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Abstract 

 

The ongoing, pervasive ethical discourse surrounding the notion of “sustainable artificial 
intelligence (AI)” or „nachhaltige KI“ in Germany underscores the necessity for AI systems and 
outcomes to be ecologically sustainable, socially accountable, and economically feasible. In 
theory, it would be arduous to optimise the three facets of sustainable development that include 
economic, social, and ecological sustainability, resulting in such a trilemma. This research uses 
Germany as an empirical case study for examining the current challenges related to sustainable AI 
efforts in Germany and how the country should navigate the trilemma of sustainable AI in the 
future. The study utilises a mixed-methods approach, incorporating qualitative and complementary 
quantitative data that is built on a conceptual framework drawn from three theoretical bases: (1) 
the three-pillar model of sustainability (Barbier, 1987); (2) 13 criteria for sustainable AI (Rohde et 
al., 2024); and (3) the contemporary theory of sustainable development (Lee & Park, 2021). The 
qualitative data were collected through semi-structured interviews and analysed using Atlas.ti, 
while the quantitative data were extracted from open-sourced datasets and visualised using Python 
and R. The results indicate that Germany is heavily prioritising ecological sustainability, 
moderately promoting social sustainability, and lagging behind in spurring economic sustainability 
in its overarching sustainable AI efforts. This justifies the conceptualised theoretical framework 
that signifies improbability to optimise the three sustainability facets, namely social, economic, 
and ecological sustainability, simultaneously and would solely be feasible to opt for two out of 
three. The way forward would be for Germany to develop and deploy its AI initiatives using its 
own approach, or what this study calls the “German way”, with a huge emphasis on socio-
ecological sustainability as the foundation that is amplified with equitable economic benefits for 
society. 
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0.1 LIST OF ABBREVIATIONS 

 

1. AI – Artificial Intelligence 

2. DL – Deep learning 

3. EnEfG – Energieeffizienzgesetz  

4.  EU – the European Union 

5. ML – Machine learning 

6. ROI – Return of Investment 

7. VC – Venture Capital 
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1.           INTRODUCTION 

Discussions on sustainable artificial intelligence (AI), which in this context refers to the 

methodology of developing algorithms that exert machine learning (ML) and deep learning (DL) 

(Rane et al., 2024; Soori et al., 2023), frequently merely underscore the necessity for AI systems 

to be ecologically sustainable, socially accountable, and economically feasible. Achieving these 

three objectives simultaneously would be arduous and often spawn trade-offs and constitute a 

trilemma. This trilemma highlights a lingering challenge in AI development, where economic 

growth, social responsibility, and ecological ethics may be at odds. Although this challenge is 

theoretically acknowledged, empirical studies on how stakeholders navigate this trilemma in their 

efforts to devise and execute sustainable AI-related policies remain scarce.  

Against this backdrop, the third wave of AI ethics debate is attempting to invoke the alignment of 

ecological awareness and environmental ethics in developing and deploying AI. The term 

“sustainable AI” was coined by AI ethicist Van Wynsberghe (2021), referring to a movement to 

foster change in the entire lifecycle of AI products (i.e., idea generation, training, re-tuning, 

implementation, governance) towards greater ecological integrity and social justice. In other 

words, sustainable AI can be defined as AI systems designed and deployed to be environmentally 

sustainable, socially responsible, and economically viable (Schütze, 2024).  

From an ethical AI perspective, sustainable AI encompasses two primary aspects, namely (1) the 

sustainability of AI and (2) the application of AI for sustainability. The former refers to designing 

AI systems using sustainable resources, while the latter emphasises leveraging AI as a tool to 

contribute to climate solutions. Nevertheless, addressing the obstacles linked to the sustainability 

of AI is a prerequisite before achieving AI for sustainability (Falk et al., 2024; Falk & van 

Wynsberghe, 2023), making the realisation of sustainable AI a significant challenge. 

Aforementioned before, the notion of “sustainable AI” underscores the necessity for AI systems to 

be ecologically sustainable, socially accountable, and economically feasible. Nevertheless, 

achieving these three objectives simultaneously would be arduous and often spawn trade-offs and 

constitute a trilemma. This trilemma highlights a lingering quandary in Germany’s AI 

development, where economic growth, social responsibility, and ecological ethics may be at odds. 

Although this challenge is theoretically acknowledged, empirical studies on how stakeholders 
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navigate this trilemma in their efforts to devise and execute sustainable AI-related policies remain 

scarce. 

In the context of Germany, there remains a notable challenge with balancing the scalability of 

economic, social, and environmental sustainability, potentially creating a "trilemma," despite 

Germany’s superior performance on establishing a robust AI ecosystem compared to other EU 

member states. The latest report from the OECD decently portrayed the trilemma, underscoring 

such challenges as (1) insufficient measurement and mitigation of AI’s environmental impacts; (2) 

the need to balance AI economic benefits with environmental protection; and (3) the growing 

energy consumption of data centres (OECD, 2024). 

To this extent, the study aims to (1) identify challenges related to developing sustainable AI and 

(2) to identify the potential trilemma of fostering sustainable AI in Germany. In accordance with 

the research objectives, I have proposed two research questions. First, “what challenges does 

Germany encounter in developing policies linked to sustainable AI?” It is crucial to address this 

paramount but frequently overlooked question, particularly in light of the current issue of techno-

social blindness among humans, which resulted in the inability to identify and confront the ethical 

implications of using emerging technologies such as AI (Vallor, 2022). Therefore, it is essential to 

identify the potential challenges Germany may face in advancing sustainable AI before 

formulating further strategies or policies to overcome any potential obstacles that could hinder the 

country’s efforts to promote sustainable AI. In this context, the challenges refer to the 

operationalised concept of the Three-Pillar Model of Sustainability that is complemented by the 

13 sustainability criteria of AI (Rohde et al., 2024) that will be further elaborated in the research 

design section. 

 

Second, “How can Germany navigate the trilemma of fostering sustainable AI?” It is vital to raise 

this critical question, as Germany has to increase the scalability of AI-led innovations while 

simultaneously protecting the environment and promoting social equity. Nonetheless, 

theoretically, increasing the scalability of AI could potentially drive negative consequences on the 

environment and social equity. On the other hand, prioritising environmental protection and social 

fairness may potentially limit the vast economic advantages derived from harnessing AI. Given 

the existence of this trilemma, it becomes imperative to analyse approaches undertaken by relevant 
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stakeholders in Germany to fostering sustainable AI that can balance economic, social, and 

environmental aspects.  

 

To answer the questions, this study utilises a mixed-methods, incorporating qualitative and 

quantitative data with a case study approach built based on the traditional theoretical framework 

of Three-Pillar Model of Sustainability (Barbier, 1987) that outlines three primary facets of 

sustainable development, namely (1) economic sustainability; (2) ecological sustainability; and (3) 

social sustainability. This framework is supplemented by 13 criteria by Rohde et al (2024) 

contributing to each three pillars of sustainability in sustainable AI development. Data were 

collected primarily through a collection of interviews and primary academic sources.  

This research conducted semi-structured interviews with relevant stakeholders. Subsequently this 

study used Atlas.ti to systematically code and interpret the interview transcripts accordingly to 

identify particular themes and patterns from the interview results. On top of that, it exerted relevant 

open-source datasets linked to (1) the use of AI in the public and private sector and (2) AI compute 

and climate change in Germany, sourced from Eurostat, OECD AI Policy Observatory (OECD.AI), 

Statista, and the German Environment Agency (UBA). Afterwards, this research yielded 

explainable charts to illustrate the quantitative phenomena using python and R, thus supplementing 

the qualitative data and arguments. 

The thesis contains sections as follows. First, the section on systematic literature review (SLR) 

extrapolates relevant academic articles published within the timeframe of 2021 until 2025 to yield 

foundational definitions and fundamental concepts embodied in the terminology of sustainable AI. 

Second, details on methodology and research design used in the study, along with limitations of 

the research. Third, a presentation on qualitative and complementary quantitative data in 

addressing the research questions. Fourth, in-depth and critical discussion pertinent to the 

presented results in the previous section. Sixth, a conclusion and recommendations for future 

research linked to the study. 
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2. LITERATURE REVIEW 

2.1 Defining Artificial Intelligence (AI) 

Figure 2.1. Definitions of Artificial Intelligence (AI) 

 

 

 

 

 

 

 

 

 

 

 

 

                 Source: Author’s formulation (2025) 

Since the first public introduction of the term “artificial intelligence” or in short “AI” in 1950 

delineated by Alan Turing in his renowned paper “Computing Machinery and Intelligence” 

(Turing, 1950), there have evolved a plethora of definitions and terminologies classified this very 

emerging technology. To encapsulate, the terminology of AI can be grouped into six fundamental 

categories (Table 2.1), namely (1) a logic-based systems or renowned as “Symbolic AI” (Cram & 

Newell, 2016; Turing, 1950); (2) a brain-like structures with learning capability  (Frank Rosenblatt, 

1958; Geoffrey Hinton et al., 1986; Yann LeCun et al., 1989); (3) a probabilistic reasoning system 

(Judea Pearl, 1988); (4) a data-driven model (Vladimir Vapnik and Alexey Chervonenkis, 1971; 

Ian Goodfellow et al., 2014); (5) an adaptive agent  (Richard Sutton & Andrew Barto, 1998); and 

(6) a generative system (Ashish Vaswani et al., 2017; Ian Goodfellow et al., 2014).  

Alan Turing's pivotal research paper, Computing Machinery and Intelligence (1950), introduced 

the Turing Test as a criterion for assessing machine intelligence, building a groundbreaking 

foundation for the evaluating the performance of AI capabilities. The term “Artificial Intelligence” 
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subsequently publicly used by a group of researchers in A Proposal for the Dartmouth Summer 

Research Project on Artificial Intelligence (McCarthy et al., 1955) for advancing research on logic-

based AI systems. In particular, this research focuses on the term AI as the methodology of 

developing algorithms that exert machine learning (ML) and deep learning (DL) (Rane et al., 2024; 

Soori et al., 2023). 

Table 2.1. Six Primary Definitions of Artificial Intelligence 

No. Definition of AI Key Scientific Paper Fundamental Development 
1. AI as logic-based 

systems or renowned 
as “Symbolic AI” 

Computing Machinery and 
Intelligence (Alan Turing, 
1950) 

Introduced the method of the 
“Turing Test” as a criterion for 
machine intelligence 

  A Proposal for the Dartmouth 
Summer Research Project on 
Artificial Intelligence (John 
McCarthy et al., 1955) 

The first scientific article that 
coined the term “Artificial 
Intelligence” and proposed 
logic-based AI research 

  The Logic Theory Machine: A 
Complex Information 
Processing System (Allen 
Newell and Herbert Simon, 
1956) 

Spearheaded one of the initial 
AI-driven programs that could 
analyse mathematical theorems 

2. Probabilistic reasoning 
system 

The Perceptron: A Probabilistic 
Model for Information Storage 
and Organisation in the Brain 
(Frank Rosenblatt, 1958) 

Introduced the “Perceptron” as 
the first model for developing 
artificial neural networks 

  Learing Representations by 
Back-Propagation Errors 
(Geoffrey Hinton, David 
Rumelhart, and Ronald 
Williams, 1986) 

Introduced the training of multi-
layer neural networks through 
“backpropagation.” 

  Backpropagation Applied to 
Handwritten Zip Code 
Recognition (Yann LeCun et 
al., 1989) 

Demonstrated the application of 
Convolutional Neural Networks 
(CNNs) 

3. AI as a multifaceted 
system with ability to 
reason under 
uncertainty 

Probabilistic Reasoning in 
Intelligent Systems: networks 
of Plausible Inference (Judea 
Pearl, 1988) 

Introduced the Bayesian 
networks for reasoning under 
uncertainty 

4. AI as a data-driven 
model 

On the Uniform Convergence 
of Relative Frequencies of 
Events to Their Probabilities 
(Vladimir Vapnik and Alexey 
Chervonenkis, 1971) 

Developed the fundamental 
theoretical foundation for 
support vector machines (SVMs) 
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No. Definition of AI Key Scientific Paper Fundamental Development 
  Generative Adversarial Nets 

(Ian Goodfellow et al., 2014) 
Coined the term and concept of 
“Generative Adversarial 
Networks (GANs)” as a 
cornerstone of the recent 
generative model. 

5. AI as an adaptive 
agent 

Reinforcement Learning: An 
Introduction (Richard Sutton & 
Andrew Barto, 1998) 

Coined the term “Reinforcement 
Learning” as a fundamental AI 
concept for agent-based learning 
mechanism. 

6. AI as generative 
system 

Attention Is All You Need 
(Ashish Vaswani et al., 2017) 

Introduced the Transformer 
architecture, contributing to the 
revolusionisation of NLP 
models, including GPT 

  Generative Adversarial Nets 
(Ian Goodfellow et al., 2014 

Proposed the concept of GANs 
as foundational AI-generated 
content 

Source: Author’s formulation (2025) 

2.2 Grasping the notion of Sustainable AI 

The term “sustainable AI” was coined by AI ethicist Van Wynsberghe (2021), referring to a 

movement to foster change in the entire lifecycle of AI products (e.g., idea generation, training, 

re-tuning, implementation, governance) towards greater ecological integrity and social justice. In 

other words, sustainable AI can be defined as AI systems designed and deployed to be 

environmentally sustainable, socially responsible, and economically viable (Schütze, 2024).  

Figure 2.2. Number of Published Journals on Sustainable AI (1992 – Present) 

 

 

 

 

 

 

 

 

 

                      Source: Author’s formulation (2024) 
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From an ethical AI perspective, sustainable AI encompasses two primary aspects, namely (1) the 

sustainability of AI and (2) the application of AI for sustainability (Figure 1). The former refers to 

designing AI systems using sustainable resources, while the latter emphasises leveraging AI as a 

tool to contribute to climate solutions. Nevertheless, addressing the obstacles linked to the 

sustainability of AI is a prerequisite before achieving AI for sustainability (Falk et al., 2024; Falk 

& van Wynsberghe, 2023a), making the realisation of sustainable AI a significant challenge. 

Based on search on Web of Science, a total of 1,309 academic articles on Sustainable AI has been 

published between 1992 – 2024, with the year of 2024 becomes the culminate period of the trend 

(Figure 2.2). The current state of literature on sustainable AI primarily discusses over AI ethics 

linked to environmental impacts, focusing on two major themes: (1) “AI for sustainability” (Falk 

& van Wynsberghe, 2023a, 2023b; van Wynsberghe, 2021) and (2) “Sustainability of AI” 

(Coeckelbergh, 2020, 2022; Schütze, 2024.). To comprehensively comprehend the term 

“Sustainable AI,” it is imperative delve into these two fundamental edifices of the term. 

2.2.1 Sustainability of AI 

Literatures vary in converging the core definition on the term “Sustainability of AI,” with three 

most common used terminologies comprise (1) sustainable AI-system (Almeida et al., 2024; 

Alzoubi & Mishra, 2024; Balan, 2024; Barbierato & Gatti, 2024; Biggi et al., 2025; Dash, 2025; 

Eilam et al., 2023; Genovesi & Mönig, 2022; Jay et al., 2024; Kumar et al., 2024; Leuthe et al., 

2024; Perucica & Andjelkovic, 2022; Rohde et al., 2024; Sikand et al., 2023; Trinh et al., 2024; 

van Wynsberghe et al., 2022; Wang et al., 2024); (2) green AI (Bolón-Canedo et al., 2024; Tabbakh 

et al., 2024; Verdecchia et al., 2023); and (3) eco-friendliness AI-system (Vartziotis et al., 2024). 

Figure 2.3. Definitions of Sustainability of AI 

 

 

 

 

 

 

  Source: Author’s formulation (2025) 
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Out of 31 articles, the term “Sustainable AI-system” stands out as the most popular utilised by 

authors (24 codes), followed by “Green AI” (4 codes), and “Eco-friendliness AI-system” (1 code). 

Articles that applied the term “Eco-friendliness AI-system” represents an attribute of “Green AI,” 

while the notion of “Green AI” is significantly correlated with “Sustainable AI-system” (Figure 

2.3). This underscores the divergence in defining the term “Sustainability of AI” across researchers 

worldwide, yet highlights the commonalities in comprehending the term as an AI-system with a 

compatible sustainable resource embodied throughout its lifecycle (Balan, 2024; Leuthe et al., 

2024; Rohde et al., 2024; Sikand et al., 2023). 

Figure 2.4. Facets contributing to the Sustainability of AI  

 

 

 

 

 

 

 

 

  Source: Author’s formulation (2025) 

Furthermore, among several facets contributing to the sustainability of AI, there is a stark divide 

between those who are categorised under the umbrella of (1) environmental-related factors 

(coloured green) and (2) multidimensional dimensions (coloured pink) as portrayed in Figure 2.4. 

The former’s emphasis lies in the considerable consequences of efficient data training and 

management (Almeida et al., 2024; Bolón-Canedo et al., 2024; Jay et al., 2024), efficient energy 

consumption (Biggi et al., 2025; Bolón-Canedo et al., 2024; Castellanos-Nieves & García-Forte, 

2023a; Ofek & Maimon, 2023; Tabbakh et al., 2024; Vartziotis et al., 2024), and sustainable data 

centres to abate CO2 emissions that can exacerbate the climate change. While the later comprises 

multi-factors that also may significantly contribute to the realisation of sustainability of AI, 

including socio-economic and ethical resource management (Balan, 2024; Dias & Lunga, 2022). 
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2.2.2 AI for Sustainability 

Leveraging AI for sustainability weights more on the utilisation of AI-led systems to foster 

sustainable efforts in the context of economy, social, and environment as depicted in Figure 2.5 

with colours of pink, blue, and green, respectively. In practice, this phenomenon is considerably 

linked to tackling environmental-related challenges, encompassing (1) environmental monitoring 

and forecasting (Abba et al., 2023a; Ahmed et al., 2024; Alam et al., 2025; Amjad et al., 2023; 

Aryal, 2022; Bibri et al., 2022; Choubey et al., 2024; Davalagi et al., 2022; Dostatni et al., 2023; 

Falk & van Wynsberghe, 2023a; Hussein et al., 2025; Khanmohammadi et al., 2023; Low et al., 

2022; Nakhaei et al., 2023; Nassef, 2023; Neethirajan, 2023; Pastor-Escuredo et al., 2022; 

Renganayagalu et al., 2024; Salla et al., 2025; Senthil Pandi et al., 2025; Sheng et al., 2025; Shukla 

et al., 2024; Subbiah et al., 2024; Tedeschi, 2022; Tiyasha et al., 2021; Udoh et al., 2024; Valencia 

Diaz et al., 2022a; wang et al., 2024; S. Wang et al., 2023; Xu & Ge, 2024; Yavari et al., 2023; 

Zandifaez et al., 2023), (2) climate protection (Ahmed et al., 2024; Alam et al., 2025; Aryal, 2022; 

Castellanos-Nieves & García-Forte, 2023a; Cicceri et al., 2023; Dimitrijević, 2023; Garlik, 2022; 

Gheysari et al., 2021; Jurj et al., 2023; Li et al., 2024; Mahmood et al., 2024; Nassef, 2023; Qing 

et al., 2024; Rodríguez-Gracia et al., 2023; Shrestha et al., 2023; Shukla et al., 2024; Uriarte-

Gallastegi et al., 2024; wang et al., 2024; Yavari et al., 2023), (3) environmental mitigation and 

conservation (Dimitrijević, 2023; Garlik, 2022; Gheysari et al., 2021; Gülmez, 2024; 

Khanmohammadi et al., 2023; Neo et al., 2022; Neri et al., 2024; Pastor-Escuredo et al., 2022; 

Qing et al., 2024; Salla et al., 2025; Savazzi et al., 2021; Senni et al., 2025; Sheng et al., 2025; 

Subbiah et al., 2024; Tsai & Yuan, 2025; Udoh et al., 2024; Valencia Diaz et al., 2022b; P. Wang 

et al., 2023; Zafar et al., 2023), and (4) carbon capture and storage (Li et al., 2024; Rycroft et al., 

2023). In sum, these endeavours are ultimately intended to bolster climate protection and diminish 

the disastrous impacts that may be yielded by climate change, with an onus lies in the decision 

maker to produce pro-sustainability policies. 

Moreover, AI is utilised to promote sustainable business production and optimisation (Castellanos-

Nieves & García-Forte, 2023b; Codeluppi et al., 2021; Dostatni et al., 2023; Hussain et al., 2024; 

Mahmood et al., 2024; Onu et al., 2023; Senthil Pandi et al., 2025; Solomon & Crawford, 2021; 

Tedeschi, 2022; Tsai & Yuan, 2025; Uriarte-Gallastegi et al., 2024; wang et al., 2024; S. Wang et 

al., 2023; Xue & Lai, 2024; Zandifaez et al., 2023) in the realms of inducing economic 
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sustainability, whereas the system drives decision-making enhancement (Abba et al., 2023a; Bibri 

et al., 2022; Chakraborty et al., 2021; Piras et al., 2024; Shrestha et al., 2023) simultaneously to 

inflict betterment in policy and decision outcomes. The former is critically linked to corroborate 

environmental mitigation and conservation and is pivotal to optimise sustainability practices in 

business and production processes. While the latter is practically implementing carbon capture and 

storage as part of the strategy to boost sustainable business and manufacturing. 

Figure 2.5. Definitions of AI for Sustainability 

 

 

 

 

 

 

 

 

 

 

 

        Source: Author’s formulation (2025) 

Harnessing AI for sustainability is tremendously induced by the critical necessity to tackle 

numerous persisting sustainability challenges in society, including (1) environmental-related 

issues like waste management (Choubey et al., 2024; Funchal et al., 2022; Valencia Diaz et al., 

2022b) and water security (Abba et al., 2023b; Chakraborty et al., 2021; Hussein et al., 2025; Lu 

et al., 2023; Nakhaei et al., 2023; Tiyasha et al., 2021; wang et al., 2024) and (2) social challenges 

such as urban issues (Abba et al., 2023b; Al-Masri & Curran, 2017; Arsiwala et al., 2023; Bibri et 

al., 2024; Davalagi et al., 2022; Garlik, 2022; Gupta & Tandon, 2023; Low et al., 2022; Pastor-

Escuredo et al., 2022), food security (Ardèvol-Abreu et al., 2020; Castellanos-Nieves & García-

Forte, 2023a; Funchal et al., 2022; Gülmez, 2024), poverty alleviation (Codeluppi et al., 2021; 

Dimitrijević, 2023; Neethirajan, 2023; Ouafiq et al., 2022; Verma, 2024), and public health 

(Davalagi et al., 2022; Neo et al., 2022; Verma, 2024). Environmental-related issues, which are 
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coloured with green, are primarily part of urban issues. While social challenges (yellow coloured) 

are evidently interlinked and may be part of and caused by environmental-related menaces (Figure 

2.6). 

Figure 2.6. Sustainability challenges addressed by AI 

 

 

 

 

 

 

 

 

 

 

       Source: Author’s formulation (2025) 

2.2.3 Sustainable AI 

Against this backdrop, the third wave of AI ethics debate is attempting to invoke the alignment of 

ecological awareness and environmental ethics in developing and deploying AI. The term 

“sustainable AI” was coined by AI ethicist Van Wynsberghe (2021), referring to a movement to 

foster change in the entire lifecycle of AI products (e.g., idea generation, training, re-tuning, 

implementation, governance) towards greater ecological integrity and social justice. Nevertheless, 

addressing the obstacles linked to the sustainability of AI is a prerequisite before achieving AI for 

sustainability (Falk et al., 2024; Falk & van Wynsberghe, 2023a), making the realisation of 

sustainable AI a significant challenge. 
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Fig 2.7. The Concept of Sustainable AI 

 

 

 

 

  

 

                     Source: Author’s formulation, 2024 

Figure 2.8. Definitions of Sustainable AI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Source: Author’s formulation (2025) 

Aforementioned before, the current literature remains scarce outlining the notion of “Sustainable 

AI” as the outcome of the fusion of two fundamental facets of its embodiment: (1) sustainability 

of AI and (2) AI for sustainability. Drawing from relevant articles, research on this notable area 

shed light on three primary edifices of sustainable AI, namely (1) ecological sustainability (Bolte, 

2023; VanWynsberghe, 2021); (2) economic sustainability (Bolte, 2023; VanWynsberghe, 2021; 

Chover, 2023; Wehlmann, 2022); and (3) social sustainability (Bolte, 2023). In other words, 
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sustainable AI can be defined as AI systems designed and deployed to be environmentally 

sustainable, socially responsible, and economically viable (Schütze, 2024). (Figure 2.8). 

Theoretically, the three pillars of sustainable AI considerably intersected with none of the elements 

have less contribution compared to others in underpinning sustainable AI. In practice, another three 

pivotal external factors parallelly supplement the embodiment of sustainable AI, encompassing (1) 

human-centered values (Schutze, 2024); ethical use of AI (Schutze, 2024); and (3) responsible AI 

development (Schutze, 2024). However, the reality frequently reflects that optimising these three 

elements simultaneously is improbable, resulting in a trilemma. 

2.3 Unravelling Facets of Sustainable AI 

2.3.1 Economic sustainability 

The first quandary of the trilemma is economic sustainability, which is perceived as part of 

multidimensional notions to impel economic growth (Alsabt et al., 2024; Arundel et al., 2019; 

Dimitrijević, 2023; Siddik et al., 2025; Silva & Rosamilha, 2024; Sjödin et al., 2023) while 

safeguarding planetary boundaries simultaneously (Balcıoğlu et al., 2024; Roberts et al., 2024; 

Rohde, Wagner, Meyer, et al., 2023; Soo et al., 2024). AI functions as a mainstay in yielding 

positive outputs and outcomes through innovations to spur economic productivity and gains, as 

well as to bolster sustainable practices (Alturif et al., 2024; Arun et al., 2025; Balcıoğlu et al., 

2024; Dadebo et al., 2023; Gündüzyeli, 2024; Hong & Xiao, 2024; Rohde, Wagner, Reinhard, et 

al., 2023; Siddik et al., 2025; Verdecchia et al., 2023; Wei & Cheng, 2022). As a result, the expected 

ultimate objective of uplifting the well-being of society can be obtained (Dimitrijević, 2023).  

 Figure 2.9. Grasping economic sustainability with keyword search of Economic Sustainability 
AND Sustainable AI 

 

 

 

 

 

 

                    Source: Author’s formulation (2025) 
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In practice, research showcase that promoting economic sustainability dovetails to economic-

related attributions, encompassing (1) sustain economic gains (Alsabt et al., 2024; Arun et al., 

2025; Balcıoğlu et al., 2024; Dimitrijević, 2023; Siddik et al., 2025; Sjödin et al., 2023);  (2) cost-

effectiveness (Balcıoğlu et al., 2024); (3) supply chain optimisation (Soo et al., 2024) ; and (4) 

business innovation (Dimitrijević, 2023; Sjödin et al., 2023). These four economic advantages are 

often linked each other and primarily driven by the utilisation of AI-led innovation in the business 

or production lifecycle. Apart from their profitable impact on businesses, it shows correlation in 

inflicting social and environmental benefits simultaneously (Figure 2.9).  

2.3.2 Social sustainability 

As a part of multidimensional concept, social sustainability in the scope of AI development and 

deployment implies attempts on improving societal (Arpaci, 2024; Forsten-Astikainen et al., 2017; 

Habibipour, 2024; Khosravy et al., 2024; Meņšikovs et al., 2024; Samuel et al., n.d.; Saxena et al., 

2023; Suo et al., 2024), economic (Alahmari et al., 2022; Dadebo et al., 2023; Meņšikovs et al., 

2024; Rohde, Wagner, Reinhard, et al., 2024; Zhang & Guo, 2023), and environmental (Alahmari 

et al., 2022; Hao & Demir, 2024; Hermann et al., 2021; Meņšikovs et al., 2024; Oyadeyi & 

Oyadeyi, 2025; Rehman & Umar, 2024; Zhang & Guo, 2023) positive impacts to the society, with 

a greater weight on social values (Khosravy et al., 2024).  

Figure 2.10. Grasping social sustainability  

 

 

 

 

 

 

 

 

 

 

   Source: Author’s formulation (2025) 
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Fostering social sustainability is substantially intertwined with ecological sustainability principles 

(Khosravy et al., 2024; Rehman & Umar, 2024), which fundamentally entrenched in the 

simultaneous use of eco-friendliness AI-system. As a result, spurring social sustainability yield 

ecological benefits (Rehman & Umar, 2024) to the society that may include environmental 

monitoring and forecasting and environmental mitigation and conservation, with an utmost goal 

to abate the emission (Oyadeyi & Oyadeyi, 2025). Moreover, social sustainability approach has a 

correlation with promoting economic sustainability, yet with a less significant interlinks, 

epitomised in Figure 2.10. 

The utilisation of AI-led innovations, which cornered in (1) human-centred values (Khosravy et 

al., 2024); (2) ethical standards (Arpaci, 2024; Habibipour, 2024; Hao & Demir, 2024; Khosravy 

et al., 2024; Rohde, Wagner, Reinhard, et al., 2023; Suo et al., 2024); (3) responsible development 

(Al-Emran et al., 2025; Arpaci, 2024; Habibipour, 2024; Meņšikovs et al., 2024) and (4) decision-

making enhancement by policymakers (Khosravy et al., 2024; Wilson & van der Velden, 2022), 

becomes a mainstay in driving societal impacts as depicted in Figure 2.10. Benefits aimed to the 

society encompass social equity and fairness (Al-Emran et al., 2025; Arpaci, 2024; Habibipour, 

2024; Hao & Demir, 2024; Oyadeyi & Oyadeyi, 2025; Pansoni et al., 2023) and social cohesion 

(Alahmari et al., 2022; Khosravy et al., 2024; Rohde, Wagner, Reinhard, et al., 2023; Saxena et 

al., 2023; Wilson & van der Velden, 2022) with ultimate objectives to surmount urban issues 

(Arpaci, 2024; Dadebo et al., 2023; Hao & Demir, 2024; Khosravy et al., 2024; Oyadeyi & 

Oyadeyi, 2025) and uplift the well-being of society (Almeida et al., 2024; Dadebo et al., 2023; 

Habibipour, 2024; Saxena et al., 2023; Suo et al., 2024)  as a whole. 

2.3.3 Ecological sustainability 

Applying ecological sustainability implies a vast emphasis on corroborating responsible human-

ecology relationship (Bolte et al., 2022; Francisco, 2023; wang et al., 2024; Xu & Ge, 2024)  

through ubiquitous exert of technologies (Nicodeme, 2021; Tiutiulnikov et al., 2023). In other 

words, this facet of sustainability in the realm of AI advancement and deployment is tightly 

entwined with the aforementioned social sustainability, which sheds less light on boosting 

economic gains (Ficko et al., 2025). Figure 2.11 implies the relationships where the attributions 

on ecological (coloured green) and social (coloured yellow) factors have a roughly equal links 

compared to economic-linked category (coloured blue) that only appear once. 
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Figure 2.11. Grasping social sustainability with keyword search of Economic Sustainability 
AND Sustainable AI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  Source: Author’s formulation (2025) 

In practice, AI-led innovations commonly embedded in a diverse technological artifact with 

identical functions, comprising (1) sustainable AI-system (Raman et al., 2024); (2) green AI 

(Raman et al., 2024); and (3) eco-friendliness AI system (Tiutiulnikov, 2023). Each of these types 

contribute to preserve the environment through environmental mitigation and conservation (Wang, 

2023; Xu, 2024; Schmitt, 2024; Castelanos, 2023; Alsamhi, 2024), efficient data training and 

management (Tiutliulnikov, 2023), and efficient energy consumption (Tiutliulnikov, 2023; 

Schmitt, 2024; Castelanos, 2023). As a result, harnessing AI-based technologies in the context of 

ecological sustainability will ultimately curtail CO2 emission (Castelanos, 2023; Schmitt, 2024; 

Wang, 2023; Tiutulnikov, 2023) and promote more climate protection (Alsamhi, 2024; Xu, 2024; 

Nicodeme, 2021; Tiutliunikov, 2023). 



C H A P T E R  2  –  L I T E R A T U R E  R E V I E W  | 18 
 

Furthermore, ecological sustainability is perceived as a paramount element buoyed by responsible 

AI development practices that are linked to social sustainability values (Bolte, 2023; Xu, 2024; 

Tiutulnikov, 2023). This relationship is associated with human-centred values (Xu, 2024) and 

ethical use of AI (Bolte, 2023), and realising social equity and fairness (Bolte, 2023), which 

practically aid to address urban (Tiutliunikov, 2023) and public health (Alsamhi, 2024) issues. Not 

to mention, the culmination of enhancing social sustainability, to uplift well-being of society, is 

also considered as the outcome of the exert of eco-friendliness AI system, marking it inseparable 

for ecological and social sustainability to be practiced simultaneously. 

2.4 Navigating the Trilemma of Sustainable AI 

Academic articles remain measly in discussing the trilemma of sustainable AI, which in general 

may refer to the trade-offs between three primary aspects of AI systems, namely (1) social; (2) 

economic; and (3) environmental facets. In the contemporary theory of sustainable development, 

optimising the three objectives will be at odds each other, making it solely feasible to opt two out 

of three facets at the same time. For instance, spurring economic growth frequently yield harmful 

consequences for social equity and environmental preservation. Conversely, prioritising social 

equity, including social fairness and justice, and environmental protection may impede economic 

growth (Lee & Park, 2021). 

When it comes to searching for keywords “The Trilemma of Sustainable AI AND Sustainability of 

AI AND AI for Sustainability AND Germany”, none of academic paper ever published until 2025. 

Mirroring from the state of art, there is a loophole in research on empirical evidence, particularly 

in discussing a case study approach to analyse how countries, such as Germany, navigate the 

trilemma of sustainable AI amidst its current rapid AI advancement and deployment. This study 

would yield a significant impact since there are still lingering problems with balancing the 

scalability of economic, social, and environmental sustainability, potentially creating a "trilemma," 

despite Germany’s superior performance on establishing a robust AI ecosystem compared to other 

EU member states.  
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3.  METHODOLOGY 

3.1 Research Design 

This study utilised a mixed-methods approach, incorporating qualitative and quantitative data 

collection and analysis (Creswell, 1999) and is built by combining three primary relevant 

frameworks. First, the traditional theoretical framework of Three-Pillar Model of Sustainability 

Barbier (1987) outlines three primary facets of sustainable development, namely (1) economic 

sustainability; (2) ecological sustainability; and (3) social sustainability. (Figure 3.1). 

Figure 3.1. Three-Pillar Model of Sustainable Development 

 

 

 

 

 

 

  

 

 

                                    Source: Author’s formulation based on Barbier (1987), 2024 

The initial objective of this particular theory was to serve as a critical reflection on the promotion 

of meaningful growth in society, by establishing a robust commitment to preserve the environment 

and promote the rational use of resources simultaneously (Barbier, 1987). Moreover, Barbier also 

criticised previous economic development for its exclusive focus on maximising economic gains, 

neglecting the significance of cultivating adaptive trade-off processes, and resulting in a trilemma, 

given the high likelihood of simultaneously optimising all three variables. 

Table 3.1. Sustainability Criteria for AI by Rohde et al., 2024 

Grouping Criteria 
Social sustainability • Transparency and assumption of 

responsibility  
• Non-discrimination and fairness 
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Grouping Criteria 
• Technical reliability and human 

oversight 
• Autonomy and data protection 
• Inclusive and participatory design 
• Cultural sensibility 

Economic sustainability • Market diversity and exhaustion of 
innovative potential 

• Distribution effect in target markets 
• Working conditions and jobs 

Ecological sustainability • Energy consumption 
• CO2 and greenhouse gas emission 
• Sustainability potentials in application 
• Indirect resource consumption 

Source: Rohde et al (2024) 

Second, to complement the traditional framework, this study adopted the 13 criteria contributing 

to each three pillars analysed by Rohde et al (2024), giving clarity to what factors should be 

considered when analysing three pillars of sustainability in sustainable AI development (Figure 

3.2).  

Fig 3.2. Three-Pillar Model of Sustainable AI  

 

 

 

 

 

 

 

 

 

 

 

 

                   Source: Author’s formulation based on Barbier (1987) and Rohde et al (2024), 2024 
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Lastly, drawing from this adopted model, this study further exerts the contemporary theory of 

sustainable development from Lee and Park (2021) that underscores the considerable potential of 

a trilemma in realising such sustainable development objectives into a modified theoretical 

framework (Figure 3.3) as a foundational conceptualised theoretical framework in conducting the 

research In theory, optimising the three objectives will be at odds each other, making it solely 

feasible to opt two out of three facets at the same time. For instance, spurring economic growth 

frequently yield harmful consequences for social equity and environmental preservation. 

Conversely, prioritising social equity, including social fairness and justice, and enhancing 

environmental protection may impede economic growth (Lee & Park, 2021). 

Figure 3.3. Conceptualised Theoretical Framework  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Author’s formulation (2025) based on the Three Pillar Model of Sustainable Development (Barbier, 1987), the 
Sustainability Criteria for AI (Rohde et al., 2024), and the contemporary Theory of Sustainable Development (Lee & Park, 2021)  
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3.2 Data Collection 

The data were collected in various ways. First, Section 2 on literature review used systematic 

literature review (SLR) to provide a comprehensive landscape of the published relevant literatures 

on the topic (Dziopa et al., 2011). Second, Section 4 and Section 5 were presented and analysed 

based on the primary data from semi-structured interviews (Adeoye-Olatunde, et al., 2021) with a 

varied cohort of participants linked to the topic. Third, Section 4 and Section 5 were utilised 

quantitative dataset from open-source websites pertinent to the research topic, aiming to 

supplement the qualitative data and arguments (Gerring, 2007).  

3.2.1 Systematic Literature Review 

Figure 3.4 depicts the process flow of literature review for the study, which retrieved from two 

main sources, namely (1) Web of Science (N = 8,694) and (2) Elicit (N = 8) with a total article 

accounted of ∑8,702. The process commenced by determining eight required theoretical 

definitions linked to the topic, containing of (1) Definition of Artificial Intelligence (AI); (2) 

Sustainability of AI; (3) AI for Sustainability; (4) Sustainable AI; (5) Economic Sustainability; (6) 

Social Sustainability; (7) Ecological Sustainability; and (8) the Trilemma of Sustainable AI.  

Figure 3.4. Process Flow Diagram of the Conducted Systematic Literature Review (SLR) 

 

Source: Author’s formulation (2025) 
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Subsequently, pre-selection phase sorted papers predicated on eight pre-determined search 

keywords aligned with each definition prior filtering, comprising of (1) “Definition of Artificial 

Intelligence” (N = 3,756); (2) “Sustainability of AI” (N = 2,646); (3) “AI for Sustainability” (N = 

2,005); (4) “Sustainable AI AND Sustainability of AI AND AI for Sustainability” (N = 10); (5) 

“Economic Sustainability AND Sustainable AI” (N = 195); (6) “Social Sustainability AND 

Sustainable AI” (N = 210); (7) “Ecological Sustainability AND Sustainable AI” (N = 51); and (8) 

“The Trilemma of Sustainable AI” (N = 8).  

Among the pre-selected articles, the process continued to distil relevant (YES) and irrelevant (NO) 

papers screened from the abstract of the papers. The ‘YES’ branch indicates the number of articles 

that were incorporated into the literature review in Section 2, while the ‘No’ branch were omitted 

and excluded from the literature review due to the irrelevance of the topic. The quantity of relevant 

academic articles is varied. For instance, the category of “AI for Sustainability” featured 80 related 

papers, accounting of 4 per cent out of the total collected publications. In contrast, the definition 

of “The Trilemma of Sustainable AI’ yielded solely 8 retrieved articles with 100 per cent of 

relevance, which is reasonable since research topic pertinent to the trilemma of sustainable AI 

remains measly published and can be grouped into an emerging scholarly issue in academia. Final 

filtration denoted that relevant academic article with specific locus in Germany remains scarce, 

accounting for merely two topics, namely (1) “AI for Sustainability” (5 articles); (2) 

“Sustainability of AI” (5 articles); (3) Ecological sustainability (2 articles); and (4) Sustainable AI 

(1 article).  

Lastly, relevant articles were undergone codification process using Atlas.ti, with the number of 

times a code has been applied to the article and the number of connections a code has with other 

codes marked with ‘Groundedness (G)’ and ‘Density (D),’ respectively (Table 3.2). The 

codification categories comprised six categorisations: (1) Contradicts (><) when the two codes 

express conflicting ideas; (2) Is a (isa) to mark a subcategory of a code; (3) Is a property of (*) to 

represent an attribute of the second code; (4) Is associated with (==) to show the relation between 

two codes without a hierarchical structure; (5) Is cause of (=>) to denote the causes between two 

codes; (6) Is part of ([]) to epitomise that the first code is a subset of the second one; and (7) 

Noname to symbolise the unlabelled relationships. 
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Table 3.2. The Result of Codification from Relevant Articles 

Definition Group Code Code ∑G ∑D G (%) D (%) 
Artificial 
Intelligence (AI)  

Definitions of AI Probabilistic reasoning system 1 3 8 17 

  Logic-based systems 3 2 25 11 
  Generative system 2 3 17 17 
  Data-driven model 2 5 17 28 
  Brain-like structures with 

learning capability 
3 2 25 11 

  Adaptive agent 1 3 8 17 
Sustainability of 
AI 

Definitions of 
sustainability of AI 

Sustainable AI-system 24 1 83 25 

  Eco-friendliness AI-system 1 1 3 25 
  Green AI 4 2 14 50 
 Facets contributing to 

the sustainability of AI 
Multidimensional dimensions 5 0 15 0 

  Efficient data training and 
management 

7 2 21 20 

  Efficient energy consumption 12 3 35 30 
  Sustainable data centres 1 2 3 20 
  Less CO2 emissions 9 3 26 30 
AI for 
Sustainability 

Definitions of AI for 
sustainability 

Environmental mitigation and 
conservation 

26 3 21 15 

  Decision-making enhancement 6 3 5 15 
  Environmental monitoring and 

forecasting 
43 4 35 20 

  Climate protection  28 4 23 20 
  Sustainable business and 

production optimisation 
20 4 16 20 

  Carbon capture and storage 1 2 1 10 
 Sustainability 

challenges addressed 
by AI 

Waste management 3 2 8 13 

  Urban issues 9 4 23 25 
  Water security 12 2 31 13 
  Public health 3 3 8 19 
  Food security 11 3 28 19 
  Poverty alleviation 1 2 3 13 
Sustainable AI Definitions of 

sustainable AI 
Economic sustainability 5 5 36 17 

  Social sustainability 3 5 21 17 
  Ecological sustainability 3 5 21 17 
  Human-centred values 1 5 7 17 
  Ethical use of AI 1 5 7 17 
  Responsible AI development 1 5 7 17 
Economic 
sustainability 

Economic 
sustainability 

Harnessing AI-led innovations 15 6 31 20 

  Foster sustainable practices 
within planetary boundaries 

9 3 19 10 

  Well-being of society 5 3 10 10 
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Definition Group Code Code ∑G ∑D G (%) D (%) 
  Sustain economic gains 9 5 19 17 
  Cost-effectiveness 6 4 13 13 
  Supply chains optimisation 1 4 2 13 
  Business innovation 3 5 6 17 
Social 
sustainability  

Social sustainability Harnessing AI-led innovations 25 17 12 14 

  Social equity and fairness 13 6 6 5 
  Well-being of society 16 12 8 10 
  Urban issues 15 9 7 8 
  Social cohesion 7 4 3 3 
  Decision making enhancement 11 6 5 5 
  Ethical standards 8 4 4 3 
  Responsible AI development 9 11 4 9 
  Human-centred values 4 9 2 8 
  Economic sustainability 6 10 3 8 
  Eco-friendliness AI-system 2 6 1 5 
  Less CO2 emissions 14 9 7 8 
  Ecological sustainability 6 5 3 4 
  Environmental monitoring and 

forecasting 
44 5 21 4 

  Environmental mitigation and 
conservation 

33 7 15 6 

Ecological 
sustainability  

Ecological 
sustainability 

Harnessing AI-led innovations 25 17 11 11 

  Environmental mitigation and 
conservation 

33 8 14 5 

  Sustainable AI-system 26 9 11 6 
  Efficient data training and 

management 
8 6 3 4 

  Less CO2 emissions 14 11 6 7 
  Efficient energy consumption 15 6 6 4 
  Eco-friendliness AI-system 2 9 1 6 
  Climate protection 33 10 14 6 
  Green AI 6 9 3 6 
  Responsible AI development 9 13 4 8 
  Human-centred values 4 9 2 6 
  Ethical use of AI 2 6 1 4 
  Social equity and fairness 13 6 6 4 
  Well-being of society 16 14 7 9 
  Urban issues 15 9 6 6 
  Public health 5 4 2 3 
  Sustain economic gains 10 8 4 5 
The trilemma of 
sustainable AI* 

N/A N/A N/A N/A N/A N/A 

Source: Author’s formulation (2025) 
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3.2.2 Semi-structured Interview 

The second way of collecting the data was undertaken through a collection of semi-structured 

interviews to provide a balanced structure with flexibility, allowing me to dive deeper into 

interviewees’ insights while maintaining a systematic and adaptable approach with potential 

interviewees (Adeoye-Olatunde et al., 2021). These purposely targeted a varied cohort of 

participants, encompassing experts from (1) the German public sector; (2) civil society 

organisations; (3) international organisations; (4) academia; and (5) industry/startups. Interviewees 

were selected predicated on pre-determined criteria as shown in Table 3.3 for each target group 

along with their specific key roles. 

Table 3.3. Selection Criteria for Interviewees 

No. Target Group Selection Criteria Key Roles 
1. German Public Sector* The interviews are conducted with key personnel 

involved in either operational or strategic roles 
within public sector institutions, whether at the 
Federal Government (Bundesregierung) or State 
Government (Landesregierung) level. The focus 
is on their contribution on policy making and 
governance linked to the development of 
sustainable artificial intelligence (AI). The 
interviews target public officials engaged in AI 
governance, AI-related policy development, 
sustainable AI or technology initiatives, and 
sustainable digital and technological 
transformation within public sector institutions. 
Specifically, the targeted interviewees work in 
government agencies in the Federal or State 
government that are directly involved in shaping 
and implementing AI strategies at the national or 
regional level. 

• Executive leadership: (1) 
Department Head or (2) 
Chief Officer related to AI, 
sustainable technology, or 
digital transformation 

• Policy and administration: 
(1) Senior civil servants; (2) 
legal advisors; (3) AI policy 
officers; (4) AI policy 
advisor shaping AI 
governance and 
sustainability regulations 

• AI Strategy and Innovation 
Analyst: AI policy analyst 

• Project Management: (1) 
Project Officer and (2) 
Program Manager related to 
the implementation of AI 
policy into government 
services and programs 
including economic, social, 
and environmental impact. 

2. Civil Society 
Organisation 

The interviews were conducted with key experts 
and researchers from civil society organisations 
(CSOs) engaged in AI governance, 
sustainability, ethics, and digital rights advocacy. 
The focus is on their contributions to policy 
discussions, public engagement, and research 
related to sustainable AI development, 
responsible AI deployment, and the societal 
impact of AI technologies. The interviews target 
professionals working in think tanks, advocacy 

• Policy and Regulatory 
Experts: (1) Senior Policy 
Analysts, (2) AI 
Governance Specialists, (3) 
Digital Economy and 
Innovation Experts 
focusing on AI regulatory 
frameworks. 

• AI and Sustainability 
Analysts: (1) AI and 
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No. Target Group Selection Criteria Key Roles 
groups, NGOs, and independent research 
institutions that influence AI policies, ethical 
guidelines, and sustainability frameworks at 
national and international levels. 

Environmental Policy 
Experts, (2) Sustainable AI 
Researchers, (3) AI and 
Climate Policy Advisors. 

3. Industry and Startups The interviews were conducted with key 
personnel involved in either operational or 
strategic roles within private sector companies, 
including startups and established enterprises 
developing or integrating artificial intelligence 
(AI) solutions, in Germany. The focus is on their 
contributions to AI innovation, governance, and 
the advancement of sustainable AI in industry. 
The interviews target professionals engaged in 
AI development, ethical AI implementation, 
sustainability-driven AI solutions, and digital 
transformation within the private sector. 
Particularly, the targeted interviewees work in 
AI-focused startups, technology firms, and 
enterprises that are actively shaping and 
deploying AI strategies for sustainable 
economic, social, and environmental impact at 
the national level. 
 

• Executive Leadership: (1) 
CEO, (2) CTO, (3) Chief AI 
Officer, or (4) Chief 
Sustainability Officer 
driving AI and digital 
transformation strategies. 

• AI Development and 
Strategy: (1) AI Engineers, 
(2) AI Researchers, (3) AI 
Product Managers, and (4) 
Innovation Leads working 
on AI-driven sustainability 
initiatives. 

• Regulatory and Ethics 
Advisory: (1) AI Ethics 
Officers, (2) Compliance 
Managers, (3) Policy 
Analysts focusing on AI 
governance and responsible 
AI deployment. 

• Sustainability & Impact 
Strategy: (1) ESG 
(Environmental, Social, 
and Governance) Officers 
and (2) AI and 
Sustainability Consultants. 

• Project and Program 
Management: (1) AI Project 
Managers and (2) Business 
Development Leads 
overseeing AI adoption and 
integration into industry 
solutions. 

4. International 
Organisation 

The interviews were conducted with key policy 
analysts and experts from international 
organisations engaged in AI governance, 
sustainability, regulatory frameworks. The focus 
is on their contributions to policy development, 
strategic recommendations, and regulatory 
guidance related to sustainable AI, responsible 
AI deployment, and the societal and economic 
impact of AI. The interviews target professionals 
working in global institutions such as the OECD, 
UN agencies, World Economic Forum, and other 
international think tanks that influence AI 
policies, governance frameworks, and 

• Policy and Regulatory 
Experts: (1) Senior Policy 
Analysts, (2) AI 
Governance Specialists, (3) 
Digital Economy and 
Innovation Experts 
focusing on AI regulatory 
frameworks. 

• AI and Sustainability 
Analysts: (1) AI and 
Environmental Policy 
Experts, (2) Sustainable AI 
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No. Target Group Selection Criteria Key Roles 
sustainability initiatives across multiple 
countries, with a specific interest in Germany's 
AI landscape. 
 

Researchers, (3) AI and 
Climate Policy Advisors. 

• International AI Strategy 
and Implementation 
Specialists: (1) AI in Public 
Sector Experts, (3) AI and 
Economic Development 
Specialists. 

5. Academia The interviews will be conducted with key 
academic professionals engaged in research, 
teaching, and policy discussions related to 
Artificial Intelligence (AI) and sustainability. 
The focus is on their academic contributions to 
AI governance, sustainable AI development, and 
ethical AI implementation in both theoretical and 
applied contexts. The interviews target 
researchers and scholars involved in AI ethics, 
AI policy development, and sustainable AI 
innovation within universities and research 
institutions in Germany. In particular, the 
targeted interviewees are academics and 
researchers working on AI-related sustainability 
challenges, governance frameworks, and 
interdisciplinary AI applications that shape 
policies, industry practices, and socio-economic 
impact. 

• Professors and Senior 
Experts: (1) Professors, (2) 
Associate Professors, and 
(3) Senior Researchers 
specialising in AI 
governance, ethics, and 
sustainable AI innovation. 

• Research Associates: (1) AI 
Researchers, (2) 
Sustainability & AI Policy 
Experts, (3) Postdoctoral 
Researchers focusing on AI 
and sustainability. 

• PhD Students & Early-
Career Researchers: (1) 
PhD Candidates 
researching AI ethics, 
governance, or sustainable 
AI applications, (2) 
Research Assistants 
contributing to AI and 
sustainability projects. 

• Interdisciplinary AI 
Scholars: Experts from 
computer science, law, 
public policy, 
environmental studies, and 
social sciences examining 
AI's role in economic, 
social, and environmental 
sustainability. 

Source: Author’s formulation (2025) *Interviewees for the German Public Sector were not successfully conducted due to the 
absence of responses from the contacted people. 

Of a total of 12 contacted interviewees, 5 were successfully interviewed (42%), while 4 persons 

did not provide a response (33%), and 3 people rejected the invitation for an interview. Those who 

did not respond to the invitations were dominated by targeted public sector interviewees, whereas 

those who rejected the interview requests stated their concerns about secretive government or 

company material and information that may not be publicly informed. Among the 5 completed 
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interviewees, 2 people represented CSO and academia (40%), and 1 person in each sector of 

international organisations and startups, industry and startups, and academia. (Figure 3.5). 

Figure 3.5. Stats of the Interviewees 

 

Source: Author’s formulation (2024). 

The interview process utilised digital tools, including Google Meets and Zoom, to conduct 

interviews with all the respondents. I conducted a total of five rounds of interviews, each with a 

varied number of questions tailored to different groups of interviewees. The first round contains 

an introduction to the interviewed person and the work context of the thesis. The second session 

was dedicated to specific questions of ecological sustainability. In this context, ecological 

sustainability refers to the degree of practising responsible resource management to minimise 

energy use, reduce emission and waste, and ensure long-term environmental preservation (Bolte 

et al., 2022; Rohde et al., 2024).  

Subsequently, I enquired about questions linked to economic sustainability. In particular, this term 

is related to market fairness and resilience, innovation, equitable distribution, and quality for 

sustainable economic growth (Bolte et al., 2022; Rohde et al., 2024). The fourth session asked 

enquiries on social sustainability, including promoting fairness, inclusivity, and accountability 

while safeguarding the public's or user’s personal right (Bolte et al., 2022; Rohde et al., 2024). 

Lastly, I asked an additional question before ending the interview process. These questions include 

any key challenges or opportunities that have not been discussed, ways forward on German AI-
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related policies, interest in reading the final submitted thesis, and recommendations of 

interviewees (Figure 3.6). 

Figure 3.6. Questions of the interview 

 
Source: Author’s formulation (2024). 

3.2.3 Complementary quantitative dataset 

Quantitative data were collected through relevant open-sourced websites, including (1) OECD.AI; 

(2) the Joint Research Centre data catalogue; (3) KI-Strategie-Deutschland; (4) the 2025 Stanford 

AI Index; (5) Eurostat; (6) Lernende Systeme; and (7) Statista. 

3.3 Data Analysis 

3.3.1 Analysing Semi-Structured Interview Results 

The results of semi-structured interviews were transcribed utilising TurboScribe and codified using 

Atlas.ti. The number of times a code has been applied to the article marked with ‘Groundedness 

(G)’ (Table 3.4). The codification categories comprised six categorisations: (1) Contradicts (><) 

when the two codes express conflicting ideas; (2) Is a (isa) to mark a subcategory of a code; (3) Is 

a property of (*) to represent an attribute of the second code; (4) Is associated with (==) to show 

the relation between two codes without a hierarchical structure; (5) Is cause of (=>) to denote the 

causes between two codes; (6) Is part of ([]) to epitomise that the first code is a subset of the second 

one; and (7) Noname to symbolise the unlabelled relationships. Subsequently, the codes were 
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analysed using network analysis in Atlas.ti to yield analytical figures to grasp the relation between 

codes. (Table 3.4). 

Table 3.4. The Result of Codification from Interviews 

No. Code ∑G G (%) 
1. AI for sustainability and Sustainability of 

AI 
1 2.08 

2. AI sovereignty 1 2.08 
3. Algorithmic discrimination 2 4.17 
4. Concentrated market power 3 6.25 
5. Feasibility of reusable heat technology 1 2.08 
6. High demand of air-based cooling system 1 2.08 
7. Human-centric AI 2 4.17 
8. Inefficient regulatory processes 3 6.25 
9. Innovation at odds with regulation 1 2.08 
10. Lack of transferability 2 4.17 
11. Less cooperation between industry and 

the government 
2 4.17 

12. Less inclusive regulatory process 1 2.08 
13. Less public involvement 1 2.08 
14. Long permitting process 1 2.08 
15. Monitoring on carbon emission 2 4.17 
16. Promoting digital sovereignty 1 2.08 
17. Regulation can promote innovation 2 4.17 
18. Regulation can promote responsible AI 1 2.08 
19. Regulatory hurdles 5 10.42 
20. Shortage of highly skilled workers 1 2.08 
21. Silo in AI governance 3 6.25 
22. Social cohesion 2 4.17 
23. Sustainability of AI systems 2 4.17 
24. Sustainable AI as a multi-dimensional 

concept 
6 12.5 

25. Transparency from AI industry 1 2.08 
                       Source: Author’s formulation (2025) 

3.3.2 Analysing Complementary Datasets  

The collected open-sourced datasets were extracted into Excel files, then analysed and visualised 

using R and Python. Some figures were produced utilising R (i.e., the figure on VC investment), 

while the others were using Python (i.e., the figure on Germany maps). This different approach 

was undertaken based on the specialisation of each programming language to yield proper figures; 

for instance, Python was selected due to its specialisation to produce better map figures using the 

geopandas feature compared to R. 
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3.4 Research Limitation 

This research possesses some limitations. First, arguments based on the interview findings may 

exhibit biases stemming from the subjectivity of the participants. Second, less interviewees from 

the German public sector. Third, due to the current absence of granular framework for assessing 

sustainable AI approach, the analysis results may lack nuanced rationale. Fourth, the findings of 

this research cannot be generalised as universal evidence, as they pertain exclusively to Germany, 

and evidence from other nations may differ.  
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4.  RESULTS 

4.1 Existing challenges encountered by Germany in promoting Sustainable AI practices 

This section contains six persistent obstacles that may hinder the escalation of current positive 

developments regarding advancing sustainable AI in the country, encompassing (1) divergence in 

semantics definition of the term “sustainable AI”; (2) regulatory hurdles; (3) silo in AI governance; 

(4) potential harmful consequences on the environment; (5) critical social concerns; (6) lag in AI 

adoption across enterprises; (7) limited AI adoption across the public sector; (8) market 

concentration in sustainable AI projects; (9) shortage of highly skilled workers; and (10) limited 

transferability across SMEs. 

4.1.1 Divergence in semantics definition of the term “Sustainable AI” 

The term “sustainable AI” remains divergent amongst AI experts globally, since this particular 

semantics remains considered an emerging ethical debate in the realms of AI ethics, notably 

environmental ethics. Nonetheless, a semantics definition coined by Prof. Amy von Weinsberg has 

become a guide for many, including one of the following interviewees: 

“Well, I would stick to the basic of what Amy von Weinsberg in her paper. She distinguished 

between the term sustainable AI to encompass the two perspectives, AI for sustainability 

and then sustainability of AI. I don't really have to mix the two approaches. And we always 

had this kind of working definition in our project. It's the same project that we said 

sustainable AI has the three dimensions, the three pillars of sustainability, has a social, 

ecological and an economic sustainability aspect to it.” (Interviewee 1, with a background 

of Civil Society Organisation and Academia). 

Interviewee 1 interpreted the term “sustainable AI” as an umbrella that contains two facets, namely 

(1) AI for sustainability and (2) sustainability of AI, and used these two aspects in the previous 

flagship project of “SustainAI”. This concept has three derivative pillars of sustainability, 

encompassing (1) social, (2) ecological, and (3) economic sustainability that are entangled with 

each other. Conversely, Interviewee 2 debunked the common understanding of sustainable AI with 

its two essential pillars, AI for sustainability and sustainability of AI, arguing that dichotomising 

such a definition would only spawn imbalance in grasping the term as a comprehensive concept 

as stated below. 



C H A P T E R  4  -  R E S U L T S  | 34 
 

[…] I would say it's a wrong dichotomy. And that happens very often in the discussion. I 

mean, people like balance, and there's the negative side and the positive side, but the way 

people frame it is that the negative side is very, as you said, it's very, very much focused on 

the infrastructure. And the positive side is very much focused on the applications. And it's 

definitely not as black and white. It's not like, yes, AI takes a lot of energy, but it can do 

very, very sustainable things. It's much more complex than that […]” (Interviewee 2, with 

a background as an AI expert at an International Organisation). 

Interviewee 2 emphasised the importance of interpreting the term "sustainable AI" in a 

comprehensive perspective, avoiding oversimplifying it and preserving its potential to produce 

sustainable outcomes and solutions. Whereas Interviewee 3 underlined two intertwined aspects, 

namely social, ecological and economic impacts, in particular, and noted the need to perceive 

sustainable AI as a comprehensive concept embedded throughout the life cycle of the AI systems. 

“[…] And this is like this AI for sustainability because yes, we can use those systems for, I 

don't know, climate modelling or I don't know, aspects which are related to sustainability. 

But there are many, many, many other applications which are not related to sustainability 

at all. And that's why for me, and that's also the perspective we developed within this 

project, when we really want to have an overarching sustainability perspective, it's about 

looking at the whole AI lifecycle and also not only looking at the application area, but also 

like how is the whole system designed and like what materials are used for the hardware 

in the data centres and stuff. So it's like it's much more than only we like to use this AI to 

tackle climate change or I don't know. […]” (Interviewee 3, with a background of Civil 

Society Organisation and Academia). 

Furthermore, Interviewee 2 emphasised the imperative of taking into account any potential harmful 

consequences on social cohesion when conceptualising the framework of “sustainable AI”. This 

means that the term “sustainability” should not be defined in a narrow scope of the sustainability 

of AI, instead broadening the sustainability approach within the planetary boundaries. 

“[…] So, we always said sustainable AI should not endanger social cohesion. It should 

stay within the planetary boundaries. And it should not aggravate economic concentration. 

So, this is a broad sustainability approach and just very much focused on the sustainability 

of AI.” (Interviewee 3, with a background of Civil Society Organisation and Academia). 
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4.1.2 Regulatory hurdles 

The enactment of the Energy Efficiency Act (Energieeffizienzgesetz), which aimed to comply with 

the EU Energy Efficiency Directive, has faced significant criticism for being excessively stringent 

and impractical from the perspective of businesses. Interviewee 4 and Interviewee 2 underscored 

the disparity of the regulatory framework between Germany and its European counterparts, 

underlining that stricter enforcement of such directives has indirectly imposed an extra burden on 

the data centre sector in the country. Another notable deficiency in the Energy Efficiency Act is 

regarding the impracticality of imposing stringent energy reuse targets without regard for 

contextual feasibility. For instance, Interviewee 4 further outlined that there is an issue ofeat off-

take, which pertains to the ability of data centres to utilise waste heat, and it was emphasised as 

dependent on local infrastructure, which is not generally available in the country at the moment. 

“And also, now with the new energy efficiency law, there's also some regulatory burdens 

in Germany that are much higher than in other European countries. Because, I don't know 

if you're into the topic, but we're having the energy efficiency directive on a European level. 

So, there are, in theory, should be a low playing field. But Germany applied this directive 

very strictly, implemented a lot of regulation that went way beyond what the directive 

proposes. So that's also an increasingly negative factor on the data centre market because 

the regulation that was implemented is very strict and also not really, what's the word for 

that? It's not really viable in practise because, for example, one of the things they proposed 

is that new data centres, which start operating after 2026, have to have an energy reuse 

factor of 10, 15, 20 percent over three years. No matter the outside circumstances, network 

or whatever. And that's not something that a data centre operator can, that's right, a data 

centre operator can't. They need to be reused. They have to be low and cost neutral. But if 

there's no offtake for several reasons, for example, no heating district, network, or maybe 

it's not economically feasible, that's often the reason. Because, yeah, the heat from the data 

centre is often only about 30 degrees higher than what the heat power. And maybe it's not 

economically feasible anymore for the heat operator. So, for example, the data centre 

operator can't do that. So, yeah, that's why the regulation is a big problem for the industry.” 

(Interviewee 4, with a background as an data centre policy expert at a national digital 

association) 
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“But, yeah, with the energy efficiency law, the industry is very unhappy with how it was 

consulted, how the law was implemented now in a good form. So, there's a lot of 

improvements that can be made on that front, because, as I already mentioned earlier, from 

the perspective of the industry, the law is not very practical and applicable right now. And 

from our perspective, from the perspective of the data centre industry, the industry's voice 

wasn't heard enough, especially in the early phases of the law.” (Interviewee 4, with a 

background as an AI expert at an International Organisation). 

Furthermore, Interviewee 4 revealed the distinguished approach of such a regulatory development 

process between Germany and the European Union, highlighting that there was less inclusivity 

during the legislation process, notably in gathering perspectives from the industrial sector. 

“There were some improvements made in the policy process, but especially at the 

beginning, the law that came out of the ministry was very unproductive. It was much worse 

than it is now. But, yeah, the industry's voice is not heard enough. To be honest, on a 

European level, it's very different. There, we have seen a lot of consultation with the 

industry.” (Interviewee 4, with a background as an data centre policy expert at a national 

digital association). 

Interviewee 4 and Interviewee 2 also shed light on the permitting issue of data centres that hampers 

the industry in the country from scaling up AI and high-performance computing requirements in 

practice. This phenomenon is considered a bottleneck that may impede Germany in vying with 

other European and global AI key players to spur exponential innovation growth and advancement 

in AI. 

“We are also seeing is that the permitting process takes very long in Germany, also when 

compared to other European countries, especially in such a fast-evolving industry as a data 

centre industry. We're seeing AI evolving very fast, so demands rising very fast for data 

centre capacity. And in Germany, it's very hard to meet this demand in time because of the 

long permitting process.” (Interviewee 4, with a background as an data centre policy expert 

at a national digital association) 

“[…] But of course, Germany being Germany, they probably approach it in a way of doing 

a lot of legislation. There's the Energy Efficiency Act that mandates certain like percentages 
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of access that's being repurposed. And like that might eventually slow down world data 

centres, for example, because companies are just going to go elsewhere.” (Interviewee 2, 

with a background as an AI expert at an International Organisation). 

On the contrary, Interviewee 1 provided a different perspective, countering the argument of 

regulation often at odds with innovation. The following statement highlighted that instead of 

hampering innovation, legislation could actually promote more continuous innovation trajectories,  

as reflected from good practice from the United States-centric approach. 

“[…] I can just say that this whole narrative of regulation impeding innovation is always 

there and it's very unsubstantiated. One could equally argue that regulation in this sort 

fosters innovation and DeepSeek might be an example of that, right? We don't have to 

follow the US approach of scaling, compute, scaling, model architecture, scaling, data set 

size. This is not the only way to innovation. So, I think if we truly want to find a European 

approach, we don't have to mirror what is done in America and the US. So, I feel like this 

whole narrative is very unsubstantiated. It is not legitimised in any way.” (Interviewee 1, 

with a background in Civil Society Organisation and Academia). 

4.1.3 Silo in AI governance 

Silo in the German AI ecosystem is considered a primary caveat, as reflected in the absence of 

integrated coordination among relevant governmental actors and federal states, leading to 

fragmented governance practices that impede coherent implementation and integration of AI 

initiatives across the country’s ministries and states. This is in contrast to other global key AI 

players, such as the United Kingdom, which provided a dedicated governmental institution 

directing national AI strategy and initiatives, as stated by Interviewee 2 below. 

“I think that goes back to the federal and state system of Germany. So already on the state 

level, you don't have a central agency or ministry that is doing even digital, not AI, but like 

digital policy. So in the UK, for instance, you have an AI office, and all they do is AI. And 

that's where all the AI initiatives come together. In Germany, you have the BNBK, so the 

Ministry for the Economy does something. And you have the Digital and Infrastructure 

Ministry that does something. And the Ministry for the Interior is responsible for digital 
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initiatives on the bureaucracy.” (Interviewee 2, with a background as an AI expert at an 

International Organisation). 

This divergence of responsibilities is reflected in the distribution of AI initiatives in a sectoral 

approach, resulting in diverse AI projects conducted by different ministries without acknowledging 

each project among the counterpart ministries, resulting in a potential overlapping of related 

initiatives linked to AI in the country. 

“[…] Then you have every other ministry, the Ministry for Agriculture does AI for 

agriculture. So you have already only on state level, a lot of different ministries who do a 

lot of different initiatives, and they're not necessarily aligned or coordinated, because 

there's no central place where they are coordinated. So in many ways, our report was the 

first time that many of these initiatives heard about each other, because they suddenly sat 

in the same room, and then somebody was like, oh, we're also doing that. So you end up 

with like, two ministries doing basically the same thing. But they had never heard about 

each other. So that's already a big problem.” (Interviewee 2, with a background as an AI 

expert at an International Organisation).” 

Further, the German federal system aggravates the persisting fragmented AI governance 

ecosystem, as each Bundesland has the authority to pursue its own AI agenda. Not to mention, the 

absence of coherent coordination between state and federal levels intensifies this critical 

impediment. 

“And then the next problem is the kind of the federal structure of Germany, so with the 

Bundesländer. And then each Bundesland has its own, some have a private AI initiative, 

some have a state level AI initiative, some don't have an AI initiative. And then the different, 

so Bavaria, for example, has a digital ministry. But that's not common in many other 

Bundesländer. So again, on state level, a lot of different actors, a lot of different initiatives, 

and they also don't communicate with the federal level. So what you end up with is a big 

cluster of a lot of cool initiatives that are not necessarily coordinated. And sometimes you 

don't know that someone in the next Bundesland is doing the same thing.” (Interviewee 2, 

with a background as an AI expert at International Organisation). 
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4.1.4 Potential harmful consequences on the environment 

The data centre primarily contributes to the side effects of harnessing AI-led technologies because 

it plays a crucial role in supplying the energy needed for intensive data training. As of 2024, 

Germany ranks second only to the United States in terms of the number of data centres, implying 

its central position in advancing and leveraging data centres for AI and supercomputing, exceeding 

other key players, including the United Kingdom, China and France (Figure 4.1). The growth of 

the data centre industry in Germany is primarily due to digitalisation and AI integration in various 

sectors in the country. 

Figure 4.1. Number of data centres in Germany 

 

 

 

 

 

 

 

 

 

 

 

Source: Author’s formulation (2025) extracted from Statista (2024). 

Amidst the exponential energy consumption of data centres, Interviewee 4 explained that 

efficiency in using the energy is also growing simultaneously, noting that the rise in energy use is 

commensurate with the rapid expansion of data centres propelled by industry. 
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“Also, better usage of waste heat, because the temperature is higher, compared to 

distributed heating, for example. So, that is a very important thing. Also, generally, 

increasing the heat reuse of data centres, because what we are seeing right now in Germany 

is there is a high increase of our projects where waste heat is being reused, but it is still 

pretty low, especially for big projects. So, you're correct that obviously with the growth of 

the sector and the growing digitalisation, AI, the energy consumption of the data centre 

industry is increasing. But it has to be added to that that efficiency is also increasing, so 

the growth of energy demand is rising slower than the growth of the sector in general.” 

(Interviewee 4, with a background as an data centre policy expert at a national digital 

association). 

Another notable issue is linked to the imperative of shifting towards renewable energy to supply 

the raising demand of electricity that becomes the heart of data centres. This action becomes salient 

to reduce the amount of carbon footprints at the same time, as stated by Interviewee 4 below. 

“[…] And one of the most important things that has to be done to meet this demand and 

sustainable is driving forward the energy transition towards more renewable energies and 

sustainable energy production because more than 80% of the emissions by data centres in 

Germany is actually from the electricity they are consuming and so forth. That is the biggest 

thing that can be done to reduce the carbon footprint of data centres, so that is a very 

important thing.” (Interviewee 4, with a background as an data centre policy expert at a 

national digital association). 

Further, Interviewee 4 underlined that power purchase agreements (PPAs) are increasingly exerted 

by large private industries to guarantee that their data centres operate utilising renewable energy. 

These kinds of industries, buoyed by their financial strength, play key roles to drive sector-wide 

energy transition. 

“Almost all large data centre operators are already running on renewable energy, by PPAs, 

by other contracts. […] they are really investing a lot of money in that and trying to make 

an energy transition for everyone.”  (Interviewee 4, with a background as an data centre 

policy expert at a national digital association). 
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Another challenge lies in the reuse of waste heat that remains underdeveloped in Germany, notably 

in data centre industries. While there have been notable developments in recent years through 

projects related to the reutilisation of data centre waste heat, the outcome is still considered 

minimal. 

“We are seeing right now in Germany […] a high increase of our projects where waste 

hear is being reused, but it is still pretty low, especially for big projects.”  (Interviewee 4, 

with a background as an data centre policy expert at a national digital association). 

Economic feasibility is considered as the hiccup, notably for operators of district heating networks. 

This is due to the need for yielding cost-competitive implementation to effectively scale the reuse 

of waste heat, similar to fossil-based heat sources. 

“It has to be more economically feasible […] for the heating network, operators, also for 

the end customers, so it is a competitive source of heat, compared also to fossil heating.” 

(Interviewee 4, with a background as an data centre policy expert at a national digital 

association) 

4.1.5 Emerging social concerns 

Most of the Germans (60 per cent) claim to understand AI as a technology (above France and 

below Hungary, with scores of 61 per cent and 75 per cent, respectively); both trust and excitement 

are limited, with solely 39 per cent expressing excitement over AI products and merely 43 per cent 

possessing trust in AI companies to safeguard their private data. The majority of Germans believe 

that AI shows bias, with only 48 per cent of respondents trusting AI to not perform bias, compared 

to Hungary (64 per cent) and Italy (61 per cent). However, most Germans (59 per cent) are 

optimistic that AI will impact their lives in the next 3 to 5 years, although this percentage is lower 

than in other countries, such as Hungary (66 per cent) and Ireland (64 per cent). (Table 4.1) 
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Table 4.1. Public perceptions and trust on AI (2025) 

Statement BE 

(%) 

FR 

(%) 

DE 

(%) 

HU 

(%) 

IE 

(%) 

IT 

(%) 

NL 

(%) 

PL 

(%) 

ES 

(%) 

SE 

(%) 

CH 

(%) 

Products and services using artificial 

intelligence have profoundly changed 

my daily life in the past 3-5 years 

34 35 39 37 42 40 32 41 43 31 38 

Products and services using artificial 

intelligence make me excited 

33 39 46 47 40 49 40 44 45 36 42 

Products and services using artificial 

intelligence will profoundly change 

my daily life in the next 3-5 years 

61 57 59 64 59 60 63 56 59 52 55 

I have a good understanding of what 

artificial intelligence is 

65 61 60 75 66 51 70 67 65 65 57 

I trust that companies use artificial 

intelligence will protect my personal 

data 

40 35 43 64 42 58 44 45 48 35 43 

I trust that companies use artificial 

intelligence to not discriminate or 

show bias towards any group of 

people 

37 41 48 64 42 61 38 53 52 33 43 

Source : Author’s formulation extracted from Stanfrod’s AI Index 2025 (2025). 

Note: % represents the weight of survey’s participants that agreed with the statement. The data is extracted from the Stanford AI Index 2025. 
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Table 4.2. Public Opinions on the potential of AI to improve life by country (2025) 

Statement BE 

(%) 

FR 

(%) 

DE 

(%) 

HU 

(%) 

IE 

(%) 

IT 

(%) 

NL 

(%) 

PL 

(%) 

ES 

(%) 

SE 

(%) 

CH 

(%) 

My entertainment options 39 33 43 39 52 44 42 37 48 39 40 

My health 34 39 27 31 35 38 25 24 33 21 30 

My job 26 33 27 24 33 32 27 21 28 32 29 

The amount of time it takes me to get 

things done 

49 50 41 55 47 47 53 48 48 41 43 

The economy in my country 23 29 31 27 31 31 24 24 33 21 32 

The job market 17 27 22 25 25 25 21 21 17 18 25 
Source : Author’s formulation extracted from Stanfrod’s AI Index 2025 (2025). 

Note: % represents the weight of survey’s participants that agreed with the statement. The data is extracted from the Stanford AI Index 2025. 
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According to the same index’s dataset, Germany (41 per cent) ranks lower compared to the global 

average (55 per cent) and Hungary (55 per cent) in perceiving AI as a tool to expedite task 

completion. In terms of well-being, solely 27 per cent of German respondents see AI providing a 

positive outcome for their health, scoring below the global average of 38 per cent and trailing 

behind countries like France (39 per cent) and Italy (35 per cent), while exceeding Sweden (21 per 

cent). Another measured indicator is employment-related opinions, with only 27 per cent of 

Germans expecting that AI would improve the quality of their work and 22 per cent believing in a 

positive effect on the labour market. (Table 4.2). 

4.1.6 Lag in AI adoption across enterprises 

Germany showcases strength in alluring VC investments in AI compute and topped other EU 

countries by securing €788 million in 2024, higher than France (€706 million) and considerably 

surpassing Spain (€186 million), Ireland (€140 million), Portugal (€117 million), Belgium (€59 

million), Sweden (€36 million), the Netherlands (€44 million), and Italy (€5.2 million). This also 

reveals a stark concentration of VC investments in AI compute in the EU with Germany and France 

dominating the continent. (Figure 4.2). 

Figure 4.2. VC Investments in AI compute by country (2024) 

 

 

 

 

 

 

 

 

 

             Source: Author’s formulation (2025), extracted from OECD.AI  
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In contrast, the adoption rate of AI among enterprises in Germany implies a moderate performance. 

In 2023, 11.55 percent of enterprises in Germany reported having used AI, increasing to 19.75 

percent in 2024, a rise of 8.2 percent. While this surge indicates a positive improvement, Germany 

remains behind other frontrunners such as Denmark (15.17 per cent in 2023 and 27.58 per cent in 

2024, or 12.41 per cent of the rise) and Sweden (10.37 per cent in 2023 and 25.09 per cent in 2024, 

or 14.72 per cent of the rise). Some other EU counterparts, including Belgium, Finland, and the 

Netherlands, also surpassed Germany’s growth, leaving Germany solely exceeding several Eastern 

and Southern European countries like Italy, Poland, and Romania, who have a relatively low 

adoption. (Figure 4.3). 

Figure 4.3.  Enterprises using AI technologies across EU countries (2023 and 2024) 

 

 

 

 

 

 

 

 

 

   Source: Author’s formulation, extracted from Eurostat (2025) 

4.1.7 Limited AI adoption across the public sector 

The state of AI implementation in the public sector is relatively at its infancy and is predominated 

by generative AI (Gen-AI)-led innovations with notable initiatives, such as F13, Gen-AI for 

German Public Administration, ML for imaging improvement, and LLMoin. These projects 

primarily aim to increase the quality of internal processes and systems within the government's 

activities while still leaving room for more utilisation to promote cost reduction, management of 
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public resources, and betterment in collaboration and communication across government sectors. 

(Figure 4.4 and Table 4.3). 

Figure 4.4. AI in the public sector 

 

 

 

 

 

 

 

 

Source: Author’s formulation, compiled from JRT publications repository (2025) 

Table 4.3. Initiatives linked to AI in the German Public Sector 

Name Scope Responsible 

organisation 

Year of 

Launch 

Governmental 

function 

Status Process 

type 

LLMoin Local City of Hamburg 2024 General public 

services 

Pilot Internal 

management 

ML for 

Finding and 

Fixing Bugs 

National University of 

Stuttgart 

2024 Economic 

affairs 

Pilot Analysis, 

monitoring 

and 

regulatory 

research 

ML for 

imaging 

improvement 

National Bundesamt für 

Ausrüstung, 

Informationstechnik 

2022 Defence In 

development 

Internal 

management 



C H A P T E R  4  -  R E S U L T S  | 47 
 

Name Scope Responsible 

organisation 

Year of 

Launch 

Governmental 

function 

Status Process 

type 

und Nutzung der 

Bundeswehr 

Gen-AI for 

German Public 

Administration 

National Aleph Alpha 2023 General public 

services 

Pilot Internal 

management 

F13 Regional State of Baden-

Württemberg 

2023 General public 

services 

Pilot Internal 

management 

LLM “Made 

in Germany” 

National OpenGPT-X 2022 General public 

services 

Planned Analysis, 

monitoring 

and 

regulatory 

research 
Source: Author’s formulation, compiled from JRT publications repository (2025) 

Figure 4.5. Gen-AI initiatives’ contributions to public service improvements in Germany (2025) 

 

 

 

 

 

 

  

 

 

 

             Source: Author’s formulation, compiled from JRT publications repository (2025) 
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While the aforementioned initiatives already contributed to the German public sector, however 

those tools merely contribute to two primary areas, namely (1) personalised services and (2) new 

services or channels. Figure 4.7 indicates a critical need for the German public sector to improve 

the other three key areas, including expanding the exert of AI initiatives to (1) promote more 

responsive, efficient and cost-effective services; (2) increase the quality of public service 

innovation and services; and (3) enable citizen-centric services. (Figure 4.5). 

4.1.8 Market concentration in Sustainable AI projects 

Results from the interview further underscore the imperative of promoting equal AI market 

contestability in Germany, since there is a tendency of growing narrow market concentration on 

AI development and deployment only to a few larger corporations and federal states. 

“So, we always said sustainable AI should not endanger social cohesion. It should stay 

within the planetary boundaries. And it should not aggravate economic concentration.” 

(Interviewee 1, with a background of Civil Society Orgnisation and Academia). 

“So you have states that don't have anything, and then you have states like Bavaria and 

North Rhine-Westphalia, who are also the most wealthy Bundesländer, who have big 

initiatives. But I think that it's not only AI that exists in, for example, economic promotion 

offices abroad. So I was in Japan last November, and there's a Bavarian office in Tokyo 

that only does like Bavarian economic promotion. And there's an office for North Rhine-

Westphalia that only does promotion for the state of North Rhine-Westphalia. But there's 

no office of Brandenburg or... Yeah.” (Interviewee 2, with a background as an AI expert at 

International Organisation). 

Southern and western Germany dominate the sustainable AI projects across large companies or 

consortiums, owing to their more established research and development centres and robust 

industrial ecosystems. Bayern is at the forefront (6 projects), followed by Nordrhein-Westfalen (4 

projects) and Baden-Württemberg and Sachsen-Anhalt (3 projects each). Some renowned 

initiatives comprise Alice III in Bayern, Designetz (integration of renewable energies into the 

supply system) in Nordrhein-Westfalen, and machine maintenance with noise detection in Baden-

Württemberg (Figure 4.6). 
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Figure 4.6. Sustainable AI projects across large companies/consortium by Federal State (2024) 

 

 

 

 

 

 

 

 

 

 

 

Source: Author’s formulation, extracted from www.plattform-lernended-systeme.de. The figure uses a gradient map, 

where darker tones signify higher concentrations. (2025) 

Similar to the previous figure, the southern and western parts of Germany remain the central area 

for spurring start-up-led sustainable AI projects due to their robust start-up ecosystems 

complemented by advanced research and development centres. Nordrhein-Westfalen tops the rank 

with 10 projects, followed by Baden-Württemberg (7 projects), Bayern (6 projects) and Hamburg 

(4 projects). (Figure 4.7). Several highlighted initiatives encompass the app Mona Energy in 

Nordrhein-Westfalen, KIOWA (predictive maintenance for turning machines) in Baden-

Württemberg, and an automatic image recognition software for plant damage in Berlin. 
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Figure 4.7. Sustainable AI projects across Start-Up by Federal State (2024) 

 

 

 

 

 

 

 

 

 

 

 

Source: Author’s formulation, extracted from www.plattform-lernended-systeme.de. The figure uses a gradient map, 

where darker tones signify higher concentrations. (2025) 

Meanwhile sustainable AI projects across university/research institutions exhibit a more equally 

distributed trend in Germany (Figure 4.11). Niedersachsen leads at the forefront with 23 projects, 

followed by Baden-Württemberg (19 projects), Nordrhein-Westfalen and Bayern (18 projects 

each), and Bremen (13 projects). Notable initiatives include AVKVIN (digitalised methods in 

waste incineration power plants in Niedersachsen), Desire4Electronics (sustainable 

remanufacturing with machine learning methods) in Baden-Württemberg, and AirCarbon III (AI 

in fibre technology) in Bayern. (Figure 4.8). 
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Figure 4.8. Sustainable AI projects across University/Research institution by Federal State 

(2024) 

 

 

 

 

 

 

 

 

 

 

Source: Author’s formulation, extracted from www.plattform-lernended-systeme.de. The figure uses a 

gradient map, where darker tones signify higher concentrations. (2025) 

4.1.9 Shortage of highly skilled workers 

Germany stands at the forefront of countries with a significant increase in the need for IT skills 

linked to sustainability among the European Union countries. From 2019 to 2024, Germany 

experiences a considerable rise of up to 265 per cent. In terms of the need in 2024, Germany stands 

at the top, with the demand of 3,042,967 professionals, significantly surpassing other counterparts 

such as France (2,073,791), Austria (557,551) and Italy (546,681). (Table 4.4). 

Table 4.4. Demand for IT skills related to sustainability (OECD, 2025) 

Country 2019 2020 2021 2022 2024 

Germany 833309 1303705 1735739 2002348 3042967 

France 590120 949004 1227804 1460356 2073791 

Austria 111135 183354 265428 366048 557551 
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Country 2019 2020 2021 2022 2024 

Italy 87249 117045 261989 354079 546817 
Source: Author’s formulation, compiled from OECD.AI (2025) 

However, pursuant to Interviewee 4, there remains an inadequate supply of highly skilled 

professionals in the data centre industry, the sector that critically contributes to the sustainability 

of AI systems, compared to its rising demand. The need for skilled workers in this area is even 

regarded as more important than fast permit and regulatory requirements. 

“[…] skilled professionals was one of the things that was rated, actually, was rated as the 

fifth most important factor for the German market, so even more important than fast 

permits and regulatory requirements. So, it's a very, very important topic. So, not as bad 

as the electricity prices or as the slow permitting processes, but it is rated as a big problem 

already now. I mean, in most sectors, we have this problem, not only in the data centre 

industry, but obviously the data centre industry is also having big problems to find skilled 

professionals.” (Interviewee 4, with a background as an data centre policy expert at a 

national digital association). 

4.1.8 Limited transferability across SMEs 

Notwithstanding various AI initiatives in the country (Figure 4.9), the integration of AI within 

Germany's small and medium-sized organisations (SMEs) remains lesser compared to that of 

larger corporations, primarily owing to structural and knowledge-related constraints.  Although 

national and regional initiatives seek to democratise access to AI technologies, small and medium-

sized enterprises are often hampered by deficiencies in expertise, workforce, and understanding of 

practical applications. 
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Figure 4.9. Sustainable AI projects across SMEs by Federal State (2024) 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Author’s formulation (2025), extracted from www.plattform-lernended-systeme.de. The figure uses a gradient 

map, where darker tones signify higher concentrations.  

Interviewee 2 highlighted the abundance of governmental initiatives designed to facilitate AI 

integration within the SME sector. Projects like the Green AI Hub Mittelstand were referenced as 

proactive initiatives to integrate AI talent directly into enterprises. These initiatives are enhanced 

by Germany's robust institutional research framework, such as the Fraunhofer Society, which acts 

as a conduit between theoretical research and industrial implementation. Nevertheless, despite 

these structural supports, numerous SMEs find it arduous to convert this potential into tangible AI 

applications: 

“And I think that that's actually where they do a good job already. Like there's the, for 

example, I don't know if you've seen it, the Green AI Hub in Mittelstand. That's exactly 

what they're trying to, like, I think you get a free kind of AI scientist to come to your SME 

for like a couple of months. But it's hard. But not because of lack of trying. Like they are 
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really, there are a lot of initiatives for SMEs. They're really trying to bring it to the market 

there. And then you also have this entire system of Germany, of Fraunhofer, which bridge 

theory and practitioners also in the Mittelstand. So I think, yeah, I think they're trying a 

lot. But the problem is, again, more structural, not only in AI.” (Interviewee 2, with a 

background as an AI expert at an International Organisation) 

Furthermore, Interviewee 2 outlined that the deficiency in technical capacity and AI literacy among 

SMEs starkly contrasts with larger firms like Siemens, who advantageously possess robust 

research and development divisions and strong affiliations with academic institutions.  In these 

firms, the existence of specialised AI departments and access to university-educated professionals 

guarantees a systemised, seamless transition from theory to application. 

“So, to be fair, there are a lot of initiatives already for SMEs, kind of AI for SMEs, not only 

for sustainability, but broader. But they're facing the known problems of SMEs. They either 

don't know really what AI is, how to use it, how to apply it, what kind of problems you can 

solve with it. They don't have the people. Like Siemens here in Munich, they have an AI 

department with like hundreds of AI scientists. And they have a corporation with the 

University of Munich where they get all the talent. So like for them, it's easy. But for SMEs, 

it's really a lack of know-how, a lack of understanding which problems can be solved with 

AI.” (Interviewee 2, with a background as an AI expert at an International Organisation) 

4.2 The Potential Trilemma of Sustainable AI in Germany 

The interview results reveal the potential inherent trade-offs between the three pillars of 

sustainability, namely social, economic, and ecological, emphasising that balancing them would 

be arduous and even yield conflicts. This further reflects the multifaceted challenge in applying 

sustainability frameworks to research and ethical practices to promote more sustainable AI 

practices. Interviewee 1 underscored the inherent disputes within the concept of sustainability, 

notably in the AI system practice, emphasising that aiming to achieve certain sustainability pillars 

may potentially compromise others. 

“You can have a conflict of an indicator in the social dimension, for instance. You would 

want to have a data minimalistic approach to AI, which could endanger the aim of having 

a non-discriminatory AI. So, there are many, many conflicts between different criteria and 



C H A P T E R  4  -  R E S U L T S  | 55 
 

indicators. There are also a lot of synergies, of course. And so, we didn't consider the set 

of indicators and criteria to be just some sort of orientation. Because what means 

sustainable AI has to be decided for every development process, for every system 

individually. And within every system, you would have to negotiate these kinds of conflicts. 

And this is not new for sustainability approaches, right? You have conflicts and trade-offs 

all the time.” (Interviewee 1, with a background in Civil Society Organisation and 

Academia). 

Interviewee 3 corroborated the previous argument by examining the potential conflicts that exist 

across all pillars of sustainability, which in this context refers to economic, ecological, and social 

sustainability. Interviewee 3 underlined that such trade-offs would occur innately and there is no 

need to prioritise one over three other dimensions in undertaking sustainable AI practices. 

“I don't think that there is one pillar which is more critical than another pillar because in 

every pillar there are challenges which are important.” (Interviewee 3, with a background 

of Civil Society Organisation and Academia). 

However, there remains an imbalance within the public discourse in Germany, which is leaning to 

debate about the ecological sustainability more compared to the other two critical dimensions, 

social and economic sustainability. Not to mention, limited public understanding about the 

sustainability pillars, for instance, environmental impacts from harnessing digital and 

technological infrastructure, also exacerbates the efforts of promoting sustainable AI in the 

practice. 

“And I think it's also... I think at the moment we are much more debating about the 

environmental impacts because that is the thing which people don't always know. So they 

don't know that there's a huge energy demand and huge water consumption and all this 

stuff behind all the digital infrastructure we need for AI. So, I think this course is a little bit 

more arising, I would say.” (Interviewee 3, with a background of Civil Society 

Organisation and Academia). 
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5.  DISCUSSION 

This section addresses the two proposed research questions: (1) “What challenges does Germany 

encounter in promoting sustainable AI?” and (2) “How can Germany navigate the trilemma of 

fostering sustainable AI?” The presentation outlines five main challenges Germany faces in 

promoting sustainable AI practices, including issues that could hinder the country's efforts based 

on the 13 sustainability criteria of AI (Rohde et al., 2024). Subsequently, the second sub-section 

examines the research question of “How can Germany navigate the trilemma of promoting 

sustainable AI?” built on the existing challenges presented in the first sub-section and on the 

conceptualised theoretical framework presented in Section 3 (Figure 5.1) to analyse how the 

country should navigate potential trade-offs yielded from simultaneously advancing the three 

pillars of sustainability: (1) ecology; (2) social; and (3) economic. 

Figure 5.1. Conceptualised Theoretical Framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Author’s formulation (2025) based on the Three Pillar Model of Sustainable Development (Barbier, 1987), the 
Sustainability Criteria for AI (Rohde et al., 2024), and the contemporary Theory of Sustainable Development (Lee & 
Park, 2021)  
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5.1 Challenges encountered by Germany in fostering Sustainable AI practices 

The Sustainability Criteria for AI (Rohde et al., 2024) encompass three fundamental sustainability 

facets, including (1) social sustainability; (2) economic sustainability; and (3) ecological 

sustainability. According to the criteria, social sustainability includes 16 points, while economic 

sustainability and ecological sustainability comprise 3 and 4 points, respectively. Predicated on the 

findings, Germany has undertaken significant efforts to promote the three sustainability criteria for 

AI, albeit the practical actions and ethical debates are predominated by ecological sustainability 

and leave room for improvement for economic and social sustainability. In addition, the findings 

also signify two other bottlenecks that may potentially impede the advancement of sustainable AI 

in Germany, including the need to converge the definition of the term “sustainable AI” and improve 

the betterment of AI governance in the country, as further presented below. 

5.1.1 Common grounds on defining the term “Sustainable AI”  

Germany stands at the forefront of academic and ethical debates on the term “sustainable AI”, yet 

in practice there remain fragmented perceptions to define this emerging terminology. Findings 

from the literature review signify three primary definitions of the term “sustainable AI”, 

comprising (1) AI as an eco-friendliness AI system (Vartziotis); (2) AI as a green technology 

(Verdecchia, 2022; Tabbakh, 2023; Castelanos, 2023); and (3) AI as a sustainable system (Mercier, 

2022; Trinh, 2024; Wang, 2024).  

Meanwhile, the semi-structured interview results showcase a slight difference in terms of 

perceiving the term (Figure 5.2).The notable commonality lies in the similar perceptions of the 

term “sustainable AI” as a sustainable AI system, while the current common understanding of the 

term refers to the definition coined by AI ethicist Van Wynsberghe (2021), referring to a movement 

to foster change in the entire lifecycle of AI products (e.g., idea generation, training, re-tuning, 

implementation, governance) towards greater ecological integrity and social justice. 
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Figure 5.2. Divergence in semantics of the term “Sustainable AI” 

 

 

 

 

 

 

 

 

Source: Author’s formulation based on interview findings (2025) 

In contrast, some also argue that sustainable AI narrowly refers to initiatives linked to tackling 

environmental issues, which are predominantly based on techno-optimism beliefs and alluring 

political promises. There is an imperative to find common ground by converging differences in 

understanding the term “sustainable AI” in Germany; thus, future policy initiatives and research 

can drive impacts on a more overarching scope rather than merely addressing ecological-related 

issues. 

5.1.2 AI governance 

Germany has performed a solid nationwide AI initiative, including publishing a dedicated AI 

national strategy (der Nationalen KI-Strategie der Bundesregierung), yet critical structural 

challenges surrounding AI governance remain menacing for the country and may impede Germany 

in vying with other global AI key players, such as the United States and China (Figure 5.x). 

Although there is already a national AI initiative in place, AI governance practices are still 

fragmented both vertically and horizontally across the federal ministries and federal states. One 

piece of stark evidence is the absence of a central national office or national body assigned to 

conduct oversight and to harmonise the implementation of the national AI strategy. This is even 

exacerbated by the lack of coordination and silos in implementing AI initiatives among the 

government actors, resulting in various duplications of similar projects or initiatives. Not to 

mention, it appears that not all federal states have a granular AI strategy in place (Table 5.3) that 

signifies disparity in terms of governing AI in the policy levers. 
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Figure 5.3. Availability of any dedicated AI Framework in German Federal States 

 

 

 

 

 

 

 

 

 

  

                  Source: Author’s formulation extracted from www.ki-strategie-deutschland.de (2025) 

 

Another notable entrenched challenge lies in the regulatory practices that is more focused on 

regulating energy measurements, including to data centres, instead of promoting an overarching 

sustainable AI practice, such as addressing potential harmful consequences from harnessing AI 

socially, economically, and ecologically, as well as producing a sustainable AI system. For 

instance, the establishment of the Energy Efficiency Act (EnEfG) and overstrict application of the 

EU Energy Efficiency Directive often backfire on the small and medium enterprises (SMEs) that 

is not viable and feasible to comply with the law. Moreover, finding from interviews also show 

that bureaucratic issues, such as long permitting processes on building new AI infrastructures 

affect the scaling process of AI advancement in the country.  
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Figure 5.4. Challenges in AI governance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Author’s formulation based on interview findings (2025) 

5.1.3 Ecological sustainability 

Germany leadership in promoting ecological sustainability through AI is evident in the Federal 

Government’s robust robust commitment to utilising AI for environmental conservation and 

climate protection, as outlined in the five principles of  “AI for the Environment and Climate” 

(Figure 5.5), encompassing (1) AI for the energy transition and more climate protection (KI für die 

Energiewende und mehr Klimaschutz); (2) Designing AI to conserve resources (KI 

ressourcenschonend gestalten); (3) AI for greater resource efficiency in SME (KI für mehr 
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Resoourceneffizienz im Mittelstand); (4) AI for all – orientated towards the common good and 

environmentally friendly (KI für alle – gemeinwohlorientiert und umweltgerecht); (5) AI for the 

public understanding of the environment (KI für das öffentliche Umweltverständnis). 

Figure 5.5. Five Principles of “AI for the Environment and Climate” (KI für Umwelt und Klima) 

 

 

 

 

 

 

 

 

Source: Author’s formulation redrawn from Funf-Punkte-Programm ,,Künstliche Intelligenz für Umwelt und Klima‘‘ 
(BMUV, 2021) 

Furthermore, Germany currently leads EU member states in in effectively leveraging the benefits 

of AI and environmental sustainability efforts, undergirded by cross-sector collaborations 

involving federal ministries, academia, industry, civil society, and states (OECD, 2024). These 

initiatives encompass the energy, industry, transport, and agriculture sectors, which are considered 

as Germany’s most contributing greenhouse gas emissions with percentages of 34 per cent, 23 per 

cent, 18 per cent, and 9 per cent, respectively (Figure 5.6). 

Figure 5.6. Several Initiatives in the German AI Ecosystem for Rapid Decarbonisation Across 
Sectors 

 

 

 

 

 

 

                  Source: Author’s formulation based on OECD’s AI Review of Germany (2024) 
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However, several factors remain menacing and potentially impede Germany to leverage AI for 

yielding sustainable ecological innovations. First, regulatory inefficiencies that often hamper the 

industry to promote sustainable innovation and practices, for instance, the overstrict regulatory 

enforcement on the mandatory of energy reuse factors and the utilisation of power usage 

effectiveness caps that evidently unfeasible for most industries, especially the co-location data 

centres with minimal control capacity. Second, the sustainable practices to promote sustainable AI 

often lack of economic feasibility and is exacerbated by the incapacity of industries in Germany 

to reutilise waste heat and exert air-based cooling systems to promote sustainable practices 

throughout the AI cycle. (Figure 5.7). 

Figure 5.7. Challenges in ecological sustainability 

 

Source: Author’s formulation based on interview findings (2025) 

5.1.4 Social sustainability 

The concept of social sustainability often arises in ethical debates in Germany as part of a 

multidimensional framework; however, it is less frequently discussed compared to ecological 

sustainability. Promoting social sustainability becomes imperative in driving societal impacts from 

harnessing AI, including distributing social equity and fairness (Oyadeyo, 2025), enhancing social 

cohesion (Rohde, 2024), spurring responsible AI-led innovation (Habibipour, 2024), and 

upholding human-centred values in the AI lifecycle (Khosravi, 2024). (Figure 5.8). Often 

overlooked, in addition to widely acknowledged socio-ethical issues such as algorithmic 

transparency and human-centric AI development, is the shortage of highly skilled labour. 

According to the latest data from OECD (2025), Germany possesses a considerable demand for IT 



C H A P T E R  5  -  D I S C S U S S I O N  | 63 
 

skills related to sustainability, with up to 3,042,967 labours, significantly higher compared to other 

EU counterparts such as France (2,073,791), Austria (557,551) and Italy (546,817), making it 

critical to meet the demands; otherwise, it may hamper the country’s aspiration to promote 

sustainable AI practices in the future. 

Figure 5.8. Challenges in social sustainability 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Author’s formulation based on interview findings (2025) 

The recent data extracted from the Stanford AI Index (2025) justifies the emerging social concerns 

growing among Germans, showcasing a lack of optimism and excitement about utilising AI 

products and services. (Figure 5.9). Notable concern lies in the trust of users in AI companies in 

dealing with the users’ private data, scoring solely 43 per cent, lower than the global average of 47 

per cent, making it critical for the policymakers in Germany to take into account the importance 

of safeguarding users’ data used by companies, including for undertaking an intensive large data 

training in the future. 

 

 



C H A P T E R  5  -  D I S C S U S S I O N  | 64 
 

Figure 5.9. Public trust on AI products and services by country (2025)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Author’s formulation (2025), extracted from the open-sourced dataset of the Standford AI Index 2025 

According to the same index’s dataset, Germany (41 per cent) ranks lower compared to the global 

average (55 per cent) and Hungary (55 per cent) in perceiving AI as a tool to expedite task 

completion. In terms of well-being, solely 27 per cent of German respondents see AI providing a 

positive outcome for their health, scoring below the global average of 38 per cent and trailing 

behind countries like France (39 per cent) and Italy (35 per cent), while exceeding Sweden (21 per 

cent). Another measured indicator is employment-related opinions, with only 27 per cent of 

Germans expecting that AI would improve the quality of their work and 22 per cent believing in a 

positive effect on the labour market. This reflects the low level of optimism about the potential 

positive impact of AI on socio-economic matters and growing concerns about AI that may affect 

jobs, health, and productivity. (Figure 5.10). 
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Figure 5.10. Public opinions on the potential of AI to improve life by country (2025) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Author’s formulation (2025), extracted from the open-sourced dataset of the Standford AI Index 2025 

5.1.5 Economic sustainability 

As AI is perceived as an impetus for economic growth by enhancing productivity, thus advancing 

AI-led innovations for the economy while safeguarding planetary boundaries simultaneously 

becomes imperative (Balcioglu, 2024; Roberts, 2024; Rohde, 2024). In essence, economic 

sustainability aims to harness AI to boost economic gains while bolstering sustainable practices at 

the same time (Siddik, 2025; Roberts, 2024). Amidst its relatively advanced AI ecosystem, 

economic sustainability remains less discussed in the realm of sustainable AI, as the focus merely 

sheds light on ecological sustainability. (Figure 5.11). 
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Figure 5.11. Challenges in economic sustainability 

 

 

 

 

 

 

 

 

 
 

Source: Author’s formulation based on interview findings (2025) 

Acknowledging economic sustainability is critical since the huge investment poured into the AIe 

AI industry should be worth return on investment (ROI) and be equitably distributed to the society 

for improving the well-being of the people. Nonetheless, four primary hurdles are encountered by 

both private and public sectors in the country.  

First, there remains a lingering concentration on the AIe AI market in Germany, where AI 

infrastructures and resources are controlled by domestic and international big technology 

companies (big tech). This is aggravated by the fact that the development and deployment of AI is 

centralised in several affluent states like Nordrhein-Westfalen and Bavaria, while other smaller 

Bundesländer are lagging behind. The phenomenon is understandable due to the uneven 

distribution of prerequisite AI resources and infrastructures among the Bundesländer, resulting in 

a gap in the level of competitiveness and development of sustainable AI practices. (Figure 5.12). 

Second, the attainment of economic gains hinges on the effective transferability of AI deployment 

into beneficial practices for society. This is the area where Germany needs to improve, although 

there are already numerous good practices on transferability, and the federal government already 

embedded this issue in the BMBF-Aktionsplan Kunstliche Intelligenz. There is an urgent need to 

amplify the current established transferability ecosystem by enhancing cooperation between start-

ups, research universities/institutions, SMEs, CSOs, and other relevant stakeholders to boost AI 

competitiveness and narrow the gap of AI development among the Bundesländer. 
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Third, a stringent regulatory framework in Germany is evidently impeding the massive potential 

of AI benefits to the country, in contrast to other EU counterparts who enforce more lenient 

legislation, like France and the Nordic countries. These regulatory hurdles, aggravated by 

bureaucratic complexities, tend to block innovation and the provision of key AI infrastructures. 

Fourth, since Germany mostly relies on external tech infrastructures as its AI foundations, for 

instance, the Amazon cloud services, this raises the imperative of shifting towards sovereignty to 

evade the future harmful consequences, including to national security. 
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Figure 5.12. Distribution of Sustainable AI projects in Germany by Federal State (2024) 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Source: Author’s formulation (2025), extracted from www.plattform-lernended-systeme.de. The figure uses a gradient map, where darker tones indicate higher 

concentrations. 
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5.2 Navigating the trilemma of Sustainable AI 

Academic articles remain meagre in discussing the trilemma of sustainable AI, which in general 

may refer to the trade-offs between three primary aspects of AI systems, namely (1) social; (2) 

economic; and (3) environmental facets. In the contemporary theory of sustainable development, 

optimising the three objectives will be at odds with each other, making it solely feasible to opt for 

two out of three facets at the same time. For instance, spurring economic growth frequently yields 

harmful consequences for social equity and environmental preservation. Conversely, prioritising 

social equity, including social fairness, justice, and environmental protection, may impede 

economic growth (Lee & Park, 2021). 

In the current state of AI development in Germany, it can be argued that the country is focusing 

heavily on ecological sustainability, moderately on social sustainability, and underdeveloped 

economic sustainability (Table 5.1). This reflects the previously presented conceptualised 

framework built on the Three Pillar Model of Sustainable Development (Barbier, 1987), the 

Sustainability Criteria for AI (Rohde et al., 2024), and the contemporary Theory of Sustainable 

Development (Lee & Park, 2021), justifying that it remains unfeasible to maximise the three pillars 

of sustainability at the same time. Instead, merely two out of three pillars can be optimised 

simultaneously, which in this context means Germany could only well develop ecological and 

social sustainability. 

Table 5.1 The current state of priorities among the three pillars of sustainability 

Pillar of sustainability Current state of priority Potential trade-offs 
Ecological sustainability High Complex regulatory 

compliance and economic 
hurdles on SMEs 

Social sustainability Moderate Low public trust on ethical 
issues and low optimism on 
AI’s impacts 

Economic sustainability Low  Inequality in AI development 
among Bundesländer, low 
ROI for Bundesländer and the 
country, impediments on AI-
led innovations. 

Source: Author’s formulation (2025) 
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On one hand, the current state affirms Germany’s position as the custodian of environmental and 

social ethics in the field of AI; however, the evidence indicates that it costs the low performance 

of economic sustainability. It bears remembering that there is one pillar that is way more critical 

to the other two, and the opted focus of sustainable AI development is about high-level political 

decisions after all. The future of AI policies and strategies in Germany should uphold the 

outstanding ecological and social sustainability practices while also improving the betterment in 

AI governance and regulatory frameworks to spur economic sustainability practices with its own 

approaches, or the “German way”, rather than mimicking others’ practices, including the US’. By 

undertaking this, Germany would not only be able to navigate the trilemma of sustainable AI but 

also further bring its unique way to develop and deploy AI, which centres on the robust foundations 

of ecological and social sustainability that are complemented with positive economic gains that 

are equitably distributed to society.  
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6. CONCLUSION 

Germany stands at a pivotal moment in its pursuit of advancing sustainable AI practices. Evidence 

indicates that Germany excels in implementing ecological sustainability and upholding robust 

socio-ethical values, but it lags in generating economic gains from harnessing AI for society. The 

bottlenecks lie in structural impediments, including a stringent regulatory framework, silos in AI 

governance across governmental branches and federal states, and disparity in critical AI resources 

and infrastructures among the federal states, indicating caveats for Germany to vie with other 

global key AI players. This situation supports the idea that it's not possible to improve all three 

areas of sustainability at the same time, and that it's only practical to focus on two out of the three. 

In this context, Germany is prioritising socio-ecological sustainability facets over economic 

sustainability that inflicts detrimental effects on the level of scalability, competitiveness, and the 

distributed economic gains to the society. 

On the carrot side, Germany starkly affirms its position as a socio-ecological steward as reflected 

in its AI strategies and initiatives, making it possible to continue developing and deploying 

sustainable AI through its “German way”. Instead of compromising such pillars to boost economic 

aspects of AI, Germany can leverage its strength in establishing rigid legislation and robust ethical 

aspects with the incorporation of economic viability. Therefore, the future of AI advancement in 

Germany will not merely become ecologically sustainable but also further socially responsible and 

economically viable. 

This thesis contributes to enriching the literature on sustainable artificial intelligence with a focus 

on empirical evidence and a specific locus in Germany. Further, this research can provide best 

practices for other countries in their policymaking efforts to promote sustainable AI, with the 

ultimate goal of not compromising one sustainability pillar over the others, yet focusing on which 

pillars are the strongest to provide an opportunity to corroborate and improve the least developed 

one. With this approach, a country can navigate the trilemma by paving its own way of promoting 

and governing sustainable AI. 

Nevertheless, this study has several limitations. First, the absence of granular measurements on 

each sustainability facet, thus the analysis results may lack nuanced rationale. Further research can 

address this by creating a sustainability model that provides quantitative equations to explain the 

phenomenon of the trilemma in fostering sustainable AI initiatives. Second, the lack of 
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interviewees for the semi-structured interviews, notably from the German public sector, and 

limited complementary quantitative datasets available on the internet. To address this, future 

research may collaborate with wider networks, including start-ups, university partners, CSOs, and 

the government, to obtain comprehensive data. 
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