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1. INTRODUCTION 

An unmanned aerial vehicle (UAV) is an aircraft without a human pilot on board and can 

also be referred to as a Drone. UAVs are a component of an unmanned aircraft system 

which include a UAV, a ground-based controller, and a system of communications between 

the two. The first recorded UAV[1] was the used for the Austrian incendiary balloon attack 

on Venice in 1849(Figure 1.1). 

 

 

Figure 1.1 Austrian incendiary attack balloon on Venice [1] 

 

The flight of UAVs can commence with various degrees of autonomy: either under remote 

control by a human operator or autonomously by onboard controllers. UAVs usage has 

attracted significant attention the past decade especially after the latest improvements in 

flight stability control [2] and composite materials allowing us to design and manufacture 

lightweight composite frames with high structural efficiency [3]. We have reached a point 

where Drones, with fully automated flying capabilities, weigh less that 5 kg (Figure 1.2). 

 

 

Figure 1.2 DJI Mavic Air [4] 
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One area were UAVs have found growing grounds is the package delivery system where 

companies employ the use of drones to deliver payloads in an autonomous manner. The 

advances in this field, the past years, are extraordinary and we have managed to address 

task scheduling and path planning problems, for a team of cooperating UAVs performing 

autonomous deliveries in urban environments [5]. That has allowed companies, like 

Amazon, to implement small networks of automated drone delivery services where a UAV 

caries a payload and either deposits its payload close to the target area or on a specialized 

area where it is collected and processed by the company’s personnel. The challenges 

associated with automated drone delivery systems arise from the need for maintenance 

and accuracy of landing as well as the development of solutions for vehicle routing 

problems (VRPs) specifically for drone delivery scenarios [6]. We have created solutions 

when it comes to wireless charging [7] and general maintenance however the precision of 

automated landing systems does not allow us to create a reliable automated drone 

positioning system in order to combine such solutions. 

 

 

Figure 1.3 4999$ xArm 7 [8] and 56500$ UR10 robot [9] 

 

The recent developments in robotics and machine vision tools have allowed companies to 

create hardware solutions such as cost-efficient robotic arms and stereoscopic cameras. 

For example, in Figure 1.3 we can see that a 4999$ 7DOF robotic arm can cost an order 

of magnitude less than a similar capability robot of the recent past. Granted, the use case 

of these 2 robots might be different, the prototyping and proof of concept capabilities are 

still there.  It is in the hand of engineers now to combine all these different technologies 

and come up with cost effective solutions to arising problems. 
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2. LITERATURE OVERVIEW/ANALYSIS 

2.1. Thesis Objective 

The objective of this thesis is to create a system that will employ a robotic arm and a 

camera or set of cameras, in order to detect a drone with its payload in 3D space. Then 

after translating its position to mechanical movement, the robot arm will grasp the drone, 

with the use of its grip, by a custom-made bracket, that will also serve as a reference 

point. The bracket will incorporate a QR code that will provide a point of reference. Finally, 

the robotic arm will move the drone to a predefined location in a safe manner that will not 

compromise the structural integrity of the drone and the payload. 

2.2. Research Objective 

The objective of this research is to design and implement a precise post-landing positioning 

system that will physically manipulate a UAV, post-landing, in order to position it in such 

way that its payload can be deposited or that wireless charging can commence. This will 

be achieved with the use of a robotic arm and manipulator that will mechanically grab the 

drone and position it onto the desired location. The detection of the drone will be done 

optically using a depth sensing camera That will detect a QR code (Figure 2.1), located on 

the drone. 

A QR code is an abbreviation for Quick Response code and it is a type of matrix barcode 

first designed in 1994 for the automotive industry. Its advantages include fast readability 

and greater storage capacity compared to standard UPC barcodes. Applications include 

product tracking, item identification, time tracking, document management, and general 

marketing [10]. 

The QR code could will provide information about the drone and could allow for possible 

expansion of the system. The system must be universal, meaning that the type of drone 

used should not affect the performance of the system. The system should also be cost 

effective and weatherproof. Therefore, the result of this thesis will be a HW and SW system 

that will be able to detect an UAV in 3D space, control a robotic arm in order to 

mechanically grasp the drone and manipulate it in order to place it in a precise location. 
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Figure 2.1 Example of a QR code 

 

An important objective of this thesis is to find a solution to the perspective distortion issue 

that every pinhole camera has. Our X and Y coordinates will be detected by an RGB camera 

and therefore it will be subject to perspective distortion (Figure 2.2). We will either 

research ways to compensate for it or research and implement a solution to work around 

it using the robotic arm itself and the depth sensing camera in order to account for it 

mechanically.  

 

 

Figure 2.2 Perspective Distortion 

 

Our research will also focus on how environmental factors affect the performance of such 

a system. It is well known and documented that different lighting conditions affect the 
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performance of the camera [11]. Lighting can affect due to reflectivity but also, depending 

on the spectrum of the light source (Figure 2.3), could also introduce artifacts in the RGB 

stream of a pinhole camera. This is the reason why we will end up testing our system 

under various lighting conditions both statically and dynamically. 

 

 

Figure 2.3 Comparison of Spectrum from different Light Sources [12] 

 

As we see in the above figure, different illumination sources produce a different wavelength 

pattern. In the case of CFL, for example, we see peaks at various points in the spectrum. 

This could, in fact, alter the result of an RGB camera if the environment is not controlled. 

Various reflections could also affect the result of the image acquisition. Under strong 

illumination, glare could render a QR code unreadable. White balance of the camera’s 

sensor could also increase the possibility of image clipping. In digital image acquisition, 

clipping is a result of capturing an image where the values in a certain area falls outside 

the maximum intensity which can be represented. As a result, information in the acquired 

image is lost. In Figure 2.4 we see an example of clipping where information is lost. 
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Figure 2.4 Example of Clipping 

 

2.3. Existing Solutions 

For years, companies such as Amazon and Google have been hard at work developing a 

safe and practical way of utilizing the potential of unmanned aerial vehicles to improve 

upon their current network of delivery services. Transportation of relatively large packages 

has become feasible due to the advances in drone-based robotics. The biggest problem 

left unanswered is how to achieve a safe release of the payload once the drone has arrived 

at the drop off location. Crude solutions have been achieved such as a basket that can 

hold onto the package until the drone is rapidly flipped upside down in an aerial maneuver 

where the centrifugal force ejects the payload from the basket [13]. 

 

 

Figure 2.5 Amazon PrimeAir Drone [14] 
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The need for accurate payload delivery stems from the problems that arise when we are 

trying to create automated post-landing payload handling. In other words, after a drone 

has landed, the payload should be retrieved in a safe manner without compromising or 

damaging the payload. Such control over the payload retrieval can allow us to further 

process they payload without human intervention. For example, a drone can deliver a 

package and the package can be retrieved and loaded in a cargo container [15], since the 

deposit of they payload will be accurate and there will be no need for human intervention 

in order to load or transfer the payload.  

There are multiple ways to ensure an accurate landing position including the use of GPS 

systems and on-board sensors [16] but there is a need for off-board and universal precise 

landing systems that could support a multitude of different drones and be a “plug and 

play” solution. 

The advances in Machine Vision and Machine Learning technology is a vital tool for creating 

such robust payload delivery platforms. Since UAVs undoubtedly pose several threats to 

airspace safety that may endanger people and property, several drone-detecting 

techniques have been developed the past years [17] however optical detection remains a 

cost-effective way to detect an object, in this case a drone. Recent developments in object 

detection algorithms also provide powerful tools with which we can tackle drone 

postlanding positioning problems [18]. 

2.4. Scope of Thesis 

This thesis will explore 3 main research areas for which several problems should be solved 

in order to reach a novel solution. Several techniques will be considered but a single 

solution will be explored for each area. 

First area is the Machine Vision and object detection in 3D space where with the use of a 

camera or combination of cameras we will be called to create an algorithm that will reliably 

detect our desired object in 3D space. We will have to explore solutions regarding the 

camera placement, relative to the landing pad. Several options will be investigated before 

we reach a conclusion of the camera placement.  

The desired object will be a marker on the drone that will indicate an origin point for the 

system. This will require the exploration of a multitude of object detection techniques such 

as Region Shrinking [18] Stereoscopic imaging [19] [20]or Object Pruning [21]. In this 

context we will try to employ already existing techniques for optical detection [22] while 

adapting and possibly creating our own algorithm for object detection. Previous solutions 
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regarding picking and placing of objects with they use of a robotic arm have been found 

[23] [24] [25] [26] but in this case we need the tracking of the object to be dynamic and 

we need the system to adapt to changes such as a sudden change in the objects position 

due to weather conditions. 

Second research area involves the coordinate translation. After we manage to detect our 

object in 3D space, we will use the cameras input stream to calculate the position of the 

joints in order to reach the desired object and grasp it. This is where the technique of 

choice for the object detection will determine how we will tackle this problem. If we use a 

stereoscopic imaging technique, one physical camera module is enough to detect the 

movement on the X and Y coordinate systems, but for movement the third dimension we 

need a second camera to detect the Z coordinate too. We will also investigate if forward 

or inverse kinematics is a viable option even though the magnitude of mathematical 

calculation involved is proven to be immense [27]. We will also explore the possibility of 

converting pixel coordinates into real world coordinates with the help of 2D transformation 

[28].  

After we reach a decision on how the location will be obtained, we will have to employ 

they use of inverse kinematics in order to define the physical movement of the robotic 

arm. Inverse kinematics is a method that helps define the motion of a robot to reach a 

desired location. Another method of defining the motion of a robot is with the use of 

forward kinematics. In forward kinematics, the process of obtaining position and velocity 

of end effector is allowed given the known joint angles and angular velocities. In short, 

the difference between inverse and forward kinematics is that in inverse kinematics we 

define position and the process defines the angles of the joints of the robotic arm while in 

forward, we define the angles and the process defines the position. In this project we will 

research both processes. 

The third research area is the Mechanical Engineering part where we would need to explore 

different solutions on order to mechanically tether the drone to the robotic arm. The 

engineering of a bracket that the manipulator will grasp will commence since it should not 

impede normal drone operation and it should be universal for all types of UAVs. We will 

experiment with different types of composites and conclude to a cost-effective way to 

engineer such bracket. 
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2.5. Tools Used 

In this thesis we will use a suite of software as well as hardware in order to achieve our 

goal. Regarding hardware, the Mechatronics lab provided us with the xArm 7 robotic arm 

and intel's Realsence D435 camera. The xArm 7 robotic arm is a 7 DOF robotic arm 

manipulator designed and produced by uFactory. 

Our programming language of choice is Python version 3.7. Within Python we will be using 

several libraries such as PYZBAR in order to decode QR codes. We will be programming in 

a windows environment using the PyCharm SDK. both our camera and robot arm come 

with their own API which we will use. 

2.6. Outline 

The thesis main body will be split into the several chapters exploring specific solutions. 

Each research area will have a separate chapter where a solution will be found.  

In chapter 2 we will investigate the Machine Vision solution where we will decide our 

detection technique as well as our calibration process.  

Chapter 3 will refer to the Coordinate Translation solution where we should manipulate 

and use the data acquired from chapter 2 in order to find a solution regarding the 

translation of said data into physical movement of the robotic manipulator.  

In chapter 4 we will initiate a mechanical design for a bracket that will be used to tether 

the drone with the manipulator.  

Chapter 5 will describe the combination of the solutions in order to achieve the desired 

effect. In chapter 5 we will also confirm that the combination of all the solution work as a 

unit.  

In chapter 6 will define a testing methodology and perform several tests in order to reach 

conclusions regarding the reliability and robustness of the system.  

In chapter 7 we will be describing future work and ideas that were not explored in this 

Thesis as well as limitations and suggestions for further improvement.  

A final Chapter 8 will be used to summarize our conclusions. 
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Ultimately the thesis will contain 7 Chapters structured as seen below: 

• Chapter 1: Introduction  

o Overview  

o Research Objective  

o Scope of thesis  

o Organisation of Thesis  

• Chapter 2: Machine Vision  

• Chapter 3: Coordinate Transformation  

• Chapter 4: Mechanical Design  

• Chapter 5: Final Implementation  

• Chapter 6: Testing 

• Chapter 7: Future Work 

• Chapter 8: Summary and Conclusion 
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3. MACHINE VISION 

Our first task was to write an algorithm in order to detect our object of interest, in our 

case the drone. The camera of choice for this project was the Intel RealSense D435 camera 

(Figure 3.1) that gives us a RGB camera sensor as well as a depth detecting sensor. With 

the use of the RGB sensor we can detect the location of the drone on the X Y axis while, 

with the depth sensor we can detect the distance of the drone from the camera. That will 

allow us, through manipulation of this data, to locate the drone’s 3D coordinate relative to 

the camera. The Realsense camera also allows us to use only one camera module. 

 

 

Figure 3.1 RealSense D435 Camera Used 

 

Our proposed solution implements the detection of a QR code that will be placed on top of 

the drone thus giving us the ability to detect orientation as well. The QR code will be placed 

on top of a fixture that we will design in a future chapter. The fixture will be used to tether 

the drone with the robotic manipulator. The QR code may also contain data useful for 

identification or even for the implementation of security measures as future work. It is 

crucial for our design to be able to isolate a drone from the environment as well as 

detecting multiple drones in the same frame. 

3.1. Design 

In order to start designing the system, we must lay down the fundamental steps of the 

process. The first step, after the drone lands, is to be able to detect the QR code and 

decode its information. Using the PYZBAR library we can successfully detect the QR code 
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in the live video stream. After the QR code is detected, we can use its location in the image 

to determine its center point as well as its orientation. We can do that since PYZBAR can 

return the XY location of each corner of the QR code as well as the text data that the QR 

code carries.  

We can also use a library to detect multiple QR codes in the image stream. This information 

will then be stored in order to be used in the coordinate transformation step described in 

chapter 3. 

Important step in our design, is to make sure that we take perspective distortion into 

account and avoid errors in our calculations. In order to succeed in that we will Conduct 

our tests after we manually calibrate the position of the camera in order to avoid 

perspective distortion. 

After we have managed to reliably detect the QR code in 3D space we will have to decide 

the placement of the camera. The camera should be placed in a way that it will not impede 

a drone's ability to land. 

3.2. Implementation 

3.2.1. Object detection 

In order to implement our design, we initiated a new project in PyCharm and created a 

new Python File. We started by importing all or needed libraries. These include the Intel 

Realsense camera library as well as the PYZBAR library. 

In this early stage and for process verification reasons, it is of great importance to calibrate 

the camera in such a way that it's perpendicular to the surface in order to avoid perspective 

distortion problems. The Realsense camera SDK and software suite provides us with a 

calibration tool that depicts the projected surface and its distance from the camera. below 

you can see the difference between before and after the calibration. The calibration was 

achieved by leveling the camera manually. In later chapters we will calibrate the camera 

through our software. 
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Figure 3.2 Depth Gradient Before Calibration 

 

Figure 3.3 Depth Gradient After Calibration 

 

After leveling the camera manually, we managed to go from a 0.2 cm slope two a 0.02 cm 

slope, which is an order of magnitude lower and therefore we can proceed with our 

calculations being confident that perspective distortion is not going to affect our 

calculations. 

The next step was to initialize our camera feed using the openCV library. Since the 

Realsense camera is the only one actively connected to the computer, its identification 

code is 0. We stored each frame of the camera into a variable called IMG and with the use 

of the decode() function of the PYZBAR library we were able to store the QR code as an 

structure into a variable called barcode. This structure contains all information about the 

QR code. One of the items of this structure is barcode.polygon that contains an list with 

four 2 item lists where the XY coordinates are stored (3.1). We can pass that to a variable 

called poly. The coordinates correspond to each corner of the QR code in a 

counterclockwise direction, starting from the top left side of the code. We then saved each 

coordinate to a different variable in order to proceed to calculations. 
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 𝑝𝑜𝑙𝑦 = 𝑏𝑎𝑟𝑐𝑜𝑑𝑒. 𝑝𝑜𝑙𝑦𝑔𝑜𝑛 = [[𝑥0, 𝑦0], [𝑥1, 𝑦1], [𝑥2, 𝑦2], [𝑥3, 𝑦3]] (3.1) 

 

With the use of the OpenCV library, we were able to display the feed from the camera 

while overlaying the position of the QR code in the image as well as displaying the text 

that the QR code contains. For prototyping purposes, we created a hand drawn QR code 

in order to demonstrate the robustness of the detection. In the future and during testing 

we will perform a robustness test and compare the hand drawn QR code with a printed 

one as well with a partially destroyed one. 

 

  

Figure 3.4 Result of the Camera feed 

 

Now that we have the X Y coordinates of each corner of the QR code we can employ basic 

math functions in order to find specific points relative to the QR code as well as finding the 

angle that the QR code is orientated. By adding the coordinates of two opposed corners of 

the QR codes and divided them by two, we can find the midpoint coordinates, xPos, yPos 

between these two points (3.2) and therefore the center of the QR code and with that 

information we can determine an offset where the gripper will grasp the drone from. Since 

in a later chapter we will be designing our own fixture we can use this to our advantage 

to achieve a standardized gripping procedure. 
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𝑥𝑃𝑜𝑠 =

𝑝𝑜𝑙𝑦[0][0] + 𝑝𝑜𝑙𝑦[3][0]

2
 

(3.2) 

 
𝑦𝑃𝑜𝑠 =

𝑝𝑜𝑙𝑦[0][1] + 𝑝𝑜𝑙𝑦[3][1]

2
 

(3.3) 

 

Since now we know all four points of the QR code we can easily calculate the angle of the 

QR point by choosing two points and using atan2 function(3.4). This returns the angle in 

radians. This value, as we will see later, can be used as radians or can be translated into 

degrees. 

  

 𝜃 = 𝑎𝑡𝑎𝑛2(𝑝𝑜𝑙𝑦[1][1] − 𝑝𝑜𝑙𝑦[2][1] , 𝑝𝑜𝑙𝑦[1][0] − 𝑝𝑜𝑙𝑦[2][0]) (3.4) 

 

Additionally, the PYZBAR library allows us to retrieve a bounding box with the area that 

the QR code covers(Figure 3.5 Bounding Box in Blue. That might be useful in following 

chapters in order to determine an area of exclusion. 

 

 

Figure 3.5 Bounding Box in Blue 

 

In our next step, since we managed to record the camera feed, detect a QR code in it and 

extract its location in XY space, the next step is to detect its distance from the camera. 
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The real sense library allows us to save the stream from the cameras depth detection 

module and align it with the RGB feed. This aligning will allow us to refer to a specific point 

in the RGB feed that will correspond to the same physical point in the depth sensing 

stream. After we have received the coordinates we can use the get_depth() function, which 

returns the distance from the sensor to the specific point in meters. In order to test that, 

we placed the QR code on top of a box with known dimensions and took measurements. 

The camera was able to detect the difference with an accuracy of a millimeter (Figure 3.6). 

 

 

Figure 3.6 RGB Stream aligned with Depth stream 

 

Fortunately, the Realsense library makes it easy for us to detect accurate depth without 

making any calculations, since the get_depth() function returns a value in meters. That 

value can easily be translated into movement of the robotic arm since we have full control 

over the movement of the arm and we also know where it is located at any given time. 

Finally, we had to come to a decision regarding the position of the camera in the system. 

At this point we have the camera mounted on an adjustable tripod in order to verify our 

detection. This will not be possible in the final set up since a camera mounted rigidly above 

the landing pad will prevent a drone’s ability for vertical landing. We must keep in mind 

that the landing pad should not be obstructed by any physical object therefore the robot 

arm and the camera should be retracted prior to the detection. Another option was to 

rigidly mount the camera offset to the landing pad looking at an angle and then correct 

for distortion in the image. The best solution was to use of the bracket provided by the 

robotic arm manufacturer (Figure 3.7) in order to mount the camera on the end of the 

robotic arm and deal with the orthographic distortion in our next chapter. 
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Figure 3.7 xArm Camera Mount [29] 

 

The bracket can be mounted in several different orientations allowing us a certain degree 

of freedom in our implementation. We decided to Mount it directly above and parallel to 

the grippers plane of interaction as seen in Figure 3.8. This will still introduce perspective 

distortion that we will have to account for. In later chapters we will see that there was no 

need for correction since we could implement a routine in the robotic arm movement in 

order to achieve a correct detection even though the camera is mounted offset of the 

landing pad. With this solution we will manage to not have any physical object over the 

landing pad and therefore a drone can land without any interference. This method also 

allows us to continuously monitor the video stream throughout the movement of the 

robotic arm. In the future this can be used to detect changes of the location of the QR 

code throughout the retrieval process. 

 

Figure 3.8 xArm Camera Module Mounted on xArm [29] 
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We are now able to detect a QR code in 3D space, relative to the camera, and therefore 

in the next chapter where we will solve the problem of translating these coordinates into 

a pose for the robotic arm. 

3.2.2. Landing pad calibration 

Our Landing pad will consist of a flat piece of plastic where we will inscribe a parallelogram 

that will serve as our landing limits. This will define our region of interest. Everything out 

of this limit should be disregarded. The camera, once activated, records the RGB data of 

the scene but does not know what consists the limits of the landing pad. Therefore, there 

should be some connection between the cameras feed and the physical world. One way to 

achieve that is to detect the inscribed limits though the use of machine vision techniques. 

For example, we could apply a contrast filter and a threshold and perform rudimentary 

edge detection finding the inscribed line. That unfortunately proved unreliable since in a 

real-world application, the landing pad might not be defined or maybe there would be 

other artifacts in the image, such as glare or leaves. Another method is to perform a linear 

dependency calibration. This involves the placement of a detectable object in the corner 

of our region of interest and detecting its position. Then we can manually place our physical 

end effector to that position and record its position. We would then have a correlation 

between what the camera stream detects and its position in the physical world. This is 

achieved easily with the use of a dummy QR code. By placing the QR code on the limits of 

our defined landing pad We can detect those positions and their coordinates. That will 

allow us to set restrictions in our coordinate translation in order to detect whether a drone 

has landed within the landing pad.  

An obvious problem that arises is that we do not have yet to define a default birds eye 

position for our robotic arm, therefore this calibration routine will be executed after the 

default birds eye pose of the robot is defined in a Chapter 3. The reason why this is a 

problem is because we are basing our limits on the XY data of the cameras RGB stream. 

Those reference points change based on the camera location relevant to the landing pad, 

due to perspective distortion (Figure 3.9). Since we have mounted the camera on the 

robot, that position should be standardized for our technique to work. We will assume that 

a standardized pose is set and that the cameras FOV covers the whole landing pad and 

that it is perpendicular to the surface of the landing pad (4.2). 
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Figure 3.9 Perspective Distortion 

 

Next step in the calibration process will be to correspond the corners of the landing pad 

with the position of the gripper of the robotic arm. This will allow us to achieve a linear 

relationship between the location of the QR code in the image and the physical location of 

the end effector. We will start by placing a calibration QR code on the top-right corner of 

the landing pad. Then, with the use of the PYZBAR library we can detect its location, as 

seen in Chapter 2.2.1. This will give us a struct object with the coordinates of each corner 

of the QR code. After we calculate the midpoint of the QR code we will have a reference 

point on the RGB stream of where the top and the right limit is.  

After we obtain the position of the QR code in the RGB stream we can manually move the 

robotic arm to the center location of the QR code. This will allow us to associate the position 

on the RGB stream with the position of the robotic arm. With the xArm library we can 

obtain the position of the end effector and store the pose as joint angles.  

Now that we have the location of the QR code, in the RGB feed, when the robot is in its 

Birds Eye position, and the location of the arm at that position we created a relationship 

between the location of the QR code and the location if the robotics arms end effector 

(Figure 3.10). 

We repeat this process for the bottom right corner thus covering the whole landing pad. 

After we have all the calibration data, in the next chapter we will explain how with a simple 

linear interpolation function we can achieve an accurate detection of the drone’s position. 
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Figure 3.10 Calibration Process 

 

It is important to understand that the camera and the robot have different coordinate 

systems. The cameras X coordinate defines the right-left position of the pixel and the Y 

coordinate defines the bottom-top position of the pixel. The robotic arm positions X 

coordinate defines the top-bottom position of the end effector while the Y coordinate 

defines the left-right position (Figure 3.11). The cameras X coordinate indicates the 

number of the horizontal pixel and the Y indicates the vertical pixel. In our specific 

application, we used the maximum resolution provided by the Realsense camera(3.5)(3.6) 

which is 1280 pixels by 720 pixels. This will allow us to utilize the camera to its fullest 

since the higher resolution will allow us to detect smaller QR codes. 

 

 𝑅𝑎𝑛𝑔𝑒𝑥 = [0, 1280] (3.5) 

 𝑅𝑎𝑛𝑔𝑒𝑦 = [0, 720] (3.6) 
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Figure 3.11 Combined coordinate system 

Since we have recorded the edges of our landing pad and we have also recorded the 

position of the end effector at those positions we can achieve a linear dependence E as we 

desired. While the camera is at the Birds Eye view position and after we detect the position 

of the drone within the image, we can interpolate that position and converted into a XY 

position for the robotic arm. in or code we created our own data interpolation function that 

will take care of this conversion. The standard interpolation equation that we used is seen 

in (3.7). 

 

 
𝑉𝑎𝑙𝑢𝑒𝑥,𝑦 = (

𝑄𝑅𝑥, 𝑦 − 𝐿𝑃𝑡, 𝑙

𝐿𝑃𝑏, 𝑟 − 𝐿𝑃𝑡, 𝑙
) ∗ (𝑅𝑃𝑦𝑚𝑎𝑥 , 𝑥𝑚𝑎𝑥 − 𝑅𝑃𝑦𝑚𝑖𝑛 , 𝑥𝑚𝑖𝑛) + 𝑅𝑃𝑦𝑚𝑖𝑛 , 𝑥𝑚𝑖𝑛 

(3.7) 

 

In our situation we are dealing with different coordinate systems therefore we must 

make sure that we are converting the correct data. Essentially we are trying to 

transform a value from one scale into a value on another scale and since we have 

aligned the camera perpendicular to the landing pad and perspective  distortion is not a 

problem, we can do that with the linear interpolation equation (3.2). In order to control 

possible input range inversions or output range inversions we wrote a simple re-map 

function seen in A1 (lines 37-70).  
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4. COORDINATE TRANSFORMATION  

Since in chapter two we managed to obtain a position of a QR code in 3D space, relative 

to the camera, our next task is to translate that into physical movement of the robotic 

arm. This will allow the robotic arm to move in 3D space and place itself and its gripper 

on top of the drone’s fixture and grasp the drone with its grippers allowing it to transpose 

the drone in 3D space and place it in our desired location. That desire location could be a 

wireless charging pad or a storage unit. The importance of accurately translating the 

coordinates into movement is high, since we will consider the drone as a sensitive object 

and therefore will want to handle it with care. The accuracy of the placement after the 

pick-up of the drone is also important, especially for wireless charging. The reason is that 

wireless charging pads can charge only when the charging coil is within a range of some 

centimeters, therefore our placement should be accurate.  

4.1. Design  

The first step will be to define a default standby position for the robot arm. This standby 

position will have to not impede a drone's ability to land on the landing pad and should 

provide an angle that the camera will be able to overlook the entirety of the landing pad 

and even the surrounding area. Since now the camera can see our region of interest it can 

detect when a drone enters the landing pad region. After the drone lands, the robot will 

execute a pose, in order to place the camera over the landing pad and perpendicular to it, 

called the Birds Eye view position. It will then execute the detection algorithm described 

in A1 System Code and retrieve the needed XYZ coordinates. Then the decoding of the 3D 

coordinates we received from the camera will commence. 

Our algorithm should be able to translate that data into a pose of the robot and execute 

that pose. This pose will land the grippers over our fixture and grip the drone. Then, the 

drone will be lifted and placed to the desired location. The desired location in our example 

will be hard coded but in future iterations this could depend on other parameters. For 

example, we could have different storage locations for different size drones. Another future 

solution could be that the drone will communicate with the system and the arm will place 

drones with low battery on the wireless charging pad. In Figure 4.1 Decision Tree we can 

see the decision tree of our system.  

After the process is Complete, the drone should return to its standby position and enable 

its detection algorithm again in order to repeat all the steps above when the new drone 

flies in (Figure 4.1).  
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It is important in this stage of development to have a robust way of retrieving the XYZ 

coordinates and for that reason all physical components are rigidly mounted respectively 

to each other. This means that the relative position of the landing pad, the camera and 

the base of the robotic arm, is fixed 

 

 

Figure 4.1 Decision Tree 

 

As we can see the system is responsible to detect the presence of a drone and to detect if 

the drone is within the limits we have defined. We can also see that there are two 

predefined positions for the robotic arm, the Standby position and the Birds Eye position.  

4.2. Implementation 

4.2.1. Hardware 

In order to begin implementing or solution, we had to set up the robotic arm with its 

gripper and define a landing pad in front of the robot. This also allowed us to finalize the 

physical location of the whole system and set up or computer workstation next to it. As 

mentioned in previous chapter 2, the Realsense camera was mounted at the end of the 

robotic arm and after the camera bracket the gripper was mounted. The gripper used is 



32 

 

the official xArm gripper by UFACTORY (Figure 4.2). This gripper is compatible arm library 

and we can control it through our script.  

 

 

Figure 4.2 xArm Gripper -2019 [30] 

 

The Realsense Camera is connected to the computer through a USB type C cable. The 

robotic arm is mounted on top of a sturdy metallic base and the landing pad is a sheet of 

plastic in front of it (Figure 4.3).  

 

 

Figure 4.3 Workstation 

4.2.2. Software 

In our project folder in PyCharm we created a new Python file where we imported our 

needed libraries. In our case the xArm library was needed as well as several libraries that 

will help us with the coordinate transformation. In order to retrieve the data from the 

detection script, we inserted lines of code in the detection script in order to save those 

values in a TXT file on our hard drive. This was a temporary solution until we combine all 

our code under one Python file. The alternative was to create a pipeline between the two 
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files and through parallel programming obtain the data. Since in the end we ended up with 

one single file no such action was needed.  

It is important in the software to initialize both the robot and the camera. The robot is 

connected with the use of an Ethernet cable through our network card. The xArm library 

allows us to send commands as: pose, angle, relative position and absolute position. we 

are also able to send commands to each of the seven joints of the robotic arm.  

Next step is to define our standby position and the birds eye position and save them as an 

array (3.1) (3.2). As mentioned in chapter 2, the standby position is a position that will 

allow the robotic arm to be out of the way of the landing pad but will still enable the 

camera to have an overview of the landing pad. The Birds Eye position is a position that 

the robot will engage after it has detected a drone landing. This position will bring the 

camera perpendicular to the landing pad therefore allowing us to not have to correct for 

perspective distortion. The detection routine, mentioned in chapter 2, will commence after 

the robotic arm is in the Birds Eye position.  

 

 

Figure 4.4 Robotic arm in Standby and Birds Eye pose 

 𝑠𝑡𝑎𝑛𝑑𝐵𝑦 =  [0, −65, 0, 69, 0, 113.4, 0] (4.1) 

 𝑏𝑖𝑟𝑑𝐸𝑦𝑒 =  [0, 3.3, 0, 116, 0, 112, 0] (4.2) 

 

Since the bird's eye position has been determined we can now proceed to the detection. 

Since the detection is done in birds eye mode, the maximum detection area is what the 
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camera can cover. The distance of the camera to the landing pad is limited by the ability 

of the camera to stay parallel to the landing pad. In our case the camera is located h = 70 

cm over the landing pad and since the Realsense RGB sensor has an horizontal FOV of 

FOVH = 91.2o and a vertical FOV of FOVV = 65.5o [31], the maximum area of detection, 

that is the  Area of View, is 143 cm(4.3) by 90 cm (4.4). In the calibration routine, 

described in 3.2.2, we mentioned how we achieved a linear dependency between the 

location of the QR code, in the RGB stream and the physical location of the end effector. 

Now, since we have all the required data, we can linearly interpolate the XY position of the 

RGB stream and the XY pose of the robotic arm. This is achieved by declaring our found 

limits (described in 2.2.2) as integer variables. There are four variables for the camera 

values and four for the robotic arm values. These four variables correspond to the topmost 

the bottommost the rightmost and the leftmost positions.  

 

𝐻𝑚𝑎𝑥 = 2 (ℎ ·
𝑠𝑖𝑛 (

𝐹𝑂𝑉ℎ
2

)

𝑠𝑖𝑛(180 − (𝐹𝑂𝑉ℎ + 90 ))
)  ≈  143 

(4.3) 

 

𝑉𝑚𝑎𝑥 = 2 (ℎ ·
𝑠𝑖𝑛 (

𝐹𝑂𝑉𝑣
2

)

𝑠𝑖𝑛(180 − (𝐹𝑂𝑉𝑣 + 90 ))
)  ≈  90 

(4.4) 

We must keep in mind that the above calculations are possible since the camera is parallel 

to the landing pad and the FOV is perpendicular to the landing pad. 

As we mentioned in the previous chapter, since we have achieved linear dependency, we 

now must input our recorded XY position into the linear transformation function we created 

called remap(). We do that separately for X and separately for Y. 

As an example, let's say that we detected in our calibration, that the limits of or landing 

pad in the camera's X axis (left-right) is from 379 to 1127. We also detected that the 

robotic end effector limits, Y axis (also left-right as seen in Figure 3.11) is 240 until -303. 

We are now able to retrieve the QR codes position, within the limits of the landing pad. 

This position is stored in two variables (xPos, yPos). When that value is retrieved we can 

input it into the remap() function in order to get a value back within the limit of the end 

effector movement (4.7). 
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 𝑐𝑎𝑚𝐿 =   379, 𝑐𝑎𝑚𝑅 = 1127 (4.5) 

 𝑥𝐴𝑟𝑚𝐿 =   240, 𝑐𝑎𝑚𝑅 = −303 (4.6) 

 𝑥𝐿𝑜𝑐 = 𝑟𝑒𝑚𝑎𝑝(𝑥𝑃𝑜𝑠, 𝑐𝑎𝑚𝐿, 𝑐𝑎𝑚𝑅, 𝑥𝐴𝑟𝑚𝐿, 𝑥𝐴𝑟𝑚𝑅) (4.7) 

 

Since we also have the angle of the QR code and therefore the orientation, we can insert 

that number as an angle for the joint that controls the end effector. The xArm library 

allows us to input that information both as radians and as angles. In order to be consistent, 

we will be using angles throughout this whole project. This also means that we have to 

convert the value that we found in equation (3.4) from radians to degrees(4.8). We can 

do that by using the math library in Python(4.9).  

 

 
𝑎𝑛𝑔𝑙𝑒 = 𝜃

180°

𝜋
 

(4.8) 

 𝑎𝑛𝑔𝑙𝑒 = 𝑚𝑎𝑡ℎ. 𝑑𝑒𝑔𝑟𝑒𝑒𝑠(𝜃) (4.9) 

 

We also showed in chapter 2 how we can obtain a depth reading and since this reading is 

in meters, we can give a relative movement command to the robotic arm. We can do that 

because we have defined the bird's eye view. The xArm library allows us to get the location 

of the end effector at any given moment and therefore we know the distance of the end 

effector from the landing pad. For example, if the QR code is detected in location xPos, 

yPos = [440, -370] we can retrieve the depth value by using the Realsence command 

get_depth(). That will provide us with a depth value in meters for the position we input. 

Now we have all the information needed to input the pose to the robotic arm and let it 

grasp the drone. We can do this through the set servo angle command that the xArm 

library provides us. After the end effector reaches big grasping point of the fixture, we can 

set the gripper position, with the set gripper position command, and now we are ready to 

move the drone.  
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Before we position the drone to the predefined location, we lift the drone off the table and 

move it while keeping it level in order to avoid collisions with other drones on the landing 

pad. in order implementation we have set an area next to the landing pad that will serve 

as our destination. That will later allow us to calculate the accuracy of the positioning 

command.  

 

 

Figure 4.5 Landing Pad with Carging Station on the bottom right 

 

In order to test if the system is working as intended, we temporarily fixed a QR code on a 

piece of 3D printed scrap with an upright post that will act as our gripping point. we will 

later design a gripping fixture. 

 

 

Figure 4.6 Temporary Fixture with Temporary QR code 
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Now that we have achieved the detection of the drone and the coordinate translation, pick 

up and positioning of the drone we can proceed to the next chapter where we will design 

the gripping fixture. After that we are ready to test the system. 
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5. MECHANICAL DESIGN 

In this chapter we will find a solution for mechanically linking the end effector of the robotic 

arm with the drone. This fixture needs to be robust and needs to be able to withstand the 

load of a drone. We are limited by the carrying capacity of the robotic arm, which in our 

case is 3,5 kg. In addition, since our gripper is equipped with parallel grips, need to create 

an upright post and we will also have to test if the gripper is able to withstand that load. 

We will test the load capacity with the use of test weights that will be attached to our 

fixture.  

5.1. Design  

For the design gripping fixture, we will use Autodesk's Fusion 360 software with an 

educational license. This will allow us to design a fixture and export an STL file so that we 

can 3D print the fixture for further testing.  

On top of the fixture, a QR code will be placed. A QR code is a matrix-type 2D code that 

has a 25 by 25 grid of elements in an image to be read. With that being said, the theoretical 

minimum size, given our area of view and resolution, is a QRmin = 2,79 cm square.  

 
QRmin = (

𝐻𝑚𝑎𝑥

1280
) 24 ≈ 2,792 

(5.1) 

 After trial and error, we have determined that the best size for a QR code is 10 cm by 10 

cm. The reason why we decided to go with a 10 by 10 QR code is because after testing 

with sizes ranging from 2 cm to 15 cm, the robustness of the system is compromised if 

we drop below that size. We saw satisfactory results with sizes down to 8 cm so a 10 cm 

QR code was deemed the best middle ground (Figure 5.1). 

 

Figure 5.1 QR Code size test 
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The fixture in our case, will be specifically designed to attach on a DJI Matrice M210 (Figure 

5.2). The reason we chose this specific drone is that it is available to us but also because 

it is close to the maximum payload capacity of the robotic arm therefore further testing 

its robustness. 

 

Figure 5.2 DJI Matrice M210 

In general or system will be able to handle any drone up to 3.5 kilograms and big enough 

to fit in the cameras area of view, as calculated in 4.2.2. Table 5.1 shows the maximum 

specifications that the system can handle reliably. By reliably, we mean that, regardless 

the orientation, the drone will be detected. That means that the limiting factor is vertical 

space in the area of view since it is smaller. Maximum height is defined by the distance of 

the camera from the landing pad after subtracting the cameras distance from the tip of 

the end effector. Also, it must be noted that the fixture must be the tallest object on the 

drone to avoid collisions with the end effector. 

 

Table 5.1 Systems maximum capacity 

Parameter Max Value 

Weight 3,5 kg 

Height 55 cm 

Width/Length 90 cm 
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The gripping fixture will have to be as light as possible, while maintaining structural 

integrity. It should impede the drone’s ability to fly as little as possible. 

Next step was to take our measurements. The DJI drone has 4 threaded holes on the main 

frame measuring 120 mm from one another in a square pattern. The xArm Gripper has 40 

mm gripping pads. Therefore, our gripping fixture should attach to those points and 

provide an extrusion of at least 40 mm for the gripper to grip. We will also give a 5 mm 

overhang in order to achieve a more reliable fixation without the risk of slipping. The above 

measurements resulted in the below prints (Figure 5.3). 

 

Figure 5.3 Fixture Prints 

 

 In Fusion 360, we created a flat surface that is sized 125x125 mm and 6cm thickness. 

We then created the four 2 mm holes in a square pattern of 120x120 mm. The extrusion 

was added with the overhead and we removed material from the base in order to reduce 

weight. In the end we were left with a satisfying prototype (Figure 5.4) and we are ready 

to export the STL file and proceed to 3d print the fixture. 
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Figure 5.4 Fixture Final 3D Render 

 

5.2. Implementation 

Unfortunately, during the time of the implementation of our fixture, a global halting of 

shipments was applied not allowing us to the materials needed for the 3D Printing of our 

fixture. We were expecting 3D printing filament in order to utilize our 3D printer and print 

the fixture designed in the above chapter but unfortunately, we were not able to secure 

the filament and local warehouses were out of stock. That did not affect the progress of 

our thesis since we could machine the parts from older 3D printed scraps. We will continue 

with testing, using the test fixture as seen in Figure 4.6. We will still be printing new QR 

codes in order to compare them with the hand drawn one for the purpose of testing the 

systems robustness in the next chapter.  

The test fixture worked as intended after a test run. It was able to withstand the force of 

the robotic gripper. It also had available protrusions in order to mount weights on it. We 

did this to test the capacity of the robotic arm and to simulate the weight of a real drone 

(Figure 5.5). 

 

Figure 5.5 Gripping of the Test Fixture 
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6. FINAL IMPLEMENTATION 

For the final Implementation we combine everything that we learned and all the solutions 

we found in the previous chapters. The process flow of our system is seen in Figure 6.1. 

This chart shows all the states that our system will possibly be in.  

 

Figure 6.1 Process Flow Chart 

 

6.1. Hardware 

For the final implementation, we positioned the robotic arm, with the camera mounted on 

it, in front of the landing pad and rigidly connected them together. The USB type-C cable 

was attached to the robot in order to avoid it getting caught during the arms operation. 

Out test fixture was fitted with a QR code as seen in Figure 4.6. 
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The computer hardware was a commercially available laptop with no significant 

specification and the connection with the camera was established with a USB port. The 

xArm robot was connected through the uFactory motion controller to the computer though 

an Ethernet interface. The motion controller and computer were powered by 220V wall 

power while the camera was powered through the USB cable. 

6.2. Software 

On the software side, we combined every piece of code in one master Python file (A1 

System Code). We included the needed libraries. Then we proceeded to initialize the 

robotic arm. This initialization includes the connection with it as well as the connection 

with the gripper. Then, we included the re-map function so that it can be used later in the 

code. Next step was to include all our local variables including our limits that were acquired 

by our calibration algorithm. At this point we also created a variable for the speed of our 

joints with will that will be used throughout the code. 

Table 6.1 List of Variables 

Name Type Description 

sLoc List Storage Location Position 

standby List Standby Position 

birdsEye List Birds Eye position 

camL,R,T,B Integers Limits of landing pad 

xArmL,R,T,B Integers Limits of Robotic EE 

speed Integer Global joint speed 

 

The xArm API provides us with a specific set of commands in order to move the robotic 

arm. We can either define the angle of each of the 7 joints or the position of the end 

effector. In other words, we can use forward or inverse kinematics. In our case, in order 

to set the standby position and the Birds Eye position, we will use the angle method(6.1). 

That is why we defined those positions as lists. In order to move the end effector over the 

test picture, we will be using inverse kinematics. This means that we will input the position 
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calculated by our algorithm, in the command, in order to move the end effector at our 

desired location(6.2). 

 

 𝑎𝑟𝑚. 𝑠𝑒𝑡_𝑠𝑒𝑟𝑣𝑜_𝑎𝑛𝑔𝑙𝑒(𝑎𝑛𝑔𝑙𝑒 = 𝑠𝑡𝑎𝑛𝑑𝐵𝑦, 𝑠𝑝𝑒𝑒𝑑 = 𝑠𝑝𝑒𝑒𝑑, 𝑤𝑎𝑖𝑡 = 𝑇𝑟𝑢𝑒) (6.1) 

 𝑎𝑟𝑚. 𝑠𝑒𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑥𝑃𝑜𝑠, 𝑦𝑃𝑜𝑠, 𝐷𝑒𝑝𝑡ℎ, 𝑠𝑝𝑒𝑒𝑑 = 𝑠𝑝𝑒𝑒𝑑, 𝑤𝑎𝑖𝑡 = 𝑇𝑟𝑢𝑒) (6.2) 

 

Next, in the code, we gave the command so that the robotic arm will proceed to the 

standby pose and the gripper at an open position. In our Prosses Flow Chart (Figure 6.1), 

this is the “Standby Pose” position. Since now everything is in place, we can activate our 

video stream and store the video frames in a variable after initializing our stream using 

the OpenCV library. Since there are no other cameras attached to our computer, the 

Realsence cameras identification code is “0”. We are now in the standby state. As 

mentioned before, in the standby mode, the camera is able to overlook the landing pad, 

without physically obstructing it. 

 

 

Figure 6.2 Camera stream from Standby pose 

 

Next step is to start the main routine. Inside a while true statement, we will insert our 

detection code starting by passing the frames from our video stream into a variable called 
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cap. Then, using the decode function of the PYZBAR library, we will detect the presence of 

a QR code in each frame. We will pull each individual frame by storing it into a variable 

called img. When a QR code is not present, the decode function returns false therefore 

this can be used to detect the presence and activate our position detection algorithm. This 

way we can ensure that the system will not trigger in the presence of anything but a drone 

with a QR code on it. Consequently, nothing on the landing pad will trigger the system, 

ensuring that physical objects, like animals or leaves or shadows, will not trigger detection. 

After a QR code is detected we set the robot in the Birds Eye pose and we can use our 

functions, described in 4.2.2, in order to get its location and angle. In our Prosses Flow 

Chart (Figure 6.1), this is the “Birds Eye” position. After we have calculated the position 

and angle, we use an if statement in order to check if the QR code is within the pre-

determined limits. Those limits are set in our variable list and are found through the 

calibration process described in 3.2.2.  

 

Figure 6.3 RGB Feed when in Bird Eye pose 

After we have determined that the QR code is in a valid position we proceed using inverse 

kinematics to position the gripper over the fixture and then close the gripper. Then we will 

set the arm back to the Birds Eye position in order to avoid any collisions with a possible 

second drone that has landed on the landing pad. In our Prosses Flow Chart (Figure 6.1), 

this is the “Location Detection” position.  

After we have ensured that we will not have a collision, we can proceed to place the fixture 

in or pre-defined storage location. In our Prosses Flow Chart (Figure 6.1), this is the “Drone 

Retrieval” and “Drone Positioning” position. The robot then will perform a clearing 

maneuver, so bad it won't bump into the test fixture. It will then return to its standby 

position waiting for a new QR code, returning to the beginning of the flow chart. 
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In case the QR code is not within limits, an error message will be printed. In case a QR 

code is not present, the system will also print a message Indicating that a QR code was 

not detected. 

This final implementation shows us that our system has four basic states as indicated by 

the below state machine. Individual states are as follows: stand by, Birds Eye, Detection 

and Retrieval.  

 

 

Figure 6.4 Systems State Machine 

 

As we can see the only thing that can trigger the system to start detecting is the presence 

of a QR code. Even if a QR code is detected in standby mode, the system will still have to 

validate its presence while in the Birds Eye view. If the QR code has landed outside of our 

limits or for some reason has disappeared from the platform until the robot is at bird's eye 

view, the robot will return to its standby position. 
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7. TESTING 

For testing purposes, we will split our focus into two categories. First category of testing 

will be investigating the accuracy of the system. This will measure how accurate our 

system is in detecting the drone and its position as well as how accurate the system places 

the drone on our desired location. The second category will be reliability testing. The scope 

of the reliability testing will be how accurately the system detects the drone depending on 

lighting conditions that will simulate real life operation. Another area for reliability testing 

will be to confirm the robustness of the system depending on the quality of the QR code 

itself and the lighting situations. 

7.1. Testing Methodology 

In order to define the system's accuracy, we used our test fixture to execute a detection 

and positioning of our test piece 50 times in a row. This testing will be conducted under 

several lighting conditions. The lighting conditions are as follows: LED illumination, under 

CFL illumination, and under sunlight. For each lighting condition, we will measure how 

accurately the system identified the drone, how accurately it translated its coordinates to 

the robotic arm positioning, and how accurate was its placement to our desired location.  

According to X. Lu [32] the effective charging distance, of a wireless charger is generally 

within 20cm Therefore, we will define a center point with a 20 centimeter circle around it 

and record how many times the system was able to successfully place the test fixture 

within our defined limits. In this way we will both check for the accuracy of the positioning 

as well as if the system is a viable solution for a wireless charging application. This, in 

turn, will provide us with a proof that a generic positioning system is possible to be 

implemented for wireless charging use.  

In order to test reliability, we will be performing a series of dynamic tests where the 

lighting conditions and the quality of the QR codes used will be dynamically changed within 

a set of detections. This will ensure that the system will be reliable and robust in detecting 

different quality QR codes as well as perform in dynamically changing environment. We 

will test for day and night cycles under different types of illumination, as described above. 

In short, we will run 50 tests under a single elimination set, record the performance and 

then change the elimination scenario. We will then change the illumination type and repeat 

(Figure 7.1). 
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Figure 7.1 Testing Procedure 

 

7.2. Testing Results 

After we run all the tests and collected the data in the table seen in appendix, we reached 

the conclusion that the simplicity of our system is enough to provide a reliable solution. 

We saw high success rates under direct sunlight and under LED light. Under CFL light the 

robot would not detect as accurately as in other conditions. That is due to the nature of 

CFL light. It is known that CFL light emits waveforms that peak in certain frequencies that 

could pose a threat to the detection of our QR code. We also see that the placing is accurate 

since the system never failed to place the test fixture within limits. 
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Table 7.1 Test Results with High Quality QR Code 

High quality QR CFL LED Daylight Darkness 

Detection 41/50 48/50 47/50 0/50 

Pickup 40/50 45/50 45/50 0/50 

Placing 40/50 45/50 45/50 0/50 

Success Rate 80% 90% 90% 0% 

 

We also saw that the quality of the QR code does not affect the performance of the system. 

The true enemy of performance is darkness since the camera retrieves position in 2D space 

with the use of the RGB sensor. When there is no light it cannot collect light and therefor 

the information for the QR code is lost. As a result, darkness is rendering our system 

incapable of performing. 

Table 7.2 Test Results with a Low Quality QR code 

Low quality QR CFL LED Daylight Darkness 

Detection 40/50 46/50 45/50 0/50 

Pickup 40/50 45/50 45/50 0/50 

Placing 40/50 45/50 45/50 0/50 

Success Rate 80% 90% 90% 0% 
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Again, we see in the results, that the success rate of the placement itself was 100% 

therefore proving that our positioning is accurate. 

It is possible to change the whole basis of the system and make it purely detect depth 

since darkness does not affect the depth sensor. In a future iteration this might be a good 

solution, in order to break away from the need of illuminating landing platforms. 
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8. Future Work 

In this thesis we addressed the problem of accurate positioning of a drone post landing. 

Many different aspects of this solution have been left for the future due to the lack of time.  

There are many ideas that I would have liked to test such as applying a machine learning 

algorithm in order to detect a drone without the use of a QR code. Also, this system could 

be expanded to accommodate a security system that will use the QR code in order to 

identify it. This could be especially useful as a commercial product. For example, if a 

company has a fleet of drones in order to perform deliveries of sensitive items and there 

is a need to secure the landing pad and discard any foreign drones. 

Another aspect that I would like to touch, in the future, is the ability to use the depth 

sensor, solely, in order to perform all operations. This means that no RGB stream will be 

used and therefore the system will be able to perform in the dark as well. Then, machine 

learning could also be applied to the depth field and thus achieving a system that would 

not need any illumination. 

Finally, the biggest improvement to this system will be to be able to detect and grasp a 

drone while it is hovering mid-air. this will open all new possibilities 4 drone detection and 

position systems. It will allow drones to not require to land in order to be retrieved, 

allowing for the possibility of moving landing vehicles. 
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9. SUMMARY 

9.1. Summary (English) 

In this thesis we managed to design and implement a drone detection and positioning 

system designed for a 7DOF robotic arm. A robotic arm was placed next to a landing pad 

and the system will respond when a drone has landed on the landing pad. The detection 

is possible with the use of machine vision, through an Intel Realsense camera. 

The implemented system can detect a drone in 3D space, using an QR code placed on top 

of it. The systems RGB camera detects the QR code in the XY plane and the cameras depth 

sensor detects the Z position. It is then able to translate its detected position into a 

physical movement of the robotic arm with the use of a combination of forward and inverse 

kinematics.  

The connection between the machine vision and the physical world is done by creating a 

linear dependency between the position of the QR code and the robotic arms end effector 

position in physical space.  

This thesis was constructed with simplicity in mind and was able to solve machine vision 

problems, such as perspective distortion, by working around them allowing for a simple 

solution with low cost of deployment and maintenance. We also ensured that the system 

is robust and that it will not trigger in the event of a foreign object being present on the 

landing pad. 

The resulting system was able to perform under most lighting conditions. The system did 

not perform in darkness due to the fact that it relies on the visible spectrum in order to 

detect the X and Y position of the drone. 

Several improvements and expansions could be further developed such as a security 

system that will detect the presence of drones that are not supposed to be retrieved by 

the system. A development of a GUI could also prove useful for commercial application of 

the system. 
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9.2. Summary (Estonian) 

Selles lõputöös õnnestus meil välja töötada ja rakendada droonide tuvastamise ja 

positsioneerimissüsteem, mis on mõeldud 7DOF-i robotkäe jaoks. Maandumispadja 

kõrvale asetati robotkäsi ja süsteem reageerib siis, kui droon on maandumispadjale 

maandunud. Avastamine on võimalik masinnägemise abil Inteli Realsense kaamera kaudu. 

Rakendatud süsteem suudab 3D-ruumis drooni tuvastada, kasutades selle peale pandud 

QR-koodi. Süsteemide RGB-kaamera tuvastab QR-koodi tasapinnal XY ja kaamerate 

sügavuse andur tuvastab Z-positsiooni. Seejärel on see võimeline tõlgendama oma 

tuvastatud asendi robotkäe füüsiliseks liikumiseks, kasutades selleks kinemaatika edasi-

tagasi pöördeid. 

Seos masinnägemise ja füüsilise maailma vahel luuakse lineaarse sõltuvuse abil QR-koodi 

asukoha ja robotrelvade otsaefektori positsiooni vahel füüsilises ruumis. 

See lõputöö oli koostatud lihtsust silmas pidades ja suutis uut lähenemist pakkudes 

lahendada masinnägemisprobleeme, näiteks perspektiivi moonutusi, võimaldades 

efektiivse lahenduse madalate juurutamise ja hoolduskuludega. Samuti veendusime, et 

süsteem on vastupidav ja et see ei käivitu, kui maandumispadjal on võõrkeha. 

Saadud süsteem oli võimeline toimima enamikes valgustingimustes. Süsteem ei töötanud 

pimeduses seetõttu, et drooni X- ja Y-positsiooni tuvastamiseks tugineb see nähtavale 

spektrile. 

Edaspidi võiks välja töötada mitmeid parandusi ja laiendeid, näiteks turvasüsteemi, mis 

tuvastab droonide olemasolu, mida süsteem ei peaks väidetavalt hankima. GUI 

arendamine võib osutuda kasulikuks ka süsteemi kommertsrakenduste jaoks.  
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A Appendix A 

A1 System Code 

1. # Imports   
2. import os   
3. import sys   
4. import time   
5. import math   
6. import numpy as np   
7. import cv2   
8. from pyzbar.pyzbar import decode   
9. import pyrealsense2 as rs   
10.    
11. sys.path.append(os.path.join(os.path.dirname(__file__), '../../..'))   
12. from xarm.wrapper import XArmAPI   
13. from configparser import ConfigParser   
14.    
15. pipeline = rs.pipeline()   
16. config = rs.config()   
17. config.enable_stream(rs.stream.depth, 1280, 720, rs.format.z16, 6)   
18. pipeline.start(config) 
19.    
20. # Connect to xArm   
21. parser = ConfigParser()   
22. parser.read('C:\\Users\\geo_t\\PycharmProjects\\xArm\\xarm\\wrapper\\robot.conf')   
23. ip = parser.get('xArm', 'ip')   
24.    
25. # xArm init   
26. arm = XArmAPI(ip)   
27. arm.motion_enable(enable=True)   
28. arm.set_mode(0)   
29. arm.set_state(state=0)   
30.    
31. # Gripper init   
32. arm.set_gripper_mode(0)   
33. arm.set_gripper_enable(True)   
34. arm.set_gripper_speed(5000)   
35.    
36.    
37. # Interpolation function   
38. def remap(x, oMin, oMax, nMin, nMax):   
39.     # range check   
40.     if oMin == oMax:   
41.         print("Warning: Zero input range")   
42.         return None   
43.    
44.     if nMin == nMax:   
45.         print("Warning: Zero output range")   
46.         return None   
47.    
48.     # check reversed input range   
49.     reverseInput = False   
50.     oldMin = min(oMin, oMax)   
51.     oldMax = max(oMin, oMax)   
52.     if not oldMin == oMin:   
53.         reverseInput = True   
54.    
55.     # check reversed output range   
56.     reverseOutput = False   
57.     newMin = min(nMin, nMax)   
58.     newMax = max(nMin, nMax)   
59.     if not newMin == nMin:   
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60.         reverseOutput = True   
61.    
62.     portion = (x - oldMin) * (newMax - newMin) / (oldMax - oldMin)   
63.     if reverseInput:   
64.         portion = (oldMax - x) * (newMax - newMin) / (oldMax - oldMin)   
65.    
66.     result = portion + newMin   
67.     if reverseOutput:   
68.         result = newMax - portion   
69.    
70.     return result   
71.    
72. # Variables   
73. birdEye = [0.0, 3.3000077168354895, 0.0, 116.00000387815524, 4.119222772313541, 113

.93036573058367,   
74.            0.0]  # Default Birdseye view   
75. # birdEye =[429.121399, 8.58317, 661.836731, -

3.075262, 0.020507, 0.029147]#birdeye position   
76. sLoc = [-65.2, 27.9, 0, 56.1, -0.2, 27.8, -65]   
77. sLocRes = [0, 7, 0, 107, 0, 100, 0]   
78. standBy = [0, -65, 0, 69, 0, 113.4, 0]   
79. maxHeight = 541.3   
80. # camera area calibration DLT   
81. camL = 390   
82. camR = 1127   
83. camLR = [camL, camR]   
84. camT = 14   
85. camB = 319   
86. camTB = [camT, camB]   
87.    
88. # xArm reach calibration   
89. xArmL = 240   
90. xArmR = -303   
91. xArmLR = [xArmL, xArmR]   
92. xArmT = 591   
93. xArmB = 361   
94. xArmTB = [xArmT, xArmB]   
95.    
96. # speed of joints   
97. speed = 50   
98.    
99. # robo position INIT   
100. # Goto default Birdseye view   
101. arm.set_servo_angle(angle=standBy, speed=speed, wait=True)   
102. # Default gripper opening   
103. arm.set_gripper_position(800, wait=True)   
104.    
105. # capture from Camera   
106. cap = cv2.VideoCapture(0)   
107. cap.set(3, 1280)   
108. cap.set(4, 720)   
109.    
110. while True:   
111.     frames = pipeline.wait_for_frames()   
112.     depth = frames.get_depth_frame()   
113.     success, img = cap.read()   
114.    
115.     arm.set_servo_angle(angle=standBy, speed=speed, wait=True)   
116.     arm.set_state(state=0)   
117.     for barcode in decode(img):   
118.         arm.set_servo_angle(angle=birdEye, speed=speed, wait=True)   
119.         arm.set_state(state=0)   
120.         time.sleep(2)   
121.         poly = barcode.polygon  # .polygon creates an array with coordinates

 of each corner of the qr code   
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122.         # Take the 2 bottom corners   
123.         xy2 = poly[2]   
124.         x2 = int(xy2[0])   
125.         y2 = int(xy2[1])   
126.    
127.         xy3 = poly[3]   
128.         x3 = int(xy3[0])   
129.         y3 = int(xy3[1])   
130.    
131.         # get angle of bottom   
132.         radians = math.atan2(y2 - y3, x2 - x3)   
133.         degrees = round(math.degrees(radians))   
134.    
135.         # calculate the midpoint between the two bottom points   
136.         xPos = int((x3 + x2) / 2)   
137.         yPos = int((y3 + y2) / 2)   
138.         xLoc = round(remap(yPos, camB, camT, xArmB, xArmT))   
139.         yLoc = round(remap(xPos, camR, camL, xArmR, xArmL))   
140.         print(xLoc, yLoc)   
141.         print(degrees)   
142.         dp = (maxHeight-depth.get_distance(xPos, yPos))   
143.         print(dp)   
144.    
145.         if xArmB <= xLoc <= xArmT and xArmR <= yLoc <= xArmL:   
146.             # Reset Position to avoid singularities   
147.             arm.set_servo_angle(angle=sLocRes, speed=speed, wait=True)   
148.             # Input angle of qr   
149.             arm.set_servo_angle(angle=[sLocRes[0], sLocRes[1], sLocRes[2], s

LocRes[3], sLocRes[4], sLocRes[5], degrees], speed=speed, wait=True)   
150.             # Go to position of QR   
151.             arm.set_position(xLoc, yLoc, dp, 0, 0, 0, wait=True)   
152.             # Grab fixture   
153.             arm.set_gripper_position(60, wait=True)   
154.             # return to bird eye position   
155.             arm.set_servo_angle(angle=birdEye, speed=speed, wait=True)   
156.             # move to storage location   
157.             arm.set_servo_angle(angle=sLoc, speed=speed, wait=True)   
158.             # Release   
159.             arm.set_gripper_position(800, wait=True)   
160.             # retract arm   
161.             arm.set_servo_angle(servo_id=2, angle=-

40, speed=speed, wait=True)   
162.             # Return to BirdEye before going standby   
163.             arm.set_servo_angle(angle=birdEye, speed=speed, wait=True)   
164.             # Reset arm in case of failure   
165.             arm.set_state(state=0)   
166.     else:   
167.         print("No QR or QR out of bounds")   
168.    
169. arm.disconnect()   
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A2 Python Libraries Used 

Table A.0.1 Libraries used 

Name Description 

os Operating system interfaces Library 

sys System-specific parameters and functions Library 

time Time handling Library 

math Mathematical functions Library 

numpy Matrix manipulation Library 

cv2 OpenCV Library 

pyzbar QR detection Library 

pyrealsense Intel Realsense Camera Library 

 


