algorithm might increase around two times.  

Since we already have a multithreaded version of the VRecolor-BT-u algorithm, which 

showed good results at almost all densities, it was chosen as the first algorithm. Being a 

backtracking algorithm, it starts the search for the maximum clique with a set of vertices 

from the first color class and continues the search by adding subsequent independent 

sets to the analysis. 

VRecolor-BT-u is the successor of the VColor-BT-u algorithm, differing only in that it 

additionally applies recoloring on depths and uses additional pruning formulas. The 

VColor-BT-u algorithm is based on the same ideas as VColor-u (initial vertex coloring 

and the use of independent sets), except that VColor-u is based on the Carraghan and 

Pardalos algorithm and traverse graph by removing vertex by vertex from analysis, and 

VColor-BT-u on the Östergård algorithm, which analyze the graph by adding vertices 

one by one. Since those algorithms already by the approaches start traversing the graph 

in different directions and both are based on the same initial coloring and ordering of 

vertices, those families of algorithms seems to be the best choice for our approach.  

In fact, if we remove the backtracking approach from VRecolor-BT-u, we get more 

advance variation of the VColor-u, same but with an additional vertex recoloring on 

every depth (similar to MCQ [8]), but with handling conflicts of initial and depth 

coloring proposed by Porošin [4]). Based on this, the modified VRecolor-BT-u will be 

called as VRecolor-u. Using additional techniques that accelerate the search for 

maximum clique, VRecolor-u will be more efficient than the VColor-u algorithm basing 
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on general investigations done by Porošin [4]. Therefore, VRecolor-u was selected as a 

companion for the VRecolor-BT-u-parallel in our improvement attempt. 

In addition, from the results of comparing the performance of MCQ type algorithms 

(branch and bound with recoloring) and backtracking type algorithms [4, 7] we can see 

that the branch and bound with recoloring  algorithms is faster on graphs with relatively 

low densities. This fact can positively affect the results of the combined algorithm at 

low graph densities, since VRecolor-u will likely quickly walk through the most of the 

graph, while VRecolor-BT-u-parallel will only begin the traversing. Thus, the time 

spent on creating workers and communication between threads will be compensated. 

The combined algorithm begins with the initial graph coloring and ordering the vertices. 

Graph coloring gives us the number of color classes (i.e the number of independent 

sets). Next, two workers are created: one for the VRecolor-BT-u-parallel algorithm, the 

second for VRecolor-u. Since VRecolor-BT-u-parallel is a multithreaded algorithm, the 

workers required within it will be created inside the thread of the VRecolor-BT-u-

parallel.  

Figure 19 illustrates the creation of two important SharedArrayBuffer objects that will 

be passed to threads and used as triggers to determine when algorithms should be 

interrupted. The backtracking family algorithm VRecolor-BT-u starts from the vertices 

of the first color class, and the sharedBTColorsAnalysed object stores the number of 

colors that have already been taken into analysis. The branch and bound family 

algorithm VRecolor-u starts traversing the graph by excluding from analysis vertices 

and consequently color classes since vertices are ordered by them, so the 

sharedBnBColorsLeft object stores information about how many colors are left for 

research. 

this._sharedBufferBnBColorsLeft = new SharedArrayBuffer(2); 

const sharedBnBColorsLeft = new Uint16Array(this._sharedBufferBnBColorsLeft); 

Atomics.store(sharedBnBColorsLeft, 0, initialColorsNumber); 

 

this._sharedBufferBTColorsAnalysed = new SharedArrayBuffer(2); 

const sharedBTColorsAnalysed = new Uint16Array(this._sharedBufferBTColorsAnal
ysed); 

Atomics.store(sharedBTColorsAnalysed, 0, 0); 

Figure 19. Use of SharedArrayBuffer object for the shared data. 
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In Figure 20 the part of code from the VRecolor-BT-u-parallel algorithms’ worker is 

presented. At each new iteration, we increase the number of colors analyzed and store 

this value using atomic operations in shared memory. Atomic operations ensure that 

reading and writing data is synchronous and not interrupted. After the current subgraph 

has been analyzed, the number of left colors of the second algorithm is checked. If the 

second algorithm has the same (or less) number of colors left for analysis then further 

iterations are interrupted. The worker finishes his work and sends a message to the main 

stream with the maximum clique that it managed to find. 

let colorsAnalysed = 0; 

for (let c = 0; c < scope.initialColorsNumber; c++) { 

    Atomics.store(scope.sharedBTColorsAnalysed, 0, ++colorsAnalysed); 

 

    await processColorSet(c); 

 

    let currentMaxClique = Atomics.load(sharedMaxCliqueSize, 0); 

    Atomics.store(sharedMaxCliqueCache, c, currentMaxClique); 

 

    if (colorsAnalysed >= Atomics.load(scope.sharedBnBColorsLeft, 0)) { 

        scope.postMessage({ maxCliqueSize: currentMaxClique }) 

        destroyWorkers(); 

        break; 

    } 

 } 

Figure 20. Stop condition check in VRecolor-BT-u-parallel worker. 

  

Figure 21 shows a code snippet from a VRecolor-u algorithm worker. Selecting a vertex 

for analyses on the first depth the algorithm picks the color class the vertex belongs to 

and checks if the second (i.e. backtracking) algorithm already analyzed that color. It is 

done by the following routine:  

1. If the color of the vertex same as the color of the last analyzed vertex then we 

just continue. 

2. If the algorithm moved to a new color class, it compares how many color classes 

are left to be analyzed to how many have already been analyzed in the 

backtracking algorithm. If these numbers match or the backtracking algorithm 

has analyzed more color classes than is left here, then the algorithm is 

interrupted and the maximum clique found to this moment is sent to the main 

thread. 
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const p = depthNodes[depth][inDepthIndex]; 

const color = scope.initialColors[p - 1]; 

 

if (depth == 0) { 

    const prevColor = scope.initialColors[depthNodes[depth][inDepthIndex + 1]
] || c; 

 

    if (prevColor != color) { 

        if (colorsLeft <= Atomics.load(scope.sharedBTColorsAnalysed, 0))  

            break; 

 

        Atomics.store(scope.sharedBnBColorsLeft, 0, --colorsLeft); 

    } 

} 

Figure 21. Stop condition check in VRecolor-u worker. 

 

Whenever the algorithms finish their job and the response from each worker is received, 

the custom event „worker done“ is dispatched to the DOM. The Document object, 

which represents the DOM tree of our application, is subscribed to that custom event. 

After the „worker done“ events are dispatched from both algorithms, the main thread 

performs the last action: it compares the found maximum cliques and selects the larger 

one, which is returned as a result. This can be seen on Figure 22, where the behavior of 

„worker done“ event handler is demonstrated. 
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private workerDoneEventHandler(e: any): void { 

    this._maxCliqueSizes.push(e.detail.maxCliqueSize); 

 

    if (++this._workersDone != 2) { 

        return; 

    } 

 

    e.detail.sw.stop(); 

 

    this._result = { 

        maximumClique: Math.max(...this._maxCliqueSizes), 

        timeElapsed: { 

            total: e.detail.sw.timeElapsed 

        } 

    } as MaxCliqueAlgorithmResult; 

 

    document.removeEventListener(this.WORKER_DONE_EVENT_NAME, this.workerDone
EventHandler, true); 

 

    for (let i = 0; i < this._workers.length; i++) 

        this._workers[i].terminate(); 

    this._workers = []; 

 

    this._solutionRes(); 

} 

Figure 22. Handler for “worker done” event.  

 

3.5.1 Results  

This chapter presents the test results of the VRecolor-u+VRecolor-BT-u-parallel 

algorithm, as well as their comparison with the results of the VRecolor-BT-u and 

VRecolor-BT-u-parallel algorithms. Those are tested on both random graphs and 

DIMACS graphs. 

As can be seen from Figure 23 to Figure 24, the combined algorithm does better than 

the VRecolor-BT algorithm even on low-density graphs, thereby confirming the 

hypothesis that the VRecolor-u algorithm compensates the time spent on workers in 

VRecolor-BT-u-parallel algorithm. 
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Figure 23. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-parallel randomly 

generated graph test results. Density 10%. 

Figure 24. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-parallel randomly 

generated graph test results. Density 20%. 
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Figure 25. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-parallel randomly 

generated graph test results. Density 30%. 

Figure 26. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-parallel randomly 

generated graph test results. Density 40%. 
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Figure 27. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-parallel randomly 

generated graph test results. Density 50%. 

Figure 28. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-parallel randomly 

generated graph test results. Density 60% 
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Figure 30. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-parallel randomly 

generated graph test results. Density 80%. 
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Figure 29. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-parallel randomly 

generated graph test results. Density 70%. 
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All the results show that, the combined multithreaded algorithm oversteps all the 

algorithms under study. Its productiveness is especially evident in comparison with 

VRecolor-BT-u-parallel at densities of 10% - 50% (Figure 23 to Figure 27). However, 

the difference in execution speed becomes smaller with increasing density of graphs and 

is quite disappear by a density of 90%.  

The DIMACS graphs result (Table 2) shows that the performance of algorithms very 

much depends on the structure of graphs and so the new one is better on some graphs 

than the previous one but still is not best for many cases and even slower for some 

individual graphs than the original parallel one. Nevertheless, we can see that the new 

algorithm outperforms other algorithms on quite many graphs, meaning that selection of 

algorithm to be used depends on the graph type and the algorithm proposed in this work 

will be selected as the best on quite some cases. 
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Figure 31. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-parallel randomly 

generated graph test results. Density 90%. 
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Graph Order Density 
VRecolor 
Btu 

VRecolor 
BtuParallel 

VRecoloru+ 
VRecolor 
BtuParallel 

 Time (ms) 

c-fat500-1.clq 500 0,04 7 613 106 

c-fat500-2.clq 500 0,07 6 372 195 

c-fat500-5.clq 500 0,19 31 734 635 

c-fat500-10.clq 500 0,37 107 1457 1358 

DSJC500_5.clq 500 0,5 8809 4345 2154 

DSJC1000_5.clq 1000 0,5 758014 306383 159338 

gen200_p0.9_44.clq 200 0,9 10456 5749 7054 

gen200_p0.9_55.clq 200 0,9 1104 1254 2542 

hamming6-2.clq 64 0,9 4 88 77 

hamming6-4.clq 64 0,35 1 35 31 

hamming8-2.clq 256 0,97 108 693 579 

hamming8-4.clq 256 0,64 50 203 238 

hamming10-2.clq 1024 0,99 24444 33051 33736 

johnson8-2-4.clq 28 0,56 2 336 40 

johnson8-4-4.clq 70 0,77 6 58 32 

johnson16-2-4.clq 120 0,76 641 401 231 

keller4.clq 171 0,65 52 232 120 

MANN_a9.clq 45 0,93 2 48 28 

MANN_a27.clq 378 0,99 5077 5985 4893 

san200_0.7_1.clq 200 0,7 1472 370 389 

san200_0.7_2.clq 200 0,7 3 109 94 

san200_0.9_1.clq 200 0,9 28 377 323 

san200_0.9_2.clq 200 0,9 769 751 4580 

san1000.clq 1000 0,5 466 893 246 

p_hat300-1.clq 300 0,24 66 765 76 

p_hat300-2.clq 300 0,49 191 483 200 

p_hat300-3.clq 300 0,74 8307 4240 3554 

p_hat500-1.clq 500 0,25 160 719 120 

p_hat500-2.clq 500 0,5 5405 4059 2333 

p_hat1000-1.clq 1000 0,24 1722 3135 905 

Table 2. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-parallel DIMACS 

graph tests (ms). 
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4 Conclusion 

4.1 Summary 

In the course of the work, two basic branch and bound maximum clique search 

algorithms were studied: Carraghan and Pardalos algorithm [5] and Östergård’s 

algorithm [6]. These algorithms are based on two different approaches of traversing a 

graph. The first one analyzes vertices one by one removing those from analysis and the 

second one uses a reversed search called backtrack search i.e. adds vertices into analysis 

one by one keeping the history of analysis in a cache to efficiently prone branches. 

Additionally, three modern algorithms based on the above-mentioned basic algorithms 

were also considered: VColor-u, VColor-BT-u and VRecolor-BT-u. The first two 

algorithms differ from the basic ones in that they work at a higher level, operating not 

with individual vertices, but with independent sets obtained from the initial graph 

coloring. Additional pruning formulas, based on the received color classes, increase the 

number of trimmed branches, thereby speeding up the execution of the algorithm. The 

third VRecolor-BT-u algorithm is a successor to the VColor-BT-u algorithm and is 

currently one of the most efficient maximum clique search algorithms. In addition to 

initial coloring, it also performs vertex coloring in depths, which makes it possible to 

use another additional formula to reduce the studied branches. Due to the fact that the 

VRecolor-BT-u algorithm was recognized as one of the fastest, it was chosen for the 

implementation of the goals of this thesis. 

The third chapter is dedicated to the practical part of the work. At the beginning of the 

chapter, the technological stack of the study is introduced. By the request of the 

company we collaborated with writing this thesis, the VRecolor-BT-u algorithm was 

ported to the web using Angular framework. The corner stone of the technology used in 

the work is multithreading, which is implemented using Web Workers. Web Workers' 

capabilities are somewhat limited in some aspects, so experimental solutions have also 

been found that allows efficient usage of workers in our algorithms. 
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After the technology introduction, two hypotheses are presented on how the VRecolor-

BT-u algorithm can be accelerated using multithreading. These ideas are accompanied 

by a detailed explanation of the main points of development, as well as the tests results, 

conducted on randomly generated graphs and DIMACS graphs.  

The first idea of improving the VRecolor-BT-u algorithm is based on performing branch 

traversal in separate threads. The results are good on random graphs with densities more 

than 30%. The efficiency of the VRecolor-BT-u-parallel algorithm compared to 

VRecolor-BT-u increases exponentially with growth of the number of graph vertices. 

However, the multithreaded version is inferior to the single threaded version on graphs 

with a very low densities, because the time spent on workers is too long compared to the 

graph traversal process.  

The second idea is to combine in one algorithm two sub-algorithms that are based on 

different graph traversal techniques: backtrack search and branch and bound, which are 

executed in separate threads. The idea is that the algorithms start traversing the graph 

from different ends, i.e. one is removing vertices from its’ analysis and the other one is 

adding them. They stop the analysis when arrive to the same vertex and after analysis of 

that vertex the best so far found maximum clique is selected as a solution, since the first 

algorithm analyzed the vertices prior to the stop vertex, the second analyzed all vertices 

residing after that vertex and one of them analyzed the stop vertex. An important 

condition is – both algorithms should on the same vertex ordering (in fact we also use 

color classes and so those should have also same order). In terms of performance, the 

combined algorithm surpassed both single threaded VRecolor-BT-u and multithreaded 

VRecolor-BT-u-parallel algorithms at all densities on randomly generated graphs.  

4.2 Future studies 

This chapter will present two ideas for possible further research. 

The first investigation target is usage of workers depending on the algorithm family and 

densities of the graph, since our tests in that area so far wasn’t quite homogenous and 

need deep dive into details. 

The second interesting topic would be applying the technique described in this thesis to 

the weighted case. Weighted maximum clique algorithms are both alike and different: 
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having similar structure those are different in some important details, therefore 

transferring the described approach will not be just a mechanical copy. 
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