

TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Computer Science

Chair of Network Software

Adaptive near real-time data processing

of Estonian locations using Foursquare

service
Bachelor thesis

Student: Dmitri Batõrjev

Student code: 112169IAPB

Supervisor: assistant Ago Luberg

Tallinn

2014

Autorideklaratsioon

Kinnitan, et olen koostanud antud lõputöö iseseisvalt ning seda ei ole kellegi teise poolt varem

kaitsmisele esitatud. Kõik töö koostamisel kasutatud teiste autorite tööd, olulised seisukohad,

kirjandusallikatest ja mujalt pärinevad andmed on töös viidatud.

(kuupäev) (allkiri)

Peaaegu reaalajaline Eesti asukohtade kohanev

andmetöötlus Foursquare teenuse abil

Annotatsioon

Antud töö eesmärk on tuvastada, kuidas muutub Eesti sündmuskohtade külastatavus aja jooksul.

Saadud informatsiooni tulemusena saab analüüsida inimeste huvi muutumist erinevate kohtade

vastu vastavalt hooajale, nädalapäevale, kellaajale jne. Samuti saab tuvastada, millistes kohtades

ja mis ajal on toimunud (massi)üritused. Vastav informatsioon tõmmatakse alla Foursquare [1]

teenuse abil.

Oma töös olen kokku puutunud järgmiste probleemidega: piiratud sündmuskohtade arv vastuses

ja piiratud päringute arv Foursquare teenuse puhul.

Selle töö tulemus on infosüsteem, mis töötleb kogu Eesti andmeid ja mida võib kergesti

seadistada teise riigi andmeid tõmbama.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 35 leheküljel, 6 peatükki, 8 joonist, 5

tabelit.

Abstract

The purpose of work done is continuously retrieving information about locations in Estonia using

Foursquare service, to determine which places are popular and at what time.

The main problems I dealt with were: limited number of venues in response and limited number

of requests can be made to Foursquare service per hour.

The result of work done is an infosystem that processes data about whole Estonia and can be

easily configured to collect information about any other country.

The thesis is in English and contains 35 pages of text, 6 chapters, 8 figures and 5 tables.

Glossary of Terms and Abbreviations

PHP Hypertext Preprocessor [2]

Programming language

MVC Model-View-Controller [3]

Design pattern

Yii Yes It Is [4]

PHP framework

JSON JavaScript Object Notation [5]

Lightweight data-interchange format

JDBC Java Database Connectivity [6]

Java-based data access technology

PostgreSQL Object-relational database management system [7]

REST Representational state transfer [8]

Software architectural style consisting of a coordinated set of

architectural constraints applied to components, connectors, and data

elements, within a distributed hypermedia system

API Application Programming Interface [9]

API specifies how some software components should interact with each

other

AJAX Asynchronous JavaScript and XML [10]

With Ajax, Web applications can send data to, and retrieve data from, a

server asynchronously (in the background) without interfering with the

display and behavior of the existing page.

Table of figures

Figure 1 - System structure. .. 14

Figure 2 - Database structure and relationships.. 16

Figure 3 – Map of areas - begining state. ... 23

Figure 4 – Map of areas – next state. .. 23

Figure 5 - Web application - main page. .. 26

Figure 6 - Web application – venue list. ... 27

Figure 7 - Chart. Venue popularity depending on day of week. .. 28

Figure 8 - Chart. Venue popularity depending on hour of day. ... 28

Table of tables

Table 1 - Area table columns description. .. 16

Table 2 - Venue table columns description. ... 17

Table 3 - Venue_category table columns description. ... 18

Table 4 - Venue_stat table columns description. .. 18

Table 5 - Foursquare venues/search endpoint request parameters. .. 20

Table of code snippets

Code snippet 1 – SQL query. Venues view. ... 19

Code snippet 2 - SQL query. Initial area record. .. 22

Code snippet 3 - SQL query. Retrieving areas that have to be requested considering areas’

priorities. ... 25

Code snippet 4 - SQL query. Retrieving the most visited venues. .. 26

Code snippet 5 - SQL query. Retrieving the most popular venues. ... 27

Code snippet 6 – SQL query. Retrieving 50 recently venues. .. 27

Code snippet 7 - Java code. Area division method... 34

Code snippet 8 - Java code. Priority recalculation method. ... 35

Table of contents

1. Introduction .. 11

1.1 Background and problem.. 11

1.2 Goals ... 12

1.3 Methodology ... 12

1.4 Thesis overview .. 13

2. System overview .. 14

2.1 Foursquare .. 14

2.2 Data collector application ... 14

2.3 Database .. 15

2.4 Web application .. 15

3. Database structure... 16

3.1 Area table .. 16

3.2 Venue table ... 17

3.3 Venue_category table ... 17

3.4 Venue_stat table ... 18

3.5 Venue_venue_category table .. 18

3.6 Venues view ... 18

4. Data collector application ... 20

4.1 Request ... 20

4.2 Response ... 21

4.3 Area dividing .. 22

4.4 Priority and request number optimiazation .. 24

5. Web application .. 26

5.1 Main page ... 26

5.2 Venue list .. 27

5.3 Venue view ... 27

5.4 Venue map .. 29

5.5 Area map ... 29

5.6 Last changes ... 29

6. Kokkuvõte .. 30

Summary ... 31

Future plans .. 32

References .. 33

Appendix 1 ... 34

11

1. Introduction

Foursquare is a social network, that allows users (about 50 millions at the moment [11]) to

share their location with others. Every day Foursquare users „check in“ (announce their

location information) at different venues located all over the world (about 1 million check-ins

are done daily [11]). But what if we want to find out which venues are popular, when users

mainly visit them and how does the popularity of some venue changes? As Foursquare does

not offer a service to retrieve information about how the number of visits changes in time, we

have to implement a system that collects information about venue visits in near real-time.

On the Internet I have found 2 almost similar projects – The Foursquare Time Machine [12]

and 4sqmap [13]. The difference is that the first one shows only your personal checkins

history with animation and the second one is just a graphical interface for every Foursquare

API endpoint.

1.1 Background and problem

This work is a part of a project in cooperation with a company Positium. Positium has

information about mobile phone positions in Estonia. They have anonymous data about geo-

coordinates along with the timestamp. They want to know why people gathered at certain

areas – was there an event or was it a traffic jam etc. The positioning is not very accurate (the

actual location of a mobile phone is within 200 meters of provided location), therefore they

need some additional information to decide what is really happening.

Foursquare is a popular social network where people can announce their location. This leads

to a hypothesis, that this information could be used to detect special events. For example,

based on the history of a pub if there is a significant change in check-ins one evening it can be

said that there is something different (more popular) happening (a popular concert). As within

200 meters of a city centre, there are probably many candidates where mobile phones can

actually be, combined with social media information we can do more precise deductions. So,

if there is a significant change in one of the venues within the mentioned radius it could be

concluded that the change is due to an event at that venue.

12

Data available at Foursquare does not include any information about changes of visits. This

work aims to gather information from the service regularly to have near real-time data stream

about visits in Estonian venues. Foursquare has certain limits how many queries can be done

to retrieve information which prevents doing continuous scraping (basically all the time a new

information is downloaded). Based on the changes in visits in near history, more popular

places need to be scraped more often than those with mainly static visitors count. The latter

lowers the number of needed requests.

Another need for Foursquare data is in the project Sightsmap.com which provides information

about locations all over the world. Sightsmap.com combines information from different

sources and presents the data to the user in a clean and understandable way. One of the data

sources used in this project is Foursquare. So far the whole data for the world was gathered

once in a row and that information is used. Instead, the same automatic scraping system could

be used for the whole world. More popular places would be updated more often, smaller

venues not so often.

1.2 Goals

1. Find all places (venues) in Foursquare located in Estonia

2. Continuously request data and save it in database

3. Optimize number of requests due to limited requests per hour

4. Show different textual and visual reports

1.3 Methodology

All places located in Estonia are found using Foursquare API – the application sends requests,

parses the response and saves places’ information in the database (the application keeps

saving new venues that come every day). To send requests continuously, code must be inside

the infinite loop. To avoid memory leaks (so the application would not crash) all objects and

resources in the application have to be properly closed (unset) in time. Optimizing the number

of requests is needed because Foursquare API has rate limit (5000 requests per hour).

Information about popular venues has to be retrieved more often than about unpopular ones,

because a popular venue may get several new visitors during one hour whereas another venue

13

only gets one new visitor every week. Optimization is done using simple algorithm that

calculates priority for each area (priority shows how often area’s information must be

requested). Different visual reports were made using third-party libraries like Google Maps

API and Google Charts API.

1.4 Thesis overview

The given thesis has 4 sections: „System overview“, „Database structure“, „Data collector

application“ and „Web application“.

„System overview“ section describes the infosystem’s structure, how components are

connected between each other and what programming languages and technologies are used.

„Database structure“ section contains information about the database tables and views, tables’

columns description and table relationships.

„Data collector application“ section covers implementation of the main application – how

requests are being sent, how response is being parsed and how area division and priority

calculation work.

„Web application“ section describes web application’s pages – what information can be found

on them, how data is being calculated and using what libraries different reports are being

created.

14

2. System overview

Figure 1 - System structure.

As we can see in the Figure 1 – Data collector application communicates with Foursquare

server and saves data in the database. Web application uses the same database as Data

collector application does to retrieve data about venues, does calculations and shows result to

user.

2.1 Foursquare

To start our work and begin sending requests to Foursquare API [1], we have to create an

account on Foursquare, go to the developers page and register our application, then

Foursquare will generate CLIENT ID and CLIENT SECRET keys, which are used for

authentication - they have to be sent with other request parameters.

Foursquare has REST [8] architectural style, so all the parameters are sent via HTTP [14]. In

our case parameters are being sent using GET [14] method. As a result Foursquare returns

data in JSON [5] format.

2.2 Data collector application

The application is implemented in Java programming language. The application sends

requests to Foursquare, parses the responses, saves the data in the database and, when it is

needed, divides areas and calculates area’s priority. To communicate with database, java

15

application must have JDBC driver, which can be downloaded from official site of the

database management system. Also Data collector application has JSON parser as third-party

library (GSON [15]). These are the only third-party libraries that are used in the application.

2.3 Database

For this project PostgreSQL is used as a database management system. It is a free, open-

source and cross-platform system with a great community.

The database has 5 tables: area, venue, venue_stat, venue_category and

venue_venue_category, and 1 view: venues. For more information see section 3. Database

structure.

2.4 Web application

Web application is built using PHP language and Yii (version 2) framework, that has MVC

arhitecture. I decided to use Yii because it has great community and has a lot of tools, that

help to develop the applications faster. I also used Bootstrap [16] front-end framework, which

allows to create beautiful GUI [17] very fast, even if you have a little or no experience at all,

because it has good tutorials and a lot of examples. As the application has some interactive

elements and AJAX data loading I used jQuery [18] library, which has a lot of JavaScript [19]

helper functions.

As the web application displays not only textual information, but also visual information like

maps and graphs, I decided to use external services – Google Maps API [20] and Google

Charts API [21].

16

3. Database structure

Figure 2 - Database structure and relationships.

3.1 Area table

Area object represents a „rectangle“ on a map. It has south-west and north-east coordinates

(corners of the „rectangle“). When an area record is not needed anymore it is not being

deleted from table, but is_actual flag is being set to false. When an area object is divided,

children objects get a reference to the parent (parent_id column).

Table 1 - Area table columns description.

Column name Description

id Unique identifier

17

sw_longitude South-west longitude of area

sw_latitude South-west latitude of area

ne_longitude North-east longitude of area

ne_latitude North-east latitude of area

priority
Priority, that defines how often area’s information must be

requested. Possible values: Ignore, Everytime, Once an hour,

Once a day, Once a week

is_actual True if area’s information can be requested, false otherwise.

parent_id Id of parent area.

time_created Time when area was created

time_requested Last time when area’s information was requested

3.2 Venue table

Venue table contains information about all the venues located in Estonia.

Table 2 - Venue table columns description.

Column name Description

id Unique identifier

outer_id Unique identifier returned by Foursquare

name Name of venue

city Name of city, where venue is located

address Venue’s address

longitude Venue’s longitude

latitude Venue’s latitude

contact Telephone number

url Url address

time_created Time when venue record was created in the database

time_updated Last time when venue information was updated

3.3 Venue_category table

Venue category represents possible types of the venues.

18

Table 3 - Venue_category table columns description.

Column name Description

id Unique identifier

outer_id Unique identifier returned by Foursquare

name Name of category

icon_url Url address of category icon

3.4 Venue_stat table

This table contains records about how number of checkins and users of some venue have

changed over time.

Table 4 - Venue_stat table columns description.

Column name Description

id Unique identifier

venue_id Venue id

checkins_count How many times users „checked in“ the venue

users_count How many unique users have „checked in“ the venue

time_created Time when record was created

area_id Area id

3.5 Venue_venue_category table

This table is used as connection between venue and venue_category tables, representing

many-to-many relationship [22].

3.6 Venues view

Venues view is created to decrease amount of code in Web application. The following query

is used to create the view:

19

Code snippet 1 – SQL query. Venues view.

CREATE OR REPLACE VIEW venues

AS SELECT

v.*, vs.area_id, vs.checkins_count, vs.users_count, vs.time_created AS

last_change

FROM venue AS v

INNER JOIN (

 SELECT DISTINCT ON (venue_id) *

 FROM venue_stat

 ORDER BY venue_id, time_created DESC

) AS vs ON vs.venue_id = v.id;

20

4. Data collector application

4.1 Request

The main purpose of the application is to send requests to Foursquare continuously, so all the

code is inside the infinite loop. To avoid problems with memory leaks, every resource or

object has to be closed or unset when it is not needed anymore, so Java Garbage Collector

could free memory that is used by resource or object [23]. Within the loop the application

retrieves area records from the database, generates request for each area and sends them to

Foursquare server.

Not every area is requested in every iteration – it depends on which priority the area has (see

section 4.4 Priority and request number optimization). Also due to encountered problem with

limited number of requests it has been decided to set timeout, so each loop takes 30 minutes.

For example, if 2000 areas were requested in 20 minutes, the application will wait another 10

minutes before starting a new cycle.

Requests are sent to the following endpoint of the Foursqure service:

https://api.foursquare.com/v2/venues/search

Using the parameters presented in Table 5 and described in more detail in API documentation

[24]:

Table 5 - Foursquare venues/search endpoint request parameters.

Parameter name Description Example

intent Intent of the search that tells Foursquare

how to perform the search. For our purposes

we use „browse“ value, meaning that

Foursquare will return venues located in

given area.

browse

sw South-west coordinates (longitude, latitude)

divided with comma

59.384900,24.627936

ne North-east coordinates (longitude, latitude)

divided with comma

59.479882,24.919760

21

limit How many rows in result (max. 50) 50

client_id Application’s id generated by Foursquare

client_secret Application’s secret key generated by

Foursquare

v Version of our product/application 20140320

As an example we will have the following request:

https://api.foursquare.com/v2/venues/search?intent=browse&sw=59.384900,24.627936&ne=

59.479882,24.919760&limit=50&client_id=xxx&client_secret=xxx&v=20140320

4.2 Response

If the request is valid and no errors occured, Foursquare returns a list of venues [25] in JSON

format. The response contains information about venues, venues’ statistics (checkins and

users count) and venues’ categories.

The application parses the response, validates the country and saves venue’s information

(venue’s general data and venue’s categories). If the venue record already exists and the last

time its information was updated in the database was more than a week ago, then venue

information will be updated. The checkins and users count will be saved to the database only

if the checkins count has changed (without this filter we would have about 3 000 000 new

records saved to the database every day).

In case of a request error (the request contains wrong information or the rate limit is

exceeded) Foursquare returns an error code and an error message, so we can make the

application to determine and resolve the problem depending on the error code. At the moment

the application handles the following error codes:

 geocode_too_big – the area is too big. In this case the application divides the area into

half (see section 4.3 Area dividing) and continues sending requests.

 rate_limit_exceeded – the request limit is exceeded. In this case the application waits 5

minutes before making the next request.

https://api.foursquare.com/v2/venues/search?intent=browse&sw=59.384900,24.627936&ne=59.479882,24.919760&limit=50&client_id=xxx&client_secret=xxx&v=20140320
https://api.foursquare.com/v2/venues/search?intent=browse&sw=59.384900,24.627936&ne=59.479882,24.919760&limit=50&client_id=xxx&client_secret=xxx&v=20140320

22

In case the error code is unknown or it is some other type of an error (network or server fault),

the application waits 5 seconds before making the next request. As the application logs

everything into the log file, we can later view what errors have occured and complete the

application, so it could handle new types of errors in the future.

4.3 Area dividing

As Foursquare returns maximum 50 venues in the response or returns an error if the area is

too big (the maximum supported area is currently 10,000 square kilometers [24]), the

application should be able to divide the area. In case of response with 50 venues the

application divides the area until the area’s venue count will be less than 50, which means that

there are no other venues located in the area in addition to those listed in the response. In case

of a big area, the application divides area until the size of the area will be accetable for the

service.

At the begining the area table had only one record, that represented area information of whole

Estonia. This initial record is needed, so that the application knows where to start searching.

The record is inserted into database using the following query:

Code snippet 2 - SQL query. Initial area record.

INSERT INTO area (id, sw_longitude, sw_latitude, ne_longitude, ne_latitude,

priority, is_actual, parent_id, time_created)

VALUES (1, 21.20775500000000, 57.34200000000000, 29.12889700000000,

59.67112600000000, 1, TRUE, NULL, NOW());

23

Result of insertion we can see in the Figure 3.

Figure 3 – Map of areas - begining state.

After some time we had the result presented in the Figure 4.

Figure 4 – Map of areas – next state.

Legend information can be found in section 5.5 Area map.

24

4.4 Priority and request number optimiazation

Due to the limited number of requests allowed (maximum 5 000 per hour [26]), the

application has to optimize the number of requests as much as possible, so each area has a

priority, which determines how often the area has to be searched. The following priorities are

used today: „ignore“ (area is not being requested), „every time“ (every loop), „once an hour“,

„once a day“ and „once a week“.

When an area object is created, its priority is „every time“ by default. If there is no venues

located in a specific area, its priority becomes „once a week“ – the application will request the

area in one week to see if any venues have appeared there. If there are less than 50 venues in

the response and all these venues are not Estonian, the area’s priority becomes „ignore“, it

could mean that the area is located outside of Estonia. Areas with the „ignore“ priority are not

being requested and their priority can be changed only manually. After each Foursquare

response, the application counts the total number of checkins (of all venues located in a

specific area) and saves this number in memory. After an area has been requested 5 times, the

application recalculates its priority and resets the request counter.

If the total number of checkins inside some area has not been changed during last 5 requests,

this area becomes a lower priority area. If the number of chechins has been changed every

request, then the area becomes higher priority area. Otherwise the priority remains the same

as it was.

Example:

Area’s priority is „every time“ and after 5 requests the area has the same number of checkins.

It means that the area priority has to be changed due to a rare change of checkins count. As

the result, the priority recalculation method will return the „once an hour“ priority.

As the application must consider areas priority, the following query is used to retrieve the

areas, which have to be searched, from the database:

25

Code snippet 3 - SQL query. Retrieving areas that have to be requested considering

areas’ priorities.

SELECT *

FROM area

WHERE is_actual = true

AND priority != 0

AND (

 time_requested <=

 CASE WHEN priority = 2 THEN LOCALTIMESTAMP - INTERVAL '1 HOUR'

 WHEN priority = 3 THEN LOCALTIMESTAMP - INTERVAL '1 DAY'

 WHEN priority = 4 THEN LOCALTIMESTAMP - INTERVAL '1 WEEK'

 ELSE LOCALTIMESTAMP

 END

 OR time_requested IS NULL

)

Priorities: 2 – „once an hour“, 3 – „once a day“, 4 – „once a week“

26

5. Web application

The Web application is used to display textual and visual reports. It allows the user to retrieve

needed information from the database, analyze it and check that the Data collector application

is working properly.

5.1 Main page

Figure 5 - Web application - main page.

The main page contains 3 tables: most visited venues, popular venues and new venues. These

tables are loaded in parallel using AJAX request to reduce loading time. There is also used

caching on the server side for a small period of time as table information does not change too

often.

The „Most visited“ table shows top 50 venues which have the largest number of checkins.

The following SQL query is used to retrieve the most visited venues:

Code snippet 4 - SQL query. Retrieving the most visited venues.

SELECT * FROM venues ORDER BY checkins_count DESC LIMIT 50;

The „Popular“ table shows 50 most popular venues for the last 24 hours. The following SQL

query is used to retrieve needed information:

27

Code snippet 5 - SQL query. Retrieving the most popular venues.

SELECT

v.id, v.name, v.checkins_count - vs1.checkins_count AS checkins_count_diff

FROM venues AS v

INNER JOIN (

 SELECT DISTINCT ON (venue_id) *

 FROM venue_stat

 WHERE time_created < LOCALTIMESTAMP - INTERVAL '24 HOUR'

 ORDER BY venue_id, time_created DESC

) AS vs1 ON vs1.venue_id = v.id

ORDER BY checkins_count_diff DESC

LIMIT 50;

The „New“ table shows 50 recently saved venues in the database:

Code snippet 6 – SQL query. Retrieving 50 recently venues.

SELECT * FROM venue ORDER BY time_created DESC LIMIT 50;

5.2 Venue list

Figure 6 - Web application – venue list.

This page allows the user to search venues. User can search venue by its name, address,

category, contact or coordinates. The category input field uses autocomplete (as the user

types, the application makes suggestions and the user can select from a list of suggestions).

5.3 Venue view

The venue view contains different information related to the specific venue. The page consists

of 4 sections: general information, map, statistics and history.

28

In the general information section the user can find information like venue name, address,

phone number or URL address.

The next section is a map with a marker, that shows the location of the venue.

The statistics section contains calculated data like average daily checkins count and 2 charts:

the first one displays the venue popularity depending on the day of week (Figure 7) and the

second one displays the popularity depending on the hour of day (Figure 8).

Figure 7 - Chart. Venue popularity depending on day of week.

Figure 8 - Chart. Venue popularity depending on hour of day.

And finally, the history section displays all the venue checkins count changes that are stored

in the database.

29

5.4 Venue map

This page shows an interactive map (Google Map) of venues. It shows up to 1500 venues at

time. The user can zoom in and zoom out and drag the map in different directions – the

application will asynchronously load (using AJAX) and display the venues depending on the

current position of the map.

5.5 Area map

This page shows an interactive map that represents how the area of Estonia is divided and

what priority every area has. The map has the following legend:

 Green rectangle – an area with the „every time“ priority

 Blue rectangle – an area with the „once an hour“ priority

 Yellow rectangle – an area with the „once a day“ priority

 Orange rectangle – an area with the „once a week“ priority

 Red rectangle – an area with the „ignore“ priority

5.6 Last changes

This page shows a list of the last 200 venues that had checkins changes sorted by the change

time in descending order. This page can be used to check if the Data collector application is

working properly.

30

6. Kokkuvõte

Käesoleva töö põhieesmärk on tuvastada, kuidas muutub Eesti sündmuskohtade külastatavus

aja jooksul. Saadud informatsiooni tulemusena saab analüüsida inimeste huvi muutumist

erinevate kohtade vastu vastavalt hooajale, nädalapäevale, kellaajale jne. Samuti saab

tuvastada, millistes kohtades ja mis ajal on toimunud (massi)üritused. Vastav informatsioon

tõmmatakse alla Foursquare [1] teenuse abil.

Selle töö põhitulemus on infosüsteem, mis töötleb kogu Eesti andmeid ja mida võib kergesti

seadistada teise riigi andmeid tõmbama.

31

Summary

The main purpose of this work is to continuously retrieve information about the locations in

Estonia using Foursquare service, to determine which places are popular and at what time.

The result of the work done is an infosystem that processes data about the whole Estonia and

can be easily configured to collect information about any other country. Another result is a

web system where all the gathered information can be viewed and analyzed.

32

Future plans

The implemented application is a starting point for the analysis needed. There are several

additional features which will help to have more in-depth conclusions. The working

application is a clear mark that this kind of methodology can be successfully applied to gather

information about visitors in the whole country. Some of the plans for the future:

 To use the built system to collect information about other countries.

 Merge location history data with positioning data provided by Positium. Some

automation for that can be done – the user can upload positioning data and the

system automatically aligns the locations and positionings.

 To connect system with weather, event and tourism services to find a reason for

some increase or decrease of number of visitors .

 To make the reports better. Today the application generates a few types of reports

and they may not contain all the information needed.

 To upgrate request optimization logic. As number of requested countries will

increase and these contries may be bigger than Estonia or have much more venues

than Estonia does, 5000 requests per hour may not be enough to parse whole

country in the same manner presented in this work.

33

References

[1] „Foursquare for developers“ [WWW]. Available: https://developer.foursquare.com/.

[2] „PHP“ [WWW]. Available: http://www.php.net/.

[3] „MVC“ [WWW]. Available:

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller.

[4] „Yii framework“ [WWW]. Available: http://www.yiiframework.com/.

[5] „JSON“ [WWW]. Available: http://www.json.org/.

[6] „JDBC“ [WWW]. Available:

http://www.oracle.com/technetwork/java/javase/jdbc/index.html.

[7] „PostgreSQL“ [WWW]. Available: http://www.postgresql.org/.

[8] „REST“ [WWW]. Available:

http://en.wikipedia.org/wiki/Representational_state_transfer.

[9] „API“ [WWW]. Available: http://en.wikipedia.org/wiki/API.

[10] „Ajax“ [WWW]. Available: http://en.wikipedia.org/wiki/Ajax_%28programming%29.

[11] „Foursquare. About“ [WWW]. Available: https://foursquare.com/about.

[12] „The Foursquare Time Machine“ [WWW]. Available:

https://foursquare.com/timemachine.

[13] „Foursquare maps and statistics“ [WWW]. Available: http://www.4sqmap.com/.

[14] „HTTP“ [WWW]. Available: http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol.

[15] „GSON“ [WWW]. Available: https://code.google.com/p/google-gson/.

[16] „Twitter Bootstrap“ [WWW]. Available: http://getbootstrap.com/.

[17] „GUI“ [WWW]. Available: http://en.wikipedia.org/wiki/Graphical_user_interface.

[18] „jQuery“ [WWW]. Available: http://jquery.com/.

[19] „JavaScript“ [WWW]. Available: http://en.wikipedia.org/wiki/JavaScript.

[20] „Google Maps API“ [WWW]. Available: https://developers.google.com/maps/.

[21] „Google Charts API“ [WWW]. Available: https://developers.google.com/chart/.

[22] „Many-to-many relationship“ [WWW]. Available: http://en.wikipedia.org/wiki/Many-to-

many_%28data_model%29.

[23] „Garbage collection“ [WWW]. Available:

http://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29.

[24] „Foursqure API - venues/search endpoint“ [WWW]. Available:

https://developer.foursquare.com/docs/venues/search.

[25] „Foursquare API - venue response“ [WWW]. Available:

https://developer.foursquare.com/docs/responses/venue.

[26] „Foursquare API - rate limits“ [WWW]. Available:

https://developer.foursquare.com/overview/ratelimits.

34

Appendix 1

Web application address

The Web application can be found on

http://dijkstra.cs.ttu.ee/~t112169/foursquare/web/index.php?r=venue/index

Area division

Code snippet 7 - Java code. Area division method.

/**

 * Divide area in half

 * @param area

 * @return two areas

 */

public static Area[] divideArea(Area area) {

 Area[] areas = new Area[2];

 double newLon = area.getNeLongitude() + (area.getSwLongitude() -

area.getNeLongitude()) / 2;

 double newLat = area.getSwLatitude() + (area.getNeLatitude() -

area.getSwLatitude()) / 2;

 areas[0] = new Area();

 areas[0].setActual(true);

 areas[0].setNeLatitude(area.getNeLatitude());

 areas[0].setNeLongitude(area.getNeLongitude());

 areas[0].setParentId(area.getId());

 areas[0].setPriority(area.getPriority());

 areas[0].setSwLatitude(area.getSwLatitude());

 areas[1] = new Area();

 areas[1].setActual(true);

 areas[1].setNeLatitude(area.getNeLatitude());

 areas[1].setParentId(area.getId());

 areas[1].setPriority(area.getPriority());

 areas[1].setSwLatitude(area.getSwLatitude());

 areas[1].setSwLongitude(area.getSwLongitude());

 if (Math.abs(area.getSwLongitude() - area.getNeLongitude()) >

Math.abs(area.getNeLatitude() - area.getSwLatitude())) {

 // dividing vertically

 areas[0].setSwLongitude(newLon);

 areas[1].setNeLongitude(newLon);

 areas[0].setSwLatitude(area.getSwLatitude());

 areas[1].setNeLatitude(area.getNeLatitude());

 } else {

 // dividing horizontally

 areas[0].setSwLatitude(newLat);

 areas[1].setNeLatitude(newLat);

 areas[0].setSwLongitude(area.getSwLongitude());

 areas[1].setNeLongitude(area.getNeLongitude());

 }

 return areas;

}

http://dijkstra.cs.ttu.ee/~t112169/foursquare/web/index.php?r=venue/index

35

Priority calculation

Code snippet 8 - Java code. Priority recalculation method.

/**

 * Recalculates priority depending on area last stats (checkins count)

 * @param currentPriority area's current priority

 * @param checkinsCountArr last stats

 * @return recalculated priority

 */

public static Priority recalculatePriority(Priority currentPriority,

Integer[] checkinsCountArr) {

 boolean allAreDifferent = true; // all checkins counts are different

 boolean allAreIdentical = true; // all checkins counts are same

 for (int i = 1; i < checkinsCountArr.length; i++) {

 if (checkinsCountArr[i] == checkinsCountArr[i-1]) {

 allAreDifferent = false;

 } else {

 allAreIdentical = false;

 }

 }

 if (allAreDifferent) {

 switch(currentPriority) {

 case ONCE_AN_HOUR: return Priority.EVERYTIME;

 case ONCE_A_DAY: return Priority.ONCE_AN_HOUR;

 case ONCE_A_WEEK: return Priority.ONCE_A_DAY;

 default: break;

 }

 } else if (allAreIdentical) {

 switch(currentPriority) {

 case EVERYTIME: return Priority.ONCE_AN_HOUR;

 case ONCE_AN_HOUR: return Priority.ONCE_A_DAY;

 case ONCE_A_DAY: return Priority.ONCE_A_WEEK;

 default: break;

 }

 }

 return currentPriority;

}

