
Tallinn 2020

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Anastassia Duditš 123685IAPB

MULTITHREADED WEB APPLICATION

FOR THE MAXIMUM CLIQUE PROBLEM

Bachelor’s thesis

Supervisor: Deniss Kumlander

 Doctor’s degree

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Anastassia Duditš

MITMELÕIMELINE VEEBIRAKENDUS

SUURIMA KLIKI PROBLEEMILE

Bakalaureusetöö

Juhendaja: Deniss Kumlander

 Doktorikraad

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Anastassia Duditš

08.01.2020

4

Abstract

The maximum clique problem is one of the known NP-complete problems. Although

there is a number of solutions to this problem, which are both relatively cost efficient in

terms of computing power as well as execution time, scientists continue to look for

better ways to solve this problem since even small improvement gives huge benefits for

NP-complete family tasks.

The IT company Denikum OÜ, which develops different optimization algorithms was

interested in porting the efficient maximum clique finding algorithm to web. The main

goal is to allow the user to run the algorithm smoothly in the browser on a modern PC,

without the need to load the server with heavy and time-consuming operations. It was

decided to port the VRecolor-BT-u algorithm because it is currently one of the best

algorithms to solve the maximum clique problem.

The thesis starts with a brief description of graph theory as well as the main goals of this

work. After that VRecolor-BT-u algorithm and its predecessors are presented. Next, the

key points of development process are shown along with the description of the

technology stack.

The main contribution of this thesis is the parallelization of VRecolor-BT-u algorithm

using Web Workers, which greatly improved the performance of the algorithm on graph

densities of 30% and more. The second big goal that was achieved in this work was to

combine the parallelized VRecolor-BT-u-parallel algorithm with VRecolor-u algorithm,

which improved the algorithm performance on lower density graphs, making it efficient

on all graph densities.

At last the newly improved algorithms are compared with their predecessors on both

randomly generated as well as DIMACS graphs. The results are presented in a series of

charts, which display the relation of the number of vertices to the time taken for

different algorithms to find the result. The results show that the combined algorithm

performs better than all previously created algorithms on all densities on randomly

5

generated graphs. The paper is concluded by some of the interesting ideas for future

research.

This thesis is written in English and is 53 pages long, including 4 chapters, 31 figures

and 2 tables.

6

Annotatsioon

Mitmelõimeline veebirakendus suurima kliki probleemile

Maksimaalse kliki probleem on üks teadaolevatest NP-täielikkuse probleemidest. Ehkki

sellele probleemile on mitmeid lahendusi, mis on nii arvutusvõimsuse kui ka täitmisaja

poolest suhteliselt kulutõhusad, otsivad teadlased endiselt selle probleemi

lahendamiseks paremaid viise, sest isegi väike täiustamine annab NP-täielikkuse

perekondlike ülesannete puhul suured eelised.

Mitmesuguseid optimeerimisalgoritme arendav IT-ettevõte Denikum OÜ oli huvitatud

tõhusa maksimaalse kliki leidmise algoritmi veebi porteerimisest. Peamine eesmärk on

võimaldada kasutajal tänapäeva arvuti brauseris algoritmi sujuvalt kasutada, ilma

vajaduseta serverit laadida keerukate ja aeganõudvate toimingutega. Otsustati porteerida

VRecolor-BT-u algoritm, sest see on praegu üks parimatest algoritmidest maksimaalse

kliki probleemi lahendamiseks.

Lõputöö algab graafiteooria lühikirjeldusega, samuti selle töö peamiste eesmärkidega.

Seejärel tutvustatakse VRecolor-BT-u algoritmi ja selle eelkäijaid. Järgmisena

näidatakse arendusprotsessi põhipunkte koos tehnoloogiapinu kirjeldusega.

Selle lõputöö peamine panus on VRecolor-BT-u algoritmi paralleelistamine

veebitöötajate abil, mis täiustas oluliselt algoritmi tulemuslikkust graafi tihedusel 30%

ja enam. Teine selles töös saavutatud suur eesmärk oli paralleelse VRecolor-BT-u-

parallel algoritmi ühendamine VRecolor-u algoritmiga, mis täiustas algoritmi

tulemuslikkust väiksema tihedusega graafidel, muutes selle tõhusaks kõigil graafi

tihedustel.

Lõpuks võrreldakse hiljuti täiustatud algoritme nende eelkäijatega nii juhuslikult

genereeritud kui ka DIMACS-graafide abil. Tulemused on esitatud diagrammisarjana,

mis näitavad tippude arvu seost ajaga, mis kulub eri algoritmidele tulemuse leidmiseks.

Tulemused näitavad, et kombineeritud algoritm genereeritud graafide puhul toimib

7

kõigil tihedustel paremini kui kõik varem loodud algoritmid. Töö lõpus on mõned

huvitavad ideed edaspidiseks uurimistööks.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 53 leheküljel, 4 peatükki, 31

joonist, 2 tabelit.

8

List of abbreviations and terms

AJAX Asynchronous JavaScript and XML – a set of web development

techniques used on the client side to create asynchronous web

applications

Angular Platform for building mobile and desktop web applications

API Application Programming Interface – a set of definitions and

protocols for building and integration application software

CPU Central Processing Unit – the unit which performs most of the

processing inside a computer

DIMACS Center for Discrete Mathematics and Theoretical Computer

Science

DOM Document Object Model – object model for HTML

FIFO First-In, First-Out – a method of processing and retrieving data

HTML5 HyperText Markup Language, version 5 – markup language for

the structure and presentation of World Wide Web contents

JavaScript The programming language for the Web

NP-complete The problem can be solved in Polynomial time using a Non-

deterministic Turing machine

TypeScript A typed superset of JavaScript that compiles to plain JavaScript

UI User Interface

VColor-BT-u Vertex Color Backtrack unweighted – algorithm name

VColor-u Vertex Color unweighted – algorithm name

VRecolor-BT-u Vertex Recolor Backtrack unweighted – algorithm name

VRecolor-BT-u-parallel Vertex Recolor backtrack unweighted parallel – algorithm

name

VRecolor-u Vertex Recolor unweighted – algorithm name

Web Workers A JavaScript that runs in the background, independently of

other scripts

9

Table of contents

1 Introduction ... 13

1.1 Graph theory ... 13

1.2 Goals of the study ... 16

1.3 Work overview ... 16

2 Maximum clique algorithms .. 17

2.1 Basic algorithms ... 17

2.2 VColor-u ... 18

2.3 VColor-BT-u .. 18

2.4 VRecolor-BT-u ... 19

3 Implementation .. 22

3.1 Technology stack .. 22

3.2 Porting VRecolor-BT-u to web .. 23

3.3 Multithreading .. 23

3.4 Multithreaded VRecolor-BT-u ... 26

3.4.1 Results ... 30

3.5 Multithreaded VRecolor-BT-u and VRecolor-u in parallel 39

3.5.1 Results ... 43

4 Conclusion ... 50

4.1 Summary ... 50

4.2 Future studies .. 51

References .. 53

10

List of figures

Figure 1. Degrees of the vertices. ... 14

Figure 2. Directed weighted graph and undirected unweighted graph. 14

Figure 3. Complete graph. .. 15

Figure 4. VRecolor-BT-u algorithm [4]. .. 21

Figure 5. Data preparation in the main thread. ... 27

Figure 6. The process of building the first level and isolating jobs................................ 28

Figure 7. Initialization of the limited number of workers. ... 29

Figure 8. Workers initialization. ... 29

Figure 9. Random graph generation function. .. 31

Figure 10. VRecolor-BT-u and VRecolor-BT-u-parallel randomly generated graph test

results. Density 10%. .. 32

Figure 11. VRecolor-BT-u and VRecolor-BT-u-parallel randomly generated graph test

results. Density 20%. .. 32

Figure 12. VRecolor-BT-u and VRecolor-BT-u-parallel randomly generated graph test

results. Density 30%. .. 33

Figure 13. VRecolor-BT-u and VRecolor-BT-u-parallel randomly generated graph test

results. Density 40%. .. 34

Figure 14. VRecolor-BT-u and VRecolor-BT-u-parallel randomly generated graph test

results. Density 50%. .. 34

Figure 15. VRecolor-BT-u and VRecolor-BT-u-parallel randomly generated graph test

results. Density 60%. .. 35

Figure 16. VRecolor-BT-u and VRecolor-BT-u-parallel randomly generated graph test

results. Density 70%. .. 35

Figure 17. VRecolor-BT-u and VRecolor-BT-u-parallel randomly generated graph test

results. Density 80%. .. 36

Figure 18. VRecolor-BT-u and VRecolor-BT-u-parallel randomly generated graph test

results. Density 90%. .. 36

Figure 19. Use of SharedArrayBuffer object for the shared data. 40

Figure 20. Stop condition check in VRecolor-BT-u-parallel worker. 41

11

Figure 21. Stop condition check in VRecolor-u worker. .. 42

Figure 22. Handler for “worker done” event. ... 43

Figure 23. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-

parallel randomly generated graph test results. Density 10%. 44

Figure 24. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-

parallel randomly generated graph test results. Density 20%. 44

Figure 25. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-

parallel randomly generated graph test results. Density 30%. 45

Figure 26. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-

parallel randomly generated graph test results. Density 40%. 45

Figure 27. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-

parallel randomly generated graph test results. Density 50%. 46

Figure 28. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-

parallel randomly generated graph test results. Density 60% .. 46

Figure 29. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-

parallel randomly generated graph test results. Density 70%. 47

Figure 30. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-

parallel randomly generated graph test results. Density 80%. 47

Figure 31. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-

parallel randomly generated graph test results. Density 90%. 48

12

List of tables

Table 1. VRecolor-BT-u and VRecolor-BT-u-parallel DIMACS graph test results (ms).

 .. 38

Table 2. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-

parallel DIMACS graph tests (ms). .. 49

13

1 Introduction

The graph theory became known for the first time after the publication of the paper

written in 1736 by L. Euler on the Seven Bridges of Königsberg problem. The graph

theory solved an entertaining problem, which was presented there.

Graph theory is a section of discrete mathematics that studies the graphs, which are

structures used to represent relationships between objects. Graphs got their name from

the fact that they can be depicted graphically. Anything that looks like the interrelated

components can be represented as a graph, where components are vertices and relations

between them are edges. In practice, graphs are used to solve problems of different

complexity from various fields of science and real life, as well as just for representing

complex things in the form of graphs. The great advantage of graphs usage is the

possibility to simplify problems by omitting the irrelevant details, thereby concentrating

only on the core details. Graph theory is widely used in social networks, information

networks, GPS navigation, planning the transportation routes, networks of neurons and

so on. Graphs are also successfully used to resolve complete and NP-complete decision

tasks. Some of the most known NP-complete problems are graph coloring and

maximum clique finding [1].

1.1 Graph theory

A graph G is a collection of objects, i.e. vertices V, and edges E that represents

relationships between these objects. A number of vertices in G is called the order of G

and denoted by |V|, and the number of edges is the size of G, denoted by |E| [2].

Two vertices v and w of G are called adjacent if there is an edge vw joining them, and

both vertices are incident with edge vw. If two distinct edges have a vertex in common,

they are also called adjacent. Loop is an edge connecting vertex v to itself [3].

The degree of a vertex v of G is the number of edges incident with v – deg(v) [3].

14

Figure 1. Degrees of the vertices.

A directed graph is a graph in which every edge is directed, and a graph in which every

edge is undirected is called an undirected graph. Graphs can also be weighted and

unweighted. Each edge in a weighted graph has a weight – a number (usually positive)

assigned to it, respectively, edges of an unweighted graph do not have numerically

represented weights.

Figure 2. Directed weighted graph and undirected unweighted graph.

Graph is called simple when it is undirected, without loops and multiple edges between

two vertices. A simple graph where each pair of vertices is adjacent is a complete graph.

A graph with no adjacent pairs of vertices is called edgeless [3]. A clique is a complete

graph of G, whereas an edgeless subgraph of G is an independent set [2]. This work will

consider only undirected, unweighted and simple graphs.

15

Figure 3. Complete graph.

Complement graph G’ of a simple graph G is a graph with vertex set V(G) where two

vertices are adjacent if they are not adjacent in G. Accordingly, edgeless graph is a

complement to complete graph [3].

A vertex set K is called vertex cover of a graph G, when each edge of G is incident to at

least one vertex from K [2].

Graph coloring is a process of assigning colors to each vertex so that adjacent vertices

have different colors. A graph without loops is said to be k-colorable, if it can be

properly colored using k colors. The chromatic number of G, write χ(G) = k, is the

minimum number of colors required to color a graph G [3]. A set of verices with the

same color is a color class. Since the vertices with the same color are not connected to

each other, the color class is nothing more than an independent set.

The following problems are stated from the definitions mentioned above [1]:

▪ Maximum clique problem – a problem of finding maximum possible complete

subgraph of a graph G.

▪ Independent set problem – a problem of finding maximum possible edgeless

subgraph of a graph G.

▪ Minimum vertex cover – a problem of finding the smallest possible vertex cover

of a graph G.

▪ Graph coloring - a problem of finding a chromatic number of a graph G.

All these problems are NP-complete, moreover they are computationally equivalent and

one problem can be transformed into another one [4].

16

1.2 Goals of the study

1. Port VRecolor-BT-u algorithm to the web environment.

2. Improve VRecolor-BT-u by applying multithreading techniques.

3. Implement algorithm that executes VRecolor-BT-u-parallel algorithm and

VRecolor-u from different ends of the graph in parallel threads.

4. Compare execution performance of VRecolor-BT-u, VRecolor-BT-u-parallel

and combination of VRecolor-BT-u-parallel and VRecolor-u.

During the work, in order to achieve the stated goals, we will have to do also:

1. Study one of the best maximum clique finding algorithm – VRecolor-BT-u and

related.

2. Study Web Workers that make it possible to implement a multithreaded

application.

1.3 Work overview

Current work consists of four main chapters. In the beginning of the first chapter graph

theory is introduced as well as some of the main problems, which can be solved with it.

The goals of the thesis are presented afterwards. The second chapter starts with the

presentation of the two main maximum clique finding algorithms, which are the base for

many modern algorithms. Afterwards a few modern algorithms are presented, namely

VColor-u, VColor-BT-u and VRecolor-BT-u. The third chapter begins with the

description of the chosen technology stack and porting algorithm to web. The next topic

is dedicated to multithreading and its usage in the web environment. The last two

sections of the third chapter give an overview of two approaches to improve

performance of the VRecolor-BT-u algorithm by applying multithreading, the

description of the development process and the analysis of the test results, carried on the

random and DIMACS graphs. The last chapter includes the conclusion of the thesis as

well as the ideas for future research.

17

2 Maximum clique algorithms

The maximum clique problem is one of the known NP-complete problems. The goal of

this problem is to find the maximum possible complete subgraph in graph G. This

problem is considered as NP-complete due to the difficulty of finding the best result

with usual methods. The first exact solutions with good computational performance

were presented in the ’90s, however, the maximum clique problem still remains popular

among scientists. Nowadays there is a lot of interesting and operative solutions that are

already implemented. Nevertheless, scientists continue to look for better ways to solve

this problem [1].

This chapter presents two basic branch and bound algorithms for finding the maximum

clique by applying the different approaches of traversing the graph. Three modern

algorithms, which are based upon the upper mentioned, are described after that.

2.1 Basic algorithms

The basic concepts of how a clique can be found were given in an algorithm invented by

Randy Carraghan and Panos M. Pardalos. It was presented in the article “An exact

algorithm for the maximum clique problem” published in 1990 [5]. The algorithm itself

is simple but very efficient, moreover, even nowadays it gives great results on lower

density graphs. It is based on a branch construction and a good pruning formula. The

main point of the algorithm is the notion of depth. At first, the first vertex from all

vertices of graph S – vertex v1 (depth 1) is considered. The next depth will be formed

from vertex v1 and all vertices adjacent to v1. At depth 3 all vertices from depth 2,

which are adjacent to the first vertex in current depth v3 are considered, and so on. In

this way, every expanded vertex forms a new branch (until there are no vertices left to

expand) and the reached depth considers as a current maximum clique. The pruning

formula is carried out on each branch, and in case it does not hold, the branch will be

truncated. Consequently, the analyzed graph will be covered much faster. However, this

formula is very efficient on low-density graphs, but on high densities it is almost useless

18

[5]. In short, the approach used in Carraghan and Pardalos algorithm considers all

vertices at the start and traverses the graph by building the branches.

The second efficient approach was given by Östergård’s algorithm, introduced in the

article “A fast algorithm for the maximum clique problem” [6]. This algorithm is based

on the previous one with important addition as a backtrack search and extra pruning

formulas. The previous algorithm searches for the maximum clique by first considering

cliques in S1 that contain v1, then cliques in S2 that contain v2, and so on. In this

algorithm the ordering is reversed: at first cliques in Sn that contain vn, are considered,

then cliques in Sn−1 that contain vn−1 [6]. The obtained clique size for each subgraph Si

are stored in a cache that is later used to apply the new pruning formula. The

performance of this approach does not differ much from the previous one on low

densities, but on high densities it is about 30%-50% faster. Furthermore, if the density is

very close to one, the speed of the algorithm is increased even more [6].

2.2 VColor-u

In 2005 Deniss Kumlander introduced VColor-u algorithm in his thesis “Some practical

algorithms to solve the maximum clique problem” [7]. This algorithm is based on

Carraghan and Pardalos approach and the idea of using independent sets by performing

initial vertex coloring. Before the maximum clique is being searched for, the graph is

analyzed and results gained from the analysis are stored for later use. Compared to the

two previous branch and bound algorithms VColor-u demonstrates better results: about

15% faster on low densities (20% – 50%) and up to 50% faster on density 90%.

Nevertheless, VColor-u is slower than Carraghan and Pardalos algorithm on densities

about 10% and lower, since graph coloring and vertices ordering are useless on low

densities and extra pruning formula is not that efficient [4].

2.3 VColor-BT-u

In the same dissertation another algorithm VColor-BT-u was also introduced. This

algorithm differs from the previous one by the traversing approach – VColor-BT-u is

based on powerful backtracking idea from Östergård algorithm [6]. At the start of the

program initial vertex coloring is applied and then the graph is backtracked on a higher

level than Östergård algorithm: by independent sets instead of individual vertices [7].

19

The computational speed of VColor-BT-u is approximately two times higher than

VColor-u on almost all densities. The combination of pruning formula from

backtracking idea and pruning technique based on the usage of independent sets made

this new algorithm also faster than Östergård’s algorithm: 50%-100% on lower densities

and 13-25% on dense graphs [4].

2.4 VRecolor-BT-u

In his master’s thesis “Reversed search maximum clique algorithm based on recoloring”

[4] Aleksandr Porošin introduced a new algorithm to solve maximum clique problem,

which was also presented on the 6th World Congress on Global Optimization (WCGO

2019) this year. This algorithm is a successor of VColor-BT-u algorithm with additional

recoloring on each depth – idea inherited from the MCQ algorithm (firstly introduced in

2003 by Tomita and Seki and its’ successors [8]). Algorithms from Tomita proved that

initial coloring is not enough as the deeper search goes the more diffused initial color

classes become [4]. On high levels, the recoloring is needed to obtain precise

information about independent sets on current depth. Considering that reversed search is

built around initial color classes, efficient pruning formulas on recoloring cannot be

applied. The solution to this conflict was to use a new skipping technique instead of

pruning the branches immediately basing on recoloring.

VRecolor-BT-u is described using the following steps (Figure 4):

Algorithm for the maximum clique problem – “VRecolor-BT-u”

CBC – current best clique, largest clique found by so far.

d – depth.

c – index of the currently processed color class.

di – index of the currently processed vertex on depth d.

b – array to save maximum clique values for each color class.

Ca – initial color classes array.

Cb – color classes array recalculated on each depth.

𝐺𝑑 - subgraph of graph G induced by vertices on depth d.

cn – number of color classes recalculated on each depth.

20

CanBeSkipped(𝑣𝑑𝑖 , 𝑐) - function that returns true if a vertex can skipped without

expanding it.

1. Graph density calculation. If graph density is lower than 35% go to step 2a,

else go to step 2b.

2. Heuristic vertex greedy coloring. There should be two arrays created to store

initial color classes defined only once (Ca) and color classes recalculated on

each depth (Cb). During this step both arrays must be equal.

a. Before coloring vertices are unordered and colored with swaps.

b. Before coloring vertices are in decreasing order with response to their

degree and colored without swaps.

3. Searching. For each color class starting from the first (current color class index

c).

3.1. Subgraph (branch) building. Build the first depth selecting all the

vertices from color classes whose number c is equal or smaller than

current. Vertices from the first color class should stand first. Vertices at

the end should belong to c color class.

3.2. Process subgraph.

3.2.1. Initialize depth. d = 1.

3.2.2. Initialize current vertex. Set current vertex index 𝑑𝑖 to

be expanded (initially the first expanded vertex is the

rightmost one). 𝑑𝑖 = 𝑛𝑑.

3.2.3. Bounding rule check. If current branch can possibly

contain larger clique than found by so far. If 𝐶𝑎(𝑣𝑑𝑖) < 𝑐

and 𝑑 − 1 + 𝑏[𝐶𝑎(𝑣𝑑𝑖)] ≤ |𝐶𝐵𝐶| then prune. Go to step

3.2.7.

3.2.4. Vertex skipping check. If current vertex can possible

contain larger clique than found by so far. If 𝑑 − 1 +

𝐶𝑏(𝑣𝑑𝑖) ≤ |𝐶𝐵𝐶| and CanBeSkipped(𝑣𝑑𝑖 , 𝑐) skip this

vertex. Decrease index i = i -1. Go to step 3.2.3.

3.2.5. Expand current vertex. Form new depth by selecting all

the adjacent vertices (neighbors) to current vertex 𝑣𝑑𝑖

(𝐺𝑑+1 = 𝑁(𝑣𝑑𝑖)). Set the next expanding vertex on

current depth 𝑑𝑖 = 𝑑𝑖 − 1.

21

3.2.6. New depth analysis. Check if new depth contains

vertices.

a. If 𝐺𝑑+1 = ∅ then check if current clique is the

largest one it must be saved. Go to step 3.3.

b. If 𝐺𝑑+1 ≠ ∅ then check graph density. If

graph density is lower than 55% apply greedy

coloring with swaps to 𝐺𝑑+1, else use greedy

coloring without swaps. Save number of color

classes (cn) acquired by this coloring. If

number of color classes cannot possibly give

us a larger clique then prune. If 𝑑 − 1 + 𝑐𝑛 ≤

|𝐶𝐵𝐶| decrease index i = i - 1 and go to step

3.2.3, else increase depth d = d + 1. Go to

step 3.2.2.

3.2.7. Step back. Decrease depth d = d – 1. Delete expanding

vertex from the current depth. If d = 0 go to step 3.3, else

go to step 3.2.3.

3.3. Complete iteration. Save current best clique value for this color. b[c] =

|CBC|.

4. Return maximum clique. Return CBC.

Figure 4. VRecolor-BT-u algorithm [4].

Compared to VColor-BT-u and “MCS Improved” (the last successor of MCQ algorithm

[9]) VRecolor-BT-u algorithm shows the best results on densities until 75%. On highly

dense graphs the “MCS Improved” is still the fastest one [4].

22

3 Implementation

According to the nature of the problem and the technology stack of the company, for

whom the multithreaded algorithm is being developed, it was decided to create the

algorithm using following technologies: Angular 8, TypeScript, Web Workers. Next,

above-mentioned technologies will be examined in more detail and their use will be

justified. Finally, the practical part of this work will be presented – developed solutions

and overview of the results.

3.1 Technology stack

The company Denikum OÜ has a strong request to implement solution for the

maximum clique problem web based, but without the backend part, since algorithms

developed in this work is going to be applied within the cloud-based products and many

of them do require optimization of the cost by minimizing the server-side load.

Additionally, the company would like to add the algorithms to be developed into the

demo package and again likes to avoid additional charges related to the server load.

Since the customer company uses Angular framework for creating web applications, it

was requested to develop our solution with Angular (version 8.2.1) as well. Angular is a

JavaScript framework developed by Google, and currently is one of the best solutions

for web development. With great features like templating, two-way binding,

hierarchical dependency injection, AJAX handling and so on, Angular makes it possible

to build modern, interactive and dynamic web pages and applications. With Angular the

applications can be built for any deployment target: for web, mobile web, native mobile

and native desktop [10]. The proper use of all the features of this framework does not

just significantly increases the speed of development, but also aids in creating quality

and efficient software. Other advantage of Angular framework is, that it’s TypeScript-

based. TypeScript is a superset of JavaScript, which ensures higher security by

supporting types. Typed languages help us catch and fix errors early in the process of

writing the code or performing maintenance tasks. Furthermore, the TypeScript code

can be directly debugged in the browser, which also simplifies the development process.

23

Web Workers are used to execute tasks in separate threads. This mechanism solves the

concurrency problem in JavaScript. With the help of Web Workers it is possible to

execute scripts in background threads, separately from the main thread, which prevents

it from being blocked. It will be discussed in more detail in the upcoming chapter.

3.2 Porting VRecolor-BT-u to web

The VRecolor-BT-u algorithm was first introduced in Aleksandr Poroshins’ master’s

thesis, and was implemented with C# programming language. One of the goals of this

work is to port VRecolor-BT-u to web. It’s worth to note that the structure and work

principle of the algorithm will remain the same, since the algorithms used in the thesis

have one very important nature: those were written one by one inheriting each

consequent implementation from the previous one as the algorithm evolved through

several improvement rounds. Therefore, every possible improvement in base algorithm

is applicable to the next algorithm and therefore, on the high level, even if there are

small improvements possible, it will not change the compatibility of the algorithm,

which is the most important point of this work. It is also worth mentioning that the

algorithms were carefully checked through all rounds by all involved authors

[Kumlander, Porosin] including results comparison and the probability of finding large

scale improvements is low and therefore can be omitted due the fact we do compare

algorithms.

3.3 Multithreading

As already noted, VRecolor-BT-u algorithm is going to be improved with the use of

multithreading. Essentially, JavaScript by its nature is single threaded environment – it

executes only on a single processor thread. This means that every executed line of code

blocks further code execution i.e. only one command is processed at a time. This is not

a problem for the majority of websites, because it is possible to create pretty fast web

apps without the use of multithreading. Sometimes, however, we encounter more

complicated computations or time-consuming procedures, which might require the

client to wait for too long. Computational operations that can be executed independently

from other logic potentially is executable in a separate thread, thus leaving the main

24

thread as well as UI unblocked. In order to solve this problem with blocking, the

asynchronous features were introduced in JavaScript, but even using those the code is

still executed in the same thread. Therefore, we still need a true multithreading features

for our implementation.

As it was mentioned earlier, parallel processing in web development is achieved with

the use of Web Workers, which were introduced in HTML5. It is possible to transfer

execution of some independent scripts to the background threads with the aid of so-

called workers. Worker is an object, which is created using the Worker() constructor,

which runs a separate JavaScript file with the code, executed in an isolated browser

thread. In order to make use of the worker thread, the scopes of worker thread and main

thread need to be able to communicate. It is done by using a messaging system. A

worker subscribes to a message. When the message is received, the worker processes it

and optionally sends another message back to the main thread. The main thread also has

to subscribe to the message event if it needs to react on it.

There are certain specifics and restrictions making web workers challenging to apply.

The success of the work at whole depends on the proper choice of solutions to these

limitations.

First of all, workers have some difficulties with data transfer. The data passed to the

worker directly will be shallow cloned, leading to the loss of some data. In the interest

of preserving the data, it should be serialized and cloned with the use of the structured

cloning algorithm or transferable objects. Structured cloning means that all of the

properties of an object must be iterated through and the values of those properties

duplicated. In short, this process is called deep cloning. Transferable objects are objects

that implement the Transferable interface [11] and can be moved to a different

JavaScript context (i.e. another window or worker). Although the content of transferable

objects is transferred from one context to another with a zero-copy operation, it is

literally moved to the new context. For example, when passing an ArrayBuffer (which

belongs to transferable objects) from the main thread to a worker, the original

ArrayBuffer is cleared and will no longer be available in the original context [12].

It can be noticed that both approaches have downsides. The deep cloning and the

transferring of the data is significant overhead to the message transmission, since the

25

larger amount of data is, the bigger the message gets, and the longer it takes to send it.

The drawback of using the transferable object is the loss of the object from the original

thread. In order to avoid these disadvantages, which are unprofitable for the

performance, it is possible to use SharedArrayBuffer for sharing the data between

threads - it is done without any loss of data in the parent thread and without time and

memory consuming cloning. As it was written in one of the source materials:

“The SharedArrayBuffer object is used to represent a generic, fixed-length raw binary

data buffer, similar to the ArrayBuffer object, but in a way that they can be used to

create views on shared memory. Unlike an ArrayBuffer, a SharedArrayBuffer cannot

become detached“ [13]. Shared memory can be created and updated simultaneously in

multiple threads. Atomic operations need to be used to synchronize those modifications

and to be sure that shared data in any of the threads are up to date. Those guarantee that

read and write operations will always be completed before the next operation is

executed. The Atomics object embedded into JavaScript represents atomic operations in

form of static functions, which are used together with the SharedArrayBuffer object.

Another aspect that needs to be accounted for is the fact that productivity might suffer

from the creation of workers and their excessive amount. The initialization of one

worker takes about 40ms [14], which means that improper use of workers might

decrease the overall productivity due to their initialization. Furthermore, it is worth

considering the number of cores (the basic computation units of the CPU) the system

where the algorithm will be run has. If there are more workers spawned than there are

cores, it will slow down the workload, as the workers will be queued. Due to this fact,

we need to use a reasonable number of workers in order to get the maximum benefit

from them.

Multithreading is used to improve initial algorithms. In order to get the most from the

use of workers it is crucial to understand the structures of the algorithms to find the

proper place for workers to be added into. The first idea is to find out a recurring part in

the algorithm, which could be processed as an independent task, and run those parts

simultaneously in the separate threads. It is also important to set up the parallel task

execution system and try to minimize the necessary performance costs to run workers.

The second idea is to run two maximum clique algorithms simultaneously, which will

traverse the graph from different ends. To make this idea work, both algorithms have to

http://man.hubwiz.com/docset/JavaScript.docset/Contents/Resources/Documents/developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer.html

26

be based on the same approach of the initial vertex coloring and ordering. After

execution, those algorithms will reach the same vertex and after analyzing that one the

further traversing of the graph will be useless. Therefore, the execution of the

algorithms should be interrupted, and the largest clique is picked from the maximum

cliques found in both algorithms. The challenge in this approach is to properly set up

communication between threads, by use of shared data. It is crucial since two

algorithms need to share the information about their current positions to determine the

moment of termination.

3.4 Multithreaded VRecolor-BT-u

The branch and bound algorithms’ computational speed can be significantly increased

by parallelizing the process of the traversing branches. When we are on the first level

(depth 1), no matter if the algorithm is using the reversed search or not, each expanded

vertex forms a separate branch. VRecolor-BT-u algorithm is based on backtrack search

and operates with independent sets divided by the color classes instead of single

vertices. It starts searching for a clique from the vertices of the first color class,

increasing the analyzed graph by one independent set (step 3 from Figure 4) on

backtracking iteration. At first glance, it may seem logical to parallelize the processes

by processing in separate threads each subgraph formed for each backtracking iteration.

Unfortunately, certain pruning formulas are based on backtracking, i.e. are using the

information gained from previously traversed subgraphs. It means, that these iterations

cannot be multithreaded, as they depend on each other. If we look deeper at the logic

that is performed inside the iterations, it will be found, that the processing of the

subgraphs is nothing other than the simple branch and bound algorithm, which is based

on Carraghan and Pardalos approach. In the mentioned approach all the vertices are

considered one after another. The analyzed graph is decreased on each iteration by

removing the processed vertex from it. This particular place is excellent for parallelizing

the process: being at the first level, where we have all the vertices from the current set

of independent sets, it is possible to process branches formed from each first level

vertex independently.

The code, which is going to be executed in parallel threads, is located in separate

workers’ file v-recolor-bt-u-parallel.worker.ts. All the data, related to the graph and

27

analysis, is prepared before the processing by the worker: graph, initial colors, current

maximum clique size, cache and others needed in these workers. As some of the data

can be quite massive, the copying and the passing operations may take too long. In

order to decrease the time spent to minimum, we are creating a shared memory area for

this data with the use of SharedArrayBuffer, and then send that memory to workers. In

workers, as well as in the main thread, we create an array-like view on top of that shared

memory (binary data buffer), to work with shared data as with a simple array.

As seen in Figure 5, the data, which will be later sent to workers, is prepared before the

search for the maximum clique is started. Static functions of Atomics object are used to

synchronize the read/write operations to the shared data. There are the following steps

inside the backtrack search for-loop:

1. Wait until the independent sets of the current color classes is processed.

2. Save the current maximum clique size to cache.

this._sharedBufferMaxCliqueSize = new SharedArrayBuffer(2);

let sharedMaxCliqueSize = new Uint16Array(this._sharedBufferMaxCliqueSize);

Atomics.store(sharedMaxCliqueSize, 0, 0);

this._sharedBufferJsonGraphValues = SharedArrayBufferUtil.str2sharedArrayBuff
er(JSON.stringify(this._graph.values));

this._sharedBufferInitialColors = new SharedArrayBuffer(this._initialColors.l
ength * 2);

let sharedInitialColors = new Uint16Array(this._sharedBufferInitialColors);

sharedInitialColors.set(this._initialColors, 0);

this._sharedBufferMaxCliqueCache = new SharedArrayBuffer(initialColorsNumber
* 2);

let sharedMaxCliqueCache = new Uint16Array(this._sharedBufferMaxCliqueCache);

for (let initialColor = 0; initialColor < initialColorsNumber; initialColor++
) {

 await this.analyseColorSetAsync(initialColor);

 let currentMaxClique = Atomics.load(sharedMaxCliqueSize, 0);

 Atomics.store(sharedMaxCliqueCache, initialColor, currentMaxClique)

}

Figure 5. Data preparation in the main thread.

In the first step we are waiting for all the threads spawned for the subgraph processing

to finish their work. After that, the gained maximum clique is saved to cache and the

28

next iteration is activated. The obtained result from the previous analysis will be used in

subsequent calculations.

private async processColorSetAsync(initialColor: number): Promise<void> {

 return new Promise(async (res) => {

 let numberOfNodes = 0;

 let depthNodes = [];

 for (let i = 0; i <= initialColor; i++) {

 for (let j = 0; j < this._initialNodesNumInColorClass[i]; j++) {

 depthNodes[numberOfNodes] = this._initialColorClasses[i][j];

 numberOfNodes++;

 }

 }

 for (let i = numberOfNodes - 1; i >= 0; i--) {

 this._jobsQueue.push({

 startNodeIndex: i,

 firstLevelNodes: depthNodes,

 initialColor: initialColor,

 })

 }

 await this.startJobs(res);

 });

}

Figure 6. The process of building the first level and isolating jobs.

The process of building the first level and isolating jobs is shown on the Figure 6. We

start from building the first level, afterwards a separate job, containing necessary

information for the branch processing, is created for each vertex on this depth. The jobs

list represents the queue which follows the FIFO approach, so the first job from the list

will be processed first and the new job will be placed in the end of the list and executed

last. After the jobs for each branch are created, we need to initialize the worker threads,

where the jobs will be executed. As already mentioned before, each worker initialization

takes about 40ms, besides the time for transferring data to the worker also adds up.

Since we are interested in the maximum profit of using the workers, it would not be

rational to create a new worker each time the job is started and remove it after the job is

finished. It definitely will impact performance negatively, so it was decided to create a

fixed number of workers, depending on system CPU cores number, and make them

reusable. The number of CPU cores can be obtained from the

window.navigator.hardwareConcurrency object. Next, when some job is finished, the

worker is released and may be re-used by the next job. Figure 7 shows that the number

29

of required workers is set in accordance with the limit based on available cores and the

number of jobs to be processed, as it doesn’t make sense to spawn more threads than

necessary at the moment. If there will be more jobs in future iterations, and the limit

will not be reached, additional workers will be created.

const jobsToStart = Math.min(scope.workersLimit, scope.jobsQueue.length);

let missingWorkers = jobsToStart - scope.workers.length;

if (missingWorkers)

 await initWorkers(missingWorkers);

Figure 7. Initialization of the limited number of workers.

Figure 8 demonstrates the initialization of the workers.

async function initWorkers(amount: number): Promise<void> {

 return new Promise((res, rej) => {

 scope.workersToInit = amount;

 const idStartPoint = scope.workers.length;

 for (let i = 0; i < amount; i++) {

 const worker = new Worker('../v-recolor-bt-u-parallel/v-recolor-
bt-u-parallel.worker', { type: 'module' });

 worker.onmessage = (event: MessageEvent) => {

 scope.workersToInit--;

 if (!scope.workersToInit)

 res();

 };

 worker.onerror = () => {

 console.log("ERR");

 };

 worker.postMessage({

 workerId: idStartPoint + i,

 graphOrder: scope.graphOrder,

 graphDensity: scope.graphDensity,

 sharedBufferMaxCliqueSize: scope.sharedBufferMaxCliqueSize,

 sharedBufferMaxCliqueCache: scope.sharedBufferMaxCliqueCache,

 sharedBufferInitialColors: scope.sharedBufferInitialColors,

 sharedBufferJsonGraphValues: scope.sharedBufferJsonGraphValue
s

 });

 scope.workers.push(worker);

 }

 });

}

Figure 8. Workers initialization.

30

The jobs are started then and only then, when the separate workers are created and all

the required data for the logic of branch traversal is prepared. When all jobs are

completed, the algorithm returns to the original backtrack search process, where the

current found maximum clique is saved. Thereafter the algorithm proceeds to the next

iteration. At the end of all backtrack iterations previously created threads are deleted.

3.4.1 Results

In this chapter the performance of VRecolor-BT-u algorithm and its multithreaded

version – VRecolor-BT-u-parallel algorithm is compared. The algorithms are tested on

randomly generated graphs, as well as, on DIMACS graphs. The tests give us an

overview of how the use of multithreading affects the speed of complex calculations.

Both algorithms are implemented in TypeScript using Visual Studio Code.

Multithreading is implemented with the use of Web Workers API. All tests are run in

Chrome browser (version 76). System information:

▪ Processor: Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, 1992 Mhz, 4 Cores,

8 Logical Processors

▪ RAM: 16GB

▪ System type: 64-bit operating system

▪ Operating system: Microsoft Windows 10 Pro

All tests on random graphs are divided by graph densities. 10-20 tests were run on

different random graphs to obtain more accurate results for each density and a certain

number of vertices.

Figure 9 demonstrates how the random graph is generated. It is based on the algorithm

described in Kumlanders’ work [7] with minor adjustments. The function takes two

numeric parameters: order and density of the expected graph. The return value of the

function is the Graph object, which represents a graph.

31

public generateGraph(order: number, density: number): Graph {

 if (density < 0 || density > 1)

 return null;

 const graph = new Graph(`gen_${order}_d${density}_${new Date().getTime()}
`, order);

 graph.edges = Math.round(order * (order - 1) * density / 2);

 for (let i = 0; i < graph.edges; i++) {

 let x: number;

 let y: number;

 do {

 x = this.getRandomInt(order);

 y = this.getRandomInt(order);

 } while (x == y || graph.values[x][y]);

 graph.setValue(x, y, true);

 graph.setValue(y, x, true);

 }

 return graph;

}

private getRandomInt(max: number): number {

 return Math.floor(Math.random() * Math.floor(max));

}

Figure 9. Random graph generation function.

As can be seen from the Figure 10, at a very low graph density (10%) the multithreaded

algorithm is significantly slower in speed to the single threaded VRecolor-BT-u

algorithm. However, already at a density of 20%, VRecolor-BT-u-parallel catches up

with VRecolor-BT-u when the number of graph vertices reaches 1900 (Figure 11). The

explanation of the lag of VRecolor-BT-u-parallel to VRecolor-BT-u at very low

densities is simple: the time spent on going through the graph is supplemented by the

time spent preparing data for additional threads, creating the threads themselves and

transferring data between them, thereby making the multithreaded algorithm inefficient

on densities 10% and also on 20% for the small number of vertices graphs.

32

0

2000

4000

6000

8000

10000

12000

1500 1700 1900 2100 2300 2500

Ti
m

e
(m

s)

Number of vertices

10%

VRecolorBtu VRecolorBtuParallel

0

2000

4000

6000

8000

10000

12000

14000

1500 1600 1700 1800 1900 2000

Ti
m

e
(m

s)

Number of vertices

20%

VRecolorBtu VRecolorBtuParallel

Figure 10. VRecolor-BT-u and VRecolor-BT-u-parallel randomly generated graph test results. Density

10%.

Figure 11. VRecolor-BT-u and VRecolor-BT-u-parallel randomly generated graph test results. Density

20%.

33

However, when the graph density is more than 30%, these additional time costs from

workers execution become insignificant compared to the graph traversal process. As we

see from Figure 12 to Figure 18, already at densities of 30%-90%, the multithreaded

algorithm is more efficient than the single threaded one.

0

2000

4000

6000

8000

10000

12000

800 880 960 1040 1120 1200

Ti
m

e
(m

s)

Number of vertices

30%

VRecolorBtu VRecolorBtuParallel

Figure 12. VRecolor-BT-u and VRecolor-BT-u-parallel randomly generated graph test results. Density

30%.

34

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

500 540 580 620 660 700

Ti
m

e
(m

s)

Number of vertices

40%

VRecolorBtu VRecolorBtuParallel

0

2000

4000

6000

8000

10000

12000

14000

16000

400 420 440 460 480 500

Ti
m

e
(m

s)

Number of vertices

50%

VRecolorBtu VRecolorBtuParallel

Figure 13. VRecolor-BT-u and VRecolor-BT-u-parallel randomly generated graph test results. Density

40%.

Figure 14. VRecolor-BT-u and VRecolor-BT-u-parallel randomly generated graph test results. Density

50%.

35

0

2000

4000

6000

8000

10000

12000

14000

16000

250 270 290 310 330 350

Ti
m

e
(m

s)

Number of vertices

60%

VRecolorBtu VRecolorBtuParallel

0

10000

20000

30000

40000

50000

60000

70000

80000

200 220 240 260 280 300

Ti
m

e
(m

s)

Number of vertices

70%

VRecolorBtu VRecolorBtuParallel

Figure 15. VRecolor-BT-u and VRecolor-BT-u-parallel randomly generated graph test results. Density

60%.

Figure 16. VRecolor-BT-u and VRecolor-BT-u-parallel randomly generated graph test results. Density

70%.

36

It is also worth noting that with an increase in the number of graph vertices, where the

density varies from 30% to 90%, the VRecolor-BT-u-parallel algorithm becomes more

and more efficient compared to VRecolor-BT-u.

0

2000

4000

6000

8000

10000

12000

14000

150 160 170 180 190 200

Ti
m

e
(m

s)

Number of vertices

80%

VRecolorBtu VRecolorBtuParallel

0

10000

20000

30000

40000

50000

60000

125 135 145 155 165 175

Ti
m

e
(m

s)

Number of vertices

90%

VRecolorBtu VRecolorBtuParallel

Figure 17. VRecolor-BT-u and VRecolor-BT-u-parallel randomly generated graph test results. Density

80%.

Figure 18. VRecolor-BT-u and VRecolor-BT-u-parallel randomly generated graph test results. Density

90%.

37

DIMACS graph is the graph presented in the standard format, which has been defined

by DIMACS for problems in undirected graphs. DIMACS graphs have special

structures representing the specific real problems. This standard was also chosen for

several DIMACS Computational Challenges [15].

DIMACS graph test result (Table 1) demonstrate that the specificity of structures can

negatively affect the speed of a multi-threaded algorithm. We see its superiority only on

a small number of graphs.

38

Table 1. VRecolor-BT-u and VRecolor-BT-u-parallel DIMACS graph test results (ms).

Graph Order Density VRecolor-BTu
VRecolor-

BTuParallel

 Time(ms)

c-fat500-1.clq 500 0,04 7 613

c-fat500-2.clq 500 0,07 6 372

c-fat500-5.clq 500 0,19 31 734

c-fat500-10.clq 500 0,37 107 1457

DSJC500_5.clq 500 0,5 8809 4345

DSJC1000_5.clq 1000 0,5 758014 306383

gen200_p0.9_44.clq 200 0,9 10456 5749

gen200_p0.9_55.clq 200 0,9 1104 1254

hamming6-2.clq 64 0,9 4 88

hamming6-4.clq 64 0,35 1 35

hamming8-2.clq 256 0,97 108 693

hamming8-4.clq 256 0,64 50 203

hamming10-2.clq 1024 0,99 24444 33051

johnson8-2-4.clq 28 0,56 2 336

johnson8-4-4.clq 70 0,77 6 58

johnson16-2-4.clq 120 0,76 641 401

keller4.clq 171 0,65 52 232

MANN_a9.clq 45 0,93 2 48

MANN_a27.clq 378 0,99 5077 5985

san200_0.7_1.clq 200 0,7 1472 370

san200_0.7_2.clq 200 0,7 3 109

san200_0.9_1.clq 200 0,9 28 377

san200_0.9_2.clq 200 0,9 769 751

san1000.clq 1000 0,5 466 893

p_hat300-1.clq 300 0,24 66 765

p_hat300-2.clq 300 0,49 191 483

p_hat300-3.clq 300 0,74 8307 4240

p_hat500-1.clq 500 0,25 160 719

p_hat500-2.clq 500 0,5 5405 4059

p_hat1000-1.clq 1000 0,24 1722 3135

39

3.5 Multithreaded VRecolor-BT-u and VRecolor-u in parallel

From the previous result, we see that the VRecolor-BT-u-parallel algorithm shows good

results at densities above 30%, but is still slower than the single threaded graphs on very

low density.

The second approach of how the performance can be improved even more by using

multithreading was to execute two algorithms from different families in parallel: with

backtrack search and without it. Thus, the search for maximum clique will be performed

from both sides of the graph and stopped when these algorithms meet. The hypothesis

regarding the performance improvement applying that approach was that the speed of

execution the VRecolor-BT-u algorithm might increase around two times.

Since we already have a multithreaded version of the VRecolor-BT-u algorithm, which

showed good results at almost all densities, it was chosen as the first algorithm. Being a

backtracking algorithm, it starts the search for the maximum clique with a set of vertices

from the first color class and continues the search by adding subsequent independent

sets to the analysis.

VRecolor-BT-u is the successor of the VColor-BT-u algorithm, differing only in that it

additionally applies recoloring on depths and uses additional pruning formulas. The

VColor-BT-u algorithm is based on the same ideas as VColor-u (initial vertex coloring

and the use of independent sets), except that VColor-u is based on the Carraghan and

Pardalos algorithm and traverse graph by removing vertex by vertex from analysis, and

VColor-BT-u on the Östergård algorithm, which analyze the graph by adding vertices

one by one. Since those algorithms already by the approaches start traversing the graph

in different directions and both are based on the same initial coloring and ordering of

vertices, those families of algorithms seems to be the best choice for our approach.

In fact, if we remove the backtracking approach from VRecolor-BT-u, we get more

advance variation of the VColor-u, same but with an additional vertex recoloring on

every depth (similar to MCQ [8]), but with handling conflicts of initial and depth

coloring proposed by Porošin [4]). Based on this, the modified VRecolor-BT-u will be

called as VRecolor-u. Using additional techniques that accelerate the search for

maximum clique, VRecolor-u will be more efficient than the VColor-u algorithm basing

40

on general investigations done by Porošin [4]. Therefore, VRecolor-u was selected as a

companion for the VRecolor-BT-u-parallel in our improvement attempt.

In addition, from the results of comparing the performance of MCQ type algorithms

(branch and bound with recoloring) and backtracking type algorithms [4, 7] we can see

that the branch and bound with recoloring algorithms is faster on graphs with relatively

low densities. This fact can positively affect the results of the combined algorithm at

low graph densities, since VRecolor-u will likely quickly walk through the most of the

graph, while VRecolor-BT-u-parallel will only begin the traversing. Thus, the time

spent on creating workers and communication between threads will be compensated.

The combined algorithm begins with the initial graph coloring and ordering the vertices.

Graph coloring gives us the number of color classes (i.e the number of independent

sets). Next, two workers are created: one for the VRecolor-BT-u-parallel algorithm, the

second for VRecolor-u. Since VRecolor-BT-u-parallel is a multithreaded algorithm, the

workers required within it will be created inside the thread of the VRecolor-BT-u-

parallel.

Figure 19 illustrates the creation of two important SharedArrayBuffer objects that will

be passed to threads and used as triggers to determine when algorithms should be

interrupted. The backtracking family algorithm VRecolor-BT-u starts from the vertices

of the first color class, and the sharedBTColorsAnalysed object stores the number of

colors that have already been taken into analysis. The branch and bound family

algorithm VRecolor-u starts traversing the graph by excluding from analysis vertices

and consequently color classes since vertices are ordered by them, so the

sharedBnBColorsLeft object stores information about how many colors are left for

research.

this._sharedBufferBnBColorsLeft = new SharedArrayBuffer(2);

const sharedBnBColorsLeft = new Uint16Array(this._sharedBufferBnBColorsLeft);

Atomics.store(sharedBnBColorsLeft, 0, initialColorsNumber);

this._sharedBufferBTColorsAnalysed = new SharedArrayBuffer(2);

const sharedBTColorsAnalysed = new Uint16Array(this._sharedBufferBTColorsAnal
ysed);

Atomics.store(sharedBTColorsAnalysed, 0, 0);

Figure 19. Use of SharedArrayBuffer object for the shared data.

41

In Figure 20 the part of code from the VRecolor-BT-u-parallel algorithms’ worker is

presented. At each new iteration, we increase the number of colors analyzed and store

this value using atomic operations in shared memory. Atomic operations ensure that

reading and writing data is synchronous and not interrupted. After the current subgraph

has been analyzed, the number of left colors of the second algorithm is checked. If the

second algorithm has the same (or less) number of colors left for analysis then further

iterations are interrupted. The worker finishes his work and sends a message to the main

stream with the maximum clique that it managed to find.

let colorsAnalysed = 0;

for (let c = 0; c < scope.initialColorsNumber; c++) {

 Atomics.store(scope.sharedBTColorsAnalysed, 0, ++colorsAnalysed);

 await processColorSet(c);

 let currentMaxClique = Atomics.load(sharedMaxCliqueSize, 0);

 Atomics.store(sharedMaxCliqueCache, c, currentMaxClique);

 if (colorsAnalysed >= Atomics.load(scope.sharedBnBColorsLeft, 0)) {

 scope.postMessage({ maxCliqueSize: currentMaxClique })

 destroyWorkers();

 break;

 }

 }

Figure 20. Stop condition check in VRecolor-BT-u-parallel worker.

Figure 21 shows a code snippet from a VRecolor-u algorithm worker. Selecting a vertex

for analyses on the first depth the algorithm picks the color class the vertex belongs to

and checks if the second (i.e. backtracking) algorithm already analyzed that color. It is

done by the following routine:

1. If the color of the vertex same as the color of the last analyzed vertex then we

just continue.

2. If the algorithm moved to a new color class, it compares how many color classes

are left to be analyzed to how many have already been analyzed in the

backtracking algorithm. If these numbers match or the backtracking algorithm

has analyzed more color classes than is left here, then the algorithm is

interrupted and the maximum clique found to this moment is sent to the main

thread.

42

const p = depthNodes[depth][inDepthIndex];

const color = scope.initialColors[p - 1];

if (depth == 0) {

 const prevColor = scope.initialColors[depthNodes[depth][inDepthIndex + 1]
] || c;

 if (prevColor != color) {

 if (colorsLeft <= Atomics.load(scope.sharedBTColorsAnalysed, 0))

 break;

 Atomics.store(scope.sharedBnBColorsLeft, 0, --colorsLeft);

 }

}

Figure 21. Stop condition check in VRecolor-u worker.

Whenever the algorithms finish their job and the response from each worker is received,

the custom event „worker done“ is dispatched to the DOM. The Document object,

which represents the DOM tree of our application, is subscribed to that custom event.

After the „worker done“ events are dispatched from both algorithms, the main thread

performs the last action: it compares the found maximum cliques and selects the larger

one, which is returned as a result. This can be seen on Figure 22, where the behavior of

„worker done“ event handler is demonstrated.

43

private workerDoneEventHandler(e: any): void {

 this._maxCliqueSizes.push(e.detail.maxCliqueSize);

 if (++this._workersDone != 2) {

 return;

 }

 e.detail.sw.stop();

 this._result = {

 maximumClique: Math.max(...this._maxCliqueSizes),

 timeElapsed: {

 total: e.detail.sw.timeElapsed

 }

 } as MaxCliqueAlgorithmResult;

 document.removeEventListener(this.WORKER_DONE_EVENT_NAME, this.workerDone
EventHandler, true);

 for (let i = 0; i < this._workers.length; i++)

 this._workers[i].terminate();

 this._workers = [];

 this._solutionRes();

}

Figure 22. Handler for “worker done” event.

3.5.1 Results

This chapter presents the test results of the VRecolor-u+VRecolor-BT-u-parallel

algorithm, as well as their comparison with the results of the VRecolor-BT-u and

VRecolor-BT-u-parallel algorithms. Those are tested on both random graphs and

DIMACS graphs.

As can be seen from Figure 23 to Figure 24, the combined algorithm does better than

the VRecolor-BT algorithm even on low-density graphs, thereby confirming the

hypothesis that the VRecolor-u algorithm compensates the time spent on workers in

VRecolor-BT-u-parallel algorithm.

44

0

2000

4000

6000

8000

10000

12000

1500 1700 1900 2100 2300 2500

Ti
m

e
(m

s)

Number pf vertices

10%

VRecolorBtu VRecolorBtuParallel VRecoloru+VRecolorBtuParallel

0

2000

4000

6000

8000

10000

12000

14000

1500 1600 1700 1800 1900 2000

Ti
m

e
(m

s)

Number of vertices

20%

VRecolorBtu VRecolorBtuParallel VRecoloru+VRecolorBtuParallel

Figure 23. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-parallel randomly

generated graph test results. Density 10%.

Figure 24. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-parallel randomly

generated graph test results. Density 20%.

45

0

2000

4000

6000

8000

10000

12000

800 880 960 1040 1120 1200

Ti
m

e
(m

s)

Number of vertices

30%

VRecolorBtu VRecolorBtuParallel VRecoloru+VRecolorBtuParallel

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

500 540 580 620 660 700

Ti
m

e
(m

s)

Number of vertices

40%

VRecolorBtu VRecolorBtuParallel VRecoloru+VRecolorBtuParallel

Figure 25. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-parallel randomly

generated graph test results. Density 30%.

Figure 26. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-parallel randomly

generated graph test results. Density 40%.

46

0

2000

4000

6000

8000

10000

12000

14000

16000

400 420 440 460 480 500

Ti
m

e
(m

s)

Number of vertices

50%

VRecolorBtu VRecolorBtuParallel VRecoloru+VRecolorBtuParallel

0

2000

4000

6000

8000

10000

12000

14000

16000

250 270 290 310 330 350

Ti
m

e
(m

s)

Number of vertices

60%

VRecolorBtu VRecolorBtuParallel VRecoloru+VRecolorBtuParallel

Figure 27. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-parallel randomly

generated graph test results. Density 50%.

Figure 28. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-parallel randomly

generated graph test results. Density 60%

47

Figure 30. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-parallel randomly

generated graph test results. Density 80%.

0

10000

20000

30000

40000

50000

60000

70000

80000

200 220 240 260 280 300

Ti
m

e
(m

s)

Number of vertices

70%

VRecolorBtu VRecolorBtuParallel VRecoloru+VRecolorBtuParallel

0

2000

4000

6000

8000

10000

12000

14000

150 160 170 180 190 200

Ti
m

e
(m

s)

Number of vertices

80%

VRecolorBtu VRecolorBtuParallel VRecoloru+VRecolorBtuParallel

Figure 29. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-parallel randomly

generated graph test results. Density 70%.

48

All the results show that, the combined multithreaded algorithm oversteps all the

algorithms under study. Its productiveness is especially evident in comparison with

VRecolor-BT-u-parallel at densities of 10% - 50% (Figure 23 to Figure 27). However,

the difference in execution speed becomes smaller with increasing density of graphs and

is quite disappear by a density of 90%.

The DIMACS graphs result (Table 2) shows that the performance of algorithms very

much depends on the structure of graphs and so the new one is better on some graphs

than the previous one but still is not best for many cases and even slower for some

individual graphs than the original parallel one. Nevertheless, we can see that the new

algorithm outperforms other algorithms on quite many graphs, meaning that selection of

algorithm to be used depends on the graph type and the algorithm proposed in this work

will be selected as the best on quite some cases.

0

10000

20000

30000

40000

50000

60000

125 135 145 155 165 175

Ti
m

e
(m

s)

Number of vertices

90%

VRecolorBtu VRecolorBtuParallel VRecoloru+VRecolorBtuParallel

Figure 31. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-parallel randomly

generated graph test results. Density 90%.

49

Graph Order Density
VRecolor
Btu

VRecolor
BtuParallel

VRecoloru+
VRecolor
BtuParallel

 Time (ms)

c-fat500-1.clq 500 0,04 7 613 106

c-fat500-2.clq 500 0,07 6 372 195

c-fat500-5.clq 500 0,19 31 734 635

c-fat500-10.clq 500 0,37 107 1457 1358

DSJC500_5.clq 500 0,5 8809 4345 2154

DSJC1000_5.clq 1000 0,5 758014 306383 159338

gen200_p0.9_44.clq 200 0,9 10456 5749 7054

gen200_p0.9_55.clq 200 0,9 1104 1254 2542

hamming6-2.clq 64 0,9 4 88 77

hamming6-4.clq 64 0,35 1 35 31

hamming8-2.clq 256 0,97 108 693 579

hamming8-4.clq 256 0,64 50 203 238

hamming10-2.clq 1024 0,99 24444 33051 33736

johnson8-2-4.clq 28 0,56 2 336 40

johnson8-4-4.clq 70 0,77 6 58 32

johnson16-2-4.clq 120 0,76 641 401 231

keller4.clq 171 0,65 52 232 120

MANN_a9.clq 45 0,93 2 48 28

MANN_a27.clq 378 0,99 5077 5985 4893

san200_0.7_1.clq 200 0,7 1472 370 389

san200_0.7_2.clq 200 0,7 3 109 94

san200_0.9_1.clq 200 0,9 28 377 323

san200_0.9_2.clq 200 0,9 769 751 4580

san1000.clq 1000 0,5 466 893 246

p_hat300-1.clq 300 0,24 66 765 76

p_hat300-2.clq 300 0,49 191 483 200

p_hat300-3.clq 300 0,74 8307 4240 3554

p_hat500-1.clq 500 0,25 160 719 120

p_hat500-2.clq 500 0,5 5405 4059 2333

p_hat1000-1.clq 1000 0,24 1722 3135 905

Table 2. VRecolor-BT-u,VRecolor-BT-u-parallel and VRecolor-u+VRecolor-BT-u-parallel DIMACS

graph tests (ms).

50

4 Conclusion

4.1 Summary

In the course of the work, two basic branch and bound maximum clique search

algorithms were studied: Carraghan and Pardalos algorithm [5] and Östergård’s

algorithm [6]. These algorithms are based on two different approaches of traversing a

graph. The first one analyzes vertices one by one removing those from analysis and the

second one uses a reversed search called backtrack search i.e. adds vertices into analysis

one by one keeping the history of analysis in a cache to efficiently prone branches.

Additionally, three modern algorithms based on the above-mentioned basic algorithms

were also considered: VColor-u, VColor-BT-u and VRecolor-BT-u. The first two

algorithms differ from the basic ones in that they work at a higher level, operating not

with individual vertices, but with independent sets obtained from the initial graph

coloring. Additional pruning formulas, based on the received color classes, increase the

number of trimmed branches, thereby speeding up the execution of the algorithm. The

third VRecolor-BT-u algorithm is a successor to the VColor-BT-u algorithm and is

currently one of the most efficient maximum clique search algorithms. In addition to

initial coloring, it also performs vertex coloring in depths, which makes it possible to

use another additional formula to reduce the studied branches. Due to the fact that the

VRecolor-BT-u algorithm was recognized as one of the fastest, it was chosen for the

implementation of the goals of this thesis.

The third chapter is dedicated to the practical part of the work. At the beginning of the

chapter, the technological stack of the study is introduced. By the request of the

company we collaborated with writing this thesis, the VRecolor-BT-u algorithm was

ported to the web using Angular framework. The corner stone of the technology used in

the work is multithreading, which is implemented using Web Workers. Web Workers'

capabilities are somewhat limited in some aspects, so experimental solutions have also

been found that allows efficient usage of workers in our algorithms.

51

After the technology introduction, two hypotheses are presented on how the VRecolor-

BT-u algorithm can be accelerated using multithreading. These ideas are accompanied

by a detailed explanation of the main points of development, as well as the tests results,

conducted on randomly generated graphs and DIMACS graphs.

The first idea of improving the VRecolor-BT-u algorithm is based on performing branch

traversal in separate threads. The results are good on random graphs with densities more

than 30%. The efficiency of the VRecolor-BT-u-parallel algorithm compared to

VRecolor-BT-u increases exponentially with growth of the number of graph vertices.

However, the multithreaded version is inferior to the single threaded version on graphs

with a very low densities, because the time spent on workers is too long compared to the

graph traversal process.

The second idea is to combine in one algorithm two sub-algorithms that are based on

different graph traversal techniques: backtrack search and branch and bound, which are

executed in separate threads. The idea is that the algorithms start traversing the graph

from different ends, i.e. one is removing vertices from its’ analysis and the other one is

adding them. They stop the analysis when arrive to the same vertex and after analysis of

that vertex the best so far found maximum clique is selected as a solution, since the first

algorithm analyzed the vertices prior to the stop vertex, the second analyzed all vertices

residing after that vertex and one of them analyzed the stop vertex. An important

condition is – both algorithms should on the same vertex ordering (in fact we also use

color classes and so those should have also same order). In terms of performance, the

combined algorithm surpassed both single threaded VRecolor-BT-u and multithreaded

VRecolor-BT-u-parallel algorithms at all densities on randomly generated graphs.

4.2 Future studies

This chapter will present two ideas for possible further research.

The first investigation target is usage of workers depending on the algorithm family and

densities of the graph, since our tests in that area so far wasn’t quite homogenous and

need deep dive into details.

The second interesting topic would be applying the technique described in this thesis to

the weighted case. Weighted maximum clique algorithms are both alike and different:

52

having similar structure those are different in some important details, therefore

transferring the described approach will not be just a mechanical copy.

53

References

[1] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the

Theory of NPcompleteness, New York, 2003.

[2] A. Buldas, P. Laud ja J. Villemson, Graafid, Tartu, 2003.

[3] R. J. Wilson, Introduction to Graph Theory, California, 1996.

[4] A. Porošin, Reversed Search Maximum Clique Algorithm Based on Recoloring,

Tallinn, 2015.

[5] R. Carraghan and P. M. Pardalos, "An exact algorithm for the maximum clique

problem.," Op. Research Letters 9, pp. 375-382, 1990.

[6] P. R. Östergård, "A fast algorithm for the maximum clique problem," Discrete

Applied Mathematics 120, pp. 197-207, 2002.

[7] D. Kumlander, Some Practical Algorithms to Solve The Maximum Clique

Problem, Tallinn, 2005.

[8] T. Seki and E. Tomita, "An efficient branch-and-bound algorithm for finding a

maximum clique," DMTCS'03: Proceedings of the 4th international conference

on Discrete mathematics and theoretical computer science, p. 278–289, 2003.

[9] M. Batsyn, B. Goldengorin, E. Maslov and P. M. Pardalos, "Improvements to

MCS algorithm for the maximum clique problem," Springer Science+Business

Media, 2013.

[10] "Angular," [Online]. Available: https://angular.io/. [Accessed 1 01 2020].

[11] "Transferable," [Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/API/Transferable. [Accessed 6 01 2020].

[12] "Transferable," [Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/API/Transferable. [Accessed 3 01 2020].

[13] "SharedArrayBuffer," [Online]. Available:

http://man.hubwiz.com/docset/JavaScript.docset/Contents/Resources/Documents/

developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer.html.

[Accessed 31 12 2019].

[14] "How fast are web workers?," [Online]. Available:

https://hacks.mozilla.org/2015/07/how-fast-are-web-workers/. [Accessed 31 12

2019].

[15] "DIMACS format," [Online]. Available:

http://lcs.ios.ac.cn/~caisw/Resource/about_DIMACS_graph_format.txt.

[Accessed 31 12 2019].

