ТАLLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА Серия А № 50 1953

Х. Х. ЛАУЛ

РАСЧЕТ ЦИЛИНДРИЧЕСКИХ ОБОЛОЧЕК с криволинейными частями, очерченными по окружности

ENERY Treducto

ЭСТОНСКОЕ ГОСУДАРСТВЕННОЕ ИЗДАТЕЛЬСТВО ТАЛЛИН 1953

1. ОБЩИЕ ЗАМЕЧАНИЯ

Большинство применяемых в практике цилиндрических оболочек имеет очерченные по окружности криволинейные части. На рис. I представлены некоторые поперечные сечения таких оболочек.

Рис. 1.

При применении разработанного автором метода расчета, т. н. метода аппроксимации сдвигающих сил у таких оболочек возможно избежать существенной части расчетной работы, используя таблицы, приведенные в конце этой статьи.

Наш метод расчета для оболочек со средней длиной [6]¹, [7], [8], [9], [10], в соответствии с т. н. "полубез-

¹ Цифры в квадратных скобках указывают на труд, упоминаемый в библиографии.

моментной теорией" (название Новожилова [2]) состоит в следующем:

Рис. 2.

Рассматривая цилиндрическую оболочку (рис. 2) как большую балку, опирающуюся на диафрагмы, находим существенные усилия — продольные силы $T_o = \delta \sigma_o$ и сдвигающие силы $S_o = \delta \tau_o$ (рис. 3) — по методам сопротивления материалов. При этом, как известно, предполагается, что поперечные сечения всей оболочки как балки остаются плоскими и изменений кривизны контура поперечного сечения не происходит. Центральная величина в расчетах — приращение сдвигающих сил — $\zeta_o = \frac{\partial S_o}{\partial x}$

является постоянной вдоль оболочки при той же нагрузке. Поперечные моменты M_o в элементарной полоске 1—2—3—4 (рис. 2) вследствие нагрузок и ζ_o находим путем

интегрирования ([3], [4],). Также M_o оказываются постоянными вдоль оболочки вместе с нагрузкой. Влияние продольных моментов (M_1), и продольных поперечных сил (Q_1) предполагается настолько малым, что им можно пренебречь на существенные усилия T и M_{\bullet}

Дальше аппроксимируем усилия т. н. начальной задачи M_o, S_o, T_o путем введения дополнений $\Delta \zeta$ для ζ_o . В дальнейшем предполагается, что при постоянной нагрузке

Рис. 3.

вдоль оболочки, постоянными являются также $\Delta \xi$. Выражение для $\Delta \xi$ содержит некоторое количество неизвестных параметров a_i . Часть этих параметров, т. н. зависимых, возможно исключить при помощи условий равновесия и сходимости деформаций (если такие существуют). Остальная часть параметров, т. н. независимых параметров, определяется в соответствии с методом *Кастильяно-Ритца* путем условий минимума потенциальной энергии внутренних сил.

Дополнения продольных и сдвигающих сил можно найти путем выражений [6]:

$$\Delta T = \frac{4x(L-x)}{L^2} \frac{\partial}{\partial s} (\Delta \xi),$$
$$\Delta S = -\left(\frac{L}{2} - x\right) \Delta \xi,$$

а дополнение поперечных моментов — ΔM путем простого интегрирования [6].

Отметим, что вследствие вышеизложенных предпосылок ΔT изменяется вдоль оболочки по квадратичной параболе, а дополнение поперечных моментов ΔM в том же направлении является постоянным.

Действительные усилия определяются после нахождения параметров суммированием.

Например:

$$\max T = \max T_o + \frac{L^2}{8} \frac{\partial}{\partial s} (\Delta \zeta).$$

Относительно представленного метода указаны некоторые подробности в [6], [7], из которых выдвигаем следующие:

а) В криволинейной части оболочки Δζ целесообразно выразить путем тригонометрического ряда, например:

$$\Delta \zeta = \sum_{i} a_{i} \sin \frac{i \pi s}{s_{oi}} = \sum_{i} a_{i} \Delta \zeta_{i}, \ i = 1, 2 \dots n;$$

 б) также в бортовых элементах Δζ выражена путем тригонометрического ряда;

в) исходя из условий сходимости продольных деформаций и сдвигающих сил, на линиях соединения бортовых элементов и криволинейных частей оболочки определяются параметры soi поперечного сечения оболочки (например, приведенная полудлина оболочки).

Таким образом, каждый член тригонометрического ряда для Δζ зависит также от размеров бортового элемента. г) Интегралы в условиях минимума потенциальной энер-

г) Интегралы в условиях минимума потенциальной энергии внутренних сил вычисляются после исключения зависимых параметров путем численных методов. Таким образом, в интегралах типа $\int Mmds$ величины M и m являются линейными комбинациями из m_i ; M_o и т. д.

Отметим, что представленная схема расчета не допускает существенного табулирования решения даже для оболочек, имеющих криволинейные части, очерченные по окружности.

С целью увеличения применимости метода табулирования в настоящем вводятся следующие изменения в схеме расчета оболочек, имеющих криволинейные части постоянной толщины и очерченные по окружности: а) Решение начальной задачи не используется, так как усилия начальной задачи в общем не табулируемые.

Путем условий минимума потенциальной энергии внутренних сил и некоторых дополнительных условий находится непосредственно приращение сдвигающих сил

$$\zeta = \frac{\partial S}{\partial x}.\tag{1}$$

б) В криволинейной части оболочки назначают

$$\zeta = a_{\rm I} \frac{s}{s_o} + a_{\rm II} + \sum_i a_i \sin \frac{i\pi s}{s_o}, \qquad (1')$$

где s_o означает действительную полудлину или длину криволинейной части оболочки. Условия сходимости сдвигающих сил на линиях соединения бортовых элементов и криволинейной части оболочки удовлетворяются автоматически из-за наличия параметров a₁ и a₁₁.

в) В бортовых элементах предполагается линейное распределение продольных напряжений. Соответствующая эпюра ζ является квадратичной параболой.

г. Интегрирование происходит также после исключения зависимых параметров, но в интегралах $\int Mmds$ подинтегральные величины M и m не являются линейными комбинациями.

2. РАСЧЕТНАЯ СХЕМА, ПРИСПОСОБЛЕННАЯ ДЛЯ ПРИМЕНЕНИЯ ТАБЛИЦ

Действительные поперечные моменты возможно представить в форме

$$M = M_o + \sum_{1}^{n} a_i m_i + \sum_{1}^{w} a_v m_v,$$
(2)

где a_i — независимые параметры (i = 1, 2, 3...n), a_v — зависимые параметры (v = I, II, ..., w),

 $m_i; m_v$ — изгибающие моменты в элементарной полоске вследствие ζ_i (соотв. ζ_i), если $a_i = I$ (соотв. $a_v = I$).

Моменты *m_i*; *m_v* представлены в таблицах 1 до 8 (или их можно найти путем комбинирования данных этих таблиц).

При расчете *M*_o в поперечном направлении для постоянной нагрузки можно использовать таблицы 9, 10, а при

нагрузке, сосредоточенной над бортовым элементом, таблицу 7.

Зависимые параметры a_v исключаются путем w дополнительных условий (равновесия и сходимости деформаций):

$$a_v = K_v + \sum_{1}^{n} k_{vi} a_i.$$
(3)

О составлении дополнительных условий подробнее сказано ниже в численных примерах.

Таким образом, для изгибающих моментов в поперечной полоске 1—2—3—4 (рис. 2) получаем выражение

$$M = M_{o} + \sum_{1}^{w} K_{v} m_{v} + \sum_{1}^{n} (m_{i} + \sum_{1}^{w} k_{vi} m_{v}) a_{i} =$$
(2')
$$= M_{o}^{'} + \sum_{1}^{n} m_{i}^{'} a_{i},$$
$$M_{o}^{'} = M_{o} + \sum_{1}^{w} K_{v} m_{v},$$
$$m_{i}^{'} = m_{i} + \sum_{1}^{w} k_{vi} m_{v}.$$

где

Из (2') вытекает непосредственно

$$\frac{\partial M}{\partial a_{k}} = m_{k}^{'} = m_{k} + \sum_{1}^{w} k_{ik} m_{i}.$$

Член в k-ом условии минимума потенциальной энергии внутренних сил, выражающий влияние поперечных изгибающих моментов, получается

$$\frac{6L}{E\delta^3} \int M \frac{\partial M}{\partial a_k} ds = \frac{6L}{E\delta^3} (B_k + \sum A_{ki} a_i), \qquad (4)$$

где

$$B_{k} = \int M_{o}m_{k}ds + \sum_{1}^{r} k_{vk} \int M_{o}m_{v}ds + \sum_{v=1}^{r} k_{vk}K_{v} \int m_{v}m_{v}ds,$$

$$v = 1 \div w$$

$$v = 1 \div w$$
(5)

$$A_{ki} = \int m_i m_k ds + \sum_{1}^{w} k_{vi} \int m_v m_k ds + \sum_{1}^{w} k_{vk} \int m_v m_i ds + \sum_{1}^{w} k_{vk} k_{vi} \int m_v m_v ds,$$

$$V = 1 \stackrel{\cdot}{:} w$$

$$w = 1 \stackrel{\cdot}{:} w$$
(6)

Для удобства вычисления коэфициентов A_{ki} и B_k составлены таблицы 17 и 18, для i = 1, 2, 3, 4, 5 и v = I, II, III.

В (5) и (6) встречающиеся интегралы типа § Mmds можно легко вычислить при помощи таблиц 12, 13 и 14 или комбинируя данные этих таблиц. Отметим, что таблицы 12, 13 и 14 расчитаны по интегралам таблицы 11, причем для получения требуемой точности необходимо было учитывать до десяти знаков в тригонометрических функциях.

Для прямолинейных частей при расчете интегралов типа $\int Mmds$ возможно использовать готовые формулы, изложенные в любом курсе строительной механики.

Максимальная продольная сила тахТ в середине пролета

$$\max T = \sum_{1}^{n} a_{i} \max T_{i} + \sum_{1}^{w} a_{v} \max T_{v}, \qquad (7)$$
$$\max T_{i} = \frac{L^{2}}{8} \frac{\partial}{\partial s} (\zeta_{i}) - \text{m. e. } a_{i} = 1,$$

где

$$\max T_{\nu} = \frac{L^2}{8} \frac{\partial}{\partial s} (\zeta_{\nu}) - \text{m. e. } a_{\nu} = 1.$$

Учитывая (3), получаем

$$\max T = \frac{L^2}{8} \left\{ \sum_{1}^{w} K_v \frac{\partial}{\partial s}(\zeta_v) + \sum_{1}^{n} \left[\frac{\partial}{\partial s}(\zeta_i) + \sum_{1}^{w} k_{v_i} \frac{\partial}{\partial s}(\zeta_v) \right] a_i \right\}, (7')$$
откуда $\frac{\partial(\max T)}{\partial a_k} = \frac{L^2}{8} \left[\frac{\partial}{\partial s}(\zeta_k) + \sum_{1}^{w} k_{v_k} \frac{\partial}{\partial s}(\zeta_v) \right].$

Так как функции $\frac{\partial}{\partial s}(\zeta_i)$ и $\frac{\partial}{\partial s}(\zeta_v)$ являются ортогональными, то для члена продольных сил в *k*-ом условии минимума потенциальной энергии внутренних сил получаем следующее выражение :

$$\frac{0,2(6)L}{E\delta}\int \max T\frac{\partial(\max T)}{\partial a_k}ds = \frac{0,2(6)L^5}{64E\delta}\Big(C_k + \sum_{i}^{n} D_{ki}a_i\Big), \quad (8)$$

где

$$C_{k} = \sum_{1}^{n} k_{\nu k} K_{\nu} \int \left[\frac{\partial}{\partial s} (\xi_{\nu}) \right]^{2} ds, \qquad (9)$$

$$D_{ki} = \left\{ \sum_{1} k_{\nu_k} k_{\nu_i} \int \left[\frac{\partial}{\partial s} (\xi_{\nu}) \right]^2 ds \right\} + \left\| \int \left[\frac{\partial}{\partial s} (\xi_k) \right]^2 ds, \quad (10)$$

где $\int \left[\frac{\partial}{\partial s}(\zeta)\right]^2 ds$ взят по всей длине поперечного сечения оболочки.

Для удобного вычисления коэфициентов C_k и D_{ki} составлена таблица 19.

Интегралы, встречающиеся в последних формулах легко вычислить.

Так для криволинейной части оболочки:

если
$$\xi_i = \sin \frac{i\pi\varphi}{\varphi_o}, \quad \text{то} \int_o^{\varphi_o} \left[\frac{\partial}{\partial s}(\xi_i)\right]^2 R d\varphi = \frac{i^2\pi^2}{2s_o};$$
 (11)

$$\xi_{\rm I} = \frac{\varphi}{\varphi_o} \left($$
или $\frac{s}{s_o}\right), \quad \text{то} \int_{o}^{\varphi_o} \left[\frac{\partial}{\partial s}(\xi_{\rm I})\right]^2 Rd\varphi = \frac{1}{s_o}.$ (12)

Для прямолинейной части, шириной b_o и толщиной δ_o:

если
$$\zeta_a = \frac{4b(b_o - b)}{b_o^2}$$
 (парабола и $a_a = 1$), то

$$\int_o^{b_o} \left[\frac{\partial}{\partial s}(\zeta_a)\right]^2 ds = \frac{5,(3)}{b_o} \frac{\delta}{\delta_o}; \qquad (13)$$
если $\zeta_1 = \frac{b}{b_o} \left($ или $\frac{b_o - b}{b_o}\right)$, то

$$\int_o^{b_o} \left[\frac{\partial}{\partial s}(\zeta_1)\right]^2 ds = \frac{1}{b_o} \frac{\delta}{\delta_o}. \qquad (14)$$

Таким образом получаем k-ое условие минимума потенциальной энергии внутренних сил

$$\frac{6L}{\delta^3} \Big[B_k + \sum_{1}^{n} A_{ki} a_i \Big] + \frac{0,2(6) \cdot L^5}{64\delta} \Big(C_k + \sum_{1}^{n} D_{ki} a_i \Big) = 0, \quad (15)$$

где по предложению *В. З. Власова* [1] для оболочек средней длины не учтено влияние поперечных продольных сил и сдвигающих сил (т. е. $\varepsilon_2 = \gamma = 0$).

Отметим, что сохраняя в условиях минимума потенциальной энергии внутренних сил (15) только члены, выражающие влияние продольных сил, получаем результаты, соответствующие результатам, полученным по теории тонкостенных стержней или (в случае симметрии) по методам обыкновенного сопротивления материалов. Такой случай может иметь место, если толщина оболочки δ или продольный пролет L достаточно велики.

Наоборот, если сохранять в (15) только члены, выражающие влияние поперечных моментов, то получаем результаты, соответствующие безмоментной (мембранной) теории оболочки. Такой случай может иметь место, если толщина оболочки достаточно мала ($\delta \rightarrow 0$). Также с уменьшением продольного пролета значение продольных сил резко падает, но при чрезмерно маленьком продольном пролете L "полубезмоментная" теория, повидимому, не имеет силы.

Так как мы в настоящем отказались от применения начальной задачи, то в общем система линейных уравнений (15) получается довольно "чувствительной". Вследствие этого члены в (15), выражающие влияние продольных сил, несмотря на их исключительную малость по сравнению с членами моментов, часто имеют решающее значение на результаты. Кроме того, при вычислении точность логарифмической линейки уже, как правило, недостаточна.

3. ПРИМЕРЫ

а) Рассмотрим пример, представленный на рис. 4. Нагрузки симметричные относительно гребня оболочки и постоянные вдоль оболочки.

Нагрузка на криволинейной части обс

$$q = 0.35 \text{ T/M}^2.$$

Нагрузка над бортовым элементом

$$q_o = 1,0$$
 T/M.

5 — эпюра назначена для криволинейной части:

$$\zeta = a_1 \frac{s}{s_o} + a_1 \sin \frac{\pi s}{s_o} + a_2 \sin \frac{2\pi s}{s_o};$$

для бортового элемента:

$$\zeta = a_{\mathrm{I}} \left(1 - \frac{b}{b_o} \right) + a_o \frac{4b(b_o - b)}{b_o^2}.$$

За независимые параметры избираем a_1 и a_2 .

Зависимые параметры определяем: а) из условия равновесия в вертикальном направлении:

$$\begin{aligned} &R\varphi_o q + q_o + \sum_{1}^{2} Ra_i \frac{(-1)^{i+1} \sin\varphi_o}{\frac{i\pi}{\varphi_o} - \frac{\varphi_o}{i\pi}} + \frac{2}{3} b_o a_o + \\ &+ \left[\frac{b_o}{2} + R \left(\frac{\sin\varphi_o}{\varphi_o} - \cos\varphi_o \right) \right] a_1 = 0. \end{aligned}$$

β) из условия сходимости продольных напряжений (деформаций на линии соединения бортового элемента и криволинейной части оболочки:

$$-\frac{4,5}{R}a_1 + \frac{9}{R}a_2 + \frac{a_1}{R\varphi_o} = -\frac{\delta}{\delta_o}\frac{a_1}{b_o} + \frac{\delta}{\delta_o}\frac{4a_o}{b_o},$$

откуда

 $\begin{array}{l} a_{1} = -0.2287022 \ a_{1} - 0.2820916 \ a_{2} - 1.1389316 \\ a_{o} = -0.7221290 \ a_{1} + 1.1134826 \ a_{2} - 0.5094421 \equiv a_{11} \end{array} (A)$

Для составления двух условий минимума потенциальной энергии внутренних сил необходимые коэфициенты A_{ki} ; B_k ; D_{ki} и C_k найдены из таблиц I и II (срав. табл. 17, 18, 19).

Отмечаем, что в настоящем

$$\overline{m}_{1} = m_{1} + \frac{b_{o}}{2} m_{a}; \ \overline{m}_{II} = \frac{2}{3} b_{o}m_{a}; \ M_{o} = \overline{M}_{o} + q_{o}m_{a},$$

$$r_{IR} m_{1}, m_{a}, \overline{M}_{o} \text{ в смысле таблиц 5, 7, 9.}$$

$$Tаким образом (срав. таблиц 12 и 13):$$

$$\int M_{o}m_{1}ds = \frac{R^{5}}{10^{4}} [q7,852706 + \frac{q_{o}}{R}25,3788] = \frac{R^{5}}{10^{4}}5,467310,$$

$$\int M_{o}m_{2}ds = \frac{R^{5}}{10^{4}} [-q7,918667 - \frac{q_{o}}{R}26,3008] = -\frac{R^{5}}{10^{4}}5,589171,$$

$$\int M_{o}\overline{m}_{1}ds = \frac{R^{5}}{10^{4}} \cdot 26,043300,$$

$$\int M_{o}\overline{m}_{I}ds = \frac{R^{5}}{10^{4}} \cdot 26,043300,$$

$$\int M_{o}\overline{m}_{I}ds = \frac{R^{5}}{10^{4}} \cdot 23,730301,$$

$$\int m_{1}^{2}ds = \frac{R^{5}}{10^{4}} \cdot 0,86360,$$

$$\int m_{1}\overline{m}_{2}ds = \frac{R^{5}}{10^{4}} \cdot 0,86360,$$

$$\int m_{1}\overline{m}_{I}ds = \frac{R^{5}}{10^{4}} [1,27976 + \frac{b_{o}}{2R}25,3788] = \frac{R^{5}}{10^{4}}3,72674,$$

$$\int m_{2}\overline{m}_{I}ds = \frac{R^{5}}{10^{4}} (-1,27400 - \frac{b_{o}}{2R}26,3008) = -\frac{R^{5}}{10^{4}}3,80987,$$

$$\int m_{2}\overline{m}_{I}ds = \frac{R^{5}}{10^{4}} (-1,27400 - \frac{b_{o}}{2R}26,3008) = -\frac{R^{5}}{10^{4}}3,80987,$$

$$\int m_{2}\overline{m}_{I}ds = \frac{R^{5}}{10^{4}} (1,88160 + \frac{b_{o}}{R}38,7804 + \frac{b_{o}^{2}}{4R^{2}}905,4763) =$$

$$= \frac{R^{5}}{10^{4}} 16,2091,$$

 $\int \overline{m}_{II}^2 ds = \frac{R^5}{10^4} \left(\frac{4}{9} \frac{b_o^2}{R^2} 905,4763 \right) = \frac{R^5}{10^4} 14,964835.$

Систему уравнений получаем следующую:

Таблица І

 A_{ki} и B_k

The first of the second state of the second state of the		and the second second	and the state of the state of the
k	NO GART. NO 1	and March	2
i	1	2	2
k _{Ii}	- 0,228702	- 0,282092	
k _{IIi}	- 0,722129	1,113483	1,113483
$\int m_i m_k ds$	0,88200	- 0,86360	0,86262
$k_{\mathrm{I}i}\int \overline{m}_{\mathrm{I}}m_{k}ds$		— 1,05128	1,07473
$k_{\mathrm{II}i}\int \overline{m}_{\mathrm{II}}m_k ds$	- 2,35605	3,63289	
$k_{\mathrm{I}k}\int \overline{m}_{\mathrm{I}}m_{i}ds$	- 0,85231	0,87133	1,07473
$k_{\rm IIk} \int \overline{m}_{\rm II} m_i ds$	- 2,35605	2,44163	·
$k_{\mathrm{I}k}k_{\mathrm{I}i}\int \overline{m}_{\mathrm{I}}^2 ds$	0,92985	1,14692	1,41466
$(\mathbf{k}_{\mathrm{I}k}\mathbf{k}_{\mathrm{II}i} + k_{\mathrm{II}k}\mathbf{k}_{\mathrm{I}i})\int \overline{m}_{\mathrm{I}}\overline{m}_{\mathrm{II}}ds$	5,35396	- 0,82585	- 1,38509
$k_{IIk}k_{IIi}\int \overline{m}_{II}^2 ds$	7,80372	- 12,03290	18,55405
$\Sigma = A_{ki}$	8,55281	- 6,68086	5,26836
KI		— 1,1389316	i ala
K _{II}		0,5094421	2 Santalana
$\int M_o m_k ds$	5,	46731	- 5,58917
$K_{\rm I}\int \overline{m}_{\rm II}m_k ds$	— 4,	24450	4,33918
$K_{\rm II} \int \overline{m}_{\rm II} m_k ds$	-1,	66212	1,72251
$k_{\mathrm{I}k}(K_{\mathrm{I}}\int \overline{m}_{\mathrm{I}}^{2}ds + \int M_{o}\overline{m}_{\mathrm{I}}ds)$	— 1,	32552	- 1,63496
$k_{\mathrm{II}k}(K_{\mathrm{II}}\int \overline{m}_{\mathrm{II}}^2 ds + \int M_o \overline{m}_{\mathrm{II}} ds)$	— 11,	17,93440	
$(K_{\mathrm{I}}k_{\mathrm{II}k} + K_{\mathrm{II}}k_{\mathrm{I}k})\int \overline{m}_{\mathrm{I}}\overline{m}_{\mathrm{II}}ds$	15,	21984	— 18,22671
$\Sigma = B_k$	1,	82398	- 1,45475

 $\frac{R^5}{104} \frac{6L}{4^3} \left(1,82398 + 8,55281 a_1 - 6,68086 a_2\right) +$

 $+ 0,2(6) \frac{L^5}{64\delta} (0,47213 + 1,31625 a_1 - 0,81141 a_2) = 0;$

 $\frac{R^5}{10^4} \frac{6L}{\delta^3} \left(-1,\!45475 - 6,\!68086 \,a_1 + 5,\!26836 \,a_2\right) + 0,\!2(6) \frac{L^5}{64\delta} \times$

 $\times (-0,47649 - 0,81141 a_1 + 4,34251 a_2) = 0, (B)$

откуда

 $a_1 = -0,15835; a_2 = 0,07597$

и используя (А)

 $a_1 = -1,12415; a_{II} = a_o = -0,31050.$

Гаолина П	T		1					T	1	
I a U A A H A H		2	n	TT	TA	11	2		4	
	1	a	U	10	ri	ц	a	1	1	

	and the second second second	and the second second second	
k	1		2
i and i a	1	2	2
k _{Ii}	- 0,228702	- 0,282092	- 0,282092
k _{III}	· 0,722129	1,113483	1,113483
$\int \left[\frac{\partial}{\partial s}\zeta_k\right]^2 ds$	0,757266	-	3,029064
$k_{\mathrm{I}k}k_{\mathrm{I}i}\int \left[\frac{\partial}{\partial s}\left(\bar{\xi}_{\mathrm{I}}\right)\right]^{2}ds$	0,018197	0,022445	0,027684
$k_{\mathrm{II}k}k_{\mathrm{II}i}\int \left[\frac{\partial}{\partial s}\left(\overline{\xi}_{\mathrm{II}}\right)\right]^2 ds$	0,540783		1,285761
$\Sigma = D_{ki}$	1,316246		4,342509
K _I	AN ANY ANY	- 1,1389316	and the setting of
K _{II}			
$\overline{k_{1k}K_{I}\int\left[\frac{\partial}{\partial s}\left(\overline{\xi}_{I}\right)\right]^{2}ds}$	0,09	0619	0,111774
$\boldsymbol{k}_{\mathrm{II}k} \mathcal{K}_{\mathrm{II}} \int \left[\frac{\partial}{\partial s} \left(\bar{\boldsymbol{\zeta}}_{\mathrm{II}} \right) \right]^2 ds$	0,38	1508	- 0,588263
$\Sigma = C$	0,47	2127	- 0,476489

 D_{ki} и C_k

 $\int \left[\frac{\partial}{\partial s}(\zeta_{1})\right]^{2} ds = 0,757266; \quad \int \left[\frac{\partial}{\partial s}(\zeta_{2})\right]^{2} ds = 3,029064,$ $\int \left[\frac{\partial}{\partial s}(\bar{\zeta}_{I})\right]^{2} ds = \frac{1}{s_{o}} + \frac{0,07}{0,20} \frac{1}{b_{o}} = 0,347898,$ $\int \left[\frac{\partial}{\partial s}(\bar{\zeta}_{II})\right]^{2} ds = \frac{0,07}{20} \cdot \frac{5,(3)}{b_{o}} = 1,037035.$

Путем суммирования (применяя таблицы 1, 2, 5, 7, 9, 16) найденные усилия M и max $\sigma = \max T | \delta$ представлены на рис. 4 линией 1. Там же показаны результаты (линия 2), если взять три независимых параметра $(a_1; a_2; a_3)$. Очевидно, ограничиваясь двумя независимыми параметрами, уже получаем достаточно точные результаты.

Если мы в системе уравнений (B) сохраняем только члены, выражающие влияние продольных сил ($\delta \rightarrow \infty$, т. е. начальная задача), получаем усилия, как они показаны на рис. 4 пунктиром (линия 3).

Наоборот, если в системе (B) сохранять только члены, выражающие влияние поперечных моментов (т. е. $\delta \rightarrow 0$ безмоментное состояние), получаем усилия, как они показаны на рис. 4 линией 5. Из эпюры моментов видим, что двумя независимыми параметрами возможно достаточно точно описать безмоментное состояние напряжений.

Очевидно, оба иногда рекомендованные в литературе приема расчета в данном, довольно обыкновенном случае, не оправданы. Так, в первом случае (не деформируемый контур поперечного сечения) получаются громадные поперечные моменты, а во втором случае (при беспрепятственно деформируемом контуре поперечного сечения) получается очень неприятное распределение продольных напряжений, притом результирующая растягивающая сила в среднем сечении оболочки увеличивается примерно на 70°/0 в сравненик с результатами правильного решения.

б) В качестве следующего примера рассматриваем железобетонное покрытие стадиона.

Однопролетная оболочка со сложным поперечным сечением, работающая между диафрагмами-консолями, представлена на рис. 5. Там же показаны геометрические величины и параметры нагрузки. Определяем непосредственно эпюру 5 в форме:

В части B - A: $\zeta = a_{II} \frac{b}{b_o} + a_5 \frac{4b(b_o - b)}{b_o^2}$, в части A - C: $\zeta = a_{II} + a_I \frac{\varphi}{\varphi_o} + \sum_{1}^{4} a_i \sin \frac{i\pi\varphi}{\varphi_o}$,

в части
$$C-D$$
: $\zeta = (a_1 + a_{II}) \frac{c_o - c}{c_o} + a_o \frac{4c(c_o - c)}{c_0^2}$.

Рис. 5.

Всего имеем 8 параметров.

Распределение продольных напряжений в гранях A - B и C - D в соответствии с выбранной ζ эпюрой является линейным.

Три параметра возможно исключить посредством следующих дополнительных условий:

а) сходимость продольных напряжений в точке А:

$$\frac{1}{\delta_o} \left(\frac{a_{\rm II}}{b_o} - a_5 \frac{4}{b_o} \right) = \frac{1}{\delta} \left(\frac{a_{\rm I}}{R\varphi_o} + \sum \frac{i\pi}{R\varphi_o} a_i \right),$$

2 Х. Х. Лаул

β) сходимость продольных напряжений в точке C:

$$\frac{1}{\delta R \varphi_o} [a_{\rm I} + \sum_{\rm I} (-1)^i \pi a_i] = \frac{1}{\delta_o c_o} [4a_o - (a_{\rm I} + a_{\rm II})],$$

у) равновесие в горизонтальном направлении:

$$a_{\mathrm{I}} \frac{R}{\varphi_o} \left(1 - \cos \varphi_o \right) + a_{\mathrm{II}} \left(R \sin \varphi_o + \frac{b_o}{2} \right) + a_5 \frac{2}{3} b_o + R \sum_{1}^{4} a_i \frac{(-1)^{i+1} + \cos \varphi_o}{\frac{i\pi}{\varphi_o} - \frac{\varphi_o}{i\pi}} = 0.$$

Из этих условий выражаем зависимые параметры a_1 ; a_{II} и $a_o \equiv a_{III}$ посредством остальных:

$$\begin{split} a_{\rm I} &= -2,190907 \ a_1 - 3,133149 \ a_2 - 4,975157 \ a_3 - \\ &- 6,357886 \ a_4 - 4,702908 \ a_5, \\ a_{\rm II} &= 0,434653 \ a_1 + 1,440194 \ a_2 + 2,034363 \ a_3 + \\ &+ 2,838514 \ a_4 + 1,849835 \ a_5, \\ &\text{III} &\equiv a_0 = -0,585344 \ a_1 - 0,336827 \ a_2 - 1,130217 \ a_3 - \\ &- 0,709532 \ a_4 - 0,842278 \ a_5. \end{split}$$

Эпюра моментов, вызванная, например, с $\xi_{\rm I}$ (если $a_{\rm I} = {\rm I}$), не соответствует эпюре в табл. 7, так как необходимо кроме того учесть влияние силы ${\rm I} \cdot \frac{c_o}{2}$ в бортовом элементе C - D.

Таким образом, моментами, целиком выражающими влияние ζ₁, являются:

$$\overline{m}_{I} = m_{I} - 1 \cdot \frac{c_{o}}{2} \cos \varphi_{o} \cdot m_{a} + 1 \cdot \frac{c_{o}}{2} \sin \varphi_{o} \cdot m_{b} =$$
$$= m_{I} - R \cdot 0,012310 \ m_{a} + R \ 0,014671 \ m_{b} \,.$$

Аналогично

$$\overline{m}_{\rm II} = m_{\rm II} - R \cdot 0,012310 \ m_a + 0,014671 \ m_b \,.$$

$$\overline{m}_{\rm III} = -\frac{2}{3} c_o \cos \varphi_o \ m_a + \frac{2}{3} c_o \sin \varphi_o \cdot m_b =$$

$$= -R0,016413 \ m_a + R0,019561 \ m_b \,.$$

a

Начальный момент в элементарной поперечной полоске $M_o = \overline{q} (\cos \varphi_o m_a - \sin \varphi_o m_b) + \overline{M}_o \cos \varphi_o + \overline{\overline{M}}_o \sin \varphi_o.$

В приведенных выражениях встречающиеся величины $m_1; m_{II}; m_a; m_b; \overline{M}_o; \overline{M}_o$ получаются непосредственно из таблиц.

Дальше составляем 5 условий минимума потенциальной энергии внутренних сил в форме:

$$\frac{6L}{\delta_r^3} \int M \frac{\partial M}{\partial a_i} ds + 0,2(6) \frac{L^5}{64\delta_r} \int \frac{\partial}{\partial s} (\zeta) \times \frac{\partial}{\partial a_i} \left[\frac{\partial}{\partial s} (\zeta) \right] ds = 0.$$

Притом для приведенной толщины δ_r выбрана толщина криволинейной части оболочки. Все члены моментов в условиях минимума потенциальной энергии приводятся на эту толщину путем умножения на коэфициент $\left(\frac{\delta_r}{\delta}\right)^3$ и все члены продольных сил на коэфициент $\left(\frac{\delta_r}{\delta}\right)$.

Все интегралы типа ∫ *Mmds* находятся из таблиц. Например :

$$\begin{split} \int \overline{m}_{1}m_{1}ds &= \frac{R^{5}}{10^{4}} \left[\Psi_{11} - 0,012310 \ \Psi_{1a} + 0,014671 \ \Psi_{1b} + \right. \\ &+ \left(\frac{\delta_{r}}{\delta_{o}} \right)^{3} \frac{b_{o}}{3R} \overline{m}_{1A} \cdot m_{1A} \right] = \frac{R^{5}}{10^{4}} \left(5,98166 - 0,012310 \cdot 72,5291 - 0,014671 \cdot 39,8854 + 0,054474 \cdot 6,4952 \cdot 6,1076 \right) = \\ &= \frac{R^{5}}{10^{4}} \cdot 6,66448 \,, \end{split}$$

где последний член выражает энергию изгиба, накопленную в плите *B*, *A*.

Применяя таблицы 17, 18, 19, находим коэфициенты A_{ik} , B_k , C_k и D_{ki} и, таким образом, получаем условия минимума потенциальной энергии внутренних сил.

$$\begin{array}{r} 1,62255\,a_1+5,87461\,a_2+4,15585\,a_3+8,27418\,a_4+\\ \qquad +5,99840\,a_5=5,04460\,,\\ 5,87461\,a_1+25,00068\,a_2+15,36444\,a_3+34,52126\,a_4+\\ \qquad +24,22655\,a_5=24,72910\,, \end{array}$$

2*

 $\begin{array}{r} 4,15585\,\ddot{a_1}+15,36444\,a_2+10,78427\,a_3+21,60787\,a_4+\\ +\,15,63972\,a_5=13,34350\,, \end{array}$

 $\begin{array}{r} 8,27418 \ a_1 + 34,52126 \ a_2 + 21,60787 \ a_3 + 47,81024 \ a_4 + \\ &\quad + 33,67819 \ a_5 = 33,6135 \ , \end{array}$

 $5,99840 a_1 + 24,22655 a_2 + 15,63972 a_3 + 33,67819 a_4 +$ $+ 23,90432 a_5 = 22,9248,$

откуда $a_1 = -0,6757$; $a_2 = 1,5236$; $a_3 = -0,9719$ $a_4 = 0,5209$; $a_5 = -0,5135$.

Из (A) $a_{I} = 0,6454$; $a_{II} = 0,4520$; $a_{III} = 1,0437$.

Рис. 6.

Существенные усилия, поперечные моменты M, максимальные сдвигающие силы у диафрагм и максимальные продольные напряжения (тах $\sigma = \max T | \delta$) найдены из таблиц и показаны на рис. 6. Отметим, что вертикальная реакция в точке A уменьшилась с 10,1 т/м до 1,21 т м. Таким образом, почти вся нагрузка будет передана на диафрагму.

4. ЦИЛИНДРИЧЕСКИЕ ОБОЛОЧКИ С ГЕОМЕТРИ-ЧЕСКИМИ ГРАНИЧНЫМИ УСЛОВИЯМИ НА ПРОДОЛЬНЫХ КРАЯХ

Во многих задачах продольные края оболочек снабжены связями, ограничивающими их краевые перемещения. При нагрузке симметричной относительно гребня оболочки, элементарную поперечную полоску можно рассматривать

как заделанную в гребне двухстороннюю консоль, причем в указанных связях возникают статически неопределенные внутренние силы. Последние сильно искажают картину

распределения внутренних сил в оболочке. В дальнейшем предполагается, что граничные условия на продольных краях оболочки одинаковые по всей ее длине.

Рис. 9.

В общем можно утверждать, что вследствие наличия дополнительных статически неопределимых сил, обусловленных связями на продольных краях оболочки, характер работы последней походит на характер работы оболочки, имеющей большой пролет.

На рис. 7 показаны некоторые поперечные сечения таких оболочек.

Как пример рассматриваем оболочку с заделанными в краях элементарными полосками (рис. 7,а). Задача является важной,

так как это соответствует работе внутренних волн многоволновых оболочек (рис. 8). Бортовые элементы не перемещаются в горизонтальном направлении и не поворачиваются. На рис. 9,в показана статическая схема элементарной полоски. Если рассматривать случай с симметричной нагрузкой, то поперечные полоски оказываются дважды статически неопределимыми. Лишними неизвестными являются горизонтальные силы $H = X_1$ и опорные моменты X_2 , возникающие на линии соединения криволинейной части оболочки с бортовым элементом (рис. 10). Эти статически неопределимые величины выражают влияние соседних волн на рассматриваемую волну.

Рис. 10.

Применяя обыкновенный метод сил, найдем лишние неизвестные из следующей системы линейных уравнений:

$$X_1 \delta_{11} + X_2 \delta_{12} + \delta_{10} = 0,$$

$$X_1 \delta_{12} + X_2 \delta_{22} + \delta_{20} = 0,$$
(16)

где, например, δ_{ik} перемещение в основной системе в направлении лишнего неизвестного "i", вследствие на-грузки $X_k = 1$.

При вычислении элементов перемещений δ_{ik} пренебрегаем влиянием в элементарных полосках существующих продольных сил T_2 и учитываем только воздействие поперечных изгибающих моментов M.

Из статики сооружений следует (срав. таблицы 8, 12, 15):

$$\delta_{11} = \int_{o}^{\varphi_{o}} m_{b} \cdot ds = \frac{R^{3}}{10^{4}} \Psi_{bb},$$

$$\delta_{12} = \int_{o}^{\varphi_{o}} 1_{A} \cdot m_{b} ds = \frac{R^{2}}{100} \Psi_{Ab},$$

$$\delta_{22} = s_{o}.$$

Так как в рассматриваемом случае необходимо повторно применять эту схему, оказывается целесообразным составить сопряженную матрицу:

$$X_{1} = \beta_{11}\delta_{10} + \beta_{12}\delta_{20}; X_{2} = \beta_{21}\delta_{10} + \beta_{22}\delta_{20},$$

$$\mu_{e} \beta_{11} = -A \frac{100}{R^{3}}; \beta_{12} = A \frac{\Psi_{Ab}}{Rs_{o}}; \beta_{22} = -A \frac{\Psi_{bb}}{100s_{o}}, \quad (17)$$

где в свою очередь

$$A = \frac{100}{\Psi_{bb} - \frac{\Psi_{Ab}^2}{\varphi_o}}.$$

Для члена "*i*" ряда ζ (срав. 1') получаем соответствующие поперечные моменты:

$$m_i = m_i + X_1^{(i)} m_b + X_2^{(i)}, \tag{18}$$

где *m_i* — соответствующая величина в статически определимой схеме и берущаяся непосредственно из таблиц.

Таким образом, мы будем аппроксимировать ζ , T, M с совокупностью функций $a_{1}\zeta_{I}$, $a_{1}\zeta_{II}$, $\Sigma a_{i}\zeta_{i}$ и соответствующими им $a_{1}T_{I}$, $\Sigma a_{i}T_{i}$; и $a_{1}m_{I}$, $\Sigma a_{i}m_{i}$; $a_{II}m_{II}$. Отмечаем, что изложенная статически неопределимая задача относительно поперечных моментов \overline{m}_{i} , \overline{m}_{I} , \overline{M}_{o} и т. д. не изменяет величины ζ и T, т. е. они выбираются в соответствии

со статически определимой задачей. Очевидно, такой путь решения оправдан, так как все уравнения равновесия для аппроксимируемых функций (например ζ_i) удовлетворены каждая в отдельности и по принципу *Кастильяно-Ритца* получается правильное решение как соответствующая линейная комбинация этих функций.

Дальше расчет проводится согласно вышепоказанному: При условии минимума потенциальной энергии внутренних сил (15) члены продольных сил не изменяются, но, как правило, члены, выражающие влияние поперечных моментов *M*, сильно уменьшаются. Отсюда вытекает, в соответствии с вышеизложенным, что распределение продольных напряжений по вертикали приблизится к линейному, т. е. они будут более соответствующими результатам решения по методам сопротивления материалов.

Интегралы типа $\int Mm ds$, встречающиеся в членах моментов, возможно вычислить путем комбинирования данных таблиц.

Например:

$$\int \overline{m_1} \overline{m_2} ds = \int \overline{m_1} m_2 ds = \int (m_1 + X_1^{(1)} m_b + X_2^{(1)}) m_2 ds =$$

= $\int m_1 m_2 ds + X_1^{(1)} \int m_b m_2 ds + X_2^{(1)} \int 1_A \cdot m_2 ds,$ (19)

где все интегралы определяются путем таблиц 12 и 15.

В настоящем задача, указанная в рубрике 3,а, решена при предположении, что волна является внутренней.

На рис. 8 представлены результаты расчета с линией 1. Там же показаны эпюры M и тах $\sigma = \max T | \delta$, если предположить, что продольные напряжения σ распределяются по вертикали линейно линией 2. Видим, что в данном случае рекомендация инструкции ЦНИПСа [11] оправдана. Но если нагрузки сосредоточены более в районах бортовых элементов или в районе гребня оболочки, то возможны довольно крупные расхождения между линиями 1 и 2.

Но даже при предположении линейного распределения продольных напряжений в вертикальном направлении применение приложенных таблиц является весьма целесообразным. Так как в этом случае при условиях минимума потенциальной энергии внутренних сил члены моментов отпадают, то коэфициенты системы уравнений для нахождения независимых параметров (например *a*₁ и *a*₂) вычисляются непосредственно при помощи таблицы 19. Продольные силы *T* и сдвигающие силы *S* определяются суммированием. Однако при вычислении поперечных моментов необходимо решить вышеизложенную простую статически неопределимую задачу.

При оболочках с опертыми бортовыми элементами (рис. 7,в) представленный путь решения неприменим, так как вертикальное расстояние между бортовыми элементами и гребнем оболочки изменяется. Таким образом, усилие p_o (т/м) в вертикальных опорных стержнях, расположенных под бортовыми элементами, является по

Рис. 11.

существу дополнительным параметром. Решение проводится аналогично примеру 3,а, но так как бортовый элемент не искривляется, то $a_o = 0$ (ср. [8]). Таким образом, независимыми параметрами являются a_1 и a_2 , а зависимыми a_1 и p_o . Видим, что число параметров не изменяется и задача не усложняется. Нами решен числовой пример (в 3,а) и результаты показаны на рис. 4 с линией 6. Видим, что обыкновенное представление о роли продольных опор под бортовыми элементами, по которому, якобы, опоры сильно облегчают работу оболочек, в общем не оправдано. В заключение отмечаем, что вышеприведенным путем возможно определение усилий также в оболочках, имеющих замкнутый контур поперечного сечения (рис. 7,г). В качестве примера нами решена задача Новожилова [2] (рис. 11): замкнутая оболочка, поперечное сечение которой образовано из четырех плавно сопряженных дуг окружностей, нагруженная равномерным нормальным давлением. Элементарная полоска (вследствие симметрии) статически неопределима. Несмотря на то, что рассмотренная оболочка является в обыкновенном смысле "короткой", наш "полубезмоментный" метод дает после несложных выкладок довольно точные результаты (рис. 12).

Рис. 12.

5. ОБОЛОЧКИ С ТРЕЩИНАМИ В РАСТЯНУТОЙ ЗОНЕ

Нами рассмотрен расчет цилиндрических железобетонных оболочек с трещинами в растянутой зоне в [9], где были выдвинуты следующие основные предпосылки, дающие возможность довести расчет до численных результатов:

а) картина трещин не меняется вдоль оболочки,

б) на протяжении трещин оболочка не работает на восприятие продольных сил даже между трещинами

(т. е. предполагается, что в продольном направлении модуль упругости материала *E* равен нулю),

в) трещины имеются уже до загружения и протяжение их задается наперед.

Таким образом, задача является линейной до дальнейшего развития трещины, т. е. до момента, когда продольные напряжения достигнут у концов трещин величины прочности бетона на растяжение.

Отмечаем, что хотя задача в дальнейшем и является нелинейной, но очевидно, что дальнейшее увеличение нагрузки влечет за собой развитие уже имеющихся трещин.

Далее предполагаем, что по трещинам возможно передавать сдвигающие силы, как это принято при расчете обыкновенных железобетонных конструкций.

Отмечаем, что Л. С. Гильман рассматривал оболочки с трещинами еще в 1938 г. [5].

Так как на протяжении трещин продольные силы равняются нулю:

$$T = T(x)\frac{\partial}{\partial s}(\zeta) = 0,$$

то $\zeta(s)$ является постоянной в направлении "s". Это обстоятельство иногда сильно искажает картину распределения поперечных моментов [9], [5].

Цель расчета с учетом влияния трещин следующая:

При отказе от распределения арматуры в соответствии с эпюрой продольных сил (например по всей высоте бортового элемента — рис. 4) и при сосредоточивании ее у нижнего края бортового элемента в виде стрингера, открываются перспективы значительного снижения потребности в продольной арматуре, так как внутреннее плечо всего поперечного сечения оболочки увеличивается.

В качестве примера рассматриваем внутреннюю волну многоволновой оболочки (рис. 8). Вначале предполагаем, что трещины развиваются по всей высоте бортового элемента. Арматура — стрингер назначен мощностью в $F_a = 35$ см³ у нижних краев обоих бортовых элементов. Расчет показывает, что трещины развиваются дальше и затухают примерно в четвертях криволинейной части оболочки.

Так как в настоящем оправдано предположение линейного распределения продольных напряжений по вертикали, то открывается нижеизложенный простой путь для расчета внутренних волн многоволновых оболочек с применением приложенных таблиц. Познакомимся с ходом расчета на конкретном примере (рис. 13 — данные срав. с примером 3,а, рис. 4).

Рис. 13.

Предполагая, что трещина развивалась до $\psi_o = \frac{\varphi_o}{2} = 20^\circ$, назначим 2 параметра a_1 и a_I , из которых зависимый параметр a_I исключаем путем уравнения равновесия:

$$S_{o}q + q_{o} + Ra_{1} \frac{\sin \psi_{o}}{\frac{\pi}{\psi_{o}} - \frac{\psi_{o}}{\pi}} + Ra_{I} \left[\frac{b_{o}}{R} + \left(\frac{\sin \psi_{o}}{\psi_{o}} - \cos \varphi_{o} \right) \right] = 0,$$

откуда $a_{\rm I} = -0,0946 \ a_1 - 0,8644.$

Так как в данном случае при уравнении минимума потенциальной энергии необходимо учесть только члены продольных сил, то из таблицы 19 получаем:

$$D_{11} = \int \left[\frac{\partial}{\partial s}(\zeta_1)\right]^2 ds + k_{I_1} \int \left[\frac{\partial}{\partial s}(\zeta_1)\right]^2 ds = 1,5352,$$

$$C_1 = K_I k_{I_1} \int \left[\frac{\partial}{\partial s}(\zeta_1)\right]^2 ds = 0,1887,$$

где
$$\int \left[\frac{\partial}{\partial s}(\zeta_1)\right]^2 ds = \frac{\pi^2}{2R\Psi_o} = 1,5145,$$

 $\int \left[\frac{\partial}{\partial s}(\zeta_1)\right]^2 ds = \frac{1}{R\psi_o} + \frac{E_\delta}{E_a} \frac{\delta}{F_a} = 0,3069 + \frac{1}{10} \cdot \frac{0,07}{0,0035} = 2,3069.$

Уравнение для вычисления независимого параметра получается

1,5352
$$a_1 + 0,1887 = 0$$
, откуда
 $a_1 = 0,1229$ и
 $a_1 = -0,8528.$

Максимальное усилие стрингера в середине пролета [7]

$$\max N = -\frac{L^2}{8} a_{\rm I} = 66,6 \, {\rm T} \, .$$

Продольные силы возникают только на протяжении $\varphi = 0 \div 20^{\circ}$ и найдены при помощи следующей таблицы:

сеч.	0	1	2	3	4	
$a_{\rm I} \frac{\partial \zeta_{\rm I}}{\partial s}$	- 0,262	- 0,262	- 0,262	- 0,262	— 0,262	
$a_1 \frac{\partial \zeta_1}{\partial s}$	- 0,119	- 0,084	0	0,084	0,119	
$\Sigma =$	- 0,381	- 0,346	- 0,262	- 0,178	- 0,143	
$\max T = \frac{L^2}{8} \Sigma$	- 29,8	— 27,0	— 20,4	— 13,9	- 11,1	т/м.

Видим, что трещины дальше в направлении гребня оболочки не развиваются.

При вычислении моментов возможно предположить, что ζ имеют по всей длине криволинейной части оболочки постоянное значение $a_{\rm I}$ (пунктир на рис. 13), т. е. им соответствующие поперечные моменты определяются по таблице 6 (для $m_{\rm II}$).

Таким образом, моменты в статически определимой основной схеме будут:

 $M_o = \overline{M}_o + (q_o + a_{\rm I}b_o)m_b + a_{\rm I}m_{\rm II}.$

$$\begin{split} \delta_{10} &= \int M_o m_b ds = \frac{R^4}{10^4} \Big[q \overline{\Psi}_{ob} + \frac{(q_o + a_{\rm I} b_o)}{R} \Psi_{ab} + a_{\rm I} \Psi_{\rm IIb} \Big] = \\ &= 2,518, \text{ (срав. табл. 12, 13)} \\ \delta_{20} &= \int 1_A \cdot M_o ds = \frac{R^3}{100} \Big[q \overline{\Psi}_{Ao} + \frac{(q_o + a_{\rm I} b_o)}{R} \Psi_{Aa} + a_{\rm I} \Psi_{A\rm II} = \\ &= 1,783. \text{ (срав. табл. 15)} \end{split}$$

Применяя сопряженную матрицу (17) получаем $X_1 = 0,020; \quad X_2 = -0,303.$

Действительные поперечные моменты (тм/м) находим при помощи следующей таблицы, применяя таблицы 9, 7, 6 и 8.

сеч.	0	2	4	6	8	
\overline{M}_{o}	8,188	- 4,474	— 1,899	- 0,445	0	$\left \times \frac{R^2}{100} \right $
$(q_o + a_{\rm I}b_o)m_a$	3,684	2,689	1,724	0,818	0	.33
$a_{\mathrm{I}}m_{\mathrm{II}}$	4,720	2,013	0,601	0,075	0	"
X_2	- 0,347	- 0,347	- 0,347	- 0,347	- 0,347	"
X ₁ m _b	0,050	0,047	0,037	0,021	0	"
$\Sigma = M$	- 0,081	- 0,072	0,116	0,122	- 0,347	$\times \frac{R^2}{100}$

Результаты расчета показаны на рис. 8 линией 3. Там же показаны поперечные моменты и максимальные продольные напряжения $\max \sigma = \max T/\delta$ линией 4, если применить два независимых параметра a_1 и a_2 и отказаться от вышеизложенного упрощения при вычислении поперечных моментов, т. е. поперечные моменты расчитываются по действительной ζ — эпюре. Очевидно, предложенный простой путь расчета имеет достаточную точность.

Сравнивая эти результаты с вышеизложенными, где предполагается распределение арматуры по всей высоте

бортового элемента в соответствии с расчетом по упругой стадии (рис. 8), видим, что:

а) величины и распределение поперечных моментов существенно не различаются;

б) результирующая растягивающая сила всего поперечного сечения, а тем самым, и потребность арматуры при расчете по упругой стадии на

$$100 \, \frac{(172 - 2.66, 6)}{2.66, 6} \cong 30^{\circ} /_{0}$$

больше, чем при расчете с учетом влияния трещин.

Отмечаем, что при оболочках, не имеющих на продольных краях геометрических связей (одиночно стоящие оболочки и крайние волны многоволновой оболочки) вопрос более сложен. Некоторый опыт автора по расчету таких оболочек с бортовыми элементами дает возможность сделать следующие предварительные выводы:

а) если в оболочке возникают только отрицательные поперечные моменты (нагрузка главным образом сосредоточена над сравнительно слабыми бортовыми элементами), то трещины развиваются по всей высоте бортового элемента, но, как правило, в криволинейную часть оболочки они мало проникают, т. е. они скоро затухают. По расчету, с учетом влияния трещин уменьшается результирующая растягивающая сила всего поперечного сечения на 10—15°/₀, а величины поперечных моментов мало изменяются. Таким образом, имеем возможность получить некоторую экономию металла.

б) Если в оболочке возникают только положительные поперечные моменты нагрузка сосредоточена более в районе гребня), то трещины затухают в непосредственной близости гребня (если они совсем затухают), но при этом величина поперечных моментов сильно увеличивается. Очевидно, в таком случае расчет с учетом влияния трещин неприменим и продольную арматуру следует распределить по эпюре продольных сил, полученных расчетом по упругой стадии.

в) Если в оболочке возникают поперечные моменты двух знаков (обыкновенное распределение нагрузки и сравнительно мощные бортовые элементы), то, как правило, трещины затухают где-то в районах четвертей криволинейной части оболочки. Имеет место некоторое уменьшение результирующей силы поперечного сечения, но зато увеличиваются поперечные моменты. Таким образом, расчет с учетом влияния трещин дает мало эффекта в отношении экономии арматуры.

В итоге предварительно рекомендуем армировать в продольном направлении оболочки, не имеющие геометрических связей на продольных краях, в соответствии с эпюрой продольных сил, полученных расчетом по упругой стадии.

6. О РАСЧЕТЕ ДИАФРАГМ ОБОЛОЧЕК.

Рассмотрим диафрагмы-рамы с криволинейными ригелями, очерченными также по окружности.

На рис. 14 представлены некоторые типы таких диафрагм.

С точки зрения производства работ удобен вариант с опущенной оболочкой 14 б), так как в этом случае более удобно применять катучую опалубку, но чаще

3 Х. Х. Лаул

из архитектурных соображений выбирается тип с оболочкой поверху.

Если габарит допускает, то рама снабжается затяжкой.

Так как оболочки (как длинные, так и короткие) передают свою нагрузку диафрагмам посредством сдвигающих сил, то расчет таких диафрагм отличается от обыкновенного расчета рам и требует особого подсобного материала. Задача усложняется еще тем, что сдвигающие силы, передаваемые оболочкой, в общем, не приложены по оси ригеля.

На следующем примере показываем ход расчета диафрагмы оболочки по примеру 3, а рис. 4) с применением таблиц, если оболочка расположена поверху и диафрагма снабжена затяжкой (рис. 14, а).

Лишние неизвестные X₁ и X₂ (рис. 14, в) определяются из системы линейных уравнений

$$X_1\delta_{11} + X_2\delta_{12} + \delta_{10} = 0,$$

$$X_1\delta_{12} + X_2\delta_{22} + \delta_{20} = 0,$$

где

$$\delta_{11} = \frac{R^3}{10^4} \Psi_{bb} + \frac{E_b}{E_a} \frac{I_b}{F_b} = 17,87,$$
 (ср. Табл. 12)

$$\delta_{12} = \frac{R^2}{100} \Psi_{Ab} + \frac{R^3}{10^4} \Psi_{bb} = 72,8,$$
 (ср. Табл. 15)

$$\delta_{22} = h^2 s_o + \frac{R^3}{10^4} \Psi_{bb} + 2h \frac{R^2}{100} \Psi_{Ab} + \frac{h^3}{3} = 435.$$

Моменты в статически определимой основной схеме получаем, учитывая эксцентритет оболочки относительно оси рамы (e = 0.30 м) (ср. пример 3, а):

$$M_{o} = -\frac{L}{2} \left\{ \left[a_{1}m_{1} + a_{2}m_{2} + a_{1}m_{1} + b_{o} \left(\frac{2}{3}a_{o} + \frac{1}{2}a_{1} \right) m_{a} \right] - Re \frac{\varphi_{o}}{\pi} \left(1 + \cos \frac{\pi\varphi}{\varphi_{o}} \right) a_{1} + Re \frac{2\varphi_{o}}{\pi} \left(1 - \cos \frac{2\pi\varphi}{\varphi_{o}} \right) - Re \left(\frac{\varphi_{o}}{2} - \frac{\varphi^{2}}{2\varphi_{o}} \right) a_{1} - eb_{o} \left(\frac{2}{3}a_{o} + a_{1} \right) \right\} - A \cdot m_{a}$$

или

$$M_o = -\frac{L}{2} (a_1 m_1 + a_2 m_2 + a_1 m_1) - (A + \overline{A}) m_a +$$

$$+\frac{L}{2}e^{\frac{s_o}{\pi}}\cos\frac{\pi\varphi}{\varphi_o}a_1+L\cdot e^{\frac{s_o}{\pi}}\cos\frac{2\pi\varphi}{\varphi_o}a_2-\frac{L}{4}\frac{R^2}{s_o}e\varphi^2a_1+\overline{M},$$

где вес одной четверти оболочки

$$4 = \frac{L}{2} (qs_o + q_o) = 41,0 \text{ T}.$$

Дальше

$$\overline{A} = \frac{Lo_o}{2} \left(\frac{2}{3} a_o + \frac{1}{2} a_I \right) = -17,3 \text{ T},$$

$$\overline{M} = \frac{L}{2} es_o \left(\frac{a_1}{\pi} - \frac{2a_2}{\pi} + \frac{a_1}{2} + \frac{2\overline{A}}{Ls_o} \right) = -21,3 \text{ TM}.$$

Если

$$a_1 = 0,158; a_2 = 0,076; a_1 = -1,124;$$

 $a_o = -0,310, (cp. 3, a),$

TO

3*

$$M_o = 1,98 \, m_1 - 0,95 \, m_2 + 14,05 \, m_1 - 23,7 \, m_a - -1,23 \cos \frac{\pi \varphi}{\varphi_o} + 1,18 \cos \frac{2\pi \varphi}{\varphi_o} + 28,1 \, \varphi^2 - 21,3.$$

Для вычисления

$$\delta_{10} = -\int M_o m_b ds$$
 is $\delta_{20} = \int M_o (1_A h + m_b) ds$

необходимые дополнительные интегралы

$$\int_{0}^{\varphi_{o}} \cos \frac{i\pi\varphi}{\varphi_{o}} \cdot m_{b} ds = (-1)^{i+1} \frac{R^{2} \sin \varphi_{o}}{\left(\frac{i\pi}{\varphi_{o}}\right)^{2} - 1}$$

$$\int_{0}^{\varphi_{0}} \varphi^{2} m_{b} ds = R^{2} (2\varphi_{o} \cos \varphi_{o} + \varphi_{o}^{2} \sin \varphi_{o} - 2 \sin \varphi_{o} - \frac{\varphi_{o}^{3}}{3} \cos \varphi_{o}),$$

$$\int_{0}^{\varphi_{o}} 1_{A} \cdot \varphi^{2} ds = R \frac{\varphi_{o}^{3}}{3}; \quad \int_{0}^{\varphi_{o}} 1_{A} \cdot \cos \frac{i\pi\varphi}{\varphi_{o}} ds = 0$$

Таким образом,

Аналогично

 $\delta_{20} = -1832$

После определения $X_1 = +20,9$ т и $X_2 = 0,70$ т изгибающие моменты находим путем суммирования:

$$M = M_o - (X_1 + X_2)m_b - X_2 \cdot h$$

и продольные силы в ригеле — графическим способом. Результаты расчета показаны на рис. 15 линией 1.

Рис. 15.

Там же показаны эпюры моментов M и продольных сил N при некоторых вариантах диафрагм. В случае диафрагмы с затяжкой с опущенной оболочкой (линия 2) моменты существенно изменяются лишь в колоннах, но усилие в затяжке увеличивается на $66^{\circ}/_{0}$, а общий "объем" растягивающей силы — на $20^{\circ}/_{0}$. Очевидно, конструкция с оболочкой поверху явно выгоднее относительно потребности металла, но повторяем, что применение варианта с опущенной оболочкой совершенно мыслимо, исходя из соображений производства.

Рамы-диафрагмы без затяжек работают в особенно трудных условиях, как это явствует из эпюр моментов и продольных сил (линии 3 и 4). В то время как вся растягивающая сила сосредоточена в ригеле и "объем" ее мало изменяется, изгибающие моменты увеличиваются в 4—5 раз. Особенно большие моменты возникают в рамахдиафрагмах, если оболочка опущена.

Как вытекает из эпюр, представленных линией 5, расчет по обыкновенным методам, т. е. предполагая, что на раму действуют только вертикальные нагрузки, дает нам относительно продольных сил неправильные результаты.

7. ЗАКЛЮЧЕНИЕ

Наш метод и разработанные таблицы возможно успешно применять также и в других важных случаях, как, например, при расчете железобетонных оболочек с предварительно напряженной арматурой [10] и т. д.

Отмечаем, что железобетонные цилиндрические оболочки имеют почти всегда криволинейные части, очерченные по окружности. Иногда предлагаемое очерченное по эллипсу сечение нельзя в общем рекомендовать, так как такие оболочки более сложны при расчете и особенно при возведении. Кроме того, оболочки, очерченные по эллипсу, крайне чувствительны к нагрузкам, расположенным в районе гребня оболочки, в то время как оболочки, очерченные по окружности, работают лучше на восприятие изменяющихся нагрузок.

В настоящем рассматривались примеры только однопролетных оболочек. Но расчет многопролетных (в продольном направлении) оболочек не является более сложным. Если рассматривать, например, средний пролет трехпролетной равномерно нагруженной оболочки, то при условиях минимума потенциальной энергии внутренних сил (15) необходимо заменить коэфициент 0,2 (6) в члене продольных сил коэфициентом 0,05 (3). Поперечные моменты вычисляются после нахождения параметров попрежнему, но максимальная продольная сила над диафрагмой расчитывается по формуле:

$$\max T = -\frac{L^2}{10} \frac{\partial}{\partial s}(\zeta).$$

Так как члены продольных сил в условиях минимума потенциальной энергии уменьшаются, то характер работы неразрезных оболочек походит на характер работы однопролетной оболочки, имеющей меньший пролет.

Если оболочка в продольном направлении нагружена неравномерно (например по не слишком коротким участкам), то расчет особенно не усложняется. В таком случае выбираем ζ-эпюру в продольном направлении афинной распределению нагрузки. Таким образом, поперечные моменты возникают только в нагруженных участках оболочки, но продольные силы, как правило, — по всему протяжению оболочки.

БИБЛИОГРАФИЯ

- 1. Власов В. З. Общая теория оболочек, 1949.
- 2. Новожилов В. В. Теория тонких оболочек, 1951.
- Гильман Л. С. Приближенный мстод расчета цилиндрических сводов-оболочек (С. А. Шустиков, Деревянные конструкции, 1933).
- Голушкевич С. С. Графический способ приближенного расчета цилиндрических оболочек (Труды ЛИИПС, В. 6. 1938).
- Гильман Л. С. К расчету железобетонных цилиндрических оболочек (Труды Ленинградского Института инженеров промышленного строительства, В. 5. 1938).
- Лауль Х. Х. Применение метода Кастильяно-Ритца к расчету длинных цилиндрических оболочек. Труды Таллинского политехнического института, 1949.
- Лауль Х. Х. Применение метода Кастильяно-Ритца для расчета длинных цилиндрических оболочек со стрингерами. Труды ТПИ, 1952.
- 8. *Лауль Х. Х.* Расчет оболочки с опертым бортовым элементом. Труды ТПИ, 1952.
- Лауль Х. Х. Железобетонные цилиндрические оболочки с трещинами. Труды ТПИ, 1953.
- Лауль Х. Х. Расчет железобетонных оболочек с предварительно напряженной арматурой.
- ЦНИПС, А. А. Гвоздев, В. Н. Мурашов, В. Н. Горнов, В. З. Власов — Инструкция по проектированию и расчету монолитных тонкостенных покрытий и перекрытий, 1937.

20 9 TABANULA $dS_1 = \sin \frac{\pi P}{P_0}$ $m_{i} = \frac{R^{2}}{J^{2}-I} \left[-(J - \frac{I}{J}) + J\cos\left(\varphi_{0} - \varphi\right) + \frac{I}{J}\cos J\varphi \right] = -R^{2} \frac{\Psi_{i}}{100}$ 0 0 0 0 0 0 8 0 0 0 0 0 $2\partial e J = \frac{\pi}{\sqrt{6}}$ 0,0005 0,0022 0,0086 0,0123 0,0008 0,0015 0,0036 0,0059 0,0001 0,0003 0,0011 ~ 0,0170 0,0072 0,0243 0,0332 0,0574 0,1359 0,1930 0,0114 0,0021 0,0042 0,0912 9 0,9467 0,6666 0,4476 0,0562 0,0839 0,1194 0,1636 0,2824 0,0205 0,0354 0,0105 5 2,8597 0,4976 0,3632 2,0175 0,8574 0,1079 0,2554 1,3569 0,0320 0,0625 0,1713 4 F 0,5940 6,5840 0,0746 0,3986 0,8443 1, 1559 1,9881 3,1397 4,6575 0, 1456 0,2513 3 0,4920 1, 6489 90° 33, 3333 21, 5960 12, 7027 0, 1462 1, 1612 3, 8706 6,0967 9,0164 0, 2852 2,2553 0, 7798 2 2,8466 3,8885 2,0067 6,6554 10,4489 15,3947 0,4941 0,2535 0,8517 1,3488 23, 8870 3, 1603 16, 2888 0,7805 2,1266 4,4771 10,4166 6,1070 1, 3443 0,4007 0 450 80° 35° 40° 500 600 200 300 700 25° 9 do do

100 100	(and			16 5 P	12 2 2	X 3	2TP	4 52 = SIII 90	Ale and the second an		TARANUA 2	
$\int = R^2$:	8	0	0	0	0	0	0	0	0	0	0	0
- cos J 4 2de J =		7	0,0003	0,0005	0,0009	0,0014	0,0021	0,0030	0,0042	0,0072	0,0114	0,0170	0,0243
- 4) + 1		6	0,0040	0,0078	0,0135	0,0214	0, 0320	0,0456	0,0625	0,1079	0,1713	0, 2554	0,3632
l cos (Po		5	0,0183	0,0358	0,0618	0,0980	0,1462	0,2081	0, 2852	0,4920	0,7798	1,1612	1,6489
- (<u>-</u>	¥.	4	0,0503	0,0981	0,1694	0,2687	0,4007	0,5698	0, 7805	1, 3443	2,1266	3,1603	4,4771
$\frac{R^2}{2-1}\left[\left(J \right) \right]$		3	0,1027	0,2004	0,3459	0,5483	0, 8169	1,1607	1, 5884	2,7296	4,3063	6,3797	9,0063
$m_2 = \overline{j}$		2	0,1727	0,3367	0,5805	0,9194	1, 3683	1,9416	2,6534	4,5448	7,1423	10, 5339	14, 7951
		1	0,2529	0,4926	0,8483	1,3418	1,9939	2,8243	3,8519	6,5675	10, 2647	15,0433	20,9761
		0	0,3361	0,6538	1,1243	1, 7750	2,6320	3,7192	5,0589	8,5714	13, 2968	19,3173	26,6667
		260	200	250	30°	350	40°	450	500	600	200	80°	900

R ² <u>W</u> 3 100		and (r)	1.2.1	1 2 3 A	2 16 0	and and a	Ka B	A. 0.42	$d S_3 = Sin \frac{3}{6}$				АБЛИЦА З.
- = [d	<u>100</u>	8	0	0	0	0	0	0	0	0	0	0	0
t cosJ	zde J =	2	0,0004	0,0008	0,0013	0,0021	0,0031	0,0044	0,0061	0,0105	0,0167	0,0249	0,0354
-+ (&-		9	0,0054	0,0106	0,0183	0, 0291	0,0434	0,0618	0,0847	0, 1462	a, 2320	0,3459	0,4920
1 cos (%		5	0,0219	0,0428	0,0740	0,1174	0,1752	0, 2492	0,3416	0, 5892	0,9335	1, 3898	1,9729
$r + \left(\frac{L}{T} - \frac{1}{T}\right)$	æ	8 4	0,0513	0,1000	0,1727	0,2739	0,4083	0,5805	0, 7950	1,3683	2,1629	3, 2113	4,5448
$\frac{R^2}{2-1}\left[-(J)\right]$		e	0,0875	0,1707	0, 2944	0,~666	0,6947	0, 9864	1, 3489	2,3142	3,6437	5, 3855	7,5825
<i>Π</i> 3= <u>J</u>		. 2	0,1249	0, 2433	0,4192	0, 6632	0, 9859	1, 3972	1, 9065	3, 2544	5,0935	7,4763	10,4431
		1	0, 1646	0, 3203	0,5509	0,8700	1, 2905	1,8242	2,4822	4,2094	6, 5367	9,5069	13,1400
		.0	0, 2135	0,4148	0, 7122	1, 1224	1,6608	2,3413	3,1760	5, 3472	8, 2322	1, 8521	6,1905
		2/20	20°	25°	30°	35°	40°	450	50°	60°	°01	800 1	90° /

2 <u>44</u> 100		a	A A A A A A A A A A A A A A A A A A A	a ser ((a) and (a)	9 A	LA (Jak	X og	(450 L		1 .		ТАБЛИЦА А	
] = R	4 <u>4</u> %		ø	0	0	0	0	0	0	0	0	0	. 0	0
-cosJP	2de J =		7	0,0005	0,0010	0,0017	0,0027	0,0040	0,0057	0,0078	0, 0135	0,0215	0,0320	0,0456
- + (d -			6	0,0063	0,0123	0, 0212	0,0337	0,0503	0,0715	0,0981	0,1694	0,2687	0,4007	0,5698
1 cos (Po		State of the	5	0,0216	0,0422	0,0730	0,1158	0,1727	0, 2457	0,3367	0,5805	0, 9194	1,3683	1, 9416
- 1		¥4	4	0,0422	0,0824	0, 1422	0, 2255	0, 3361	0,4776	0,6538	1, 1243	1, 7750	2,6320	3,7193
$\frac{R^2}{2-1} \left[\left(\right) \right]$			3	0,0637	0,1243	0, 2143	0,3393	0,5049	0,7164	0,9788	1, 6758	2,6322	3,8798	5,4451
$m_4 = \frac{1}{2}$			2	0,0904	0,1761	0, 3032	0,4795	0, 7122	1,0084	1,3747	2, 3413	3,6545	5,3472	7,4421
		and	1	0,1265	0, 2461	0,4232	0,6681	0,9906	1,3997	1,9037	3,2249	5,0013	7,2634	10, 0227
			0	0,1676	0,3257	0, 5592	0, 8812	1, 3038	1, 8378	2,4927	4,1958	6,4581	9,2965	12,6984
			2/20	20°	25°	30°	35°	40°	45°	50°	60°	-0L	80°	900

R ² ^W L			$a_{1}^{2} = \frac{p}{2}$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	a fear	Children and and and and and and and and and an	Breed of the second sec	8	1				TAFAULLA 5	
02 00 7=-1			8	0	0	0	0	0	0	0	0	0	0	0
$\frac{4}{\sqrt{6}}$ + $\frac{4}{2}$			2	0,0015	0,0026	0,0046	0,0072	0,0107	0,0153	0,0209	0,0352	0,0574	0,0857	0,1221
0)-(2 0.			6	0,0103	a, o 2 o 3	0,0351	0,0555	0,0829	0,1181	0, 1618	0,2794	0,4431	0,6605	0,9388
1-%) nis			5	0,0338	0,0662	0,1143	0,1711	0,2700	0,3842	0,5265	0,9074	1,4368	2,0377	3,0322
+ - 2 2		Ť.	4	0,0774	0,1510	0,2608	0,4134	0, 6163	0, 8760	1, 1994	2,0636	3,2599	4, 8370	6,8403
2 [<u>cos (</u>	1		3	0,1456	0,2841	0,4901	0,7765	1, 1564	1, 6422	2,2459	3,8540	6,0697	8,9747	12,6415
$m_I = R$	AN ANA		2	0, 2421	0,4719	0, 8133	1,2874	1, 9155	2, 7164	3, 7100	6, 3459	9, 9566	14,6573	20,5426
			1	0,3691	0,7313	1, 2378	1,9575	2, 9082	4,1183	5, 6148	9,5670	14, 9409	21,8774	30,4763
		1.1.1.1	0	0, 5277	1,0274	1, 7673	2,7908	4,1395	5,8515	7, 9623	13, 5039	20, 9736	30, 5155	42,2018
			2/20	20°	25°	30°	35°	40°	45°	50°	°09	700	80°	90°

	18-21	A and	and the second	and the company	le the	a a c	Jon Mark	BIE = 1	1		TABANUA 6.	
100 ×	Ø	0	0	0	0	0	0	0	0	0	0	0
и - R ²	2	0,0015	0,0027	0,0047	0,0074	0,0110	0,0158	0,0216	0,0374	0,0593	0,0885	0,1260
[(~-%)]	0	0,0110	0,0216	0,0374	0,0593	0,0885	0,1260	0,1726	0,2980	0,4727	0,7046	1,0016
P)-sin	5 KO.	0,0374	0,0730	0,1260	0,1998	0,2980	0,4239	0,5810	1,0016	1,5860	2,33999	3,3479
R ² [(%-	Dra a	0,0385	0,1726	0,2980	0,4727	0,7046	1,0016	1,3714	2,3599	3,7289	5, 5344	7,8291
Ш _в = -1	G	0,1726	0,3368	0,5810	0,9208	1,3714	1,9477	2,6642	4,5737	7,2069	10, 6620	15,0278
1.5.	N	0,2980	0,5810	1,0016	1,5860	2,3599	3,3479	4,5737	7,8291	12, 2945	18, 1172	25,4217
	1	0,4727	0,9208	1,5860	2,5090	3,7289	5,2830	7,2069	12, 2945	19,2287	28, 2037	39,3662
	0	0,7046	1,3714	2,3599	3,7289	5, 5344	7,8291	10, 6621	1173	28, 2037	11, 1455	7,0796
	2 99	200	250	300	350	400	450	500	60°	200	80° 4	20° 5

	11	2 2 2 1 0 0	6	1	s a		300	1				TA FAMILA 7	· vharavi
		8	0	0	0	0	0	0	0	0	0	0	0
R Wa 100		2	4, 1314	5,0035	5, 7711	6,4159	6,9212	7, 2714	7,4531	7, 26 72	6,2966	4, 5115	1,9215
- =[&L		9	8, 3201	10, 1179	11, 7317	13, 1287	14,2788	15, 1537	15, 7283	15, 8918	14,6340	11,8783	7,6120
in 9° - si		5	12, 5580	15, 3278	17,8561	20,0993	22,0170	23, 5710	24, 7271	25,7264	24, 8180	21,8764	16,8530
= -R[SI	Fa b	4	16, 8372	20,6178	24, 1181	27, 2870	30,0768	32, 44 24	34,3426	36,6025	36,6117	34,2020	29, 2893
E		ß	21, 14 94	25, 9723	30, 4910	34,6500	38,3969	41,6822	44,4605	48,3342	49, 7404	48,4808	44,4430
	1	2	25, 4864	31,3751	36,9474	42,1453	46,9140	51, 2017	54,9604	60, 7206	63, 8987	64, 2788	61, 7317
		1	29,8401	36,8103	43,4597	49, 7292	55,5632	60,9090	65,7177	73, 5499	78, 7570	81,1160	80,4910
	it and	0	34, 2020	12, 2618	00000 '0	57, 3576	54, 2788	70, 7107	76,6044	36,6025	33, 9693	38,4808	00000'00
110000		2/00	20° 3	25° 4	30° 5	35° 3	40° 6	450	50°	60° 8	70° 5	80° 5	90° 1

	in all	5 4 3 2 4 0		8	$Z_{k=1}$		3.9	1				ТАБЛИЦА 8.	
		8	0	0	0	0	0	0	0	0	0	0	0
4% 700		2	1,4024	2,1691	3,0848	4,1368	5,3108	6, 5903	7, 9576	10, 8761	13, 8969	16, 8372	19,5090
90] = R		6	2,6233	4,0622	5, 7855	7, 7721	9, 9981	12,4363	15,0565	20, 7107	26, 6741	32,6352	38, 2683
p-cos		З	3,6603	5,6737	8,0905	10, 8847	14,0264	17, 4814	21, 21 24	29,3353	38,0344	46,9140	55,5570
= R[cou	7°	4	4, 5115	6,9988	9,9901	13,4565	17,3649	21,6773	26, 3520	36,6025	47, 7132	59,2396	70,7107
щь		3	5,1752	8,0335	11,4760	15,4725	19,9882	24,9833	30,4142	42, 3880	55,4853	69, 2377	83,1470
		2	5, 6502	8,7748	12, 5420	16,9210	21, 8764	27,3678	33,3508	46, 5926	61, 1697	76,6045	92,3880
		1 -	5, 9355	9, 2205	13, 1834	17, 7934	23,0151	28,8078	35, 1268	49, 1445	64, 6342	81, 1160	98,0785
		0	6,0307	9, 3692	13, 3975	18,0848	23, 3956	29, 28 93	35, 7212	50,0000	55, 7980	82, 6352	000000
		2/20	20°	25°	30°	35°	40°	45°	50°	60°	-02	80°	1°08

		g m/m²	AT 1132 1 0	Thursday	2 2	R	21	300	1	P		TAR ALLIN O	יאסאמלא א
2 <u>張</u> 100		8	0	0	0	0	0	0	0	0 -	0	0	0
P]=-qR		7	0,0903	0,1370	0, 1900	0,2470	0,3054	0,3621	0,4144	0,4911	0,5079	0,4365	0,2513
o-p)sin		6	0,3647	0,5558	0,7762	1,0176	1,2715	1,52.77	1,7754	2,1987	2,4425	2,4052	1,9876
- % so:		5	0,8271	1,2666	1,7790	2,3498	<i>2,3623</i>	3,5976	4,2356	5,4293	6,3528	6,8040	6,5793
[cosp-c	1,2°	4	1,4808	2,2768	3,2142	4,2719	5,4261	6,6494	7,9118	10,4225	12,6754	14,3645	15,1747
= -qR ²		e	2,3276	3,5912	5,0917	6,8029	8,6951	10,7340	12,8824	17,3415	21,7129	25,6045	28,6040
Mo	and the second	2	3,3685	5,2121	7,4163	9,9515	12,7842	15,8760	19, 1848	26,2650	33,6161	40,7882	47,3042
		1	4,6032	7, 1392	10,1870	13,7160	17,6910	22,0718	26,8/39	37,1844	48,3720	59,9009	71,2644
		0	6,0307	9,3692	13,3975	18,0848	23,3956	29,2893	35, 7212	50,0000	65, 7980	82,6352	0000000
		2 20	200	25°	30°	35°	40°	45°	50°	60°	20°	80°	90° 1

TAENULLA 10.	д (постоян- ная 6 тоннах	ogovorku)		8		112 5 4 3 2 1 M	R	39	напрабление	$M_{m-1} = \frac{gR^2}{gR} \int \overline{W} \cos \alpha \cdot \overline{W} \sin \alpha \eta$	Traincost tracasos 7001 - and	
	8	0	0	0.	0	0	0	0	0	0	0	0
1 2 001 001	2	0,0300	0,0580	0,0989	0,1549	0,2272	0,3176	0,4267	0,7015	1,0489	1,4579	1606'1
o]=-9.R	. 9	0,1091	0,2115	0,3619	0,5680	0,8362	1,1722	1,5800	2,6202	3,9596	5,5750	7,4159
- 4) COS 4	2	0,2217	0,4300	0,7369	1,1587	1,7101	2,4037	3,2498	5,4285	8,2770	11,7799	15,8728
10% +(%	4	0,3509	0,6817	1,1697	1,8427	2,7247	3,8383	5,2025	8,7425	13,4274	19,2780	26,2467
lsinφ-s	. 3	0,4808	0,9342	1,6051	2,5317	3,7495	5,2915	7,1865	12,1336	18,7432	27,0942	37,1864
Mo=-q.R	2	0,5939	1,1553	1,9865	3,1364	4,6504	6,5713	8,9380	15,1430	23,4902	34,1257	47,1103
		0,6741	1,3120	2,2571	3,5657	5,2909	7,4824	10,1866	17,2960	26,9003	39,2010	54,3127
	0	0,7046	1,3714	2,3599	3,7289	5,5344	7,8291	10,6621	18,1173	28,2037	41, 1355	57,0796
	66	20°	25°	30°	35°	40°	450	500	.09	70°	80°	-06

4 Х. Х. Лаул

 $\int_{0}^{9} m_{i} m_{\kappa} ds = [-1)^{1+\kappa} R^{5} \left\{ \frac{\eta_{0}}{3K} - \sin \varphi_{0} \frac{\kappa}{3(K^{2}-1)} + \frac{3}{K(N^{2}-1)} + \frac{3(+1)^{\kappa+1}}{K(K^{2}-1)^{2}(2^{2}-1)} + \frac{K(-1)^{1+\kappa}}{3(2^{2}-1)^{2}(K^{2}-1)} \right\} + \frac{3\kappa}{2(2^{2}-1)(K^{2}-1)} (4_{0} + \sin \varphi_{0} \cos \varphi_{0}) + \frac{3\kappa}{2(2^{2}-1)} (4_{0} + \sin \varphi_{0} \cos \varphi_{0}) + \frac{3\kappa}{2(2^{2}-1)} (4_{0} + \sin \varphi_{0}) + \frac{3\kappa}{2(2^{2}-1)} (4_{0$ $\int_{0}^{\infty} m_{x}^{2} ds = R^{5} \left[\frac{\sin^{2}q_{0}}{q_{0}} + \frac{1}{2} \left(\frac{1}{q_{0}^{2}} - 1 \right) \sin q_{0} \cos q_{0} - \left[1 + \frac{4}{q_{0}^{2}} \right] \sin q_{0} - q_{0} \left[1 + \frac{4}{q_{0}^{2}} \right] \left(1 - \cos q_{0} \right) + 2, 1(6) q_{0} + 0, 1(3) q_{0}^{3} + 3, 5 \frac{1}{q_{0}^{0}} \right]$ $\int_{0}^{\infty} m_{t} m_{t} ds = (-i)^{i+1} R^{5} \left\{ \cos \varphi_{t} \left[\frac{1}{2} + \frac{(-i)^{i+1}}{3(j^{2} - i)^{2}} - \frac{3}{(j^{2} - i)} \frac{\cos \beta_{t}}{2} \right] - \frac{\sin \beta_{t}}{\beta_{0}} \left[\frac{1}{2} + \frac{3}{j^{2} - j} \left(\frac{\gamma_{0}}{2} + 2 - \frac{\cos \beta_{t}}{2} \right) + \frac{(-i)^{i+1}}{3(j^{2} - j)^{2}} \right] + \frac{\beta_{0}^{2}}{3j^{2} - j} +$ TABANULA 11. $\int_{0}^{9} m_{II} m_{i} ds = \frac{R^{5}(-1)^{i+1} \int_{0}^{9} \frac{q^{2}}{2} + \frac{1}{3^{2}-1} \left[(n - \cos \varphi_{0}) - J^{2} \sin \varphi_{0} (\varphi_{0} - \frac{\sin \varphi_{0}}{2}) + \frac{(-1)^{i}}{3^{2}} + \frac{\cos \varphi_{0}(-1)^{i+1}}{3^{2}-1} + \frac{1}{3^{2}(J^{2}-1)} \right] \right\}$ $\int_{0}^{\infty} m_{T} m_{\tilde{x}} ds = R^{5} \left[a_{1}^{2} 20^{5} (3) \, \varphi_{3}^{3} + \varphi_{6} - \frac{t}{\varphi_{6}^{2}} + 1, 5 \, \varphi_{6} \cos \varphi_{6} - 2 \sin \varphi_{6} + \frac{t}{2} \frac{q_{6}}{\varphi_{6}} \sin^{2} \varphi_{6} - \frac{\sin \varphi_{6} \cos \varphi_{6}}{2} + \frac{\cos \varphi_{6}}{2} \right]$ $\int_{0}^{N_{0}} m_{a} m_{i} ds = R^{4}(-1)^{i+1} \left\{ \left(\frac{1}{2} + \frac{3}{2(2^{2}-1)} \right) V_{0} \sin \varphi_{0} - \frac{3}{2^{2}-1} \sin^{2}\varphi_{0} - \frac{1}{2} (1 - \cos \varphi_{0}) - \frac{\cos \varphi_{0} + (-1)^{i+1}}{3(2^{2}-1)^{2}} \right\}$ $\int_{0}^{\eta_{0}} m_{b} m_{i} ds = R^{4}(-i)^{i+1} \left\{ \left(\frac{1}{2} + \frac{J}{2(J^{2}-i)} \right) \varphi_{0} \cos \varphi_{0}^{0} - sin \varphi_{0} \left[\frac{1}{2} + \frac{J}{J^{2}-i} (\cos \varphi_{0}^{0} - a, 5) - \frac{1}{J(J^{2}-i)^{2}} \right] \right\}$ Интегралы 5° Mmds $+\left\|\frac{\varphi_{0}}{2J^{2}(J^{2}-I)^{2}}\right\}$

50

 $\int_{0}^{90} \widetilde{M}_{0} m_{i} \, ds = (-1)^{i} \frac{R^{5} q_{v}}{2^{2-1}} \left\{ 2 \sin \varphi_{0} \left[-q \left(525 \right) + \frac{1}{3} - \frac{1}{3(3^{2}-1)^{2}} \right) + \varphi_{0} \cos \varphi_{0} \left[(125)^{2} - \frac{1}{3} \right] + \varphi_{0} \left[(1-\frac{1}{3})^{2} + \frac{(-1)^{i+1}}{3(3^{2}-1)} - \frac{1}{4} + \varphi_{0} \sin \varphi_{0} \right] - \frac{1}{3(3^{2}-1)} \left\{ -\frac{1}{3} + \frac{1}{3(3^{2}-1)} + \frac{1}{3$ $\int_{0}^{\infty} \frac{W_{0}}{M_{0}} m_{\mathrm{I}} ds = R^{5} q_{\mathrm{v}} \left[\frac{\sin \varphi_{0}}{\kappa} [5, 25 + \cos \varphi_{0}] - \cos \varphi_{0} [3, 25 + a_{5} 833333 \varphi_{0}^{2} + \cos \varphi_{0}] - \frac{Y_{0}^{2}}{2} - 2 \right]$ $\int_{0}^{\infty} R_{m}rm_{a} ds = R^{4} \left[\frac{4\delta_{a}^{2}}{3} \sin \varphi_{a} - \frac{1}{\varphi_{a}} \sin^{2}\varphi_{a} + \sin \varphi_{a} \cos \varphi_{a} + 2\sin \varphi_{a} + \left[\frac{4\delta_{a}}{2} - \frac{2}{\varphi_{a}} \right] \left(1 - \cos \varphi_{a} \right) - \varphi_{a} \right]$ $\int_0^{1/2} m_{\overline{x}} m_b \, ds = R^4 \left[(i, 5 + \cos\varphi_0) (\cos\varphi_0 - \frac{i}{\varphi_0} \sin\varphi_0) + \frac{\varphi_0^2}{3} \cos\varphi_0 + \frac{\varphi_0^2}{2} \sin\varphi_0 \right]$ $\int^{Q_0} m_{II} m_{II} ds = R^4 \left[\frac{9^5}{2} \sin \varphi_0 - \varphi_0 + \sin \varphi_0 \cos \varphi_0 + \frac{1}{2} \sin \varphi_0 - \frac{90}{2} \cos \varphi_0 \right]$ $\int^{q_0}_{m_{\pi}} ds = R^5 \left[\frac{q_0^3}{3} + 2(q_0 \cos \varphi - \sin \varphi_0) + \frac{1}{2}(\varphi_0 - \sin \varphi_0 \cos \varphi_0) \right]$ $P_{m_{a}}^{N_{b}} ds = R^{3} \left[\varphi_{a} \sin^{2} \varphi_{a} - 2 \sin \varphi_{a} + i, 5 \sin \varphi_{a} \cos \varphi_{a} + \frac{\varphi_{a}}{2} \right]$ $\int^{\gamma_0} m_{\partial} m_{\partial} ds = R^3 \Big[1 + \gamma_0 \sin \varphi_0 \cos \varphi_0 - \epsilon \cos \varphi_0 - \epsilon \sin^2 \varphi_0 \Big]$ $\int^{\eta_0} m_{\mathbb{Z}} m_b ds =-R^4 \left[sin^2 \varphi_0 - \frac{\eta_0}{2} sin \varphi_0 - \frac{\eta_0}{2} \cos \varphi_0 \right]$ $\int_{0}^{\infty} m_{b}^{2} ds = R^{3} \left[\gamma_{b} \cos^{2} \varphi_{b} - t_{i} 5 \sin \varphi_{b} \cos \varphi_{b} + \frac{\gamma_{b}}{2} \right]$ - Jsin 4, cos 4,

 $\int_{0}^{t_{0}} t_{A} \widetilde{M}_{o} ds = -q_{R}^{3} \left[2(1 - \cos \varphi_{o}) - \varphi_{o} \sin \gamma_{o} \right]$ $\int_{0}^{\infty} 4_{n}m;ds = (-t)^{1}iR^{3}\left[\frac{3}{2} - \frac{J}{2^{2}t}sinq_{s}\right] \qquad \int_{0}^{\infty} 4_{n}m_{a}ds = -R^{2}\left[cosq_{s}+q_{s}+q_{s}inq_{s}-t\right] \int_{0}^{\infty} 4_{n}ds = -qR^{3}\left[2sinq_{s}-q_{s}-q_{s}cosq_{s}\right]$ *ПРОДОЛЖ. ТАБЛИЦЫ 11:* $\int_{0}^{\infty} \overline{\theta_{0}} m_{i} ds = \frac{(-1)^{i} R^{2} q_{jh}}{J^{2-j}} \left[q_{0} \sin q_{0} \left(\frac{1}{J} - 1/35 \right) + J \sin^{2} q_{0} + 2\cos q_{0} - \left(\frac{1}{J} - J - \frac{1}{3(J^{2}-I)^{2}} \right) - \frac{(-1)^{2}}{3(J^{2}-I)^{2}} \right] - \frac{(-1)^{2}}{J(J^{2}-I)^{2}} - \frac{(-1)^$ $2\partial e \ J = \frac{i\pi}{\varphi_0}; \ K = \frac{\kappa\pi}{\varphi_0}$ $\int_{0}^{n} \overline{M}_{0} m_{I} ds = R^{5} q_{jh} \Big[\frac{6}{m} (i - \cos q_{0}) + q_{0} \Big[(i + a_{1} 5 \cos q_{0}) - s in q_{0} \Big[a_{1} 5 B(3) q_{0}^{2} + \cos q_{0} - \frac{s in q_{0}}{q_{0}} + 4,5 \Big] \Big]$ $\int^{n} \delta \widetilde{M}_{0} m_{II} ds = R^{5} q_{,h} \left[0,75 \varphi_{0} \left[\cos \varphi_{0} - \varphi_{0} \sin \varphi_{0} \right] + 3\varphi_{0} - \sin \varphi_{0} \left[2,75 + \cos \varphi_{0} \right] \right]$ $\int_{-\infty}^{\infty} \overline{M_0} m_a ds = R^4 q_y \left[2,25 \sin^2 \varphi_0 - 1 - \varphi_0 \sin \varphi_0 - \varphi_0 \sin \varphi_0 \cos \varphi_0 + \cos \varphi_0 + \frac{\varphi_0^2}{4} \right]$ $\Gamma^{\aleph} \overline{H}_{0} m_{b} ds = -R^{4} q_{h} \left[0,25 \left(\varphi_{0}^{2} - t \right) + \cos \varphi_{0} \left[2,25 \cos \varphi_{0} - 2 + \varphi_{0} \sin \varphi_{0} \right] \right]$ $\int^{n} \overline{B_0} m_a \, ds = R^4 q_h \left[\sin \gamma_0 \left(3 - \varphi_0 \sin \gamma_0 \right) - 2,25 \sin \varphi_0 \cos \varphi_0 - 0,75 \varphi_0 \right]$ $\int_{0}^{\varphi_{q}} H_{h} ds = R^{2} [\sin \varphi_{a} - \varphi_{a} \cos \varphi_{a}]$ $\int^{n} \widetilde{M}_{0} m_{b} ds = -R^{4} q_{v} \left[\varphi_{0} [i, 25 - \sin^{2} \varphi_{0} + \cos \varphi_{0}] - 2, 25 \sin \varphi_{0} \cos \varphi_{0} \right]$ $\int^{\mathcal{H}} M_0 m_{I\!\!I} ds = R^5 q_V \left[3 - \cos \varphi_0 \left[2 + \cos \varphi_0 + a_{75} \varphi_0^2 \right] - \varphi_0^2 - \varphi_0 \frac{\sin \varphi_0}{4} \right]$ $\int_{\alpha}^{\alpha} t_A m_I ds = -R^3 \left[\cos \varphi_o + \frac{\varphi_o^2}{3} - \frac{\sin \varphi_o}{\varphi_o} \right]$ $\int_{0}^{\infty} t_{A} m_{II} ds = -R^{3} \left[\cos \varphi_{0} + \frac{\varphi_{0}^{2}}{2} - t \right]$ $-\frac{J}{4}\varphi_{o}^{2}\cos\varphi_{o}$

1	T	6 *	-					10.0	1	10 4	-	1		1			4.0	-
	A	210	-	"	"	"	2	20	=	20	=	=		-	244		8/2	
12.	000	228,4080	-219, 0181	142,1961	-108,0443	323,5296	418, 7494	867,7471	-1111, 1111	215,0273	- 142,0637	107,5300	-316,0189	-406,5724	-865,8303	1155,5556	95,4262	- 72,1756
ТАБЛИЦА	80°	103, 3295	-99, 6312	65, 1533	-49,5984	147, 2877	190, 2960	558,9809	-582, 6732	98,2586	- 65,3264	49,5509	-144,5597	-185,6996	-564,3163	609,0555	44,1126	- 33,4372
	-0L	41, 7139	-40,4277	26,5959	-20,2802	59, 7909	77, 1283	324,3704	-275, 8881	40,0184	- 26,7523	20,3295	- 58,9312	- 75,6010	-330,4559	289,6474	18,14.91	- 13, 7832
	60°	14,5233	-14,1302	9,3486	- 7, 1388	20, 9173	26,9466	166,1441	-114,5688	14,0395	- 9,4298	7,1774	-20,6917	- 26, 5141	-170,4748	120, 7338	6,4231	- 4,8860
	50°	4,13635	-4,03853	2,68393	- 2,05199	5,98166'	7,69771	72,5291	- 39,8854	4,02431	- 2,71371	2,06828	- 5,93534	- 7,59795	-74,8383	42,1631	1,85475	- 1,41283
¥	45°	1,99584	-1,95158	1,29948	- 0,99404	2,89122	3,71850	44,3472	- 21,5531	1,94716	- 1,31526	1,00302	- 2,87265	- 3,67584	-45,8653	22,8145	0,90027	- 0,68618
	40°	0,88200	- 0,86360	0,57603	- 0,44085	1,27976	1,64518	25, 3788	- 10, 7909	0,86262	- 0,58356	0,44526	- 1,27400	- 1,62829	-26,3008	11,4361	0,39251	- 0,29944
2	35°	0,34877	-0,34190	0,22839	- 0,17486	0,50672	0,65121	13, 37/2	- 4,9068	0,34184	- 0,23157	0,17677	- 0,50459	- 0,64522	-13,8812	5,2056	0,15890	- 0,12123
nds = A Y	30°	0,11927	-0,11699	0,07829	- 0,05996	0,17351	0,22293	6,3306	- 1,9681	0,11712	- 0,07944	0,06066	- 0,17293	- 0,22104	- 6,5818	2,0899	0,05456	- 0,04164
Jo ⁸ Mi	25°	0,03344	-0,03286	0,02200	- 0,01686	0,04878	0,06257	2,5938	- 0,6654	0,03290	- 0,02234	0,01706	- 0,04864	- 0,06210	- 2,7001	0,7072	0,01536	- 0,01172
	20°	0,00705	- 0,00692	0,00464	- 0,00356	0,01028	0,01318	0,8634	- 0,1758	0,00694	- 0,00471	0,00370	- 0,01024	-0,01309	- 0,8997	0,1869	0,00324	- 0,00248
	20/	$\Psi_{\prime\prime}$	Vr2	Y'3	Y,4	Ψ_{1I}	Ψ,¤	Ψ_{1a}	¥16	¥22	¥23	¥24	¥2I	Y2I	Ψ_{2a}	Y26	¥33	¥34

продолж. ТАБЛИЦЫ 12.

A	R5 104	"	R4 104	12	R5 104	=	"	R4 104	=	R5 104		R4 104	"	R5 104	R4 104	"	R3 104	=	
000	208, 3953	266,8508	582,0780	- 808, 1633	54,7327	-158,0539	-202,5405	-441,3000	614,7645	465,3979	599,4156	1272,0956	-1695,3150	773,2636	1629,0422	-2146,0184	3561,9449	-5000,0000	7853,9816
80°	95,9429	122,6984	384,3734	-428,5888	25,4072	- 72,9111	- 93, 3109	-292,1984	326, 7104	213,0837	274,0204	829,7933	-894,5501	352,9083	1058,8794	-1130,5276	3391,9219	-3896,4253	4837, 1911
20°	39, 3321	50, 2449	227,3722	-204,9094	10,4916	- 29,9425	-38,2756	-173,2363	156,4883	86,9396	111,6462	486,3074	-425,8485	143,5793	618,8593	-537,4269	2923,8586	-2738,9687	2716,8986
60°	13,8768	17,7096	118, 2314	- 85, 7994	3,7248	-10,5800	-13,5109	-90,2501	65,6284	30,5489	39,1832	251,0615	-177,6639	50,3272	318,8002	-223,9448	2264,6519	-1715,5016	1358,7912
50°	3,99661	5,09622	52,2281	-30,0763	1,07846	- 3,05104	- 3,89284	-39,9288	23,0362	8,76839	11,23529	110,2882	- 62,0915	14,41546	139, 8055	- 78,1876	1549,4985	-933,2029	582,9051
45°	1,93769	2,46996	32,0909	-16,3004	0,52407	- 1,48015	- 1,88774	-24,5499	12,4922	4,24507	5,43699	67,6107	-33,6091	6,97278	85,6455	-42,3032	1211,8460	-644,0770	353,9816
40 0	0,35999	0,95867	18.4435	- 8,1826	0,23307	- 0,65722	- 0,83796	- 14,1177	6.2740	1,88160	2,40900	38, 7804	-16,8518	3,08820	49,0948	-21,2032	905,4763	-420,4555	201,4054
35°	0,34136	0,43486	9,7532	- 3,7294	0,09268	- 0,26098	- 0,33266	- 7,4694	2,8608	0,74602	0,95420	20,4726	- 7,6731	1,22354	25, 9038	- 9,6509	640,1771	-256,2416	105,5989
300	0,11711	0,14916	4,6322	- 1,4988	0,03211	-0,08959	- 0,11500	- 3,5491	1,1501	0,25570	0,32.716	9,7092	- 3,0809	0,41911	12, 2792	- 3,8742	422, 1814	-143,0048	49,7942
25°	0,03297	0,04194	1,9029	- 0, 5076	0,00897	- 0,02522	- 0,03211	- 1,4585	0,3897	0,07186	0,09193	3,9837	- 1,0422	0,1177.3	5,0363	- 1,3109	253,9462	- 70,9210	20,3349
20°	0,00696	0,00873	0,6347	- 0,1343	0,00189	- 0,00533	-0,00678	- 0,4866	0,1031	0,01512	0,01935	1,3274	- 0,2757	0,02481	1,6778	-0,3467	134, 1629	-29,7/69	6,7512
9%	¥3I	$\psi_{3\pi}$	¥33	Wah	¥44	¥4I	YAR.	¥40	¥46	Ψ_{II}	WII T	Ψ_{Id}	¥rb	Wan	¥IB	Ψ_{ab}	Vaa	Yab	Ybb

and the second	1	र	9.R5 104	1/=	1	=	=	=	0.4 104	2	1910-1
4A 13.		°06	756,05923	-736,87802	485,02339	-367,93028	1085,53253	1398,99818	2960,53948	-3926,99082	
Табли		80°	404,24185	-397, 80100	264,68051	-201,15072	586,23707	753,33665	2293,64120	-2488,54278	
		00L	194,48276	-192,92887	129,52419	- 98,59754	284,43781	364,62846	1612,68761	-1480,68308	
	1.1.	60°	81, 82376	-81,71196	55,26580	- 42, 13077	120,52082	154,18853	1013,06155	-729,18972	
		50°	28,786480	- 28,903495	19,667006	- 15,011251	42,64838	54,47280	553,24365	-317,59445	
$ds = A \overline{\Psi}_{oi}$	Y_oi	450	15,624027	-15, 723465	10,726020	- 8,191240	23,20498	29,61811	382,59901	-194,089990	
∫ [%] ∂momi		40°	7,852706	- 7,918667	5,413963	-4,136516	11,68853	14,90973	250,24048	-111,04612	
		35°	3,582761	- 3,619224	2,479287	-1,895093	5,34306	6,81190	152,77783	-58,50347	
	AND DESCRIPTION	30°	1,441143	- 1,458013	1,000462	- D,764994	2,15277	2,74331	85,40015	-27,70037	
	A A A	250	0,488452	- 0,494798	0,339998	- 0,260062	0,73066	0,93074	42,41222	- 11,35112	
	a section of	20°	0,129302	- 0,131118	0,090183	- 0,069012	0,19365	0,24658	17,79210	-3,77908	
		20/	Yor	¥02	¥ 03	¥04	Yor	You	208	Yob.	

	¥	285	=	2	2	12	2	8 Kg		
MUA 14.	80°	588,3330	-599,5647	409,9521	-310,3594	878,9537	1118,3814	2511,0642	-3668,5028	
TAEN	80°	269,3771	-276,0444	190,0328	-144,1710	404,7321	514,5251	1682,9196	-1967,1245	
	70°	109,8925	- 113, 1553	78,3566	- 59,5569	166,0605	210,7846	1008,2879	-949,7266	
	60°	38,6059	-39,9159	27,7791	-21,1481	58,6264	74,3184	530,0131	-401,0552	
	50°	11,07830	-11,49368	8,03233	-6,12327	16,89329	21,39151	236,2552	-141,5992	
=A \$\vec{\Pm}{\Pm}_{01}\$	450	5,36273	-5,57199	3,90205	- 2,97551	8,19218	10,36872	145,7264	-76,9808	
¹⁸ m _o m;ds	40°	2,37672	-2,46022	1,73388	-1,32325	3,63652	4,60071	84,0414	-38, 7504	
20 O	35°	0,942207	-0,981392	0,689115	-0,526155	1,44365	1,82563	44,5768	-17,7044	
	30°	0,322914	-0,336673	0,236690	-0,180787	0,49536	0,62631	21,2265	-7,1303	
	25°	0,090740	-0,094693	0,066639	-0,050918	0,13936	<i>Q,17612</i>	8,7391	- 2,4193	
	20°	0,019140	-0,019985	0,014076	-0,010756	0,02941	0,03731	2,9203	- 0,6409	
1	20/	10 is	100	100	112	112	130	100g	100	and the second

	T	-	Code and	1	1	1	100	1	1	1	-	and the second
and the second second	7	R3 100	=			=	=	R2 100	100	Q.R.	a la	A. A.
SI 111	°06	- 11,873150	12,603242	- 9,037082	6,936541	- 18,584726	- 23,370055	- 57,078633	100,00000	-42,920367	-42,920367	Charles and the
1464	80°	- 7,512952	8,006596	- 5,768240	4,434951	- 11,818207	- 14,842392	-54,869920	74, 234915	-33,089350	-27,765262	
R	°DL	-4,456734	4,756092	- 3,447857	2,654857	- 7,041306	- 8,833282	-49,007126	52,183619	- 23,979833	- 16,790860	
Na=la	°03	- 2,430632	2,607143	- 1,892743	1,459300	- 3,854757	- 4,831136	-40,689968	34,242662	- 16,125447	- 9,310032	
	50°	- 1,182490	1,271562	-0,925887	0,714639	-1,881320	- 2,355939	-31,128750	.20,510643	- 9,848624	- 4,592489	
	45°	- 0,778773	0,838343	- 0,611221	0,471990	- 1,240721	-1,553191	-26,246714	15,174642	- 7,345504	- 3,042608	-
1 Wai	40°	-0,487834	0,525658	- 0,383686	0,296411	- 0,778165	-0,973838	-21,479485	10,798770	- 5,264361	- 1,916071	
a mids = A	35°	- 0,286816	0,309318	- 0,226003	0,174661	-0,458009	- 0,573021	- 16,952995	7,318493	- 3,589613	- 1,131801	
2°+ 0	30°	- 0,155218	0,167519	-0,122504	0,094705	-0,248098	-0,310324	- 12, 782479	4,655016	- 2,295138	- 0,614981	
	25°	- 0,075019	0,081014	-0,059288	0,045847	-0,120005	- 0,150073	- 9,070979	2,716689	- 1,345284	-0,298242	
	20°	-0,030783	0,033260	-0,0243551	0,018838	- 0,049274	- 0,061510	- 5,908017	1,400554	-0,695983	-0,122721	•
	20/	WAI	WAZ	¥43	W 44	WAI	WAI	ENU	WAb	WA0	VA0	V

Land de la contraction our	September 1	Second and	and the second	anti-	and the second	a hard and a start of the	Constant 1	2.01460	5 3 Barris	Sec. 12	11.20 0.20	Charles and the second
ЦА 16.	000	1,57079633	1,00000000	0,0000000	0,63661977		7	- 1,00000	1,00000	- 1,00000	1,00000	
TABAH	800	1,39626340	0,98480775	0,17364818	0,70531660		3/8	0,92388	3,70711	0,38268	0	
	004	1,22173048	0,93969262	0,34202014	0,76914888		8,	- 1120	0 0	111 - 0	000	
	60°	14719755	86602540	50000000	82699334		6/	8 -0,74	2	0,70	-1'00	
101	50°	87266463 1,1	76604444 0,	64278761 0,	87782227 0,		5/8	-0,38260	- 0,70711	0,92386	0	
нона а	45°	7,78539816 0,	0,70710678 0,	0,70710678 0,	0,90031632 0,		4/8	0	-1,00000	0	00000'1	
численнь	40.0	0,69813170	0,64278761	0,76604444	0,92072543	cos 174	3/8	0,38268	-0,70711	-0,92388	-0	
жоторые	35°	0,61086524	0,57357644	0,81915204	0,93895740		2/8	0,70711	0	-0,70711	-1,00000	
He	30°	0,52359878	0,50000000	0,86602540	0,95492966		1/8	92388	11207	38268	.0	
1	250	0,43633231	0,42261826	0,90630779	0,96856971		1	000 0'	0 000	0 000	000	
	20°	34906585	34202014	,93969262	,97981554	-	140 0	- 1,00	- 1,00	1,00	1,00	
	30	8 0	sin 90 0	COS 90 0	sin%/% 0	at the second	27	COS TY	COS 214	COS 3774	COS 4π4	

Коэфиц i= 1; 2;	Коэфициенты Аік i=1;2;3;4;5 v=1,Д,Щ										лис	LA ·	17.		
V=1,11	,Щ		1					2	and a state		3		4		5
i	1	2	3	4	5	2	3	4	5	3	4	5	4	5	5
K _{IL}						3			*	1.41. 1.2.4 1.2.4 1.2.4 1.4.4				1	
КПІ			1				1							11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
×πι					1										
ſmimĸds			[T		N. C.				Nº NO	10				14
ĸıiſmımĸds									X			State P	a set		
κ _{II} ifm _{II} m _K ds										al-	1				
кшifmmmkds							14.000			1.			Contra la		
ĸıĸſmımids	100		15		10 M		1	1	121						
к _{як} fm _a mids		1	3												
κ _m κfm _m mids	100	***	AI												
κ _{IK} κ _{Ii} ∫m²ds		194	M				10-15-1								
$(\kappa_{I\kappa}\kappa_{II}+\kappa_{II}\kappa_{II})\int m_{I}m_{I}ds$															
(KIKKII + KIKKI) fmImI ds				14											
κ _{II} κ κ _{II} if m ² _{II} ds								12.00	15 11				Ĩ	10000	
(KIKKII + KIKKII) fmmmds			1						11				>		
к _{шк} к _{шi} fm ² _m ds							1	1000					1		
Σ=Ακί	A ,1	A12	A 13	A14	A15	Azz	Az	A24	A25	A33	A34	A 35	A44	A45	A46

		0		ТАБЛИЦА	18.
коэфици (=123	A 5	Bir			
V= I, D	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
ĸ	1	2	3	4	5
Кік				and the second s	
KIK					Contraction of the second
KIK					
KI	e en		Land		
K _{II}					
K					
∫Mo m _K ds		ſ			
K _I fm _I m _K ds					
К _{II} fm _{II} m _K ds					
K _m fm _m m _k ds					
$K_{IK} \left(K_{I} \int m_{I}^{2} ds + \int M_{0} m_{I} ds \right)$		B2			an alth
$K_{II} \times \left[K_{II} \int m_{II}^2 ds + \int M_0 m_{II} ds \right]$		Σ=		The second second	
$K_{\underline{m}\kappa}(K_{\underline{m}}\int m_{\underline{m}}^2 ds + \int M_o m_{\underline{m}} ds)$					
$(\kappa_{I}\kappa_{II\kappa}+\kappa_{II}\kappa_{I\kappa})\int m_{I}m_{II}ds$			1.1.0		
[K _I K _{EK} + K _E K _{IK}] ∫m _I m _E ds					and the second
[K _{II} K _{II} K _{II} K _{II} K _{II} K _{II} m _{II} m _{II} ds					al set
Σ= Βκ	B,	B ₂	° B ₃	B ₄	B ₅

19.	S	S							[[2, (g,)] ² ds	0			Dss				CS
цА		S						1000					D45				
TAEAV	4	4					Section and		[[-3 (g4)] ² ds				D44			Low State	C_d
		2							•		13/10		D35			1	
		4									1.15		D34				
	3	3			A. S.		North Control of the second se		$\left[\left[\frac{2}{\partial s}\left(g_{3}\right)\right]^{2}ds\right]$				D33				C3
		2						1				1.12	Dzs				1.2
		4		N						-		1.10	Dz4				
		3	1		1		1						D23			1.11	
i Ck	. 2	2							$\int \left[\frac{\partial}{\partial s} (S_2) \right]^2 ds$			and the second	D22				C
K L	1	3	12		100	1			•	Part of the second seco			Dis				
Di		4							•	1	1 die	1	Dia				
nbi		3		12				1	•		3.3		Dra	1-2	S.A.		
CHIC	+	2	1		-			12.0	•	- 2.5	-		Drz				C1
прифеод		1							$\int \left[\frac{\partial}{\partial s} (S_{i}) \right]^2 di$		1		D _H				
NARA NI			τί	Ii.	۵i	H	H	III)		2ds	spa	12 ds	ki'	ds	ds	sp	X
	K	<i>i</i>	K1	K1	Kh.	K	K	K		$\left[K_{IK} K_{Ii} \int \left[\frac{2}{\delta_s} (S_I)\right]\right]$	$W \left\{ K_{IIK} K_{II} \left(\int \frac{\partial}{\partial s} \left(S_{II} \right) \right)^2 \right\}$	$\left[K_{\underline{m}K}K_{\underline{m}i}/\left[\frac{3}{8s}(S_{\underline{m}})\right]\right]$	$\sum = D_{h}$	$\left[K_{IK} K_{I} / \left[\frac{\partial}{\partial s} (S_{I}) \right]^{2} \right]$	W { KEKKE [BS (SE)] 2	(K_mK/mg/[35(8m]]2	Σ= 0

оглавление

1.	Общие замечания		3
2.	Расчетная схема, приспособленная для применения таблиц.		7
3.	Примеры	. 1	1
4.	Цилиндрические оболочки с геометрическими граничными усло	1-	
	виями на продольных краях	. 2	20
5.	Оболочки с трещинами в растянутой зоне	: 2	27
6.	О расчете диафрагм оболочек	. 3	33
7.	Заключение	. 3	37
Би	юлиография	. 3	9
Пр	оиложение: 19 таблиц	. 4	0

Редактор А. Гаршнек Технический редактор И. Вахтре Корректоры Н. Круглова и А. Тихане

Сдано в набор 29 VII 1953. Подписано к печати 7 IX 1953. Тираж 800. Бумага 54 × 84, ¹/4е, Печатных листов 4. По формату 60 × 92 печатных листов 2,82. Учетно-издательских листов 2,82. MB-12401. Типография имени Ханса Хейдеманна, Тарту, Валликраави 4. Заказ № 2961.

Цена руб. 2.-

