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EESSÕNA 

Käesolev magistritöö tehtud projekti vormis, mille peamiseks eesmärgiks on 

transpordivahendite kindlustamisega seotud andmete uurimine eesmärgina leida korrelatsiooni 

ja põhjusseoseid, mis viivad klientide kindlustuspretensioonini. Antud projekti eesmärgiks oli, 

kui see on võimalik, luua prognoositava mudeli, mis põhineb kunstneuronvõrgu  tehnoloogial, 

mis hakkab ise õppima andmebaasi põhjal selleks, et prognoosida pretensioonide riske ja luua 

õiglast  tariifide arvutust kindlustusettevõtte ja selle klientide jaoks. 

Andmed olid esitatud Eesti kindlustisettevõtte ERGO poolt ja olid edastatud labori a-Lab TTÜ 

Computer Control osakonda. Projekt oli läbiviidud ja juhendatud eelnevalt nimetatud labori 

poolt eeldusel, et seda tehakse magistritööna dotsendi Eduard Petlenkov juhendamisel. 

 Antud töö on tehtud laboris ja töökohal, mida esitas A-Lab TTÜ hoones. Kogu 

programmeerimine ja eksperimendid olid täidetud ja sooritatud 64-bitilise Matlab R2015b 

tarkvara versiooniga 8.6.0.267246 ja Neural Network Toolbox versiooniga 8.4 

Mehhatroonikainstituudi  poolseks juhendajaks oli teadlane-uurija  Dmitry Shvarts. 

Ma tahaks tänada juhendajaid ja ettevõtet huvita uurimuse teema, hästi seadmestatud labori, töö 

käigus juhendamise eest; samuti  töö loomiseks inspiratsiooni ja suunamise eest. 
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FOREWORD 

This thesis represents the work done for the project, with the main aim of studying real life 

vehicle insurance data for finding correlations and causations which lead to the insurance claims 

made by the customers. The aim of this project was to, if possible, create a predictive model 

based on Artificial Neural Network technology which would be trained based on the said 

database in order to successfully forecasting the risks of claims and creating fair ratemaking for 

the insurance company and their customers. 

Data was provided by the Estonian insurance company “ERGO” and was provided to the 

“Alpha Control Lab” (a-lab) within the department of Computer Control in Tallinn University 

of Technology. The project was conducted and managed by the said laboratory and provided 

as a Master Degree project for me under the supervision of Associate Professor Eduard 

Petlenkov. 

The work was done in the laboratory and workstation, provided by the “Alpha Control Lab” 

within the building of the institution. All the programming and experiments were conducted 

and executed by using 64 bit version of Matlab R2015b with version number: 8.6.0.267246 

and Neural Network Toolbox version number 8.4. 

The supervision from the Department of Mechatronics, chair of Mechatronic Systems was 

provided by the Research Scientist Dmitry Shvarts. 

I would like to thank the supervisors and the institution for providing an interesting research 

topic, the well-equipped laboratory for conducting a successful research and for providing 

supervision, inspiration and guidance for making this work possible.   
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1. INTRODUCTION 

One of the problems facing modern insurance companies include assessment of the potential 

customers and risks associated with underwriting and accepting liability on covering the costs 

in case of damage occurs. In order for the insurance company to ensure they are setting fair and 

adequate premiums they implement the process which is called ratemaking. [1] 

Calculating proper ratemaking is one of the main mathematical problems faced by insurance 

companies and car insurance is not an exception. It is a complex task during which company 

should take account for quite a big number of factors and variables. Since creating a realistic 

and optimal ratemaking model can save money and also make an insurance company more 

competitive, it’s not a surprise that such model would be quite demanded and needed. [2] 

The same problem had arisen with a large Estonian insurance company “Ergo”. Company is 

interested in creating the model which would take the problem of ratemaking, meaning that it 

would accept the potential customer data as an input and output a risk factor associated with 

signing a contract and underwriting. On the behalf of their big experience in business they are 

providing a large dataset (containing approximately 500 000 samples) of insurance claims made 

by their customers. 

Additional data or latent variables can be added during the research if they seem to benefit the 

predictive model and if they will be openly available for an access.  

Using this data an appropriate binary classification model will be created, which will distinguish 

between customers with high and low probability of filling an insurance claim. This would 

benefit the insurance company and make more realistic predictions depending on customer data. 

This will result in more fair underwriting prices and increased risk management and control for 

the insurance company. Expected result is to get the model which would output a satisfactory 

risk assessment and would show it’s correctness through time by optimizing insurance pricing 

and company expenditures. 

Studying this data can also have a beneficial effect on understanding the risk variables involved 

in a car accidents, which could be used as a knowledge for minimizing lethal cases, injuries and 

financial expenditures during accidents on the road. 

The current model used in most of the insurance companies have been unchanged for a long 

time and still use the analytical models, which means they are not taking the advantage of the 

big data they possess in order to improve their predictive abilities.  
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The insurance company underwriters gather the information of their customers in order to 

determine whether or not the risk should be taken by the company. They study past insurance 

losses and using traditional statistical methods loss-contributing characteristics are looked for. 

When the positive relationship is found between the policy characteristics and future losses, the 

guidelines are created for the underwriters to follow. This methods can be criticized for their 

precision. This is caused mainly by underwriters not using all the available information and 

data accumulated by the time period of automobile insurance, which can be studied and used 

for improving the model. With the use of modern adaptive and learning methods this 

information can be used to make the underwriting decisions more accurate. [3] 

For a long time computers and their computation power were not considered important in the 

underwriting process and leading experts believed that the human judgment factor in the 

decision process was too complex to model and handle. [4] 

In later years this statement have been proven wrong and that underwriting judgment could be 

modeled and implemented on a computer. This points can be observed in number of works and 

been shown possible by many researchers. [3][4][5][6][7] 

Conducting a market research was unrealistic since this information is mostly confidential for 

each of the insurance companies and it is hard to find clear information about the intelligent 

analytical methods used within the insurance field. Although for the background research 

several promising theoretical works have been studied which had shown insight in the field of 

applying intelligent models for studying insurance ratemaking problems. Interesting examples 

were provided in the works [2] and [3] where several techniques where compared for making a 

predictive models. This works have studied the statistical distribution characteristics and have 

provided theoretical insight into the problem. Methods like decision trees, linear regression, 

support vector machine, ordinary neural networks and neural networks with Softmax layer were 

compared for modeling the data. Their performance was compared with each other and also 

with existing classical models. As a conclusion they showed that neural networks when applied 

to automobile insurance ratemaking allowed to identify with increased precision the risks 

associated with each customer. 

In the following chapters I will discuss: data preprocessing steps which were necessary for 

creating a successful predictive classifier also network architectures which can provide the best 

results and their comparison, then network training methods comparison study based on their 

computational requirements and capabilities. Next I will evaluate each approach by using best 

practices of assessing binary classifiers and conclude by choosing the most promising of them.
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2. JUSTIFICATION OF METHODOLOGY 

The Artificial Neural Networks have become a standard in the field of machine learning and 

data mining and this has its own reasons. One of the reasons is that big data have been more 

available as the databases have been standardized and used in large scales and the second reason 

is the ability of neural networks to adapt and learn or classify the patterns in in this data. They 

represent a powerful class of quantitative measurement tool, which have been successfully 

applied to many areas of industry, busyness and science. [8] 

There are several reasons why the Artificial Neural Network model approach would be 

reasonable and promising for the problem faced. This include: 

1. Neural networks as opposed to traditional model based methods do not require an 

estimation about an underlying data. The Artificial Neural Network modeling process 

is adaptive and learning is driven by patterns from the data itself. This approach is ideal 

in the cases when amount of data is plentiful but the knowledge about its structure are 

not yet discovered. 

2. One of the mathematical properties of Artificial Neural Network include the universal 

approximation capabilities which make the network more general and flexible. 

3. The Artificial Neural Networks are high order, nonlinear models this means that with 

their nonlinear and nonparametric nature they are more capable of modeling real life 

complex relationships. 

4. They can be trained using imprecise or noisy data. This error can occur in datasets for 

many reasons including the human error.  

5. Although training a neural network requires high computational power, the already 

trained network is computationally cheap and can be deployed in the user friendly 

business environment for an easy use. [9] 

Since the approach is empirical in order to measure a success of the method, models predictive 

precision and accuracy will be compared using the provided data. The part of the dataset will 

be used for testing and the prediction made by the model will be then compared with the 

expected values.  
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3. DATA PREPROCESSING 

In this chapter I will describe the data provided by the insurance company and its properties. I 

will show you what fields and features are available for extraction of knowledge from the 

dataset, their types, ranges and their importance in order to select ones which are noteworthy 

and useful for Artificial Neural Network Training. Data preprocessing methods will be chosen 

and compared in order to prepare input feature matrix for obtaining optimal results. 

Data preprocessing is an important step for creating a successful classifier model. A correct 

extraction of features, their normalization and encoding will provide the best input for training 

and adjusting the predictive model. The aim of the good preprocessing step is to remove 

irrelevant and redundant information or noise from the data and the result is the final training 

set which will be used as an input for the network.  

As several past researches have shown, the overall success of the learning algorithm is strongly 

dependent on the quality of the training data. Data which is too noisy or inadequate will result 

in classifier which may perform poorly or not be good for any use at all. A well planned data 

preprocessing step can have a significantly positive impact on generalization performance of 

an algorithm. [10] 

3.1. Provided dataset characteristics and problem definition 

The dataset provided by the insurance company is represented as a data matrix consisting of the 

customer information stored by the company. The data is depersonalized meaning that all the 

private information like personal identification code is not accessible. This data table consists 

of features or fields represented as columns and 540 490 samples represented as rows of the 

said matrix. Each row represents a distinct customer of the company and columns hold the 

information for each of them. 

The data holds several types including numerical or scalar types, categorical types including 

binary or true/false values. The units for the data were given by the insurance company and 

they were not altered, since they don’t have an effect on model training. The aim was to prepare 

an appropriate subset of this data and encode it for creating an optimal training set for statistical 

study. 
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3.1.1. Numerical data 

Table 3.1. Numerical features of the dataset 

Feature name Min. value Max. value Description 

Contract start date 734 553 736 207 Number of days since year 1900 

Contract duration 1 366 Duration of contract in days 

Engine power 1 456 Represented by horsepower - hp 

Vehicle age 0 91 Number of years since the build date  

Vehicle mass 110 47 700 Mass of vehicle in kilograms - kg 

Number of seats 1 55 Number of seats in the vehicle 

Customer age 1 474 42 118 Number of days since the birth date 

Number of claims 0 4 Number of filled claims by the customer

 

As it can be seen from Table 3.1 we have quite a few numerical features available, which can 

be used for the network training. Contract start date and contract duration represent the date 

when the contract became active between the insurance company and the customer and for how 

long   it would remain active. Start date is represented by the number of days starting from 

01.01.1900 up until the day of activation of the contract. The duration is the number of days for 

which the contract will remain active and it does not go above 366 days or 1 year. 

Features like the engine power, vehicle age, and vehicle mass represent the technical state of 

the customer’s car. This can be useful since it can be assumed that the good state of the car, 

little mass and reasonable engine power can help in preventing an accident.  

Customer age represents the number of days since the birth date of the customer, up until the 

date of the insurance contract activation. This feature will help in weighting age as a risk factor. 

It should be noted that the last feature “Number of claims” represents the incremental counter 

of claims submitted by the company customers. This field shows us how many times accidents 

were registered in the insurance company database and this feature will be a target data for the 

classification. It can assumed that if number of claims per customer is more than 0 it means that 

this customer should be classified as a customer of higher risk.  
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3.1.2. Categorical data 

Table 3.2. Categorical features of the dataset 

Feature name Min. value Max. value Description 

Yes/No Contract 0 1 Agreement for the contract 

Policyholder loyalty 1 8 Customer type 

Gender 0 1 Customer gender 

Usage type 1 18 Vehicle usage type 

Risk region 1 20 Region in which customer is registered 

Vehicle maker 1 249 Maker company of the vehicle 

Vehicle model 1 16 695 Model of the vehicle 

Fuel type 1 7 Fuel type vehicle is using 

Frame type 1 49 Vehicle frame type 

 

Categorical data represented in the dataset is of different types as it is shown in Table 3.2. Some 

are represented as Boolean values but most of them are enumerations of possible categories 

from the database. This enumerated categories are represented as foreign keys in the data table. 

The hold the identity number of the category for the said data entry. The table for categories 

hold the identifier for the entry and the name for the entry.  

3.1.3. Problem statement 

Now it is possible to clarify the problem definition which is to create a binary classification 

algorithm which will receive as an input customer features and will classify them as the one 

who will fill the claim in future or not. 

It should be noted, that studying number of claims it was found that only 11 551 entries or 

approximately 2,137% out of whole dataset consists of customers who have filled any claims 

during their insurance contract period and other 97,863% have never done this. Since the 

classification categories of customers who have filled at least one claim and customers who 
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have not filled any are not represented equally, this means that we have a binary classification 

problem with imbalanced dataset, which will be taken into consideration, since classification 

of imbalanced datasets, as research has shown, needs additional and special methods for 

creation and evaluation of the model, which will be discussed in details. [11][12][13] 

3.2. Training data preparation 

Before starting the classification model training process the training set should be prepared. 

The model based on the neural networks can only get as accurate as the data that was used for 

training the said network. It is important for the sample space, within the training set, cover as 

much of the range of the possible input space as possible. [14] 

In order to get the best results from the given dataset we have to prepare the subset data as an 

input for the Artificial Neural Networks. This step includes: handling missing attributes, 

normalization and scaling of the data and categorical data encoding. Each of these steps will be 

discussed in details. 

3.2.1. Missing attributes 

Dealing with incomplete data or missing attributes is a common problem of studying real life 

datasets. They can occur when information is not available at the moment of data creation or 

by just human error. This problem was not an exception. In the numerical attributes like: vehicle 

engine power, vehicle mass and customer age there were quite a few missing values represented 

as zeros which does not make sense for the study purposes and should be dealt with since this 

might create a bias for our classification model [10]. Shown in Table 3.3. 

Table 3.3. Missing values attributes 

Feature name Number of missing attributes Percentage of the data Mean 

Engine power 36 481 6,75% 85,0069 

Vehicle mass 1 391 0,26% 2 188,4 

Customer age 1 1,85 ∗ 10ିସ% 16 507 
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Several missing attribute handling methods were considered and most appropriate was found 

to be the mean substitution method for each missing attribute. The missing values were replaced 

by calculating means of the available attributes of the features and filling the missing values 

with the mean.  

3.2.2. Scaling of the data 

Data normalization or scaling is an approach used in order to standardize the range of input 

variables. It should be noted that this step of data preprocessing deals with the numerical input 

features only. Since the range of each individual feature attribute may vary widely it is a best 

practice to map or scale them to the same range, so that each feature will contribute 

proportionally on the training process. When dealing with Artificial Neural Network classifiers, 

like in this case, this is not a necessary step but as practice shows normalization can improve 

the efficiency and speed of training algorithm which will lead to better classifier overall [15]. 

One of the methods for scaling is Min-max (MM). It scales the feature attributes to values to 

the required interval which in the case of the given problem was chosen to be recommended 

and common [0, 1] interval. This will rescale all the data of the feature and represent minimal 

value as 0 and maximal value as 1. The normalization equation is give as Equation 3.1. [16] 

Equation 3.1. Min-max scaling [16] 

൯ݔ൫ܯܯ ൌ
௫ೕି௫

௫ೌೣି௫
 ,                                                                                                                  (3.1) 

Where ݔ – numerical feature attribute value, 

 , – Minimal value of the featureݔ 

 .௫- Maximal vale of the featureݔ 

3.2.3. Categorical data encoding 

Categorical in the given database is represented using an identification number for each types 

of the category. This approach is reasonable when we want to optimally search through the 

database but this identification numbers have no information value for our Artificial Neural 

Network training. Since the identification numbers are just incremental they don’t represent 
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any information about the underlying data and they don’t have any particular ordering which 

will be helpful for knowledge discovery. This was also proved empirically. When trying to train 

the network using the foreign keys of each categories it was behaving as a random noise and 

gave no classification benefit to the model. Even more this noisy data was leading to a poor and 

unusable classification model. This means that the given categorical data should be encoded so 

it can become useful for training purposes. 

When dealing with categorical data as an input to the Artificial Neural Network the standard 

approach is to apply 1-out-of-N encoding. This means that all the possible values of the 

categorical feature are represented as a binary input to the network. We can imagine such an 

approach as representing the categorical data as an identity matrix of dimension n where n is 

the number of all the possible values of the feature. [17] 

This approach has 2 drawbacks in case of the model we want to build: 

1. First is that the number of categories gets quite big. For example the number of possible 

values a vehicle model can get is 16 695 as it is shown in Table 3.2. This means that 

just the data for encoding possible vehicle models at the input layer of our network 

should be increased by 16 695 which is a drastic increase and will affect training times. 

This option is not best since it will be computationally expensive to have such a large 

number of inputs. 

2. Second and bigger problem with using 1-out-of-N encoding for the purposes of this 

research is that in real life scenario new vehicle models will be registered into the 

database of the insurance company. This means that input size will increase 

dynamically during the deployment period of the classifier and the existing network 

will be unable to adapt to this change. In order to adapt to changing input size the 

network must be retrained every time new categorical value is introduced to the system. 

This is result in very inflexible and unusable model. 

Considering this two arguments a new representation of the categorical features should be 

created so it can correctly represent the data and also should be useful to the training meaning 

it should represent the importance of the feature by its magnitude.  

For this purposes a new variable is introduced which will be called a risk factor (RF). It is 

calculated by the Equation 3.2. This variable represents the probability associated with the said 

categorical value of how likely is this category to fill the accident claim in the future based on 

the previous entries in the database. The calculated risk factor is within the range of [0, 1], since 
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it is a probability, and this values are used in the training set for the network. This approach 

solves both of the problems addressed above. Firstly the number of inputs will be equal to 

number of categorical variables and not to all possible values it can get and secondly when the 

new category is registered in the database its risk factor can be calculated and used as an input 

for the model without retraining it each time. 

 

Equation 3.2. Risk factor calculation 

൯ݔ൫ܨܴ ൌ
∑ ሾ൫௫ೖೕ൯∗ሺ௫ೖሻሿ

ೖసబ

∑ ൫௫ೖೕ൯

ೖసబ

 ,                                                                                                         (3.2) 

Where ݔ – categorical feature attribute identification number, 

 ݊ – Number of samples or rows in the database, 

 ݅ – Row index of the attribute in the database, 

 ݆ – Column index of the attribute in the database 

 ݈ – Index of “number of claims” column in the database 

 ݂൫ݔ൯ ൌ ൜
ݔ	݂݅				,1 ൌ ݔ
݁ݏ݅ݓݎ݄݁ݐ					,0

 

 ݃ሺݔሻ ൌ ൜
ݔ	݂݅							,1  0
݁ݏ݅ݓݎ݄݁ݐ					,0

 

3.3. Dimensionality reduction and feature selection 

Since training is computationally expensive algorithm a dimensionality reduction was 

considered. A reduced training set will improve the speed of the network training and also the 

input vector size needed for the classification will be reduced and easier to acquire. Also this 

step of preprocessing will reduce the number of irrelevant and redundant dimensions. [9] 

The objective of feature selection step is to identify features in the dataset which are important 

for the classification and discard others which are irrelevant and redundant. The approach which 

was considered on the preprocessing stage is called a correlation based feature selection. The 

aim is to calculate correlations between the categorical features and number of accident claims. 
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The good features should be highly correlated with the target class and yet show low correlation 

between each other.  [18] 

Some of the fields from the provided dataset can be discarded from the beginning. Features like 

the contract identification code and vehicle registration plate have showed no correlation with 

the target class and were not considered for including in the training set. For the other 

categorical features a correlation based feature selection, method which is discussed in  research 

paper [18] was applied. The results can be seen on Figure 3.1 from which we can see that for 

example vehicle model shows the highest correlation and can be used as an important feature 

for classification. On the other hand features like risk region and customer gender have shown 

low correlation meaning that they can be discarded without a big difference for the final results. 

This assumption was tested empirically and indeed the features with low correlation did not 

affect the performance of the classifier much. All the results of conducted tests with selected 

features are shown and discussed in Chapter 6.Model Evaluation and Fine-Tuning. 

 

Figure 3.1. Correlation of categorical features with the target class 

 

To summarize the data preprocessing step of the research, it can be said that this tests and 

methods have shown a good insight into the data which was provided by the insurance 

company. I have studied the properties of characteristics of numerical and categorical data 

provided, normalized and scaled all the scalar features, so they can be affectively used for 

training and the importance of each categorical features was analyzed. 
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3.4. Data splitting and sampling 

Another important method of training data preparation for artificial neural networks includes 

data splitting in order to perform a cross-validation and evaluation of the classifier 

generalization possibilities. This step helps to identify at which point of the training of the 

network gets the optimal performance and when to stop or tune the training process in order to 

avoid overfitting on the data and to get the best performing model. [19] 

In order to avoid a poor generalization and overfitting by the classifier, a common method is to 

apply the hold-out cross-validation method [20]. In order to successfully apply this approach 

for evaluating the model, which is discussed in details in chapter 6, an appropriate data splitting 

is required.  

When training a neural network the most commonly used practice is to divide the samples or 

rows of the training matrix into three mutually disjoint subsets [14]. These subsets are: 

1. Training set – this set usually is the largest and it is used for tuning the network weight 

parameters and to compute the gradients at each iteration of the training algorithm. 

2. Validation set – the error calculated using the validation set is monitored during the 

training process. Usually both training and validation errors decrease at the beginning 

of the training but as soon as the validation set error starts to grow this is a good 

indication that training method has started to overfit the data, which is unwanted 

behavior. Than the weight parameters at the minimal validation set error are being 

chosen. 

3. Test set – which is not used in anyway during the training step, but it is used on an 

already trained model for evaluating its performance with an independent set, never 

used before. 

In order to get the same distribution of classified classes in the subsets as it is in the whole set, 

the data is randomly divided into subsets. The division ratios may vary, but general approach 

is to get 70% of data as training subset, 15% as validation subset and 15% for testing subset. 

This operation is achieved by using Matlab function ‘dividerand’ as a network divider 

function ‘net.dividefcn’. [14] 
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3.5. Target data 

Since the problem to be solved is a supervised classification problem we will need to provide 

the network with the correct or expected outputs for each of the training samples, which the 

training method of the network will try to approximate by tuning the network weights. For the 

target data a binary matrix will be used with number of rows same as the number of sample in 

the training set and number of columns representing the possible values classificatory model 

should output. In our case the number of possible class outputs is 2. Customers with low risk 

of filling an insurance claim and second class representing customers which have high risk of 

filling the claim. 

If in the training sample the column represented as “number of filled claims” is greater than 

zero, meaning that the sample has filed the accident claim, then the target matrix row will be 

encoded as (1, 0) row vector. In case if the number of filled claims is equal to zero than the 

target matrix row for this sample will be encoded as row vector (0, 1). 

This target matrix will serve as a function values which should be approximated by the training 

algorithm of the Artificial Neural Network based on the input feature vector.  
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4. NETWORK ARCHITECTURE 

Next step in workflow of the neural network classifier design, after preparing the training data, 

is to create the artificial neural network object, configuring the network parameters and 

initializing it for further steps of training and evaluation. Selecting the right architecture 

depends on the problem specification which needs to be solved and it is dictated by the 

requirements to the classifier. A well suited architecture can improve training possibilities of 

the network and will produce a better overall result in the end [21]. 

In this chapter several promising approaches will be considered and compared. Designing steps 

will be taken for each architecture which will be considered. This includes: 

 Defining network input layer and number of input nodes based on the input 

characteristics for the network. 

 Definition of the network hidden layers, finding the required number of hidden layers 

and layer parameters like number of neurons and activation or transfer function for each 

of them. 

 Defining an output layer with number of neurons based on the output requirements of 

the classifier model and activation or transfer function based on characteristics of the 

output data. 

 Network initialization methods for optimal training. 

One of designs covered in this chapter, considered as a state of the art approach when dealing 

with classification problems, is a Feed forward multilayer network (FF). In several past studies 

they have shown good performance for prediction and classification for insurance ratemaking 

[2]. This architecture is well studied and has shown good flexibility in training and adapting 

possibilities for vast number of classification problems [21]. 

Another approach which has shown a promising performance capabilities in classification 

problems, especially problems which are dealing with imbalanced classes [22], is called 

autoencoder or replicator neural network architecture. The specifications of this architecture 

will be discussed in this chapter.  

For both of this architectures the benefits and drawbacks will be considered and the final result 

of this two approaches are shown in Chapter 6.Model Evaluation and Fine-Tuning. 
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4.1. Feed-forward network architecture 

The main objective of this is to briefly explain the architecture and working principles of the 

artificial neural networks, their properties and characteristics. The basics of the approach will 

be covered since explaining the details would require a prolonged explanation, which is not 

included into the scope of the study. Majority of the information was taken from several sources 

including but not limited to [21], [15], [2] , [23] and [24]. These references can be used for 

more detailed information about the methodology. 

A feedforward neural network (FF) is an architecture where connections between the layers of 

the network do not form a cycle. Typically feedforward network contain an input layer which 

gets the input data and propagates it forward into the next layer called the hidden layer. After 

this the propagation continues to the output layer where the classification results have been 

acquired.  

The most basic component of an artificial neural network is a single neuron. A single neuron 

has an inputs which are coming from the input vector or from other neurons. These connections 

have weight associated with them, which represent the priority of an each input. The input 

vector is than multiplied by the weight vector and the result is passed to an activation or transfer 

function, which can be chosen for each layer individually. There are several commonly used 

transfer functions. The requirements for these functions are to be defined for the whole real 

number set and it has to have a well-defined derivative for training purposes [21]. The single 

neuron model with multiple inputs can be seen on Figure 4.1. The output of the neuron can be 

calculated using an Equation 4.1. 

 

Figure 4.1. Multiple-Input neuron model [21] 
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Equation 4.1. Neuron output calculation [21] 

ܽ ൌ ݂ሺܹ ∗   ܾሻ ,                                                                                                                  (4.1) 

Where ܽ – an output value of the neuron, 

 ݂ – A transfer function of the neuron, 

 ܹ – The row vector of neuron connection weights, 

 ,Vector of input values –  

 ܾ – Bias weight of the neuron 

In most cases using only one neuron is not sufficient and the layer of neurons should be 

introduced. The neurons in the same layer operate in parallel and are not connected to each 

other. The model of the layer of neurons is shown on Figure 4.2. In case of the layer the weight 

row vector, which we had with the single neuron, is changed to the weight matrix representing 

the connection weights for the whole layer. The bias value is a value for each neuron and for 

the layer it is represented as a vector of biases of the layer. This means that the layer output 

shown in Equation 4.1 is now outputting a vector of output values which will serve as an input 

vector for the following layer. With the same approach several layer can be stacked in sequence 

to get a multilayer neural network [21]. 

 

Figure 4.2. Layer of neurons [21] 
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4.1.1. Input layer 

First layer which has to be considered is and input layer. It will receive the input vector for each 

sample and propagate it forward into the network. The size of an input layer only depends on 

the number of features which are used as an input for the network. As a starting point the subset 

of the numerical and categorical features were considered, which were discussed in Chapter 

3.1. The ordering and the encoding of each input is shown in Table 4.1. The encoding of each 

feature was done with Equation 3.1 for numerical data and Equation 3.2 for categorical data. 

It should be noted that features, which have shown low correlation with the target matrix 

represented on the Figure 3.1., like gender, risk region and frame type were omitted from the 

list of input features. The motivation for this is to simplify the model and training as much as 

possible without decreasing the classification capabilities of the model, using as small number 

of features as possible. When comparing the models with and without these features no 

significant difference in performance was observed, as expected.  

This selection of features fixes the number of neurons in the hidden layer to 11. 

Table 4.1. Input features of the network 

No Feature name Min.  Max. value Encoding 

1 Yes/No Contract 0 1 A risk factor within the range [0, 1] 

2 Contract duration 1 366 Min-max scaled to range [0, 1] 

3 Policyholder loyalty 0 1 A risk factor within the range [0, 1] 

4 Customer age 1 474 42 118 Min-max scaled to range [0, 1] 

5 Usage type 0 1 A risk factor within the range [0, 1] 

6 Engine power 1 456 Min-max scaled to range [0, 1] 

7 Vehicle age 0 91 Min-max scaled to range [0, 1] 

8 Vehicle model 0 1 A risk factor within the range [0, 1] 

9 Vehicle mass 110 47 700 Min-max scaled to range [0, 1] 

10 Bonus malus 0 1 A risk factor within the range [0, 1] 

11 Fuel type 0 1 A risk factor within the range [0, 1] 
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In order to choose the optimal transfer function for the input layer the best practices were used 

as described in [15]. Nonlinear transfer functions give the network their nonlinear classification 

capabilities. One of the most common transfer function type used in artificial neural network 

training is the sigmoid type functions. These functions approach some finite value while the 

argument approaches positive or negative infinity. The function chosen for the input layer 

transfer function is a hyperbolic tangent, which is shown in Equation 4.2. This function is being 

chosen, because it often converges faster to an optimal solution compared to other sigmoid 

functions [15]. 

Equation 4.2. Hyperbolic tangent transfer function [15] 

ሻݔሺߪ ൌ ೣିషೣ

ೣାషೣ
 ,                                                                                                                  (4.2) 

Where ߪ – a transfer function of the layer, 

 .An input argument for the transfer function – ݔ 

 

In Matlab environment the transfer function of the input layer is defined by the 

'net.layers{1}.transferFcn' property, which is set to a hyperbolic tangent function 

with function name 'tansig' [14]. 

4.1.2. Hidden layers 

Next step is to set up the hidden layers of the network. After the input layer calculates the 

output, it is pass to the hidden layer as an input and the next step of creating the neural network 

architecture is to decide how many hidden layers to use and with how many neurons in each. 

The transfer function for the hidden layers remains the same as it was for the input layer. It is 

set to hyperbolic tangent. 

Increasing number of neurons also increases the complexity of the model which might lead the 

model to overfitting and poor generalization, but on the other hand using too simple model will 

not get the good performance. There are no best practices for selecting the best number of these 

parameters, other than the empirical testing of each of them. As tests have shown increasing the 

number of hidden layers strongly increases the time needed for network training but it does not 

translate to network performing well. For this tests each approach was measured with ܨଵscore, 
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which is one of the main classifier evaluation method and it is discussed in details in Chapter 6 

of this work. Higher the ܨଵ score, the better is the overall performance of the network. 

 

 

Figure 4.3. ܨଵ Score over the number of neurons in the single hidden layer (higher the better) 

 

From the Figure 4.3 we can see that number of nodes in the hidden layer affects the performance 

or classification capabilities of the model. Setting number of neurons too low gives us 

considerably lower results. The performance capabilities increase with the number of neurons 

up until the breaking point, which is around 5 nodes per layer. Interesting point to note is that 

after this optimal point is reached, the ܨଵ score starts to fluctuate and overall does not increase 

too much. 

There is an element of randomness in these results since the network weight matrix initialization 

is done with random numbers and it gives different starting points for the training algorithm, 

but similar results were gathered after repeating same test for several times. This plot was 

generated by testing each setting separately and since the results did not change much in this 

range, it was assumed that neurons in the range of 10 to 15 nodes result in most optimal 

classificatory model. This number of neurons were also used for further testing of the network. 
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Figure 4.4. ܨଵ Score over the number of hidden layers of the network (higher the better) 

 

After fixing the optimal number of neurons for the single hidden layer, I also studied the 

potential benefits of increasing the number of the hidden layers and measuring the performance 

difference for each of them. Although using multiple hidden layers, or “deep networks” as they 

are called, have proved to be a powerful network architecture for different problems [25], it 

does not mean that it would be a good solution for this problem also. 

Increasing number of layers dramatically increases the training time and the neural model 

function complexity, which can lead poor generalization and high variance [15]. 

As it can be seen on Figure 4.4 the performance of the network starts to degrade with the 

addition of the hidden layers. The decrease is stable and the same results were shown after 

repeating the tests for multiple times. From this results it was assumed not consider increasing 

the number of hidden layers, since they did not provide benefit for the classification and they 

result in higher processing power and time for training. 

Conducting this tests helped to better understand the complexity of the problem. This results 

will help to create an artificial neural network model which will be prone of high variance and 

should generalize well for getting better classification performance. 
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4.1.3. Output layer 

As much as the input layer was influenced by the number of features in the input vector, the 

same decision is to be made with the output layer. There are two basic properties to be set. One 

is number of neurons in the output layer, which is dictated by the encoding of the target matrix, 

explained in Chapter 3.5 and number of classes which the classifier should distinguish.  

The other important characteristic is the activation or transfer function of the output layer. Since 

this layer is responsible for giving the final answer of the model, it is much more dependent on 

the transfer function used on this layer. 

Since the aim of the model is to perform a binary classification, it is a best practice to use 1-

out-of-N encoding [17]. This encoding approach outputs a vector with probability values, where 

each element represents the probability of the input sample belonging to each class. The size of 

the vector is same as number of expected classes, which is 2 for this problem. 

Dictated by the target matrix our classifier will output a vector (0, 1) for the input samples 

which will classify customer as having no risk of filling the claim and the output vector of (1, 

0) will represent the customer with certainty of filling the vehicle accident claim. For the general 

form of the output it can be defined as (p1, p2) where p1 is the probability of the sample 

belonging to class number 1 and p2 being the probability of sample input belonging to class 

number 2. 

Naturally, when dealing with this type of encoding, the sum of elements of the output vector 

will sum up to 1. This approach is also justified by the fact that network outputs not only binary 

yes or no answer but the probability or certainty of the sample belonging to the class. This 

means that these probabilities can be used for proper thresholding of the output. This step is 

discussed in Chapter 6, when fine tuning the model.  

In order to achieve this type of probabilistic classification the transfer function which is called 

normalized exponential of Softmax is used [24], which is a generalization of the logistic 

sigmoid function. This function meets the requirements needed since it outputs the values in 

the range of 0 to 1 and sum of the outputs adds up to 1. Softmax function is the gradient log 

normalizer of the categorical probability distribution and for this reason it is used in various 

multiclass classification problems [24]. The function is calculated by the Equation 4.3. 
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Equation 4.3. Softmax transfer function [15] 

ሻݔሺߪ ൌ
ೣ

∑ ೣೕ	

ೕసభ

 ,                                                                                                                  (4.3) 

Where ߪ – a Softmax transfer function which returns the probability array, 

ݔ   – An input argument for the transfer function, 

 ݊ – Number of classes to classify. 

 

4.2. Deep autoencoder or replicator network architecture 

Another architecture which was considered for the neural network is called Autoencoder or 

Replicator neural network. This architecture has shown quite a promising results in several 

fields and particularly in classifying imbalanced datasets. It is often used in studies when 

dealing with fraud or anomaly detection in the dataset, where they perform with good efficiency  

[22], [26].  

The objective of the autoencoder architecture is to learn a representation or encoding of a data 

for a purpose of dimensionality reduction [27]. Although it is similar to the feedforward 

network, described above, in the sense of propagating the output forward into the network 

without loops, it has a difference in training approach. Each hidden layer of the network, called 

an encoder, is trained separately and with different target data. After each layer is trained they 

are stacked in sequence with an edition of the output layer which gives the final output of the 

predictive model. [14] 

The aim of training the encoder layer of the network is for it to replicate the input at its output, 

but using the reduced dimensionality for achieving this. Training of each layer is unsupervised. 

This meaning that no additional labeled target data is needed for each layer since the input data 

itself is used as the target to be approximated. [22] 

Model of this architecture can be seen on Figure 4.5. On this figure it is shown that an input 

vector is propagated forward to the layers with decreasing number of neurons. This layers are 
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trained to encode the data in the smaller dimension because they are forced to replicate the same 

data at the output. [22] 

 

Figure 4.5. A schematic view of a fully connected Replicator Neural Network [22] 

4.2.1. Encoder layers 

First step of creating the stacked autoencoder classifier is to first train the encoders by using the 

input feature vector. Several encoder layers can be trained sequentially and then stacked 

together with an output layer, in order to produce a strong classifier. 

As an input for the first encoder layer the same input features and encodings were used as shown 

in Table 4.1. This input layer with 11 neurons than was connected with the encoder layer 

consisting of 10 neurons. After which this layer is connected to the output layer consisting again 

of 11 neurons, same as the input. The same input date is used at the output as the target vector. 

This layout gives the possibility to extract 10 dimensional feature vector which will replicate 

the input data at the output. 

Training two encoder layers and stacking them in sequence has shown the best performance for 

the classifier model and this layout is also the recommended one from the documentation [14]. 

There are several parameter which can be adjusted during the encoder training. The 

recommended parameters from the Neural Network Toolbox documentation [14] were used 

and tweaked if needed. This parameters include: 
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 Transfer function of the encoder – much like the layers in the feedforward network 

discussed in Chapter 4.1.2, the sigmoid transfer function has shown to be the most 

optimal decision to be chosen. 

 Weight regularization parameter – the coefficient which is used for regularizing the 

magnitude of the network layer weights. This parameter is important in order to keep 

the network ability in generalization and to keep balance between overfitting and under 

fitting model. Since the coefficient of 0.0001 has shown any limitations in network’s 

performance it was chosen as the regularization coefficient. 

 Sparsity regularization – a positive scalar coefficient enforces a constraint on the 

sparsity of the output of the network. Sparsity can be measured by different 

regularization terms. The Kullback-Leibler divergence [28] was chosen for this project 

purposes, since it measures how different the two distributions are. The value is 0 when 

two distributions are the same and it increases as they diverge. 

 Sparsity proportion – is a positive scalar value between 0 and 1 and it represents the 

desired proportion of training examples a neuron reacts to. A low proportion leads to 

each neuron only giving a high output for a small number of training samples, meaning 

that a low proportion results in higher sparsity. 

For training the encoder layer a built in Neural Network Toolbox method 

‘trainAutoEncoder’ was used, implemented in Matlab environment. [14] 

4.2.2. Output layer 

For creating the output layer of the autoencoder network the same principles were considered 

as discussed in Chapter 4.1.3. The output layer is represented by a 2 neuron layer with Softmax 

activation function, which outputs the probabilities of the input belonging to each class. 

After the encoder layers are trained, the next step is to train the output Softmax layer, in order 

to stack it next after the encoder layers and use it as an output of the network. For the output 

layer training the feature vector output from the previous layer is used as a training data. The 

accident claim binary target data, discussed in Chapter 3.5, is used at an output. 



32 
 

For training the autoencoder output layer a built in Neural Network Toolbox method 

‘trainSoftMaxLayer’ was used, implemented in Matlab environment. This function return 

a network object with the same number of neurons as number of classes in the target data [14]. 

After all the layers are trained and prepared the Matlab Neural Network toolbox function 

‘stack’ is used for chaining the encoder layers and output layers together. 

4.3. Initializing the network 

In order to achieve maximum training ability from the network, it is an important step to 

consider the network initialization approaches, both for feedforward and autoencoder network 

architectures. The initialization step implies setting the weights of the network connections and 

biases to the values which will help the training method converge to an optimal solution. The 

correctly chosen initialization method will also decrease the necessary training time [29]. 

When the aim is to train the multilayer neural network, the most common approach is to 

initialize weights and biases to small random values. For example uniformly distributed random 

values in the range of [-0,5, 0,5]. Problem with initializing the network to zero values is that the 

training algorithm may fall into the saddle point of the performance surface and this will result 

in suboptimal solution. On the other hand setting the initial weights and biases to large values 

will make the training algorithm fall on the flat part of the performance surface, which also 

provides non satisfactory results [21]. 

Also there is another approach, commonly used in multilayer architectures. This approach 

considers setting weights and biases according to the Nguyen-Widrow algorithm [29]. The aim 

of this algorithm is to choose values in order to distribute the activity region of each neuron 

evenly on to the input space. This algorithm also contains the degree of randomness so training 

algorithm will be able to perform well and converge faster. The requirement of this initialization 

function is to use the transfer functions with finite output range for which the chosen hyperbolic 

tangent function meets this requirements. Another benefit of this approach, other than improved 

convergence time, is that fewer neurons are wasted since all of them cover the input space [21]. 

In Matlab environment the Nguyen-Widrow layer initialization function was implemented by 

setting the ‘net.initFcn’ property to ‘initlay’ and then setting each layer property 

‘net.layers{i}.initFcn’ to an inbuilt neural network toolbox function of  'initnw'. 

[14]  
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5. TRAINING OF THE CLASSIFIER 

The next necessary step in the flow of neural network design, after initializing the network state 

by setting weights and biases, is to train the network. The process of network training involves 

choosing the values for weights for connections and biases so that the error between the input 

feature vector and output target vector is minimal. [14] 

In this chapter several promising training methods for classification purposes will be 

considered. Each have their benefits and drawbacks when applying to the network training and 

each of them works best with particular set of problems. It is difficult to know beforehand which 

training method will perform the best for a given problem. It depends on problem complexity, 

number of samples in the training dataset, number of connections in the network and the error 

goal. Recommended way is to try several best practices and compare the final performance 

[21]. 

For training the neural network a numerical optimization algorithm should we used, which will 

optimize the performance function, or to put in another way, will try to find the minimum of 

the performance curve, where the error is minimal and corresponding weights will be the 

solution of the optimization problem [21]. In many sources performance function is also 

mentioned by the name of cost, error or loss function.  

In addition to finding a minimum of the function the aim of the training method is to find 

weights which also make a model which will generalizes well during testing and 

deployment. There are two most common generalization techniques for maximizing the 

network performance when using the backpropagation training [15]. One of the techniques 

is accomplished by adding a regularization term to the performance function. The 

regularization, also called weight decay method in several sources, will be discussed in 

Chapter 5.1.3. Another technique is called an early stopping, which forces the training 

method to stop until it starts overfitting. This approach is discussed in Chapter 5.2. 

There are several performance evaluation functions and generalization methods, which are 

commonly used in training applications. In the Chapter 5.1 the most common and recommended 

ones are considered and implemented.  

Out of many numerical optimization approaches, there are several that have shown an excellent 

performance for an artificial neural network training purposes. This techniques are called 
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gradient-based learning methods, which involve the error backpropagation backwards through 

the network and based on gradient of the error between the expected output and actual output 

the weights are tweaked in the direction which minimizes the error [15]. There are many tuning 

parameters for this method which are discussed in details in Chapter 5.2 and the theoretically 

most promising ones are implemented for further testing. 

Other methods for speeding up the training algorithm, other than good initialization and data 

preparation, is to use parallel or distributed computing methods for improving the 

computational efficiency of the algorithm. This approaches are discussed in Chapter 5.3. 

5.1. Network performance function 

The performance function used by the training algorithm is used for measuring the error size 

between the input and output vectors of the network. The input argument for the cost function 

is the weights and biases of the network and as an output it gives the measure of how good is a 

neural network at approximating the output. [15] 

The optimization is done by computing the gradient on the performance function surface at the 

corresponding point of the network connection weights. Using this computed gradient the 

weights are than updated by the value depending on the learning rate of the algorithm and the 

magnitude of the gradient [21]. 

Two most commonly used functions in classification problems, which fulfill the requirements 

and has shown good performance are the Mean Square Error performance function or MSE and 

Cross-entropy. This two performance functions were implemented and tested for the purposes 

of designing the classifier neural network.  

5.1.1. Mean squared error performance function (MSE) 

Mean squared normalized error performance function is a function which measures the 

networks performance by calculating the mean of squared errors between the target outputs and 

predicted network outputs. This functions is defined with the Equation 5.1. 

This performance function is the standard evaluation function for multilayer neural networks. 

It performs best when all inputs in the training set have equal probability of occurring [21]. 
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Equation 5.1. Mean squared error performance function [14] 

ܧ ൌ ଵ

ே
∑ ሺݐ െ ܽሻଶ
ே
ୀଵ 	 ,                                                                                                                  (5.1) 

Where ܧ - mean squared error performance function, 

 ܰ – Number of samples in the training set, 

 , – The target output value of {0, 1} for the sample iݐ 

 ܽ  – Neural network output value of {0, 1} for the sample i 

 

In Matlab environment the mean squared error function is implemented by setting the 

‘net.performFcn’ property to the value ‘mse’. [14] 

5.1.2. Cross-entropy performance function 

Mean squared error performs well for function approximation problems, when the target output 

values are continuous, but when applied to pattern recognition and binary values then other 

performance functions may be more appropriate [30]. This is the reason why another function 

called cross entropy was considered as a performance function during the neural network 

training process. Minimizing the cross entropy performance function usually leads to a good 

classifier. The equation for this error evaluation function is given in Equation 5.2. 

The cross entropy function can be characterized by its property of heavily penalizing outputs 

that are inaccurate and penalizing very little outputs which are fairly correct. A good argument 

for using a cross entropy function over more common mean squared error function, is given in 

a book by C.M. Bishop [30]. Problem with MSE performance function is that it tends to give 

similar absolute error values for each pattern and therefor it should give relatively large errors 

for small output values. This suggests that using cross entropy performance function is likely 

to perform better than MSE when estimating low probabilities. Since we are dealing with an 

imbalanced dataset where the accident probabilities are relatively low it is a reasonable 

assumption to test the cross entropy function and compare the results with more common MSE. 

The comparison of the two is performed on the evaluation stage of the project and it is described 

in Chapter 6. 
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Equation 5.2. Cross entropy performance function [30] 

ܧ ൌ 	െ∑ ሺݐ ln ܽ  ሺ1 െ ሻݐ lnሺ1 െ ܽሻሻ

ୀଵ ,                                                                (5.2) 

Where ܧ– Cross entropy performance function, 

ܰ – Number of samples in the training set, 

 , – The target output value for the sample iݐ 

 ܽ  – Neural network output value for the sample i 

 

In Matlab environment the mean squared error function is implemented by setting the 

‘net.performFcn’ property to the value ‘crossentropy’. [14] 

5.1.3. Regularization parameter for the performance function 

One of the problems which may occur during the training process of the neural network is called 

overfitting. This problem arises when the neural network learns the exact representation of the 

training dataset and not the statistical model of the process. This is an important issue if we 

want the model to generalize well when dealing with new inputs. This problem can be 

diagnosed when error on the training set gets lower but the error for the validation set starts to 

increase [30].  

One of the reasons of the overfitting occurring might be the size of the network being larger 

than needed for an adequate fit. This will lead to more complex model than needed and thus 

create the poorly generalizing model. Unfortunately there is no easy solution for knowing the 

needed network size beforehand for each specific problem. Another way of solving the 

overfitting problem is to collect more data and this should lead to more clearly optimizable 

statistical model [21]. But this option is not available for this study since the training set size is 

fixed and getting more samples is outside the scope of this research. 

In order to avoid this problem a technique called regularization is discussed in this chapter. In 

order to find an optimal balance point between a too simplistic model resulting in high bias and 

an overfitting model resulting in high variance, there is need for a parameter which will balance 

the complexity of the model [30]. 
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The regularization method involves modifying the chosen performance function by adding 

additional penalty terms and it also gives us means of controlling this penalization degree using 

a regularization parameter. The equation for the modified performance function can be seen on 

Equation 5.3. 

Equation 5.3. Modified performance function with regularization [30] 

෨ܧ ൌ ܧ  ߭Ω,                                                                                                                     (5.3) 

Where ܧ෨– Modified performance function with regularization, 

     Performance function chosen for the training method from the methods discussed – ܧ

in Chapter 5.1.1 and 5.1.2, 

 ߭– Regularization parameter controlling the extent of the penalty term, 

 Ω – The regularization term 

 

In order to implement this modified performance function it was needed to determine and fix 

the regularization or the penalization function	Ω. The requirement for this function is to return 

higher values as the complexity of the model increases. One of the simplest forms of the 

regularization function is called a weight decay.  It has been shown empirically that using this 

function can significantly improve the generalization capabilities of the network [31]. The 

weight decay regularization function consists of sum of squares of the connection weights of 

the network. It is calculated by the Equation 5.4. Adding this term to the performance function 

forces the training algorithm to find optimal solutions with smaller connection weights, which 

results in smoother approximation function, which is less likely to overfit [21]. 

 

Equation 5.4. Weight decay regularization function [30] 

Ω ൌ ଵ

ଶ
∑ ݓ

ଶ
ୀଵ ,                                                                                                                     (5.4) 

Where Ω– Weight decay regularization term, 

݊ – Number of connections in the network, 

 – Weight of each connection of the networkݓ 
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The problem with regularization is that it is not trivial to find an optimal regularization 

parameter	߭. If the parameter is made toо large than the model might overfit and if the parameter 

is too large than model might not adequately fit the data. There is a training method which 

automatically sets the regularization parameter, which will be discussed in more details in 

Chapter 5.2. 

Since most of training methods can not automatically set this parameter an empirical test was 

done to determine which value of the regularization term will result in best performance. The 

test was done by modifying the cross entropy performance function and adding a weight decay 

regularization to it. The results are plotted on the Figure 5.1 where the argument is the 

regularization term and the value is the ܨଵ score, which is one of the main classifier evaluation 

method and it is discussed in details in Chapter 6 of this work. Higher the ܨଵ score, the better 

is the overall performance of the network. As the test has shown the highest performance score 

was achieved when regularization parameter is close to zero. This can be explained by the 

number of samples in the training set being much larger compared to the number of connections 

in the network, resulting in a model unlikely to suffer from overfitting [14]. 

 

Figure 5.1. ܨଵ Score over the regularization parameter (higher the better) 

 

In Matlab environment the regularization parameter is set by updating the 

‘net.performFcn’ property to desirable regularization parameter in the range of [0, 1]. [14] 
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5.2. Backpropagation algorithm 

Backpropagation or backward propagation of errors is a common method for training multilayer 

neural networks used together with the gradient descent optimization method. It is a supervised 

method and requires a known expected output for each input sample since the optimization is 

done by calculating error between the actual and expected output. [23] 

In this chapter a short overview will be given for this algorithm. Since it has been thoroughly 

studied by many researchers more information can be found in sources like [21], [15], [23] [24]. 

Backpropagation method is iterative and each iteration can be divided in two main parts: 

forward propagation and weight update during backward propagation. On the forward pass the 

weights of network connections are not altered and the input vector is passed through layers of 

network by using the Equation 4.1. On this pass the current weight values and layer transfer 

functions are used to calculate the actual network output. After the forward pass is done the 

error is calculated by comparing the output with the target value.  

On the next phase of the backward pass the error calculated at the output layer of the network 

is passed back layer by layer. During the pass at each layer the error gradient is calculated and 

according to the learning rate parameter each weight is updated accordingly. It should be noted 

that the sign of the gradient indicates where the error increases so it should be reversed to find 

the minimum of the performance function. The weight update calculation procedure is shown 

on Equation 5.5. [23] 

 

Equation 5.5. Network weight adjustment with delta rule [23] 

∆w୧୨ሺ݊ሻ ൌ െߟ డா

డ௪ೕ
,                                                                                                                     (5.5) 

Where ∆w୧୨ሺ݊ሻ– Change in connection weight j at layer i, 

݊ – Number of training iterations, 

 ,Learning rate of the backpropagation algorithm –ߟ 

 .Error calculated using the performance function discussed in Chapter 5.1 – ܧ 

 
డா

డ௪ೕ
 – Partial derivative of the error with respect to weight ݓ 



40 
 

 

In order to acquire an optimal solution for the training dataset this weight update rule should be 

applied iteratively. Usually as the solution approaches the optimal point the error derivative 

decreases and the weight matrix get more precise. One of the hyper parameters which has to be 

chosen before the training is the learning rate	ߟ. If it is chosen too small, than the learning will 

be slow since the changes to weights on each iteration will be small. On the other hand setting 

high learning rate can introduce instability in training and the network state can start to oscillate 

without improving the solution. [23] 

Although backpropagation algorithm is widely used when training then neural network, there 

are limitations and problems it might encounter. One of them is that it is not guaranteed to find 

the global minimum of the performance function. This can be caused by the non-convex nature 

of the performance function for the specific problem, meaning that the gradient descent will 

find the local minimum closest to the initial values of the network weights. This problem is 

partially solved by the random initialization step discussed in Chapter 4.3 which gives each 

training a new starting point, which might lead to a different solution and hopefully the better 

one. [15] 

Another limitation of the backpropagation algorithm is the speed of convergence. The basic 

algorithm is too slow for most practical applications. To overcome this limitation there are set 

of variations for this method which provide a significant speedup and make the algorithm 

practical [21]. This variations are discussed, chosen and compared in Chapter 5.2.2. 

5.2.1. Modes of training 

After choosing the training algorithm, the next step is to consider the training modes it can work 

with. There are two different styles which are used when implementing a backpropagation 

algorithm: 

1. Incremental training – also called sequential, on-line or stochastic style of training, is 

the mode when the network weight update procedure is performed after the presentation 

of each training examples to the network. During each iteration the training samples are 

used sequentially and network adapts to each of the separately. The benefits of using 

this mode include reduced storage requirements during training and since the training 
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samples are presented in random manner it is less likely the backpropagation algorithm 

will get stuck in the local optimum of the performance function. 

2. Batch training – in this mode the weights and biases of the network are updated after all 

the input samples are presented for each training iteration. This means that the training 

data is fed to the network as a single matrix which is used for error calculation and 

weight update. Advantages of the batch training mode are that the conditions for 

convergence are well studied and understood also there are many accelerating 

techniques like conjugate gradient, which is discussed in details in the following chapter 

and another advantage is that theoretical analysis of the convergence rates are simpler 

[15]. 

Although the incremental training is simpler to implement when programming from the ground 

up, the Matlab documentation recommends using the batch mode since it performs more 

efficiently when compared to the sequential mode. [14] This means that batch mode will be 

used for the further training purposes. 

5.2.2. Variations on the backpropagation method 

The basic backpropagation algorithm, without any modifications, is based on the steepest 

descent optimization method, which is often slow to converge when dealing with real-life 

problems. In this chapter some heuristic modifications will be discussed which can improve the 

performance of the method. The ones which are more theoretically promising for the 

classification problem were selected for implementation and further testing. 

When the gradient descent is applied to the problem there are some obstacles which can 

decrease the efficiency of the optimization algorithm. The convergence can get slow for 

multilayers networks where the performance function is not quadratic, is non convex and high 

dimensional with many local optimum points, where the convergence can get stuck. When the 

training dataset is large and multidimensional, as it is in this case, there are no guarantee that 

the network will converge to a good solution or even if the convergence occurs at all [15]. This 

is the reason why the modifications have to be chosen specifically for the large dataset 

classification problem, especially when dealing with an imbalanced classes. 

Choosing the training function which will perform fastest for the specific problem depends on 

several factors including the complexity of the problem, number of connections in the network, 
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number of training samples, the performance function used and whether problem we are solving 

is the regression or the classification [14]. 

For choosing the set of training function to test them further several sources were used including 

[21] and [30]. Bases on the recommendations and best practices 4 training functions were 

selected. These functions have shown fastest convergence rates and performance improvements 

for specifically classification problems. Computation power requirements were also considered 

during compiling this selection. 

Training functions which were implemented and tested, include: 

 Scaled conjugate gradient backpropagation (SCG) – is a supervised training 

algorithm which is based on a class of optimization technique called conjugate gradient. 

Unlike the basic gradient approach it does not depend on manually setting hyper 

parameters, like for example learning rate, which are crucial for good performance and 

can be set inefficiently when done manually. This method uses the second order 

derivative information from the error surface but only requires ܱሺ݊ሻ memory, where n 

is the number of connections in the network. This approach does not include user 

dependent parameters and also avoids the time consuming line search at each iteration, 

which is often used by other second order training functions. This function is introduced 

and well-studied in the paper by Martin Meiller [32] where the author shows that SCG 

learning algorithm is more effective when compared to the standard backpropagation 

algorithm and is faster by at least one order of magnitude.  

In other source [14], the SCG algorithm has performed well in tests when trained with 

large networks and for both, function fitting and classification purposes. It has shown 

low memory requirements while still performing considerably faster than an ordinary 

gradient descent approach when compared on identical networks and training sets. 

In Matlab environment SCG training method is implemented by using an inbuilt 

function called ‘trainscg’  and it is set as a training function for the network 

‘net.trainFcn’. [14] 

 Conjugate gradient backpropagation with Powell-Beale restarts (CGB) – is the 

conjugate gradient algorithm which does not require the calculation of the second order 

derivatives which is represented by calculating costly Hessian matrix, and yet it 

maintains the quadratic convergence property. Important properties of the CGB 

algorithm include the fact that on each iteration it tries to find the descent direction 
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which will improve on the direction found on the previous iteration. It uses a line search 

approach and it only works on batch training mode [15]. The rate of convergence of the 

algorithm is linear unless the iterative process is occasionally restarted. An optimal and 

promising restart approach was suggested by M. J. D. Powell in his study [33]. 

Like other conjugate gradient methods CGB requires quite modest memory 

requirements during training and has shown good convergence rates for classification 

problems. [14] 

In Matlab environment CGB training method is implemented by using an inbuilt 

function called ‘traincgb’  and it is set as a training function for the network 

‘net.trainFcn’. [14] 

 Resilient backpropagation (RP) – is the training algorithm which was designed in 

order to overcome the disadvantages of the basic gradient descent optimization. It 

performs a local adaptation of the connection weights based on the behavior of the 

performance function. This algorithm’s performance, unlike other adaptive techniques, 

does not degrade when the error derivative gets small, which gives it the promising 

capabilities. Different to other algorithms, only the sign and not the magnitude of the 

partial error derivative is used to perform the update of the weights. This algorithm was 

introduced, tested and proved to be robust in the study by M. Riedmiller and H. Braun 

[34]. 

RP training function has performed as the fastest algorithm for pattern recognition 

problems even with low memory requirements, but the it has also been shown that the 

performance degrades when the goal error value is reduced too low [14]. 

In Matlab environment RP training method is implemented by using an inbuilt function 

called ‘trainrp’  and it is set as a training function for the network 

‘net.trainFcn’. [14] 

 Bayesian regularization backpropagation (BR) – is a neural network training 

function that updates the values of the network connection weights based on a 

Levenberg-Marquardt optimization. It strictly uses the mean squared error (MSE) 

performance function during the training, since it uses the Jacobian matrix for 

calculations. Using the best linear combination of weights, it trains the network that 

generalizes well. One feature of this approach is that it provides information of how 

many network weights are used effectively. BR algorithm works best when the training 

and target data is scaled. It is discussed in details in the study [35] and [36]. 
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But the good generalization capabilities of this network come at a cost. Computational 

requirements are higher when compared to other training methods, since it requires 

computation of the Hessian matrix, which results in longer training time [37]. 

In Matlab environment BR training method is implemented by using an inbuilt function 

called ‘trainbr’  and it is set as a training function for the network 

‘net.trainFcn’. [14] 

These training functions were implemented and tested in depth. The results of performance 

evaluation are discussed in Chapter 6.  

Since the computational requirements for each approach is different they use different amount 

of memory and time during the training step.  Although, these requirements do not directly 

correlate with the performance of each. The average training iteration time in seconds and 

number of iterations was recorded for each of them and can be seen on the Table 5.1. This table 

shows how many seconds it took for the training function to finish one training iteration and 

also average number of iterations to finish the training. As it was mentioned before, Bayesian 

regularization backpropagation (BR) has shown the highest training iteration time compared to 

other methods. This observation helps to understand the time and computation cost associated 

with each of the suggested training functions. The time measuring test was conducted on single 

thread process on Intel® Core™ i7-4700MQ Processor with 16 GB of Random-access memory 

(RAM). 

 

Table 5.2. Average training time in seconds for each training function.  

Training function Average iteration 

time, s 

Average number of 

iterations 

Average training 

time, s 

RP 0,2016 250 50,4 

SCG 0,3849 200 76,98 

Autoencoder + SCG 0,476 1000 476 

CGB 0,8927 200 178,54 

BR 2,1787 250 544,675 
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5.2.3. Validation checks and other stopping criterions  

The next step in tuning the training procedure is to decide when to stop the training process. 

There are several criterions which can be used as a sign to terminate the training, since the 

network has reached the most optimal or required performance state. It should be noted that this 

parameters can be set for each training functions listed above. In this Chapter this criterions 

will be discussed and compared. 

One of the stopping criteria is the training time. The algorithm can be stopped whenever the 

time set by the user is elapsed. Since the training time was not the limitation for testing purposes 

on this particular project, it was not used as a stopping factor for the algorithm. 

Another parameter, which can be used, is a minimum performance value or the goal of the 

training. This parameter controls for how low error value can be accepted as enough for the 

final model. Value of 0 was used in order to acquire the best approximation possible. 

Number of iterations or epochs for the training functions was set to default value of 1000. 

Problem with this parameter is that it is difficult to know how many iterations would yield the 

best results [30]. Using any larger value, during testing, did not provide any performance benefit 

since other topping criterions usually ended the training before this limit was reached. 

Minimum gradient is the criterion which stops the training when the partial derivative of the 

performance function reaches values near to 0 and training becomes inefficient and clos to 

optimal. For the testing purposes this parameter was set to different values in the range 

of	ሾ10ି, 10ିହሿ. 

The most important stopping criterion, which stops the training when the network has reached 

the best generalization and performance balance, is called validation check or early stopping 

[21]. Much like the regularization parameter, this method is aimed on improving the network 

generalization ability and avoid overfitting. The idea behind this approach is that as training 

progresses the network can start to overfit, meaning that the complexity of the network 

increases so that it fits the training set but fails to generalize on the validation set. In order to 

monitor the state of the network, a method called cross-validation is used, which uses the 

validation set discussed in Chapter 3.4. 

During a typical training procedure the error measured on the training set decreases with 

number of iterations. However, the validation set error often shows decrease at first, followed 

by an increase, indicating that the network starts to overfit. When this indicator is still present 
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during several iterations it can be assumed that the network has reached the optimal point and 

training can be stopped. The parameters with lowest validation set error are chosen as the best 

solution and are used as the network connection weights. The number of iterations during which 

the validation increase is monitored is the stopping parameter called number of validation 

checks. [30] 

 

Figure 5.2. Number of validation checks over ܨଵ score (higher the better) 

 

In order to choose the best number of validation checks, each setting from 0 to 25 was 

empirically tested. The performance of each setting was measured with the ܨଵ score and the 

results are shown on Figure 5.2. As the data shows using a number higher than 5 generally 

results in better generalization and the best performance was achieved when using number of 

checks at 10. This setting was used for further testing and evaluation of the network. More 

details about the ܨଵ score evaluation metric are discussed in Chapter 6. 

In Matlab environment this parameter is set by updating ‘net.trainParam.max_fail’ 

property. 



47 
 

5.3. Parallel computing modes for the network training 

Another approach which can improve the speed and decrease the time need for the network 

training is using the parallel nature of the artificial neural networks. Although it should be noted 

that this approach does not change the overall performance of the model and the classification 

does not change in any way. In this part the parallel training approaches will be discussed and 

compared. 

By default the Matlab Neural Network toolbox uses the single thread of the Central Processing 

Unit (CPU), which can be a limiting factor for the batch training approach. By using the Matlab 

Parallel Computing Toolbox in conjunction with Neural Network Toolbox the training and 

simulation steps can take an advantage of parallelism modes [14]. This computing modes were 

accessed by specifying the ‘train’ function call parameters ‘useParallel’ and ‘useGPU’ 

in Matlab environment. 

First mode which was considered is the distributing computing mode. This approach can be 

used on multicore CPUs, which was used for the test, or on multiple computers in the cluster. 

Underneath the hood by default toolbox splits the training data equally between the threads 

from the pool and each thread performs the backpropagation steps independently. 

The second mode supporting the backpropagation training, which can be implemented using 

the Parallel Computing Toolbox, uses the graphical processing unit (GPU) of the computer. 

This computation mode is promising since the GPUs are flexible enough to perform numerical 

computations and are showing good improvements for the problems which can be solved in 

parallel threads [14]. It should be noted that only gradient training methods are supported and 

Jacobian training methods can’t be used when using this mode. Also the computing mode called 

distributed GPU was considered. This approach uses both CPU and/or GPU in parallel. 

The benefits of these approaches strongly depend on the computing capabilities of the machine 

on which the testing was performed on and even better results can be achieved with higher 

performance components. For this specific test setup a personal computer with the CPU: Intel® 

Core™ i7-4700MQ Processor, GPU: GeForce GT 740M and Random-access memory (RAM) 

of 16 GB was used.  

Training function for the test was set to Scaled Conjugate Gradient with 12 neurons in the 

hidden layer, with number of validation checks set to 10, regularization parameter set to 0 and 

cross-entropy used as a performance function.   



48 
 

 

Figure 5.3. Average training iteration times in seconds for several computing modes  

(lower the better) 

Each computational mode was selected and performed 3 times. Average time of the single 

iteration in seconds was taken and compared. Results are shown on Figure 5.3.  

As it can be seen on the plot, using the default single thread for training shows the highest time 

of 0,389 seconds per iteration. Next highest average iteration time was set by the GPU equal to 

0,377 seconds. Next comes the distributed training using both CPU and GPU showing result of 

0,188 seconds per iteration, which is a good improvement. However the best result was shown 

by using the parallel threads of the CPU and the average training iteration time was 0,159 

seconds which compared with default single thread time of 0,389 seconds is an improvement 

of almost 60% (59,126% to be more precise). 
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6. MODEL EVALUATION AND FINE-TUNING 

The next step in a typical workflow of neural network design is to evaluate the trained classifiers 

with appropriate metrics. This step is important for understanding how well they perform and 

which parameters to tune further in order to improve the results. After the training is done all 

the discussed network architectures and training functions undergo an evaluation step. 

In this chapter effective evaluation methods for classifiers will be discussed, applied and 

compared. This evaluation metrics will be used for comparing the training models between each 

other and also comparing their performance to an existing, non-neural network approach. Next 

the classifiers will be fine-tuned for optimal performance and the best one will be identified. 

Lastly network will be prepared for deployment after which it can be easily implemented in 

software product and used in practice.  

6.1. Imbalanced dataset classifier evaluation metrics 

On the evaluation step it is important to acknowledge that the provided training set is inherently 

imbalanced, holding 97,863% samples of the policies without filled insurance claims, which 

was mentioned in Chapter 3, meaning that samples are not equally represented. Since the 

classification categories are not represented equally it is not a recommended practice to use 

predictive accuracy as a performance evaluation metric, since it will not give a meaningful 

comparison for the classifiers [38]. Accuracy can be measured by the ratio of successfully 

classified samples over the number of total number of samples. 

In order to see why the accuracy is not a recommended evaluation criterion it can be explained 

by the example of totally trivial classifier which would classify every input sample as a safe 

driver. This classifier would get 97,863% accuracy on the training set, only because this class 

is dominant in the training set, which is not a good performance indicator at all and can be 

misleading.  

Luckily problem of imbalanced dataset classification is well studied and happens quite often 

when dealing with real life problems. In this chapter recommended approaches for this 

particular problem will be listed and discussed. This metrics will then be applied to the training 

functions discussed in Chapter 5.2. Results of this evaluation will be presented by the end of 

this chapter for choosing the best option. 
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6.1.1. Confusion matrix 

A common way to visualize and present the performance of the binary classifier is to use a 

confusion matrix. This matrix holds the results produced by the classifier in organized way and 

it makes easy to see how the system performs [38]. 

In order to build this type of matrix particularly for the binary classification problem a table 

with 2 rows and 2 columns should be constructed. Rows represent the predicted classes and 

columns – the target or actual classes. The model of the confusion matrix can be seen on Table 

6.1. Each cell of this table contains the number of predictions made by a classifier that fall into 

one of these cells. Here is what they represent in case of the discussed problem: 

 True positives (TP) - number of correctly identified dangerous samples. Samples 

which were predicted to have an accident and they really had according to the dataset. 

This number goes to the top left corner of the 2 by 2 matrix. 

 True negatives (TN) – number of correctly identified safe samples. Meaning samples 

which were predicted not to have an accident and actually did not have according to the 

dataset.  This number is stored in the bottom right corner of the matrix. 

 False positives (FP) – number of incorrectly classified safe samples. Meaning samples 

which were predicted to have an accident in reality did not have it. This is also called 

type 1 error. This number is stored in top right corner of the confusion matrix. 

 False negatives (FN) – number of incorrectly classified risky samples. Meaning 

samples which were predicted not to have an accident but in reality actually had one. 

This is also called type 2 error. This number is stored in bottom left corner of the matrix. 

Table 6.1. A model of the confusion matrix [38]. 

 Actual positive Actual negative 

Predicted 

positive 
TP FP 

Predicted 

negative 
FN TN 
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A confusion matrix produced by a good classifier should maximize the numbers located on the 

main diagonal of the confusion matrix. Meaning maximizing the number of true positives and 

true negatives while minimizing the numbers on the non-main diagonal, particularly false 

positives and false negatives [38]. 

6.1.2. Precision and Recall 

There is a lot of useful information which can be extracted from the confusion matrix. One of 

the most common and applicable are called Precision and Recall. Both of this metrics are used 

in order to understand and measure the relevance of the classifier [38].  

Precision is calculated using the fraction shown in Equation 6.1. This fraction gets the values 

between the 0 and 1, 0 meaning that not a single instance was classified as true positive and 1 

meaning a highest precision classifier, which has not produced any false positives. Getting a 

low precision value is undesirable, since in the case of this problem it means falsely accusing 

safe drivers that they will get into an accident. 

Recall is calculated using the fraction shown in Equation 6.2. This fraction also gets values 

between 0 and 1, where again 0 means that not a single true positive was identified and 1 

meaning a highest recall classifier, which has not produced a false negative classification. 

Getting a low recall value is also undesirable, since in the case of this problem it means 

identifying driver as safe when in fact they got into an accident. 

Main goal of good classification is to improve the recall without hurting the precision. Although 

this two goals can be often conflicting, since when increasing the rate of true positives for the 

dangerous driver’s class, the number of false positives can also increase which is undesirable 

[38]. This means the optimal balance between the two should be found. 

Equation 6.1. Precision metric [38] 

P ൌ ்

்ାி
,                                                                                                                     (6.1) 

Where P– Precision of the classifier within the range of [0, 1], 

ܶܲ – Number of true positives, 

 Number of false positives –ܲܨ 
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Equation 6.2. Recall metric [38] 

R ൌ ்

்ାிே
,                                                                                                                     (6.2) 

Where ܴ– Recall of the classifier within the range of [0, 1], 

ܶܲ – Number of true positives, 

 Number of false negatives –ܰܨ 

6.1.3. F score 

F score is commonly used for measuring classifier performance. It considers the balance of both 

precision P and recall R to compute a single score for evaluation. It is used to balance the 

tradeoffs between these two terms and the benefit is it can be tuned to give more weight to one 

or another [38]. F score was derived and studied in details in the work of C. J. van Rijsbergen 

[39]. 

The equation for computing the F score is given in Equation 6.3. It returns the values in the 

range of [0, 1] where higher value means better performance. We can see that in addition to the 

precision and recall terms, this score also uses ߚ term, which is the positive real value 

representing the balance and priority between the two.  

Most commonly used values for ߚ are: 0,5 during which the final score is more dependent on 

the precision of the classifier, meaning that precision has higher priority. 1 during which the 

score represents a harmonic mean, or the balance mean between the precision and recall and 2 

which puts higher priority and emphasis on the recall. 

Using ܨ,ହ score for evaluation will result in classifier which has higher precision and will 

produce less false accusations. On the other hand ܨଶ will result in classifier with higher recall 

and will identify more dangerous customers for the company.  

All three scores were measured for each classifier. Decision for which one to choose for real 

life applications is a business decision depending on how “strict” classifier is needed and which 

precision or recall is more important for the company. This decision has to be done by an 

insurance company and it is outside the scope of the research. All three results will be presented 

and it is an easy procedure to apply this measures to get the final result. 
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Equation 6.3. F score metric [38] 

Fఉ ൌ ሺ1  βଶሻ ∗ ∗ோ

ఉమ∗ାோ
,                                                                                                                     (6.3) 

Where ܨ– F score within the range of [0, 1], 

 ,Positive real value representing relative weight between precision and recall –ߚ

ܲ – Precision of the classifier, 

 ܴ– Recall of the classifier 

 

Balanced ܨଵ score have been used as a main assessment tool throughout the research when 

choosing optimal parameters for the network and training functions. 

6.1.4. Receiver operating characteristic 

The receiver operating characteristic (ROC) curves are commonly used plots for summarizing 

the performance of the binary classifier over a range of discrimination threshold between true 

positive rates, which are computed in the same way as the recall, on y-axis and false positive 

rates, which are computed using the Equation 6.4., on the x-axis. 

Equation 6.4. False positive rate (FPR) [38] 

ܴܲܨ ൌ 

ிା்ே
,                                                                                                                     (6.4) 

Where ܴܲܨ– False positive rate within the range of [0, 1], 

 ,Number of false positive classifications –ܲܨ

ܶܰ– Number of true negative classifications 

 

Accepted performance metric for the ROC curve is are under the curve. Bigger area means 

better classification performance. An ideal point on this curve is a point (0,1) which means that 

all the positive examples were classified correctly and no negative examples were misclassified 

as positive [38]. ROC curves as a performance metric is studied in details in [40]. 



54 
 

6.2. Applying evaluation metrics to classifiers 

The metrics, which were discussed, were applied to each training algorithm and network 

architecture after the networks reached the stopping point of the training step. Evaluation was 

done on the output matrix of the network, which was discussed earlier in Chapter 4.1.3. The 

discrimination threshold for classification during this evaluation was default value of 0,5. This 

means that one of the output probability of the network should be more than 0,5 for the sample 

to be classified as a safe or dangerous customer. For this evaluation all the data was used 

including training, evaluation and training sets. Although these results vary depending on 

weight initialization of the network in the beginning of the training, they do not affect the results 

dramatically and the final results were the same during several tests. The results of the 

evaluation for each approach are listed on Table 6.2. 

Already from this table it can be seen that the Bayesian Regularization Backpropagation (BR) 

has shown the best performance out of the selected algorithms in classifying the customers. It 

has shown the highest results in all performance metrics. But this is not enough to give final 

conclusions. Still more thorough tests were done to correctly measure the training functions and 

their performances. 

All graphical results for receiver operating characteristic curves for each of this approaches can 

be found in appendix section of this work. As it can be seen from the areas under the ROC 

curves all the training functions have found a positive correlation and were successful in 

classification. 

Table 6.2. Evaluation of classifiers with the discrimination threshold value of 0,5 

Training 

function 
Precision Recall ࡲ, ࡲ ࡲ 

RP 0,5607 0,0052 0,025 0,0103 0,0065 

SCG 0,4017 0,008 0,0369 0,0156 0,0099 

Autoencoder 

+ SCG 
0,5789 0,0038 0,0186 0,0076 0,0048 

CGB 0,463 0,0065 0,0307 0,0128 0,0081 

BR 0,6714 0,0081 0,0388 0,0161 0,0101 
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The confusion matrix for the BR training function can be seen on Figure 6.1. As it can be seen 

on the matrix the classifier have identified majority of save drivers and some of the dangerous 

drivers with the precision value of 67,1%. Although, as we will see in the following chapter its 

identification capabilities can be improved by adjusting the threshold of classification. 

Confusion matrixes for other training methods can be seen in the Appendix section of this work. 

 

 

Figure 6.1. Bayesian Regularization backpropagation confusion matrix with the 

discrimination threshold of 0,5. 
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6.3. Fine tuning the classifiers and comparing to an existing solution 

Based on the ROC curves, which give information about classifier performance with different 

threshold values between 0 and 1, it can be assumed that the performance of the classifier can 

be improved by correctly setting the threshold value for the output probabilities of the network. 

This was tested by taking the default threshold value of 0,5 and iteratively setting every value 

up until 1 with the step size of 0,001. Than all the performance metrics like precision, recall 

and f score were plotted in regards to the new threshold value. 

Setting higher threshold values means that the classifier should give higher probabilities in 

order to classify samples into dangerous and safe ones. This threshold adjustment probing will 

give the value of probability threshold, when used will get the optimal classification capabilities 

based on performance metrics. 

For the performance plots 3 best performing algorithms were chosen: Bayesian Regularization 

(BR), Autoencoder with Scaled Conjugate Gradient training and Feed forward network with 

Scaled Conjugate Gradient training.  

For the comparison with methods, which are already in use in industry, Bonus Malus 

classification was taken from the dataset. This is the customer classification method used in 

insurance companies which is derived from the driving history of the customer. This 

categorization consists of 15 categories and higher category means higher risk driver. Same 

performance metrics of precision, recall and F score were applied to this categorization method 

in order to see how the neural network approach compares to it. This test gives a visualization 

if the neural network approach have improved on an existing categorization technique.  

The values of precision and recall of the classifiers over the threshold value can be seen on 

Figure 6.2., and Figure 6.3. As it can be seen of the plots all 3 neural networks have reached 

higher precision when compared to an existing solution. Out of this 3 the Bayesian 

Regularization shows better results when compared to others. It reached 0,6714 precision value 

while the Autoencoder network achieved 0,5789 and the Scaled Conjugate Gradient achieved 

0,4017. 

On the recall part we can see that the value is quite low until the threshold value exceeds the 

0,91 mark after which the recall for the neural network classifiers starts to grow and overcomes 

the existing approach. 
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Figure 6.2. Precision values of neural networks over the discrimination threshold. 

 

Figure 6.3. Recall values of neural networks over the discrimination threshold. 
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But as it was shown in Chapter 6.1.3., in order to choose the best threshold value the balanced 

measure of precision and recall is more informative and useful than using them separately. So 

the measures of ܨ,ହ,  ଶ were also taken for each training algorithm on the thresholdܨ ଵ andܨ

region of [0,5, 1] with the step size of 0,001. 

6.3.1. Optimal threshold value based on ࡲ, score 

The results of evaluation with ܨ,ହ measure are shown on Figure 6.3. From this plot we can see 

that Bayesian regularization, represented with red line, has shown a best highest score of the 

three neural networks. At the threshold value of 0,909 it has reached ܨ,ହ score of 0,1183. The 

confusion matrix for this threshold value is shown on Figure 6.4. 

Second highest result was shown by an Autoencoder network. At the threshold value of 0,906 

it reached the maximal ܨ,ହ score of 0,116. 

Third result was shown by the feed-forward network with Scaled Conjugate Gradient algorithm. 

It reached its maximum score at the threshold value of 0,925, with the value of 0,1036. 

All three approaches have shown much better result when compared to an existing solution 

which only reached the value of 0,0426. 
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Figure 6.3. ܨ,ହ Score values of neural networks over the discrimination threshold. 

 

Figure 6.4. Bayesian Regularization confusion matrix with optimal ܨ,ହ threshold of 0,909 
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6.3.2. Optimal threshold value based on ࡲ score 

The same test was conducted for the balanced ܨଵ score. The results of this test are shown on 

Figure 6.5. From this plot we can see that again the Bayesian regularization has shown highest 

score. At the threshold value of 0,941 it reached the ܨଵ score of 0,1214. The confusion matrix 

at this threshold value is shown on Figure 6.6. Same high score was reached by an Autoencoder 

network. At the threshold value of 0,938 it reached the maximal ܨଵ	score of same 0,1214. 

The third result of 0,1168 was reached by the Scaled Conjugate Gradient method at the 

threshold value of 0,942. Again all three networks performed better when compared to an 

existing solution, which reached the score of 0,0572. 

 

 

Figure 6.5. ܨଵ Score values of neural networks over the discrimination threshold. 
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Figure 6.6. Bayesian Regularization confusion matrix with optimal ܨଵ threshold of 0,941 

6.3.3. Optimal threshold value based on ࡲ score 

The same test was conducted for the ܨଶ score. The results of this test are shown on Figure 6.7. 

From this test we can see that the Bayesian regularization has shown second highest score. At 

the threshold value of 0,959 it reached the ܨଶ score of 0,1969. The confusion matrix at this 

threshold value is shown on Figure 6.8. Highest score was reached by an Autoencoder network. 

At the threshold value of 0,958 it reached the maximal ܨଶ	score of 0,1977. 

The third result of 0,1899 was reached by the Scaled Conjugate Gradient method at the 

threshold value of 0,963. Again all three networks performed better when compared to an 

existing solution, which reached the score of 0,1158. 
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Figure 6.7. ܨଶ Score values of neural networks over the discrimination threshold. 

 

Figure 6.8. Bayesian Regularization confusion matrix with optimal ܨଶ threshold of 0,959 
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6.4 Network deployment 

After the networks were tested, evaluated and compared the next step is to deploy them as a 

usable functions. This deployment should be done in a way to be easily to implementable for 

software, which want to use it further.  

Since Feed-forward network with Bayesian Regularization and Autoencoder network with 

Scaled Conjugate Gradient method has shown the best results during the evaluation step, they 

were the chosen classifiers to deploy. 

Deployment was done by generating a function in Matlab environment, which would accept as 

an input the customer feature vector with length of 11, which was laid out in Table 4.1. As a 

return value, function returns the output of the neural network, which are probabilities ଵ 

and	ଶ. First denotes the probability of the feature vector belonging to dangerous customer class 

and the second one denotes the probability of the feature vector belonging to the safe customer 

class. The thresholding has to be done additionally with the recommended threshold values 

explained in Chapter 6.3. 

Name of the functions are ‘BayesianNeuralNetworkFunction’ and 

‘AutoencoderNeuralNetworkFunction’ and they are ready to be used and tested in real 

life scenarios. 

The functions were generated by using an inbuilt Matlab method ‘getFunction’. It takes as an 

argument a neural network object and outputs a function with the said properties. The functions 

were generated so they contain the weight and bias matrixes of the networks, which are used to 

calculate the output of the network. This decision was made since it will be simpler to 

implement in any programming language desired, since the only thing required to calculate the 

output is to perform a basic matrix operations like addition, multiplication and exponentiation. 

This means that this functions can be easily ported to mobile, desktop or web application. 
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CONCLUSION 

The evaluation step has shown that two neural networks has performed the best and shown the 

optimal classification of the dangerous and safe drivers. Both this neural networks have shown 

better results when compared to the previous approach. 

One of them, which has shown best results in majority of metrics, is a feedforward neural 

network architecture with 11 neurons at the input layer, 12 neurons at the single hidden layer 

and with 2 neurons at the output layer. It uses hyperbolic tangent as the activation function and 

Softmax as the output layer activation function. This network was trained with a Bayesian 

Regularization Backpropagation training method with the Mean Squared Error performance 

function using the 70% of the dataset as a training data, 15% as a validation data and 15% as 

testing data. This network output resulted in highest ܨ,ହ score of 0,1183 at the discrimination 

threshold value of 0,909, highest ܨଵ score of 0,1214 at the threshold value of 0,941 and highest 

 .ଶ score of 0,1969 at the threshold value of 0,959ܨ

Another neural network which performed well, especially in cases when higher recall value was 

evaluated is an Autoencoder neural network with 2 encoder layers, with 10 neurons in each and 

2 neurons at the output layer. Encoder layers used sigmoid function as an activation function 

and output layer used the Softmax activation function. Network was trained with Scaled 

Conjugate Gradient Backpropagation method with the cross-entropy as a performance function 

using the 70% of the dataset as the training data, 15% as the validation data and 15% as testing 

data. This network output resulted in highest ܨ,ହ score of 0,116 at the discrimination threshold 

value of 0,906, highest ܨଵ score of 0,1214 at the threshold value of 0,938 and highest ܨଶ score 

of 0,1977 at the threshold value of 0,958. 
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KOKKUVÕTE 

Peamine motivatsioon antud uuringu läbiviimiseks tuli kindlustusettevõttelt ning selle 

vajadusest klassifitseerida sõiduvahendite kindlustuse kliente läbi tõenäosuse, et nad satuvad 

avariisse ning esitavad nõude. Õige klassifitseerimine võimaldab kindlustusettevõttel pakkuda 

paremaid hindu klientidele ning teostada paremat prognoosi riskide kohta, mis on seotud 

sõiduvahendite kindlustuslepingutest. Eelnevad lepingud ei kasutanud ühtegi adaptiivset 

klassifikaatorit vaid põhinesid ainult kliendi sõidustaažil. Sellest lähtuvalt kasvas välja idee 

parandada klassifitseerimist, kasutades selle juures andmeid, mis on kogunenud kindlustus- 

ettevõtte andmebaasi kogu perioodi vältel. Andmebaas sisaldab erinevat infot klientidest ning 

sõiduvahenditest, mida on kasutatud ning millega on satutud avariisse. 

 Üle poole miljoni kindlustuspoliisiga andmekogu oli esitatud täiendavaks uurimistööks. 

Selleks, et andmekogust võtta välja just kasulik ning tähendusrikas info võeti kasutusele 

Artificial Neural Networks lähenemise viis, kuna teoreetiliselt võib see luua häid 

klassifikatsioonimudeleid just siis, kui andmed on suuremahulised, mittelineaarsed ning 

ebamugavad käsitlemiseks. Artificial neural networks viisi toetavad mitmed uuringud, andes 

sellele lootustandvaid võimalusi. 

 Esimeseks sammuks oli andmekogu uurimine ning ettevalmistamine analüüsiks. 

Esiteks eemaldati üksteisest omadused, mida võib kasutada katsetuste otstarbeks. Iga kliendi 

riskifaktori mõõtmiseks valiti andmebaasi lahter „Nõuete arv“. Enamus analüüsitavatest 

poliisidest, 97%, olid nõuete vabad, tehes vastutavad kliendid eelistatud klientideks. Ülejäänud 

3% kohta oli riskifaktori suurus varieeruv 1-4. Antud omadus muudeti binaarseks 

tunnusjooneks, mis säilitas info selle kohta, kas kliendil oli olnud avarii või mitte. Analüüsitava 

andmekogu numeratsioon oli standardiseeritud ning korrastatud, kuna see omakorda parandab 

lähenemist võrgu algoritmile mille tulemusena saadakse parem klassifikatsioon. Kategoorilised 

omadused olid esindatud andmebaasis kui identifitseeritavad numbrid, millel polnud 

konkreetset järge ega tähendust. Selle tõttu need asendati riski faktoriga, positiivse numbriga 

0-1 vahel, näidates kui suur on risk ühe või teise kategooria omadusega. Järgmiseks sammuks 

oli valida välja omadused. Seda tehti selle tõttu, et vabaneda üleliigsetest omadustest, millest 

poleks klassifitseerimise käigus olnud väärtust. Ainult 11 üksteisega seotud omadust oli 

väljavalitud ning lõpuks ka lisatud analüüsimiseks ja testimiseks katse käigus. 
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 Peale seda kaaluti Neural Network’i erinevaid arhitektuuri mudeleid. Parimaid 

arhitektuure analüüsiti läbi nende omaduste võrdluse ning kaks arhitektuuri valiti välja süsteemi 

siirdamiseks ning võrdlemiseks. Nendeks olid Feed-forward Neural Network peidetud 

kihtidega ning Autoencoder neural Network. Kasutades parimaid tavasid, hyperbolic tangent ja 

sigmoid transfer funktsioonid olid valitud võrgu peidetud kihtideks. 

Softmax activation funktsioon oli valitud kui välise kihi aktiveerimise funktsioonina. Läbi 

jõudlustestide oli välja valitud optimaalne kihtide kogus ning omakorda neuronite arv igas 

kihis. Lõpuks oli otsustatud kasutada 11 neuronit siseneva, 12 neuronit peidetud kihi ning 2 

neuronit välja mineva kihi kohta. Viimane kiht toob esile sisestatud kliendi tõenäosuse, mis 

kuulub ohutu või ohtliku kliendi klassi. Mis puudutab Autoencoder võrku, siis optimaalseks 

arhitektuuriks oli kasutada 11 neuronit siseneva kihi, 10 neuronit iga kodeerija kihi ning 2 

neuronit välja mineva kihi kohta. Peale selle olid välja valitud optimaalsed võrgu 

initsialiseerimise tehnikad, mis tagavad parimaid katsete tulemusi. 

 Järgmise sammuna valiti välja ning võeti kasutusele katsetuste meetodid. 

Backpropagation algoritm oli valitud võrkude katsetamiseks. Mitmed lähenemise viisid olid 

arvesse võetud, selleks et parandada backpropagation algoritmi lähenemise kiirust ning 

üldistamise võimeid. Nendeks olid: Bayesian Regularization, Scaled Conjugate Gradient, 

Conjugate Gradient with Powell-Beale restarts ja Resilient Backpropagation. Katsed olid läbi 

viidud kahe jõudluse funktsiooniga: Mean Squared Error ja Cross-entropy, kuna mõlemad on 

parimad soorituste poolest erinevate jõudluste funktsioonidega. Selleks, et tagada kontroll 

võrgu hälvete ja dispersioonide vahel ning välistada selle overfitting, the weight decay 

regularization oli lisatud jõudluse funktsioonidele. Arvutuslikud nõuded ning parallelization 

võimalused katsete funktsioonideks olid samuti võrreldud ning arvesse võetud, selleks et tagada 

parim tulemuslikus. 

 Katsetatavad võrgud olid seejärel viidud järgmise sammuni. Iga võrk on läbinud 

hinnangu vastavalt meetrikale, mis on kasutusel binaarse klassifikaatoritena, nagu: täpsus, 

mälu, f skoor ning vastuvõtja karakteristika. Antud test tagas ülevaate, mis arhitektuur ning 

katsetuste lähenemise viis tõi välja parimas klassifikatsiooni jõudluses ning kuidas olid 

tulemused paremad võrreldes praeguse meetodiga. Katsed näitasid paranemist võrreldes vana 

meetodiga ning samuti näitasid, et feed-forward neuroal Network koos  Bayesian regularization  

ja Autoencoder koos scaled conjugate gradient katsed näitasid parimaid jõudluse tulemusi 

kõikidest teistest. Hindamise meetrika aitasid kaasa optimaalseima kostelävi väärtuse valikul, 

mis võib kajastuda parim jõudluse klassifikatsioonil. Mitmed läved olid arvutatud ning võivad 
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olla rakendatud vastavalt kindlustus ettevõtte vajadustele, kuna nad reguleerivad 

klassifikatsiooni „ranguse“, threshold parameter'i reguleerides need võivad saada kõrgema 

recall value, ja samaaegselt precision hakkab vähenema. 

Parimad toimivad võrgud olid seadistatud funktsioonidena ning võivad olla edaspidi 

rakendatavad igale rakendusele. Antud funktsioon hoiab võrgu kaalu ja kõrvalekalde 

maatrikseid ning nende rakendamine ei nõua lisa Neural Network libraries peale standartsete 

maatriks operatsioonide rakendamise.  

 Nagu omaduste valikute etapil oli ka näidatud, selleks et lähenemist edasi arendada 

tuleb võtta kasutusele uusi ning informatiivseid omadusi, läbi selle on võimalik tagada parim 

tõhustamise viis. Lõpptulemused sõltuvad tugevalt alagrupi omadustest, mida on kasutatud 

katsetuste läbiviimise käigus ning uute andmete saamisest, mis ei olnud saadaval antud töö 

läbiviimise jooksul, kuid võib märkimisväärselt parandada klassifitseerimist ning prognoosi.
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SUMMARY 

The main motivation for this study came from the insurance company and its need to classify 

their vehicle insurance customers by the probability of them getting into an accident and filling 

the claim. Correct classification can help the insurance company to give fairer prices for the 

customers and make better forecasts about the risks associated with vehicle insurance contracts. 

Previous approaches did not use any type of intelligent or adaptive classifiers for achieving this 

and relied completely on just using the customer driving history as a metric. Out of this came 

the idea that classification can be improved by using the data company has stored throughout 

the period in their database. This database holds different types of information about customer 

and about the vehicles used and their accident history. 

The dataset consisting of half a million insurance policy samples was provided for further 

studies and analysis. In order to extract meaningful and beneficial knowledge from the database 

the approach of artificial neural networks was chosen, as theoretically it can make good 

classification models when the data is high dimensional, nonlinear and noisy. This approach 

also have been backed up with number of studies, giving neural networks a promising 

performance possibilities.  

First step before training the neural network was to study and prepare the dataset. Firstly the 

features, which could be used for training and feature, which would be used as a target data was 

separated. One of the fields in the database, called “number of claims”, was chosen as a measure 

of risk for each customer. For the majority of the samples, around 97%, there were no instances 

of filled claims making them safe, or desirable customer. For the rest of the samples the values 

varied from 1 to 4. This was changed to a binary feature, storing information whether given 

customer had an accident or he did not. For the training dataset numerical features were 

normalized and scaled, since this improves the convergence rate for the network training 

algorithm and results in a better classifier. Categorical features were represented in the database 

as identification numbers which had no particular ordering and meaning, so they were replaced 

with the risk factor, a positive real number between 0 and 1 showing how high is the risk 

associated with the particular categorical feature. Next step was to conduct a feature selection. 

This step was done in order to get rid of redundant features, which provided no benefit for 

classification performance. Only 11 highest correlative features were finally extracted and used 

as the training, validation and testing sets during the training. 
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On the next step neural network architectures were considered. The best architectures were 

considered by studying their properties and two architectures were chosen to implement and 

compare. Feed-forward neural network with hidden layers and Autoencoder neural network. 

By using best practices, hyperbolic tangent and sigmoid transfer functions were chosen for 

hidden layers of the networks. Softmax activation function was chosen as an output layer 

activation function. By conducting performance tests, optimal number of layers and number of 

neurons in each of them were chosen.  The resulted setup for feed-forward network was to use 

11 neurons on the input layer, 12 neurons at the hidden layer and 2 neurons at the output. The 

last layer would output the probabilities of the input belonging to safe or to dangerous customer 

class. As for the Autoencoder network an optimal architecture was to use 11 neurons at the 

input layer, then 2 encoder layers, with 10 neurons in each, trained separately and then stacked 

in sequence together with an output layer consisting of 2 neurons. Also optimal network 

initialization techniques were studied and chosen in order to get best training and generalization 

performance. 

For the next step the training methods were selected and implemented. Backpropagation 

algorithm was chosen for training the networks. Several approaches were considered in order 

to improve the backpropagation algorithm convergence speed and generalization abilities. 

These include training functions: Bayesian Regularization, Scaled Conjugate Gradient, 

Conjugate Gradient with Powell-Beale restarts and Resilient Backpropagation. The training 

was done with two performance functions: Mean Squared Error and Cross-entropy, since each 

of them perform best with different training functions. Also in order to control the network bias 

and variance balance and to prevent it from overfitting the weight decay regularization term 

was added to the performance functions. The computational requirements and parallelization 

possibilities for these training functions were also considered and compared, in order to get 

fastest performance possible. 

Trained networks were then evaluated on the next step. Each of them underwent series of 

evaluation metrics used for binary classifiers like: precision, recall, f score and Receiver 

Operating Characteristic. This test provided insight into which architecture and training 

approach has resulted in best classification performance and how they compared to an existing, 

non-neural approach. Tests showed improvement compared to an old method and also showed 

that feed-forward neural network with Bayesian regularization and Autoencoder with scaled 

conjugate gradient training have shown the best performance out of all. The evaluation metrics 

also helped in choosing optimal discrimination threshold values, which can result in optimal 
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performance of the classifier. Several of this thresholds were calculated and they can be applied 

based on the business requirements of the insurance company, since they regulate the 

“strictness” of the classification, which means getting higher recall values by the price of 

diminished precision. 

The best performing networks were deployed as functions and can be used further for 

implementing them on any desktop, mobile or web application. This function holds the weight 

and bias matrixes of the network and their implementation does not require any additional 

neural network libraries other than implementing basic matrix operations.  

For the further development of this approach, as it was shown during the feature selection step 

of the study, getting new and informative features is the best way to improve the performance 

of the model. Final results heavily depends on the subset of features used during training and 

getting new data, which was not available during this study can even further improve the 

classification and forecasting possibilities of the artificial neural network. 
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APPENDICES 

Appendix 1. Receiver Operating Characteristic for Scaled Conjugate 

Gradient method 
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Appendix 2. Training performance plot for Scaled Conjugate 

Gradient method 
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Appendix 3. Receiver Operating Characteristic for Bayesian 

Regularization method 

 



77 
 

Appendix 4. Training performance plot for Bayesian Regularization 

method 

 

   



78 
 

Appendix 5. Deployed function code for Autoencoder neural network  

function [y1] = AutoencoderNeuralNetworkFunction(x1) 
%AUTOENCODERNEURALNETWORKFUNCTION neural network simulation 
function. 
% 
% Generated by Neural Network Toolbox function genFunction, 
01-May-2016 19:33:27. 
%  
% [y1] = AutoencoderNeuralNetworkFunction(x1) takes these 
arguments: 
%   x = 11xQ matrix, input #1 
% and returns: 
%   y = 2xQ matrix, output #1 
% where Q is the number of samples. 
  
%#ok<*RPMT0> 
  
% ===== NEURAL NETWORK CONSTANTS ===== 
  
% Input 1 
x1_step1_xoffset = 
[0.00653968963238101;0;0;0;0;0;0;0;0;0.0105763089468793;0]; 
x1_step1_gain = 
[167.211047863039;2;86.9316770186336;2;89.5;2;2;2;2;46.9451810
601615;31.6666666666667]; 
x1_step1_ymin = -1; 
  
% Layer 1 
b1 = [-
2.3122852307384076;2.4278681738642254;2.6987279666580366;2.197
8766956996099;1.8257297720587156;-0.55926625542325903;-
11.332866171430309;-6.9789472974738969;3.4107055876397032;-
8.9741632945756731;0.37799735396690248;-3.4497610799197265]; 
IW1_1 = [5.4020229470146539 0.46523479214396557 
0.78517011572763307 -1.2200695783129183 6.6092858856271413 -
0.6176477801517557 2.0869708353806304 -4.672228183221117 
12.416196096610626 -1.7992238985196622 
2.9577983562567667;3.5665917884299909 -1.501464533154129 -
6.7353099061649111 0.2876570257281364 -2.4147556704437694 
0.0086156056969256094 0.39347181711918294 2.6721027628987941 
0.85931825382906357 0.85537971442683314 
0.053591512184308708;2.8929449882497256 -1.6066358184490348 -
3.1509869977874483 -0.39330745027388159 2.0761791059734391 
0.91060002836467291 0.10548743577584438 5.900399988293537 
1.7063218847132291 -0.89844116659630235 -
0.65088948394403312;5.5984520314509094 0.3231960329125203 -
0.22077607157708209 -0.064923112243063782 0.1765702001940859 
0.050177259581348499 -0.61869938030590166 7.5477281921551294 -
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0.63815478908582957 -0.089016611433786558 
0.42816885998780307;9.7076595861710206 5.8842951718610834 -
0.71477323422217764 1.0249680967954999 9.8831830507273395 
6.9070511188451693 2.5372985073438792 12.836762112862344 
17.834522441086023 -4.800377749474726 -9.6487058305285132;-
1.6693104447529614 -0.012061304257788496 -0.094907253357924534 
0.10976039584498715 -0.05723099656509454 0.059442142577636303 
-0.02208690274120478 -0.65641542847857071 -1.5071238445332305 
-0.048104734683074218 -0.080333077134480416;14.110017446387213 
2.7525317276663634 -3.7116845492896062 -3.1494674577672437 
1.4161955110509392 18.951644527801211 -14.219763629059148 
33.173053622855704 9.115721628814704 -8.48024338884969 -
17.173134228960507;0.14663208187787996 2.6021810739622904 
23.838896114255526 15.858053860434767 -1.9416346208880533 -
4.8491635827996218 14.945669253722928 -27.243518477049573 -
4.4533653117735925 7.0662767689095913 5.4063890362642129;-
3.9776811850287879 0.72582226205249556 -0.17264682882411833 
0.22879491914996752 -0.75100411862093441 -0.345873207141562 -
0.5186021854224081 2.6172023048536901 0.81562487513500681 
1.6483619742610971 1.9040601393566394;6.8210073528624111 
0.79851307653715031 9.4796491112942558 -1.759352431098828 -
12.889186118297191 -0.38459245576119694 -0.94173786511903101 -
1.721618586263326 -0.3882561448466646 -1.0167887201881065 
1.1821918686300874;3.892815630444622 -2.5736239461678689 -
2.4958343038537962 2.7873942939099594 -0.48823385527198754 
1.8585040388452969 0.0002617261032726928 -5.5899864352108244 
6.9327022585604672 3.3160480567580599 -
2.2252704553101821;2.6576795913114726 3.6008154455917598 
4.9412827807674846 -0.50533059850903395 1.7245002802297951 
0.046157465437212358 -0.33492985069544606 4.6322521396239509 -
3.9649415367593486 -1.383448350359342 1.9914490191693208]; 
  
% Layer 2 
b2 = [-2.9172325597170654;2.9167274490819302]; 
LW2_1 = [-0.68809591381188584 -1.4607728610405701 -
1.6238488476606483 6.9788788054694297 -0.61976254746093096 -
4.9265439747227395 1.0417043234614864 -0.74289328931869447 
8.0784692699100091 -0.82279084585800033 -0.56046200238672084 -
0.79683941009592152;0.68807226743402228 1.4610896371101756 
1.6235330175730831 -6.9788441387778821 0.61977998753747865 
4.9267415339370322 -1.0418264874354202 0.74238455568814299 -
8.0790308682711061 0.82283214139330507 0.560614825158956 
0.79706231990648968]; 
  
% ===== SIMULATION ======== 
  
% Dimensions 
Q = size(x1,2); % samples 
  
% Input 1 
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xp1 = 
mapminmax_apply(x1,x1_step1_gain,x1_step1_xoffset,x1_step1_ymi
n); 
  
% Layer 1 
a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*xp1); 
  
% Layer 2 
a2 = softmax_apply(repmat(b2,1,Q) + LW2_1*a1); 
  
% Output 0 
y1 = a2; 
end 
  
% ===== MODULE FUNCTIONS ======== 
  
% Map Minimum and Maximum Input Processing Function 
function y = 
mapminmax_apply(x,settings_gain,settings_xoffset,settings_ymin
) 
y = bsxfun(@minus,x,settings_xoffset); 
y = bsxfun(@times,y,settings_gain); 
y = bsxfun(@plus,y,settings_ymin); 
end 
  
% Competitive Soft Transfer Function 
function a = softmax_apply(n) 
nmax = max(n,[],1); 
n = bsxfun(@minus,n,nmax); 
numer = exp(n); 
denom = sum(numer,1);  
denom(denom == 0) = 1; 
a = bsxfun(@rdivide,numer,denom); 
end 
  
% Sigmoid Symmetric Transfer Function 
function a = tansig_apply(n) 
a = 2 ./ (1 + exp(-2*n)) - 1; 
end 
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Appendix 6. Deployed function code for Feed-forward neural network 

function [y1] = BayesianNeuralNetworkFunction(x1) 
%BAYESIANNEURALNETWORKFUNCTION neural network simulation 
function. 
% 
% Generated by Neural Network Toolbox function genFunction, 
01-May-2016 19:26:58. 
%  
% [y1] = BayesianNeuralNetworkFunction(x1) takes these 
arguments: 
%   x = 11xQ matrix, input #1 
% and returns: 
%   y = 2xQ matrix, output #1 
% where Q is the number of samples. 
  
%#ok<*RPMT0> 
  
% ===== NEURAL NETWORK CONSTANTS ===== 
  
% Input 1 
x1_step1_xoffset = 
[0.00653968963238101;0;0;0;0;0;0;0;0;0.0105763089468793;0]; 
x1_step1_gain = 
[167.211047863039;2;86.9316770186336;2;89.5;2;2;2;2;46.9451810
601615;31.6666666666667]; 
x1_step1_ymin = -1; 
  
% Layer 1 
b1 = [-
2.3122852307384076;2.4278681738642254;2.6987279666580366;2.197
8766956996099;1.8257297720587156;-0.55926625542325903;-
11.332866171430309;-6.9789472974738969;3.4107055876397032;-
8.9741632945756731;0.37799735396690248;-3.4497610799197265]; 
IW1_1 = [5.4020229470146539 0.46523479214396557 
0.78517011572763307 -1.2200695783129183 6.6092858856271413 -
0.6176477801517557 2.0869708353806304 -4.672228183221117 
12.416196096610626 -1.7992238985196622 
2.9577983562567667;3.5665917884299909 -1.501464533154129 -
6.7353099061649111 0.2876570257281364 -2.4147556704437694 
0.0086156056969256094 0.39347181711918294 2.6721027628987941 
0.85931825382906357 0.85537971442683314 
0.053591512184308708;2.8929449882497256 -1.6066358184490348 -
3.1509869977874483 -0.39330745027388159 2.0761791059734391 
0.91060002836467291 0.10548743577584438 5.900399988293537 
1.7063218847132291 -0.89844116659630235 -
0.65088948394403312;5.5984520314509094 0.3231960329125203 -
0.22077607157708209 -0.064923112243063782 0.1765702001940859 
0.050177259581348499 -0.61869938030590166 7.5477281921551294 -
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0.63815478908582957 -0.089016611433786558 
0.42816885998780307;9.7076595861710206 5.8842951718610834 -
0.71477323422217764 1.0249680967954999 9.8831830507273395 
6.9070511188451693 2.5372985073438792 12.836762112862344 
17.834522441086023 -4.800377749474726 -9.6487058305285132;-
1.6693104447529614 -0.012061304257788496 -0.094907253357924534 
0.10976039584498715 -0.05723099656509454 0.059442142577636303 
-0.02208690274120478 -0.65641542847857071 -1.5071238445332305 
-0.048104734683074218 -0.080333077134480416;14.110017446387213 
2.7525317276663634 -3.7116845492896062 -3.1494674577672437 
1.4161955110509392 18.951644527801211 -14.219763629059148 
33.173053622855704 9.115721628814704 -8.48024338884969 -
17.173134228960507;0.14663208187787996 2.6021810739622904 
23.838896114255526 15.858053860434767 -1.9416346208880533 -
4.8491635827996218 14.945669253722928 -27.243518477049573 -
4.4533653117735925 7.0662767689095913 5.4063890362642129;-
3.9776811850287879 0.72582226205249556 -0.17264682882411833 
0.22879491914996752 -0.75100411862093441 -0.345873207141562 -
0.5186021854224081 2.6172023048536901 0.81562487513500681 
1.6483619742610971 1.9040601393566394;6.8210073528624111 
0.79851307653715031 9.4796491112942558 -1.759352431098828 -
12.889186118297191 -0.38459245576119694 -0.94173786511903101 -
1.721618586263326 -0.3882561448466646 -1.0167887201881065 
1.1821918686300874;3.892815630444622 -2.5736239461678689 -
2.4958343038537962 2.7873942939099594 -0.48823385527198754 
1.8585040388452969 0.0002617261032726928 -5.5899864352108244 
6.9327022585604672 3.3160480567580599 -
2.2252704553101821;2.6576795913114726 3.6008154455917598 
4.9412827807674846 -0.50533059850903395 1.7245002802297951 
0.046157465437212358 -0.33492985069544606 4.6322521396239509 -
3.9649415367593486 -1.383448350359342 1.9914490191693208]; 
  
% Layer 2 
b2 = [-2.9172325597170654;2.9167274490819302]; 
LW2_1 = [-0.68809591381188584 -1.4607728610405701 -
1.6238488476606483 6.9788788054694297 -0.61976254746093096 -
4.9265439747227395 1.0417043234614864 -0.74289328931869447 
8.0784692699100091 -0.82279084585800033 -0.56046200238672084 -
0.79683941009592152;0.68807226743402228 1.4610896371101756 
1.6235330175730831 -6.9788441387778821 0.61977998753747865 
4.9267415339370322 -1.0418264874354202 0.74238455568814299 -
8.0790308682711061 0.82283214139330507 0.560614825158956 
0.79706231990648968]; 
  
% ===== SIMULATION ======== 
  
% Dimensions 
Q = size(x1,2); % samples 
  
% Input 1 
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xp1 = 
mapminmax_apply(x1,x1_step1_gain,x1_step1_xoffset,x1_step1_ymi
n); 
  
% Layer 1 
a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*xp1); 
  
% Layer 2 
a2 = softmax_apply(repmat(b2,1,Q) + LW2_1*a1); 
  
% Output 1 
y1 = a2; 
end 
  
% ===== MODULE FUNCTIONS ======== 
  
% Map Minimum and Maximum Input Processing Function 
function y = 
mapminmax_apply(x,settings_gain,settings_xoffset,settings_ymin
) 
y = bsxfun(@minus,x,settings_xoffset); 
y = bsxfun(@times,y,settings_gain); 
y = bsxfun(@plus,y,settings_ymin); 
end 
  
% Competitive Soft Transfer Function 
function a = softmax_apply(n) 
nmax = max(n,[],1); 
n = bsxfun(@minus,n,nmax); 
numer = exp(n); 
denom = sum(numer,1);  
denom(denom == 0) = 1; 
a = bsxfun(@rdivide,numer,denom); 
end 
  
% Sigmoid Symmetric Transfer Function 
function a = tansig_apply(n) 
a = 2 ./ (1 + exp(-2*n)) - 1; 
end 
 

 


