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Abstract 

The primary goal of this study is to provide a low-cost, easy-to-use solution for 

capturing and analysis of human gait. The targeted application area is diagnostics and 

modelling of motion impairments common for neurological, diseases such as 

Parkinson’s or Alzheimer.  

In this study, a simple application for recording and computing gait parameters has been 

developed as a part of the present studies. To fulfil the requirement of low-cost solution, 

motion capture is performed by the Kinect motion sensor, whereas the analysing 

module is agnostic to data origin and may be used work with data obtained using other 

systems. 

Neurological diseases may severely affect walking patterns of the patients. This makes 

it impossible to apply commercially available tools for the purposes of step detection. 

To overcome this problem, a unique algorithm for individual step detection was 

developed within the framework of present research. 

To demonstrate applicability of the approach for neurology-related motion analysis two 

samples of captured gait data were analysed: one representing movements of 

Parkinson’s disease (PD) patients, the other containing recordings of controls of 

matching age and sex to PD patients. Analysing and comparing kinetic parameters and 

walking patterns revealed a statistically significant difference for a number of 

parameters and joints. 

This thesis is written in English and is 25 pages long, including 7 chapters, 13 figures 

and 5 tables. 
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Annotatsioon 
Alternatiivne meetod Parkinsoni patsientide kõnnaku analüüsimiseks 

Käesoleva töö põhieesmärgiks on arendada odav ja kasutajasõbralik süsteem, mis 

võimaldaks inimese kõnnaku salvestamist ja analüüsimist. Süsteemi 

rakendusvaldkonnaks on selliste neuroloogiliste haiguste nagu Parkinson ja Alzheimer 

diagnoosimine. 

Neuroloogilised haigused võivad tunduvalt mõjutada patsientide kõnnaku iseärasusi. 

Seepärast on kommertsiliselt saadavad lahendused sammude tuvastamiseks 

kasutuskõlbmatud. Selle töö raames valmis algoritm, mis suudab antud tingimustes 

üksikud sammud tuvastada.  

Kõnnaku salvestamiseks ja tunnussuuruste arvutamiseks arendati tarkvarasüsteem. 

Saavutamaks süsteemi madalat hinda teostatakse liigutuste tuvastamine Kinect sensori 

abil. Teiste lahendustega võrreldes võtab Kinecti häälestamine vähem aega ja see ei ole 

patsiendi jaoks häiriv. Samas on süsteemi analüüsiv tarkvara andmete allikast 

sõltumatu. 

Iga tuvastatud sammu kohta eraldati hulk liigutust kirjeldavaid parameetreid. Selleks et 

näidata töös arendatud raamistiku võimekust asjakohaselt analüüsida inimese liikumist 

rakendati see kahele salvestuste valimile. Ühte katserühma kuulusid Parkinsoni 

patsiendid, teine oli aga sama vanuse ja sooga inimeste kontrollrühm. 

Kinemaatiliste parameetrite analüüsi ja võrdlemise tulemused näitavad statistiliselt 

olulist erinevust mitme parameetri ja liigese korral. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 25 leheküljel, 7 peatükki, 13 

joonist, 5 tabelit. 
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List of abbreviations and terms 

PD Parkinson’s disease 

EMG Electromyography 

RGB-D Red-Green-Blue-Depth 

RGB Red-Green-Blue 

IR Infrared 

IMU Inertial Measurement Units 

WSN Wearable Sensor Nodes 

MM Motion Mass 

XAML Extensible Application Markup Language 

RAM Random Access Memory 

3D Three-dimensional 

2D Two-dimensional 

WPF Windows Presentation Foundation 

SDK Software Development Kit 

API Application Programming Interface 

CSV Comma Separated Values 

E Euclidean distance 

Tm Trajectory Mass 

Vm Velocity Mass 

Am Acceleration Mass 

Jm Jerk Mass 
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1 Introduction 

Numerous areas of medicine use human gait analysis for disease diagnostics. It assists 

decision-making, but requires presence of a human specialist. Modern laboratories are 

equipped with an expensive set of tools to make the process of gait evaluation more 

objective. Apart from being over-priced, this solution is time-consuming and obtrusive 

for patients. 

The purpose of this work is to develop an assisting application that will facilitate motion 

capture and recording, and provide basic tools for the analysis of individual steps. The 

step recognition algorithm must take gait abnormalities of people with 

neurodegenerative illnesses into consideration. One of the major tasks of this study is to 

extract the kinetic and angle parameters from raw data. To verify the results, it is 

important to determine if the values of parameters describing gait during forward 

walking motion differ significantly between the groups of healthy individuals (controls) 

and individuals with Parkinson’s disease (PD) patients. The current approach focuses on 

studying the parameters for each step detected. 

Apart from the functional requirements described earlier, there are critical non-

functional requirements that may influence the technology and the entire approach. One 

of the most important features of the system under development is being low cost and 

easy-to-use. The system also must be convenient for patients. 

To meet the requirements, the Kinect sensor was chosen to implement the data 

gathering system. The data processing and analysis model is platform independent and 

can be used with data from any system as long as it meets the structure requirements. 

The analysis unit consumes pre-recorded data files of human movements, visualises 

them, extracts steps and calculates fundamental parameters that can are used to analyse 

the subject’s health. 

Secondary goal is to evaluate the applicability of Whittle’s gait analysis [1] for 

Parkinson’s disease patients using Kinect-based solution. A positive result would allow 
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to investigate the influence of neurodegenerative diseases on gait compared to healthy 

people and extract features that differ for two groups mentioned. 

Lots of research has been done lately on the subject of gait analysis. Majority of the 

results available are either devoted to accurate step detection in the case of regular 

walking patterns or concentrate their attention on the extraction of certain features 

without proper detection of the beginning and ending points of the step. The core novel 

component of the present work is a unique algorithm for individual step detection, 

suitable for capturing gait patterns even at later stages of the disease.  

The present thesis is organized as follows: Section 2 gives an overview of existing 

solutions for gait analysis and discusses related work. Section 3 provides background 

information on software, hardware and algorithms used in this work. Section 4 describes 

the current solution. Section 5 presents the results achieved and discusses their 

validation. Conclusions are drawn in the last section. 

This work was a part of the B37 program. 
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2 Related work 

Traditional gait analysis is a manual process that relies mostly on therapists that visually 

observe patients. To reduce human errors, specialists are supported with measurement 

systems that evaluate the biomechanics of the gait [2]. 

A modern gait laboratory [2] has a motion capture system that consists of a special 

purpose computer, marker-based high-speed motion capture cameras, pressure sensitive 

plates and electromyography (EMG) system. To obtain three-dimensional kinematics of 

the whole human body, around 30 markers are required [2]. The accuracy of 

experiments in such laboratories depends on the precision of marker placement. 

This setup is expensive and can be operated only by specially trained staff. Moreover, 

the experiments are invasive and time consuming due to marker placement. 

The ponderous solution used in laboratories encourages research in the area of gait 

analysis and step recognition. Among a large diversity of solutions three most popular 

subsets can be differentiated: image processing, wearables and Kinect based solutions.  

2.1 Vision-based solutions 

In contrast to expensive cameras that are typically used for gait analysis, Saner et al. [3] 

suggested a more affordable alternative. The system consists of a simple two-

dimensional web camera and is claimed to be easy-to-use. However, it is marker-based, 

which leaves the issue with correct marker placement unaddressed. In addition, the 

system is limited to analysing the lower part of the body, as it can detect only the hip 

and knee points. [4] 

Reha@Home system proposed by Natarajan et al. [5] is a vision-based solution using an 

RGB-D camera to calculate angles and gait parameters. This system is portable, 

inexpensive and non-intrusive. Despite the advantages, it has several limitations. 

Reha@Home operates in the sagittal plane and consequently can recognise only 6 

joints: head, hip, both knees and both ankles. 
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2.2 Wearables 

Lately, Inertial Measurement Units (IMU)-based gait analysis systems have become 

increasingly popular due to being portable, inexpensive, and the potential for wireless 

data collection. However, the complexity of the sensor placement and issues with the 

consistency of the placement limits the usage of these settings to a laboratory. The 

effect of drift and noise in sensor measurements must be handled as well. Moreover, 

such systems are often intrusive, inconvenient for subjects of study, and experiments are 

time-consuming. 

A wireless and wearable IMU system was proposed by Margiotta, Avitabile and 

Coviello [6]. Each of Wearable Sensor Nodes (WSN) used in the experiment contains a 

Bluetooth Low Energy Communication Module and a 6-axis IMU. The WSNs are 

dressed by means of stretchable on-body straps. The number and location of the sensors 

depend on the parameters that need to be measured. 

Parisi et al. [7] introduced an IMU-based system that is time efficient and more 

convenient for subjects of study, yet is accurate. The main difference from other 

approaches was that only one IMU was used. The single IMU was placed on lower 

trunk. 

Jarchi et al. [8] and Atallah et al. [9, 6] describe another approach that uses low-priced 

and non-intrusive ear-worn sensors. The advantage of this method is its potential for 

usage in everyday life. However, there are many limitations to its functionality. The 

most relevant of them is the system’s inability to reliably detect right and left gaits and, 

consequently, the system is unable to calculate fundamental gait analysis parameters. 

2.3 Kinect based solutions 

The key benefits of using Kinect for motion analysis are its low cost, time efficiency, 

ability to operate in three-dimensional space and its non-invasive nature. The Kinect 

sensor provides a functionality to accurately track human skeleton without 

implementing complex algorithms. 

Dao et al. [4] [10] developed a gait analysis solution for studying gait analysis based on 

Kinect technology. They used skeleton data to analyse of motion and depth frames to 
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build a three-dimensional model of human body and visualise the movements. During 

the work steps are extracted, and the x-rotation and hip progression line calculated. 

In 2013 Nomm et al. [10] proposed a set of parameters referred to as Motion Mass 

(MM) that could be used to measure the amount and smoothness of movement. MM of 

a moving point is a vector consisting of five variables: Euclidean distance, Trajectory 

Mass, Acceleration Mass, the ratio between Euclidean distance and Trajectory Mass, 

and the ratio between Euclidean distance and Acceleration Mass. In 2016 Nomm et al. 

[11] introduced one more parameter – Velocity Mass. Their work proved that those 

parameters are relevant to differentiating movements of PD patients and healthy 

individuals.  
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3 Background 

3.1 Hardware 

3.1.1 Kinect 

Kinect is a motion sensing input device that contains a colour (RGB) camera, an 

infrared (IR) emitter and an IR depth sensor. The RGB camera allows capturing a 

colour image. The IR emitter emits infrared light beams and the depth sensor reads the 

reflected beams, which enables measuring the distance to an object. Kinect also contains 

microphones and a 3-axis accelerometer [12]. Kinect provides the functionality to track 

a human model - a so-called “skeleton”. 

The first generation of Kinects can track 20 points [13] that form a skeleton, whereas 

the second generation (Kinect 2.0) can track 25 points [14]. Apart from detecting a 

larger number of points, depth sensing improvements have influenced the stability and 

the quality of body tracking with Kinect 2.0 [15]. The points recognised by Kinect are 

called “joints”. Joints are in fact structures that consist of the tracking state (Tracked, 

NotTracked or Inferred), a type (position of the joint within the skeleton) and a set of x, 

y and z coordinates that determine the joint position in 3D space [16]. Figure 1 

illustrates the joint allocation in Kinect 1.0 (right) and Kinect 2.0 (left). 
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3.2 Mathematical methods and algorithms 

3.2.1 Simple Moving Average 

Moving Average algorithms, such as the simple moving algorithm, are used to smooth 

noisy signal data. The simple moving algorithm has a number of advantages, being 

effective and easy to implement. It takes an array of noisy signal data as an input. The 

most important parameter that influences the outcome array is the frame length N: the 

larger the frame length is, the smoother the resultant signal will be (example shown in 

Error! Reference source not found. and Error! Reference source not found.). After 

the frame length is chosen, an average is calculated for the first N values in the array 

and saved into the smoothed values array. The frame is then moved one value further 

and the average is calculated again. These operations are repeated until the end of the 

noisy array. The output is a smoothed array with a length of the initial array – N + 1. 

3.2.2 Welch’s test for unequal variances (Welch’s t-test) 3.2.2 Welch’s test for unequal variances (Welch’s t-test) 

Welch’s test is one of the statistical hypothesis tests. “Welch’s t-test, unlike Student’s t-

test, does not have the assumption of equal variance (however, both tests have the 

assumption of normality)” [17].  Welch’s test tends to give more reliable results in 

comparison to more frequently used Student’s test [17]. The formula for t-statistics 

calculation is shown below. 

Figure 1. The human model captured by Kinect. 

On the left: first generation captures 20 joints. On the right: Kinect 2.0 can track 25 joints. [13, 14] 
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𝑡 =
𝑋$ − 𝑋&

𝑠$&
𝑁$
+ 𝑠&&
𝑁&

 

where N1 and N2 are sizes of samples, s1 and s2 are sample variances and 𝑋$ and  𝑋& are 
sample means (expected values). 

3.3 Software 

3.3.1 Windows Presentation Foundation 

Kinect for Windows Software Development Kit (SDK) 2.0 amongst other provides a 

.NET Application Programming Interface (API) that allows developing Windows 

Presentation Foundation (WPF) applications. WPF is a unified programming model for 

building Windows desktop applications [18]. It is a subset of .NET Framework. “WPF 

provides support for an Extensible Application Markup Language (XAML), vector 

graphics, 2D and 3D graphics, and data binding” [19].  
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4 Methodology 

4.1 Hardware requirements 

The application developed in the current work runs with the first generation of the 

Kinect sensor and with Kinect 2.0. The system requirements [20, 21] that a computer 

must meet are brought in Table 1. 

Table 1. Kinect hardware requirements 

Kinect 1.5, 1.6, 1.7, 1.8 Kinect 2.0 

32-bit (x86) or 64-bit (x64) processors 64-bit (x64) processor 

Dual-core, 2.66-GHz or faster processor Physical dual-core 3.1 GHz (2 logical cores 
per physical) or faster processor 

USB 2.0 bus dedicated to the Kinect USB 3.0 controller dedicated to the Kinect for 
Windows v2 sensor or the Kinect Adapter for 
Windows for use with the Kinect for Xbox 
One sensor 

2 GB of RAM 4 GB of RAM 

Graphics card that supports DirectX 9.0c Graphics card that supports DirectX 11 

Windows 7 or 8, Windows Embedded 
Standard 7 or 8 

Windows 8 or 8.1, Windows Embedded 8, or 
Windows 10 

4.2 Mathematical methods and algorithms 

4.2.1 Step detection 

The distance between ankles d is calculated using the following formula. 

𝑑 = 𝑧& − 𝑧$ 

here z2 and z1 denote the z-axis coordinates of human ankles: left and right 

correspondingly. 
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If one or both ankles are untracked, distance between them is set to be 0. Based on this 

formula, right and left steps can be differentiated – negative distance means that the 

current step has been done with the left leg; positive distance implies it is a right step 

(Figure 5). In this work steps are not divided into left and right, and absolute values of 

distances are used instead.  

The distance between ankles changes over time and forms a sinus-like chart (Figure 5), 

which enables determination of individual steps and calculation of their length. Moving 

Average algorithm is used to remove the noise. Steps are recognised by finding local 

minima on the chart. A value is recognized as a local minima in case of the following 

conditions met: the value falls under a certain threshold – 5 cm in this work –, and the 

two previous and two following values are greater the current value. 

If the step length is lower than a specified threshold – one seventh of the maximum step 

length –, it is considered as a part of the previous step. It is necessary in case when a 

person always starts his steps with one leg, but moves it a bit further than the other leg 

is. An exemplary visual representation of detected steps is shown in Figure 6. 

4.2.2 Angles 

Angles are calculated as angles between two vectors in three-dimensional space. The 

full set of angles measured by the system is shown in Figure 2. Each vector is fully 

described with coordinates of two points, using the following formula. 

𝑥, 𝑦, 𝑧 = (𝑥& − 𝑥$, 𝑦& − 𝑦$, 𝑧& − 𝑧$) 

where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the first and second points, 

respectively. 

The angle calculation is performed by a built-in C# function that is shown below 

Vector3D.AngleBetween(Vector3D v1, Vector3D v2) 
 
The application calculates angles for each frame processed, groups the angles by steps 

and calculates the following values regarding the angle magnitude observed in one step 

period: the maximum, the minimum and the difference between them. The magnitude of 

an angle at the start and the end of a step is calculated as well. 
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4.2.3 Motion Mass parameters 

The set of human body joints is represented as a set J, so that each joint ji represents one 

joint. Refer to Figure 1. The set of joints is described as follows. 

𝐽 = {𝐽$, … , 𝐽4} 

where n is the number of joints. 

A set of Motion Mass (MM) parameters is defined for each joint. These are Euclidean 

distance (E), Trajectory Mass (Tm), Velocity Mass (Vm), Acceleration Mass (Am), Jerk 

Mass (Jm) and time (t). Motion Mass for a joint is defined as a set of average MM 

parameters across the steps recognised. 

𝑀7 = {𝐸, 𝑇𝑚, 𝑉𝑚, 𝐴𝑚, 𝐽𝑚, 𝑡} 

Average MM parameters across steps are defined as follows. 

𝐸 =
𝐸=4

=>$

𝑛  

Figure 2. Schematic representation of a human and the angles calculated by the application. 

Depicted are the following angles: 1, 2 - between the ankle-knee and knee-hip lines. 3 – between the 
imaginary right knee-spine base and left knee-spine base lines. 4, 5 - between the spine base-hip and 
knee-hip lines. 6 - between the head-spine shoulder and spine mid-spine shoulder lines. 7 - between the 
spine shoulder-spine mid and spine base-spine mid lines. 8 – the between head-spine mid and spine mid-
spine base.  
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𝑇@ =
𝑇@=

4
=>$

𝑛  

𝑉@ =
𝑉@=

4
=>$

𝑛  

𝐴@ =
𝐴@=

4
=>$

𝑛  

𝐽@ =
𝐽@=

4
=>$

𝑛  

𝑡 =
𝑡=4

=>$

𝑛  

where n is the number of steps. 

The parameters for each step are calculated as shown below and in Figure 3. 

𝐸 = (𝑥$ − 𝑥&)& + (𝑦$ − 𝑦&)& + (𝑧$ − 𝑧&)& 

where (x1, y1, z1) and (x2, y2, z2) are the coordinates of a joint in the beginning and at the 

end of a step, respectively. 

𝑇@A = 𝐸=
4

=>$
 

𝑉@A =
𝐸=
𝑡=

4

=>$
 

𝐴@A =
𝑉@=
𝑡=

4

=>$
 

𝐽@A =
𝐴@=
𝑡=

4

=>$
 

𝑡= = 𝑡B4C − 𝑡DEFGE 

where n is the number of intermediate points captured by the Kinect sensor. 
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4.2.4 Statistical t-test 

Statistical data analysis was implemented in Python using the SciPy library and the 

function that calculates the t-test for two independent sample scores 

(scipy.stats.ttest_ind). This method takes four parameters as an input: two arrays of 

independent samples, the axis over which to operate on arrays, and a Boolean value 

showing whether the two variances are equal. In case when the variances are non-equal, 

the method performs Welch’s test, and Student’s test otherwise. The method returns the 

calculated the t-statistics value and the two-tailed p-value [22]. 

4.3 Software and implementation 

4.3.1 Visualisation 

The application has three views, showing a person in three planes: sagittal (x, z 

coordinates), traverse (y, z coordinates) and frontal (x and y coordinates). Observation 

Figure 3. Schematic representation of a Kinect skeleton and method for parameter determination. 

Yellow circles depict joints (25). pstart denotes the position of a joint at the start of a step. pend indicates the 
final position of the joint (marked in orange). On the right: in the close-up on the moving part of the 
skeleton. pi show the intermediate positions of the joint captured by Kinect. Parameters except E are 
determined at each intermediate point and summed. E is the distance between pstart and pend. 
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of movements in the sagittal plane gives the most valuable information about a person’s 

gait. A model of a human reconstructed from a recording in the sagittal plane view is 

shown in Figure 4. Other views can be found in Appendix 1 – Frontal and traverse 

planes. 

 

The program recognises steps and visualises the start of each step by changing the 

colour of a human model - skeleton. After the walking part of the recording is finished, 

the application plots the change in distances between ankles over time in two charts. 

The first chart shows the raw data collected during the replay (example in Figure 5), the 

other chart represents the absolute values of smoothed distances (example in Figure 6). 

Vertical lines denote points where one step ends and another one begins.  

Figure 4. Sagittal plane (image colours inverted). 

An example of human body reconstructed based on pre-recorded Kinect data files. 
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4.3.2 Input data 

The application consumes a file with pre-recorded data in a Comma Separated Values 

(CSV) format (refer to Figure 7). Each row in the file contains a frame number, a 

timestamp and a set of x, y and z coordinates for every point of human body Kinect can 

recognize. Sample rate of Kinect is approximately 25 frames per second, so the file 

contains approximately 25 rows per second of recordings. The application was built 

having Kinect data in mind, but can be used for processing any CSV file that meets the 

Figure 5. Visualisation of distances between ankles based on raw data (image colours inverted). 

The graph produced by the application shows the change of distance (vertical axis) in time (horizontal 
axis) and has a sine-like shape. The values above the horizontal axis are positive (right step), whereas the 
ones below are negative (left step).  

Figure 6. Visualisation of processed data (image colours inverted). 

The raw data was smoothed using Simple Moving Algorithm and the absolute value was taken to aid step 
detection. The vertical lines denote the ankles’ superposition in the sagittal plane. 
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structure requirements. The program works with data from Kinect 2.0 as well as with 

data from previous versions of the sensor. 

 

Figure 7. Scheme of parameter extraction application 

4.3.3 Output 

For each file processed the application produces a set of CSV files (Figure 7). It saves 

the parameters for each step to one file and the angles to another, and the calculated 

average values into a third (source code in Appendix 2 – Source code). An example of 

average parameters can be found in Table 2 and Table 3.  

Table 2. Example of average angle parameters 

Angle Type Max Min Delta Start Stop 

RIGHT_KNEE 177.324 154.164 23.160 154.698 171.956 

LEFT_KNEE 174.757 145.745 29.012 173.631 153.756 

RIGHT_HIP 173.249 162.884 10.365 168.938 173.122 

LEFT_HIP 171.127 162.919 8.207 167.013 164.386 

KNEE_HIP_KNEE 30.346 14.637 15.709 20.754 19.473 

HEAD_SPINESHOULDE
R_SPINEMID 175.135 165.711 9.423 166.751 168.983 

SPINESHOULDER_SPIN
EMID_SPINEBASE 176.826 161.117 15.709 176.258 161.117 

HEAD_SPINESHOULDE
R_SPINEBASE 174.384 164.591 9.792 166.326 165.960 
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Table 3. Example of average parameters 

Joint Type E Tm Vm Am Jm E/Tm E/Am t 

Head 0.516 0.524 5.363 68.255 1687.986 0.985 0.008 0.597 

SpineShoulder 0.520 0.533 6.616 104.461 2798.674 0.974 0.005 0.597 

SpineMid 0.525 0.531 2.919 48.646 1459.660 0.989 0.012 0.597 

SpineBase 0.541 0.547 2.715 50.840 1470.363 0.989 0.011 0.597 

ShoulderLeft 0.521 0.531 5.194 85.666 2071.121 0.982 0.007 0.597 

ElbowLeft 0.506 0.519 5.478 85.747 1811.179 0.975 0.006 0.597 

WristLeft 0.503 0.547 5.085 106.466 2749.819 0.920 0.005 0.597 

HandLeft 0.503 0.570 3.462 91.463 2145.103 0.874 0.005 0.597 

ShoulderRight 0.527 0.535 4.113 65.814 1430.123 0.986 0.009 0.597 

ElbowRight 0.564 0.576 4.147 74.552 1926.588 0.980 0.008 0.597 

WristRight 0.577 0.592 5.339 112.093 2794.377 0.975 0.006 0.597 

HandRight 0.586 0.615 5.979 115.338 3062.093 0.955 0.005 0.597 

HipLeft 0.547 0.554 3.958 69.339 1731.270 0.987 0.008 0.597 

KneeLeft 0.572 0.636 9.597 206.903 6689.562 0.891 0.003 0.597 

AnkleLeft 0.461 0.675 11.389 293.336 7837.832 0.689 0.002 0.597 

FootLeft 0.456 0.832 17.513 505.504 13958.585 0.583 0.001 0.597 

HipRight 0.545 0.551 3.891 64.354 1627.596 0.989 0.009 0.597 

KneeRight 0.544 0.592 7.973 153.943 3685.416 0.919 0.004 0.597 

AnkleRight 0.679 0.731 4.981 107.870 2436.502 0.918 0.006 0.597 

FootRight 0.676 0.849 10.938 262.128 7892.950 0.798 0.003 0.597 

 

4.3.4 Python scripts 

To validate the new application, a set of previous Kinect recordings was used. The 

recordings were in MATLAB file format (.mat extension), and a Python script was 

produced to convert those files into CSV format (Figure 8 and Appendix 2 – Source 

code). The script recursively iterates over all files with a .mat extension. For each file, 

the script iterates over data in the file and extracts coordinates, as well as the data 

concerning intervals of the experiments – stand up, walking forward, sit down – into 

two separate CSV files. 
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Figure 8. Schematic representation of file conversion 

As it was described in Section 4.3.3, the analysis module produces one file with average 

parameters and another with average angles. Several recordings are usually produced 

per person, so there was a need for a script that would calculate average values per 

person across those files. To simplify the process, another Python script was developed 

to achieve this in a single step (Appendix 2 – Source code). The structure of output files 

is similar to examples brought in Table 2 and Table 3. 

Statistical hypothesis test was also implemented as a script (Appendix 2 – Source code), 

performing the t-test for each joint-parameter and joint-angle pair. The script runs on 

previously described script’s output files. Results are discussed in Section 5.3.1. 
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5 Results and method validation 

5.1 Motion Mass parameters 

In this study, the set of parameters proposed by Nomm et al. was complimented with 

one more parameter – Jerk Mass (Jm). Furthermore, parameters are calculated not for an 

entire walk, but as an average across the steps. 

The application calculates 8 motion mass parameters for each step: time of every step 

(t), Euclidean distance (E) – distance between the starting and the final positions of a 

joint; trajectory length (Tm), velocities (Vm), accelerations (Am) and jerks (Jm), all 

calculated as a sum of the corresponding parameter taken in every point. The ratio 

between Euclidean distance and Trajectory Mass, and the ratio between Euclidean 

distance and Acceleration Mass are determined as well. 

5.2 Angles 

Angles are calculated as angles between so called bones [23] in Kinect skeleton in 3D 

space. The application calculates 8 angles (Figure 2): 

• knee, spine base, knee 

• hip, knee, ankle (for both legs) 

• head, spine base, knee (for both legs) 

• head, spine shoulder, spine mid 

• spine shoulder, spine mid, spine base 

• head, spine shoulder, spine base 

There are several angle parameters calculated for each step and each angle group. These 

are the maximum and minimum angles during a step, the difference between the 

maximum and minimum, angle at the start and at the end of a step. 

5.3 Method validation 

Previous studies using other methods have proven a significant difference in kinematic 

parameters between PD patients and healthy individuals [11]. Consequently, the ability 
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to distinguish between them would demonstrate the validity of our approach. The 

system was tested on a dataset of Kinect recordings from 23 PD patients and 19 controls 

(Sven Nomm, unpublished data). The subjects of study were asked to stand up, make a 

few steps, turn around, return to the chair, turn around and sit down again [11]. The data 

files contain three iterations of the experiment, and the start and the end of each phase is 

marked. The results confirmed the method’s applicability in a clinical setting. 

5.3.1 Statistical hypothesis test 

The goal of the test was to check whether the MM parameters of Parkinson disease 

patients vary significantly different from those of the control group. Therefore, the null 

hypothesis (H0) was: “The parameter P for joint J is the same for Parkinson disease 

patients and the control group”. The alternative hypothesis (H1) stated, that the 

parameter P for joint J was different between the two groups studied. A difference in 

angle parameters was detected for 5 angle-parameter pairs (significance level 0.05). At 

the level of significance 0.01, the results indicate that Euclidean distance is distinct for 

all joints, while Trajectory Mass differs for the majority. Therefore, although a larger 

dataset should be analysed for higher confidence, preliminary testing has confirmed the 

validity of the method implemented. The complete results of the tests are brought in 

Table 4 and Table 5. 

Table 4. Hypothesis chosen (H0 or H1) with level of significance 0.05 

 Delta Max Min Start Stop 

HEAD_SPINESHOULDER_SPINEBASE 0 0 0 0 0 

HEAD_SPINESHOULDER_SPINEMID 0 0 0 0 0 

KNEE_HIP_KNEE 1 1 0 0 0 

LEFT_HIP 0 0 0 0 0 

LEFT_KNEE 0 0 0 0 1 

RIGHT_HIP 1 0 0 0 0 

RIGHT_KNEE 0 0 0 0 0 

SPINESHOULDER_SPINEMID_SPINEBASE 1 0 0 0 0 
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Table 5. Hypothesis chosen (H0 or H1) with level of significance 0.01 

 Am E E/Am E/Tm Jm Tm Vm t 

AnkleLeft 0 1 0 0 0 0 0 0 

AnkleRight 0 1 1 0 0 0 0 0 

ElbowLeft 0 1 0 0 0 1 0 0 

ElbowRight 0 1 0 0 0 1 0 0 

FootLeft 0 1 0 0 0 0 0 0 

FootRight 0 1 0 0 0 0 0 0 

HandLeft 0 1 0 0 0 0 0 0 

HandRight 0 1 0 0 0 0 0 0 

Head 0 1 0 0 0 1 0 0 

HipLeft 0 1 0 0 0 1 0 0 

HipRight 0 1 0 0 0 1 0 0 

KneeLeft 0 1 0 0 0 1 0 0 

KneeRight 0 1 0 0 0 1 0 0 

ShoulderLeft 0 1 0 0 0 1 0 0 

ShoulderRight 0 1 0 0 0 1 0 0 

SpineBase 0 1 0 0 0 1 0 0 

SpineMid 0 1 0 0 0 1 0 0 

SpineShoulder 0 1 0 0 0 1 0 0 

WristLeft 0 1 0 0 0 0 0 0 

WristRight 0 1 0 0 0 1 0 0 
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6 Discussion 

6.1 Whittle’s step phases 

As a result of the present research, Whittle’s step phases could not be reliably 

recognised based on Kinect data only. According to Whittle, the start and the end of 

each phase is defined by positions of toes and heels relative to the floor [1]. This 

approach is only applicable for normal gait analysis or a gait with small deviations. The 

system was not precise enough to reliably detect the position of heels on the floor due to 

the limited accuracy of Kinect, which is “within a centimetre range” [24]. In addition, 

the distance to Kinect sensor has a major impact on the precision of detection. During 

the research, the foot tracking was also noticed to be less stable than tracking of other 

joints. Heels are not detected by the Kinect system, so their position had to be 

determined theoretically (refer to Figure 10). Hence, tracking could only be done 

assuming that a person used the full area of their foot for walking. In the end, all the 

calculations were too imprecise and the measurement error strongly affected the result, 

making determination of step phases impossible. In Figure 9 an example of an 

application detecting Whittle’s step phases based on Kinect files is brought. 

 

Figure 9. Scheme of Whittle's step phases extracting application. 
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6.2 Future work 

There are numerous ways to improve the reliability of method validation by statistical 

hypothesis testing. Statistical tests give robust result if applied to a larger sample, while 

the number of recordings available was limited. Consequently, to produce more 

trustworthy conclusions, it would be necessary to repeat the analysis on a larger dataset. 

The developed system enables processing of files recorded with Kinect 2.0. As it was 

discussed previously, the second generation of Kinects has an enhanced tracking 

algorithm and detects more joints. The second Kinect was claimed to have more 

anatomically correct skeleton [15] meaning that the detected joints reflect the moving 

patterns of actual human joints better. To retrieve more accurate and reliable results, 

recordings with Kinect 2.0 are still to be done and to be evaluated. 

Another enhancement would be to make the graphical interface more user-friendly. 

Although, the application was implemented having end users in mind, some usability 

issues might occur. Testing sessions and overviews by potential users should be 

organised to gather feedback and make the system more convenient. 

Figure 10. Schematic representation of the floor points and heels' positions determination. 

The red dot depicts the heel as an intersection point of the floor line and the knee-ankle line. An 
assumption is made that the heel is on the floor if the other foot is in the air. 
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This application was designed in a way that it functionality could be easily extended. 

An example of a modification that can be easily implemented is differentiation between 

left and right steps. As a result, parameters’ averages could be calculated separately for 

those to evaluate the distribution between sides. Another enhancement could be to 

implement real-time computation with a connected Kinect sensor to make the whole 

process more time-efficient and easy. 
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7 Summary 

The present work is devoted to the problem of gait capture and analysis. The major task 

was to differentiate steps for people with irregular gait, such as PD patients, and 

perform an analysis according to the steps detected. The secondary goal was to test the 

applicability of Whittle’s gait analysis using the Kinect sensor to PD diagnosis. 

The key benefits of the approach described are its low-cost compared to the current 

state-of-the-art systems, time-efficiency and non-obtrusiveness, which makes it suitable 

not only for research purposes, but also in a clinical setup. The Kinect skeleton tracking 

is precise and facilitates the human motion analysis in three-dimensional space. The 

system is easy to operate and it does not require any special skills. 

The analysis module is self-sufficient and can be used to process data from different 

sources provided it fulfils the structure requirements. The main feature of this module is 

the ability to detect single steps even for patients with neurodegenerative diseases.  It 

also calculates a set of Motion Mass and angle parameters that can be used to evaluate 

the person’s health and aid in tracking the disease progression. 

Statistical tests confirmed the existence of significant differences in PD patients’ and 

controls’ parameters, determined by the method developed in this work. The difference 

was discovered for a number of joint-parameter pairs, indicating the robustness of the 

approach. However, more studies should be conducted to improve the reliability of the 

outcome. 

During the work, it was proven that with given setup Whittle’s step phases cannot be 

reliably detected due to Kinect’s limited accuracy and the absence of heel tracking. In 

addition, this method is not applicable on later stages of Parkinson’s disease. 
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Appendix 1 – Frontal and traverse planes 

 

Figure 11. Frontal plane (image colours inverted) 

 

 

Figure 12. Traverse plane (image colours inverted) 
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Appendix 2 – Source code 

WPF application’s (analysis module) source code: 

• https://bitbucket.org/anna_kraj/gait-analysis 

Python scripts’ source code: 

• https://bitbucket.org/anna_kraj/python-scripts 

 


