
Tallinn 2021 

TALLINN UNIVERSITY OF TECHNOLOGY 

School of Information Technologies 

 

 

Jelizaveta Vakarjuk 192568IVCM 

Converting a post-quantum signature scheme to 

a two-party signature scheme 

Master's thesis 

Supervisor: Ahto Buldas 

 PhD 

Supervisor: Jan Willemson 

 PhD 

  

  

  

  

  

  



Tallinn 2021 

TALLINNA TEHNIKAÜLIKOOL 

Infotehnoloogia teaduskond 

 

 

Jelizaveta Vakarjuk 192568IVCM 

Kahe osapoolega signeerimisprotokoll postkvant 

signatuuriskeemi baasil   

Magistritöö 

Juhendaja: Ahto Buldas 

 PhD 

Kaasjuhendaja: Jan Willemson 

 PhD 

  

  

  

  

  

  



3 

Author’s declaration of originality 

I hereby certify that I am the sole author of this thesis. All the used materials, references 

to the literature and the work of others have been referred to. This thesis has not been 

presented for examination anywhere else. 

Author: Jelizaveta Vakarjuk  

19.04.2021 

 



4 

Abstract 

Over the last years, there was a significant amount of research conducted in the area of 

post-quantum cryptography. The main motivation for this research is that the construction 

of the practical-scale quantum computer will break most of the currently used public-key 

cryptosystems, such as RSA and ECDSA. A two-party version of RSA digital signature 

is currently used in Smart-ID. Additionally, there is ongoing research that aims to 

construct an efficient two-party version of ECDSA. However, this is a non-trivial task to 

distribute the signing process between two parties and keep the protocol efficient at the 

same time. Once a practical-scale quantum computer is built, it will no longer be secure 

to use neither RSA nor ECDSA. Therefore, there is a need to find a quantum-resistant 

alternative to the two-party RSA that can be integrated into Smart-ID and used when 

practical-scale quantum computers will be built. 

The goal of this research is to construct a two-party version of one of the post-quantum 

lattice-based signature schemes. During this research, there were several schemes 

designed and analysed before the final two-party signature scheme was constructed. This 

thesis describes three versions of the two-party signature scheme that were constructed 

and their associated problems and limitations. Additionally, this thesis presents the 

security proof for the final version of the signature scheme. This security proof considers 

a classical adversary that does not have access to a quantum computer. The security of 

the proposed two-party protocol relies on mathematical problems that are considered to 

be hard for both classical and quantum computers. Although the security proof presented 

in the thesis is in the classical model, it can be considered as an initial step for proving 

the quantum security of the proposed signature scheme.  

This thesis is written in English and is 89 pages long, including 9 chapters, 9 figures and 

19 tables. 
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Annotatsioon 

Kahe osapoolega signeerimisprotokoll postkvant 

signatuuriskeemi baasil   

Viimaste aastate jooksul on postkvant krüptograafia valdkonnas läbi viidud 

märkimisväärne  hulk uuringuid. Nende uuringute motivatsioon on see, et kui piisavalt 

võimas kvantarvuti on  ehitatud, muutuvad paljud avaliku võtme krüptograafilised 

algoritmid, näiteks RSA ja  ECDSA, ebaturvalisteks. Kahe osapoolega RSA 

signeerimisprotokolli kasutatakse praegu  Smart-ID süsteemis. Lisaks on käimas 

teadusuuringud, mille eesmärk on luua tõhus kahe  osapoolega ECDSA. 

Allkirjastamisprotsessi jagamine kahe osapoole vahel samal ajal  protokolli turvalisust ja 

tõhususust säilitades on osutunud äärmiselt mittetriviaalseks  ülesandeks. Kui aga võimas 

kvantarvuti ehitatakse, ei ole enam turvaline ei RSA ega ECDSA  kasutamine. Seetõttu 

on vaja leida kahe osapoolega RSA signeerimisprotokolli kvantkindel  alternatiiv, mida 

saab integreerida Smart-ID süsteemi ja kasutada ka siis, kui piisavalt võimas  kvantarvuti 

on ehitatud.   

Selle töö eesmärk on konstrueerida ühe postkvant võrepõhise signatuuriskeemi baasil 

kahe  osapoolega signeerimisprotokoll. Töö käigus, enne lõpliku signeerimisprotokolli 

koostamist, töötati välja ja analüüsiti mitmeid versioone. Töös kirjeldatakse võrepõhise 

kahe osapoolega  signeerimisprotokolli kolme versiooni ning nendega seotuid probleeme 

ja piiranguid. Lisaks  esitatakse selles töös välja pakutud kahe osapoolega 

signeerimisprotokolli lõpliku versioonile  turvatõestus klassikalise vastase vastu, kellel 

pole juurdepääsu kvantarvutile. Lõpliku kahe  osapoolega signeerimisprotokolli 

turvalisus tugineb matemaatilistel probleemidel, mida  peetakse raskeks nii klassikaliste 

kui ka kvantarvutite jaoks. Kuigi lõputöös esitatud  turvatõestus käsitleb klassikalist 

vastast, võib seda pidada esialgseks sammuks pakutava  signeerimisprotokolli 

kvantturvalisuse tõestamisel.   

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 89 leheküljel, 9 peatükki, 9 

joonist, 19  tabelit.
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1 Introduction

1.1 Research motivation

Modern public key cryptography mostly relies on the hardness of solving two math-

ematical problems: integer factorisation and discrete logarithm. There exist efficient

algorithms for quantum computers that can solve these problems [1]. Therefore, when

a large-scale quantum computer will be built, it will no longer be secure to use cryp-

tographic schemes that rely on these problems. Post-quantum cryptography is a new

branch of cryptography that is looking for quantum-resistant cryptographic schemes.

In 2016, U.S Department of Commerce National Institute of Standards and Technol-

ogy (NIST) initiated the Post-Quantum Cryptography (PQC) competition. The project

aims to standardize post-quantum public key cryptography algorithms in three major

categories: public key encryption algorithms, key-establishment algorithms, and signa-

ture schemes [2]. For each category, several proposed schemes are analysed and evalu-

ated to find the best alternatives to the currently used public key cryptosystems, such as

Rivest–Shamir–Adleman (RSA), Elliptic Curve Digital Signature Algorithm (ECDSA),

ElGamal, etc.

Post-Quantum cryptography is also concerned with the problem of the storage of secret

keys. Once the secret key is extracted from an end-point device, it can be used by an

attacker to impersonate a legitimate user. Threshold cryptography is used to solve this

problem. In a (t, n)-threshold scheme, the secret key is shared between n users/devices.

To create a valid signature or decrypt the message, a subset of t users/devices should

collaborate and use their secret key shares [3]. In Baltic countries, this technique is

used in Smart-ID, a mobile application that works as an authentication solution, and is

recognised as a Qualified Signature Creation Device (QSCD) since November 2018 [4].

Smart-ID uses (2,2)-threshold version of RSA signing that was introduced by A. Buldas

et. al. [5]. The RSA cryptosystem used in Smart-ID is vulnerable to quantum computer

attacks as aforementioned. Considering the significant threat from quantum computers,

there is a need to find a quantum-resistant alternative that can be used instead of RSA

[6].

1.2 Research scope and goal

The main goal of this research is to propose a (2,2)-threshold signature scheme that

is based on lattices. It was decided to concentrate on the lattice-based signatures as

these are considered to be the most promising general-purpose digital signature schemes

among the schemes submitted to the NIST PQC competition [7]. Furthermore, this work
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defines a threat model for the proposed scheme, gives the definition of security, and

proves that the proposed scheme is secure with respect to this definition. The perfor-

mance of the scheme is estimated according to the following metrics:

• number of communication rounds in key generation and signing protocols

• keys and signature sizes

• number of rejection sampling rounds.

This work focused on developing a two-party lattice-based signature scheme and proving

the security of the scheme against a classical adversary that does not have access to a

quantum computer. The future research will focus on the implementation of the proposed

scheme and the proofs against a quantum adversary. Moreover, for the security proofs,

it is assumed that the underlying mathematical problems are computationally hard both

for classical and quantum computers.

The research focused on the NIST PQC competition of which the material is open-source

and it is encouraged to develop novel and original research to further the community

knowledge of PQC. All the materials (documentation, source code, benchmarking re-

sults) regarding the signature schemes that are analysed are publicly available on the

webpage of the NIST PQC competition or from the Cryptology ePrint Archive.

1.3 Research questions

The research questions that are answered in the current work are defined as follows:

1. How is it possible to convert one of the schemes proposed in the NIST PQC com-

petition – Crystals-Dilithium [8] to a threshold signature scheme?

2. Is it possible to propose a new lattice-based threshold signature scheme?

3. What threat model is suitable for the signature scheme proposed in the second

research question?

4. Which security properties are satisfied in the proposed scheme? Prove that the

scheme is secure with respect to the given security definition.

1.4 Contribution

There exist several studies within the topic of this research, however, there is no thresh-

old signature scheme proposed that is purely based on one of the NIST PQC competition

12



submissions. This work analyses whether it is possible to construct a threshold signa-

ture scheme based on the Crystals-Dilithium signature scheme that was submitted to the

NIST PQC competition. During the research, it became apparent that constructing a

threshold scheme based on the NIST PQC submission was not possible, so the current

work explains the details and problems that occurred. Moreover, a suitable lattice-based

signature scheme is found and a threshold version of it is proposed. Analysis of exist-

ing studies in this area suggests that no scheme suits perfectly to Smart-ID framework,

therefore the scheme that is proposed in this research takes into account the requirements

of the framework.

1.5 Research methods

The research method that is used to construct a lattice-based two-party signature scheme

and prove its security is analytical. Firstly, the literature review was conducted to find the

existing post-quantum threshold signature schemes. Then, these schemes were analysed

to identify their limitations and disadvantages. The first version of a two-party signature

protocol was designed and analysed. The analysis of the first version identified several

problems in the protocol. These problems were fixed in the second version, but the analy-

sis of the second version identified some other mistakes. The final version of the protocol

was constructed, analysed, and proven to be secure against a classical adversary. In this

work, it is proven that the essential cryptographic properties for a signature scheme hold.

The security proof of the final version is based on the proof from [9], and [10].

The next step is the empirical evidence collection that consists of estimating the perfor-

mance of the scheme according to the metrics that were defined above.

1.6 Thesis organisation

The following work contains nine chapters. Chapter 1 gives an introduction to the topic.

Chapter 2 proceeds with describing the notation that is used in this work and introduces

the cryptographic background. Chapter 3 analyses related work. Chapter 4 gives an in-

troduction to post-quantum cryptography and focuses mainly on the concepts related to

lattice-based cryptography. Chapter 5 describes two lattice-based signature schemes that

are used in this work to create a two-party signature scheme. In chapter 6, the process

of designing the two-party signature scheme is described. This chapter contains three

versions of the two-party protocol that were created during this process, with the last

version being the final two-party signature scheme. Chapter 7 gives the security defini-

tion for the proposed two-party protocol and contains proof that the signature scheme

13



is secure according to that definition. Chapter 8 gives performance estimations of the

scheme. Chapter 9 contains the conclusion and the future work.
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2 Cryptographic Background

The following section introduces the notation and the main definitions that are used in

this work.

2.1 Notation

• Let Z be a ring of all integers. Zq = Z/qZ denotes a ring of residue classes modulo

q. Z[x] denotes a ring of polynomials in the variable x with integer coefficients.

• R denotes a quotient ring Z[x]/(xn + 1), where n ∈ N and Rq denotes a quotient

ring Zq[x]/(xn + 1), where n ∈ N.

• Polynomials are denoted in italic lowercase p. p ∈ Rq is a polynomial of degree

bound by n: p = p0 + p1x + ... + pn−1x
n−1. It can be also expressed in a vector

notation through its coefficients (p0, p1, ..., pn−1).

• Vectors are denoted in bold lowercase v. v ∈ Rn
q is a vector of dimension n:

v = (v0, ..., vn−1), where each element vi is a polynomial in Rq.

• Matrices are denoted in bold uppercase A. A ∈ Rn×m
q is a n × m matrix with

elements in Rq.

• For an even positive integer α and for every x ∈ Z, define x′ = x mod ±α, as x′ in

the range −α
2
< x′ ≤ α

2
such that x′ ≡ x (mod α). For an odd positive integer α

and for every x ∈ Z, define x′ = x mod ±α, as x′ in the range −α−1
2
≤ x′ ≤ α−1

2

such that x′ ≡ x (mod α). For any positive integer α, define x′ = x mod α, as

x′ in the range 0 ≤ x′ < α such that x′ ≡ x (mod α).

• For an element x ∈ Zq, its infinity norm is defined as ||x||∞ = |x mod ±q|,
where |x| denotes the absolute value of the element. For an element p = p0 +

p1x + ... + pn−1x
n−1 ∈ Rq, ||p||∞ = maxi ||pi||∞. Similarly for an element

v = (p0, ..., pn) ∈ Rn
q , ||v||∞ = maxi ||pi||∞.

• Sη denotes a set of all elements p ∈ R such that ||p||∞ ≤ η.

• a← A denotes sampling an element uniformly at random from the set A.

• a ← χ(A) denotes sampling an element from the distribution χ defined over the

set A.

• dxe denotes mapping x to the least integer greater than or equal to x (e.g d5.2e =

6).

15



2.2 Definitions

The following definition is adopted from [11].

Definition 1. Digital signature is a triple of probabilistic algorithms (KeyGen,

Sign, Verify) that work as follows:

1. Generate keypair consisting of secret key and public key using security pa-

rameter λ as input: (sk, pk)← KeyGen(1λ).

2. To sign a message m use the secret key: σ ← Sign(sk,m). Signature is

published together with the corresponding message.

3. To verify signature, verifier needs to check if Verify(pk,m, σ) = 1. If signature

was generated correctly, verification should always succeed.

The following definition is adopted from [12].

Definition 2. A hash function is a function H : X → R which takes arbitrary

length input x ∈ X and produces a fixed-length output r ∈ R.

Definition 3. A hash function family F is called collision resistant if for a

randomly chosen function f ← F , where f : X → R, the probability that adversary,

given access to f finds x, x′ ∈ X, x 6= x′ such that f(x) = f(x′) is negligible.

Advantage of adversaryA in breaking collision resistance of a hash function f : X → R

can be defined as follows:

AdvCR(A) := Pr[f(x) = f(x′) ∧ x 6= x′ : f ← F , (x, x′)← A(f)].

Definition 4. Let + be an operation defined over X (the set of inputs of a hash

function) and let ⊕ be an operation defined over R (the set of outputs of the hash

function). Let x1, x2 ∈ X be any two inputs to the hash function. A hash function

f : X → R is homomorphic if it holds that:

f(x1 + x2) = f(x1)⊕ f(x2).

The following definitions are adopted from [3].

Definition 5. A signature scheme (KeyGen, Sign, Verify) is called Existentially

Unforgeable under Chosen Message Attack (UF-CMA) iff for any probabilistic poly-

nomial time adversary A, its advantage of creating successful signature forgery is

negligible in λ. Advantage of adversary is defined as:

AdvUF-CMA(A) = Pr[V erify(pk,m, σ) = 1 and m is fresh : (pk, sk)←
KeyGen(1λ), (m,σ)← ASign(·)(pk)] ≤ negl(λ).

16



Definition 6. (t, n)-threshold signature is a digital signature scheme where n

parties share a secret key and authorized subset of t ≤ n parties is sufficient for

every signing, but any set of less than t parties can do nothing.

A special case of the general (t, n)-threshold signature is (n, n)-signature. In this case,

all n parties are needed to produce a valid signature, for a subset of less than n parties

it is not possible to generate a valid signature. Below, is a more formal definition for

(n, n)-signature or distributed signature protocol. The following definitions are adopted

from [9].

Definition 7. Distributed signature protocol is a protocol between P1, ..., Pn

parties that consists of the following algorithms:

• Generate public parameters par using security parameter λ as input: par ←
Setup(1λ).

• Each party Pj generates a keypair consisting of secret key share and public

key using interactive algorithm and public parameters as input: (skj, pk) ←
KeyGenj(par) for each j ∈ {1, ..., n}.

• To sign a message m, each party Pj runs interactive signing algorithm using

secret key share: (σ)← Signj(skj,m) for each j ∈ {1, ..., n}.

• To verify signature, verifier needs to check if Verify(pk,m, σ) = 1. If signature

was generated correctly, verification should always succeed.

Definition 8. Multi-signature protocol is a protocol consisting of the following

algorithms:

• Generate public parameters par using security parameter λ as input: par ←
Setup(1λ)

• A non-interactive key generation algorithm produces a keypair consisting

of secret key and public key using public parameters as input: (sk, pk) ←
KeyGen(par).

• To sign a message m, party P runs interactive signing algorithm using their

own keypair (sk, pk) and a set of co-signers’ public keys L: (σ)← Sign(sk, pk,m, L).

• To verify signature, verifier needs to check if Verify(L,m, σ) = 1. If signature

was generated correctly, verification should always succeed.

The main difference between a distributed signature and a multi-signature protocol is

that the key generation process is not interactive for multi-signature protocol. Each party
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generates its keypair that does not depend on inputs from the other parties.

The following definitions are adopted from [13].

Definition 9. A commitment protocol is a two-party protocol that consists of

two phases: commit and open. In the commit phase, the first party creates a

commitment to some value and sends it to the second party. In the opening phase,

the first party opens the value that was inside the commitment, and the second

party checks if the commitment was opened correctly.

Two basic properties should hold for the security of the commitment scheme:

Definition 10. Binding property: after giving away commitment, the first party

can no longer change the value inside the commitment.

Definition 11. Hiding property: when the second party receives the commit-

ment, it cannot see what is inside the commitment until the opening phase.

The following definition is adopted from [14]:

Definition 12. Multiparty Computation (MPC): Parties P1, ..., Pn participate

in the protocol, each party Pi has its own secret input xi. All the parties agree

on some function f that takes n inputs, the goal of the parties is to compute

f(x1, ..., xn) = y such that the following conditions are satisfied:

• the value y is computed correctly (correctness),

• y is the only information revealed to the parties, no information about the

private data of the parties is revealed (privacy).

The following definitions are adopted from [15].

Definition 13. Statistical distance. Let X and Y be probability distributions

defined over some set A. The statistical distance SD(X, Y ) between X and Y is

defined as

SD(X, Y ) := maxT⊆A|Pr[X ∈ T ]− Pr[Y ∈ T ]|.
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3 Related Work

In 2017, A. Buldas, A. Kalu, P. Laud, and M. Oruaas proposed a server-supported RSA

signature that is currently used in the Smart-ID [5]. The scheme has several properties

that should also be considered in the process of developing a post-quantum alternative.

Firstly, the secret key is divided into two parts, one part is stored on the user’s device

and the other part is stored on the server’s side. This means that the client alone cannot

create a valid signature using only their share of the secret key and the same is true for the

server. Additionally, the client’s key share looks uniformly random and it is encrypted

with a password (chosen by the user). Therefore, an adversary who gets access to the

password-encrypted key share cannot perform dictionary attacks to find out the key share.

The resulting signature looks the same as the standard RSA signature. This means that

the signature produced using Smart-ID can be easily verified by the third party using

standard cryptographic libraries. Finally, there is a mechanism called clone detection:

it detects if the client’s secret key was cloned and used by an unauthorized user. If key

cloning was detected, the device that sent the signing request is blocked. However, as

was mentioned earlier, the scheme will be broken once a large-scale quantum computer

will be built.

Several previous works described lattice-based threshold signatures or lattice-based mul-

tisignatures. The works [16, 17, 18, 19, 20, 21] focused on creating multisignatures that

followed the Fiat-Shamir with Aborts (FSwA) paradigm. Rejection sampling is a special

technique used in signatures that follow FSwA paradigm. Rejection sampling consists

of several checks that are performed on the signature before it is output. Rejection sam-

pling helps to remove dependency of signature on the secret key and prevent the leakage

of information about the secret key. The signing process is repeated until all the con-

ditions in the rejection sampling are satisfied. One of the main problems of the signa-

ture schemes constructed using the FSwA paradigm is that due to the use of rejection

sampling, intermediate values produced during the signature generation process need

to be kept secret until the rejection sampling has been completed. There are currently

no known attacks that exploit aborted executions of the protocol and there are no tech-

niques of proving the underlying identification scheme has No-Abort Honest-Verifier

Zero Knowledge (naHVZK) property [9]. In some of the previously mentioned mul-

tisignatures ([16], [18], [19], [20], [17]), intermediate values were published by parties

before the rejection sampling that results in incomplete security proofs in these works

[9]. The work by M. Fukumitsu and S. Hasegawa [21] relies on a non-standard hardness

assumption (rejected LWE) to solve the problem with the aborted executions and proof

the security of the scheme in the quantum random oracle model.
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In 2019, D. Cozzo and N. Smart in the work [22] analysed the second round NIST

PQC competition signature schemes to determine whether it is possible to turn these

schemes into threshold versions. The authors used only generic multiparty computa-

tion techniques, like linear secret sharing and garbled circuits to propose a way how to

thresholdize each of the second round signature schemes. There were no details and

concrete instantiations of the MPC protocols described that should be used. As a re-

sult, the authors proposed that the most suitable signature scheme is Rainbow [23] which

belongs to the multivariate-based family. The authors described a threshold version of

Crystals-Dilithium [8], that, by estimations, takes around 12 seconds to produce a single

signature. The authors noted that the problems with performance come from the fact that

the signature scheme consists of both linear and non-linear operations and it is ineffi-

cient to switch between these representations using generic MPC techniques. The work

considered a broader case of multiple parties trying to jointly create a signature, but the

goal of the current work is to focus on a specific scenario with two parties that has its

technicalities.

R. Bendlin, S. Krehbiel, and C. Peikert in the work [24] proposed threshold protocols

for generating a hard lattice with trapdoor and sampling from the discrete Gaussian

distribution using the trapdoor. These two protocols are the main building blocks for

the Gentry–Peikert–Vaikuntanathan (GPV) signature scheme (based on hash-and-sign

paradigm), where generating a hard lattice is needed for the key generation and Gaussian

sampling is needed for the signing process. The work describes a threshold version of the

GPV signature but does not contain an exact selection of the parameters, implementation,

or performance estimation.

M. Kansal and R. Dutta in the work [25] proposed a lattice-based multisignature scheme

with a single round signature generation, that has key aggregation and signature com-

pression. Key aggregation guarantees that the public key size is the same as the size

of a public key of a single signer. Signature compression makes multisignature size the

same as the size of a single signature. The underlying signature scheme, however, fol-

lows neither hash-and-sign nor FSwA paradigm that are the main techniques used to

construct lattice-based signature schemes. The work does not contain an exact selection

of parameters, implementation, or performance estimation.

In 2020 I. Damgård, C. Orlandi, A. Takahashi, and M. Tibouchidamgard proposed a

lattice-based multisignature and distributed signing protocols that are based on the Dilithium-

G signature scheme in the work [9]. Dilithium-G is a version of Crystals-Dilithium

signature that requires sampling from a discrete Gaussian distribution [26]. The work

contains the construction of a trapdoor commitment that is required to construct a two-
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round distributed signature scheme and the complete classical security proofs for the

proposed schemes. The work solves the problem with the aborted executions by using

commitments such that in the case of abort only commitment is published, the intermedi-

ate value itself stays secret. The proposed distributed signature scheme could potentially

fit the Smart-ID framework, however, some questions need to be addressed. More pre-

cisely, the scheme is based on a modified version of Crystals-Dilithium from the NIST

PQC competition project and uses Gaussian sampling. It is known that generating sam-

ples from the Gaussian distribution is non-trivial which means that the insecure imple-

mentation may lead to the side-channel attacks [27]. The open question is whether it is

possible to use the version of the scheme more similar to the one being submitted to the

NIST PQC competition.
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4 Post-quantum cryptography

In 1994, Peter Shor described a quantum algorithm that can efficiently solve mathemat-

ical problems that are the basis of modern public key cryptography [1]. These problems

are integer factorization and discrete logarithm. The security of almost all currently

used public key cryptosystems rely on these two problems. When a large-scale quan-

tum computer will be built these cryptographic schemes will become insecure includ-

ing RSA (both encryption and signing), Digital Signature Algorithm (DSA), ECDSA,

Diffie-Hellman key exchange, etc. By estimations of Michele Mosca, RSA-2048 will

be broken by 2026 with a 1/6 chance and by 2031 with 1/2 chance [6]. It should be

noted that quantum computers will have an impact on symmetric-key cryptography as

well, but this impact will not be as pronounced compared to the impact to public key

cryptography.

To address the issue of securing communication in the quantum computing era, the re-

search community started looking for alternative cryptographic schemes that will be re-

sistant to the known quantum computer attacks. The new branch of cryptography dealing

with these schemes is called post-quantum cryptography. In 2016, NIST initiated a com-

petition that aims to standardize post-quantum public key cryptography algorithms in

three major categories: public key encryption, signature schemes, and key exchange al-

gorithms [2]. For the first round of the competition 82 candidate algorithms were submit-

ted and NIST accepted 69 of them based on the submission requirements and minimum

acceptability criteria [28]. Among all the accepted schemes 20 were digital signature

schemes. In 2019, NIST selected 26 second-round candidates from the 69 first-round

candidates based on the security, cost and performance and algorithm and implementa-

tion characteristics [28]. Among all the second-round candidates 9 were digital signature

schemes from the following families: lattice-based, multivariate, hash-based and based

on the Zero-Knowledge Proof (ZKP).

In 2020, NIST announced 15 third-round candidates, seven were selected as finalists

and eight as alternate candidates [7]. Among all the third-round schemes six are digital

signature schemes. NIST PQC competition finalists in the digital signature category are

[7]:

• Crystals-Dilithium – a lattice-based signature scheme that follows FSwA paradigm

[8].

• Falcon – a lattice-based signature scheme that follows hash-and-sign paradigm

[29].
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• Rainbow – a multivariate digital signature scheme [23].

Crystals-Dilithium and Falcon use different lattice problems as the underlying security

assumptions. Falcon has better performance and signature and public key sizes, but its

implementation is more complex, as it requires sampling from the Gaussian distribution

and using floating-point numbers to implement an optimised polynomial multiplication

[29]. Crystals-Dilithium has slightly slower performance results and the sizes of sig-

nature and public key are bigger than ones in Falcon but it has a simpler structure in

terms of implementation [8]. It was mentioned in the NIST report that only one of the

previously named lattice-based signature schemes will be standardized [7].

Alternate candidates will have another round of evaluation and are considered as poten-

tial candidates for standardisation [7]. Some of the alternate candidates have high secu-

rity estimations and potential for future improvement, but worse performance. During

the third round additional analysis of these schemes will be done in order to select more

suitable schemes for future standardisation. Alternate candidates in the digital signature

category are [7]:

• GeMSS – multivariate signature scheme [30].

• Picnic – signature scheme based on zero knowledge proof from multiparty com-

putation in the head paradigm [31].

• SPHINCS+ – hash based signature scheme [32].

4.1 Lattice-based cryptography

Lattices are considered to be one of the best tools to build post-quantum cryptosystems.

Among all the submissions to the NIST PQC competition the majority of schemes be-

longs to the lattice-based family [7]. Additionally, it was mentioned in [7] that NIST

considers lattice-based schemes to be the most promising general-purpose algorithms

for the public-key encryption, key establishment and digital signatures. The following

section introduces the main definitions about lattice-based cryptography that are used in

this work.

The following definitions are adopted from [33].

Definition 14. Let B = (b1, ...,bn) be a basis, then n-dimensional lattice gener-

ated by B is defined as a set of all integer combinations of n linearly independent

vectors b1, ...,bn:

Λ = L(B) = {
∑n

i=1 xibi|xi ∈ Z}.
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Definition 15. A set of vectors B = (b1, ...,bn) is a basis of a lattice Λ if the

following holds:

1. vectors b1, ...,bn are linearly independent,

2. Λ = L(B).

Intuitively, a lattice can be viewed as a set of all intersection points of n-dimensional

grid. Figure below illustrates 2-dimensional lattice.

Figure 1: 2-dimensional lattice

Basis is a compact way of representing lattice, lattices of dimension at least two have

infinite number of bases, it means that basis of lattice is not unique. This is important as

some of the bases are easy to work with and some are not. For example, if the lattice is

represented using short vectors, it allows using less storage to describe the lattice.

There are several fundamentally hard problems in lattices, one of them is called Shortest

Vector Problem (SVP). The following definitions are adopted from [33] and [34].

Definition 16. SVP: given a basis that describes a lattice, find a non-zero vector

in the lattice with minimal length.

Let the length of the shortest nonzero vector in the lattice be denoted as λ1.

Definition 17. Approximate SVP: given a basis that describes a lattice and an

approximation factor γ, find a non-zero vector in the lattice with length at most

γλ1.

SVP problem can be turned into a decisional problem that is called GapSVP.

Definition 18. GapSVP: given a basis that describes a lattice and a parameter

β, decide whether the lattice contains a non-zero vector of length at most 1 or if

the shortest non-zero vector has length larger than β > 1.

The second fundamental problem in the lattices is called Closest Vector Problem (CVP).
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Definition 19. CVP: given a basis that describes a lattice and a target vector

that does not belong to the lattice, find a vector in the lattice that is the closest to

the target vector.

Similarly to SVP, CVP problem can also be turned into a decisional problem called

GapCVP.

Finally, there is a Bounded Distance Decoding (BDD) problem, that is very similar to

CVP.

Definition 20. BDD: given a basis that describes a lattice and a target vector,

find a vector in the lattice that is the closest to the target vector, where target is

guaranteed to be d-close to the lattice, where d < λ1/2.

However, problems described above cannot be used directly to build cryptographic al-

gorithms on them. One of the hard lattice problems that is used to construct cryptosys-

tems is called Short Integer Solution (SIS) and was introduced by M. Ajtai, in the work

[35].

Definition 21. SIS: given a uniformly random matrix An×m
q and a coefficient

bound v, find a non-zero vector y ∈ Zm such that Ay ≡ 0 (mod q) and 0 <‖ y ‖≤
v.

This problem can be seen as a problem to find a short non-zero vector in the lattice

generated by the solutions to Ay ≡ 0 (mod q), hence it is an instance of approximate

SVP for some unknown approximation factor.

The second problem widely used in the lattice-based cryptography is Learning with Er-

rors (LWE), it was introduced by O. Regev [34].

Definition 22. Computational LWE(n,m,q,χ):

• Let (n,m, q) ∈ N be positive integers and let χ be an error distribution defined

over Zq.

• Let A ← Zn×mq be a uniformly random n ×m matrix and let e ∈ Znq be an

error vector chosen according to χ.

An algorithm solves computational LWE for parameters (n,m,q,χ) if, for any s ∈
Zmq , given (A,b := As + e) it outputs s (with non-negligible probability).

The Figure 2 graphically illustrates SIS and LWE problems.
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Figure 2: SIS and LWE problems

Definition 23. Decisional LWE asks given a pair (A,b) to distinguish if the

vector b is of the form As + e or the vector b is chosen uniformly at random from

Znq .

It can be seen that this problem is closely related to the BDD problem with the lattice

given by {y ∈ Zn : y = As mod q, for some s ∈ Zm} and the target vector b.

The problems defined above use unstructured matrix A, where each element is sam-

pled uniformly at random from Zq. Therefore, cryptographic schemes based directly on

SIS and LWE problems typically require large key sizes and expensive computations that

makes them impractical. To store less amount of data and perform more efficient compu-

tations matrix A should be structured, the difference between structured and unstructured

matrices is illustrated in Figure 3.

Figure 3: Structured and unstructured matrices
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The first matrix from Figure 3 corresponds to choosing each element uniformly at ran-

dom from Zq.

The second matrix from Figure 3 corresponds to sampling one polynomial from Rq for

the first row and then generating a square matrix using the first row. This matrix is

constructed by rotating each row one element to the right relative to the preceding row.

Elements that are shifted to the beginning of the row are negated. Hard problems that

correspond to this matrix structure are called Ring-SIS and Ring-LWE.

The third matrix from Figure 3 corresponds to sampling a vector of polynomials for the

first row and a vector of polynomials for the third row from R2
q and then generating

square matrices out of them. Matrices are constructed similarly to the previous ones: by

rotating each row and negating elements that are shifted to the beginning of the row. Hard

problems that correspond to this matrix structure are called Module-SIS and Module-

LWE.

The following definitions are adopted from [9].

Definition 24. Module-SIS(q, n,m, β): given a uniformly random matrix A ←
Rn×m
q and a coefficient bound β, find a non-zero vector y ∈ Rm

q such that Ay ≡ 0

(mod q) and 0 <‖ y ‖ 6 β.

Definition 25. Decisional Module-LWE(q, n,m, η, χ): Let χ be an error dis-

tribution, given a pair (A, t) ∈ (Rn×m
q ×Rn

q ) decide whether it was generated uni-

formly at random from Rn×m
q × Rn

q or it was generated as: A← Rn×m
q , (s1, s2)←

χ(Smη × Snη ) and t := As1 + s2.

Advantage of adversaryA in breaking decisional Module-LWE for the set of parameters

(q, n,m, η, χ) can be defined as follows:

AdvDec-MLWE
(q,n,m,η,χ)(A) := |Pr[b = 1 : A← Rn×m

q , (s1, s2)← χ(Smη × Snη ), t :=

As1 + s2, b← A(A, t)]− Pr[b = 1 : A← Rn×m
q , t← Rn

q , b← A(A, t)]|.

A graphical illustration of the decisional module-LWE game between challenger and

adversary is represented in Figure 4.

Definition 26. Computational Module-LWE(q, n,m, η, χ): Let χ be an error

distribution, given a pair (A, t) ∈ (Rn×m
q × Rn

q ), where A ← Rn×m
q , (s1, s2) ←

χ(Smη × Snη ) and t := As1 + s2, find a vector s1.

Advantage of adversaryA in breaking computational Module-LWE for the set of param-

eters (q, n,m, η, χ) can be defined as follows:
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AdvCom-MLWE
(q,n,m,η,χ)(A) := Pr[s1 = s′1 : A← Rn×m

q , (s1, s2)← χ(Smη × Snη ), t :=

As1 + s2, s
′
1 ← A(A, t)].

A graphical illustration of the computational module-LWE game between challenger and

adversary is represented in Figure 4.

Figure 4: Decisional Module-LWE and Computational Module-LWE games between chal-
lenger and adversary
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5 Crystals-Dilithium Digital Signature

A number of lattice-based signatures are constructed from the identification schemes

using Fiat-Shamir transform. The following definition is adopted from [36].

Definition 27. An identification scheme ID is defined as a tuple of algorithms

ID := (IGen, P, C, V ).

• The key generation algorithm IGen takes as input system parameters par and

returns public key and secret key as output (pk, sk). Public key pk defines

the set of challenges C, the set of commitments W and the set of responses

Z.

• The prover algorithm P = (P1, P2) consists of two sub-algorithms. P1 takes

as input the secret key and returns a commitment w ∈ W and a state st.

P2 takes as input the secret key, a commitment, a challenge, and a state and

returns a response z ∈ Z ∪ {⊥}, the symbol ⊥ indicates a failure.

• The verifier algorithm V takes as input the public key and the conversation

transcript and outputs a decision bit b = 1 (accepted) or b = 0 (rejected).

Figure 5 illustrates graphically an identification scheme and the message exchange be-

tween the prover and verifier.

Figure 5: An identification scheme

A transcript of identification scheme consists of messages obtained from the interaction

between prover and verifier (w, c, z) ∈ W × C × Z ∪ {⊥,⊥,⊥}. Algorithm 1 defines

a transcript oracle Trans that returns a real interaction between prover and verifier. In

case of failure (or abort) Trans outputs (⊥,⊥,⊥).
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Algorithm 1 Trans(sk)

1: (w, st)← P1(sk)
2: c← C
3: z ← P2(sk, w, c, st)
4: if z =⊥ then return (⊥,⊥,⊥)

5: otherwise, return (w, c, z)

The Fiat-Shamir transform technique introduced in [37] allows the creation of a digi-

tal signature scheme by combining an identification scheme with a hash function. The

signing algorithm generates a transcript (w, c, z), where a challenge is derived from a

commitment w and the message to be signed m as follows c := H(w||m). The signa-

ture σ = (w, z) is valid if the transcript (w, c, z) passes the verification algorithm with

b = 1. The work [38] introduced a generalisation to this technique called Fiat-Shamir

with Aborts transformation that takes into consideration aborting provers.

The Crystals-Dilithium signature scheme is also constructed from an identification scheme

using the Fiat-Shamir with Aborts technique. Crystals-Dilithium is one of the finalists of

the NIST PQC competition. This is a lattice-based signature scheme based on the hard-

ness of the Module-LWE and Module-SIS problems. The construction of the scheme

submitted to the NIST competition uses uniform sampling instead of widely used dis-

crete Gaussian sampling. It is known that generating samples from the discrete Gaussian

distribution such that the implementation is secure under side-channel attacks is highly

non-trivial [27]. Therefore, the usage of uniform distribution makes it easier to imple-

ment the scheme securely. Crystals-Dilithium is a modified and optimised version of the

basic schemes proposed in [39] and [40], it has more supporting algorithms that make the

scheme more efficient, but the main framework stays the same. This section describes

slightly modified versions of both basic schemes [39], [40], because both of them are

used during this work to construct the two-party signature scheme.

The Table 1 describes parameters that are used in the both basic signature schemes de-

scribed in this section.
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Table 1: Parameters for the basic lattice-based signature schemes

Parameter Description

n degree bound of the polynomials in the ring

q modulus

(k, l) dimension of matrix and vectors used in the scheme

γ1 size bound of coefficients in masking vector, that is generated in the
signing process. It should be large enough so the final signature will not
leak information about the secret key and yet small enough so that it
still remains hard to forge the signature

γ2 low-order rounding range, used only in the scheme 5.2

η size bound of coefficients in secret key vectors. It should be small enough
so that it is hard to compute secret key out of the public key

β parameter used in rejection sampling, it denotes maximum possible co-
efficient of csi

Bτ set of polynomials in Rq that have τ coefficients that are either −1 or 1
and the rest are 0

Both signature schemes that are described below use a special hash function which pro-

duces vector of size n with elements ∈ {−1, 0, 1}, this helps to ensure that the coeffi-

cients of signature are small [8]. The hashing algorithm starts with applying a collision-

resistant hash function (e.g. SHAKE-256) to the input to obtain a vector s ∈ {0, 1}τ from

the first τ bits of the hash function’s output. Then SampleInBall algorithm (Algorithm

2) is invoked to create a vector c in {−1, 0, 1}n with exactly τ non-zero elements. In

each iteration of the for loop SampleInBall algorithm generates an element j ∈ {0, ..., i}
using the output of a collision-resistant hash function. Then algorithm performs shuffling

of the elements in the vector c and takes an element from the vector s to generate −1 or

1. For a more in-depth overview of the algorithm, refer to the original paper [8].

Algorithm 2 SampleInBall

1: Initialize c as zero vector of length n
2: for i := n− τ to n− 1

1. j ← {0, 1, ..., i}
2. s← {0, 1}
3. ci := cj
4. cj := (−1)s

3: return c

5.1 Basic scheme based on Module-LWE

The following signature scheme (further referred to as the 1st basic scheme) is a slightly

modified version of the scheme [39], the description below is based on a version de-

scribed in [36] (appendix B). All the algebraic operations performed in the scheme are
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done over the quotient ring Rq. The security of this signature scheme relies on the hard-

ness of solving the Module-LWE problem.

Key Generation

Key generation is parametrised with the set of public parameters par, listed in Table 1.

Key generation starts with generating k × k matrix that consists of polynomials from

the ring Rq. Matrix A is the first part of the public key. Then two secret key vectors

are sampled, the vectors consist of polynomials from the ring Rq. The coefficients of

polynomials in these vectors are of size at most η. Finally, the second part of the public

key is computed as As1 + s2, the result is a vector of polynomials in the ring Rq.

Signing

H0 is a special hash function defined as a combination of SHAKE-256 and SampleIn-

Ball algorithm (Algorithm 2). Signing starts with the sampling of two masking vectors of

polynomials with coefficients less than γ1. Then a challenge polynomial c is generated,

it has exactly τ coefficients that are either−1 or 1 and the rest are 0. Then a potential sig-

nature is computed, and rejection sampling is performed. Rejection sampling is needed

to ensure that the final signature does not leak information about the secret key. If at least

one of the checks fails, the signing process starts again from the beginning. While loop

is repeated until both conditions in the rejection sampling are satisfied.

Verification

To verify a signature σ = (z1, z2, c), verifier reconstructs w′. Then the infinity norm

of the signature vectors (z1, z2) is checked. Finally, verifier ensures that c (from the

signature) is indeed the hash of w′ and the message m.

A more formal definition of the key generation, signing, and verification is presented in

Algorithm 3, Algorithm 5, Algorithm 4.

Algorithm 3 KeyGen(par)

1: A← Rk×kq

2: (s1, s2)← Skη
3: t := As1 + s2
4: return pk = (A, t), sk = (A, t, s1, s2)

Algorithm 4 Verify(pk,m, σ)

1: w′ := Az1 + z2 − ct
2: if c = H0(m||w′) and ||z1||∞ < γ1 − β

and ||z2||∞ < γ1 − β, return 1 (suc-
cess).

3: else: return 0.
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Algorithm 5 Sign(sk,m)

1: z :=⊥
2: while (z1, z2) = (⊥,⊥) do:

1. y1,y2 ← Skγ1−1
2. w := Ay1 + y2

3. c := H0(m||w) ∈ Bτ
4. z1 := y1 + cs1 and z2 := y2 + cs2
5. if ||z1||∞ ≥ γ1 − β or ||z2||∞ ≥ γ1 − β, then (z1, z2) := (⊥,⊥)

3: return σ = (z1, z2, c)

Correctness

Since w = Ay1 +y2, t = As1 +s2, z1 = y1 +cs1 and z2 = y2 +cs2 it holds that:

Az1 + z2 − ct = A(y1 + cs1) + z2 − c(As1 + s2) =

Ay1 + Acs1 + y2 + cs2 − cAs1 − cs2 = Ay1 + y2.

Therefore, if signature was generated correctly, it will successfully pass the verifica-

tion.

The identification scheme on which the described signature scheme is based satisfies an

important property: No-Abort Honest-Verifier Zero Knowledge (naHVZK), more pre-

cisely the identification scheme is perfectly naHVZK. Intuitively, it means that the dis-

tribution of the real transcript of identification scheme (generated by Trans using secret

key as input) is the same as the distribution of the simulated transcript (produced by Sim

using only public key). The following definition is adopted from [36].

Definition 28. An identification scheme is said to be εZK-naHVZK if there exists

a probabilistic expected polynomial-time algorithm Sim that is given only the

public key pk and that outputs (w, c, z) such that the following holds:

• The distribution of the simulated transcript produced by Sim ((w, c, z) ←
Sim(pk)) has statistical distance at most εZK from the real transcript pro-

duced by the transcript algorithm (w′, c′, z′)← Trans(sk).

• The distribution of c from the output (w, c, z) ← Sim(pk) conditioned on

c 6=⊥ is uniformly random over the set C.

Trans and Sim for the discussed identification scheme are defined in Algorithm 6

and Algorithm 7. By the proof in [36], these Trans and Sim algorithms give perfect

naHVZK property for the identification scheme with εZK = 0.
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Algorithm 6 Trans(sk)

1: A← Rk×kq

2: y1,y2 ← Skγ−1
3: w := Ay1 + y2

4: c← C
5: z1 := y1 + cs1, z2 := y2 + cs2
6: if ||z1||∞ ≥ γ1−β and ||z2||∞ ≥ γ1−β,

then return ⊥
7: otherwise, return (c, (z1, z2))

Algorithm 7 Sim(pk)

1: A← Rk×kq

2: with probability 1−

(
1−
|Skγ−β−1|
|Skγ−1|

)2

,

return ⊥
3: z1, z2 ← Skγ−β−1
4: c← C

5: return (c, (z1, z2))

The 1st basic signature scheme has simple linear operations and does not use additional

algorithms to optimise the performance of the scheme. This facilitates converting the

scheme into a two-party version. Additionally, the security of the signature scheme re-

lies only on one hard problem (Module-LWE), this facilitates security analysis and the

choice of parameters for the scheme. Therefore, the 1st basic signature scheme is used

to construct a final version of the two-party signature protocol in this work.

5.2 Basic scheme based on Module-LWE and Module-SIS

The following section defines a version of the scheme [39] that was described in [8] (fur-

ther referred to as the 2nd basic scheme). All the algebraic operations in the scheme are

performed over the quotient ring Rq. The security of this signature scheme relies on two

hard problems Module-LWE and Module-SIS. Module-LWE guarantees that adversary

cannot compute secret keys out of public key and Module-SIS guarantees difficulty of

forging signatures.

The signature scheme below makes use of supporting algorithms to extract high-order

bits and low-order bits out of each coefficient of polynomial. The algorithm that is used

to break up an element into high-order and low-order bits is called Decomposeq and is

defined in Algorithm 8. As a result, input r is broken up to r = r1 · α + r0. The output

of Decomposeq consists of two integers r0, r1 such that 0 ≤ r1 <
(q−1)
α

and ||r0||∞ ≤ α
2

.

HighBitsq(r, α) denotes r1 part of Decomposeq output and LowBitsq(r, α) denotes r0
part of Decomposeq output.
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Algorithm 8 Decomposeq(r, α)

1: r := r mod q
2: r0 := r mod±α
3: if (r − r0) = q − 1:

• r1 := 0
• r0 := r0 − 1

4: else r1 := (r − r0)/α
5: output (r1, r0)

Key Generation

Key generation is parametrised with the set of public parameters par, listed in Table 1.

Key generation starts with generating k × l matrix that consists of polynomials from the

ring Rq. Matrix A is the first part of the public key. Then two secret key vectors (s1, s2)

are generated. These vectors consist of polynomials from the ring Rq, the coefficients of

polynomials are at most η. Finally, the second part of public key is computed as As1+s2,

the result is a vector of polynomials in the ring Rq.

Signing

H0 is a special hash function defined as a combination of SHAKE-256 and SampleInBall

algorithm (Algorithm 2). The signing process starts with generating a masking vector of

polynomials y with coefficients less than γ1. Then, Ay is computed, and high order bits

are extracted from its coefficients. HighBitsq algorithm is applied to each coefficient of

polynomial in the input vector separately. According to the Algorithm 8, every coeffi-

cient of polynomial from the vector w = Ay can be represented as w = w1 · 2γ2 + w0,

where |w0| ≤ γ2, w1 denotes high-order bits and w0 denotes low-order bits.

The signing process proceeds with generating challenge polynomial c with exactly τ

coefficients that are either −1 or 1 and the rest are 0. Then, the potential signature

is computed and rejection sampling is performed. Rejection sampling consists of two

checks: the first check is needed for security, the second check is needed for both security

and correctness. If at least one of the checks fails, the signing process starts again from

the beginning. While loop is repeated until both conditions in the rejection sampling are

satisfied.

Verification

Verifier reconstructs the high order bits of w. Then, the verifier checks the infinity norm

of the signature vector z and checks whether c (from the signature) is indeed the hash of

w′1 and the message m.
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A more formal definition of the key generation, signing, and verification is presented in

Algorithm 9, Algorithm 11, Algorithm 10.

Algorithm 9 KeyGen(par)

1: A← Rk×lq

2: (s1, s2)← Slη × Skη
3: t := As1 + s2
4: return pk = (A, t), sk = (A, t, s1, s2)

Algorithm 10 Verify(pk,m, σ)

1: w′1 := HighBitsq(Az− ct, 2γ2)
2: if c = H0(m||w′1) and ||z||∞ ≥ γ1−β2,

then return 1 (success).

3: else: return 0.

Algorithm 11 Sign(sk,m)

1: z :=⊥
2: while z =⊥ do:

1. y← Slγ1−1
2. w1 := HighBitsq(Ay, 2γ2)
3. c := H0(m||w1) ∈ Bτ
4. z := y + cs1
5. if ||z||∞ ≥ γ1 − β or
||LowBitsq(w − cs2, 2γ2)||∞ ≥
γ2 − β, then z :=⊥

3: return σ = (z, c)

Correctness

Since w = Ay, t = As1 + s2 and z = y + cs1 it holds that:

Az− ct = A(y + cs1)− c(As1 + s2) = Ay + Acs1 − cAs1 − cs2 = Ay − cs2.

It means that the following should hold for a valid signature: HighBitsq(Ay, 2γ2) =

HighBitsq(Ay−cs2, 2γ2). During rejection sampling it was checked that ||LowBitsq(w−
cs2, 2γ2)||∞ < γ2 − β. It means that coefficients of cs2 are small enough and do not

cause bit carry. Therefore, if signature was generated correctly, it will successfully pass

the verification.

The signature scheme is more similar to the Crystals-Dilithium signature scheme, which

is submitted to the NIST PQC competition, than the 1st basic scheme. This is an op-

timised version of the 1st basic scheme and has smaller signatures. As a result of the

changes in the scheme, its security relies on two hard problems (Module-LWE and

Module-SIS). Thus, it is more complicated to choose the correct parameters for the

scheme, as parameters should be chosen such that both problems are hard to solve. Ad-

ditionally, the scheme uses a bit decomposition protocol. The process of designing a

two-party protocol in this work started from this signature scheme. However, it appeared

that due to the use of bit decomposition protocol it is hard to convert this signature

scheme into a two-party version.
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6 Designing Two-party Protocol

This section describes how the two-party protocol was designed. In order to show the

process of designing the protocol and explain the problems that were faced in the process,

three versions of the protocol are described in the following sections.

6.1 Version 1

This section describes the first version of the two-party signature protocol that was cre-

ated. Firstly, three protocols (KeyGen(), Sign(), Verify()) are defined. Additionally,

problems and limitations of the first version are explained. The following protocol was

designed based on the 2nd basic signature scheme (defined in the section 5.2). As it is

a simplified version of the signature scheme submitted to the NIST PQC competition it

was decided to start the designing process based on this version. The initial idea was

to design a simpler protocol and then add additional functionality needed for optimisa-

tion.

The table 2 describes parameters that are used in the two-party signature scheme.

Table 2: Parameters for the two-party protocol

Parameter Description

n degree bound of the polynomials in the ring

q modulus

(k, l) dimension of matrix and vectors used in the scheme

γ1 size bound of the coefficients in the masking vector share, that is gener-
ated in the signing process

γ2 low-order rounding range

γ3 size bound of coefficients in the composed masking vector

η size bound of coefficients in the secret key share

β maximum possible coefficient of the client’s and server’s shares of csi,
where i ∈ {1, 2}

β2 maximum possible coefficient of csi, where i ∈ {1, 2}
τ number on non-zero elements in the output of a special hash function

H0

6.1.1 Signature scheme

Key generation

The client starts with generating a public matrix A, sampling two secret vectors (sc1, sc2)

for its secret key, and generating a public key share tc. Then public matrix is sent to the

server and the server can generate its secret key share (ss1, ss2) and a public key share ts.

Finally, both public key shares are added together to create a composed public key t. A

more formal definition of the key generation protocol is presented in Protocol 1.
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Signing

The client’s inputs to the signing protocol are its secret key share skc and a message m to

be signed. The server’s input is its secret key share sks. CRH is a collision-resistant hash

function. H0 is a special hash function defined as a combination of SHAKE-256 and

SampleInBall algorithm (Algorithm 2) that outputs a vector in {−1, 0, 1}n with exactly

τ nonzero elements.

The client starts the signing process by generating a masking vector y, deriving a chal-

lenge c using a message m and HighBitsq(Ay, 2γ2). Then the client computes its sig-

nature share as zc := y + csc1 that looks exactly like the signature from the 2nd basic

scheme. Client proceeds by computing vc = w − csc2 and performing rejection sam-

pling on the signature share. The client must perform rejection sampling before sending

signature share to the server, otherwise, the signature share may leak information about

the client’s secret key. Finally, client computes hash bc = CRH(w1) and sends message

(zc, c,vc, bc) to the server. It can be seen that for now, the signature does not contain

the server’s secret key. Therefore, the client cannot output signature share as the final

signature.

Upon receiving the client’s message, the server computes its signature share but differ-

ently compared to the client. The server adds css1 to the client’s signature share, resulting

signature z now contains everything like the original signature in the 2nd basic scheme

z = y + cs1. Then the server performs rejection sampling on the composed signature,

and if the signature passes the rejection sampling, then the server outputs it as a final

signature.

For the correctness, in the original scheme it was required that HighBitsq(Ay, 2γ2) =

HighBitsq(Ay − cs2, 2γ2). In other words, it is needed to check that component cs2 has

small enough coefficients for successful signature verification. As in two party version

of the scheme s2 is shared between client and server this check is not straightforward,

the following approach is proposed:

• Client computes a hash of high-order bits of Ay and sends it to the server along

with vc =( Ay − csc2).

• Server computes (Ay − cs2) as vc − css2. Then the server computes a hash of

HighBitsq(Ay − cs2) and compares the result with the value received from the

client.

If the high-order bits are not the same they will differ only a little, as a collision-resistant

hash function is used for this step different high-order bits are not likely to result in

the same hash. If at least one of the rejection samplings fails, then both client and server
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should start signing process from the beginning. The number of rejections depends on the

exact parameter selection. A more formal definition of the signing protocol is presented

in Protocol 2.

Verification

The verification process is the same as in the original signature scheme. A formal defi-

nition of the verification algorithm is presented in Algorithm 12.

Correctness

Since w = Ay, t = As1 + s2 and z = y + cs1 it holds that:

Az−ct = A(y+cs1)−c(As1 +s2) = A(y+c(sc1 +ss1))−c(A(sc1 +ss1)+(sc2 +ss2)) =

Ay + Acsc1 + Acss1 − cAsc1 − cAss1 − csc2 − css2 = Ay − csc2 − css2 = Ay − cs2 =

w − cs2.

Carefully chosen parameters and rejection samplings help to guarantee that the following

holds: HighBits(Ay, 2γ2) = HighBits(Ay − cs2, 2γ2).

Protocol 1: KeyGen()

1. Client’s first message:

(a) Generate matrix A← Rk×lq .

(b) Sample two shares of secret vectors: (sc1, sc2)← Slη × Skη .

(c) Compute share of public key: tc := Asc1 + sc2.

(d) Send (A, tc) to the server.

2. Server’s first message
(a) Sample two shares of secret vectors: (ss1, ss2)← Slη × Skη .

(b) Upon receiving client’s first message, compute share of public key: ts := Ass1 + ss2.

(c) Compute shared public key: t := tc + ts.

(d) Send out shared public key pk = (A, t).

3. Output
(a) Client’s share of secret key skc = (A, sc1, sc2).

(b) Server’s share of secret key sks = (A, ss1, ss2).

(c) Shared public key pk = (A, t).
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Protocol 2: Sign(m)

1. Client’s first message:

(a) Sample a masking vector of polynomials y← Slγ1−1.

(b) Compute w := Ay and extract high-order bits: w1 := HighBitsq(w, 2γ2).

(c) Compute challenge polynomial c ∈ Bτ := H0(m||w1).

(d) Compute potential signature share zc := y + csc1.

(e) Break up vc = (w−csc2) into high-order and low-order bits: (r1, r0) := Decomposeq(w−
csc2, 2γ2).

(f) Perform rejection sampling step:

if ||zc||∞ ≥ γ1 − β or ||r0||∞ ≥ γ2 − β, then z :=⊥
else:

(g) Compute hash of high-order bits of w: bc := CRH(w1).

(h) Send out (zc, c,vc, bc).

2. Server’s first message
(a) Upon receiving client’s first message, compute v := vc − css2 and corresponding high

order bits v1 := HighBitsq(v, 2γ2).

(b) Compute hash bs := CRH(v1).

(c) Compute signature share zs := css1.

(d) Compute potential composed signature z := zc + zs.

(e) Perform rejection sampling step:

if ||z||∞ ≥ γ3 − β2 or bc 6= bs, then restart signing process

else:

(f) Output the final signature on message m: σ = (z, c).

Algorithm 12 Verify(pk, σ,m)

1: Compute w′1 := HighBitsq(Az− ct, 2γ2).
2: if c = H0(m||w′1) and ||z||∞ < γ3 − β2: return 1 (success).

3: else: return 0.

6.1.2 Analysis of version 1

When the first version of the protocol was designed several major problems were found

during its analysis. Firstly, after the shared public key is output by the server, the client

cannot be sure that its share was indeed used to compute t. This would allow a malicious

server to use only its public key share ts to compute the final public key t. Therefore, the

server would be able to create signatures on behalf of the client using only the server’s

secret key share. These signatures will be successfully verified against the public key

because it contains only the server’s share.
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Secondly, after seeing the client’s public key share the server would be able to adaptively

choose a malicious public key share. This again may lead to the scenario where the server

can create valid signatures on behalf of the client using only its secret key share. To solve

both problems, in the second version of the scheme, commitments are introduced to the

key generation protocol.

Additionally, there are several problems with the signing protocol that would allow the

client to learn the secret key share of the server. While setting up parameters for the

scheme, prime modulus q may be chosen such that in the underlying ringRq all elements

with coefficients less than
√
q/2 have an inverse [36]. Therefore, after seeing the final

signature z and knowing zc and c, the client would be able to reconstruct the server’s

secret key share. To solve this issue, in the second version of the scheme, both client’s

and server’s shares are used to create a masking vector y and a value w. As a result,

client’s and server’s signature shares will be masked by randomly chosen vectors yc and

ys respectively.

6.2 Version 2

This section describes an improved version of the first distributed signature protocol.

Firstly, distributed signature scheme consisting of three protocols (KeyGen(), Sign(),

Verify()) is defined. Then the problems and limitations of the second version are de-

scribed. The parameters for this version stay the same as described in Table 2.

6.2.1 Signature scheme

Key generation

H1 is some collision resistant hash functions. The client starts with generating a public

matrix A and proceeds by generating two secret vectors (sc1, sc2) and computing its share

of the public key tc. Instead of publishing public key share at this point, the client

computes and sends commitment comc = H1(tc) together with the public matrix A.

Hiding property of commitment guarantees that, when the server sees comc it will not be

able to adaptively choose a malicious share of public key ts as the server will not be able

to see what is inside the commitment.

The server samples two secret vectors (ss1, ss2) and upon receiving A generates its public

key share ts. Then the server sends a commitment coms to the public key share to the

client. Once the client and server received commitments from each other, they exchange

their public key shares. Then they both locally check if the commitments were opened

correctly. If these checks succeed, then they both locally compute the final public key t.
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A more formal definition of the key generation protocol is presented in Protocol 3.

Signing

The client’s inputs to the signing protocol are its secret key share skc and a message m to

be signed. The server’s input is its secret key share sks. H2 is a collision-resistant hash

function. H0 is a special hash function defined as a combination of SHAKE-256 and

SampleInBall algorithm (Algorithm 2) that outputs a vector in {−1, 0, 1}n with exactly

τ nonzero elements.

The client starts the signing process by generating its share of masking vector yc. Then

the client computes wc = Ayc as its share of w and sends commitment to it comc. The

server, in turn, generates its share of masking vector ys and sends commitment coms to

its share of w. After receiving commitments from each other, the client and server open

the commitments, by exchanging the shares of w.

The client proceeds by checking if the server opened its commitment correctly. If the

check succeeds, the client computes w = wc + ws, extracts its high-order bits, and de-

rives challenge c. Then the client computes its potential signature share zc and performs

rejection sampling. If all the conditions in rejection sampling were satisfied, the client

sends its signature share to the server.

Server checks if the client opened its commitment correctly. If the check succeeds, the

server computes composed w, extracts its high order bits, and derives challenge c. Then

the server computes its potential signature share zs and performs rejection sampling. If

all the conditions in rejection sampling were satisfied, then the server proceeds by com-

puting the composed signature (once the client’s share was received). Then server per-

forms rejection sampling on the composed signature and if it passes, the server outputs

the final signature.

It is important to note that if at least one of the rejection samplings fails, then both

client and server should start their signing process from the beginning. The number of

rejections depends on the exact parameter selection.

It can be seen that now both client’s and server’s shares of the signature are constructed

similarly to the 2nd basic scheme. Therefore, to ensure the correctness of the protocol

it is enough to perform rejection sampling on the signature shares and the composed

signature. A more formal definition of the signing protocol is presented in Protocol

4.
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Verification

The verification process is the same as in the original Dilithium scheme. A formal defi-

nition of the verification algorithm is presented in Algorithm 12.

Correctness

Since w = Ay, t = As1 + s2 and z = y + cs1 it holds that:

w− cs2 = (wc+ws)− c(sc2 +ss2) = (Ayc+Ays)− c(sc2 +ss2) = A(zc− csc1)+A(zs−
css1)−csc2−css2 = Azc−Acsc1 +Azs−Acss1−csc2−css2 = Azc−c(Asc1 +sc2)+Azs−
c(Ass1 + ss2) = Azc − ctc + Azs − cts = A(zc + zs)− c(tc + ts) = Az− ct.

Carefully chosen parameters and all the rejection samplings steps help to guarantee that

HighBits(Ay, 2γ2) = HighBits(Ay − cs2, 2γ2).
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Protocol 3: KeyGen()

1. Client’s first message:

(a) Generate matrix A← Rk×lq .

(b) Sample two shares of secret vectors: (sc1, sc2)← Slη × Skη .

(c) Compute share of public key: tc := Asc1 + sc2.

(d) Send (A, comc = H1(tc)) to the server.

2. Server’s first message
(a) Sample two shares of secret vectors: (ss1, ss2)← Slη × Skη .

(b) Upon receiving client’s first message, compute share of public key: ts := Ass1 + ss2.

(c) Send coms = H1(ts) to the client.

3. Client’s second message
(a) Upon receiving coms, send out tc.

4. Server’s second message
(a) Upon receiving comc, send out ts.

5. Client’s verification
(a) Upon receiving ts, check if H1(ts) = coms. Send out ABORT message if the check

fails.

(b) Compute shared public key: t := tc + ts.

6. Server’s verification
(a) Upon receiving tc, check if H1(tc) = comc. Send out ABORT message if the check

fails.

(b) Compute shared public key: t := tc + ts.

7. Output
(a) Client’s share of secret key skc = (A, sc1, sc2).

(b) Server’s share of secret key sks = (A, ss1, ss2).

(c) Shared public key pk = (A, t).

44



Protocol 4: Sign(m)

1. Client’s first message
(a) Sample a masking vector of polynomials yc ← Slγ1−1.

(b) Compute wc := Ayc. Send comc = H2(wc) to the server.

2. Server’s first message
(a) Sample a masking vector of polynomials ys ← Slγ1−1.

(b) Compute ws := Ays. Send coms = H2(ws) to the client.

3. Client’s second message
(a) Upon receiving first message from the server, send wc,m to the server.

4. Client’s second message
(a) Upon receiving first message from the client, send ws to the client.

5. Client’s third message
(a) Upon receiving server’s share ws, check if H2(ws) = hs. Send out ABORT message

if the equality does not hold.

(b) Compute w = wc + ws and extract high-order bits: w1 := HighBitsq(w, 2γ2).

(c) Compute challenge polynomial c ∈ Bτ := H0(m||w1).

(d) Compute potential signature share zc := yc + csc1.

(e) Perform rejection sampling step:

if ||zc||∞ ≥ γ1−β or ||LowBitsq(w−csc2, 2γ2)||∞ ≥ γ2−β, then send out RESTART

message.

else:

(f) Send zc to server.

6. Server’s third message
(a) Upon receiving client’s share wc, check if H2(wc) = hc. Send out ABORT message

if the equality does not hold.

(b) Compute w = wc + ws and extract high-order bits: w1 := HighBitsq(w, 2γ2).

(c) Compute challenge polynomial c ∈ Bτ := H0(m||w1).

(d) Compute potential signature share zs := ys + css1.

(e) Perform rejection sampling step:

if ||zs||∞ ≥ γ1−β or ||LowBitsq(w−css2, 2γ2)||∞ ≥ γ2−β, then send out RESTART

message.

else:

(f) Upon receiving client’s signature share, compute composed signature z = zc + zs.

(g) Perform rejection sampling on composed signature

if ||z||∞ ≥ γ3 − β2 or ||LowBitsq(Az − ct, 2γ2)||∞ ≥ γ2 − β2, then then send out

RESTART message.

else:

(h) Output the final signature on message m: σ = (z, c).

7. Upon receiving RESTART message
(a) Client and server start signing process again from the beginning.
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Algorithm 13 Verify(pk, σ,m)

1: Compute w′1 := HighBitsq(Az− ct, 2γ2).
2: if c = H0(m||w′1) and ||z||∞ ≥ γ3 − β2: return 1 (success).

3: else: return 0.

6.2.2 Analysis of version 2

There is still one more problem with the key generation protocol. Currently, the public

matrix A is generated fully by the client. This allows the client to choose a malicious

matrix that will leak information about the server’s secret key once the server’s public

key share gets published. Therefore, in the next version of the scheme matrix A is

generated jointly by client and server. Additionally, before exchanging the shares of the

matrix A, client and server need to exchange commitments of these shares. This helps

to prevent choosing adaptively a malicious matrix share after seeing other party’s matrix

share.

The main problem that occurred during the analysis of this version of the scheme is

connected to revealing w. It can be seen that by the end of the protocol both parties

obtain w. By correctness, it holds that Az − ct = w − cs2, both parties are able to

reconstruct shared secret key s2 and use it to create signatures without communicating

to each other. This means that the values w should not be revealed during the protocol.

Additionally, HighBits algorithm is not homomorphic, that is, it does not hold that

HighBitsq(wc, 2γ2) + HighBitsq(ws, 2γ2) = HighBitsq(wc ⊕ws, 2γ2),

where ”+” is operation on the outputs of HighBits an algorithm and ”⊕” is an operation

on the inputs. Homomorphism does not hold as during the addition of HighBits outputs,

bit carry may occur.

Therefore, to solve the problem of deriving high order bits of w a special two-party

protocol is needed. Possible solutions include:

• a two-party protocol to compute the high order bits of w1 + w2 without revealing

the inputs.

• a two-party protocol for integer comparison to make sure low bits are in the right

range and there will be no bit carry if parties compute

HighBitsq(w1, 2γ2) + HighBitsq(w2, 2γ2).

As the goal of this work is to construct a post-quantum scheme, the choice of a two-

party protocol is also limited to the quantum-secure techniques. Currently, there were
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no good options found that could satisfy all the requirements needed for this scheme.

Therefore, in the next version of the protocol HighBits algorithm is not used anymore as

the underlying signature scheme is changed to the 1st basic scheme.

Finally, even if a suitable two-party protocol is found, the amount of communication

between parties will increase. Keeping in mind that there are also rejection samplings

that require repeating the signing process several times, the amount of communication

needed to create a single signature may not be very practical.

6.3 Version 3 (final version)

It was decided to switch the underlying digital signature scheme to the 1st basic signature

to create a post-quantum two-party signature scheme. The reason for this decision is that

it was concluded that there are no straightforward approaches to modify the signature

scheme submitted to the NIST PQC competition to the distributed version. Solutions

will require using a two-party computation protocol, which will increase not only the

signing time but the communication complexity as well. The 1st basic scheme is easier

to work with because there are no additional algorithms like HighBits, LowBits used, and

its security relies only on one problem – Module-LWE.

As was mentioned earlier, for the security proofs of the schemes based on the FSwA

technique, a difficult question to answer is whether intermediate computations can be

published before the rejection sampling has been accomplished. Therefore, it is im-

portant to make sure that the intermediate values containing secret information are not

published before the rejection sampling step. A solution to this problem was proposed in

the paper [9], where homomorphic commitments are used and the values inside the com-

mitments are opened only after the successful rejection sampling. Current work follows

the approach from [9], however, instead of homomorphic commitments, a homomorphic

hash function is used.

6.3.1 SWIFFT hash function

It was decided to use a homomorphic hash function proposed in [41] that is called

SWIFFT. This section starts with defining cryptographic and statistical properties that

are desired from some of the hash functions. The following definitions are adopted from

[41].

Definition 29. A hash function f : X → R is one-way if given the output of hash

function y = f(x), where x ∈ X is chosen uniformly at random, the probability

that adversary finds x′ ∈ X such that f(x′) = y is negligible.
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Advantage of adversary A in breaking one-wayness of a hash function f : X → R can

be defined as follows:

AdvOW(A) := Pr[f(x) = f(x′) : x← X, y ← f(x), x′ ← A(y)].

Definition 30. A hash function f : X → R is second preimage resistant if

given a uniformly random input x ∈ X and corresponding output y = f(x), the

probability that adversary finds x′ ∈ X such that x′ 6= x and f(x′) = f(x) is

negligible.

Additionally, there are some statistical properties, the following definitions are adopted

from [42, 41]:

Definition 31. Let F = {fa}a∈A, where fa : X → R be a collection of functions

indexed by a set A. A family of hash functions F is called ε-regular if the statistical

distance between its output distribution {(a, fa(x)) : a ← A, x ← X} and the

uniform distribution {(a, r) : a← A, r ← R} is at most ε.

Definition 32. A hash function f : X → R is called ε-regular if the statistical dis-

tance between its output distribution {f(x) : x← X} and the uniform distribution

over the range {r : r ← R} is at most ε.

Definition 33. A family of functions is called universal if for any fixed x 6= x′

the probability that f(x) = f(x′) is 1/|R|, where f : X → R is chosen randomly

from the family and |R| is the size of the range.

Definition 34. A family of functions is said to be randomness extractor if for an

input x ∈ X taken from a weak randomness source, function f : X → R produces

an output distributed uniformly in the range (or as close to uniform as possible),

where f is chosen randomly from the family.

SWIFFT is a collection of compression functions that are provably one-way and collision-

resistant [41]. SWIFFT compression functions are a special case of function proposed in

[43], [42], [44] that achieves more practical and efficient implementation.

The SWIFFT hashing algorithm takes as an input a binary string of length a·b that is then

interpreted as b × a binary matrix. SWIFFT uses the FFT as one of the main building

blocks that helps to achieve diffusion (to mix all the input bits). A linear combination

is performed over Zp (for a suitable modulus p) and helps to achieve compression and

confusion. The output is a vector of length b that belongs to Zbp.

Additionally, SWIFFT has several statistical properties that can be proven uncondition-

ally: universal hashing, regularity, and randomness extraction. Unconditional security

48



means that there were no assumptions used about the computational power and resources

available for the adversary [45].

The provable security features of the SWIFFT functions are equivalent to the ones pre-

sented in [43], [42]. Therefore, according to the proofs from [43], [42] SWIFFT family

of compression functions is provably collision-resistant and one-way under the assump-

tion about the worst-case difficulty of finding short vectors on a certain kind of lattices.

However, due to the linearity SWIFFT functions are not pseudorandom. This means

that if an adversary is given oracle access to a function f , it can efficiently distinguish

between the two cases:

• case 1: f is chosen at random from the function family.

• case 2: every output of f is uniformly random and independent of other outputs.

It follows that the function is not a suitable instantiation of a random oracle [41]. There-

fore, in the security proofs of the two-party signature protocol, SWIFFT is not used as

a random oracle. Security proof makes use of such provable properties as one-wayness,

regularity, and collision-resistance.

The function was designed to achieve a very efficient implementation since it is highly

parallelizable. SWIFFT was implemented and tested on a 3.2GHz Intel Pentium 4. The

implementation was written in C and compiled using a PC running under Linux kernel

2.6.18. Tests showed that the basic compression function could be evaluated in 1.5 µs on

the above system, achieving a throughput close to 40 MB/s in a standard chaining mode

of operation. The efficiency of implementation was compared with SHA256 on the same

system that achieves a throughput of 47 MB/s when run on 8KB blocks.

6.3.2 Signature scheme

The table 3 describes parameters that are used in the version 3 of two-party signature

scheme.

Parameter setup

Assume that before starting the key generation and signing protocols, parties invoke a

Setup(1λ) function that based on the security parameter λ outputs a set of public param-

eters par that are described in Table 3.

Key generation

H1 and H2 are some collision resistant hash functions. The client begins the key gener-

ation process by sampling a share of matrix Ac and sending out the commitment to this

49



Table 3: Parameters for the two-party protocol

Parameter Description

n degree bound of the polynomials in the ring

q modulus

(k, k) dimension of matrix and vectors used in the scheme

γ size bound of the coefficients in the masking vector share, that is gener-
ated in the signing process

γ2 size bound of coefficients in the composed masking vector

η size bound of coefficients in the secret key share

τ number on non-zero elements in the output of special hash function H0

β maximum possible coefficient of the client’s and server’s shares of csi,
where i ∈ {1, 2}

β2 maximum possible coefficient of csi, where i ∈ {1, 2}
(a, b, p) parameters for the homomorphic hash function: a · b is input length, b

is output length and p is modulus.

share hkc. The server generates its matrix share As and sends commitment hks to the

client. Upon receiving commitments, the client and server exchange matrix shares and

check if the openings for the commitments were correct.

Then client proceeds by generating two secret vectors (sc1, sc2) and computing its share of

the public key tc. The client sends out commitment to the public key share comkc. The

server samples its secret vectors (ss1, ss2) and uses them to compute its public key share

ts. Then the server sends commitment to the public key share comks to the client.

Once the client and server received commitments from each other, client and server ex-

change public key shares. Then client and server both locally check if the commitments

were opened correctly. If these checks succeed, then the client and the server locally

compute the final public key.

It is needed to include the server’s public key share ts to the client’s secret key skc and

vice versa. During the signing process the client needs to use the server’s public key

share to verify the correctness of a commitment.

Figure 6 describes the key generation process and illustrates communication between

client and server. Protocol 5 describes two-party key generation in the more formal

way.

Signing

Inputs of the client are secret key share skc, and a message m to be signed. The server’s

input is secret key share sks. HomH is a homomorphic hash function from the SWIFFT

family. H0 is a special hash function defined as a combination of SHAKE-256 and
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SampleInBall algorithm (Algorithm 2) that outputs a vector of length n with exactly τ

coefficients being either −1 or 1 and the rest being 0. H3 is a collision-resistant hash

function.

Client starts signing process with generating its shares of masking vectors (yc1,y
c
2) and

computing a share of w. Now, w is an instance of the Module-LWE problem, there-

fore it is needed to generate two masking vectors instead of one. Then client uses a

homomorphic hash function to compute comc = HomH(wc) and hashes it using some

collision-resistant hash function. The composed output of the homomorphic hash func-

tion com = comc + coms will be later used to derive a challenge. Therefore, it is crucial

to ensure that comc, coms were not chosen maliciously. Thus, before publishing these

shares client and server should exchange commitments to these shares hc, hs.

Server, in turn, generates its shares of masking vectors (ys1,y
s
2) computes its share of

w and sends commitment to the coms = HomH(ws). After receiving commitments

hc, hs from each other, the client and server open the commitments by sending out shares

coms, comc.

The client proceeds by checking if the server opened its commitment correctly. If the

check succeeds, the client computes com = comc + coms and derives challenge c. Then

the client computes potential signature shares (zc1, z
c
2) and performs rejection sampling.

If all the conditions in rejection sampling were satisfied, the client sends its signature

share to the server.

Server checks if the client opened its commitment correctly. If the check succeeds, the

server computes composed com and derives challenge c. Then the server computes

its potential signature shares (zs1, z
s
2) and performs rejection sampling. If all the con-

ditions in rejection sampling were satisfied, the server sends its signature share to the

client.

Finally, the client performs verification if coms indeed contains ws. Client reconstructs

ws using (zs1, z
s
2) and ts and checks if it is a valid opening for coms. If the check suc-

ceeds, the client computes the final signature (z1, z2). The server performs the same

verification that comc indeed contains wc using (zc1, z
c
2) and tc. If the check succeeds,

the server computes and outputs the final signature.

Figure 7 describes the signing process and illustrates communication between client and

server. Protocol 6 describes two-party signing process in the more formal way.

Verification

Verification is almost the same as in the original scheme except verifier needs to apply
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homomorphic hash function on reconstructed w′ in order to check the correctness of

challenge. Algorithm 14 describes verification in the more formal way.

Correctness

Since w = Ay1 +y2, t = As1 +s2, z1 = y1 +cs1 and z2 = y2 +cs2 it holds that:

Az1 + z2− ct = A(y1 + cs1) + (y2 + cs2)− c(As1 + s2) = Ay1 + Acs1 + y2 + cs2−
cAs1 − cs2 = Ay1 + y2.

Furthermore, by triangle inequality it holds that if ||zs1||∞ < γ − β and ||zc1||∞ < γ − β
then ||z1||∞ = ||zs1+zc1||∞ < ||zs1||∞+||zc1||∞ = 2γ−2β. The same holds for the second

signature component z2. This means that γ2 can be defined as γ2 = 2γ and β2 = 2β.

Therefore, if signature was generated correctly, verification will always succeed.

Figure 6: Distributed key generation protocol (final version)
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Figure 7: Distributed signing protocol (final version)
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Protocol 5: KeyGen(par)

1. Client’s first message:

(a) Generate matrix share Ac← Rk×kq and send hkc := H1(Ac) to the server.

2. Server’s first message:

(a) Generate matrix share As← Rk×kq and send hks := H1(As) to the client.

3. Client’s second message:

(a) Upon receiving hks, send out matrix share Ac.

4. Server’s second message:

(a) Upon receiving hkc, send out matrix share As.

5. Client’s third message
(a) Upon receiving As, verify if H1(As) = hks. Send out ABORT message if equality

does not hold.

(b) Compute combined public matrix A := Ac + As.

(c) Sample two secret vectors: sc1, sc2← Skη .

(d) Compute share of the public key: tc := Asc1 + sc2 and send comkc := H2(tc) to the

server.

6. Server’s third message
(a) Upon receiving Ac, verify if H1(Ac) = hkc. Send out ABORT message if equality

does not hold.

(b) Compute combined public matrix A := Ac + As.

(c) Sample two secret vectors: ss1, ss2← Skη .

(d) Compute share of the public key: ts := Ass1 + ss2 and send comks := H2(ts) to the

client.

7. Client’s fourth message
(a) Upon receiving comks, send out public key share tc.

8. Server’s fourth message
(a) Upon receiving comkc, send out public key share ts.

9. Client’s verification
(a) Upon receiving ts, verify if H2(ts) = comks. Send out ABORT message if equality

does not hold.

(b) Compute combined public key as t := tc + ts.

10. Server’s verification
(a) Upon receiving tc, verify if H2(tc) = comkc. Send out ABORT message if equality

does not hold.

(b) Compute combined public key as t := tc + ts.

11. Output
(a) Client’s share of secret key skc = (A, ts, s

c
1, sc2).

(b) Server’s share of secret key sks = (A, tc, s
s
1, ss2).

(c) Shared public key pk = (A, t).
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Protocol 6: Sign(m)

1. Client’s first message
(a) Sample two masking vectors of polynomials yc1,y

c
2 ← Skγ−1.

(b) Compute wc := Ayc1 + yc2.
(c) Compute comc := HomH(wc) and send out (hc := H3(comc),m).

2. Server’s first message
(a) Sample two masking vectors of polynomials ys1,y

s
2 ← Skγ−1.

(b) Compute ws := Ays1 + ys2.
(c) Compute coms := HomH(ws) and send out hs := H3(coms).

3. Client’s second message
(a) Upon receiving hs, send out comc.

4. Server’s second message
(a) Upon receiving hc, send out coms.

5. Client’s third message
(a) Upon receiving coms, verify if H3(coms) = hs. Send out ABORT message if equality does

not hold.
(b) Compute com := comc + coms and derive challenge polynomial c ∈ Bτ := H0(m||com).
(c) Compute potential signature share zc1 := yc1 + csc1 and zc2 := yc2 + csc2.
(d) Perform rejection sampling:

if ||zc1||∞ ≥ γ − β or ||zc2||∞ ≥ γ − β, then send out RESTART message.
else:

(e) Send out (zc1, z
c
2).

6. Server’s third message
(a) Upon receiving comc, verify if H3(comc) = hc. Send ABORT message if equality does not

hold.
(b) Compute com := comc + coms and derive challenge polynomial c ∈ Bτ := H0(m||com).
(c) Compute potential signature share zs1 := ys1 + css1 and zs2 := ys2 + css2.
(d) Perform rejection sampling:

if ||zs1||∞ ≥ γ − β or ||zs2||∞ ≥ γ − β, then send out RESTART message.
else:

(e) Send out (zs1, z
s
2).

7. Client’s verification
(a) Upon receiving (zs1, z

s
2), reconstruct ws := Azs1 + zs2 − cts.

(b) Check if HomH(ws) = coms and send out ABORT message if check fails.
(c) Compute final signature on message m as z1 := zc1 + zs1 and z2 := zc2 + zs2, σ = (z1, z2, c).

8. Server’s verification
(a) Upon receiving client’s message (zc1, z

c
2), reconstruct wc := Azc1 + zc2 − ctc.

(b) Check if HomH(wc) = comc and and send out ABORT message if check fails.
(c) Compute final signature on message m as z1 := zc1 + zs1 and z2 := zc2 + zs2, σ = (z1, z2, c).

9. Upon receiving RESTART message
(a) Client and server start signing process again from the beginning.
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Algorithm 14 Verify(pk, σ,m)

1: Compute w′ := Az1 + z2 − ct.
2: if c = H(m||HomH(w′)) and ||z1||∞ < γ2 − β2 and ||z2||∞ < γ2 − β2: return 1

(success).

3: else: return 0.

The signature protocol presented in this section may fit the Smart-ID framework. As

future work, a clone detection mechanism, similar to the one currently used in Smart-ID,

may be introduced. Switching the underlying signature scheme from RSA to the scheme

presented in this section would allow using Smart-ID even in the quantum computing

era.
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7 Security of two-party protocol

This section presents security proof for version 3 of the two-party signature scheme

(Section 6.3.2). The proof considers only the classical adversary and relies on the fork-

ing lemma (Lemma 1). The forking lemma helps to obtain two valid signature forgeries

from the adversary such that commitments in both forgeries are the same and challenges

are distinct. A proof against the quantum adversary is left for future work. The differ-

ence between classical and quantum adversary is that the quantum adversary has access

to a quantum computer. This allows the quantum adversary to perform different com-

putations and make different queries using special properties of quantum mechanics.

To prove the security of the signature scheme against the quantum adversary, it will be

needed to change a considerable part of the proof below because forking lemma can-

not be used in the quantum proofs. The idea of the proof below is, given adversary A
against the distributed signature scheme, to construct an algorithm B′ around it that can

be used to solve computational Module-LWE problem or to break a collision resistance

of the homomorphic hash function. Figure 8 graphically illustrates the main idea of the

algorithm B′.

Figure 8: The construction of algorithm B′

The following forking lemma is adopted from [10]. There exists another version of

forking lemma, defined in [46]. The difference between these two versions is that lemma

defined below does not mention explicitly signature schemes or random oracles. Lemma

1 concentrates on the behavior of the output of an algorithm that was run twice on the

inputs that are related to each other. Therefore, Lemma 1 is easily applicable for the

analysis of non-standard signature schemes [47]. In the definition below, x can be viewed

as a public key of the signature scheme, and h1, ..., hq can be viewed as replies to the

random oracle queries.

Lemma 1. General forking lemma. Fix an integer q ≥ 1 to be the number of

queries. Fix set C of size |C| ≥ 2. Let B be a randomised algorithm that takes as

input x, h1, ..., hq, where (h1, ..., hq) ∈ C and returns a pair with the first element

being index i (integer in the range 0, ..., q) and the second element being side output
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out. Let IG be a randomized input generation algorithm. Let accepting probability

of B be denoted as acc. This is the probability that i 6= 0 in the following experiment:

• x← IG

• h1, ..., hq ← C

• (i, out)← B(x, h1, ..., hq)

The forking algorithm FB connected with B is defined in Figure 15.

Algorithm 15 FB(x)

1: Pick random coins ρ for B
2: Generate h1, ..., hq ← C
3: (i, out)← B(x, h1, ..., hq; ρ)
4: If i = 0 then return (0,⊥,⊥)
5: Regenerate h′i, ..., h

′
q ← C

6: (i′, out′)← B(x, h1, ..., hi−1, h
′
i, ..., h

′
q; ρ)

7: If i = i′ and hi 6= h′i then return (1, out, out′)

8: Otherwise return (0,⊥,⊥)

Let define frk probability as

frk = Pr[b = 1 : x← IG; (b, out, out′)← FB(x)].

Then

frk ≥ acc · (
acc

q
−

1

|C|
).

Alternatively

acc ≤
q

|C|
+
√
q · frk.

Definition 35. Distributed signature protocol is called DS-UF-CMA (distributed

signature unforgeability under chosen message attacks) secure if for any proba-

bilistic polynomial time adversary A, its advantage of creating successful signature

forgery is negligible. Advantage of adversary is defined as probability of winning

in the experiment ExpDS-UF-CMA:

AdvDS-UF-CMA(A) := Pr[ExpDS-UF-CMA(A)→ 1].
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Experiment 1: ExpDS-UF-CMA(A)

1. M← ∅
2. kgen← false

3. par ← Setup(1λ)

4. (m∗, σ∗)← AKeyGenO(.,.), SignO(.,.)(par)

5. b← Verify(m∗, σ∗, pk)

6. if b = 1 and m∗ /∈M: return 1

7. otherwise, return 0

The experiment defined above starts with creating a set of messagesM that are queried

by the adversary during the signing process. At the beginning of the experiment, the set

M is empty. Then kgen flag is set to false, it is needed to ensure that key generation was

done before the adversary starts querying the signing oracle. Then Setup() algorithm

is invoked to generate public parameters par and then the adversary tries to produce

forgery on message m∗ that has never been queried through the signing oracle before. If

verification succeeds and the message has never been queried, the adversary wins. The

figure 9 graphically illustrates experiment ExpDS-UF-CMA(A).

Figure 9: DS-UF-CMA experiment

Key generation and signing oracles follow the instructions of a single honest party Pn in

the protocol, the other party is corrupted by the adversary. Both oracles receive messages

in the form (sid,msg), where sid is a session identifier and msg a message that was

supposed to be sent by the protocol. A session identifier is needed for the oracle to

keep in track of the state of the protocol as the adversary is allowed to execute many
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signing sessions concurrently. KeyGenO(sid,msg) and SignO(sid,msg) are defined

more formally in Oracle 1 and Oracle 2.

The key generation oracle follows the instructions of the key generation protocol. When

key generation is done, flag kgen is set to true, which means that the adversary can start

querying the signing oracle. If kgen has already been set to true then abort state ⊥ is

returned as the adversary is allowed to query the key generation oracle only once.

Signing oracle follows the instructions of the signing protocol. The adversary can query

signing oracle once key generation is done (flag kgen is set to true), otherwise signing

oracle ignores the incoming queries. When adversary queries signing oracle on message

m, m is added to the setM.

In the random oracle model, adversary and the KeyGen, Sign, Verify algorithms, addi-

tionally have access to a random oracle.

The security proofs that involve using forking lemma typically follow the same steps.

Firstly, given an adversary A against the signature scheme, another algorithm B is con-

structed aroundA. B is constructed such that it fits the assumptions of the forking lemma.

h1, ..., hq are used as replies to the random oracle queries made by A that is invoked by

B. The important part is that both executions of B performed using the forking algorithm

FB should use the same randomness ρ. [47]

Oracle 1: KeyGenO(par, sid,msg)

The oracle is initialised with the set of public parameters par generated by Setup(1λ) algo-

rithm.

1. Upon receiving (0,msg) if the flag kgen = true then return ⊥.

2. Upon receiving query with sid = 0 for the first time:

(a) Initialise a machineM0. M0 uses the instructions of the party Pn in the key genera-

tion protocol KeyGen(par).

(b) If Pn sends the first message according to the key generation protocol then oracle

returns this message.

3. If machineM0 has been already initialised:

(a) Oracle gives the next incoming message msg to theM0.

(b) Oracle returns reply that was received fromM0.

(c) If M0 finished the protocol with a local output (skn, pk) then oracle sets the flag

kgen = true.
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Oracle 2: SignO(sid,msg)

1. Upon receiving (sid,msg) if the flag kgen = false and sid 6= 0 then return ⊥.

2. Upon receiving query with sid for the first time:

(a) Parse incoming message msg as message to be signed m.

(b) Initialise a machineMsid. Msid uses the instructions of the party Pn in the signing

protocol Sign(par, skn, pk,m∗).

(c) The message to be signed m is included in the set of all queried messagesM.

(d) If Pn sends the first message according to the signing protocol then oracle returns this

message.

3. If machineMsid has been already initialised:

(a) Oracle gives the next incoming message msg to theMsid.

(b) Oracle returns reply that was received fromMsid.

(c) IfMsid finished the protocol with a local output σ then the oracle returns this output.

Theorem 2. Assume a homomorphic hash function HomH : {0, 1}a·b → Zbp is

provably collision-resistant and ε-regular then, for any probabilistic polynomial time

adversary A that makes a single query to the key generation oracle, qs queries to the

signing oracle and qh queries to the random oracles H0, H1, H2, H3, the distributed

signature protocol is DS-UF-CMA secure in the random oracle model under Module-

LWE assumption.

The idea of the following proof relies on the proofs from [47, 10, 9, 3].

The proof below consists of two major steps. The first step involves constructing an algo-

rithm B aroundA that simulates the behavior of the single honest party Pn without using

its actual secret keys. It should be noted that the instructions of the key generation and

signing protocols are the same for the client and server. Therefore it is assumed in the

proof that one of them is corrupted (party Pi) and one of them behaves honestly (party

Pn) without explicitly mentioning who plays which role. In the second step, forking al-

gorithm FB associated with B is invoked to obtain two forgeries with distinct challenges

and the same commitments. This, in turn, allows to construct a solution to the compu-

tational Module-LWE problem or to break the collision resistance of the homomorphic

hash function HomH .

It is important to note that the forking algorithm only receives a public key as input but to

show that the adversary can be used to break the underlying computational Module-LWE

problem, it is needed to simulate the whole view of the adversary, who makes signing

queries. This means that B is needed to simulate the interaction of the adversary with

the signing oracle and all the messages that the adversary sends and receives during the
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protocol.

Proof

Given an adversary A that succeeds in breaking distributed signature protocol with ad-

vantage AdvDS-UF-CMA(A), a simulator B is constructed. B simulates the behaviour of

the single honest party without using honestly generated secret keys for the computation.

Algorithm B is constructed such that it fits all the assumptions of the forking lemma

defined above. By the definition of forking algorithm, it was required that B is given

a public key and a random oracle query replies as input. B simulates the behaviour of

honest party Pn, party Pi is corrupted by the adversary. The algorithm B is defined in

Algorithm 16.

Algorithm 16 B(pk, h1, ..., hqh+qs+1)

1: Create empty hash tables HTi for i ∈ {0, ..., 3}.
2: Create a set of queried messages M = ∅.
3: Simulate honest party oracle as follows:

• Upon receiving a query from A of the form (sid,msg), reply to the query as
described in SimOKeyGen (Oracle 3) and SimOSign (Oracle 4).

• If one of the oracles terminates with output of the form (0,⊥) then B also
terminates with the same output (0,⊥).

4: Simulate random oracles as follows:
• Upon receiving a query from A to the random oracle, reply to the query as

described in the Random oracle simulation algorithm.
5: Upon receiving a forgery σ = (z1, z2, c) on message m∗ from A:

• If m∗ ∈M then B terminates with output (0,⊥).
• Compute com∗ := HomH(Az1 + z2 − ct).
• Make query c∗ ← H0(m

∗||com′).
• If c 6= c′ or ||z1||∞ ≥ γ2−β2 or ||z2||∞ ≥ γ2−β2 then B terminates with output

(0,⊥).
• Find index if ∈ [qh + qs + 1] such that c∗ = hif . B terminates with the output

(if , out = (com∗, c∗, z1, z2,m
∗))
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Oracle 3: SimOKeyGen(par, sid,msg)

The oracle is initialised with the set of public parameters par generated by Setup(1λ) algo-

rithm.

1. Upon receiving (0,msg) if the flag kgen = true then return ⊥.

2. Upon receiving query with sid = 0 for the first time:

(a) Initialise a machineM0.M0 uses the instructions of SimKeyGen(par,A, t).

(b) If Pn sends the first message according to the key generation protocol then oracle

returns this message.

3. If machineM0 has been already initialised:

(a) Oracle gives the next incoming message msg to theM0.

(b) Oracle returns reply that was received fromM0.

(c) If M0 finished the protocol with a local output (tn, pk) then oracle sets the flag

kgen = true.

Oracle 4: SimOSign(sid,msg)

1. Upon receiving (sid,msg) if the flag kgen = false and sid 6= 0 then return ⊥.

2. Upon receiving query with sid for the first time:

(a) Parse incoming message msg as message to be signed m.

(b) Initialise a machineMsid.Msid uses the instructions of SimSign(sid, tn, pk,m).

(c) The message to be signed m is included in the set of all queried messagesM.

(d) If Pn sends the first message according to the signing protocol then oracle returns this

message.

3. If machineMsid has been already initialised:

(a) Oracle gives the next incoming message msg to theMsid.

(b) Oracle returns reply that was received fromMsid.

(c) IfMsid finished the protocol with a local output σ then the oracle returns this output.

Random oracle simulation

There are several random oracles that need to be simulated:

1. H0 : {0, 1}∗ → C

[C is a set of all vectors of size n with exactly τ ± 1 and other elements being

zeros]

2. H1 : {0, 1}∗ → {0, 1}l1

3. H2 : {0, 1}∗ → {0, 1}l2
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4. H3 : {0, 1}∗ → {0, 1}l3

All of the random oracles are simulated similarly as described in Algorithm 17. Addi-

tionally, there is a searchHash(HT, h) algorithm for searching entries from the hash table

defined in Algorithm 18.

Algorithm 17 Hi(x)

HTi is a hash table
that is initially empty.

1: On a query x return element HTi[x] if
it was previously defined.

2: Otherwise sample output y uniformly

at random from the range of Hi and

return HTi[x] := y

Algorithm 18 searchHash(HT, h)

1: For value h find its preimage m in the
hash table such that HT [m] = h.

2: If preimage of value h does not exist,
set flag alert and set preimage m =⊥.

3: If for value h more than one preimage
exists in hash table HT , set flag bad.

4: Output: (m, alert, bad)

The games described below illustrate how the simulators for the key generation process

and the signing process are constructed. Let Pr[Gi] denote the probability that B does

not output (0,⊥) in the game Gi. This means that adversary must have created a valid

forgery (as defined in Algorithm 16). Then Pr[G0] = AdvDS-UF-CMA(A).

Game 0

In Game 0, B simulates honest party behaviour using the same instructions as in the

original KeyGen() and Sign() protocols. In latter games, key generation will be modified

such that additionally to the parameters par it will take pre-generated public key (A, t)

as input. The simulation of signing process will be modified to use only message m,

public key share tn and composed public key pk as input.

Algorithm 19 SimKeyGen(par)

1: An ← Rk×kq , send out hn = H1(An).
2: Upon receiving hi, send out An.
3: Upon receiving Ai, check that H1(Ai) = hi. If not: send out ABORT.
4: A := An + Ai

5: sn1 , sn2 ← Skη .
6: tn := Asn1 + sn2 , send out comn := H2(tn).
7: Upon receiving comi, send out tn.
8: Upon receiving ti, check that H2(ti) = comi. If not: send out ABORT.

9: Otherwise, set t := tn + ti, pk := (A, t) and sk := (A, ti, s
n
1 , sn2 ).
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Algorithm 20 SimSign(skn, pk,m)

1: yn1 ,y
n
2 ← Skγ−1.

2: wn := Ayn1 + yn2 .
3: comn ← HomH(wn), send out hn ← H3(comn).
4: Upon receiving hi send out comn.
5: Upon receiving comi check that H3(comi) = hi, if not: send out ABORT.
6: Otherwise, compute com = comn + comi.
7: c← H0(com,m).
8: zn1 = yn1 + csn1 , zn2 = yn2 + csn2
9: Run rejection sampling, if it did not pass: send out RESTART and go to the step 1.

10: Otherwise, send out (zn1 , z
n
2 ). Upon receiving RESTART, go to step 1.

11: Upon receiving (zi1, z
i
2), reconstruct wi := Azi1+zi2−cti and check that HomH(wi) =

comi, if not: send out ABORT.

12: Otherwise, set z1 := zn1 + zi1 and z2 := zn2 + zi2 and output composed signature

σ := (z1, z2, c).

Game 1

In Game 1 only signing process is changed with respect to the previous game. Chal-

lenge c is now sampled uniformly at random and signature shares are computed out of it

without communicating with adversary. Changes with respect to the previous game are

highlighted.
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Algorithm 21 SimSign(skn, pk,m)

1: c← C.
2: yn1 ,y

n
2 ← Skγ−1.

3: wn := Ayn1 + yn2 .
4: zn1 = yn1 + csn1 and zn2 = yn2 + csn2 .
5: comn ← HomH(wn), send out hn ← H3(comn).
6: Upon receiving hi search for (comi, alert, bad7)← searchHash(HT3, hi).
7: If the flag bad7 is set, then simulation fails with output (0,⊥).

If the flag alert is set, then send out comn.
8: com = comn + comi.
9: Program random oracle H0 to respond queries (com,m) with c.

Set HT0[(com,m)] := c. If HT0[(com,m)] has been already set, set flag bad8
and simulation fails with output (0,⊥).

10: Send out comn. Upon receiving comi:
• if H3(comi) 6= hi: send out ABORT.
• if the flag alert is set and H3(comi) = hi: set the flag bad9 and simulation fails

with output (0,⊥) with output (0,⊥).
11: Otherwise, run rejection sampling, if it did not pass: send out RESTART and go to

the step 1.
12: Otherwise, send out (zn1 , z

n
2 ). Upon receiving RESTART, go to step 1.

13: Upon receiving (zi1, z
i
2), reconstruct wi := Azi1+zi2−cti and check that HomH(wi) =

comi, if not: send out ABORT.

14: Otherwise, set z1 := zn1 + zi1, z2 := zn2 + zi2 and output composed signature σ :=

(z1, z2, c).

In case of successful forgery, hash tables used in the signing process should contain the

values as shown in Table 4 (note that
... denotes all the other entries in the table):

Table 4: Hash tables for the oracles H0, H3

HT0:

Query Output

(com,m) c
...

...
HT3:

Query Output

comn hn
comi hi

...
...

Event bad7 happens if at the step 6 it occurs that there is more than one preimage for the

value hi, in this case hash table of the oracle H3 contains the values as in Table 5.

Flag alert is set if at the step 6 it occurs that there is no preimage for the value hi, in this

case hash table of the oracle H3 contains the values as in Table 6.

Event bad8 happens if at the step 9 it occurs that the output for the query (com,m) has

been already set, in this case hash table of the oracle H0 before the step 10 contains the

values as in Table 7.
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Table 5: Hash table for the
oracle H3 in case of bad7

Query Output

comn hn
comi hi
com′i hi

...
...

Table 6: Hash table for the
oracle H3 in case of alert is
set

Query Output

comn hn
...

...

Table 7: Hash table for the
oracle H0 in case of bad8

Query Output

(com,m) c∗
...

...

Game 0→ Game 1:
The difference between Game 0 and Game 1 can be expressed using the bad events that

can happen with the following probabilities:

• Pr[bad7] is the probability that at least one collision occurs during at most qh + 2qs

queries to the random oracle H3 made by adversary or simulator. This means that

two values comj 6= com′j were found such that hj = HT3[comj] = HT3[com
′
j].

As all the responses of H3 are chosen uniformly at random from {0, 1}l3 and

there are at most qh + 2qs queries to the random oracle H3, the probability of at

least one collision occurring can be expressed as

(
(qh + 2qs)(qh + 2qs + 1)

)
/2

2l3
≤

(qh + 2qs + 1)2

2l3+1
, where l3 is the length of H3 output.

• Pr[bad8] is the probability that programming random oracle H0 fails at least once

during qs queries. This event can happen in the following two cases: H3(comn)

was previously queried by the adversary or it was not queried by the adversary:

– Case 1: H3(comn) has been already asked by adversary during at most qh +

2qs queries to H3. This means that the adversary knows com and may have

queried H0(com,m) before. This event corresponds to guessing the value of

comn.

Let the uniform distribution over Zbp be denoted as X and the distribution of

HomH output be denoted as Y . As HomH is ε-regular (for some negligibly

small ε) it holds that SD(X, Y ) ≤ ε. Then for any (guessing) subset T of Zbp,
by the definition of statistical distance (Definition 13), it holds that Pr[X ∈
T ] ≤ Pr[Y ∈ T ] + ε. Therefore, for a uniform distribution X , the probability

of guessing Y by T is bounded by
1

|Zbp|
+ ε.

Since comn was produced by B in the beginning of the signing protocol com-

pletely independently from A, the probability that A queried H3(comn) is at

most
1

|Zbp|
+ ε for each query.
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– Case 2: HT0[com,m] has been set by adversary or simulator by chance dur-

ing at most qh+qs prior queries to theH0. SinceA has not queriedH3(comn),

adversary does not know comn and the view of A is completely independent

of com. The probability that com occurred by chance in one of the previous

queries to H0 is at most (qh + qs)

(
1

|Zbp|
+ ε

)
.

• Pr[bad9] is the probability that the adversary predicted at least one of two outputs

of the random oracle H3 without making a query to it. In this case, there will be

no record in the hash table HT3 that corresponds to the preimage comj . This can

happen with probability at most
2

2l3
for each signing query.

Therefore the difference between two games is

|Pr[G1]− Pr[G0]| ≤ Pr[bad7] + Pr[bad8] + Pr[bad9] ≤
(qh + 2qs + 1)2

2l3+1
+ qs

(
(qh + 2qs)

(
1

|Zbp|
+ ε

)
+ (qh + qs)

(
1

|Zbp|
+ ε

)
+

2

2l3

)
=

(qh + 2qs + 1)2

2l3+1
+ qs

((
1

|Zbp|
+ ε

)
· (2qh + 3qs) +

2

2l3

)
.

Game 2

In Game 2, only the signing process is changed. When the signature share gets rejected,

simulator commits to a uniformly random vector wn from the ring Rq instead of com-

mitting to a vector computed as Ayn1 + yn2 . Hash tables of the random oracles are the

same as described for the Game 1.
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Algorithm 22 SimSign(skn, pk,m)

1: c← C.
2: yn1 ,y

n
2 ← Skγ−1.

3: zn1 = yn1 + csn1 and zn2 = yn2 + csn2 .
4: Run rejection sampling, if it did not pass do the following:

1. wn ← Rkq .
2. comn ← HomH(wn), send out hn ← H3(comn).
3. Upon receiving hi search for (comi, alert, bad7)← searchHash(HT3, hi).
4. If the flag bad7 is set, then simulation fails with output (0,⊥). If the flag alert

is set, then send out comn.
5. com = comn + comi.
6. Program random oracle H0 to respond queries (com,m) with c. Set

HT0[(com,m)] := c. If HT0[(com,m)] has been already set, set flag bad8
and simulation fails with output (0,⊥).

7. Send out comn. Upon receiving comi:
• if H3(comi) 6= hi: send out ABORT.
• if the flag alert is set and H3(comi) = hi: set the flag bad9 and simulation

fails with output (0,⊥).
8. Otherwise, send out RESTART and go to step 1.

5: If rejection sampling passes do the following:
1. wn := Ayn1 + yn2 .
2. comn ← HomH(wn), send out hn ← H3(comn).
3. Upon receiving hi search for (comi, alert, bad7)← searchHash(HT3, hi).
4. If the flag bad7 is set, then simulation fails with output (0,⊥). If the flag alert

is set, then continue.
5. com = comn + comi.
6. Program random oracle H0 to respond queries (com,m) with c. Set

HT0[(com,m)] := c. If HT0[(com,m)] has been already set, set flag bad8
and simulation fails with output (0,⊥).

7. Send out comn.Upon receiving comi:
• if H3(comi) 6= hi: send out ABORT.
• if the flag alert is set and H3(comi) = hi: set the flag bad9 and simulation

fails with output (0,⊥).
8. Otherwise, send out (zn1 , z

n
2 ). Upon receiving RESTART, go to step 1.

9. Upon receiving (zi1, z
i
2), reconstruct wi := Azi1 + zi2 − cti and check that

HomH(wi) = comi, if not: send out ABORT.
10. Otherwise, set z1 := zn1 + zi1, z2 := zn2 + zi2 and output composed signature

σ := (z1, z2, c).

Game 1→ Game 2:

The difference between Game 1 and Game 2 can be expressed with the probability

that adversary can distinguish simulated commitment with random wn from the real

one.

Let assume that there exists an adversary D who succeeds in distinguish simulated com-
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mitment with random wn from the real one with non-negligible probability:

Adv(D) = Pr[A← Rk×k
q ,y1,y2 ← Skγ−1,w0 ← Ay1 + y2,w1 ← Rk

q ,

b← {0, 1}, hb ← HomH(wb), b
′ ← D(A,wb) : b = b′].

Then the adversary D can be used to construct an adversary AMLWE who solves the

decisional Module-LWE for parameters (q, k, k, γ − 1, U), where U is the uniform dis-

tribution.

Algorithm 23 AMLWE(A,wb)

1: hb ← HomH(wb)
2: b′ ← D(A, hb)

3: output b′

As a result the difference between the two games is bounded by:

|Pr[G2]− Pr[G1]| ≤ qs · AdvDec-MLWE
(q,k,k,γ−1,U)

Game 3

In Game 3 simulator does not generate the signature shares honestly and, thus, does not

perform rejection sampling honestly. Rejection sampling is simulated as follows:

• Rejection case: with probability 1 −

(
1−
|Skγ−β−1|
|Skγ−1|

)2

simulator generates com-

mitment to the random wn as in the previous game.

• Otherwise, sample signature shares from the set Sγ−β−1 and compute wn out of it.

Hash tables of the random oracles are the same as described for the Game 1.
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Algorithm 24 SimSign(tn, pk,m)

1: With probability 1−

(
1−
|Skγ−β−1|
|Skγ−1|

)2

do the following:

1. c← C.
2. wn ← Rkq .
3. comn ← HomH(wn), send out hn ← H3(comn).
4. Upon receiving hi search for (comi, alert, bad7)← searchHash(HT3, hi).
5. If the flag bad7 is set, then simulation fails with output (0,⊥). If the flag alert

is set, then send out comn.
6. com = comn + comi.
7. Program random oracle H0 to respond queries (com,m) with c. Set

HT0[(com,m)] := c. If HT0[(com,m)] has been already set, set flag bad8
and simulation fails with output (0,⊥).

8. Send out comn. Upon receiving comi:
• if H3(comi) 6= hi: send out ABORT.
• if the flag alert is set and H3(comi) = hi: set the flag bad9 and simulation

fails with output (0,⊥).
9. Otherwise, send out RESTART and go step 1.

2: Otherwise do the following:
1. c← C.
2. zn1 ← Skγ−β−1 and zn2 ← Skγ−β−1.
3. wn = Azn1 + zn2 − ctn.
4. comn ← HomH(wn), send out hn ← H3(comn).
5. Upon receiving hi search for (comi, alert, bad7)← searchHash(HT3, hi).
6. If the flag bad7 is set, then simulation fails with output (0,⊥). If the flag alert

is set, then continue.
7. com = comn + comi.
8. Program random oracle H0 to respond queries (com,m) with c. Set

HT0[(com,m)] := c. If HT0[(com,m)] has been already set, set flag bad8
and simulation fails with output (0,⊥).

9. Send out comn. Upon receiving comi:
• if H3(comi) 6= hi: send out ABORT.
• if the flag alert is set and H3(comi) = hi: set the flag bad9 and simulation

fails with output (0,⊥).
10. Otherwise, send out (zn1 , z

n
2 ). Upon receiving RESTART, go to step 1.

11. Upon receiving (zi1, z
i
2), reconstruct wi := Azi1 + zi2 − cti and check that

HomH(wi) = comi, if not: send out ABORT.
12. Otherwise, set z1 := zn1 + zi1, z2 := zn2 + zi2 and output composed signature

σ := (z1, z2, c).

Game 2→ Game 3:
The signature shares generated this way are indistinguishable from the real ones because

of the εZK-naHVZK property of the underlying identification scheme from [36], ap-

pendix B. Therefore, the difference between Game 2 and Game 3 can be defined as:

|Pr[G3]− Pr[G2]| ≤ εZK
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According to the proof from [36], εZK = 0 for the underlying identification scheme.

Game 4

Now, the signing process does not rely on the actual secret keys of the honest party Pn.

In the next games, the key generation process is changed such that it does not use secret

keys as well. In this game, the simulator is given a predefined uniformly random matrix

A← Rk×k
q and the simulator defines its own matrix share out of it. By the definition, the

algorithm B (Algorithm 16) receives a pre-generated public key pk as input. Therefore,

the simulator in this game is given a matrix A, in the later games simulator will be

changed such that it receives the whole public key and uses it to compute its shares

An, tn.

Algorithm 25 SimKeyGen(par, A)

1: Send out hkn ← {0, 1}l1 .
2: Upon receiving hki:

• search for (Ai, alert, bad1)← searchHash(HT1, hki).
• if the flag bad1 is set then simulation fails with output (0,⊥).
• if the flag alert is set then sample An ← Rk×kq .

Otherwise, define An := A−Ai.
3: Program random oracle H1 to respond queries An with hkn. Set HT1[An] := hkn.

If HT1[An] has been already set, then set the flag bad2 and simulation fails with
output (0,⊥).

4: Send out An. Upon receiving Ai:
• if H1(Ai) 6= hki: send out ABORT.
• if the flag alert is set and H1(Ai) = hki: set the flag bad3 and simulation fails

with output (0,⊥) with output (0,⊥).
5: (sn1 , sn2 ) ← Skη × Skη .
6: tn := Asn1 + sn2 , send out comkn := H2(tn).
7: Upon receiving comki, send out tn.
8: Upon receiving ti, check that H2(ti) = comki. If not: send out ABORT.

9: Otherwise t := tn + ti, pk := (A, t) and sk := (A, ti, sn, s
′
n).

In case of successful forgery, hash tables used in key generation and signing processes

should contain the values as shown in Table 8.

72



Table 8: Hash tables for the oracles H0, H1, H2, H3

HT0:

Query Output

(com,m) c
...

...

HT1:

Query Output

Ai hki
An hkn
...

...

HT2:

Query Output

ti comki
tn comkn
...

...

HT3:

Query Output

comn hn
comi hi

...
...

Event bad1 happens if at the step 2 it occurs that there is more than one preimage for the

value hki, in this case, hash table of the oracleH1 contains the values as in Table 9.

Flag alert is set if at the step 2 it occurs that there is no preimage for the value hki, in

this case, hash table of the oracle H1 contains the values as in Table 10.

Event bad2 happens if at the step 3 it occurs that the output for the query An has been

already set, in this case, hash table of the oracle H1 before the step 4 contains the values

as in Table 11.

Table 9: Hash table for the
oracles H1 in case of bad1

Query Output

Ai hki
A′i hki
...

...

Table 10: Hash table for the
oracles H1 in case of alert is
set

Query Output

...
...

Table 11: Hash table for the
oracles H1 in case of bad2

Query Output

An hk∗n
...

...

Game 3→ Game 4:
The distribution of public matrix A does not change between Game 3 and Game 4. The

difference between Game 3 and Game 4 can be expressed using bad events that happen

with the following probabilities:

• Pr[bad1] is the probability that at least one collision occurs during at most qh
queries to the random oracle H1 made by adversary or simulator. This can happen

with probability at most
qh(qh + 1)/2

2l1+1
, where l1 is the length of H1 output.

• Pr[bad2] is the probability that programming random oracle H1 fails which hap-

pens if H1(An) has been previously asked by adversary during at most qh queries

to the random oracle H1. This event corresponds to guessing random An, for each

query the probability of this event is bounded by
1

qn·k·k
.
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• Pr[bad3] is the probability that adversary predicted at least one of two outputs of the

random oracle H1 without making a query to it. This can happen with probability

at most
2

2l1
.

Therefore the difference between the two games is

|Pr[G4]− Pr[G3]| ≤ Pr[bad1] + Pr[bad2] + Pr[bad3] ≤
(qh + 1)qh

2l1+1
+

qh

qn·k·k
+

2

2l1

Game 5

In Game 5, the simulator picks public key share tn randomly from the ring, instead

of computing it using secret keys. Hash tables of the random oracles are the same as

described for the Game 4.

Algorithm 26 SimKeyGen(par,A)

1: Sample hkn ← {0, 1}l1 . Send out hkn.
2: Upon receiving hki:

• search for (Ai, alert, bad1)← searchHash(HT1, hki).
• if the flag bad1 is set then simulation fails with output (0,⊥).
• if the flag alert is set then sample An ← Rk×kq . Otherwise, define An := A−Ai.

3: Program random oracle H1 to respond queries An with hkn. Set HT1[An] := hkn. If
HT1[An] has been already set, then set the flag bad2 and simulation fails with output
(0,⊥).

4: Send out An. Upon receiving Ai:
• if H1(Ai) 6= hki: send out ABORT.
• if the flag alert is set and H1(Ai) = hki: set the flag bad3 and simulation fails

with output (0,⊥).
5: tn ← Rkq , send out comkn = H2(tn).
6: Upon receiving comki, send out tn.
7: Upon receiving ti, check that H2(ti) = comki. If not: send out ABORT.

8: Otherwise t := tn + ti, pk := (A, t).

Game 4→ Game 5:
In Game 5, public key share tn is sampled uniformly at random from Rk

q , instead of

computing it as Asn + s′n, where sn, s
′
n are random elements from Skη . As matrix A

follows the uniform distribution over Rk×k
q if adversary can distinguish between Game

3 and Game 4 this adversary can be used as a distinguisher that breaks the decisional

Module-LWE problem for parameters (q, k, k, η, U), where U is the uniform distribu-

tion.

Therefore, the difference between two games is bounded by the advantage of breaking

decisional Module-LWE:
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|Pr[G5]− Pr[G4]| ≤ AdvDec-MLWE
(q,k,k,η,U)

Game 6

In Game 6, the simulator uses as input a random resulting public key t ∈ Rk
q to compute

its own share out of it.

Algorithm 27 SimKeyGen(par,A, t)

1: Sample hkn ← {0, 1}l1 . Send out hkn.
2: Upon receiving hki:

• search for (Ai, alert, bad1)← searchHash(HT1, hki).
• if the flag bad1 is set then simulation fails with output (0,⊥).
• if the flag alert is set then sample An ← Rk×kq . Otherwise, define An := A−Ai.

3: Program random oracle H1 to respond queries An with hkn. Set HT1[An] := hkn. If
HT1[An] has been already set, then set the flag bad2 and simulation fails with output
(0,⊥).

4: Send out An. Upon receiving Ai:
• if H1(Ai) 6= hki: send out ABORT.
• if the flag alert is set and H1(Ai) = hki: set the flag bad3 and simulation fails

with output (0,⊥).
5: Send out comkn ← {0, 1}l2 .
6: Upon receiving comki, search for (ti, alert, bad4)← searchHash(HT2, comki).
7: If the flag bad4 is set, then simulation fails with output (0,⊥).
8: Compute public key share:

• If the flag alert is set, tn ← Rkq .
• Otherwise, tn := t− ti.

9: Program random oracle H2 to respond queries tn with comkn. Set HT2[tn] := comkn.
If HT2[tn] has been already set, set flag bad5 and simulation fails with output (0,⊥).

10: Send out tn. Upon receiving ti:
• if H2(ti) 6= comki: send out ABORT.
• if the flag alert is set and H2(ti) = comki: set the flag bad6 and simulation

fails with output (0,⊥).

11: Otherwise t := tn + ti, pk := (A, t).

In case of successful forgery, hash tables should contain the values as presented in Table

12.
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Table 12: Hash tables for the oracles H0, H1, H2, H3

HT0:

Query Output

(com,m) c
...

...

HT1:

Query Output

Ai hki
An hkn
...

...

HT2:

Query Output

ti comki
tn comkn
...

...

HT3:

Query Output

comn hn
comi hi

...
...

Event bad4 happens if at the step 6 it occurs that there is more than one preimage for

the value comki, in this case hash table of the oracle H2 contains the values as in Table

13.

Flag alert is set if at the step 6 it occurs that there is no preimage for the value comki, in

this case hash table of the oracle H2 contains the values as in Table 14.

Event bad5 happens if at the step 9 it occurs that the output for the query tn has been

already set, in this case hash table of the oracle H2 before the step 11 contains the values

as in Table 15.

Table 13: Hash table for the
oracles H2 in case of bad4

Query Output

ti comki
t′i comki
...

...

Table 14: Hash table for the
oracles H2 in case of alert is
set

Query Output

...
...

Table 15: Hash table for the
oracles H2 in case of bad5

Query Output

tn comkn∗
...

...

Game 5→ Game 6:
The distributions of t, tn do not change. The difference between Game 4 and Game 5

can be expressed using bad events that happen with the following probabilities:

• Pr[bad4] is the probability that at least one collision occurs during at most qh
queries to the random oracle H2 made by adversary or simulator. This can happen

with probability at most
qh(qh + 1)/2

2l2+1
, where l2 is the length of H2 output.

• Pr[bad5] is the probability that programming random oracle H2 fails which hap-

pens if H2(tn) was previously asked by adversary during at most qh queries to

the random oracle H2. This event corresponds to guessing a uniformly random

tn ∈ Rk
q , for each query the probability of this event is bounded by

1

qn·k
.
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• Pr[bad6] is the probability that adversary predicted at least one of two outputs of the

random oracle H2 without making a query to it. This can happen with probability

at most
2

2l2
.

Therefore the difference between the two games is

|Pr[G6]− Pr[G5]| ≤ Pr[bad4] + Pr[bad5] + Pr[bad6] ≤
(qh + 1)qh

2l2+1
+

qh

qn·k
+

2

2l2

Forking Lemma

Now, both key generation and signing do not rely on the actual secret keys of the honest

party Pn. In order to conclude the proof, it is needed to invoke forking lemma to receive

two valid forgeries from the adversary that are constructed using the same commitment

com = com′, but different challenges c 6= c′.

Define an input generation algorithm IG such that it produces the following input: (A, t)

for the FB. Now B′ is constructed around the previously defined simulator B. B′ invokes

the forking algorithm FB on the input (A, t).

As a result with probability frk two valid forgeries are obtained out = (com, c, z1, z2,m)

and out′ = (com′, c′, z′1, z
′
2,m

′). Here by the construction of FB the challenges are

different (c 6= c′), but the commitments and messages are the same (com = com′,m =

m′). The probability frk satisfies

Pr[G6] = acc ≤
qh + qs + 1

|C|
+
√

(qh + qs + 1) · frk

Since both signatures are valid it holds that

• c = H(m||HomH(Az1 + z2 − ct)) and ||z1||∞ < γ3 − β2, ||z2||∞ < γ3 − β2

• c′ = H(m′||HomH(Az′1 + z′2 − c′t)) and ||z′1||∞ < γ3 − β2, ||z′2||∞ < γ3 − β2

• HomH(Az1 + z2 − ct) = com = com′ = HomH(Az′1 + z′2 − c′t)

Let examine the following cases:

Case 1: Az1 + z2− ct 6= Az′1 + z′2− c′t, then B′ is able to break the collision resistance

of the hash function (that is hard under the worst-case difficulty of finding short vectors

in cyclic/ideal lattices) as was proven in [43], [42].

Case 2: Az1+z2−ct = Az′1+z′2−c′t. This implies that A(z1−z′1)+(z2−z′2) = (c−c′)t.

Let denote r1 = z1−z′1, r2 = z2−z′2 and d = (c−c′), where d 6= 0 since c 6= c′. It can be

seen that for a uniformly random A ∈ Rk×k
q algorithm B′ found two vectors r1, r2 with

small coefficients such that Ar1 + r2 = dt. This solves computational Module-LWE
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problem for (q, k, k, ξ, χ), where ξ ≤ 2(γ2 − β2) and χ is the normal distribution with

standard deviation σ that depends on the parameter choice.

Therefore, the probability frk is the following:

frk ≤ AdvCom-MLWE
(q,k,k,ξ,χ) + AdvCR

Finally, taking into account that the underlying identification scheme has perfect naHVZK

(i.e. εZK = 0), the advantage of the adversary is bounded by the following:

AdvDS-UF-CMA(A) ≤
(qh + 2qs + 1)2

2l3+1
+ qs ·

((
1

|Zbp|

)
· (2qh + 3qs) +

2

2l3

)
+

qs · AdvDec-MLWE
(q,k,k,γ−1,U) +

(qh + 1) qh

2l1+1
+

qh

qn·k·k
+

2

2l1
+ AdvDec-MLWE

(q,k,k,η,U)+

(qh + 1) qh

2l2+1
+

qh

qn·k
+

2

2l2
+
qh + qs + 1

|C|
+

√
(qh + qs + 1) ·

(
AdvCom-MLWE

(q,k,k,ξ,χ) + AdvCR
)

The most influential parts in the formula above are the advantage of the adversary in

breaking decisional and computational Module-LWE and the advantage of the adversary

in breaking collision-resistance of the homomorphic hash function. These advantages

are negligible for the correct choice of parameters. Therefore, if the parameters for the

scheme are chosen such that the instance of Module-LWE is hard to solve and it is hard to

find collision given HomH output, the advantage of the adversary in forging a signature

is negligible.

The final versions of the key generation and signing simulators are defined in Algorithm

28 and Algorithm 29.
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Algorithm 28 SimKeyGen(par, pk = (A, t))

The protocol is parameterised by the public parameters par that were generated
by the Setup algorithm and relies on the random oracles H1, H2.

1: Sample hkn ← {0, 1}l1 . Send out hkn.
2: Upon receiving hki:

• search for (Ai, alert, bad1)← searchHash(HT1, hki).
• if the flag bad1 is set then simulation fails with output (0,⊥).
• if the flag alert is set then sample An ← Rk×kq . Otherwise, define An := A−Ai.

3: Program random oracle H1 to respond queries An with hkn. Set HT1[An] := hkn. If
HT1[An] has been already set, then set the flag bad2 and simulation fails with output
(0,⊥).

4: Send out An. Upon receiving Ai:
• if H1(Ai) 6= hki: send out ABORT.
• if the flag alert is set and H1(Ai) = hki: set the flag bad3 and simulation fails

with output (0,⊥).
5: Send out comkn ← {0, 1}l2 .
6: Upon receiving comki, search for (ti, alert, bad4)← searchHash(HT2, comki).
7: If the flag bad4 is set, then simulation fails with output (0,⊥).
8: Compute public key share:

• If the flag alert is set, tn ← Rkq .
• Otherwise, tn := t− ti.

9: Program random oracle H2 to respond queries tn with comkn. Set HT2[tn] := comkn.
If HT2[tn] has been already set, set flag bad5 and simulation fails with output (0,⊥).

10: Send out tn.
11: Upon receiving ti:

• if H2(ti) 6= comki: send out ABORT.
• if the flag alert is set and H2(ti) = comki: set the flag bad6 and simulation

fails with output (0,⊥).

12: Otherwise t := tn + ti, pk := (A, t).
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Algorithm 29 SimSign(tn, pk,m)

The protocol is parameterised by the public parameters par that were generated
by the Setup algorithm and relies on the random oracles H0, H3. It is assumed
that SimKeyGen(par) has been previously invoked (keypair has been successfully
generated).

1: With probability 1−

(
1−
|Skγ−β−1|
|Skγ−1|

)2

do the following:

1. c← C.
2. wn ← Rkq .
3. comn ← HomH(wn).
4. Send out hn ← H3(comn).
5. Upon receiving hi search for (comi, alert, bad7)← searchHash(HT3, hi).
6. If the flag bad7 is set, then simulation fails with output (0,⊥). If the flag alert

is set, then send out comn.
7. com = comn + comi.
8. Program random oracle H0 to respond queries (com,m) with c. Set

HT0[(com,m)] := c. If HT0[(com,m)] has been already set, set flag bad8
and simulation fails with output (0,⊥).

9. Send out comn. Upon receiving comi:
• if H3(comi) 6= hi: send out ABORT.
• if the flag alert is set and H3(comi) = hi: set the flag bad9 and simulation

fails with output (0,⊥).
10. Otherwise, send out RESTART and go to step 1.

2: Otherwise do the following:
1. c← C.
2. zn1 ← Skγ−β−1 and zn2 ← Skγ−β−1.
3. wn = Azn1 + zn2 − ctn.
4. comn ← HomH(wn).
5. Send out hn ← H3(comn).
6. Upon receiving hi search for (comi, alert, bad7)← searchHash(HT3, hi).
7. If the flag bad7 is set, then simulation fails with output (0,⊥). If the flag alert

is set, then continue.
8. com = comn + comi.
9. Program random oracle H0 to respond queries (com,m) with c. Set

HT0[(com,m)] := c. If HT0[(com,m)] has been already set, set flag bad8
and simulation fails with output (0,⊥).

10. Send out comn. Upon receiving comi:
• if H3(comi) 6= hi: send out ABORT.
• if the flag alert is set and H3(comi) = hi: set the flag bad9 and simulation

fails with output (0,⊥).
11. Otherwise, send out (zn1 , z

n
2 ). Upon receiving RESTART, go to step 1.

12. Upon receiving (zi1, z
i
2), reconstruct wi := Azi1 + zi2 − cti and check that

HomH(wi) = comi, if not: send out ABORT.
13. Otherwise, set z1 := zn1 + zi1 and z2 := zn2 + zi2.
14. Output composed signature σ := (z1, z2, c).
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8 Performance estimation

This section gives the performance estimations of the proposed scheme according to the

following metrics:

• number of communication rounds in key generation and signing protocols,

• size of the keys and signatures,

• number of rejection sampling rounds.

It should be noted that the choice of parameters such that output signature would result in

a sufficiently hard instance of Module-LWE problem and implementation of the signature

scheme are left for future work. Therefore, this section contains only estimations that

depend on the parameters listed in Table 3.

Number of rejection samplings

To estimate the number repetitions in the signing process it is needed to compute the

probability that the following holds for both parties: ||zn1 ||∞ < γ − β and ||zn2 ||∞ <

γ − β. This probability can be computed by examining each coefficient of zni , i ∈ {1, 2}
separately. Let σ be a coefficient of csni . If coefficient of polynomial from the vector

yni is in the range {−γ + β + 1− σ, ..., γ − β − 1− σ}, then corresponding coefficient

of zni will be in the range {−γ + β + 1, ..., γ − β − 1} that is exactly the requirement

for the valid signature share. Therefore, the size of correct coefficient range for yni is

2(γ − β) − 1 and the coefficients of yni have 2γ − 1 possibilities. Then the probability

that every coefficient of yni is in the correct range is:(
2(γ − β)− 1

2γ − 1

)n·k

As the client and server sample vectors yni independently in the beginning of the signing

protocol, the probability that the check succeeds for both signature components on the

client and server side is the following:

Pr[success] =

(
2(γ − β)− 1

2γ − 1

)n·k·4

Expected number of repetitions of the signing process can be computed asN =
1

Pr[success]
.

Signature and key sizes

The public key of the two-party scheme presented in this work consists of two compo-

81



nents matrix A ∈ Rk×k
q and vector t ∈ Rk

q . Therefore, the size of the public key in bytes

can be computed as

n · k · k · dlog(q)e+ n · k · dlog(q)e
8 bytes

=
n · k · dlog(q)e · (k + 1)

8 bytes
.

It can be seen that storing the whole matrix A is not size-optimal. Therefore, the possible

solution may include generating matrix A out of 256-bit seed using extendable output

function as was proposed in the Crystals-Dilithium signature scheme [8]. While using

this approach, only the seed that was used to generate the matrix needs to be stored. As

both parties need to generate their matrix share, two seeds may be stored to represent

matrix A. Each seed will be converted to the matrix form using an extendable output

function and then, two matrix shares can be added together. In this case, the size of the

public key will be the following:

2 · 256 + n · k · dlog(q)e
8 bytes

.

The secret key of party Pn consists of two vectors sn1 , sn2 ∈ Skη , matrix A and vector

ti ∈ Rk
q . It should be noted that vectors sn1 , sn2 may contain negative values as well, so

one bit should be reserved for each coefficient to indicate the sign. Therefore, the size of

the secret key in bytes can be computed as

2 · n · k · (dlog(η)e+ 1) + n · k · k · dlog(q)e+ n · k · dlog(q)e
8 bytes

=

n · k · (2 · (dlog(η)e+ 1) + (k + 1) · dlog(q)e)
8 bytes

.

In case of generating matrix from the seed the size will change to

2 · n · k · (dlog(η)e+ 1) + 2 · 256 + n · k · dlog(q)e
8 bytes

=

n · k · (2 · (dlog(η)e+ 1) + dlog(q)e) + 2 · 256

8 bytes
.

Finally, signature consists of three components z1, z2 ∈ Skγ2−β2−1 and c ∈ {0, 1}n with

exactly τ ± 1. All the components may contain negative values, so for each coefficient

of z1, z2, c one bit should be reserved to indicate the sign. To store c it is possible to

store only the positions of ±1 in c. Therefore, the size of the signature in bytes can be

computed as

2 · n · k · (dlog(γ2 − β2 − 1)e+ 1) + τ · (dlog(n)e+ 1)

8 bytes
.

In order to better understand key and signature sizes, let’s assume the choice of param-
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eters defined in Table 16 (this example is illustrative, the security of parameters was not

studied). Key and signature sizes corresponding to this choice of parameters are listed in

Table 17. Furthermore, the probability that the checks in rejection sampling succeed for

both signature components on the client and the server side is approximately 14, 74% for

parameters from Table 16, this would lead to 6.8 repetitions of the signing process. The

optimal choice of parameters for both security and efficiency is left for future work.

Table 16: Illustrative parameters

Parameter Value

n 256

q 8380417

(k, k) (5, 5)

γ 218

γ2 219

η 2

β 98

β2 196

(a, b, p) (64, 16, 257)

Table 17: Key and signature sizes in bytes

Public key pk 22080

Public key pk [matrix
from seed]

3744

Secret key share ski 22720

Secret key share ski
[matrix from seed]

4384

Signature σ 6456

Communication between client and server

From Figure 6, it can be seen that to generate a keypair four rounds of communication

between the client and server are needed. Table 18 shows sizes of messages that are

exchanged between the client and the server during the key generation process using

illustrative parameters from Table 16.

From Figure 7, it can be seen that the no rejection signature generation process requires

three rounds of communication between the client and server. If at least one of the

signature shares gets rejected, then the signing process should start again, which means

that the total number of communication rounds depends on the number of rejections.

Table 19 shows sizes of messages that are exchanged between the client and the server

during the signing process using illustrative parameters from Table 16. It is assumed that

in the first message client sends a message to be signed as a 256-bit hash.

Table 18: Message sizes in the key genera-
tion process

First message hki 256 bits

Second message Ai 18400 bytes

Second message as seed 256 bits

Third message comki 256 bits

Fourth message ti 3680 bytes

Table 19: Message sizes in the signing pro-
cess

Client’s first message (hc,m) 512 bits

Server’s first message hs 256 bits

Second message comi 528 bits

Third message (zi1, z
i
2) 6080 bytes
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9 Conclusions

This research has demonstrated that there is no straightforward way to convert a Crystals-

Dilithium signature scheme into a two-party version. Due to the use of the bit decom-

position algorithm, it is needed to find a suitable two-party computation protocol that is

post-quantum and offers security against the active adversary. Even if a suitable two-

party protocol is found, the amount of communication between client and server will

increase due to rejection samplings and messages that need to be exchanged according

to the two-party computation protocol.

A new lattice-based two-party signature was proposed in this work. The signature scheme

was analysed and proven to be DS-UF-CMA secure in the random oracle model under the

Module-LWE assumption. Additionally, the sizes of keys and signatures were computed

and the number of communication rounds estimated. The security proofs considered a

classical active adversary who may not follow the rules of the protocol to create a sig-

nature forgery. With some minor modifications, such as clone detection, the proposed

scheme may fit the Smart-ID framework. This would allow using Smart-ID even in the

quantum computing era.

Compared to the scheme proposed in [9] this work does not use sampling from the dis-

crete Gaussian distribution and does not use lattice-based homomorphic commitment

schemes. It was decided to use a homomorphic hash function in this work to possibly

achieve better performance.

Implementation of the proposed scheme and the exact choice of parameters for the im-

plementation are left for future work. Additionally, future work may contain optimisa-

tion of the size of keys and signature and the security proof against the quantum adver-

sary.
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