
P R E S S

Fault Simulation of Digital Systems

SERGEI DEVADZE

THESIS ON INFORMATICS AND SYSTEM ENGINEERING C46

TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology
Department of Computer Engineering

Dissertation was accepted for the defence of the degree of Doctor of Philosophy in
Computer and Systems Engineering on July 27, 2009.

Supervisors: Prof. Raimund Ubar, D.Sc.
 Prof. Peeter Ellervee, Ph.D.

Opponents: Prof. Heinrich Theodor Vierhaus,

Brandenburg University of Technology Cottbus, Germany

 Prof. José Manuel Martins Ferreira,
University of Porto, Portugal

Defence: August 24, 2009

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and
achievement, submitted for the doctoral degree at Tallinn University of Technology
has not been submitted for any academic degree.

/Sergei Devadze/

Copyright: Sergei Devadze, 2009
ISSN 1406-4731
ISBN 978-9985-59-928-0

SERGEI DEVADZE

INFORMAATIKA JA S STEEMITEHNIKA C46Ü

Digitaalsüsteemide rikete simuleerimine

To my family

Abstract

The current thesis addresses issues in the field of digital testing. The presented
work is focused on improving the efficiency of fault simulation methods that are
widely used in the flow of designing tests for digital devices. Although the primary
goal of fault simulation is assessment of quality of prepared test program, many
test-related problems are strongly dependent on fault analysis. The tasks of test
generation, fault diagnosis, optimization of built-in self test and test set compaction
incorporate fault simulation as a part of process. Therefore the efficiency of fault
analysis algorithm is an essential condition for solving the abovementioned tasks.

The main contribution of the research is the improvement of stuck-at fault
simulation. The thesis presents several approaches for conducting fault analysis of
a circuit represented by a special class of binary decision diagrams. The simulation
is performed on macro-level but with gate-level accuracy. In particular, novel
single-pattern and parallel-pattern simulation algorithms are introduced. Finally,
the application of fault simulation for the hierarchical analysis of dependability is
studied. The performed experiments confirm that the efficiency of the proposed
methods overcomes the state-of-the-art approaches.

The thesis is based on the selected scientific papers published in journal and the
proceedings of several international conferences.

vii

viii

Kokkuvõte

Antud väitekirja teematika on seotud digitaalsüsteemide projekteerimisega ja
testimisega. Doktoritöö peaeesmärgiks on rikete simuleerimise meetodite
parandamine.

Rikete simuleerimine ehk rikete analüüs on üks tähtsamaid ülesandeid
digitaaltestimise valdkonnas, mille eesmärgiks on kindlaks teha, milliseid rikkeid
on võimalik avastada etteantud testide abil. Kuna rikete analüüs kujutab endast
sisuliselt protsessi, mis on aluseks paljude teiste testimisprobleemide lahendamisel
(nt. testide kvaliteedi analüüsil, rikete diagnoosil, testide genereerimisel ja
tihendamisel, süsteemide testkõlblikkuse hindamisel, isetestivate arhitektuuride
projekteerimisel jne.), siis simulatsiooni kiirus on muutunud otsustavaks faktoriks
loetletud ülesannete lahendamise ehk testide projekteerimise efektiivsuse tõstmisel.

Käesoleva doktoritöö tulemusena on välja töötatud efektiivsed meetodid ja
algoritmid konstantrikete simuleerimiseks digitaalseadmetes. Erinevalt teistest
meetoditest töötavad väljaarendatud simulaatorid kõrgemal abstraktsel tasandil kui
loogikalülituste tase (tagades samal ajal loogikalülituste taseme täpsuse) ning
kasutavad originaalset struktuurselt sünteesitud otsustusdiagrammide (OD) teooriat
skeemide analüüsil.

Töö põhitulemused võib formuleerida järgmiselt. Esiteks on loodud OD teoorial
põhinev deduktiivne algoritm rikete levimise analüüsiks skeemis ning selle
algoritmi alusel ka vastav rikete simulaator. Teiseks on loodud uus ülikiire
simulatsioonimeetod, mis võimaldab analüüsida rikkeid terve grupi testvektorite
jaoks paralleelselt. Nimetatud meetodi uudsus seisneb erilise hargnemisanalüüsi
meetodi väljatöötamises ning optimeeritud arvutusmudeli koostamises Boole’i
diferentsiaalvõrrandite paralleelseks lahendamiseks. Eksperimendid näitasid, et
võrreldes olemasolevate professionaalsete rikkesimulaatoritega, tõstab uus meetod
tunduvalt rikete analüüsi kiirust. Rikete simulaatori rakendusena on väitekirjas
välja töötatud originaalne hierarhiline meetod veakindluse hindamiseks, mis on
üheks tsentraalseks ülesandeks usaldatavate süsteemide projekteerimisel.

Väitekirja aluseks on võetud neli teadusartiklit, mis on publitseeritud ühes
ajakirjas ja kolme rahvusvahelise tippkonverentsi kogumikus.

ix

x

Acknowledgements

I would like to thank everybody who helped me with advice and support during
my Ph.D. studies.

First of all, I would like to sincerely thank my supervisor Prof. Raimund Ubar
for guiding and consulting me through my studies and also encouraging me to
finish this thesis. I am thankful to my other advisors, especially to Dr. Aleksander
Sudnitsõn for helping me to make the first steps in my research activity and also
Dr. Peeter Ellervee for giving valuable comments and remarks about this thesis.

Special thanks to Dr. Margus Kruus, the head of department of Computer
Engineering for creating outstanding environment for productive work and study.

Furthermore, I want to thank Dr. Artur Jutman for his countless advises and
interesting discussions. Also I would express my appreciation to my other
colleagues, in particular Dr. Maksim Jenihhin, Dr. Jaan Raik and Uljana Reinsalu.
The same holds for the group of young researches from the room IT231,
Anton Tsertov, Igor Aleksejev, Sergei Kostin and Anton Tsepurov.

I am grateful to Dr. Dieter Wuttke from Technical University of Ilmenau for his
hospitality and organizing fruitful summer projects that helped to seamlessly
combine great vacation time with the fascinating work.

Moreover, I would like to acknowledge the organizations that have supported
my Ph.D. studies: Tallinn University of Technology, Enterprise Estonia
(project ELIKO), EU Regional Development Fund (project CEBE), National
Graduate School in Information and Communication Technologies (IKTDK) and
Estonian IT Foundation (EITSA).

Finally, I’d like to express my gratitude to my family and especially to my
parents who were motivating and supporting me in all my undertakings. I am also
indebted to my beloved wife Alla for her care and support throughout the time of
my work and studies.

xi

xii

List of Publications

Fault simulation and fault analysis

− S. Devadze, R. Ubar, J. Raik, A. Jutman, “Parallel Exact Critical Path
Tracing Fault Simulation with Reduced Memory Requirements”, Proc. of
4th IEEE International Conference on Design & Technology of Integrated
Systems in Nanoscale Era, Cairo, Egypt, 2009.

− R. Ubar, S. Devadze, J. Raik, A. Jutman, “Parallel Fault Backtracing for
Calculation of Fault Coverage”, Proc. of 13th Asia and South Pacific
Design Automation Conference (ASPDAC’08), Seoul, Korea, 2008,
pp. 667-672.

− R. Ubar, S. Devadze, M. Jenihhin, J. Raik, G. Jervan, P. Ellervee,
“Hierarchical Calculation of Malicious Faults for Evaluating the Fault
Tolerance”, Proc. of 4th IEEE International Symposium on Electronic
Design, Test & Applications (DELTA’08), Hong Kong, China, 2008,
pp. 222-227.

− R. Ubar, S. Devadze, J. Raik, A. Jutman, “Parallel Fault Backtracing for
Calculation of Fault Coverage”, Proc. of 43rd International Conference on
Microelectronics, Devices and Materials and the Workshop on Electronic
Testing (MIDEM'07), Bled, Slovenia, September 12-14, 2007, pp. 165-170.

− R. Ubar, S. Devadze, J. Raik, A. Jutman, “Ultra Fast Parallel Fault
Analysis on Structurally Synthesized BDDs”, Proc. of 12th IEEE European
Test Symposium (ETS’2007), Freiburg, Germany, May 20-24, 2007,
pp. 131-136.

− S. Devadze, R. Ubar, “Parallel Fault Analysis on Structurally Synthesized
BDDs”, Proc. of 2nd IKTDK Conference, Viinistu, Estonia, 2007,
pp. 47-50.

− S. Devadze, J. Raik, A. Jutman, R. Ubar, “Fault Simulation with Parallel
Critical Path Tracing for Combinational Circuits Using Structurally
Synthesized BDDs”, Proc. of 7th IEEE Latin-American Test Workshop
(LATW’2006), Buenos Aires, Argentina, 2006, pp.97-102.

xiii

− S. Devadze, “Efficient Fault Simulation Method on Structurally
Synthesized BDDs”, Proc. of 1st IKTDK Conference, Estonia, 2006,
pp. 123-126.

− J. Raik, R.Ubar, S.Devadze and A.Jutman, “Efficient Single-Pattern Fault
Simulation on Structurally Synthesized BDDs”, Proc. of 5th European
Dependable Computing Conference (EDCC’2005), Budapest, Hungary,
2005, pp.332-344.

Board and system level test optimization

− S. Devadze, A.Jutman, I. Aleksejev, R. Ubar, “Fast Extended Test Access
via JTAG and FPGAs”, accepted for publishing in Proc. of 40th
International Test Conference (ITC’2009).

− S. Devadze, A. Jutman, I. Aleksejev, R. Ubar, “Turning JTAG Inside Out
for Fast Extended Test Access”, Proc. of 10th Latin-American Test
Workshop (LATW’2009), Rio de Janeiro, Brazil, 2009.

− S. Devadze, A. Jutman, A. Tsertov, M. Istenberg, R. Ubar,
“Microprocessor-based System Test using Debug Interface”, Proc. of 26th
IEEE Norchip Conference (NORCHIP’2008), Estonia, 2008.

− A. Jutman, V. Rosin, S. Devadze, R. Ubar, “Trainer 1149.1:
A Boundary-Scan Simulator”, 5th IEEE International Board Test
Workshop (BTW'2006), Fort Collins, Colorado, Sept 13-15, 2006.

Finite State Machine decomposition

− S. Devadze, A. Sudnitson, “Software Environment for Synthesis of
Testable FSM through Decomposition”, Proc. of 26th International
Conference on Microelectronics (MIEL’08), Nis, Serbia, 11-14 May 2008,
vol. 2, pp. 433-436.

− S. Devadze, A. Sudnitson, “Synthesis of Testable FSM through
Decomposition”, Proc. of 3rd IKTDK Conference, Voore, Estonia, 2008,
pp. 101-104.

− A. Sudnitson, S. Devadze, “Web-Based Computer Aided Design Support
of Finite State Machine Additive Decomposition for Low Power”, Proc. of
5th IEEE East-West Design & Test International Symposium (EWDTS’07),
Yerevan, Armenia, 2007, pp. 494-498.

− A. Sudnitson, S. Devadze, “Computer Aided Design Support of FSM
Multiplicative Decomposition” Proc. of IEEE East-West Design&Test
International Workshop (EWDTW'06), Sochi, Russia. 2006, pp. 241-246.

− S. Devadze, A. Sudnitson, “FSM Decomposition Software for Education
and Research”, Proc. of IEEE EUROCON 2005 International Conference
on 'Computer as a Tool', Belgrade, Serbia and Montenegro, 2005,
pp. 839-842.

− S. Devadze, “Web-Based System for Finite State Machines
Decomposition”, M.Sc. thesis, Tallinn University of Technology, 2004.

xiv

− S. Devadze, E. Fomina, M. Kruus, A. Sudnitson, “Web-Based System for
Sequential Machines Decomposition”, Proc. of IEEE EUROCON 2003
International Conference on ‘Computer as a Tool’, Slovenia, 2003, vol. 1,
pp. 57-61.

HW-SW co-design

− U. Reinsalu, S. Devadze, A. Jutman, A. Chertov, P. Ellervee,
“Hardware/Software co-design in practice: MEMOCODE’08 contents
experience”, Proc. of 3rd IKTDK Conference, Voore, Estonia, 2008,
pp. 55-58.

Laboratory environment for education and research of design and test

− R. Ubar, A. Jutman, S. Devadze, H.-D. Wuttke, “Bringing Research Issues
into Lab Scenarios on the Example of SOC Testing”, ICEE Proceedings,
University of Coimbra, Portugal, 2007.

− R. Ubar, A. Jutman, M. Kruus, E. Orasson, S. Devadze, H.-D. Wuttke,
“Learning Digital Test and Diagnostics via Internet”, International Journal
of Online Engineering, 3(1), 2007, pp. 1–9.

− W. Pleskacz, A. Jutman, R, Ubar, S. Devadze, “DefSim – the
defective IC”, In University Booth section of Design Automation and Test
in Europe (DATE 2007), France, 2007.

− R. Ubar, A. Jutman, M. Kruus, E. Orasson, S. Devadze, H.-D. Wuttke,
“Learning Digital Test and Diagnostics via Internet”, International Journal
of Computing and Information Sciences, 7(4), 2006.

− S.Devadze, “Web-Based Training System for Teaching Digital Design and
Test”, Proc. of 7th International Student Conference on Electrical
Engineering (POSTER2003), Prague, Czech Republic, May, 2003.

− S.Devadze, R.Gorjachev, A.Jutman, E.Orasson, V.Rosin, R.Ubar, “E-
Learning Tools for Digital Test”, Proc. of 3rd International Conference
'Distance learning – educational sphere of XXI century', Minsk, Republic
of Belarus, 2003, pp. 336-342.

− S. Devadze, A. Jutman, A. Sudnitson, R. Ubar, and H.-D. Wuttke,
“Teaching Digital RT-Level Self-Test Using a Java Applet”, Proc. of 20th
IEEE NORCHIP Conference 2002, Denmark, 2002, pp. 322-328.

− S. Devadze, A. Jutman, A. Sudnitson, R. Ubar, and H.-D. Wuttke, “Java
Technology Based Training System for Teaching Digital Design and Test”,
Proc. of 8th Biennial International Baltic Electronics Conference
(BEC’2002), Tallinn, Estonia, 2002, pp. 283-286.

− S. Devadze, A. Jutman, M. Kruus, A. Sudnitson, and R. Ubar, “Web Based
Tools for Synthesis and Testing of Digital Devices”, Proc. of International
Conference on Computer Systems and Technologies (CompSys’2002),
Sofia, Bulgaria, 2002, vol.1, pp. 91-96.

xv

− S. Devadze, A. Jutman, A. Sudnitson, and R. Ubar, “Web-Based Training
System for Teaching Basics of RT-level Digital Design, Test, and Design
for Test”, Proc. of 9th International Conference Mixed Design of Integrated
Circuits and Systems (MIXDES’2002), Wroclav, Poland, 2002, pp.699-
704.

− S. Devadze, M. Kruus, and A. Sudnitson, “Web-Based Software
Implementation of Finite State Machine Decomposition for Design and
Education”, Proc. of International Conference on Computer Systems and
Technologies (CompSys’2001), Bulgaria, 2001, vol.4, pp. 1-7.

xvi

List of Abbreviations

ASIC Application Specific Integrated Circuit

ATPG Automatic Test Pattern Generation

BDD Binary Decision Diagram

BIST Built-In Self Test

CAD Computer-Aided Design

CPT Critical Path Tracing

CPU Central Processing Unit

CUT Circuit Under Test

DD Decision Diagram

DFT Design-For-Testability

DUT Device Under Test

FFR Fanout-Free Region

FPGA Field Programmable Gate Array

FSM Finite-State Machine

HDL Hardware-Description Language

HLDD High-Level Decision Diagram

IC Integrated Circuit

I/O Input Output

PI Primary Input

PO Primary Output

PPSFP Parallel-Pattern Single Fault Propagation

PRPG Pseudo-Random Pattern Generator

xvii

RTL Register-Transfer Level

SA Stuck-At

SAF Stuck-At Fault

SSA Single Stuck-at model

SSBDD Structurally Synthesized Binary Decision Diagram

SoC System-on-Chip

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VLSI Very-Large Scale Integration

xviii

Contents

CHAPTER 1 INTRODUCTION.. 1

1.1 Motivation ...1
1.2 Problem formulation..2
1.3 Thesis contribution ..3
1.4 Thesis structure..4

CHAPTER 2 BACKGROUND .. 5
2.1 Introduction to digital test..5
2.2 Fault modeling ..6
2.3 Fault simulation ...10
2.4 Applicability of fault simulation..22
2.5 Chapter summary...26

CHAPTER 3 OVERVIEW OF RESEARCH RESULTS 27
3.1 Representation of circuit on macro-level...28
3.2 Single-pattern fault simulation ..31
3.3 Parallel-pattern fault simulation ..37
3.4 Hierarchical calculation of fault injection sites50
3.5 Overall experimental results..51
3.6 Chapter summary...52

CHAPTER 4 CONCLUSIONS .. 53
4.1 Contributions ...53
4.2 Future work ...55

REFERENCES... 56
RESEARCH PAPERS... 63

Paper I...65
Paper II ...81
Paper III ..89
Paper IV..97

xix

xx

Chapter 1

INTRODUCTION

This introductory chapter gives an overview of the area addressed by current
thesis. At first, the motivation for the work is given followed by the formulation of
the problem and the outline of main contributions. The last part of the chapter
describes the organization of the thesis.

1.1 Motivation

It is not an overstatement to designate the microelectronics as the one of the
most rapidly developing industries in the world. The only half of the century has
been passed since the first integrated circuit had been invented in sixties and
already billions of ICs stuffed with millions of transistors are produced nowadays.
The trend in the digital device development that has been held in accordance with
the famous Moore’ law [1], [2] for past forty years gives the clear signals: the
tendency is not going to stop since the microelectronic market constantly demands
new devices with richer functionality, smaller dimensions and better performance.

The success of digital electronics has made a deep impact on the society. The
world of digital devices become tightly tied with the everyday life and made people
be much more dependent on the correct functioning of surrounding electronics. The
last statement brings the problems of reliability of digital devices in a front place,
causing dependability to be even more vital than the added value of novel
functionality: having a new feature in a mobile phone is certainly very desirable
but only if this innovation will not lead to the failures in the basic functionality.

The one of the solutions for the reliability issues is to perform comprehensive
testing of the microelectronic product before the shipping it to end customer.

1

However the development of high quality tests had never been a simple task in
digital world, is now turned into a real challenge because of the drastically grown
complexity of integrated circuits. According to International Technology Roadmap
for Semiconductors [3] increasing integration of microelectronic devices remains
the key driver for enhancing the technology of manufacturing test.

The well-known example illustrates that the straightforward test of functionality
of a 32-bit adder by exhaustive verification of the correct operation for any
combination of the operands will require at least 264 test steps to be executed.
Indeed, even using a high-end test equipment, this operation will turn into several
hundreds years of testing. However the development of advanced methods had
allowed much more sophisticated devices such as microprocessors, ASICs,
Systems-on-Chip, etc to be thoroughly tested. Nevertheless the permanent
advances in the field of microelectronics demands continuous development of the
test technology in order to cope with the increasing complexity of digital devices.

The current thesis is focused on improving of fault simulation technique that is
the one of the major issues in the area of digital test. Many test-oriented tasks
solved during the digital device design flow are heavily relying on fault analysis.
For instance test generation, test quality assessment, fault diagnosis, test set
compaction, optimization of built-in self test controller and others problems
typically incorporate fault simulation as an intermediate step. Certainly this gives a
very clear motivation for the attempts to raise the efficiency of fault simulator: the
more accelerated fault analysis is – the more comprehensively the aforementioned
tasks could be performed.

Although the successfulness of the designed device is influenced by very many
different factors, but the availability of the efficient fault analysis tool could make a
significant impact on reliability of the final product.

1.2 Problem formulation

Testing of microelectronic device is a special procedure that aims to check
whether the device is working correctly or not. Typically test is conducted after
device fabrication in order to ensure that no defects have been appeared in the
device during this process.

In general, testing procedure consists of set of test stimuli (also referred as test
patterns) that are being applied to primary inputs of the device under test (DUT).
At the same time the output responses are recorded and compared with the
expected ones. If the output response mismatches with the reference, then it is said
that a failure has occurred. The reason for the failure could be the presence of
defect inside the manufactured device.

However the real defects typically are not considered directly during the
preparation of test but rather their behavior is simulated by fault models. The

2

subtask of fault simulation (also referred as fault analysis) has a goal of
determining the effectiveness of test patterns in terms of the detectability of faults.
For each of test patterns in the test set fault simulator is capable to determine which
faults could be detected by applying the given test stimuli.

Obviously the fault simulation can require a lot of CPU and memory resources.
In contrast with logic (fault-free) simulation that is done in a one pass and has
linear time complexity to the number of gates in the circuit under simulation, the
fault analysis requires many copies of the same circuit (that imitate presence of
different faults) to be simulated. Thus the straightforward approach to fault
simulation is unfeasible in case of large circuits (or large test set).

In this thesis the problem of stuck-at fault simulation of combinational (or scan-
path) circuits is addressed. In particular, the presented work attempts to improve
the efficiency of the fault analysis methods in terms of time and memory required
for the fault simulation of circuit.

1.3 Thesis contribution

The main contributions of the current thesis are outlined below.

− The thesis introduces several techniques to perform fault simulation on
Structurally Synthesized Binary Decision Diagrams (SSBDD). The usage
of SSBDDs gives an opportunity to represent a gate-level design on a
slightly higher abstraction level that immediately results in a higher speed
of circuit evaluation.

− An efficient single-pattern fault simulation method is proposed [I]. The
algorithm is essentially based on the introduced technique of deductive
fault list propagation through SSBDD graphs. A reconvergency analysis
carried out prior to the simulation determines the most efficient way for
simulating each part of the circuit. Besides this, fault-free simulation on
SSBDD is used for reducing the list of potential faults.

− The thesis introduces an efficient parallel-pattern fault analysis method.
Two novelties are proposed here: the exact parallel critical path tracing
algorithm on SSBDD model [II],[V] and the extension of the results of
exact critical path tracing beyond the fanout-free regions [II], [III]. The
latter uses a special calculation model to determine the detectability of
fanouts.

− The approach of construction of optimized calculation model was
proposed [III], [VII]. The usage of optimized calculation model lessens the
number of unnecessarily repeated computations thus results in a higher
analysis speed of parallel-pattern fault simulator.

3

− The problem of the memory requirements for fault simulation was studied.
A novel approach for reducing amount of memory for simulation is
presented together with the results of experiments [III].

− An approach for hierarchical dependability analysis is proposed [IV]. The
method uses high-level Decision Diagrams for representation of circuit on
register-transfer level and SSBDDs for lower-level description in order to
determine the list of malicious faults.

1.4 Thesis structure

The presented thesis is organized in a form of overview of the research results
that have been published in four scientific papers. The thesis has the following
structure.

Chapter 2 forms a background on the discussed topic and makes a review of the
state-of-the-art in the corresponded area. Chapter 3 presents an overview of the
research results based on the selected publications presented in the last part of the
thesis. The conclusions and the perspectives for future work are drawn in
Chapter 4. In the last part, the selected papers that lay in the basis of current thesis
are presented.

4

Chapter 2

BACKGROUND

This chapter presents background information on the topics related to current
research. The chapter begins with the brief introduction to the digital test concept
followed by the review of the fault modeling technique. The notion of stuck-at
faults is described since the fault simulation methods proposed in the thesis are
intended to work with stuck-at fault model. Next, the classical fault simulation
methods are considered and the review of state-of-the-art in this area is given. At
the end of the chapter the various applications of fault simulators in the flow of
digital design are analyzed.

2.1 Introduction to digital test

The ultimate goal of digital test is to ensure that the device under test (DUT) is
functioning according to its specification. In contrast to the verification that checks
the correctness of the model of a circuit, testing is performed after the device is
physically manufactured. Test program is typically developed during the design
cycle with the assumption that the design itself was already verified and is correct.

During the test procedure a special test stimuli are applied to the primary inputs
of DUT and the responses of the device outputs are analyzed (Figure 2.1). Because
the fabrication process is not perfect, unintendent defects could incidentally appear
in the DUT. As the result of defectiveness, the actually recorded responses could
differ from the expected ones. In the latter case, it is said that the defect has
manifested itself by a failure.

5

Generally speaking, testing helps to discriminate good devices from the faulty
ones. In addition, a diagnosis of the failing device can be performed in order to
identify the location and type of the defect.

2.2 Fault modeling

By a term defect an unacceptable physical deviation of digital circuit from the
normal case is assumed [5], [6]. As it was mentioned before, the presence of defect
in a circuit could manifest itself by a failure (i.e. erroneous behavior of device).
However the wide diversity of physical defects that could lead to malfunction of
digital devices makes it almost impossible to exactly classify and evaluate them.
The list of some sorts of defects in digital circuits could include [6],[4]:

− defects due to imperfection of manufacturing process
(e.g. photolithographic errors, missing contact windows, parasitic
transistors, incorrect spacing, misalignment, etc)

− material defects (e.g. insufficient purity of surface, contamination)
− age defects (e.g. electromigration)
− package-related defects

In view of the fact that working with large variety of physical defects is
impractical, the fault models were introduced to offer simplified mathematical
description of erroneous behavior. Hence, the term fault refers to the representation
of a defect using a kind of abstraction.

Although most of fault models neither provide direct correspondence between
faults and defects nor exact description of erroneous behavior of circuit, they are
very useful for generating and evaluating quality of tests. A good fault model needs
to reflect the presence of defects inside circuit precisely enough and be efficient for
usage with computational algorithms.

Depending on their nature the fault models have been categorized by several
levels of abstraction [4]. Defect-oriented fault models [10] are targeted to describe

Device
under test

(DUT)

O
U
T
P
U
T
S

I
N
P
U
T
S

TESTER

test stimuli output
responses (test patterns)

Figure 2.1: The concept of testing

6

the behavior of the defects of specific types, such as open and shorts between
transistor lines. As result, defect-oriented fault models usually provide better
conformity with the reality but demand sophisticated algorithms for processing. On
the other hand, logical-level fault models that deal with the description of circuit at
the level of logical signals are easier in processing. They are also independent on
physical implementation of design. These facts have been made this class of
models be commonly used in VLSI testing.

Unfortunately there is no single model that is sufficient enough for modeling all
the possible sorts of physical defects. In spite of this fact, many fault models were
proposed so far [5]: stuck-at model, bridging fault models (dominant,
wired-AND/-OR, dominant-AND/-OR), delay fault models (gate-delay, path-
delay), transistor-level fault models (stuck-opens, stuck-shorts [6]), models dealing
with crosstalk faults [7], parametric fault models, etc. Indeed, there exist attempts
to create generalized concepts (e.g. faults tuples [8]) that aim to incorporate several
types of faults in a single model.

In general every fault model falls into one of two classes: the class of multiple-
fault models and the class of single-fault models. When using single-fault model it
is assumed that the only sole fault could exist in a circuit at a time. On the contrary,
multiple fault models permit combinations of different faults to occur
simultaneously. Obviously, the multiple-fault assumption increases the number of
possible combinations of faults exponentially in comparison with single-fault
model. For instance, if a fault model permits n different types of faults occur at m
different fault sites, then for single-fault assumption the total number of faults in
the model is (n x m). In case of multiple-fault model is considered, there exist
((n + 1)m – 1) possible combinations of faults. Because the latter amount of faults
is too large even for small values of n and m, the single-fault assumption is usually
considered in practice. Fortunately, the experiments have shown that 100%
coverage of single faults detects the most of multiple faults as well [4], [9].

2.2.1 Stuck-at faults

The stuck-at fault model is the one most commonly used in digital testing.
According to current prognosis made by [3] the stuck-at faults will remain to be the
one of the fault models most utilized for the testing of microelectronics for next
years.

 The presence of stuck-at fault in a digital circuit permanently fixes the value of
corresponded signal line to logic one (stuck-at 1, SA1) or logic zero (stuck-at 0,
SA0). Although stuck-at faults can be straightforwardly interpreted as a short
between signal net and ground (or power) line, many other defects manifest
themselves as SA0 or SA1 [10].

In general, there could be 3n – 1 various combinations of stuck-at faults in a
circuit with n lines (each net could either be affected by presence of SA0 or SA1 or

7

do not contain any fault; the sole combination of totally fault-free circuit is
excluded). However the single stuck-at model (SSA) that is commonly used in
practice reduces this number to 2n faults. As the current work is focused on SSA-
based fault simulation issues, the only single stuck-at model is considered from this
point.

Even in case of single-fault assumption not all the faults need to be considered.
For instance, two different faults could affect circuit in the exactly same way, i.e.
be indiscriminate. Certainly the processing of both such faults is redundant, thus
one of them could be dropped out of the list of faults to consider. The technique of
reduction of the complete list of faults without losing the quality of defect coverage
is called fault collapsing

The algorithms of fault simulation are usually very sensitive to the total number
of faults need to be handled: the less faults has been included into source fault list,
the less time is required for their evaluation. Hence the possible reduction of fault
list is very important, because it offers a kind of “pre-optimization” prior to
execution of an algorithm itself. Some of well-known techniques of SSA collapsing
are discussed below.

2.2.2 Fault equivalence for SSA

The reduction of fault list is possible by applying equivalent fault collapsing for
SSA [5],[4],[11]. Assume we have single n-input AND gate to test. The presence
of SA0 fault on any of gate I/O fixes the output of gate to logic zero (see
Figure 2.2). This leads us to the conclusion that all SA0 faults for AND gate are
equivalent (i.e. indistinguishable), and considering only one of them is enough.
Strictly speaking, two faults are equivalent if their presence changes the output
function of circuit in the exactly same way.

As for SA1 there are no equivalent faults for inputs and outputs of AND gate.
As result, due to equivalent fault collapsing, the number of non-equivalent faults
for n-input AND gate decreases to (n + 2) out of (2n + 2).

It could be shown [5],[11] that similar relations exist between faults for other
types of gates, e.g. OR, NAND, etc. For inverter and buffer gates, each fault on
input has the equivalent fault on gate output, i.e. the total number of collapsed fault
2 out of 4 uncollapsed.

AND
SA0 SA1

SA0 SA1

SA0 SA1 SA0 SA1

SA1 SA0

Figure 2.2: Stuck-at fault equivalence

8

2.2.3 Fault dominance for SSA

Let us consider two stuck-at faults f1 and f2 for 2-input AND gate in Figure 2.3.
In order to detect f1 it is needed to apply the following stimulus for the gate inputs:
A = 0 and B = 1 (this is the sole test vector for detection of f1). However, it is easily
seen, that the same test vector detects the fault f2 as well. As result the following
conclusion is drawn: the detection of fault f1 also detects the fault f2 (it is said that
fault f2 dominates fault f1). However this statement is not reflexive because the
detection of f2 will not necessarily indicate that fault f1 is also detected (e.g. in case
of test pattern A=0 and B=0).

Similar to equivalent fault collapsing, the dominant fault collapsing helps to
reduce fault list further. For example, by using both fault collapsing techniques for
n-input AND gate, only (n + 1) faults need to be considered.

2.2.4 Single stuck-at fault collapsing for arbitrary circuit

It has been proven that in case of fanout-free circuit the only fault sites on
primary inputs need to be considered to test the circuit for all single stuck-at
faults [11]. The example of such reduction is illustrated in Figure 2.4. Here the
faults that can be removed are marked by a grayed background. The equivalence
fault collapsing is illustrated by dashed lines, while the elimination of faults due to
fault dominance is marked by dotted lines.

The checkpoint theorem [11] states that for an arbitrary circuit, the only faults at
primary inputs and fanout branches need to be detected in order to achieve 100%

AND
f2=SA1 f1=SA1

0 A

1
B

Figure 2.3: Example of fault dominance

AND

SA0 SA1

SA0 SA1
SA0 SA1OR

SA0 SA1

SA0 SA1

SA0 SA1

Figure 2.4: Fault collapsing in fanout-free circuit

9

fault coverage of the circuit. In Figure 2.5, a sample circuit with two fanout points
is illustrated and the fault sites mandatory for consideration are marked.

The proof of this theorem could be illustrated in the following way. If a circuit
has fanouts, the fanout points split the circuit into several fanout-free regions
(FFR). According to the previous statement, for each of the FFRs we need to test
stuck-at faults at the inputs of the region. As the input of a FFR is either fanout
branch (e.g. FFR 2 in Figure 2.5) or primary input (e.g. FFR 1) it could be stated
that considering stuck-at faults in those fault sites is enough for complete single
stuck-at testing of arbitrary circuit. The proof of both theorems is given in [11].

2.2.5 Contributions of current thesis

Instead of performing explicit stuck-at fault collapsing on gate-level netlist, the
fault simulation algorithms proposed in the thesis take advantage of usage of
SSBDD graphs for circuit representation (see Section 3.1). Besides other features,
SSBDD model provides automatic fault collapsing thus eliminates the procedure of
checking whether a fault belongs to the collapsed list or not.

2.3 Fault simulation

In contrast with logic (fault-free, true-valued) simulation, the task of fault
simulator is to evaluate the behavior of circuit in case of the presence of faults
inside. In particular, fault simulator has to determine whether the output response
of a circuit is changing due to the influence of a fault or not. A fault which effect
propagates to primary outputs under current input stimulus is referred as detected
by the current test pattern.

Fault simulator typically works with a specific fault model. The input data of
fault simulator is a set of test patterns together with the model of a circuit. In
general case, the result of the execution of fault simulator is a fault table that shows
what of the modeled faults are detectable by each of the given test patterns. In

FFR 1

FFR 2
AND

OR OR
AND

Figure 2.5: Example of fault collapsing in the circuit with reconvergent fanout

10

addition, fault coverage (i.e. number of detected faults with respect to the total
number of faults) is calculated.

The sections below present the brief description of the traditional fault
simulation approaches and the review of the state-of-the-art.

2.3.1 Serial fault simulation

Serial fault simulation is the most simple and straightforward way to obtain
fault table for a set of patterns. For every test pattern serial fault simulator
evaluates fault-free version of circuit at first. Next, the circuit is modified to imitate
the presence of a fault (such modification is called fault injection). The simulation
process is conducted for the fault injected version of the circuit and the outputs
responses of both faulty and fault-free copies are compared. The result of the
comparison determines whether the fault is detectable by the given test pattern or
not. After that, the injected fault is removed and the next fault is inserted. The
whole procedure is repeated until all faults in the fault list have been simulated for
the given test pattern.

Obviously, serial fault simulation algorithm is very simple in implementation:
the only capability to inject faults need to be added to any logic simulator for
converting it to fault simulator. However, for m faults in circuit the pure serial
implementation of fault simulation is at least (m + 1) times slower than just a true-
valued simulation.

However there exist general optimizations that can be applied to overcome the
inherited slowness of serial fault simulation. For instance, the fault equivalence and
fault collapsing techniques that were discussed in the Sections 2.2.2 and 2.2.4
decrease the number of total faults thus results in the immediate speed gain.

Another optimization called fault dropping could be used for the situation when
only overall fault coverage of the given test set is requested. For the simulation
with fault dropping, the fault is excluded from the list of faults immediately after
its detection. Because most of the faults are likely discovered by the first test
patterns, the list of non-detected faults will shrunk very quickly and the simulation
continues on small set of active faults. This property allows drastically speed-up
fault simulation, however the capability to obtain fault table is lost in this case.

It is also possible to slightly decrease the algorithmic complexity of serial fault
simulator by putting gates of a circuit in levelized order. In the ordered netlist, all
the elements driving values to the inputs of a specific gate are placed prior to this
gate. Consequently, the injection of fault can only influence the gates located after
the fault insertion point while the I/O values of preceding gates remain unaffected.
For this reason, fault simulator has to evaluate only part of the faulty copy of the
circuit instead of processing the whole gate list.

11

Usage of compiled-code simulation instead of evaluation of gate-level model is
another well-known technique for increasing the simulation speed. In the latter
case, the simulator produces a special program (or machine code directly) that is
executed on host computer. The purpose of this program is to use native set of CPU
instructions for emulation of the behavior of the circuit. Although direct execution
is faster than evaluation of circuit model, this approach lacks the flexibility. The
compiled program requires complete execution even if the states of the most of
nets did not changed, thus making this approach inefficient for the circuits with a
small part of signals changing at a time. In addition, this method has portability
issues (the simulator needs to work in combination with external compiler or be
able to synthesize machine code for different platforms).

In spite of the speed inefficiency of serial fault simulators their simplicity
allows to easily adapt them for usage with any kind of fault model. This is the main
benefit of serial fault simulation in comparison with more complicated methods
(the vast majority of fault simulators are not very flexible in handling different
types of faults). However this approach lacks the efficiency on carrying out
simulation on stuck-at fault model.

2.3.2 Parallel fault simulation

The fundamental idea of parallel fault simulation is to fully utilize the width of
processor data word in order to reduce fault simulation time. For example, if host
computer has 32-bit architecture then a logic operation on 32 binary variables can
be performed simultaneously by execution of just one CPU instruction (e.g. AND,
XOR, etc). The two types of parallel fault simulation are distinguished: parallel
fault simulation (simulates many faults in parallel) and parallel pattern simulation
(processes many patterns in parallel).

The only small overhead of parallel simulation is introduced by the demand in
conversion (packing) of several integer values into bits of a single data word
(packet). However the additional CPU resources needed for packing and unpacking
data are rather insignificant and can be neglected because of overall speed gain.

All the optimization techniques that were discussed in the previous section are
also applicable for parallel fault simulator. However the effectiveness of fault
dropping is less in case of analysis of many faults in parallel.

2.3.2.1 Parallel fault simulation
An approach that utilizes the width of processor word for processing of multiple

faults was firstly proposed in [13]. Assuming that each signal line can have either 0
or 1 value, w signals can be processed simultaneously on a w-bit CPU. The
injection of fault to specific circuit line is made by altering of certain bit of w-bit
data word associated with the signal. As result, w different copies of the same
circuit can be processed simultaneously.

12

The parallel fault simulation is illustrated in Figure 2.6 is performed for one test
pattern (ABC=101) and three faults by using 4-bit packets: the first bit is used for
fault-free simulation and the rest bits reflect the simulation results for injected
faults f1, f2 and f3 respectively. The faults f1 and f3 are detected because the value of
corresponded bit in the packet associated with the primary output differs from
fault-free value.

Comparing to the serial fault simulator this approach will increase the fault
simulation speed in approximately (w – 1) times.

As was mentioned before, the fault dropping could be significantly less
effective when using parallel fault simulation. While serial fault simulator is
capable to exclude fault just at time of its detection, parallel fault simulator does
not terminate the simulation of a packet until all the faults that belong to this packet
become detected. For example, if a packet contains one hard-to-test fault, the
whole packet is kept in simulation run even if the remaining faults in the packet
have been already detected.

2.3.2.2 Parallel-pattern fault simulation
On the contrary to parallel fault simulation parallel-pattern fault simulation

technique takes advantage of bitwise parallelism for evaluating many test patterns
simultaneously. The parallel-pattern simulation (also called Parallel Pattern Single
Fault Propagation or PPSFP) was introduced by Waicukauski et al. in 1985 [14].

In PPSFP a sequence of test patterns is packed into w-sized data word where
each bit corresponds to a separate pattern. The packet is simulated on fault-free

OR OR
AND

01 1 1 f1 , f3 detected 1 0 1 1 10 0 0

0 0 0 0

1 0 1 1

1 1 0 1

0 0 1 0

1 0 0 01 0 1 0

1 0 1 0

ff f1 f2 f3

Fault-free
value

f2=SA0

f1=SA0

f3=SA0

A
B

ANDC

Test pattern (ABC): 101

Fault-affected
values

Figure 2.6: Parallel fault simulation example

13

circuit to obtain the values of primary outputs for the first w test patterns. Then for
each fault in the fault list the following actions are repeated:

1. fault is injected into circuit;
2. parallel-pattern simulation is performed on faulty circuit;
3. output responses are compared with the results of true-valued

simulation;
4. the fault is removed and the next fault is taken for consideration;

The whole procedure is executed until all test patterns become simulated.

The example depicted in Figure 2.7 conducts PPSFP simulation for 4 test
patterns and a single fault. In the first run patterns are simulated in parallel for
fault-free circuit, while the second run simulates the same patterns after injection of
fault f1.

Thanks to its parallelism, PPSFP method is almost w times more effective than
serial fault simulation. Moreover, unlike parallel fault simulator, PPSFP does not
have the effect of degradation of speed gain offered by fault dropping. The
drawback of PPSFP approach is the limitation in use only with combinational
circuits. For sequential design the state of the circuit should be computed before
applying the next test pattern. However this condition is not held for test patterns
that are simultaneously processed.

2.3.3 Concurrent fault simulation

Concurrent fault simulator [15] is essentially based on the idea of event-driven
logic simulation. The simulator exploits the hypothesis that typical fault effect

f1 detected

p1
1 p1

2 p1
3 p1

4

fault-free

packet

Test patterns:
0 1 0
t1 t2 t3

0
t3

A
0 0 1 0B
1 0 1 0C

p0
1 p0

2 p0
3 p0

4

fault f1

0 0 1 0
0 0 1 0

1 1 1 1
0 1 1 0

1 0 1 0
1 0 1 0

0 1 0 1
0 1 0 1

1 0 1 0
0 0 1 0

0 1 1 0
1 1 1 1

OR OR
AND

A
B

C AND

f1=SA1

1 1 1 1
0 1 0 0 0 1 0 1

0 1 0 0

Figure 2.7: Parallel-pattern single fault propagation

14

f1 detected

results in differences for a small part of circuit. Consequently the only affected
ion. region need to be analyzed for fault detect

In concurrent simulation each gate in a circuit has a set of associated bad gates
(i.e. virtual copy of a gate in case of a presence of fault f). Besides the fault id, a
bad gate also contains faulty signal values on its I/O. The bad gates in the sample
circuit in Figure 2.8 are drawn by dashed lines.

Initially concurrent fault simulator creates bad gates for the faults with fault site
in the same gate (such bad gate is called fault origin gate). In the example these are
the bad gates created for faults f1

 (OR1), f2 (INV, AND2) and f3 (AND2). With the
fault effect propagation other bad gates could replicate from the original gates
(these gates are called fault effect gates).

Concurrent simulation is performed pattern by pattern. A test pattern is applied
by emerging events on primary inputs of circuit (e.g. A, B and C). The whole
simulation process consists of consequent evaluation of events (changes of signals)
on good and bad copies of gates.

Evaluation of events occurred at good gates computes fault-free values of
signals. If an event on output of a fault origin bad gate causes signal to be different

OR1 OR2

AND1

→1

→0

→1

→1

f2=SA1 f3=SA0

→1

→0

→0

f1=SA0
→1

 f1 →0

f2

f3

→1

f1
0

→0
 f1 →0

 f2

→0f2
f2

0

1

0
0

0

1

1
→0

A

B

C

E

F

G

H

I
L

O D K

0
1 0

00
0

1
0

0
1

AND2

0
f1 0

1

1
1

0
0

Figure 2.8: Concurrent fault simulation

15

from fault-free value, then this bad gate become visible (i.e. creates fault effect).
The fault origin bad gates OR1/f1, INV/f2 and AND2/f 2 in Figure 2.8 are visible.

ate
cau

effect gate converges to its original good
gat

ls as well as for handling non-standard fault models.
Mo

el implementation
of

tive fault simulation (firstly proposed in [18]) is completely different in
ethods described above. Deductive algorithm relies on logic

mulation is still needed but
als).

nse of circuit. Therefore the ultimate
go

And vice-versa, fault origin gate become invisible if presence of fault does not
change its output value (e.g. AND2 gate with the fault f3 is invisible because its
output coincides with fault-free value).

Propagation of the fault event by visible bad gate to the input of destination g
ses a new fault effect gate to be diverged and added to the list of bad gates (e.g.

INV/f2 diverges a new fault effect bad gate AND1/f2). Diverged gates propagate the
effect further. On the contrary, a fault

e if signals on its inputs are indistinguishable of fault-free values. Finally, a fault
becomes detected in case if the effect of this fault reaches the primary outputs of
circuit (f1 in Figure 2.8).

Concurrent fault simulator is more flexible than other fault simulation methods
because the rules of events evaluation, changing bad gate visibility, diverging and
converging fault effect gates could be adapted to process the circuit description on
different abstraction leve

reover, the elimination of unneeded computation for the parts of circuit not
affected by a fault considerably increases the efficiency of the method. However
storing many copies of bad gates at run time is a potential memory problem,
because the size of the lists is not known prior to the simulation.

A variation of concurrent fault simulation referred as differential fault simulator
[16] utilizes the analogous event-driven technique but requires minimal amount of
memory for implementation. Unlike the previous method, differential fault
simulation deals with single fault at a time. There exists a parall

differential fault analysis algorithm [17] that speed-ups the fault detection
process.

2.3.4 Deductive fault simulation

Deduc
comparison with the m
reasoning rather than pure simulation (however the si
only to compute fault-free values of sign

In deductive fault simulation a fault set Sx is associated with each signal line x.
A fault f belongs to the fault set Sx if the presence of the fault f in circuit flips the
state of signal line x. Thus a presence of fault f in the set associated with primary
output indicates that f changes the output respo

al of deductive simulator is to eventually construct fault sets for primary outputs
of circuit and unite them into final set of detected faults POoSR o ∈= ,∪ .

In Figure 2.9 the example of deductive fault simulation is given (with only
active three faults: f1, f2 and f3).

16

SK={f1, f2}

A proced educing Sx fault sets is conducted as follows. As the first step,
the initial fa inputs (e.g. y the
immediate inclusion of faults on the inputs of circuit. Next, the evaluation of gates
begins in the direction ts. For the single gate
with known fault sets on its inputs, deductive simulator derives a fault set for gate
ou

 appearance of
log

 out of the sets SF and SG by using the formula above.

2. Ic ∉∅ (e.g. some inputs may hold controlli se, a fault
propagates through the gate only if its effect was propagated to every
controlling input while self-masking effect (the appearance of the same

ure of d
ult sets are formed for the primary SA and SC) b

 from primary inputs to primary outpu

tput (this process is referred as fault propagation). Then the fault at output is
included (activated) in the propagated list of fault (fault activation).

Consider the procedure for propagation fault sets in general. During gate
evaluation deductive fault simulator distinguishes between the gate inputs holding
controlling values (set of gate inputs Ic) and non-controlling values (set of gate
inputs Inc). A controlling value of a gate is the value that defines the value of gate
output: for example a controlling value for AND gate is 0 (because

ic 0 at least on one of the inputs of AND gate forces its output to go into logic 0
state), a controlling value for OR gate is 1, etc. Then two cases are recognized:

1. Ic∈∅ (i.e. all gate inputs hold non-controlling values). This means, that the
fault effect observed on any of inputs will propagate to gate output (i.e.
fault that belongs to any of fault sets of gate input is observable at gate
output). For this case the target fault set S’ is calculated using the following
equation:

∪
ncIi

iSS
∈

=′

In the example in Figure 2.9 the fault set for the output of AND1 gate is
constructed

ng value). In this ca

SF={f1}

G=1

f3=S

f1=SA0

A0

SD={f1}

L=0H=1

K=1

O=1

F=1

A=1

B=0

C=0

D=1

I=0

E=0
OR OR

SA={f1}

AND1

AND2f2=SA1

SC={f2}

SL={ f2}

SO={f1}

SH={f1, f3 }

SI={f2}

SG={f2}

f1 detected

Figure 2.9: Deductive f imulationault s

17

fault effect at any non-controlling inputs of the gate) is absent. The
respective fault set S’ for gate output is derived as:

∪∩
ncc Ij

j
Ii

i SSS
∈∈

−=′

The application of this rule is illustrated by deriving fault set SO from the
sets SK and SL.

Finally, to obtain the complete fault set S, the potential fault at corresponded
signal line (i.e. gate output) need to be activated, i.e. added to the fault set:

linesignalcurrentatfSS ___∪′=

The described procedure continues until the construction of fault sets for all
pri

∈

The deductive fault simulation is extremely powerful in comparison with
sim

ulator spends most of CPU time
on logic operations over fault sets (union, intersection and complementation).

 considered as critical if change of its value
cau

al path tracing starts with the primary output. Since primary output is
ess

nues until all
the

simulation. In the example in Figure 2.10 critical path tracing discovers signal line

mary outputs is finished. As the last step, fault sets associated with primary
outputs are united into single set of detected faults ∪ oSR = .

POo

ulation-based approaches due to the fact that all faults are processed in a single
run (for given test pattern) avoiding re-simulations of the same circuit. However
during the simulation process deductive fault sim

2.3.5 Critical path tracing

As an alternative to the fault simulation, critical path tracing (CPT) algorithm
[19] does not conduct any simulations except true-valued one. Instead of that,
critical signal lines are traced starting from primary outputs towards inputs of
circuit.

During path tracing, a signal line is
ses a flip of the state of primary output. As result, a stuck-at fault that is

associated with the critical line (SA0 if the value of signal line is logic 1, SA1
otherwise) should be immediately added to the list of detected faults.

Critic
entially critical, it is added to the list of critical nets and the tracing continues for

gate that drives the output. The inputs of the gate are evaluated to determine
whether they affect any of critical nets or not. By the result of such evaluation, the
inputs of gate may be added to list of critical nets. The tracing conti

 nets are evaluated (or until no critical nets under evaluation remained).

The process of critical path tracing is presented in Figure 2.10 (the critical nets
are marked by bold lines). Note that for exact results, CPT need to be stopped by
reaching fanout. Otherwise the fault-masking effect could spoil the results of

18

F=1
K=1

C to be critical in respect to primary output. However the fault effect diverges at
fanout W continues to propagate by both fanout branches E and I. Finally, the
ph

m special handling of reconvergent fanouts.

ated parallel-pattern fault
sim

ficiency of PPSFP by the reduction of unnecessary simulated
are

is based on stem-region analysis [22]. For each fault in reconvergent

enomena of fault masking becomes apparent at reconvergency point Y, where
fault effects on both lines K and L cancel (mask) each other hence stopping the
fault propagation.

 Critical path tracing algorithm provides linear complexity (in respect to the
number of nets) within fanout free region of circuit. Unfortunately original
implementation of critical path tracing cannot straightforwardly handle fanout
reconvergencies hence providing only approximate fault coverage. In order to
obtain exact results, critical path tracing algorithm should either be restricted by
fanout free region or perfor

2.3.6 Review of state-of-the-art

The methods presented in the previous sections can be characterized as basic
types of fault simulation algorithms. However a number of sophisticated
optimizations were proposed so far in order to achieve better efficiency of fault
analysis. Below we will outline some of the attempts to build powerful algorithms
for fault simulation.

Antreich and Schulz have proposed an acceler
ulation method [20]. The key idea of the algorithm is to reduce the number of

fanout stems to be unnecessarily re-simulated by identifying of independent fanout
branches.

Harel et al. [21] suggested to use a dominator concept (in terms of graph theory)
for improving the ef

as of circuit. Another proposed optimization of the paper is implementation of
priority queues for maintaining the list of gates waiting for evaluation.

Another improvement of parallel fault simulation method proposed by Maamri
and Rajski

G=1

L=0H=1

O=1
A=1

B=0

C=0

D=1

I=0

E=0

W

Y

OR OR
AND

A
B

ANDC

Figure 2.10: Critical path tracing technique

19

fan

 fanout-free
reg

itical-path tracing inside FFRs and efficient
im

vide the solution for handling
ver

ar time. The
me

ction
wi

 another approximate method of fault
sim

out the approach determines a stem-region which limits the simulation area. The
stem-region is bounded by so-called exit lines that form a set of disjoint cones
(from exit-line to primary outputs). If fault is detected on exit line and this line is
critical the further simulation is not needed. For fault anslysis inside

ions the method uses CPT technique.

Test-detect fault simulation algorithm proposed by Roth [23] requires faults on
gate lines to be evaluated in a backward levelized order. Hence for each fault, the
gates that occur later in the order are already considered. This gives the opportunity
to stop the simulation of a fault if the propagation path of this fault is converged to
a single gate. The further elaboration of this method [24], results in test-detect
algorithm refined for parallel use.

Lee and Ha have proposed the efficient version of PPSFP-type simulator [25]
that is exploits the idea of eliminating of unnecessarily simulated regions on early
stages of fault simulation. This is achieved by examining the detectability of faults
and exclusion the following regions out of simulation in case if no faults are
detectable at the output of currently simulated FFR or stem region. The method
also enhanced with usage of cr

plementation of stack of gates under evaluation.

Saab have presented parallel-concurrent fault simulator [26] that relies on the
approach of concurrent simulation but simultaneously processes fault groups
instead of single faults. The technique for partitioning faults into fault groups
reduces time needed for processing of events in concurrent simulator.

Takahashi et al. have extended deductive fault simulation approach for the case
of multiple stuck-at fault model [27]. Authors pro

y large number of fault combinations by using Boolean functions (represented
with the help of shared BDDs) thus cutting down the memory requirements.

Wu and Walker have proposed critical path tracing method [28] that allows to
perform exact CPT on a circuit with reconvergencies in nearly-line

thod is based on traditional CPT supplemented with a special set of rules to
handle various cases of reonvergencies.

The method of approximate fault analysis called fault sampling was proposed in
[29] for reducing the efforts of fault simulation. The method works in conjun

th fault simulator to determine the detectability of randomly picked sample of
faults (i.e. subset of fault list) and extrapolate these results by using means of
probabilities theory.

Jain and Agrawal have proposed
ulation. Statistical fault analysis [30] uses results of fault-free simulation for

producing fault coverage estimation. During logic simulation the number of
occurrences of 0- and 1-values for each signal line and number of cases when gate
input is sensitized to the gate output are counted. Basing on these values, statistical

20

fau

l
dev

med for
con

ll have certain drawbacks that
slow down the analysis speed. The major disadvantage of deductive fault

ations on large fault sets
and

fau

gle signal line). However several approaches have been proposed
to

 concurrent and differential simulators do not
pro

of sophisticated rules and cannot be applied for parallel processing of patterns.

lt analyzer computes the probability of each fault to be detected. However the
both approximate methods cannot provide the exact data about fault detectability.

Besides the conventional approaches, many challenges have been made to
increase the speed of fault simulation by delegating part of the process to specially
developed hardware accelerators [31], [32]. Many of such attempts utilize
reconfigurability of FPGA to emulate the whole circuit under test in
reprogrammable logic [33], [34], [35]. However these techniques require additiona

ices to be attached to host computer thus narrowing their applicability.

Recently a new dimension in the area of accelerating fault simulation speed is
being thoroughly explored [36], [37]. The key idea of the approach is to use
standard off-the-shelf hardware that is capable for parallel processing to accelerate
the well-known fault simulation algorithms. Typically, graphical processing units
(which likely contain hundreds of separate processing cores) are program

current execution of basic operations needed to run simple fault simulation
algorithms (e.g. parallel fault simulation or PPSFP).

2.3.7 Problems with fault simulation algorithms

Although the techniques considered in this section are equipped with
sophisticated algorithms for fault simulation, they sti

simulation (Section 2.3.4) is the demand of complex oper
that decrease the speed of deductive reasoning. However fault equivalence

lt dominance relationships (Section 2.2.4) can assist in reducing the total
number of faults.

Straightforward implementation of parallel-pattern fault analysis (Section
2.3.2.2) results in unnecessary simulation of the parts of circuit that are not affected
by a fault. Also re-simulation is performed for the regions that have already been
simulated under the same conditions (for instance, if propagation of effect of a fault
converges to a sin

reduce this overlap ([20],[21],[22],[24],[25]), they cannot pretend to completely
eliminate the unneeded simulation.

In the latter sense concurrent and differential simulators (Section 2.3.3) are
more efficient since they simulate only “active” parts of circuit. However these
methods are generalized for any types of circuit description and fault models and
do not exploit the advantage of gate-level combinational stuck-at fault simulation.
In addition, the parallel versions of

vide speed gain comparable with the gain obtained by PPSFP simulators.

Although critical path tracing (Section 2.3.5) is very powerful technique
because it offers linear-time complexity, it cannot handle fanout reconvergencies.
The proposed exact critical path tracing for arbitrary circuit [28] is based on a set

21

2.3.8 Contributions of current thesis

In this thesis we are attempting to improve deductive (Section 3.2) and parallel-
pattern (Section 3.3) fault simulation approaches. In contrast with the methods
described above we propose to perform fault simulation on a network of macros
instead of processing logic gates (see Section 3.1).

As it was mentioned before, the speed of deduction algorithm directly depends
 n on. In the thesis we propose fault list

s the method that is intended to avoid
sop

elerated by parallel processing
and

ussed in subsections 2.4.2, 2.4.4 and 2.4.5 since the
process of fault analysis is required to be performed many times in a cycle.

ry task
of any fault simulator. In addition the fault simulators are capable to build a

of discovered faults for each test pattern. The
latter is necessary for the task of diagnosis.

on the umber of faults taken for considerati
reduction technique (Section 3.2.1) as well a

histicated fault list deduction for certain parts of circuit (Section 3.2.3).

Parallel-pattern fault analysis approach that is proposed in the current work
essentially incorporates parallel critical path tracing technique. In comparison with
traditional CPT, the proposed method has been acc

 the use of macro-level description of circuit (Section 3.3.1). Moreover, the
method of parallel critical path tracing is extended for circuit with reconvergencies
using a special calculation model (Section 3.3.3 and 3.3.4) that helps to escape
unnecessary re-simulations.

2.4 Applicability of fault simulation

In the following subsections the main test-related tasks that require intensive
use of fault analysis are outlined. This helps to reveal the relevance of the problem
of fault simulation performance. The speed of fault simulator is especially crucial
while solving the tasks disc

2.4.1 Test quality evaluation

An essential task of fault simulator is to evaluate quality of the supplied test
program. The quality is measured in terms of fault coverage with respect to the
specific fault model. Fault coverage indicates the ratio of faults discovered by test
patterns in respect to the total number of faults in the model. Calculating the fault
coverage and reporting the list of detected and undetected faults is the prima

complete fault table with the lists

2.4.2 Test generation

The fault simulator is often used in conjunction with Automatic Test Pattern
Generation (ATPG) process in order to verify the generated test pattern
(Figure 2.11). This is especially applicable to different types of random pattern

22

Fault
simulatorNetlist

generators (e.g. [38], [39], [40]) which typically cannot prove whether the
produced test pattern detects any of new faults or not.

Genetic algorithms of ATPG ([41], [42]) use fault simulator to compute the
 f the generation process. There exist many other types of

simulation-based ATPG (e.g. [43], [44]) that demand tight interaction with fault
sim

 of fault simulators is the problem of diagnosis.
Th

ng the system or improving the production yield.

The diagnostic information assists to determine the source and location of fault
efect. One of the well-known

methods to perform diagnosis is to use fault dictionary (this technique is also
ref

fitness unction that adjusts

ulator to achieve the results.

Even in case of deterministic ATPG that target a specific fault (or faults), the
fault simulation is applied as a kind of a post processing. In the latter case it helps
to reveal the information about other faults (besides the targeted ones) possibly
discovered by the test pattern.

2.4.3 Fault diagnosis and fault dictionaries

Another area of applicability
e testing of a device helps to decide whether the DUT is functioning correctly or

not. However if the device fails to pass the tests, there is still no information about
the cause of malfunction or probable location of defects. Nevertheless such info
could be vital in case of repairi

thus narrowing the suspected area and type of d

erred as cause-effect analysis [5], [4]). The fault dictionary contains a list of
symptoms (i.e. failed test patterns and their output responses) and a specific fault
(or group of suspected faults) associated with each symptom.

ATPG Test pattern

Fault
coverage

not sufficient sufficient

update list of
discovered faults

ATPG
completed

Figure 2.11: Fault simulator in conjunction with ATPG

23

In Figure 2.12 a fault dictionary is co tr te f circuit under
diagnosis. During diagnostic test, the information about failed test patterns is
recorded by a tes agnostic program
searches the fault dictiona reports with the
dia

pping.

 coverage. This is done for the sake of
ost of storage of patterns in

ue referred as test compaction is capable to achieve
go

ation of the test quality. The
red

se the efficiency of the test pattern. Indeed the intelligent
sub

ns uc d or sample

ter together with the test result. Then a di
ry for the corresponding symptom and

gnosed fault.

A fault dictionary is straightforwardly built out of the fault table: for every fault
the test patterns that detect this fault need to be stored as a fault symptom. The fault
table in its turn is built by fault simulation which needs to be conducted without
usage of fault dro

2.4.4 Test compaction

Usage of fault simulator can also help to optimize already available test
program without decreasing the fault
lessening the cost of test application time and the c
tester memory. The techniq

od results on reduction of initial test pattern set.

Test compaction exploits several fundamental ideas [11]. First, the method
removes the test patterns that do not contribute into detection of new faults. In
other words, if a test pattern detects faults that have been already detected by other
test patterns, it can be removed without degrad

undant test patterns can be identified by carrying out fault simulation of test set
in reversed-order.

Another approach is based on the fact that ATPG typically targets a specific
fault and thus lefts many of primary inputs undefined [45]. Hence by filling-in
values for the unassigned inputs (don’t care positions) test compaction algorithm
attempts to increa

stitution of don’t cares with the 0 and 1 can significantly raise the number of
fault detected by single test pattern.

OR
AND

A

B
F P P P SA0@A
P F P P SA1@A, SA1@B
F

t1 t2 t3 t4

Suspected
faults

Symptom

C
P F P SA0@C

SA0@B P P F P Test pa s:
t1=101, t2=001, t3=011, t4=100

ttern
P P F SA1@C P

Figure 2.12: Fault diagnosis c via fault di tionary

24

However the latter approach is heavily relied on fault simulator because it
requires many runs of fault simulation over the different variations of test pattern
set. This results from the fact that test compactor needs to choose the optimal
substitution of undefined bits by zeros and ones.

y of self-testing. BIST is very
mber of advantages [4] including excellent test

ctures of device, native at-speed testing, instant test
app

llocated on
the

ploration of the search space of BIST controller needs to be performed
to

oduces an application of fault simulation technique as
last part of the thesis, fault analysis is

alicious faults (see
ability of design.

e to perform hierarchical
fault simulation (on RTL and macro-level) in order to determine the fault coverage
of functional testing. In [IX], the presented tool has been supplemented with the

2.4.5 Built-in self test

Built-in Self Test (BIST) is a widespread DFT technique which enables a
silicon device with the additional functionalit
attractive because it provides a nu
access to the internal stru

lication, low testing cost, ability to test device over its lifespan, etc.

A typical Logic BIST controller consists of a special pseudo-random test pattern
generator (PRPG) and response analyzer. A version of Logic BIST that combines
PRPG together with the set of pre-defined deterministic patterns is called Hybrid
BIST approach. However the latter requires additional memory to be a

 device.

In the process of design of BIST controller an engineer is faced with number of
challenges, e.g. the selection of optimal parameters for PRPG [5], [46] or
delimitation of the bounds between deterministic and pseudo-random test [47]. As
result, an ex

achieve the better fault coverage or solve the tradeoff between the size of
additional memory and the quality of test. Similarly to the previous task, the search
for optimal solution normally requires many cycles of the fault simulation to be run
under various conditions.

2.4.6 Contributions of current thesis

The current thesis intr
well. In Paper IV presented in the
incorporated into the procedure of composing the list of m
Section 3.4) that is used in analysis of depend

The focus of co-authored papers ([VIII], [IX] and [X]) is a laboratory
environment for research in the area of digital testing. Although, this topic have
been not included into the main scope of current thesis we will try to outline the
purposes and main features of the developed tools below.

The main goal of the presented tools is to study the different aspects of design
and test using relatively small illustrative examples. In particular, in [VIII] the
system for investigating issues of register-transfer level design and test is
presented. In addition to wide set of features, it is capabl

25

po

r summary

 fault analysis.

The first part has briefly specified the goal and concept of testing of digital
and defects have been explained and the fault

lin died. The main emphasis was made on the
des

nt. Instead, fault analysis is used as an auxiliary
ste

advance in fault analysis speed can
sig

ssibility to measure and evaluate the effectiveness of various implementations of
BIST controller.

Furthermore, the software package of laboratory tools [X] has been enhanced
with the system that is capable to study the influence of real defects and draw the
correlations between physical defects and fault models.

2.5 Chapte

The purpose of this chapter was to provide reader with the background
information needed to understand the basic principles of

device. Next the notations fault
mode g issues have been stu

cription and properties of stuck-at fault model that is used in simulation
methods described in the thesis.

The approaches described in the chapter represent the main types of fault
simulation. The chapter briefly introduces with the advanced techniques that are
intended to optimize fault simulation process.

It is also important to understand that fault simulation is a not standalone
problem of test quality assessme

p of other test-oriented tasks. Indeed, several applications described in the last
part of the chapter require many iterations of fault simulation for achieving the
satisfactory results. The latter fact gives especially clear motivation for improving
efficiency of fault simulator, since even small

nificantly influence the overall time spent on finding the optimal solution.

26

Chapter 3

OVERVIEW OF RESEARCH

RESULTS

This chapter gives an overview of the research results presented in Papers I-IV.
The scope of the research is mainly focused on improving fault simulation methods
for combinational circuits (or circuits enhanced with scan-path) with the usage of
stuck-at faults for modeling defects. However, the intermediate steps of research
were published in larger extent of papers (including [V], [VI] and [VII]), we have
selected only four publications that contain the most important achievements.

The first paper that is called “Efficient Single-Pattern Fault Simulation on
Structurally Synthesized BDDs” addresses the problem of single-pattern fault
analysis. The paper studies the possibility to perform fault simulation on macro-
level by introducing the version of deductive fault propagation algorithm refined
for SSBDD model. Moreover, the paper proposes to use fault-free simulation on
SSBDD for shrinking the set of initial fault list. Another contribution of the article
is the idea to use topological analysis prior to fault simulation for accelerating
propagation process for certain parts of the circuit. Since the implementation of the
proposed method was not finished in the moment of publishing, the paper contains
rather preliminary data, experimental results and estimations of the potential speed-
up. The overview of Paper I together with final results is given in Section 3.2.

The next two papers are devoted to improving parallel-pattern simulation
approach. The paper called “Ultra Fast Parallel Fault Analysis on Structurally
Synthesized BDDs” presents several contributions. First, parallel critical path
tracing algorithm is proposed for SSBDD graphs. This had allowed to use parallel
CPT technique inside the fanout-free regions but on macro-level instead of gate-
level. Another result is an approach to extend results of critical path tracing beyond

27

FFRs with the help of Boolean differentials. The latter requires building of a
special calculation model in the phase of topological analysis of circuit. The
presented method has achieved significant speed-up in comparison with other
simulation tools.

The next paper that is called “Parallel Exact Critical Path Tracing Fault
Simulation with Reduced Memory Requirements” continues to improve the
technique proposed in Paper II. Two novelties are introduced: the way of
optimization of calculation model and an approach for splitting the model into parts
for carrying out simulation iteratively. The former results in higher simulation
speed while the latter reduces overall memory consumption of fault simulator.

Since the both papers basically address the same topic and logically supplement
each other, their overview is presented under the single Section 3.3.

The last paper titled “Hierarchical Calculation of Malicious Faults for
Evaluating the Fault-Tolerance” is not directly devoted to fault simulation but
rather to the application of fault analysis. In particular, the approach is intended for
generation of malicious fault list used in dependability analysis. The fundamental
idea of the method is to use hierarchy of Decision Diagrams to represent (and
analyze) circuit on multiple levels of abstraction. This gives an opportunity to cope
with the complexity problems but, at the same time, preserves the accuracy of gate-
level evaluation. The brief overview of Paper IV is presented in Section 3.4.

Before proceeding with the description of the research results, it was decided to
give an overview of SSBDD model that is used to represent circuit on macro level
(Section 3.1). This is required since the presented algorithms rely on SSBDD
graphs for carrying out fault simulation.

In addition, Section 3.5 summarizes the results of experiments carried out to
compare the proposed fault simulation methods with each other and state-of-the-art
tools. This is done because the experimental data published in Papers I-IV have
been obtained on different platforms hence are not easily comparable.

3.1 Representation of circuit on macro-level

In contrast with the conventional approaches that use gate-level netlist for
describing of a digital circuit on logical level, the methods presented in the thesis
use a slightly higher level of abstraction called macro-level. A circuit on macro-
level is described by using a special form of Binary Decision Diagrams (BDDs).

Structurally Synthesized BDDs (SSBDDs) firstly proposed in 1976 [48] have
been successfully used in the field of design and test. Unlike the traditional
BDDs [49], [50], the distinctive feature of SSBDD is the ability to keep the
information about the structure of a modeled circuit (whereas traditional BDDs
represent only a logical function). Besides this, SSBDD model has linear

28

complexity in respect to number of gates in original circuit (the worst-case
complexity of traditional BDDs is exponential). Furthermore, in [51] it was proven
that the size of SSBDD model is always smaller than the size of logic-level netlist
it has been generated from.

Another property of SSBDD model is a built-in fault collapsing for stuck-at
fault model [52]. The latter feature makes SSBDD be especially attractive for
usage in conjunction with stuck-at fault model and avoids the performing fault
collapsing explicitly. On the other hand, fault resolution remains the same as with
gate-level models that use fault collapsing technique described in Section 2.2.4.

A comprehensive research that had been made to study the applicability of
SSBDDs in the field of testing of digital circuits have found it feasible to use the
model for tasks of test generation [53], logic and multi-valued simulation [52],
timing simulation [54],[55], design error diagnosis [56], etc. The preliminary
comparison of a serial fault simulation on macro and gate levels [52] had shown
the potential of the SSBDD-based approach also for fault analysis. In the current
thesis we attempt to extend the usage of SSBDD model for advanced fault
simulation techniques.

Structurally Synthesized Binary Decision Diagram is a planar, acyclic BDD that
is obtained by superposition of elementary BDDs for logic gates. While traditional
BDDs are generated by Shannon's expansions that extract the function of the logic,
SSBDD models extracts both, function and data about structural paths of the
circuit. A digital circuit is modeled as a system of BDDs, where for each of
tree-like fanout-free regions a separate SSBDD is generated.

An SSBDD G is a triple (M, X, Γ), where M is a set of nodes, X(m) is a function,
which defines line variables labeling the node m and Γ(m, e) is a function, which
gives the successor node of m with X(m)=e, e∈{0, 1}. The set of nodes M=MN∪MT
is divided into a set of nonterminal nodes MN={m0,..,mk} and a set MT that contains
0- and 1-terminals nodes (mT0 and mT1 respectively).

SSBDD graphs for gate-level digital circuits are created as follows. Starting
from the output of the FFR, logic gates are recursively substituted by their
respective elementary BDDs. The procedure of superposition terminates in those
nodes, which represent a primary input or a fanout branch.

In Figure 3.1 a logic circuit with an output line Y and its corresponding SSBDD
graphs are depicted. Note, that the direction of an edge (down or right) corresponds
to respective 0- or 1-label (thus labels are omitted). The illustrated terminals nodes
(0- and 1-nodes) can be also omitted: the exiting the BDD downwards corresponds
to 0 and rightwards to 1. In addition, SSBDD nodes can also be labeled by inverted
variables (e.g. 1C in Figure 3.1).

Let us denote Γ(m, e) by me. Then m0 is the successor of m for the value X(m)=0
and m1 is the successor of m for the value X(m)=1. By the value assignment, we
say that the edge between nodes m and me is activated. Consider a situation where

29

FFR 1

all the variables X(m) are assigned by a Boolean vector Xt∈{0,1}n to some value.
The edges activated by Xt form an activated path lact=(m0, …, mT) from the root
node m0 to one of the terminal nodes mT∈MT. The bold edges in Figure 3.1 indicate
the activated paths inside SSBDD for current input vector.

.
The edges activated by X

There also exists a directed path l through all non-terminal nodes. The latter
path levelizes the nodes by numerical labels n(m) so that each m∈M has label n(m)
with number higher than its predecessors on path l. There is one-to-one mapping
between the nodes in SSBDD and signal paths of circuit. For instance, the node D1
in Figure 3.1 corresponds to signal path with the beginning in fanout branch D1 to
the output Y.

There also exists a directed path l through all non-terminal nodes. The latter
path levelizes the nodes by numerical labels n(m) so that each m∈M has label n(m)
with number higher than its predecessors on path l. There is one-to-one mapping
between the nodes in SSBDD and signal paths of circuit. For instance, the node D

In SSBDD graph stuck-at faults are modeled at non-terminal nodes. The
presence of a fault inside the node m∈MN permanently fixes the successor node to
m0 (down edge) for SA0, or m1 (right edge) for SA1, regardless of the value X(m).
Thanks to one-to-one correspondence between the nodes and signal paths, stuck-at
fault modeling on SSBDD is almost identical to fault collapsing technique
described Section 2.2.4 (this has been shown in [52]).

In SSBDD graph stuck-at faults are modeled at non-terminal nodes. The
presence of a fault inside the node m∈M

To conclude with, we will outline the main advantages of SSBDD model. First,
the model allows to rise the level of abstraction of circuit representation from the
set of gates to more coarser network of macros. At the same time, the gate-level
accuracy is preserved since the fault resolution remains the same as for collapsed
stuck-at fault model for gate-level circuits. Moreover, the automatic fault

To conclude with, we will outline the main advantages of SSBDD model. First,
the model allows to rise the level of abstraction of circuit representation from the
set of gates to more coarser network of macros. At the same time, the gate-level
accuracy is preserved since the fault resolution remains the same as for collapsed
stuck-at fault model for gate-level circuits. Moreover, the automatic fault
collapsing integrated in SSBDD model, avoids the explicit checking whether a
fault is included into the collapsed list or not.
collapsing integrated in SSBDD model, avoids the explicit checking whether a
fault is included into the collapsed list or not.

t form an activated path lact=(m0, …, mT) from the root
node m0 to one of the terminal nodes mT∈MT. The bold edges in Figure 3.1 indicate
the activated paths inside SSBDD for current input vector.

1
in Figure 3.1 corresponds to signal path with the beginning in fanout branch D1 to
the output Y.

N permanently fixes the successor node to
m0 (down edge) for SA0, or m1 (right edge) for SA1, regardless of the value X(m).
Thanks to one-to-one correspondence between the nodes and signal paths, stuck-at
fault modeling on SSBDD is almost identical to fault collapsing technique
described Section 2.2.4 (this has been shown in [52]).

FFR 2

Y=1

A=1

B=0

C=1

D=1

C1=1
OR OR

D1=1

AND

D2=1 AND

C2=1

Figure 3.1: A circuit and its SSBDD representation

D1

D2

C1

C2

A

B 1

0

1

0

0-edges

1-edges

D Y 11 2

23 4

30

3.2 Single-pattern fault simulation

This section presents a novel approach for conducting single-pattern fault
lation on SSBDD prehensive description of the

 an outline of key aspects and
presents final results that have not been published in the original paper.

ful

or each FFRs
D

3.2

ardly by
consequent evaluation of graphs corresponding to the primary outputs of circuit.

de me is
 The

sim

sig

a graph that are traversed by
fault-free simulator establish an activated path inside the graph. Obviously,

simu model. Although the com
method is provided in Paper I, this section gives

Unlike parallel-pattern fault simulation methods (Section 2.3.2.2), the presented
technique is most efficient for the cases when only one (or few) patterns need to be
simulated at a time. The latter condition lessens the attractiveness of parallel-
pattern fault analysis because the efficiency of parallelism cannot be exploited in

l extent. In particular, single-pattern fault analysis is especially relevant for
simulation of synchronous sequential circuits as well as for the problems of test
pattern generation and test compaction (Sections 2.4.2 and 2.4.4). For these tasks
the next pattern is typically issued only after the analysis of the fault detectability
of the preceding pattern. Moreover, unlike parallel-fault analysis (Section 2.3.2.1)
the presented algorithm has no limitations on using of fault dropping.

In general, the proposed algorithm consists of the following steps:

1. Fault-free simulation on SSBDD and identification of fault candidates
2. Topological analysis to determines the type of reconvergency f
3. Activation of faults and propagation of fault lists through SSBD

.1 Fault-free simulation on SSBDDs and fault list reduction

Fault-free simulation on SSBDD model is performed straightforw

The nodes are traversed starting from the root node m0. Each successor no
selected depending on the value of variable X(m) that labels the node.

ulation of each SSBDD graph ends by reaching one of the terminal nodes mT.
However if the value of non-terminal node depends on the other SSBDD (i.e. node
is not a primary input) the simulation recursively proceeds to the underlying graph.

During fault-free simulation the two goals are achieved: true values are
determined for internal signal lines (by path activation in SSBDD) and the
candidate faults are identified. The proposed single-pattern fault simulation method
rely on the logical operations with fault sets, hence the sizes of fault lists

nificantly influence the overall speed of the method. For this reason, keeping the
number fault candidates as less as possible is vital.

We propose to reduce the number of potential faults by applying the following
rules:

− As it was mentioned above, the nodes of

31

the only faults with sites at the nodes that belong to the activated path can
affect the result of graph evaluation. For instance, the fault at node B

t

−

H
faults in
success

The the algorithm is provided in Paper I.

to two stages
fault activati out

the
o the fault set for the output

of

at is used for propagation of fault lists
thr

s.
m.

FR.

(Figure 3.1) cannot change the traversed path under current vector X thus
does not influence the output value Y.
In case if a SSBDD avoids recursive evaluation, all the nodes of the graph
are excluded from the list of potential fault sites. However, a true-value
simulation is still needed in order to ensure the correct function of fault
propagation algorithms.

− If the value of successor function of a node does not equal to the output
value of graph the fault at this node cannot affect the result of graph
evaluation (e.g. node C1 in Figure 3.1). This comes from the property of
planarity of SSBDDs.

owever for a single test pattern there is no need to consider both SA0 and SA1
 each fault site. Instead, the only single fault (i.e. the one that changes the

or node) should be taken into account.

complete description of

3.2.2 Deductive fault propagation on SSBDDs

The deduction-based fault analysis procedure can be divided in
on and fault propagation (Section 2.3.4). Fault activation finds

which of the faults with the locations in fault candidate nodes of FFR affect
output f this FFR. Fault propagation in its turn derives

FFR from the lists of faults on its inputs.

The activation of faults is done straightforwardly. We can either invert the
corresponded node (to imitate fault) and re-simulate SSBDD (see Paper I), or
perform critical path tracing on SSBDD (see Section 3.3.1).

Below we propose deductive algorithm th
ough FFR represented by SSBDD graph. First we define notations as follows:

• M1 - set of nonterminal nodes at the activated path lact
• m’= mX(m) m”= m⎤ X(m)
• mTF – terminal node that corresponds to faulty value of FFR { mTF∈ MT |

X(mTF)≠ ⎤f(Xt)}
• S(m) – fault list propagated to m from previous SSBDD

 faults propagated inside SSBDD to node • L(m) – temporary list of
• N(m) – set of nodes succeeding node m in directed path l through all the

nodes of SSBDD
• R – resulting set of the faults propagated to the output of F

32

The following observations lay in the basis of the algorithm:

1) faults in fault propagation list S(m) of a non-terminal node m that belong to

 (1)
(\)

mNk

kL

2) if a fault in temporal list of a node m that does not belong to activated path

3) if fault in t path is

(3)

After performin -t inal nodes, the fault list
ass

 (4)

The overall alg DD is
pro

Ø

1 then
 L(n), for n∈N(m).

)
))

ropagation of faults on SSBDD has advantage over classical
ate-level deductive fault simulation because it does not require evaluation of gate

type and inputs. Instead of that, the propagation is done on uniform model using

activated path lact are added to the temporal list L of a faulty successor node.
However the temporal list should not contain the faults already propagated
to the succeeding nodes in the graph.

L(m”) = L(m”) ∪ S(m)

∪
)(

)(()()(mSm"Lm"L
∈

∪=

lact is not included into fault propagation list S of this node, then such fault
is added to the temporal fault list L of a true-value successor node.

L(m’) = L(m’) ∪ (L(m) \ S(m)) (2)

emporal list of a node that does not belong to activated
included into fault propagation list S of this node then such fault is added to
the temporal fault list L of a faulty-value successor node

L(m”) = L(m”) ∪ (L(m) ∩ S(m))

g the above-listed steps for all non erm
ociated with terminal node that corresponds to the faulty value of the graph is

treated as the resulting set of propagated faults:

R = L(mTF)

orithm of deductive for fault list propagation on SSB
vided below:

 R =Ø
 for each m∈MN
 L(m)=
 end for
 for each m∈MN

 if Mm∈
 T =∪
 L(m”)= L(m”) ∪ (S(m) \ T)
 else

L(m’)= L(m’) ∪ (L(m) \ S(m)
L(m”)= L(m”) ∪ (L(m”) ∩ S(m

 end if
 end for
 R = L(m) TF

The deductive p
g

33

s e
co graph
will require fewer steps than evaluation of corresponded gate-list.

sults of execution of algorithm. At the end, the set R contains the
fau

propagation of fault lists
through a circuit. However in Paper I it was pointed out, that for some parts of

aster methods. For
 of circuit that

cat

(S(mi)∩S(mj))=∅ , where mi,mj∈MN, i≠j

mall set of rules. Moreover, the complexity of SSBDD is always less than th
mplexity of corresponded gate-level netlist, thus processing of SSBDD

The preliminary version of the same algorithm that is presented in Paper I is
less compact because it does not generalize the notion of temporal sets L also for
terminal nodes.

Figure 3.2 illustrates the example of fault list propagation through SSBDD.
Bold lines represent next successor for each of the node. In Figure 3.2a the state of
the fault sets after evaluation of nodes A and B is depicted whereas Figure 3.2b
shows the final re

lts that propagate to the output of corresponded FFR.

3.2.3 Circuit analysis and fault list propagation cases

Normally, deductive algorithm is required for the

circuit sophisticated deductive propagation can be replaced by f
this reason, we propose to perform a special analysis of topology

egorizes each of FFR into one of three types described below (see examples
in Figure 3.3).

1) There is no fanout that converges at SSBDD (Figure 3.3a) hence no fault can
appear on different inputs simultaneously:

A

C

B

S(A)={f1, f2} S(B)={f3} S(A)={f1, f2} S(B)={f3}

D

Y

S(С) 1 }
L(C)={f1, f2} S(D)={f4}

={f 1

A B

C

Y

DS(С 1}
L(C)={f1, f2} S(D)={f4}

L(D)={f1}

1
)={f

0 0
L(0)={f2}

Figure 3.2: Example of deductive fault effect propagation on SSBDDs

b) a)

L(1)={f3}

L(1)={f1, f3}

faults nd f3 propagated: f a1

R=L(1)={f1, f3}

34

As result the propagation of fault lists can be performed in the moment of fault
activation. If fault activated at a node changes the result of SSBDD evaluation, the
fault list associated wi together with the
activated fault.

s:

ether the fault list associated with the fanout propagates to
output rsion of all
nodes co odes, the propagation of
fault lists e description of concurrent
alg

of
proposed approach. However, the data published in Paper I is rather result of

i actual comparison of fault simulation speeds has
mes from the fact that the implementation

of

th this node is propagated through graph

2) FFR is a reconvergency of a fanout located just behind, i.e. there is no other
FFR between the fanout point and this FFR (Figure 3.3b). The fault effect
propagated to such fanout will indispensably affect all the nodes corresponded to
reconvergent line

S(mi)= S(mj), for mi,mj that correspond to the fanout branches

(S(mi)∩S(mj))=∅, for the rest mi,mj∈MN, i≠j

To determine wh
of FFR, the simulation of graph should be repeated with the inve

rresponding to recovergent lines. For the rest of n
 is made exactly as for the previous case. Th

orithm that is used for propagation is provided in Paper I.

3) For the rest of circuit (FFRs with arbitrary reconvergencies, Figure 3.3c)
deductive algorithm is applied.

FFRA

CA

Fi Types of reconverge

3.2.4 Experimental results

A number of experiments were conducted in order to confirm the feasibility

prelim nary estimation while the
not been included into the article. This co

the proposed method had not been finished prior to the publishing. In this thesis
we will try to fill this gap by providing the final experimental results.

The experiments on potential fault list reduction had shown that only 40% of
total faults sites (in average for ISCAS’85 benchmarks [61]) need to be considered
during single-pattern fault simulation. Moreover, due to the fault collapsing

gure 3.3: ncies

a) b) c)

FFR B

CA

pri
in

mary
puts

fanout A

primar
in

overlap

y
puts

FFR B

CA

C
B

A

primary
inputs

C

A

B
C

35

pro

en from the table, the large portion
of

reconv.
econv.

depth = 1 deep reconv.

vided by the SSBDD model itself (66% in average for ISCAS’85) the number
of faults reduces to 26%. Since the only one stuck-at fault per fault site (either SA1
or SA0, depending on fault-free value of signal line) need to be activated, the size
of fault list collapses by 2 times, down to 13%.

The distribution of SSBDD graphs according to the types described in
Section 3.2.3 is presented in Table 3.1. These are the final results in contrast to the
estimation carried out in Paper I. As it can be se

SSBDDs does not require the application of deductive algorithm. For 31% of
graphs (in average) the fault list can be propagated by means of faster concurrent
algorithm or directly together with the fault activation.

Table 3.1: Distribution of SSBDD graphs by type of reconvergency

circuit total SSBDDs SSBDDs w/o max r

c432 96 58 60% 0 0% 38 40%
c499 187 41 22% 32 17% 114 61%
c880 151 75 % 50 8 5% 68 45%
c1355 291 73 25% 0 0% 218 75%
c1908 248 79 32% 22 9% 147 59%
c2670 430 196 46% 15 3% 219 51%
c3540 378 129 34% 11 3% 238 63%
c5315 633 204 32% 43 7% 386 61%
c6288 1488 303 20% 0 0% 1185 80%
c7552 920 212 23% 5 1% 703 76%

Th arison ed of s -pa ethod with several
other fault simulators is presented in Table 3.4 (see Section 3.5). Even though in
case of 10000 test patterns the results of single-pattern fault simulation are worse
tha

The main contribution of Paper I is a novel single-pattern fault simulation
c BDD. The results, published in Paper I are basing on
inary and estimate the potential of the proposed approach.

Ho

e comp o ef sp ingle ttern fault analysis m

n for parallel-pattern approach, in the analysis of fault detectability of a single
test pattern the proposed algorithm becomes more advantageous.

3.2.5 Conclusions

approa h that uses SS
prelim observations

wever in the current thesis we have included the final measurements of the
actual efficiency of this method. Finally, it turned out that the proposed
optimizations are capable to reduce the list of fault candidates by 87% and avoid
sophisticated deductive propagation in 39% of cases (in average). The speed gain
of single-pattern algorithm (see Table 3.4) was about 3.6 times in comparison with
parallel-pattern analysis for the case when the patterns are available one-by-one.

36

3.3 Parallel-pattern fault simulation

In this section the shortened description of parallel-pattern fault analysis

t suitable for the tasks where
large amount of test patterns need to be processed. This is especially relevant for
bu

t are virtually
ind

(Section 2.3.5) is a very
powerful mechanism for analyzing detectability of faults. Below we are proposing

path tracing approach for SSBDD
model. The described technique has been presented in Paper II.

rresponding signal
lin

t node of Gy. Therefore D(m0) represent the
value of y in values
of terminal ti .

2)

m are
processed in the direct order as follows:

methods proposed in Paper II and Paper III is given. In contrast to single-pattern
approaches, parallel-pattern fault simulation is mos

ilding fault dictionaries for diagnosis, evaluation of test quality or adjusting
parameters of BIST controller (see Sections 2.4.1, 2.4.3 and 2.4.5).

The presented approach partially relies on SSBDD model: it uses SSBDD to
perform parallel critical path tracing (CPT) inside FFRs and exploits the automatic
fault collapsing provided by the model. However the techniques that are used to
extend the results of critical path tracing for an arbitrary circui

ependent on the underlying representation of circuit.

3.3.1 Critical Path Tracing on SSBDDs

Traditional Critical Path Tracing (CPT) technique

an algorithm that implements parallel critical

Parallel CPT on SSBDD is conducted as follows. At first, parallel fault-free
simulation is performed to determine output value of FFR. Then, fault candidates
are identified by parallel evaluation of active paths inside SSBDD. Finally, CPT
itself is conducted to recognize which nodes of SSBDD (and co

es) are critical to the output of the respective FFR. Below all the three steps are
explained.

1) In order to simulate a test set T=(t1, …, tn) on Gy representing a FFR y=f(x),
we start from the node with the highest label n(m), and repeat the vector
operation for each of the nodes:

D(m) = (x(m)∧ D(m1))∨ (x(m)∧ D(m0)) (5)

The obtained D(m) values can be interpreted as a result of path activation
in Gy in case if m would be a roo

calculated for the root node graph Gy. Note that the itial
 nodes are: D(m)=00...0 and D(m)=11…1 respec velyT0 T1

For each test pattern tk∈T, the nodes m in Gy are found which belong to the
activated paths Lk. Only the nodes belonging to active path may influence
the value of y(tk). Hence, only the nodes m∈Lk may be the candidates for
fault detection. To find the candidates for fault detection, the nodes

37

L(m1) = L(m1) ∨ [L(m)∧x(m)], (6)
L(m0) = L(m0) ∨ [L(m)∧)(mx].

he initial values are: L(mT
m k
path activated by

3) In the last
which nodes k ability of

1m (7)

Simi n gate-level, this approach has linear-time
complexity in respect to the number of nodes i se, the
applicability of the proposed technique is restr e es not
contain

0)=11...1 and L(mi)=00...0 for all other nodes
i∈M. The value of Lk(m)=1 means that m ∈ L , i.e. the node m belongs to

t the test pattern k.

llel critical path tracing to find out at stage, we carry out para
of activated paths L the faults are detected. Detect

faults at m in the FFR represented by Gy at the output y is calculated by
using the following formula:

()(()()(0 DmDmLmS ⊕∧=)))(

The fault at node m is detected by tk iff the value of the vector component
Sk(m) is 1.

lar to critical path tracing o
in SSBDD graph. L kewi

icted by the r gion that do
 reconvergencies.

38

A

C

B

D

Y
X(A)={0,0,1,1}
D(A)={0,1,1,1}
L(A)={1,1,1,1}

1

0

Figure 3.4: Parallel crit g on SSBDDs ical path tracin

a)

D(1)={1,1,1,1}

D(0)={0,0,0,0}

X(D)={0,1,0,1}
D(D)={0,1,0,1}
L(D)={1,1,0,0}

D(C)={0,1,0,0}

X(B)={1,0,1,0}
D(B)={1,1,1,0}
L(B)={0,0,1,1}

X(C)={1,1,0,0}

L(C)={1,1,0,1}

A

C

B

D

Y

S(A)={1,0,1,0}

1

0

S (B)={0,0,1,0}

S(D)={1,1,0,0}
S(C)={0,1,0,1}

fault at node D is detected
by 3rd test pattern

b)

node B is activ
b

ated
y 3rd test pattern

An example of calculating the vectors D(m), L(m) and S(m) for 4 test patterns is
illustrated in Figure 3.4. In the first part (Figure 3.4a) vectors D(m) and L(m) are
calculated by using vector of values X(m). The results of calculation can be
interpreted as follows: D3(A)=1 means that the fault-free value of output y is equal
to 1 for the third test pattern. The value L3(B)=1 indicates that node B is activated
by third test vector.

Figure 3.4b shows the final result of CPT for given SSBDD. For example, the
value 1 in third position of vector S(B) (i.e. S3(B)=1) is interpreted as detectability
of fault at B by 3rd test pattern. In other words, during the application of this test
pattern the value of output y differs from the fault-free value if the value of signal
line D has changed due to the fault.

3.3.2 Extending the results of CPT beyond FFRs

Parallel critical path tracing on SSBDD described above computes the
detectability of faults inside FFR. In order to perform fault analysis on an arbitrary
circuit we need to generalize these results beyond fanout-free regions. The latter is
done with the aid of partial Boolean differentials. In this overview only the final
results are presented, while the explanations are provided in Paper II and Paper III.

Consider fanout-free region Fy depicted in Figure 3.5a. Its schematic
representation is illustrated in Figure 3.5b where the edges denote paths inside
circuit without fanouts and the nodes are fanout-free regions.

Let us define YkX as the sensitivity of output y to the signal change at line x
(which is a kth input of FFR). Then Y1X=1 iff change of x flips the value of y (in
terms of Boolean derivatives described in Paper II this corresponds to the

notation 1=
∂
∂
x
y

). The value YkX can be obtained by evaluation of expression (7),

with m corresponding to kth input of FFR (see previous subsection).

To compute the sensitivity Y1Z for the case of two consecutive FFRs
(Figure 3.6), the sensitivities Y1X and X2Z need to be calculated first and the final
sensitivity Y1Z is computed by the conjunction:

Y1Z= Y1X ∧ X2Z (8)

y
Fy

x

…

1

2

n

X
1

Y2

… n

Figure 3.5: Critical path tracing in FFR
a) b)

39

In Figure 3.7 the case of reconvergent fanout is illustrated. If variables xj…xn are
not influenced by x, then according to the theorem proven in Paper II, the
derivative is calculated by using the following expression:

),...,,,...,(1
1 nj

i
iy xx

x
x

x
x

xxFy
x
y

∂
∂

⊕
∂
∂

⊕⊕=
∂
∂

 (9)

Assuming there are no reconvergencies between x and x1 as well as between x

and x2, then the values
x

x
∂
∂ 1 and

x
xi

∂
∂

 are obtained by using of (7) or (8). Similarly

we can denote the results of (9) in shorter form:

YX = Fy(Y1X, YiX) (10)

The resulting value YX will reflect the sensitivity of output y to the presence of
fault at fanout x.

This result can be generalized for the case of nested reconvergencies and
consequently be applied to an arbitrary circuit with any set of reconvergencies
(see Paper II).

Fy

xn

 f1(x, …)

fi(x, …)

x1

xi

x

y

1
i Y X

 f1

 fi

xj n

Figure 3.7: Reconvergent fanout

a) b)

Fx

1

…

y
Fy

n

2 1

2

n

x
…

Y

1
Z Xz 2 1

2

n
b) a)

Figure 3.6: Consecutive FFRs

40

3.3.3 Construction of calculation model

parallel critical path tracing
l simulation (see Section 2.3.2) for

ana

tion. The basic solution is to restrict the
are

particular, we propose to explicitly construct
cal

utputs separately thus resulting in the
set

 nodes and Γ represents the following mapping on set N:

put i of the node x∈N,

cies FSy (for every primary
output y etermined first.

As it was already mentioned, for an arbitrary design
needs to be augmented with some sort of paralle

lyzing circuit beyond FFRs. Indeed, the latter typically brings in an unnecessary
re-simulation of already simulated gates.

However several optimizations have been proposed in order to reduce the
amount of redundantly performed simula

a simulated for detection of a fault by the gates physically reachable from the
fault site. The more advanced methods help to identify the “stop-points” where the
parallel fault analysis can be interrupted [20],[22],[23],[24] or prune the
unnecessary simulated regions [21].

In this section we are presenting a distinctive method for fault simulation of
circuit with reconvergent fanouts. In

culation model that is used to compute the detectability of each fanout. This
approach not only avoids the unneeded simulation of the area that is not reachable
by fault effect, but also tends to lessen the number of repeated calculations. The
formulas described in the previous subsection are used as basic building blocks of
calculation model for computing sensitivities between signal lines.

Two types of calculation model have been proposed: non-optimized model
(Paper II) and the optimized one (Paper III).

Let us consider a construction of non-optimized model first. A non-optimized
model is constructed for each of the primary o

 of sub-models.

Consider the reconvergency graph G=(N, Γ) of example circuit in Figure 3.8
where N is the set of

• Γ(x) ⊂ N is a set of successor nodes of node x ∈ N,
• Γ -1(x) ⊂ N is a set of predecessors of node x ∈ N,
• Γ -1(xi) ⊂ N is a predecessor node connected to the in
• Γ *(x) ⊂ N is a transitive closure of Γ(x), and

-1• Γ * -1(x) ⊂ N is a transitive closure of Γ (x).

By topological analysis the sets of reconvergen
) and the set of converging points (CP) are d

FSA={1,2,3}, FSB={0,2,3}, CP={A, B, C}

41

1
A1 2

Then the formulas are constructed in the following way. For each primary
output y the nodes are evaluated consequently in the direction from the output to
primary inputs. The following steps are performed for each node n under
evaluation:

1) For each ith input of corresponding FFR the sensitivity formula NiM is
created, where node m=Γ -1(ni).

Example: for node A (Figure 3.8) three formulas A11, A24, A35 are created.
Because there are no reconvergencies between n and m, the sensitivity
formulas also correspond to sensitivities of A1, A4 and A5.

If a node n does not belong to set FSy, then for each m∈Γ(n) the formula is
constructed by using the rule (8) of two consecutive paths (n,m) and (m,y):

YN=YM ∧ MN.

Note, because node m has been evaluated before node n, the sensitivity
formula YM had been already created.

Example: consider node С (while construction of sub-model for output B).
The formula BC=B4∧4C is constructed in order to compute the sensitivity
of node B in respect to fault at node C.

2) If a node n belongs to set FSy, then the converging paths are traced back
towards primary outputs and for each of converging point m the respective
formulas corresponding to (9) are created. The arguments for the formulas
are constructed directly during the trace (in the similar way as for the
previous cases but with exception is that sensitivity is computed in respect
to inputs of converging FFR instead of primary output).

Example: consider analysis of node 1 (while constructing of sub-model for
output A). This node has the only converging point at FFR corresponding
to primary output A. Tracing back to primary output A results in two
converging paths (1,A) and (1,C),(C4),(4,A). Correspondingly, the formula
A1=FA(A11, C1∧4C∧A24) is constructed during this step.

2

1 3 2 C 4
3

1 53 2

Figure 3.8: Reconvergency graph for example circuit

0 B3

42

Finally the computed sensitivities are united for all of primary outputs in order
to compute the general detectability of fanouts. For instance, the detectability of
fault at node 1 can be expressed as a union of sensitivities A1 and B1.

The complete calculation model constructed for reconvergency graph in
Figure 3.8 is presented in Table 3.2. In the left and right parts of the table, the
formulas relating to sub-models for primary outputs A and B are given respectively.

The first column of each part indicates the number of step during the evaluation
of the model. Note that some formulas require several steps for evaluation (here we
treat the calculation of single sensitivity, each operation of conjunction or
disjunction and evaluation of formula for reconvergent fanout as separate steps).
However different steps are processed with unequal amount of time, the total
number of steps in the model help to roughly estimate its complexity. The second
column of each part contains the name of a node which evaluation resulted in the
construction of formula in the third column.

Table 3.2: Calculation model
For output A For output B

step n sensitivity formula step n sensitivity formula
1 A A11 (A1) 27 B B14 (B4)
2 A A24 (A4) 28 B B25 (B5)
3 A A35 (A5) 29 B B30
4 5 513 (53) 30 C BC=B4∧4C
5 4 41C (4C) 31 3 B3=FB(C33∧4C∧B4, 53∧B5)
6 C AC =A4∧4C 35 2 B2=FB(C22∧4C∧B4,32∧53∧B5)
7 C C11 (C1) 40 1 B1=BC∧C1
8 C C22
9 C C33 (С3) 41 0 B0=FB(20∧C2∧4C∧B4,

20∧32∧53∧5B, B0)
10 3 A3=FA(C3∧4C∧A4, 53∧A5)
14 3 312 (32) Union of sensitivities for all outputs
15 2 С2=FC(С22, 32∧C32) 48 0=A0∪B0
17 2 A2=FA(C2∧4C∧A4,32∧53∧A5) 49 1=A1∪B1
22 2 210 (20) 50 2=A2∪B2
23 1 A1=FA(A11, C1∧4C∧A4) 51 3=A3∪B3

52 C=AC∪BC 26 0 A0=A2∧20 53 4=A4∪B4

The consequent evaluation of formulas eventually gives us the sensitivity values
for all fanouts in the circuit. Note that all calculations could be carried out on
vectors instead of single values thus making the model be fully suitable for
parallel-pattern processing.

The key advantage of the proposed method is an ability to effectively handle
nested reconvergencies. For example, the calculation of detectability of fault in

43

fanout node 0 on primary output B (step 41), also involves the calculation of
detectability of the same fault in converging node C. However, instead of re-
simulation of corresponded FFR, the result of evaluation of sensitivity formula C2
is used (step 15).

3.3.4 Construction of optimized model

The calculation model presented above has the evident drawback as it allows
relatively large part of computations to be repeated. In particular it comes out of
the fact that the process of construction is done separately for each of the primary
outputs. In addition while converging paths are traced back the arguments of
sensitivity formulas for reconvergent fanouts are likely to overlap. For example,
the operation of conjunction C3∧4C is performed several times (steps 10 and 31 in
Table 3.2). Hence, the research conducted in [VI], [VII] was aimed to further
optimization of the model.

In [VI] it was proposed to concurrently construct a unified model for all primary
outputs. Furthermore, the concepts of activity and sensitivity vectors have been
proposed in [VII] together with the method which lessens the overlap in
calculations. Finally, the approach was generalized in [III] (Paper III).

Below we will describe the process of construction of optimized calculation
model. First, the additional topological analysis is performed in order to build the
following sets of nodes for reconvergency graph:

• OUT – set of nodes corresponded to primary outputs
• RO – set of nodes that corresponds to reconvergent fanouts
• For each x∈RO, the set RI(x) is also constructed which contains the

convergent nodes of fanout x.

Optimized model is constructed for all outputs jointly. For this purpose, all the
nodes N of reconvergency graph G are levelized and put into ordered set N*. First,
the ordered set N* includes all primary outputs of circuit. Then, each node n∈ N is
included into set N* as soon as Γ(n)∈ N* becomes valid.

For the example of reconvergency graph in Figure 3.8 the following sets are
constructed:

OUT={A, B}, RO={0, 1, 2, 3},

RI(0)={B}, RI(1)={A}, RI(2)={C,B,A}, RI(3)={B,A},

N*= {A,B,5,4,C,3,2,1,0}

The formulas of optimized calculation model are distinguished by their types as:

• activity vectors – express the sensitivities of internal nodes of
reconvergency graph,

44

• partial sensitivity vectors – express detectability of fault at one of the
primary outputs,

• full sensitivity vectors that express the global detectability of fault on any of
primary outputs.

For each node n of the levelized set N* the formulas are constructed in the
following way (this procedure is briefly described in Paper III and more
thouroughly in [VII]).

Step 1: Construction of activity vectors.

Let define set M as M=Γ(n), set Pnested of pairs (x,y), Pnested=∅ and set M’=∅.

Step 1a:

for each node m∈ M and y∈Γ(n) construct the activity vector YiN=YiM∧MN if
there exist nodes x∈RO and y∈RI(x) such that for subgraph G’ consisting of
nodes N’=(Γ*-1(y) ∪y)∩(Γ*(x)∪x):

a) m∈N’, n∈N’ (i.e. nodes n and m belongs to converging path between x
and y)

b) G’ does not contain other nested reconvergency subgraph G’’(N’’, Γ),
N’’⊂N, with n∈ N’’,m∈ N’’ except that the reconvergencies that are
formed by pairs of nodes in set Pnested.

For constructed activity vector YiN=YiM∧MN the i is selected with accordance
of Γ -1(mi)=n.

If y∈OUT and y∉RI(n), then constructed activity vector is also partial
sensitivity vector YiN.

Example: Consider the example in Figure 3.8, in case of evaluation of node C
(n=C). Then, the node 4 is the sole node m in set M. The y=A, x=3 and y=B,
x=3 can be selected to satisfy the conditions a) and b). As result two activity
vectors (for nodes A and B) are constructed: A2C=A4∧41C and B1C=B4∧41C.
As nodes A and B also belong to set of primary outputs and not the converging
points of C, the constructed activity vectors are also partial sensitivity vectors
AC and BC.

Step 1b: for subgraphs G’ selected in the previous step with x=n, the activity
vector YN=FY(…) is constructed. Again, if y∈OUT this activity vector is also
represents partial sensitivity vector. The pair (x,y) is added to set Pnested and the
node y is added to set M’.

Example: Consider the evaluation of node 3. During Step 1a the following
subgraphs have been selected G’(2,A), G’(2,B), G’(3,A) and G’(3,B). Thus
activity vectors B3=FB(B13, B23) and A3=FA(A23, A33) are constructed. As node

45

A and B also belong to set of primary outputs the constructed activity vectors
are also partial sensitivity vectors A3 and B3.

To handle nested reconvergencies the steps 1a and 1b are iteratively repeated
with new set M=M’ and M’=∅.

Step 1c: for x=Γ -1(nk) activity vectors NkX are constructed for all k. If n∈OUT
then the constructed vectors are also partial sensitivity vectors.

Example: Consider the evaluation of node С. Three activity vectors C11, C22
and C33 are constructed.

Step 2: Construction of partial sensitivity vectors.

 for all nodes y∈OUT∩Γ*(n), the partial sensitivity vectors are constructed
(by using formulas (8) and (10)) for y that were not handled in the Step 1.

Step 3: Construction of full sensitivity vector. For each node n, full sensitivity
vector is constructed by the following formula:

∪(YkN), yk∈OUT | yk∈Γ*(n)

Example: For node 1 the full sensitivity vector is constructed as a union of partial
sensitivity vectors A1 and B1: 1=A1∪B1.

The resulting optimized calculation model for reconvergency graph in
Figure 3.8 is presented in Table 3.3. The formulas marked by “*” are sensitivity
vectors whereas others are activity vectors.

It can be easily seen from the comparison of Table 3.2 and Table 3.3 that the
optimized calculation model requires fewer steps (41 versus 52) for evaluation
hence speeding up the whole fault simulation process.

46

Table 3.3: Optimized calculation model
step n formula step n formula
1 A A11 (A1*) 21 3 B23=B25∧513
2 A A24 (A4*) 22 3 B3*=FB(B13, B23)
3 A A35 (A5*) 23 3 3*=A3∪B3
4 B B14 (B4*) 24 3 312
5 B B25 (B5*) 25 2 C32=C33∧312
6 B B30 26 2 C2=FC(C22, C32)
7 5 5*=A5∪B5 27 2 B12=B1C∧C2
8 5 513 28 2 B22=B23∧312
9 4 4*=A4∪B4 29 2 B2*=FB(B12, B22)
10 4 41C 30 2 A22=A2C∧C2
11 C A2C=A24∧41C (AC*) 31 2 A32=A33∧312
12 C B1C=B14∧41C (BC*) 32 2 A2*=FA(A12, A22)
13 C C*= AC∪BC 33 2 2*=A2∪B2
14 C C11 34 2 210
15 C C12 35 1 A21=A2C∧C11
16 C C33 36 1 A1*=FA(A11, A21)
17 3 A23=A2C∧C13 37 1 1*=A1∪B1
18 3 A33=A25∧513 38 0 A0*=A2∧210
19 3 A3*=FA(A23, A33) 39 0 B20=B22∧210
20 3 B13=B1C∧C13 40 0 B0*=FB(B20, B30)
 41 0 0*=A0∪B0

3.3.5 Reducing the memory requirements for fault simulation

Obviously, the presented method of parallel-pattern fault simulation needs extra
memory for storing the formulas of calculation model. This issue can easily restrict
the applicability of the approach with circuits of a large size. Figure 3.9 illustrates
the empirical study of the sizes of optimized calculation models for the selected
benchmarking circuits. It can be seen from the diagram that the memory
consumption is growing with the circuit size.

In Paper III, a method has been proposed that is able to reduce the impact of
memory requirements by splitting the calculation model into several parts. The
algorithm that is described in Section 4 of Paper III is rather straightforward but it
confirms the viability of the idea (see experimental data in Section 5 of Paper III).

The approach proposes to partition the set of primary inputs PI into a number of
non-overlapping subsets Bi⊂PI. For each of the constructed subsets Bi, a partial
reconvergency graph Gi⊂G, where set Ni consists of nodes x∈Ni for which the
following condition is satisfied: Bi ∩ Γ*-1(x)≠∅.

47

0

5

10

15

20

25

30

35

C190
8

C267
0

C354
0

C513
5

C755
2

s1
32

07_
C

s1
58

50_
C

s3
59

32_
C

s3
84

17_
C

s3
85

84_
C

b1
4_

C
b1

5_
C

b1
7_

C

Circuits

G
at

es
, K

0

2

4

6

8

10

12

14

16

M
em

or
y,

 M
B

Gates

Memory

Figure 3.9: Memory requirements for fault simulation

The fault simulation with reduced memory requirements is performed in several
iterations. Each pass starts with the creation of formulas for reconvergency sub-
graph Gi and construction of a partial calculation model. During the evaluation of
the model, the detectability of fanouts corresponding to nodes x∈Ni is determined.
Then the partial model is deleted, freeing the memory for construction of formulas
for the next partial reconvergency sub-graph Gi+1.

It is very likely that an overlap occurs between pairs of sets Ni and Nj of partial
reconvergency sub-graphs. As result, this method introduces a certain overhead:
the construction and evaluation of some formulas that correspond to the nodes
falling into the overlapped area is done several times.

Let us consider the schematic illustration of the circuit structure in Figure 3.10.
The set of primary inputs for this example is PI={i1, i2, i3} and the example
partition of inputs is };,{ 321 iii=π . This partition splits the circuit structure into
two overlapping slices and leads to construction of two partial reconvergency sub-
graphs (G1 and G2) with the overlapped set of nodes N12=N1∩N2.

i1 o1

G1
i2 o2

Primary
inputs

Primary
outputs

G2

overlap

o3

i3 o4

Figure 3.10: Schematic representation of circuit structure

48

Certainly there is no need to construct full sensitivity vectors and partial
sensitivity vectors for the nodes belonging to N12 twice. Instead, the sensitivity
vectors need to be constructed only once either for G1 or for G2. However, the
activity vectors still are constructed for both cases as they can be used in
calculation of sensitivities for nodes not belonging to N12. The latter, is the source
of overhead introduced by the splitting of calculation model.

As for the current implementation, no analysis is conducted to find out which of
the activity vectors corresponding to the nodes in overlapping area can be
constructed only for specific partial reconvergency graphs. However such analysis
that is planned for future work will certainly decrease the overhead. Further
investigation is also required for the ways of selection of partition π to minimize
the size of overlapped area. However, for currently conducted experiments, the
partition π was selected randomly taking into account only the amount of available
memory.

3.3.6 Overview of experimental results

The method of parallel-pattern simulation that uses non-optimized model has
demonstrated speed-up in fault analysis in comparison with commercial tools
(see Paper II). However, the experiments presented in [VI] had shown improved
scalability because of construction of joined model for all primary outputs.

The final approach presented in Paper III had achieved the best results due to
optimization of repetitive formulas inside the calculation model. The conducted
experiments (section 5 of Paper III) had shown the advantage of the method in
comparison with other fault simulators. The achieved speed gain was about 4.8
and 53 times (in average) for the circuits selected from the different benchmark
sets. The overall comparison of the both simulation methods is given in
Section 3.5.

Considering the memory reduction, the carried out preliminary experiments had
illustrated the feasibility of this approach for sort of the circuits. For example, the
size of memory needed for simulation of the largest circuit of ISCAS’89 [63]
decreased almost by four times while the overhead in simulation speed was less
than two times. However the experiments also shown that the current approach is
not universal: for certain circuits the size of memory used by fault simulator
reduced insignificantly (less than by 25%). Nevertheless the average decrease of
memory consumption is more than half and the average cost of such reduction is
the degradation of fault simulation speed by 2.5 times.

3.3.7 Conclusions

The fundamental result of Paper II and Paper III is a novel approach for parallel
exact critical path tracing for combinational circuits or scan-path designs. The main

49

idea of the method is to perform topological analysis of circuit in order to create a
model for calculating of Boolean differentials. Thanks to the parallelism and
optimization of the calculation model, the speed of fault simulation was
considerably increased in comparison with other fault analysis techniques.

 In case of very large circuits, the proposed technique can require large amount
of extra memory for storing the formulas of calculation model. To reduce the
memory consumption, the method for splitting the simulation process into several
iterations was proposed. However, the latter method requires further improvement.

3.4 Hierarchical calculation of fault injection sites

The topic of research that is described in Paper IV is different from the issues
discussed above since it concerns the problem of dependability analysis. However
the presented method is tightly bounded with fault analysis technique.

Generally speaking, a dependable system that is equipped with capabilities for
error detection and recovering typically requires a comprehensive testing of fault
tolerance mechanisms along with the conventional test. Fault injection technique is
the one of the methods for evaluation of the quality of fault tolerance mechanism of
a system. The method suggests to perform injection of faults and study the results
of system behavior in the presence of faulty component.

A simulation-based fault injection technique considered in the paper is used for
analysis of dependability during the phase of the design of digital systems.
However there is a problem of the selection of the subset of faults for injection and
further study. In general, a presence of a fault not necessarily results in the
erroneous behavior of a system (such faults are considered as not critical). But for
testing of fault tolerance facilities, the critical (malicious) faults (that lead to
malfunction of system on application level) are definitely preferable for evaluation.

In contrast with the methods that are using HDL-based approaches (e.g. [58],
[59]), the key idea of the paper is to use multi-level circuit modeling with the help
of Decision Diagrams (DD). In particular, High-Level Decision Diagrams
(HLDDs) are used for description of circuit on a higher abstraction level while
SSBDD represent circuit on lower-level. As result, the method excellently copes
with the complexity (in contrast to pure gate-level models) and provides gate-level
accuracy at the same time.

However the presented approach requires conversion of HDL description of
system into hierarchical DD-model, the current paper is not focused on this issue.
The study on this topic was carried out in [60].

The comprehensive description of the proposed method together with the
illustrative examples is provided in Paper IV.

50

3.5 Overall experimental results

In this section the overall results of experiments for both single-pattern and
parallel-pattern fault analysis methods are presented and compared with other fault
simulators. Below we are illustrating only the final results while the more detailed
information can be found in Papers I-III.

The experiments have been carried out on single UltraSPARC IV+ 1500MHz
platform under control of SunOS operating system. The results for linear critical
path tracing method by Wu et al. published in [28] had been obtained on
Pentium 2.8GHz processor. For every circuit, 10000 test patterns were simulated
by each tool. The fault dropping was deactivated hence complete fault table was
obtained in each case. No memory constraints were applied during fault analysis.

The first column of Table 3.4 contains the circuits selected from three different
benchmark sets: ISCAS’85 [61], [62], ISCAS’89 [63] and ITC’99 [64], [65]. The
sequential circuits of ISCAS’89 and ITC’99 were substituted by their
combinational versions (with cut-out flip-flops). The next column represents the
size of each circuit (in terms of the number of 2-input gate equivalents).

The next group of columns contains the number of seconds spent by each of
fault simulators for building fault table. Columns 3 and 4 illustrate the simulation
results of proposed parallel-pattern simulator with optimized and non-optimized
calculation models respectively. The results of single-pattern fault analysis are
presented in Column 5.

For the illustrative purposes, Column 6 contains the results of parallel-pattern
simulation in case if test patterns are available one-by-one (i.e. Column 6 contains
the results of Column 3 multiplied by 32). This allows the “normalized”
comparison between parallel-pattern and single-pattern approaches.

As for comparison with other methods, four different fault simulators were
selected. FSIM (Column 7) is an efficient PPSFP simulator described in [25] which
was modified for usage without fault dropping. C1 and C2 (Columns 8 and 9) are
state-of-the-art commercial parallel-pattern simulators that are incorporated into the
test development toolsets from major CAD vendors. The simulation results
obtained in [28] are provided in Column 10.

The last row presents an average speed-up achieved by parallel-pattern fault
simulator (Column 3) in comparison with others. Except for Column 6, the average
speed gain of single-pattern fault simulation is presented when comparing with the
results of Column 6.

According to Table 3.4, the proposed parallel-pattern fault simulator had shown
the best results in terms of simulation time. However in case of single-pattern
applications of fault simulator the method described in Section 3.2 becomes more
efficient.

51

Table 3.4: Overall experimental results

Proposed methods Commercial and
academic fault simulators

Circuit Size,
gates Parallel-

pattern
(optim.)

Parallel-
pattern

(non-opt)

Single-
pattern

Parallel-
pattern
/single

FSIM C1 C2 Wu

c1355 518 0.3 0.4 2.5 9.6 0.2 1.7 9 638
c1908 618 0.4 0.6 2.5 11.2 0.6 3.0 12 638
c2670 883 0.4 0.5 4.1 13.1 0.8 2.2 24 555
c3540 1270 0.9 1.3 5.0 28.5 2.0 7.4 43 763
c5315 2079 0.8 0.9 9.4 24.3 1.4 5.6 57 1254
c6288 2384 7.4 14.8 26.0 237.4 12.1 27.8 284 4267
c7552 2632 1.2 1.9 16.3 37.8 2.7 8.1 88 1467
s13207 3214 2.0 2.6 32.0 64.6 N/A 5.6 70 N/A
s15850 3873 2.7 5.2 47.7 85.8 N/A 12.1 111 N/A
s35932 12204 5.7 6.4 433.4 183.7 N/A 23.6 390 N/A
s38417 9849 7.0 11.1 267.9 225.0 N/A 31.4 310 N/A
s38584 13503 6.4 9.3 336.0 205.4 N/A 23.2 320 N/A
b14 9150 14.5 35.9 78.2 463.0 N/A 49.2 N/A N/A
b15 8877 26.6 48.3 116.3 849.9 N/A 39.1 N/A N/A
b17 31008 77.8 233.3 1152.3 2488.6 N/A 117.7 N/A N/A
Average speed gain
by parallel-pattern

fault simulator
1 1.6 17.1 3.6* 1.5 4.7 43 1189

3.6 Chapter summary

In this chapter the overview of the research results published in Papers I-IV has
been presented together with the overall experimental results.

The first part of the chapter provides a description of SSBDD model that is used
by the proposed fault simulation methods. Next, the main contributions and results
of research have been described. This had included the shortened description of
single-pattern and parallel-pattern fault simulation algorithms as well as a brief
introduction to an approach for dependability analysis. Finally, the results of
experiments with the proposed methods have been presented and the comparison
with other approaches has been made.

52

Chapter 4

CONCLUSIONS

Fault simulation is a widely used task in the flow of design of digital systems.
Although the primary goal of fault simulation is to estimate the quality of test
program, it is incorporated into many other test-related tasks as an auxiliary step.
Numerous methods of fault simulation for different fault models, circuit types and
abstraction levels have been proposed so far.

The presented work mainly addresses the problem of fault simulation of
combinational circuits on well-known stuck-at fault model. Several novel
approaches that attempt to increase the efficiency of fault simulation (in terms of
CPU time and memory consumption) have been proposed in the thesis.

In the following sections the main contributions of the work are outlined and the
perspectives for future research are discussed.

4.1 Contributions

The contributions of the presented work are summarized below.

The fault simulation algorithms introduced in the current thesis work with
macro-level circuit descriptions represented with the help of Structurally
Synthesized Binary Decision Diagrams. This had allowed to exploit the advantages
of SSBDD model that is successfully utilized in other test-related problems also for
fault simulation. The usage of higher abstraction level instead of gate-level ensures
the immediate gain of circuit evaluation speed but keeps the accuracy of evaluation
in conformity with gate-level models. Prior to this work, only basic fault simulation
techniques were realized for SSBDD model, e.g. serial fault analysis and pure
PPSFP. However they had proven to be more efficient than their gate-level

53

analogues. The current work makes one step forward introducing more
sophisticated algorithms of fault analysis on Structurally Synthesized BDDs.

A novel single-pattern fault simulation approach has been proposed. The
method is based on introduced deductive fault list propagation algorithm through
SSBDD graphs. The topological pre-analysis of a circuit under simulation is
carried out in order to determine circuit parts that do not require deductive
reasoning but rather simpler propagation algorithms. In addition, the technique for
shrinking the list fault candidates is proposed for the sake of accelerating the
overall simulation speed. Together, the drawn ideas form an efficient single-pattern
fault simulator.

The experiments have shown that the proposed optimization technique is able to
reduce the size of list of potential faults to only 13% of uncollapsed size.
Moreover, thanks to the topological pre-analysis, it became evident that deductive
propagation can be avoided for ~39% of SSBDD graphs in circuit (in average).
However the achieved simulation speed is mediocre in comparison with the
proposed parallel-pattern approaches, single-pattern simulation is very suitable for
the tasks that demand simulation of test patterns one-by-one. In the latter case, the
fastest parallel-pattern approach is outperformed by 3.6 times.

The thesis introduces a parallel-pattern fault simulation method. Two novelties
are proposed here: the parallel critical path tracing algorithm on SSBDD model and
the technique for simulating circuit beyond fanout-free regions with the help of
Boolean differentials. The conducted experiments have shown that the proposed
method overcomes other fault simulation techniques. In particular, the speed-up
is 4.7 and 1.5 times in comparison with commercial and academic tools
respectively.

The problem of the memory consumption has been studied for the case of
parallel-pattern fault simulation and an approach for reducing the memory
requirements has been presented. However the proposed idea is not universal, the
experiments had shown its viability for certain types of circuits. The best achieved
result was in cutting down memory consumption by 73% while the speed of
simulation decreased only by 1.7 times. The average results are 48% and 2.5 times
respectively.

An approach of dependability analysis with the help of Decision Diagrams has
been proposed. The method targets construction of a list of malicious faults that are
intensively used in fault tolerance analysis. The idea is based on using hierarchy of
DDs for representation of circuit on multi-levels: High-Level DD model for
register-transfer level and SSBDDs for gate-level. The presented conception
enables to avoid the complexity problems of pure logic-level description, but at the
same time performs malicious fault analysis with the gate-level accuracy.

54

4.2 Future work

This section outlines the most important issues that require further investigation
for improving of the proposed techniques.

First of all, the experiments presented in the current thesis had been carried out
on benchmark circuits of relatively small size: the largest circuit under simulation
contains less than hundred of kilo gates. Obviously, we plan to measure the speed
of both proposed methods by using industrial-sized benchmarks that consist of
millions of gates. This is required for study of the scalability of the proposed
techniques.

The experiments that reveal the influence of fault dropping have been left out of
scope of current thesis. However, since this technique is frequently used to
accelerate fault analysis such experiments have to be additionally conducted to find
out which of the methods provides better performance with fault dropping.

The memory requirements of the proposed parallel-pattern simulation algorithm
certainly demand further investigation. The abovementioned method of relaxing
memory constraints provides rather straightforward solution and leaves a room for
further improvements.

At the same time the conception of splitting of fault simulation model into parts
can be also applied for parallelization of fault simulation over several workstations
(or several processor cores). The usage of capabilities of such parallelization could
bring the presented fault simulation approach to a new level of performance.

Certainly a standalone gate-level fault analysis typically is not a major issue in
the digital design field nowadays. Instead, various applications demanding efficient
fault simulation engine have to be tried. One of the promising ways is to go on
higher levels of abstraction and build a fault simulation tool that uses hierarchical
approach. In this case, the presented methods can be utilized as an efficient lower-
level simulator. Another direction is to acquire more experience in acceleration of
other simulation-dependent tasks by incorporation of fast fault analysis algorithms.

The presented technique for creation of lists of malicious faults demonstrates
the one of possible applications of fault analysis. However, the further
development of this direction requires the creation of a tool that is capable to
handle all levels of hierarchy: HLDD and SSBDD. Then, more comprehensive
experiments need to be carried out to estimate the effectiveness of the proposed
method.

55

References

Co-authored papers:

[I] J. Raik, R.Ubar, S.Devadze and A.Jutman. Efficient Single-Pattern Fault
Simulation on Structurally Synthesized BDDs. – Proc. of 5th European
Dependable Computing Conference, Hungary, 2005, pp.332-344.

[II] R. Ubar, S. Devadze, J. Raik, A. Jutman. Ultra Fast Parallel Fault Analysis
on Structurally Synthesized BDDs. – Proc. of 12th IEEE European Test
Symposium, Germany, 2007, pp. 131-136.

[III] S. Devadze, R. Ubar, J. Raik, A. Jutman. Parallel Exact Critical Path Tracing
Fault Simulation with Reduced Memory Requirements. – Proc. of 4th IEEE
International Conference on Design & Technology of Integrated Systems in
Nanoscale Era, Egypt, 2009

[IV] R. Ubar, S. Devadze, M. Jenihhin, J. Raik, G. Jervan, P. Ellervee.
Hierarchical Calculation of Malicious Faults for Evaluating the Fault
Tolerance. – Proc. of 4th IEEE International Symposium on Electronic
Design, Test & Applications, China, 2008, pp. 222-227

[V] S. Devadze, J. Raik, A. Jutman, R. Ubar. Fault Simulation with Parallel
Critical Path Tracing for Combinational Circuits Using Structurally
Synthesized BDDs. – Proc. of 7th IEEE Latin-American Test Workshop,
Argentina, 2006, pp.97-102.

[VI] R. Ubar, S. Devadze, J. Raik, A. Jutman. Parallel Fault Backtracing for
Calculation of Fault Coverage. – Proc. of 43rd International Conference on
Microelectronics, Devices and Materials and the Workshop on Electronic
Testing, Slovenia, 2007, pp. 165-170.

[VII] R. Ubar, S. Devadze, J. Raik, A. Jutman. Parallel Fault Backtracing for
Calculation of Fault Coverage. – Proc. of 13th Asia and South Pacific Design
Automation Conference, South Korea, 2008, pp. 667-672.

56

[VIII] S.Devadze, A.Jutman, A.Sudnitson, R.Ubar, H.-D.Wuttke. Teaching Digital
RT-Level Self-Test Using a Java Applet. – Proc. of 20th IEEE Conference
NORCHIP’2002, Denmark, 2002, pp.322-328.

[IX] R.Ubar, A.Jutman, S.Devadze, H.-D. Wuttke. Bringing Research Issues into
Lab Scenarios on the Example of SOC Testing. – Proc. of Int. Conference on
Engineering Education, Portugal, 2007, pp. 170-171.

[X] R.Ubar, A.Jutman, M.Kruus, E.Orasson, S.Devadze, H.-D.Wuttke. Learning
Digital Test and Diagnostics via Internet. International Journal of Emerging
Technologies in Learning. International Journal of Online Engineering,
Vol.3, No.1, 2007, pp. 1-9.

Other references:

[1] G. Moore. Cramming More Components onto Integrated Circuits. – Reprint
from IEEE proceedings on Electronics, Vol. 38, No. 8, 1965.

[2] R. W. Keyes, The Impact of Moore's Law. – IEEE Solid-State Circuits,
Issue: Sept 2006.

[3] International Technology Roadmap for Semiconductors, 2007-2008.

http://public.irts.net [June 2009]

[4] M.L. Bushnell, V.D. Agrawal. Essentials of Electronic Testing for Digital
Memory and Mixed-Signal VLSI Circuits. Kluwer Academic
Publishers, 2000.

[5] L.-T. Wang, C.-W. Wu, X. Wen. VLSI Test Principles and Architectures.
Elsevier, 2006.

[6] S. Mourad, Y. Zorian. Principles of Testing Electronic Systems. Wiley
Interscience, 2000.

[7] S. Kundu, S.T. Zachariah, Y.-S. Chang, C. Tirumurti. On modeling crosstalk
faults. – IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2005, vol. 24, issue 12, pp 1909-1915.

[8] R. Desineni, K. N. Dwarkanath, R.D. Blanton. Universal Test Generation
Using Fault Tuples. – Proc. of the IEEE International Test Conference, 2000,
pp.812-819

[9] V.K. Agarwal, A.F.S. Fung. Multiple Fault Testing of Large Circuits by
Single Fault Test Sets. – IEEE Transactions on Circuits and Systems, vol
CAS-28, 1981, pp. 1059-1069.

[10] R. C. Aitken. Defect-Oriented Testing. In series: D. Gizopoulos, Advances
in Electronic Testing, Springer, 2006.

[11] M. Abramovici, M.A.Breuer, A.D. Friedman. Digital systems testing and
testable design. IEEE Press. 1990.

57

[12] A. Miczo. Digital Logic Testing and Simulation. Wiley Interscience, 2003.

[13] S. Seshu. On an Improved Diagnosis Program. – IEEE Trans. on Electronic
Computers, 1965, pp. 76-79

[14] J.A. Waicukauski, E.B. Eihelberger, D.O. Forlenza, E. Lindbloom,
T. McCarthy. Fault Simulation for Structured VLSI. VLSI Systems Design,
1985, pp. 20-32.

[15] E.G. Ulrich, T. Baker. The Concurrent Simulation of Nearly Identical Digital
Networks. – Proc. of 10th Design Automation Workshop, 1973, pp. 145-150.

[16] W.-T. Cheng, M.-L. Yu. Differential Fault Simulation - A Fast Method using
Minimal Memory. – Proc. of 26th Design Automation Workshop, 1989,
pp. 424-428.

[17] T.M. Niermann, W.-T. Cheng. J. H. Patel. PROOFS: A Fast,
Memory-Efficient Sequential Circuit Fault Simulator. – IEEE Transactions
on Computer-Aided Design, Vol. 11, No. 2, 1992, pp. 198-207.

[18] D.B. Armstrong. A Deductive Method for Simulating Faults in Logic
Circuits. – IEEE Trans. on Computers, Vol. C21, No. 5, 1972, pp. 464-471.

[19] M. Abramovici, P.R. Menon, D.T. Miller. Critical Path Tracing - an
Alternative to Fault Simulation. – in Proc. of 20th Design Automation
Conference, 1983, pp.214-220.

[20] K.J. Antreich, M.H. Schulz. Accelerated Fault Simulation and Fault Grading
in Combinational Circuits. – IEEE Trans. on Computer-Aided Design,
Vol. 6, No. 5, 1987, pp. 704-712.

[21] D. Harel, R. Sheng, J. Udell. Efficient Single Fault Propagation in
Combinational Circuits. – Proc. of International Conference on Computer-
Aided Design, 1987, pp. 2-5.

[22] F. Maamri, J. Raiski. A Method of Fault Simulation Based on Stem Regions.
– IEEE Trans. on Computer-Aided Design, Vol. 9, No. 2, 1990, pp. 212-220.

[23] J.P. Roth, W. G. Bouricius, P. R. Schneider. Programmed Algorithms to
Compute Tests to Detect and Distinguish Between Failures in Logic
Circuits. – IEEE Trans. on Electronic Computers, Vol. 16, No. 10, 1967,
pp. 567-579

[24] B. Underwood, J. Ferguson. The Parallel-Test-Detect Fault Simulation
Algorithm. – Proc. of International Test Conference, 1989, pp.712-717.

[25] H.K. Lee, D.S. Ha. An efficient, forward fault simulation algorithm based on
the parallel pattern single fault propagation. – Proc. of International Test
Conference, 1991, pp. 946-955.

[26] D. Saab. Parallel-Concurrent Fault Simulation. – IEEE Trans. on VLSI
Systems, Vol. 1, No. 3, 1993, pp.356-364.

58

[27] N. Takahashi, N. Ishiura, S.Yajima. Fault Simulation for Multiple Faults by
Boolean Function Manipulation. – IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, Vol. 13, No. 4, 1994, pp. 531-535.

[28] L. Wu, D.M.H. Walker. A Fast Algorithm for Critical Path Tracing in VLSI
Digital Circuits. – Proc. of 20th IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems, 2005, pp. 178-186.

[29] M.G. McNamer, S.C. Roy, H.T. Nagle. Statistical Fault Sampling. – IEEE
Trans. on Industrial Electronics, Vol. 36, No. 2, 1989, pp.141-150.

[30] S.K. Jain, V.D. Agrawal. Statistical Fault Analysis. – IEEE Design and Test
of Computers, vol. 2, no. 1, January/February, 1985, pp. 38-44.

[31] D. Cock, A. Carpenter. A Proposed Hardware Fault Simulation Engine. –
Proc. of the European Conference on Design Automation, 1991,
pp. 570-574.

[32] W. Hahn, A. Hagerer, R. Kandlbinder. Hardware-Accelerated Concurrent
Fault Simulation: Eventflow Computing versus Dataflow Computing. –
Proc. of 4th Asian Test Symposium, 1995, pp. 107-111.

[33] S. Kang, Y. Hur, S.A. Szygenda. A Hardware Accelerator for Fault
Simulation Utilizing a Reconfigurable Array Architecture. – VLSI Design,
Vol. 6, No. 2, 1996, pp. 119-133.

[34] A. Parreira, J.P. Teixeira, A. Pantelimon, M.B. Santos, and J.T. de Sousa.
Fault Simulation Using Partially Reconfigurable Hardware. – Lecture Notes
in Computer Science, Vol. 2778, 2003, pp.839-848.

[35] P. Ellervee, J. Raik, V. Tihhomirov. Environment for Fault Simulation
Acceleration on FPGA. – Proc of 9th Biennial Baltic Electronic Conference,
Estonia, 2004, pp. 217-220.

[36] K. Gulati, S.P. Khatri. Towards Acceleration of Fault Simulation using
Graphics Processing Units. – Proc. of the 45th annual Design Automation
Conference, 2008, pp. 822-827.

[37] K. Gulati, S.P. Khatri. Fault Table Generation Using Graphics Processing
Units. – Proc. of the 16th International Test Synthesis Workshop, 2009.

[38] H.D. Schnurmann, E. Lindbloom, R.G. Carpenter. The Weighted Random
Test-Pattern Generator. – IEEE Trans. on Computers, Vol. 24, Issue 7,
pp. 695-700.

[39] R. Lisanke, F. Brglez, A.J. Degeus, D. Gregory. Testability-Driven Random
Test-Pattern Generation. – IEEE Trans. on Computer-Aided Design, Vol.
CAD6, No. 6, 1987, pp. 1082-1087.

[40] H.J. Wunderlich. Multiple Distributions for Biased Random Test Patterns. –
IEEE Trans. on Computer-Aided Design, Vol.9, No.6, 1990, pp. 584-593.

59

[41] M. Srinivas, L.M. Patnaik. A Simulation-Based Test Generation Scheme
Using Genetic Algorithms. – Proc. of 6th Int. Conference on VLSI Design,
1993, pp. 132-135.

[42] E.M. Rudnick, J.H. Patel, G.S. Greenstein, T.M. Niermann. Sequential
Circuit Test Generation in a Genetic Algorithm Framework. Proc. of Design
Automation Conference, 1994, pp. 698-704.

[43] T.J. Snethen. Simulator-oriented fault test generator. – Proc of 14th Design
Automation Conference, 1977, pp. 88-93.

[44] V.D. Agrawal, K.-T. Cheng, P. Agrawal. A Directed Search Method for Test
Generation Using a Concurrent Simulator. – IEEE Trans. on Computer-
Aided Design, Vol. 8, No. 2, 1989, pp. 131-138

[45] S. Kajihara, K. Miyase. On identifying don't care inputs of test patterns for
combinational circuits. – Proc. of International Conference on Computer-
Aided Design, 2001, pp. 364-369.

[46] A. Jutman, I. Aleksejev, J. Raik, R. Ubar. Reseeding using compaction of
pre-generated LFSR sub-sequences. – Proc of 15th Int. Conference on
Electronics, Circuits and Systems, 2008, pp. 1290-1295.

[47] G. Jervan, P. Eles, Z. Peng, R. Ubar, M. Jenihhin. Test time minimization for
hybrid BIST of core-based systems. – Proc of 12th Asian Test Symposium,
2003, pp. 318-323.

[48] R. Ubar. Test Generation for Digital Circuits Using Alternative Graphs (in
Russian). – Proc. of Tallinn Technical University, No.409, 1976, pp.75-81.

[49] S.B. Akers. Binary Decision Diagrams. – IEEE Trans. on Computers,
Vol. C27, No. 6, 1978, pp. 509-516.

[50] R. Drechsler, B. Becker. Binary decision diagrams: Theory and
implementation, Kluwer Academic Publishers, 1998.

[51] A. Jutman. On SSBDD Model Size and Complexity. – Proc of 4th Electronic
Circuits and Systems Conference, Slovakia, 2003, pp. 17-22.

[52] A. Jutman, J. Raik, R. Ubar. SSBDDs: Advantageous Model and Efficient
Algorithms for Digital Circuit Modeling, Simulation & Test. – Proc. of 5th
Int. Workshop on Boolean Problems, Germany, 2002, pp. 157-166.

[53] R. Ubar. Test Synthesis with Alternative Graphs. – In IEEE Design and Test
of Computers, 1996. pp. 48-57.

[54] R. Ubar, A. Jutman, Z. Peng. Timing Simulation of Digital Circuits with
Binary Decision Diagrams. – Proc. of Design Automation and Test in
Europe Conference, Germany, 2001, pp. 460-466.

60

[55] A. Jutman, R. Ubar. Application of Structurally Synthesized Binary Decision
Diagrams for Timing Simulation of Digital Circuits. – Proc. of the Estonian
Academy of Sciences, Engineering, Vol. 7/4, 2001, pp. 269-288.

[56] A. Jutman, R. Ubar. Design Error Diagnosis in Digital Circuits with Stuck-at
Fault Model. – Journal of Microelectronics Reliability, Pergamon Press, Vol.
40, No. 2, 2000, pp.307-320.

[57] A. Jutman, A. Peder, J. Raik, M. Tombak, R. Ubar. Structurally synthesized
binary decision diagrams. – Proc. of 6th International Workshop on Boolean
Problems, Freiberg, 2004, pp.271-278.

[58] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, J. Karlsson. Fault injection into
VHDL models: the MEFISTO tool. – Proc 24th Int. Symposium on ault-
Tolerant Computing, 1994, pp. 66-75.

[59] R. Leveugle1, K. Hadjiat. Multi-Level Fault Injections in VHDL
Descriptions: Alternative Approaches and Experiments. – Journal of
Electronic Testing, Vol. 19, No. 5, 2003.

[60] M. Jenihhin. Simulation-Based Hardware Verification with High-Level
Decision Diagrams. – Ph.D. Thesis, Tallinn University of Technology, 2008.

[61] F. Brglez, H. Fujiwara. A Neutral Netlist of 10 Combinational Benchmark
Circuits and a Target Translator in Fortran. – Proc. of the International Test
Conference, 1985, pp. 785-794.

[62] ISCAS85 Combinational Benchmark Circuits in ‘Bench’ Format.
Department of Computer Engineering, University of Illinois.

http://courses.ece.illinois.edu/ece543/iscas85.html [June 2009]

[63] F. Brglez, D. Bryan, K. Kominski. Combinational Profiles of Sequential
Benchmark Circuits. – Proc. Int. Symposium on Circuits and Systems, 1989,
pp. 1929-1934.

[64] F. Corno, M.S. Reorda, G. Squillero. RT-level ITC'99 benchmarks and first
ATPG results. – IEEE Design & Test of Computers, Vol. 17, No. 3, 2000,
pp. 44-53

[65] ITC99 Benchmarks, Combinational Gate-Level Versions. CAD Group,
Politecnico di Torino

http://www.cad.polito.it/tools/itc99.html [June 2009]

61

62

RESEARCH PAPERS

63

Paper I

The article was published in the Lecture Notes in Computer Science,
Vol. 3463, 2005.

65

Paper II

This paper was published in the Proceeding of the 12th IEEE European Test
Symposium (ETS 2007).

81

Paper III

This paper was published in the Proceeding of IEEE International Symposium
on Design & Technology of Integrated Systems in Nanoscale Era (DTIS 2009)

89

Paper IV

This paper was published in the Proceeding of IEEE International Symposium
on Electronic Design, Test and Applications (DELTA 2008)

97

Curriculum Vitae

Personal Data

 Name Sergei Devadze

 Date of birth 05.01.1981

 Place of birth Estonia

 Citizenship Estonian

Contact Data

 Address Raja 15, Tallinn, 12618

 Phone +372 6202262

 E-mail serega@pld.ttu.ee

Education

 2004 – … Ph.D. Student, Department of Computer
 Engineering, Tallinn University of Technology

 2003 – 2004 M.Sc. in Computer Engineering, TUT

 1999 – 2003 B.Sc. in Computer Engineering, TUT

Carrier

 2007 – … Researcher at Department of Computer
 Engineering, TUT

2004 – 2005 ELIKO Competence Centre in Electronics-, Info-
and Communication Technologies, R&D Engineer

 2001 – 2006 Engineer at TUT

105

Academic Degree

 Master of Science in Computer Engineering, TUT,

 “Web-Based System for Finite State Machines Decomposition”

Awards

 2001 1st prize at the contents of student works by
 Estonian Ministry of Education and Research

2004 – 2007 Scholarship of Estonian Information Technology
Foundation (EITSA)

Research topics

 Fault simulation, optimization of board-level testing, decision
 diagrams, decomposition of finite state machines

106

Elulookirjeldus

Isikuandmed

 Nimi Sergei Devadze

 Sünniaeg 05.01.1981

 Sünnikoht Eesti

 Kodakondsus Eesti

Kontaktandmed

 Aadress Raja 15, Tallinn, 12618

 Telefon +372 6202262

 E-post serega@pld.ttu.ee

Hariduskäik

 2004 – … doktorant, Arvutitehnika Instituut, Tallinna
 Tehnikaülikool

 2003 – 2004 tehnikateaduste magister, Arvuti- ja
 süsteemitehnika eriala, TTÜ

 1999 – 2003 tehnikateaduste bakalaureus, Arvuti- ja
 süsteemitehnika eriala, TTÜ

Teenistuskäik

 2007 – … teadur, Arvutitehnika Instituut, TTÜ

2004 – 2005 arendusinsener, ELIKO OÜ Tehnoloogia
arenduskeskus

 2001 – 2006 insener, Arvutitehnika Instituut, TTÜ

107

Teaduskraad

 Tehnikateaduste magister, Arvuti- ja süsteemitehnika, TTÜ

 “Automaatide dekompositsiooni veebikeskkond”

Teaduspreemiad

 2004 – 2007 Eesti Infotehnoloogia Sihtasutuse (EITSA)
 stipendium

 2003 Eesti Haridus- ja Teadusministeeriumi
 korraldatud üliõpilaste teadustööde
 konkursi esimene preemia tehnikateaduste
 valdkonnas

Teadustegevus

 Rikete simuleerimine, trükkplaatide testimise optimeerimine,
 otsusediagrammid, lõplike automaatide dekompositsioon

108

DISSERTATIONS DEFENDED AT
TALLINN UNIVERSITY OF TECHNOLOGY ON

INFORMATICS AND SYSTEM ENGINEERING

 1. Lea Elmik. Informational modelling of a communication office. 1992.
 2. Kalle Tammemäe. Control intensive digital system synthesis. 1997.
 3. Eerik Lossmann. Complex signal classification algorithms, based on the third-
order statistical models. 1999.
 4. Kaido Kikkas. Using the Internet in rehabilitation of people with mobility
impairments – case studies and views from Estonia. 1999.
 5. Nazmun Nahar. Global electronic commerce process: business-to-business.
1999.
 6. Jevgeni Riipulk. Microwave radiometry for medical applications. 2000.
 7. Alar Kuusik. Compact smart home systems: design and verification of cost
effective hardware solutions. 2001.
 8. Jaan Raik. Hierarchical test generation for digital circuits represented by
decision diagrams. 2001.
 9. Andri Riid. Transparent fuzzy systems: model and control. 2002.
10. Marina Brik. Investigation and development of test generation methods for
control part of digital systems. 2002.
11. Raul Land. Synchronous approximation and processing of sampled data
signals. 2002.
12. Ants Ronk. An extended block-adaptive Fourier analyser for analysis and
reproduction of periodic components of band-limited discrete-time signals. 2002.
13. Toivo Paavle. System level modeling of the phase locked loops: behavioral
analysis and parameterization. 2003.
14. Irina Astrova. On integration of object-oriented applications with relational
databases. 2003.
15. Kuldar Taveter. A multi-perspective methodology for agent-oriented business
modelling and simulation. 2004.
16. Taivo Kangilaski. Eesti Energia käiduhaldussüsteem. 2004.
17. Artur Jutman. Selected issues of modeling, verification and testing of digital
systems. 2004.
18. Ander Tenno. Simulation and estimation of electro-chemical processes in
maintenance-free batteries with fixed electrolyte. 2004.

109

19. Oleg Korolkov. Formation of diffusion welded Al contacts to semiconductor
silicon. 2004.
20. Risto Vaarandi. Tools and techniques for event log analysis. 2005.
21. Marko Koort. Transmitter power control in wireless communication systems.
2005.
22. Raul Savimaa. Modelling emergent behaviour of organizations. Time-aware,
UML and agent based approach. 2005.
23. Raido Kurel. Investigation of electrical characteristics of SiC based
complementary JBS structures. 2005.
24. Rainer Taniloo. Ökonoomsete negatiivse diferentsiaaltakistusega astmete ja
elementide disainimine ja optimeerimine. 2005.
25. Pauli Lallo. Adaptive secure data transmission method for OSI level I. 2005.
26. Deniss Kumlander. Some practical algorithms to solve the maximum clique
problem. 2005.
27. Tarmo Veskioja. Stable marriage problem and college admission. 2005.
28. Elena Fomina. Low power finite state machine synthesis. 2005.
29. Eero Ivask. Digital test in WEB-based environment 2006.
30. Виктор Войтович. Разработка технологий выращивания из жидкой фазы
эпитаксиальных структур арсенида галлия с высоковольтным p-n переходом
и изготовления диодов на их основе. 2006.
31. Tanel Alumäe. Methods for Estonian large vocabulary speech recognition.
2006.
32. Erki Eessaar. Relational and object-relational database management systems
as platforms for managing softwareengineering artefacts. 2006.
33. Rauno Gordon. Modelling of cardiac dynamics and intracardiac bio-
impedance. 2007.
34. Madis Listak. A task-oriented design of a biologically inspired underwater
robot. 2007.
35. Elmet Orasson. Hybrid built-in self-test. Methods and tools for analysis and
optimization of BIST. 2007.
36. Eduard Petlenkov. Neural networks based identification and control of
nonlinear systems: ANARX model based approach. 2007.
37. Toomas Kirt. Concept formation in exploratory data analysis: case studies of
linguistic and banking data. 2007.
38. Juhan-Peep Ernits. Two state space reduction techniques for explicit state
model checking. 2007.

110

39. Innar Liiv. Pattern discovery using seriation and matrix reordering: A unified
view, extensions and an application to inventory management. 2008.
40. Andrei Pokatilov. Development of national standard for voltage unit based on
solid-state references. 2008.
41. Karin Lindroos. Mapping social structures by formal non-linear information
processing methods: case studies of Estonian islands environments. 2008.
42. Makism Jenihhin. Simulation-based hardware verification with high-level
decision diagrams. 2008.
43. Ando Saabas. Logics for low-level code and proof-preserving program
transformations. 2008.
44. Ilja Tšahhirov. Security protocols analysis in the computational model –
dependency flow graphs-based approach. 2008.
45. Toomas Ruuben. Wideband digital beamforming in sonar systems. 2009.

111

