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Abstract

Test program generation has beeaoainantchallenge of softwa based selfest in a
microprocessor. It was previously gestexd manually, and this process inflates the cost

on test and reduces the fault coverage efficiency. However, a novel approach to automate
some of the test processes was proposed in ordexpeditea fasterdelivery of well
testeddevicesto the marke minimizethe cosfor testng andobtainingthe topmostault
coverage. The approach was to generate and organize a test program for a Microprocessor
using HLDD [9].

Generating a test program fomacroprocessorNIP) requires a t&t data and selecting a

test data is as importaas the test program itself [9]. In [1], it was stated that the test data
plays a very important role in determining the quality of a test. From previous works, it
has been proven that in using HLDD concemntrol faults can beletected using
conformity test and the data path fault can be detected using a scanning test [1][2]. The
HLDD consists of the terminal and néerminal nodes. The terminal nodesves athe
operations fo processingdata while the norterminal nodes repsent the control
variables gven in the MP. Basically, it has been previously proven that control test can
be used to detect control faults and pseexloaustive test can be used to exhaustively

test the data processing operations &oilts.

We propos& new approach for testingrftault coverage in a MP using random patterns,
and a combination of random and control test, and random and pesehalastive test to
detect faults in specific modules of a given microprocessor (miniMIRShel thesis, a

lot of different scenarios of cabining different test data for exercising control and data
parts of microprocessor modules with the goal of trading off different quality measures
like test length (memory space needed for storing testnmafoon), test qualy (high

and lowlevel faultcoverage), and testing time (by running test programs in a simulation

environment).

We demonstrated with experiments which of the methods or combination of methods is
more efficient in offering a high f#iucoverage that Wl eventually asure the
performance andafetyof MPs postmanufacturingA low-level fault simulator was used

to calculate the fault coveragbtainedfrom our experiments.



Annotatsioon

Testandmetegenereerimine mikroprotsessorite isetestimiseks

LAputdd on kirjutaud inglise keeles ning sisaldab teksti 90 lehekuljel, 6 peattkki, 30
joonist, 17 tabelit.

Testprogrammide genereerimine mikroprotsessorite enesetestimiseks on tésinevaljakutse
protsessorite usaldusvaarse to66 tagamiseks. Mikroprotsessorite ogggmme
koostatakse kasitsi, mis aga muudab selle t60 kalliks, ega suuda garanteerida ka piisavat
kvaliteeti. Uheks perspektiivseks lahenemissuunaks testprogrammide siinteesi

automatiseerimisel on k&ia@seme otsustusdiagrammide (HLDD) kasutamine [9].

Testppgrammide gnereerimine pdhineb testandmete kasutamisel, kusjuures andmete
valikust oleneb oluliselt testimise kvaliteet. HLDD formalismi abil saab eristada kahte
kontseptsiooni: mikroprotsessori julsa jaoks kasutada nn. konformseid (conformity)
teste nng andmeosgaoks nn. skaneerimisteste (scanning tests)][HLDD graafid
koosnevad terminaaja mitteterminaaltippudest. Terminaaltippude abil modelleeritakse
andmetootlusoperatsioone ja mittetaraaltippude abil juhtsignaale. Vastavalt voib

jaotada la rikkeid mkroprotsessorites juhtseadmete ja andmetdodtlusseadmete riketeks.

TOO0s esitatakse uudne l&henemisviis automatiseeritud  mikroprotsessorite
testprogrammide sinteesiks, mis pohineb kolmaépititestandmete kasutamisel:
testandmed juhtosa testigsandmeostestiks, ning stohhastilised andmed. Tdds on vélja
pakutud ning anallisitud terve rida erinevaid stsenaariumeid testandmete
kombineerimisel, mille eesmargiks oli leida kompromisse kogupekkuse (testide
salvestamiseks vajaliku malumahuktimise kvéiteedi ja testimise aja vahel.

TA0s on labi viidud pdhjalikud eksperimendid erinevate testprogrammide struktuuridega,
mis vOimaldas analiidsida ja kindlaks teha parimad lahendused, tagamak
mikroprotsessorite testimisel korget rikete katet jauremat uddusvaarsust
mikroprotsessorite t60s. Testprogrammide kvaliteedi maaramiseks sai kasutatud Euroopa

mikroelektroonika tipptoostusest parit professionaalset rikete simulaatorit.
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1 Introduction

This thesis dcuses on a new approach of testing microprocessors withasefbased
selftest by combining different test data generation hoe$ to detect faults in
microprocessor modules. A novel concept of HLDD synthesis we ngenerate the

test program whil@nplementing the combination of test data.

This chapter disusses the background and problsafysequentlythe goal of the thesis
and lastly, the overall structure of this work.

1.1 Background and problem

The increasén technological advances has enabtaeth more complex digital systems
(DS) to be built. Massivegrallel computing and new design paradigms like Sysiam

Chip (SoC)and Networkon-Chip (NoC) now exists and neededdepth research to
develop new algattfimsand design and test methods, lob@e microprocessors. As more
complex digital systems arebgin devel oped, it becomes more ¢
is continuallyb ei ng pr ov e remphddigdahat #heéd rmimbleraofmransistors on
integrated circus doubles every 18 months [5] [6]. &gility of transistors becomes more
rampant as the migprocessors undergo rigorous manufacturing processes. Defects
becomes inewitble in the transistors of MPs, which could lead to faults in the MPs and
could bear seereconsequences, especially whent¢bmplex system is a critical system.
The failure of sah system could cause loss of sensitive data, lives and properties. The
seveity of a fault in the transistors on a MP helps to emphdk&ienportance of testing

to guarantee and improve the relidtyilof any MP during the operational stage.

In therecent decade, the semiconductor industry was challenged to develop nowgl testin
methods that can be integrated in MP test flow. Without a humongous budget, tige testi
methods to be developed are tardgedehigh quality product development. A test mdtho
that suits the description was first proposed in 1980 [3], and it is calfedaBeBased
Self-Test (SBST).

For the main purpose of testing the processor, theabpeal approach of SBST is to
executethe test program on processor itself and its sundong resources [4]. As
mentioned earlier, this method eradicates the neeexternal hardware, which may be

expensive, and the time of the test is limited withgbg#ormance of the processor. The

12



main subject in the SBST methodology is the test mmggeneration, which must
comply with the highquality fault coverage standarsposed by the industry [4].

Self-test programs for microprocessors have emerged feenvaritten manually, as a
novel forma& approach for modelling the highvel functionaliy and possible faulty
behaviours was developed; Higevel Decision Diagram (HDRD). HLDDs can be

considered as a generalization of logic level Binary Decision Dieggy@DD) [4].

From previous works, thas been proven that in using HLDD concept, corfiaudls can

be detected using conformity test and the data path fault candmtedietising a scanning
test[1]-[2]. The HLDD consists of the terminal and n@mminal rodes. The terminal
nodesserveasthe datgpathwhile the nonterminalnodes represent the control variables
given in the MP. Using HLDD, control tesin be used to detect control faults and
pseudeexhaustive test can be used to exhaustively test tagrdatessing operations for
faults. However, as varieties of approacloédP tests spikes up the interest in this topic
of academia and industry as Wealcombination of approaches may contribute immensely

to the effectiveness of MP testing and impraesability.

1.2 Objectives

The goal of tle thesis is to develop different theds for the combinations of test data for
microprocessor software based gelting. The Execute module of the MIPS micropro-
cessor was partitioned into three sofidules: ALU (arihméic and logic operations),
MULT1 and MULTZ2 (multiplication operations

The section above identified that previous works have been done to in§B&7#& de-

velop test program for SBST, and develop different approaches in testing the control part
and tre data path of a microprocessor. Téygproaches applied in testing tlentrol part

and data path of a MP fulfils the constraints for test data gemerdi further deduce

the possibilities of these approaches, this thesis presents the following goals:

1 Devdop different combinations of tedata for microprocessor softwarase self

testing.

1 Develop test templates that enables the test program gerteratndle various

combination of test data.

13



1 Carrying out simulation experiments through the developeatiods to evaluate
the quality (SAFcoverage) of four basic test alghms separately andvaluate

the possible contribution of each test approach.

1.3 Organization of thesis

The thesis is organized as follows:

In chapter 2, an overview of the digital 8y® is surveyed. The area to testinigithl
systems and various faultasels were discussed, alongside the concept oflhigh

decision diagram (HLD

Chapter 3 covers the overview of software basedtassifand its development. An-in

depth view oHLDD was covered, including how it issed to generate test programs for

the miniMIPS processor. The chapter also contains the test data generatemn stag
preceding the test program generation. Chapter 4 entails the development of our proposed
methods instages and the approach we appliecbmder to combine the 4 methods. We
implemented the proposed methods by performing various experiments and atredysed

results.

Lastly, the summary and conclusion of the thesis is presented in chapter 6.

14



2  Digital systems

I n today6s waalidnbre tommon whaslicaetl brdad, ga ate its techniques
are widely known and utilized in all sectors of lifecadrding to [27] which described
digital systems as a combination of devices designed and manipulatd ilagrmation

or physical quantitethat are representaddigital form that is the quantities can take on
only discrete values. Arguably digitalstems applications in the world of electronics, as
well as other major technologies, have performeteb#tan any other systems in any

othe era.

2.1 Development life cycle of digital systems

Every complex system goes through a development life cycleheeletailed plan for
how to develop, alter, maintain, and replace a system to produce a systene Wighéist

quality and lowest cost ifé shortest time.

Digital system undergoes 3 stages which includes
A Design

A Production

A Operation

These stageare set up to mitigate the possible misconceptions that may or may not occur,
every digital systems delopment is prone to human and systernor at every stage,

Each stage has sublevels with the Design stage consisting of specification,
implementationyealization for Production possesses pilot and full while the Operation
has the Installation and Maim@ne sub levels [28]. With a wide ralm of possible errors
manifesting any possibly every stage of development it is mandatory to undergo reviews
and tecks with every component and stages associated with the development life cycle
of digital systems. Edcstageundergoes reviews, as for tiperation stage reges
possible repairs for faults, dividing the systems into level, with the considerations of
various factors responsible for the faults encountered. System Designs need Verifications

in a bid to tieckthe correctness for each step eoypld, production stagdso undergoes
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testing which is where our focus will be centred upon in the next coupleadlings in
this chapter.

2.2 Testing in digital systems

Testing is a concept widely practiced in all sestof life. Although the approaches may
differ slightly, thefundamental achievement remains absolute and is made manifest in
the process which is ana@gavour in determining the overall correctness of a system with

little to no doubt by exposing it to theardest levels of scrutiny it can pasly handle.

This phlosophy also rings through in the aspects of digital systems, which is often
referred to as black block experiment at every level of development to determine correct
functionality with the apptation of stimuli at the input and ofawing the response on

the output [28].

The investigation of the output includes the comparison of its expesaetion with the
yield presented amid the introduction of stimuli, this process is known as circeit und
test (CUT) as we will see in thiegure below elaboratinghe testing process of a digital

circuit under test.

input 1 oufput 1
—
Stimuli | cUT .| Expected |  , pass/Fail
inputn | | ouputn ' | Reactions
Evaluation

Figurel: Testing Process of a digltcircuit under test
Digital systems become more complex over the years as a oésalthnological ad-
vancements, coponents become less testable which makes al@veint complex, with
this growing complexity and technological advancement in digital syst@roblems
tend to arise during testing phases since testing is required to eagompltiple activi-
ties in the lie of a system. These possible occurrencesbaillliscussed extensively in

the next topic.
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2.2.1 Defects, Faults, Error and Failure

Common term that are familiar with researchers who undergo testing with digital
systems includ errors, faults detts and flabut failures. These amongst other phrases

are he possible red flags expressing incorrectness of a system.

A defect in an electronic systeis the unintended difference between the implemented
hardware and its intended égs[33].

An error 5 the manifesttion of a fault or multiple faults expressiretdeviation from

the appropriate behaviour in a system.

Failure indicates a fatal issue & system or in its module which is making the system

inoperative or unresponsive.

A fault depicts tle presence oflefects which could either reflect a temporary o

irreversible change in hardware [15]. It could either be structural or physical forms.

There is a bit of a comparison and contrast when we discuss errors and faultstéma sy
the appearancef an error atomatically implies the presence of fault omsofaults,
however, faults do not necessarily cause error history has proven systemg teelior
for year even with the possibility of faults proven from stress test wragk A slim
chance obccurring inreal life. It is important to detect faults then lead to errors in
systems so that they can be mitigated, guaranteeing systems falitgtiah optimum

capacity for a long period of time.

2.2.2 Levels of Abstraction in Digital System Testing

This expressesie physical borders of digital systems, &sown as series @abstraction,
is the levels from the topmost to the bottom with which thé&aligystem is designed.
This principle is adopted to manage complexity and prerooder when developg a

system fom the conceptual state even to the highesl|
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Design Specification

Behavioural (Architecture) Level

-

— High level of Abstraction
h 4

Reqgister-Transfer Level

h 4

Logical (Gate) Level

— Low level of Abstraction

v

Physical (Transistor) Level

Figure2: Levels of abstraction of digital systems [11]
The series are grouped togeth®o two levels as we can see in the above figuregtiser
a low level of abstraction drthe highével. The logic and the physical level accounts for
the lowlevel, the high level of abstraction is accounted for in the RTL and behavioural
levels [29].

2.3 Fault modelling

In the area of test generation and faithulation, integrals part of digl design,the
diversities facing both centralize focuseisormous in respect to fault detection despite
the similarities. Fault models are essential to thegseération and evaluation so much
so that a wide range dault models exist in determinindpe natureand behavioural

defects in digital circuits.

The outcomes of test generation and fault simulations is highly predicated on the
fault models, which uslig faces a back and forth between cost and qualitysbf sadly
this is not enough to gwantee anauracy in detecting faults in accordingly, arfuleof
various deficiency models at numerous cases are utilized in the age and assessment of test

vectors

A few faults have illustrated that numerous recogmest designs with high coverage
give a high dmonstrative resolution as well as can help balstinclusion between
nodes. This methodology makes the ATPG procedure increasingly troublesome and
CPU-concentrated, yet it is quite simple to apply and doesqliire any adjustment in

the teg-patterngeneration flow.
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2.3.1 Stuck-At-faults Model

Originally stuckat fault is the widely proposed test for the logic circuit without the
application of inputs becaa the fault suggests that faults will inevitably presesedf
when logic variables argugk at 1s o 0s, relying on a percentile outcome in every
sejuence.

Consider an AND gateonsistingof two inputs (A and B) and an output C

) :
: i

Figure3 AND gate with two inputs

Tablel: Truthtablefor an AND gate(no faults)

A B C
0 0 0
0 1 0
1 0 0
1 1 1

Let us asune thatthere is an SAhtinput A, if the logic valueat A is 0 or 1, the logic
value will remain al1. Normally, if A=0 and B=1thenthe output G-0 butdueto the SA1
at input A then output C will balways bel.

0 S

A

1 1
[ —

Figure4: SAlin anAND gate
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Stuckat fault has proed to be effective and efficient with a technique modelled with
electromagnetic relays coils that becomematically stuck at the appearance of a fault
[8]. However, its complexity become®tilimental when handling test generation espe-
cially for a largenumber of faults present in a system, exposing its inaccuracy (over reli-

ance on the percentage of sequent@odernday nanoelectronics technology.

2.3.2 Conditional fault model

This is a functioal fault model that includes functional verification for eveirguit ei-

ther with partial or complete design level. This is also represented as an input pattern fault
modé possesses similar attributes to Statkault (SAF)model nevertheless, its e
accuracy proves valuable in applications to diminish conigléx test generation in

modernday nanotechnology and microprocessor [4].

Definition 1: A fault (i /U I; =b), whereliandljar e t wo | i nes Ni{Ol} a ci r ct
is a conditional sick-at (CSA) faultifli/ U r ef er $stucka tt He=afbaduletf er s

to the requirement that some test vector for the stucklfdull pr oducksohhe va
line ;. This test vector is then said to detect the CSA fault{)= b ) .

The definition according to [10] includes the null condition possibility corresponding to
a normal stuck fault, wheré ( U= b) i di/ §) mgjlbg @ ccified. Thésp e
type of CSA faults is going to be called null condition CSA faults. &Xpression "com-
pletely specified CSA fault" will be used whenever it is necessary to emphasize the fact
that both the condition line and the condition value have to bafiggke as opposed to

the null condition CSA faults.

In a bid to improve test geraion and fault coverage numerous fault models have been
created by researchers over the years, with unique components used for uncovering in

respect to faults.

2.3.3 Open and $hort Faults

Short faultscan also bealled bridging faultsThis type of fault existsin the wire that
interconnects therdnsistorsthat formsthe circuit [11]. Also known as interconnects
faults, it occurglue to thébroken connections betwediiferentpointsthat are expected
to beconnected in the circui€orrespadingly, short faultexistwherever araccidental

connectiomccurshetween nodethat are notissertedo be connected.
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2.3.4 Transistor Faults

The stuckat fault cannopreciselyemulatethe behaviour of fait at the transistor level
because of the multiple transistors that are usednstruct CMOS logic gates [1Due
to theoccurenceof switching at tle transistor level, there is egbability that a transistor
would be stuck open or stkishort.Both possessing the idea that egterfault can affect
different combinations of fanut branches.

2.4 HLDD based fault models

2.4.1 Decision diagrams

Decision diagrams are methods of modelling digital systems at various level of
abstraction. This can beodelled at both low and high levels of abstions. The low

level which is the logic level possesses binary features veinecpopularly referred to as
BDDs and the other which deals with the behavioural and the RTL level is known as the
HLDDs.

Binary desision diagram (BDD), a system for modellidggitally has been the standard

in a data structure in compuiaided design (CB) for manipulating Boolean functions

at various levels of abstraction [9]. Over a jubilee ago when it was introduced, researchers
have proposed other new data structuresthkeReduced ordered BDD, Ternary decision
diagram (ROBDD), Edg&alued decisiordiagram (EVBDD), zero suppressed (ZBDD
hybrid BDDs (HBDD) and a host of others, with each possessing a level of simplicity
while reaining unique qualities which made BDDs omé the most popular

representations of Boolean functions.

2.4.2 Structural SynthesizedBinary Decision diagram (SSBDD)

SSBDDs are unigue to other binary decision diagrams because they possess the ability to
map logiccircuits directly from the gate level structu This functionality allows the
modelling various objectives in testing likeldys on paths, fauthasking, signal paths

etc. a feature all other BDD do not possess.
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2.4.3 High level Decision Diagram (HLLD)

High-Level Decision Diagram (HLDD), another altetive of Decision diagram that
represents digital systems from the RTL to theavedural levels of abstraction. The data
processing operation of HLDD occurs using nodes, a technique which exhibits an
extension bSSBDDs methods for test generation andtfsinhulation [21]. It comprises

of terminal and noiterminal nodes representirfgpolean variables from structurally
synthesized BDDs as boolean vectors or high level algebraic operations possessing not
only theability to describe the structure of a systesually synonymous to logic level
circuits but also the working behaviour oéthystem thereby extending to the high level
functions of the digital system.

Figure 5 expresses the funomality as wellas the stictural components of a circuit
represented by an RTL data path using an HLDD. As you can see the data path circuit
enumerates R1 and R2 registers with -temnminal nodes, internal nodes-y4 with
intermediaries between the caitunit and datavith datg buses.

R4

Control Path
yi__ V2 V3 Vi
¥ |
A4 a
> > c ¥
Ri My + >
— —>| ¥
> e
Ms *> Rz
b —»
7 M3 * >
IN » +—>
d
Data Path

Figure5: Representing aRTL data path with HLDD [4]
Seeing from the diagrams above the procedure faulzding the register variablezR
assumed IN R R> from left to right. Using HLDD, Rnext state (direction) isatculated
in eachnonterminal node yof Gro, predicated orhie value of the Rusing the expression
shown by each terminal node, For ins@gntys =4,z =5andy=3, R=Ri*Rzis

activated, then the update is state®in

The HLDD nodes accaou for the struatral components of the circuits as does the

topology covers the behavioural aspect.
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2.4.4 HLDD Based Fault Models[2]

In the definition of HLDD according to [2], it is a graphical representation of a given
discrete fungbn F(Z) and it is a direted acyclic gralp that can be defined as a quadruple

Gz = g ,Mwithiaset of nodes M, a mappifigrom m to M. In this equatign
- Mis afinite set of nodes
- 0 is a finite set of edges
- Zis a function which defines the vabies labelling the node
- Fisafunction ad.

M is divided into two subsets of node: ntmminal My and terminal M nodes. i ( rd)
U represents the set of aliccessors of the node' 0 andii™ (m) O 0 denotes the set
of all predecessors of. Thegraph has a root nodeymvith -1 (m) =/7. The nonterminal
nodesm ¥ My are labelled by vaablesz(m)* Z. The terminal nodesx ¥ Mt are labelled
by subfunctionsz(m) = fk (Z), tk(Z) ¥ F, which may be as well variableg'z Z or

constants.

For each gluee from a sel(z(m)) there is an extence of a corresponding output edge

(m, nf) from the node m into the successor node G ( ne)¥ V(z(m))

Z' avector of values assigned to Z at a time t. The €dyenf), wheree » V(z(m)) is
activated by Zif z(m) = e. A given patf(Z®) = (m, n) h the HLDD is called the activated
if all edges a the path are activated. The activated bgdges form a full @ivated path
I(ZYH= 1 (mo, M) which determines the value of the graph varidil&) from the roo

node ng to one of thedrminal node m

The HLDD uses the cyclbased modelling theoryf@valuating the behaviour of a digital
system. The usage of thiseory insinuates that the actuation of a circuit or system state
at a particular cycle is possibleased on the exactnadghe system betviour modelling

required.
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2.5 Low level and highlevel fault models

Growing complexities in digital systems hade&ectly reduced the observability of
internal components thereby narrowing down effective manipuldtiong testing, with
this looming setbagkadequate fault coverage may not be evaluated gsrtain models.

Speed testing has become a commonly uppdoach to attain quality tests.

Test pattern generation in digital circuits has two critical appexsftom its levels of
abgraction [32]. Fist is identifying the appropriate model relatahd the physical fault
and the other is inducing the respeetmodels in generating patterns in identifying them.
In most cases, researchers have often definedigaiyinduced faults, wbh are also
refered to as lowevel faults which become evidenh diigher levels as convenient
reasons why fault models fromdia level such as stueikt faults can be adaptable for

fault modelling during test generation on a l@glevel.

In this section we will discussa few fault models at logic level testing whiblear
similarities to fault models at behavioural and Revelgiving rise to mapping lovlevel

faults to Highlevel fault models.

2.5.1 Behavioural Bit Stuck-At Fault Mod els

It is common knowledg that Stuckatfault models at logic level works when signalslan
variables is encoded in either stuck at 1 or 0 however Whefow-level fault model is
clearly mapped at behavioural andlRevel it becomes quite useful asliv&tuck at
fault modes components at-R level are synthesized to specific logic comgaithereby
implementing input and outputs with that connattj82]. Although this approach can
only model a subgroup of physical fault, it proves the potentiagipaly induced fault

possess even at highlevels in test generation.

2.5.2 Branch and Condition Stuck-At Faults

Branch stuclat fault reflects a given secti which behaviour is stuck at. These could be
a chosen statement or a condition (if, else) statemieertalby the condition igtber suck

at true or stuck at false.

A choice in a branch articaion might be founded on various conditions associated
throudh consistent administrators. A condition may likewise be utilized in contingent
assignments and watchprhctices
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Generally, lowlevel abstractio is regarded in the physical subset of a cirduit it really

I sndot the case al llevd dané&RTlevehcan bé categorisedasthah e | o g
level up abstraction as well [31] that is why this smttiliscusses certain wayswhich

low-level faults can be mapped up to behavioural leftelr aindergoing sensitization.

These type of fault models agaite advantageous in delivering test vectors even to levels

beyond the behavioural level of a circuit.

3 Software-based seHtest

This chapter disusses the proposed formalised method used f8T$Bogram synthesis
for MPs. Using the HLDD model, thest program generation for microprocessor is in
two levels: The system level and the module level of th@oprocessor. Each HLDD
presents the behmwur of a module, and the network of HLDDs prdsdahe behaviour of
the system as a whole. At the modeleel of the microprocessor, the nodes of the HLDDs
are the target of test generation, while the HLDDs tledwas are the targetsthe system
level. The HLDDs (module) tests f{jthat were generatddcally are embedded into the
system level test progratemplate. This entails that the test stimuli for the modules will
be made controllable and the results & tbsts will be made obsmble at the syem
level [4].

3.1 Development of SBST

This section ntroduces the SBST generation framewdfigure 6 shows ageneric
overview of the framework. It consists of three main modules: HLDD syiatresest
vector generatr, and an SBSgeneratosynthesizer whie converts test vectors into test
programs usingrepared test code templates [4]. The translation freet af instructions
into a test program is demonstrated on ebBZRISC MiniMIPS mcroprocessor [30]

accordng to instruction set iMIPS architectus [30].
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ISA

TEST
l PATTERNS
HLDD TEST SBST PROGRAM
SYNTHESIS GENERATION GENERATION
HLDD

Figure6: SBST generation framework
3.1.1 MiniMIPS ISA

An instruction set architecture, ISA is ansthct representation of a processor and its
functionality provided in the architeate documentation. Thegecludes the description
of the generapurpose registers, flags, list of instructionseambly language syntax and
their binary representation][4These descriptions are presented in a specific formatt th
can be transformed ifdigh-level decision diagims. Given this information, test
prograns can be created. In this section, the epaur@ microprocessor miniMIPS is
considered. The miniMIPS ha82 registers that are 32 bits long. A structural

represerdtion is depicted ifrigure?.

26



Assembly

Register Reference Usage
$0 $zero
$1 Reserved for
assembleruse
$2-9$3 Result storage
$4 -$7 Argument storage
$8 - $15 Temporary values
$16 - $23 Saved registers for
procedure calls
$24 - $25 More:;lr:’;psoraw
$26 - $27 Reserved for OS
$28 Global pointer
$29 Stack pointer
$30 Frame pointer
$31 Return address

Figure7: Structural representation ofiniMIPS register$36]
The instruction encoding contains differéietds with specific encoding instructions that
describethe fundion of the module. The rs, rt, rd fields hold #wdress of the registers
where the operands and results of the functions are stored. ri@Bdes the type of
instruction and OP2 encodetype of registeror theinstruction. Immediate defines the
immediate value as an operand and the field addregsiosrthe address wheiejump
to [9]. The miniMIPS instruction format used can be categdrinto three distinct types

as shown irFigure8.
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R-Type OP1 rs rt rd sham

Types

I-Type OP1 rs rt Immediate

J-Type OP1 Address

Figure8: Typesof instruction formats

Figure9 shows an AN instruction descriptionf the miniMIPS processananual [30]

AND 000000
OP1 OP2
ANDI 001100 rs rt Immediate
OP1
J 000010 Address
OP1

Figure9: AND instruction architecture

3.1.2 HLDD Synthesis

High-level decision thgrams can beconstructed from ISA. The HLDD can be

congructed by representing the instructions given inl8# in a structural formatsa
shown inTable2.
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Table2: Expansion of the miniMIPS ISA [9]

S/N |Instruction |OP1 OP2 Mnemonics ISA Level Operation
1|ADD 000000 (0) 100000 (32) [ADD rd rs rt rd=rs +rt
2|ADDI 001000 (8) |- ADDI rtrs | rn=rs+ |
3|ADDIU 001001 (9) |- ADDIU rtrs | rn=rs+ |
4/ADDU 000000 (0) |100001 (33) [ADDU rd rs rt rd=rs +rt
5[/AND 000000 (0) 100100 (36) |[AND rd rs rt rd=rs AND rt
6|ANDI 001100 (12) |- ADDI rtrs | rt=rs AND |
7|BEQ 000100 (4) |- BEQ rs rt offset If rs= rt then branch
8|BGEZ 000001 (1) |00001 (1) BGEZ rs offset If rs >=0 then branch
9[BGEZAL [000001 (1) [10001 (17) |BGEZAL rs offset If rs >=0 then procedure
10[BGTZ 000111 (7) |- BGTZ rs offset If rs > 0 then branch
11{BLEZ 000110 (6) |- BLEZ rs offset If rs <=0 then branch
12(BLTZ 000001 (1) |00000 (0) BLTZ rs offset If rs < 0 then branch
13 BLTZAL |000001 (1) [10000 (16) [BLTZAL rs offset If rs < 0 then procedure
14{BNE 000101 (5) |- BNE rs offset If rs != rt then branch
15(J 000010 (2) |- J Target rd= return_address
16JALR  |000000 (0) [001001 (9) jﬁti ;Z — rd =return_address
17)JR 000000 (0) |001000 (8) [JRTs PC=rs
18|LUI 001111 (15) |- LUIrt | rt=1
19(LW 100011 (35) |- LW rt offset (base) rt = memory [base + offset]
20|MFHI 000000 (0) |010000 (16) [MFHI rd rd= Hl
21)MFLO 000000 (0) |010010 (18) [MFLO rd rd=LO
22|MTHI 000000 (0) 010001 (17) [MTHIrs Hi=rs
23 MTLO 000000 (0) 010011 (19) [MTLO rs LO =rs
24MULT 000000 (0) [011000 (24) [MULT rs rt [LO, HIl=rs Xrt
25MULTU  |000000 (0) |011001 (25) [MULTU rs rt [LO,HIl=rs X1t
26|NOR 000000 (0) 100111 (39) [NORrdrs1t rd=rs NOR 1t
27|0R 000000 (0) |100101 (37) [ORrdrs 1t rd=rs OR 1t
28/0ORI 001101 (13) |- ORIrtrs| rnt=rs ORI
29|SLL 000000 (0) 000000 (0) |SLLrdrtsa rd = rt << sa
30/SLLV 000000 (0) 000100 (4) |SLLVrdrtrs rd=rt<<rs
31SLT 000000 (0) |101010, (42)|SLTrdrsrt rd=rs<n
32|SLTI 001010 (10) |- SLTIrtrs | t=rs<|
33|SLTIV 001011 (11) |- SLTIUrtrs | n=rs<lI
34|SLTU 000000 (0) 101011 (43) |[SLTUrdrs 1t rd=rs<n
35/SRA 000000 (0) |000011 (3) [SRArdrtsa rd = rt>> sa
36/SRAV 000000 (0) 000111 (7) [SRAVrdrtrs rd=rt>>rs
37|SRL 000000 (0) 000010 (2) |SRLrdrtsa rd = rt >> sa
38/SRLV 000000 (0) 000110 (6) |SRLVrdrtrs rd = rt >>rs
39/SuB 000000 (0) [100010 (34) [SUBrdrst rd= rs 1 rt
40[SuBU 000000 (0) [100011 (35) [SUBUrdrs 1t rd= rs i rt
41|SW 101011 (43) |- SW rt offset(base) Memory[base + offset]=rt
42[SYSCALL |000000 (0) |001100 (12) [SYSCALL System call
43]XOR 000000 (0) [100110 (38) [XORrdrsrt rd=rs XOR 1t
44{XORI 001110 (14) XORIrtrs | rt=rs XOR |
45|JAL 000011(3) |- JAL target rd=return_address
46/LWCO 110000- LWCO cs, offset(base) [cs=memory[base + offset]
47IMFCO 10000 O[MFCO 1, cs rt=cs
48[MTCO 10004 10QMTCO rt, cs cs=rt

UsingTable2, an HLDD representing the behaviourtioé system or the unit of the sys-
tem under test can besated. From the table, it canieted that OP1 andR2 ae control
variables (which determines the path to be taken in the graph) acel dremorierminal
nodes in the HLDD. The combined staté©O®1 and OP2 are however unique and will

result in a taminal node defined by the insttian shown as ISA lesl gperation.
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Figure10shows an HLDD of 4 instructions, A} ADDU, ANDI, and J. The values of
OP1 and OP2 have been converted to theimaoralues for simplification.

Figure10: MiniMIPS HLDD model wsing 4 instruction sets

For the ADD instructon set, OP1 is 000000 and is shownhia tliagram as the decimal
value 0, likewise the OP2 is 100000 which is shown in the diagram as the dealineal
32. For the ADDU instruction, OP1 is 000000 anshiewn n the diagram as the dewl
value 0, likewisehe OP2 is 100001 which is the decimalue 33. For the ANDI instruc-
tion, OP1 is 001100 shown as the decimal value 12 and for the J instr@Q@o10
shown as the decimal value 2.

The system travees to tle ADD instruction when OPis 0 and OP2 is 32.ikewise,
when OP1 is 0 and OP2 is 8% system traverses to the ADDU terminal instruction.
However, if OP1 is 12, then the system traverseésdAND instruction terminal and if
OPL1 is 2 then the stem traerses to the J instruoti terminal.

Figure 11 shows the complete HLDD representatiof the miniMIPS instruction sets

using the same concept.
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Figurell: Synthesis of HLDCior miniMIPS [9]

3.1.3 Test Synthesis from HLDD

Using the HLDD grph model or the given processor, test generation caerferiped

Test generation will mult in a set of test patterns which can be used to testrtiatural
entities of the processor [4]. The process of test generation involves traversing the graph
by activating the nodes and consequently deriving a sgatténs There are two types

of nodes in the HLDD namely; control nodes and terminal notles.control nodes
activate the path of the graph to a desired working mode or terminal node of the system.
The terminal node contains nodes that activate thepd#ttarhich can be used to teseth

different working modes of the processor.

During test gemation, three sets of patterns are generated, the pathlist, the datalist and

the testlist. The pathlist hds the patterns (control nodes variables values) tadttt#he

w
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terminal nodes. The ddist holds the patterns which will be loaded in the regdueng
the execution of the test program. These patterns activate the datapath within the terminal
nodes The testlist contains the list of test patterns geedrywalking through all the

nodes. These contains the pathlist and the datalist.

Figure12 asseen in [4] shows an example of test generation from HLDD model for a
miniMIPS ADD instruction.

TESTLIST:

. 0000000010000000000000010001000001:D1
p1=op's.tuncrg'.ﬂ:;rlnitc's.rs's.rt's.rd's 1:nonnomon00000000000010001000001:D1
- . : P1:00000010000000000000010001000001:D1
P1:000000100000000100000001000100000
P1:00000010000000000111101110000001:D
DATALIST:
D1: oF funct sham_c rs it d

1011100010000111100000110100100011010111111011110001100100000010
1000000101011111111011000111110111101001001101110110101001110011
010010001111111111111001110101001011111110101100111001110000011001

0111110001111010000111010111000111111110010111010001000111110101

Figurel2 Example oftest generation

The testlist has the filowing syntax P#:test:D# where # is thagéholder for enumera-
tion, P represents the pathlist, D represents the datalist, and test is the binary representa-
tion of the node values.

The pathlist hashe following syntaxP # n a me 1 6 wm a ind i § vsithe palcen , #

holder for the index, name isg name of the node, and width is the size of the node.

The datalist has the following syntax D#: binary list, where # is the placeholder for the

index andbinary list is a listof numeric valuesThis is generaté usingthe methods in

[4]

3.2 Test program generation with HLDD

The test program is an important part of SBST. It is divided into three stages. The first is
the highlevel test data generation, followég the high-level test program generati

and lastly, tle faultcoverage calculation. The visualtion can be seen Figurel3. High

level test data generation was used to generate the control test data, and the pseudo
exhaustive data that were usedour experimets. High level test programeneration

was sed withthe testemplates generated through HLDD synthesiseiction3.1.2
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Random
STAGE 1 Data

i

si I-olgit? # Data matrix # High-level ATPG Test Data
et (Constraints satisfied)

High-level test Data
STAGE 2 Test Program Test Program
Generator
Applicable test
template

STAGE 3 Fault Coverage
Calculation

Figurel3: High-Level test data and tgstogram generation

3.2.1 High Level Test Data Generation

Test generation is contially being mproved every day in digitesystems as weare
awareof technological advancements breeding new challenges in testing modern devices,

we will like to discuss the complexities faced in test generation for microprocessors.

An essential qality in geneatingtest in micro technologgeis speé while focusingon
faults two important data assignments is required giving rise to activation of the faults
and the other for faulpropagation 11], using some definitions relating to faults in

MIiCroprocessors.

Test vetors are generated to itate defets that may occur during the manufacturing
process of chips, which may lead to the malfunctioning of the chips. Imitating physical
defects means that the test vectors should be able to induce tlyebfhdiviour hat
mathes the physical faultthat mayocaur during the manufacturing process. The
complexity of the system, the size of the tests to be taken and the factor of test quality are
reasons why automatic test methods are used for generatingatesns fordigital
systems. In [1], theuglity of atest is dependent on the test data, also the aim of any

automatic test pattern generation (ATPG) is to produce efficient test patterns.
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ATPG is the application of algorithmic based software for geimg test ectors[12]
and its need at th&tructurdlevel is undisputed, because most, if albthe faults in a
digital system has to be covered. In addition to the goal of producing efficient test

patterns, ATPG aims to cover a high level of faolverage dung testng.

Test pattern generati algorthms can be accessed by the following indicators [13]
A Test effectiveness

A Fault coverage

A Length of the generated test

A Test generation time

In this thesis, the test data were generated usingoi@sic metbds (algoithms).
3.2.1.1 Method 17 Conformity Test

Control Test Patternsi These are the test data patterns, generated to covelehigh
functional fault model, and to be used by all instruction in the give processor (miniMIPS),
so that the resudtof all instuctions vere distinguished pairwagsin eachbit of the data

word. It is also known a8onformity test.

Test vectors are gotten from analysing the Circuit Under Test (CUT) and a specific type
of fault is being targeted, followed by fault siratibn. The tegeted falis could be the
defectsthat arein the structural part of a given CUT. After the test for the defects in the
targeted area, and a fault is detected, fault simulation is carried out to find other faults that
this generated test vectcan detecfl4]. The process of generating t@eminisic test
patterns can be very extensive, and before fault simulation is carried out to detect other

faults, the initial detected faults are noted.

Ideally, detecting all possible faults in a CUT ig thim of teshg and wecan conclude

that deteahg all possible faults in the CUT means 100% Fault Coverage (FC). Fault
coverage is the percentage of fault that can be detected by the applied test vectors [15].
FC at 100% is desirable but is it not alwagached in rost testslue to some undetected
faults. Uncktected faults can also occur even when deterministic test patterns are being

used.
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Generating Operands for Testing Control path

As part of the HLDD fault model, two constraints were introducedefsting the ontrol

patt of the MP in [23]. Theyre asdllows:

/mtyMT(m):[f(m) T aq) ] (1)
S, mp MM m) /K [ < (fdm) * fi(my))] (2)
Where q = ZERO or ONE and * = |logic OR

technologyimplemented in the MP [22] [23].

The label ZERO means thénhry vector (000...0) while ONE means the binary vector
(111...1). Representing the bit number of the data word is the index k.

The test operands used in the later for testing the control gmtolsatisfy constraints 1
and 2 équation landequaton 2)stated above. In order to conform to these constraints
Algorithm 1was developed. Thagorithm generates the bits of the operands (data words)
which are represerdeby D1 and D, starting from the LSB, bit by bit, untbé MSB.The

essence for this is so that constraints 1 and 2 will be solved for all pairs of the functions
film) andfi(my) [24].

Input: Instruction set of the processor

Output: Sets of test operds OPi for each instruction, including a fault table D
Notations: ni represents the number of functions F

opT test operand,

OPT current set of selected random tegérands,

fi(lop)1 result of the instructionls for the operand()p,

D i Fault &able,

Djj 1 w-bit entry in D,

wi Length of the data wd)
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1.1 nitialize OP = n

2. Generate a set of random operands (R)
3. for i=1,.., n
4,
5.

Initialize OPI = n,
for j = 21, . ...., n (j 1 i)
***gperands for solving constraints fi,k < fj,k
6. Initialize Dij=0
7. for allop ~ Rwhil e DijoOI
***adding new operands for covering Dij
8. Dij(op) = fj(op) ~ (filop)  § fj(op)
*** calculating fault coverage for op
9. if ( Dij (op) T Dij) § Dij i 0O then
***che ckfort he coverage increment
10. begin
11. Dij = Djj ~ Dij(op)
*** ypdate of the coverage vector
12. include op into OPi
*** new operand is selected
13. end
14, endfor op
15. endfor
16. endfor i

This Algorithm 1 will produce a set of operands for every instruction in the MP and a
fault table that satisfies the constraipt< fix. D¥j = 1 if the constraint is satisfied, and is
covaed by aminimum of one operand, otherwisé;= 0. Finally, the percentage of 1s

in D is the highlevel functional fault coverage for the test for control path [25].

Algorithm 1 is called RANDOM.This is because for each step of line 7, the random
operand thatcame first (op* R) will be selected with a goal of increasing the fault
coveage. Another algorithm called GREEDY was established in order to reduce the test

length.

The difference betweemé GREEDY algorithm and RANDOM is that at line 7, where
the besbperand is being searched for maximum fault coverage, the subsequent operand
is selected and the algorithm proceeds with the search until tdigetiDis reached or

no further operands caatisfy the constraintd< fjx.

It is notable thathe congraint fik < fjx may not be solved if the related functional fault is
redurdant, or the search spare R is not large enough [25].
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According to [2], Conformity test is a test for a A@nmiral node of the HLDD, and its
goal is to test the contrglart ofthe microprocessor. The conformity test is generally

generated according tomstraints 1 and 2 that were set up for testingteominal nodes.

1 Generating Conformity Test Program for Control part of Microprocessor

The generation of conformity ge for te control part of the microprocessor was

developed in [4] and [6]. Accordirtg [4] and [6], conformity test was explained as such:

Consider an HLDD 6= (M,  Jiwith YX= F(X) as a functional model of the instruction

set of a given MP.

X =C" 'O(which represents the instruction format of the MP)

Y = destination data

C =opcode of the instruction format, and is divided into-Bels G~ C
D = source dia of the instruction format and is divided if@aN O.

It is notable that the source and destination data variables may refer directly to the
registers of may refeto the addressable memory locations. Examples of mapping
between instruction formatnd the HLDD functional variables are illustrated for three

instruction formats below:

l. Instruction format with 1 opcode subfield (C), 1 source subfield (D) and one
destnation subfield (Y).

Il. Instruction format withl opcode subfields, 2 source subd®(D1 and D2)and

one destination subfielgy).

M. Instruction format with 2 opcode subfiellS1 and C2)2 source subfield@D1
and D2)and one destination subfig(¥).
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Opcode Source Destination

Source Destination

Source Destination

Figurel4: Mappingof miniMIPSinstruction formats and the HLDD functional variable

The main argets of the conformityess are not the instructions as a whole, as per the
instruction format, and it involves both the control and data functions. This depicts that if
the opcode C is diged into subfields €¥ C, then the control tests will targdt the
subfield one aftetheother. To test if all the sutunctions that relates tox@vere rightly
selected, the node m in the HLDD module test T(m) for all the values ofx{(¥(m))

hasto be tested.

In [4], generating a test instruction for testedaultr ¥ R (m, v),it is essential to find a
test patterrXt which activates a pattmo, m"™Y) from the root nodev » M to a terminal
nodem™ ~ MT, so thatx(m)=v, andm # I(mo, m™); the patternx' corresponds to a full
opcode C of instruatn, which includes the ededvalue of G. It is also essential to
complete the pattern Yy generating the test da, so that the constraints 1 was
satisfied. The result for generatingest instruction for testing the fault mod&{m,v)O

R(m)includes a control pattern @truction) C(m,v) and a set of data pattdnm,v)

The algorithm for conformity test program according to [4] is:

1. for all m € MY do

2. for all v € V (x(m)) do
3. for all r do

4, execute C(m,v).D(m,v,r)
5. end for

6. end for

7. end for

Figurel5: Algorithm for conformitytest
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1 Explanation of the algorithm for conformity test

In line 1,m ~» MN represents the nonterminaldes,and line 1 is testing T(M) for the

fault model R. Lines 2 5, firstly initializes all registers involved in operatidigs') at

every terminal nodesi’™V ¥ M (m) P MT with values satisfyingonstraints2. Secondly

it executeghe instructiorthatassgns the value or o x(m), activatesa pdh that leas to

node min Gy, and the paththat transitgrom m tom™ v~ MT (m); Thirdly, the algorithm

observes the value of Y.

Line 6 ends the testing for nonterminaldem» MN and line 7 ends the cainity test

of the HLDD G'.

The conformity test is used to generate a template that will be used with the control test

patterns. The functional variables in this test loops throughelhstructions, while the

other vaiables remain constants [9]. Astedemplate was created fihe conformity test

as seen ifrigurel16.

Test data for R (destination)

Test data for A2

Test data for A1

Test data for OP2:

Test data for OP1:

OP1 | OPZ | A1 AZ R
Constant LOOP
OP1 | OP2 | A1 A2 R
Constant Loop [Const
OP1 | OPZ | A1 AZ R
Constant |Loop | Constant
OP1 | OP2 | A1 AZ R
Const| Loop | Constant
OP1 | OP2 | A1 A2 R
LOOP Constant

Test template for test
loops

[ Load test data to ]

memory

Y

From mempry to
registers
with data D

!

Instruction execution

|

the loop

l

Write results in
memory

|

Figurel6: Structure of Conformityest
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In Figurel6, OP1, OP2, Al, A2 ank serves as the control nodes (1tenmnal nodes)

Each of them has a test template that consists of atising that leads to theath of a
particular node. The test program that will be generated also consists of these instructions,
which will be usedest the control nodes. However, thatrol testdata generated in with
Algorithm 1 that satisfy the congtmt 1 and 2 will be pasddnto the test prograras
described irFigure13.

3.2.1.2 Method 271 Short Scanning Test

Dedicated PETi this is the pseudexhaustive test data for testing each ungion with
so called dedicated data, generated separately for ewthuction based on its
functionality, and to guarantee exhaustive test of each bit of the data word. It is also

known ashe Short scanning test

For understanding the concept of pseedbaustivetest pattern, the concept of

exhaustive test pattern shdule understood.
Exhaustive Test Pattern

Exhaustive test patterns detect all the possible faults, eithelegateSAF falts, wired
AND/OR faults, and bridging faults in a combinatiocaicuit. A combinational CUT
with N-input, exhaustive testing wileguire applying 2N exhaugé patterns [16]. This
approach will not detect all possible transidtorel faults or delay fats because these
kinds of faults needs a specific order ateththe veatrs needs to be arranged, if possible,
the potential to ngeat certain test vectovathin the vector set [12]. If a combinational
circuit has few primary inputs, exhaustive testingy be a viable option, where every
possible input vector isonsidered17]. However, in circuits with large amount of
primary inputs, exhaustive ti#sg might not be the viable approach. Due to this drawback,
pseudeexhaustive test makes it pdds to partition the circuit and only exhaust the input

vectorswithin ead cone for each primary output [17].

PseudeExhaustive Paterns alternatively, havéesser number of test patterns [18]. As
stated above, the circuit is partitioned and is exhagelgtiested. This means that a better

FC is achieved. In [17], aircuit with three primary input®il, n2 andn3, with a
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correspondig primary output cone eachill have a total number of"2 + 212 + 2M

pseudeexhaustive vectors at most.
Generating Operards for Testing the Data Path

A significance ofpseudeexhaustive data is @ remaining test generation procedure will
not depend othe implementation detaitsf the processor cores under test [25]. Ideally,
logic operations are independent in all bitstdby enabling the operations in all bits to
be tested independently. In ©®s of unary operations, two exhaustive patterns will be
enough, while for logic opations, we need to use four exhaustive patterns {(0,0), (0,1),
(1,0), (1,1)} per bit [24].

Table3: Generation of PE@ata for adder [25]

No 4-bit 3-bit 2-bit 1-bit 0-bit
aubsca asbscs abpcc arbici | aghoo
1 000 000 000 000 000
2 010 010 010 010 001
3 100 100 100 100 110
4 110 001 110 001 011
5 001 110 001 110 100
6 011 011 011 011 101
7 101 101 101 101 110
8 111 111 111 111 111
Table4: Generatiorof PET data for Subtractor [25]
No 4-bit 3-bit 2-bit 1-bit 0-bit
aubsca asbscs abecc arbici | aghoo
1 000 000 000 000 000
2 110 011 110 011 001
3 001 100 001 100 010
4 100 110 100 110 011
5 011 001 011 001 100
6 101 101 101 101 101
7 010 010 010 010 110
8 111 111 111 111 111

In Table3andTable4 above, ripplecarry is used for generating the PET data for addition
and ripplecarry isimplementedor generating the PET data for subtraction. ADD and
SUB stands as operators in the miniMIPS ISA and #ia denerated are dieated for

these operators. The same applies to other operators used in our expeAMBNXOR,
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SLL, SRL, etc. Tacover everycombinations of the input operands kb and ¢ of each

bit of the adder, 8 pairs of data were neededeas inTable3 andTable4. Co may be

the carry bit in the case of addition, or the borrow bit in the case of subtraction. PET
patterns aregnerated fron the LSB, after calculating the carry for thdar the next bit,

andthe right values which will fit ito the operands,and k. Through this previous step,

all pseudeexhaustive combinations for the bit section would be achievedAd8]tion-

ally,the col umn-bi t 0 t-lhietdo f@®an be copyobpprasst ed f or
to the right [24].

Scanning Test Definition: According to [4], Scanning test is a test for a terminal node
of the HLDD, and its goal is to test the datahpat the micropocessor. It focuses on
testing the correctness of the terminal nodethéHLDD by making use of the same

instruction with differentest data.
Generating Scanning Test for the Data Path of MP

The generation of scanning test for the datth f the micrprocessor was developed in
[4] and [6]. According to [4] and [6], scaimg test was explained as such:

Corsideran HLDD G = ( MX)witli Y = F(X) as a functional model of the instruction

set of a given MP.

X =C* 'O(which represents ¢hinstruction format of the MP)

Y = destination data

C = opcode of the instruction foat) and is divided into sulelds CkN C
D = sourcalata of the instruction format and is divided i@aN O.

D and Ycould be the address ofegister othe address of aemory locationThe source
D could also bean immediate data which could part of theminiMIPS instruction

format.

The sourceand destination data variables may be the address of the registers, or to the
addressable memory locationielimmediate data which will be part of the instruction

format, may be represented by the seurariable.
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A test will be generat for evey terminal nodesn’' ¥ M OM in each HLDD G = {G},
Y N U (U] = number of HLDDSs), for the purpose of testing theglete data path of the
provided microprocessor which consists of various HLDDs.

In [4], the term of data functional fault model (DFFM) of the HLDD as intraluced.
It is denoted as R(Mhand a union of all functional fault models in the terminal nodfes
v MT OM, and it represents the working nodes of the microprocessof(M'x Each
functional faultr ¥ R(m) is similar to the conditional SAF model devedopfor gate

level testing [7].

In order to test the faults® R(nT), we need to executet@st using the set of instruction

of the microprocessor.
T(mT) i= {C(m"). D (M', 1)}
In the test above, @(') = Instruction code and it remains constant

D (m', r) = Data. It is dynamic with the values from the set of constraints
R(m").

The general point of the scanning test is to reiterate the same instruction with data fetched

by scanning a given data array.

Instruction Data Array Ag A

All

~ @ \\ g ~\\

Loop

Figurel7: Structure d Scaming Test

In thefigure abwe, all the registers are loaded withe dita fetched from the array, the
instructions that etivates in the HLDD are activated and in a loop, lastly, the result of

each operation is written into memaory.

The algorithm for scanning test according to [4] is:
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. for all m € M do
for all r do

execute C(m?%).D(mT, r)
end for

g o W N =

end for

Figurel18: Algorithm for scanning test

Explanation of the algorithm for Scanning Test

In line 1,m" » MN represents the nonterminal nodes, and line 1 is testing)TiMthe
fault model R. Lines 2 3, firstly initializes all registers involved in the functitfm™) at
every terminal nodes’™» MT with the test data d. Secondlyinitplements the instruction
that activates in Ga path to the noda in M'. Thirdly, the algorithm observes the value
of Y.

Line 4 ends the testing for terminal nade’ MN and line5 endgthe scanning test of the
HLDD Gy.

The scanning test described isteection is called short scanning test.

3.2.1.3 Method 37 Long Scanning Test

All PET Test Patterns i These are the pseudorandom test data for testing each
instruction with a sum of alest paterns generated pseudghaustively for the data part.
It uses theeombination of all the dedicated PET data to test for each instruction based on

its functionality. It can be referred to as Long scanning test.

All PET represents combination of th# the PET data generated thiglu scanning test

in section3.2.1.2 For aur experiment in chapter 5, 9 patterns were dedicated for the ADD
and SUB instructions, 4 patterns for the logic instructions AND, OR, XOR and NOR,
while 2 different sets of pattermsere cdicated for the shiftphd and branch instructions.

Lastly, a toal of 310 patterns were dedicated for the MULT instruction.
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In [26], a method to transform tliep a p e r  an-dimepseomatlliAl of Rbit array
into a set of(n T 1) 1-dimension& ILAs of n cells, which can beested pseudo
exhaustively nearly as easibs ripplecarry adders. In order for such modification to

occur, the concept of datmntrolled segmentation of the circuit was introduced.

Figure19: PET combhnation toAll PET Test Patterns

3.2.1.4 Method 47 Random Test

Random Test Ratterns: Random test patterns are veryyetsgenerate via Random Test
GenerationRTG). Unlike deterministic and pseugxhaustive test patterns, no specific
faults are targetetbr the random test genera. Additionally, exhaustive test may be
superiag to RTG because RTG can produce duplid¢atectors and may miss certain ones

[17]. RTG stands out because it is easy to generate the random vectors, it does not satisfy
any congtaintsand the complexity ibw. However, the detrimental effect of randaestt
patterns is that it can detect a sefanilts that is up to 10 times larger than a deterministic

test patterns for the same set of faults [12]. Due to this, determiningiahty gf a test

set becomedifficult, because conventional methods basedaoit simulation becomes

costly [19]. In[20], some of the disadvantages of random test generation is that it can

have very long test application time, love coverage, area aecdrehdditional delay.

RTG makes it possible for the random vectors to\enly distributed in the pattern set.

This means that the random patterns will eventually have equal numbers of logic 1s and
Os in the set as a whole. The method used to gentrateadom patterns for the
experiments carried out in this thesis is natltgptrandom. A pseudcandom number was

used so that the random patterns can remain the same in cases where they need to be re

generated. For RTG, we cannot totally be confiderthe knd of result or FCye can
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only be certain that the random patterassdiin a test will detect all possible §lm Stuck
Fault (SSF) [12].

Similar to line 2 ofAlgorithm 1, a fewer set of random data is generated with a python
script and loaded dictly e a highlevel test dta into the test program generator,
alongside th test templates, as illustratedFigure13. It is notable to mention that the
randomly generated patterns do not satisfy any constraints as compaesddotrol test

patterns.

3.3 Testprogram generation

As discussed isection3.1.2 the test program is genegdtfrom the HLDD synthesis.

The synthesiss implemented through prepared test code templates, used in generating
the test program. As miniMIPS is a preser with 32bits registers, thanitial target of

the test template is to reset all the 31 registefSgure?, to make sure that the current
test program is not affected by the previously generated program with a differemt data
the registers. After the registers are set to niodl,test data is loadento the memory.

The test data could be the ¢at, PET, All PET or random test data.€élfinal process is

the generation of the test program based on the conformity tedaterapscanning test
template or random data test pragraSection 4.1 will provide a more elaborate

explanation on the testmplate creation.

Applicable test template

Reset all registers

Load test patterns to memory

Generate test program based on the contrel/ PET/ random test
template

Figure20: Test Progren Generation procesdgth four templates
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3.4 Fault simulation

The fault simulation is the final stage of the automated SBE€omprises two falt

simulators:

1. A Ho ma d e o-levelifaglhsmulator for measuring the quality of cammity
test, whereas the PEJ¥ased scanning tasy definition is considered full (100%)
high-level test

2. Professional lowevel fault simulatorcalled TetraMax forlte final evaluation of
the test quality in tens of standard SAF coverage. From the $atnon of the test
program in assembly language, with the test bench of the MP withinI$lode
a vcd file is generated and used to calculateahk €overage in theelected MUT

of the processor.

3.5 Conclusions

1. In this chapter, basic approachestedting microprocessors were considered:
conformity test with control tegtatterns andcannirgy test with two versions of
using PET test data (shortchlong scanning test)

2. The test data used in these basic appraaateedivided into 4 classes: Control
test data, PET, aPET and random test data.

3. Based on these two types of tests (conformity sgahning), and 4 types of test
data, in the following chpters several comlations of test structures using

different tes data are investigated and compared.

4  Development and investigations of the methods

The Execute module was patrtitioned also into pads: control part and data part. The
test program waseveloped in two partdor testing the control part (conformitystg

and for testing the data partcémning test). This chapter covers the test program
generation with the data generated with filng methods or classes: Control test data,
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PET, allPET and random test datand different combinations of the methodse W
created a new template for PET,RET and Random data for maximum fault coverage.
The goal of the experimental research was tuate the quality (SAF coverage) of all
the four basicdst methods separateto compare the two PET approaches andatuate

the possible contribution dhe random test approach by investigating the quality of

different combinations of the basic tasethods.

4.1 Testtemplates

Prior to the test program gemagion is the manualreation of the test template according
to Figure20. Contrary to the SBST progrageneration in [9], our experiment generates

test program based on soamy tests and random test data, including conformity test.

As discussed i13.1.2 HLDD was used to gamate templates and test data for the test
program. The work done in [9] was to igrate the HLDD for the control part of
miniMIPS processor and test tphate for the control test prografor us to create a test
program for method & and 4, the HLDD ggzh has to be synthesized to geneeatest
template and test data foettests. Four test templates were created for the generated PET

and random data.

For our experiments, method 2 and 3 uses the same test template, with 23 miniMIPS
instructions, fromhe ISA. The figure below illustratdke HLDD graph that was used
for therandom, PET and all PET templates.
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Figure21: HLDD Structure for method 2, 3, and 4

Figure 21 describes how the instructions were slivided based on thaumber of
operands with data that needs to be loaded irdoedjsters. An example is the ADD
instructions, which needs twogisters to load operands. According to the miniMIPs ISA,

the ADD instruction has the structure below:

ADD

000000

OP1 sham oP2

Figure22: ADD structure in miniMIPSSA

The ADD instruction is represented by thea@pionrs + rt. The address of thegiger
with the loaded value of operand Irsswhilert holds the value of operand 2.
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Test template 1

Operation_ Instructio n_method :
Load patterns

Instruction rd, O, O 2

Sw rd, offset( M)

Jalinc  rement

Instruction represesttheinstructions that are listed ifiable 5. Method represents the

type of nethod being used for trexperiment, which could be pseudo or random. Pseudo
was used to represent PET and all PET. The result register is repidserde O, O,

are heoperand registers, offset value is 4 and M represents the memory address where

theresult is stored.

Table5: List of instructionsunder template 1

SIN Instructions
ADD
ADDU
SUB
SUBU
OR
XOR
NOR
AND
SLT
SLTU
SRAV

RPIRPOOINOO|OIRAWIN|IEF

O

Test template 2

Operation_ Instruction_method
Load patterns

Instruction rd, O, |

Sw rd, offse  t( M)

Jal increment

Instruction represents the instructions that are listeBalvle 6. Method represents the
type of method being used for teeperiment, which could be pseudo or random. Pseudo

was usedo represent PET arall PET. The result register is representedd)\O; is the
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operand register,dtandfor the immediate &lue, offset value is 4 and M represents the

memory address whethe result is stored.

Table6: List of instructionsunder emplate 2
S/N Instructions
1 ADDI
2 ADDIU
3 ANDI
4 ORI
5 XORI
6 SLTI
7 SLTIU
Test tamplate 3

Operation_ Instruction _method :

Load patt erns

| nstruction rd, O, SA

Sw rd, offset( M)

Jal increment

Instrudion represents thiestructions that are listed ifable7. SA represents the shift
amount, the result registerrepresented b, O, is the operand register, offset value is

4 and Mrepresents the memorydrdss where the result is stored.

Table7: List of instuuctionsunder template 3
S/N Instructions
1 SLL
2 SRA
3 SRL
4 LUI

Test tanplate 4

Operation Instruction_ method:
Load patterns
Instruction rd, O1,
MFLO rd
Sw rd, offset (M)
MFHI rd
Sw rd, offset (M)
Jal increment

Oz
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Instructian represents the instructions that are liste@idhle8. SArepresents the shift
amount, the result register is representectb®: and Q are the operand registers, offset

value is 4 and M represents the memory addressavthe result is sted.

Table8: List of instructionsunder template 4

S/N Instructions
1 MULT
2 MULTU

4.2 Setup of the Experiments

The setup of the experimant can be visualizein Figure 23. The experiments were
performed on a lnux based computer dmodelSim simulator was used tansilate the
environment of the experiment. In ordersimulate the behaviour of the miniMIPS MP,
the HDL of miniMIPS was impled. The MP uses iRAM and ROM as memory. In
order to load the test progm, the ROM is usednd the RAM is used for storiregd
later accessinghe test data and results. As discussed in 4.1, theetegtiates were
developed manually from the HLDD and going forward tds program is automatically
generated with the helpf a python script. A illustrated inFigure 23, after the test
program is generated, the assembler¢bates withthe miniMIPS MP converts the test
program written in assemble language, into an eadteibinary file (machine code). The
executable binarfile is used by th&OM via tre test bench. After the simulation of the
MP with ModelSim, it automatically executes the test pwog and provides a test
response, which is later loaded into the membhe test responses are stored into dump
file, in .vcd format. The dump fé is pass# into thelow-level fault simulator called

TetraMax and the result of the fault coverage calcutat provided.
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VCD
File

Low Level
—» Fault
Simulator

Test Data

MiniMIPS
Self-test Test program
Program in binary
Test Test Memory |Memory
Template — Program ———»|_ > A bl > —¥
Generator ~ | it Processor
‘ [ Memory | Memory

Parameter
HLDD =
/5 File

Synthesis

Figure23: Setup of the experiments

4.3 Combination of different methods

The goal 6the experimental resrch wado evaluate the quality (SAF coverage) of all
the four basic test methods separately, to compare the twagtiEdaches and to evaluate
the possible contribution of the random test approach bgstigating the quality of
different combinationsfahe bag test methods. The experimental research consisted in

carrying out 11 experiments. They are illustratethe figures below:
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1. Test with dedicated PET patterns 2. Test with all PET patterns 3. Test with random patterns 4, Test with control patterns

Test data Test data
Test data Test data
Fe=======- o mmesesee ey
! Dedicated ! 4 ! i
N All PET |
Instructions H PET | Instructions i ' Instrustions Random Instructions | Control
T : 1 : : T patterns I patterns
12 ! 12 H ! [ 7]
i ' . ! ]
| 1 | 1 1 | H
' ' ! ' ' | |
ALY H ALU | H ALU ALY
instructions : instructions : : instructions instructions
In ! In ' ' In In
MULT O V| muto ' ' MULT 0 MULTO
1 ! 1
MULT 1 V| Mot ' ! MULT 1 MULT 1
{ L 1
5. Test with all PET + Random patterns 6. Test with dedicated PET + Random patterns 7. Test with Control + Random patterns
Test data Test dat:
o R Test data
]
Instructi A All PET
nstructions A Instructions
n H 1 Instructions Cotrt'tm‘
2 ' 2 T patterns
' ' ' 12
| ! i
! ' ' \
ALU : ALU :
instructions 1 instructions ALU
! instructions|
In : In
MULT 0 ' MULT 0 In
H MULT O
MULT 1 H ' MULT 1
e e ' MULT 1
Random Random | Random
patterns patterns patterns
8. Test with all PET + Control patterns 9. Test with Dedicated PET + Control patterns 10. Test with dedicated PET + Control + Random patterns
Test data Test data Test data
__________ Fmmm
1 '
Al PET 1 : Dedicated 1
Instructions : Instructions : PET : Instructions
: : E e ;
2 | 12 ! N 12
| : | I G i |
' ' ' , ' '
ALU . ' ' ' ALU
instructions ' H _ ! instructions
In ' In . ' In
' 1
MULT 0 ' MULT D = omo ' MULTO
'
1 1
MULT 1 1 MULT 1 : DM1 : MULT 1
1
_________ 1 N e -a
o B h Random
Control Control patterns
patterns patterns
11. Test with all PET + Control + Random patterns Control
_ T_Eft_dft_a o patterns
'
1
Instructions All PET :
11 '
1
12 H
'
1
' 1
ALU '
instructions 1
1
In 1
1
MULTO :
'
MULT 1 1
1
Random — Control
patterns patterns

Figure25: Experimant structurdor experiments 8 11
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In Figure24 andFigure?25, the instructionsepresent the ALU instructions, fromto In.
MULT 0 and MULT 1 are the multiplisrin the ALU of the miniMIPS processorh@
ALU of the miniMIPS pocessor can consisté the executable modulePS_EX The
PPS_EX module consists of the ALU, which has the ADD, MULT 0 and MULT 1

modules in it.

ADD

MULTO

MULT 1

ALU

PPS_EX

Figure26: Structure ominiMIPS execute mdule

The test dta D1, D2...Dn, DMO an®M1 for dedicated PETepresents the dedicdte
data used for each instruction in the test template. D1, D2...Dn are the patterns as
illustrated inFigure19. DMO and DM1 represents the 310 data dedicated for theTMUL

instruction.

The results of the experents will be discussednd analysed ichapter5. However,
experiments 1i 4 explored the 4 basic methods of data for testing the MP. The
combination of the 4 methods commences from experiment 5 until 11. Letraserp
each metbd withM. M1, M2, M3andM4 represents methodsi 4.

Where Method IM1) i Control patterns for testing
Method 2 (M2)i Dedicated PET patterns for testing
Method 3 (M3)i All PET patterns for testing

Method 4 (M4)i Random patterns foesting
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Experiment 5

Experiment 6

Experiment 7

Experiment 8

Experiment 9

Experiment 10 . M1+ M2+ M4

Experiment 11 . M1+ M3+ Mé

Figure27. Combinationof differentmethods

5 Implementation and investigations

The godof generation of different test structures using different test data was to establish
the impacts of different test data to the quality of test progiianerms ofow-level fault
coverage, test fgth and simulation time that is in correlation withtiteg time in real
world. Absolute testing times were not the goals, rather relations between different
modifications of test structures.

The results othe experimerst are presged in the5.27 5.8 We will discuss the fault
coverage, the test lengthad the simulation times. Ideally, the advantage of methods 1

4 is in the fact, that they do not need information of the reallgaét structure of the

56



units undertest, and &nce are classified anplementatioAndependent test generation
approach.

The quality of the scanning and conformity tests can be characterized as follows:

1. The control test guarante®E30% of SAF coverage in the controlrpaf the unit, and
as well he coverage of largerlass of faults than SAF, includingsal the conditional
SAF, multiple SAF and bridging faults, due to the exhaustive functional testing

conception.

2. The scanning test, using either dedicated PET &Edllpaterns, guarantees fufflult
coverage of SAFaults only for logic instructions anfor ripple carry adders, but not for
more complex adders like carlyok-ahead adders and carry save adders, also for
different types of multipliers. Hence, the PRpproab can be considered asheuristic
approachwhich however is expected to give @l SAF coverage. An added value of

the PET approach is in the coverage of larger class of faults than SAF only, including the
conditional SAF, multiple SAF and bridgj fauts due to the exhausgé test conception.

3. The random test gives no any guarantnd its fault coverage can be calculated only
afterwards by fault simulation. The advantages of the randorartst the ease of test
generation, but thdisadvantage ig1 the longer test copared to the algorithio tests
PET or control test.

Note, the PET and control tests have mutual effects, in the sense that PET, targeting the
faults in the data part, covers also the faults in the control part, andrtrel test, ice
versa, covers alsthe faults in both p#& of the module. From that it foll®y when
applying both, control and PET tests, then the possible deficiency of PET should be
removed or at least reduced. The same purpose of improving thquRifly is alson

applying random gderns.

5.1 Goals of the &periments

Referencindg-igure24, Figure25 andFigure27, the research targets was to illustrate the

following:

1) The first 4 experimentshow the fault coverage of the basic algorithms.
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2) The experiments 1 arficompare the both PET methods.

3) The &periments 1, 6 and Show the contributions of the Contrahd Random
tests to the Dedicated PET test.

4) The experiments 2, 5 and 8 show the dbations of the Control and Random

tests to the All PET test.

5) The expements 4 and 7 show the contributiditlte Random Test tthé Control

test

6) The experiments 8, 90 and 11 show the contribution of the Random Test to the

two versions of full determistic tests consisting of the control test and either
Dedicated PET (geriments 9 and 10) or All PET (expments 8 and 11) tests.

7) The experiments 3, 8 and 9 show tleenparison of the deterministic higével

implementatiorindependent approach vs. purandom approach (traewf

problem).

5.2 Investigations #1

In this sectiongxperiment 1 represents the test widdicated PET pattespexperiment

2 represents the testtwiall PET patterns, experiment 3 is for random patterns and

experiment 4 implies th&est for the control patterns. For each experiment four sub
experimentsvere performed for the four differemUTs T PPS_EX, ADD, MUWT 1 and

MULT 0.
Table9: Results of Eperimentl - 4
MUT |Experiment 1 (M2) ‘ Experiment 2 (M3) ‘ Experiment 3 (M4) ‘ Experiment 4 (M1)
Fault coverage (%)
PPS EX93.05 93.82 96.58
ADD 90.62 96.58 99.8
MULT1 9451 94.51 98.84
MULTO0 (96.52 96.52 98.94

Each MUTs are the modules in the ALU of timéniMIPs processor. Each of themas

differentnumberof faults present in them, but the numbgfaults is he same for every

expeaiment.
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Tablel10: Number of faults in MUTs of miniMIPS procsesr

MUT Number of faults
PPS EX | 211832
ADD 2516

MULT 1 | 95188
MULT O | 91810

Additionally, the larger the MUT, the more time it takes forltve-level fault simulator

to measure the fault coverage. However, the test length for the experiments is a huge
contributing factor. The test length the amount of test data used. This emphasizes that
the amount of test data used for the experiment inflisethestime it takes tmeasure the

fault coverage. The test length and simulation time used in experifndrégee shown in
Tablell

In experiment 1 the combination of all dedicated PET patterns is a total of 28, in addition
to the 310 patterns dedicatiedthe MULT function A total of 338 patterns were used in
experiment 2. The length of the test progranréases in pragtion to thenumberof
patterns used in generating it. The miniMIPS processor has a limited memory, therefore,
if the test program i®o long, the vcd filavill not be generated when simulating the test
bench of the MP. Hence, a total of0lfandom pati®s were used in experiment 3. Lastly,

experiment 4 uses the 166 patterns that were generated via conformity test.

Tablel1l: Test lemth and simulatiortime for experiments 14

MUT | Test length (data) | Fault simulation time (s) | Simulation time (s)
Experiment 1 (M2) PPS_EX 338 1155.24 0.005
ADD 9 8.74 0.003
MULT 1 310 469.29 0.005
MULT 0 310 302.11 0.003
Experiment 2 (M3) PPS EX 338 1920.31 0.009
ADD 28 9.50 0.003
MULT 1 310 768.03 0.008
MULT 0 310 599.57 0.006
Experiment 3 (M4) PPS EX 5356.57 0.025
ADD 27.63 0.011
MULT 1 1913.71 0.02
MULT 0 150 1764.62 0.019
Experiment 4 (M1) PPS EX 7703.38 0.036
ADD 40.52 0.016
MULT 1 2826.60 0.029
MULT 0 166 2825.95 0.031
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The fault simulation time is the time taken by lbe-level fault simulator (TetraMAX)
to complete the FC calculation. Hence, in order to get the simulation time which correlates

with the testing time, theoflowing formula was applied:

"Y'Q4 6 & & &L 3)

It is notable that the time taken to perform each experiment is not always directly
proportional to the test length. This is@ant as gperiment 2 has a longer test length that
experiment 3 and, however, the tim@aken to measure the fault coverage in experiment

3 and 4 are more than double of the time in experiment 1 and 2. This observation also

proves that PET technique i®one effecive than random test [26].

Table9 shows that experiment 4, which uses the mbmiatterns has the best FC in each
MUT. However, experiment 3 produced a better FC than experiment 1 & 2 because
random patterns are purely random and the typesufitrit poduces are unprecedented
and unertain. The number of random pattemsist be large in order to produce an

excellent FC.

5.3 Investigations #2

In this section, we will compare the results of both PET methods in experiment 1 and 2.
The execute modulPPS_EX will be evaluated as it contairmther modules and is

sufficient forcomparison.

Table1l2 Comparison of method and 3

Results
MUT |FC (%) Test length Simulation time (s)
Experiment 1 (M2) PPS EX| 93.05 338 0.005
ADD 90.62 9 0.003
MULT 1| 9451 310 0.005
MULT 0| 96.52 310 0.003

Experiment 2 (M3)

From the result above, it is evident that MBsing all PET patterns produces a better FC

than usiig only the dedicated PET pattermhe stiplated reason is because M3 makes
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sure that the combined dedted PET patterns is used to test the instructions specified in
the template. Instead of 9 dedicated patterns for the ADD instruction, 28 combined
paterns + 310 patterns for the mplier areused. It becomes more evident in this
comparison that the one the test data, the larger the test length and test program, the

more time spent by the lelevel fault simulator to calculate the FC.

5.4 Investigations#3

Experiments 1, 6 and 9 areaduated tanvestigate the contribution of the control (M1)
and randontest (M4) to the dedicated PET test (M2).

Tale 13: Comparison of experiments 1a6d 9

Results
MUT |FC (%) Test length Simulation time (s)

Experiment 1 (M2) PPS EX | 93.05 338 0.005

ADD 90.62 9 0.003

MULT 1| 94.51 310 0.005

MULT 0| 96.52 310 0.003
Experiment 6 (M2 + M4) [PPS EX| 96.48 428 0.011

ADD 99.56 99 0.010

MULT 1| 98.56 400 0.010

MULT 0 98.5 400 0.008
Experiment 9 (M2 + M1)

The contribution of the control tegata is more prominent than the randomdesa. The

control test data and the dedicated PET data is the same as a fullhuonfesst and
scanning test. Meaning that the test covers all the control parts and the data paths of the
MP. A total of 90 randm patterns were used, in addition to thdidated PET atterns.

We can conclude that the random patterns increased thentgibt & experiment 6, while
displacing efficiency and quality. Contrary to that, the control test data covered the non
terminal rodes, while the PET data covered the gatin. Theoretally, both methods

M2 and M1 are meant to be the best data set fatateepath and control part respectively.
However, the tradeff for a better FC % is the time taken to calculate the FC. Expatim

9 took more than 3 times more secorusntexperimen6 and more than 7 time more

seconds than experiment 1.
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5.5 Investigations#4

In this section, experiments 2, 5 and 8 are evaluated to investigate the contribution of the
control (M1) and random test (M4#o all PET test (M3).

Table14: Comparison of experinm2, 5 and 8

Results
MUT FC (%) Test length Simulation time (s)

Experiment 2 (M3) PPS EX 93.82 338 0.009

ADD 96.58 28 0.003

MULT 1 94.51 310 0.008

MULT 0 96.52 310 0.006
Experiment 5 (M3 + M4) [PPS EX 96.39 408 0.013

ADD 99.56 98 0.006

MULT 1 98.29 380 0.011

MULT 0 98.92 380 0.009
Experiment 8 (M3 + M1)

A very similar result was obtained in secti®. Thetradeoff of time versus quality is
the same, however, we can observe that FC% of experiment 8 andhe a@méd
98.66%. This means that the candtion of the control pattern withtkeer dedicated PET
or all PET provides the same result. The questmutthis observation is, could 98.66%
be the best FC in the PPS_EX module, since the control and PFfnpatre both

covering the full noterminal and terminal nodes?

5.6 Investigations#5

The control and random test data were combined in experimentsAvillfbe compared

to the FC obtained from using only the control test data.

Table15: Comparison of experiment 4 and 7

Results
MUT FC (%) Test length Simulation time (s)
Experiment 4 (M1) PPS EX 98.35 0.036
ADD 99.96 0.016
MULT 1 99.37 0.029
MULT 0 99.33 166 0.031

Experiment 7 (M1 + M4)
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This comparison was evaluated to observe the impact of theal@edom data when
combine with the control test. The contribution of thedom patterns is to the minimal,
with an increase of 0.22 % in the PPS_EX medihe test length in experiment 7 is
significantly higher than in experiment 4, hence, it is safeotactude that the impact of
100 random patterns on the 1é6Gntrol dataused as conformity test, is inversely

proportional to the level of increase of FCexperiment 7.

5.7 Investigations #6

The exgriments 8, 9, 10 and 11 show the contribution of the Rarbeshto the two
versions of full deterministic tests consisting of the control test and either Dedicated PET

(experiments 9 and 10) or All PET (experm®=8 and 11) tests.

Tablel16: Comparison of experimen& 9, 10 ad 11

Experiment 10 (M1 + M2 + M4

Results
MUT |FC (%) Test length Simulation time (s)
Experiment 8 (M1 + M3) PPS EX | 98.66 504 0.040
ADD 99.96 194 0.017
MULT 1| 9942 476 0.033
MULT 0| 99.67 476 0.029
Experiment 9 (M1 + M2) PPS EX | 98.66 504 0.040
ADD 99.96 175 0.017
MULT 1| 9942 476 0.032
MULT 0 | 99.67 476 0.029

Experiment 11 (M1 + M3 + M4)PPS EX | 98.69 531 0.042
ADD 99.96 221 0.017
MULT 1| 99.45 503 0.034
MULT O | 99.7 503 0.030

In 3.2.1the process of generating deterministic test patterns can be vengiegt and
before fault simulation is carried out to detect other faults, ihitial detected faults are
noted. Expament 8 and 9 are full deterministic tests with the control patterns and PET
patterns. The question posed in investigation 5 concer@rg®% as the maxium FC

was posed, and the theory is negatetdiahle16. Notably, random pagirns added 0.04

% in experiment 10 and 0.03% in experiment 11. The contribution of random patterns in
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experiments 10 and 11 is very minute and we can deducé&dhefficiency isto be
guestioned.

Experiment 10 had 166 control patterdsdicated PET ptarns and 45 random patterns,
however, experiment 11 had 166 control patterns, 28 + 310 all PET patterns and 27
random patterns. The effect of the larger randattepns irexperiment 10 is visible with

an FC of 0.01% more than experimédt Random pattasincreasehe test length and

the FC calculatioime butdoes not pose a strong contribution to the FC %.

5.8 Investigations #7

The experiments 3, 8 and 9 shotetcomparisn of the deterministic higtevel

implementatiorindependent appaeh vs. pure ranao approach (tradeff problem)

Tablel7: Observation of experiment 3, 8 and 9

Results
MUT | FC (%) Test length Simulation time (s)
Experiment 3 (M4) PPS EX | 93.82 338 0.009
ADD 96.58 28 0.003
MULT 1| 94.51 310 0.008
MULT 0| 96.52 310 0.006

Experiment 8 (M1 + M3)

Experiment 9 (M1 + M2)

The tradeoff between M4 and either M1 + M3, or M1 + M2 is the FC percentage if w
considerthe execute module (PPS_EX) of the minil8IRrocessor. The WIT in
consideration is the execute module (PPS_EX) of the miniMIPS processor. The time
taken to complete experiment 3 is more than 2 times lesser than experiment 8 and 9. This
is partialarly dueto the complete conformity and scanninst gerformed in gxeriment

8 and 9. The results ifiable17 supports the claim that random test is good enough, but
time is a tradeff for a better quality FC result in experiment 8 and 9. The combmati

of the ontrol test and the PET test prosdithebest FC result of 98.66%, however, the
dedicated PET test was more effective as a lesser time (8441.24s fault simulation time in
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experiment 9 versus 8531.83s in experiment 8) was used to calculate they&Che
same result of 98.66%.

An observéion totake note of is the effect of the random test on the dedicated PET and

control test. This can be evaluated in experiments 6 and 7.

Table18: Observation of experimenéand 7

As compared to the regsilin invesigation 1,for M2 and M1, the random data had a huge
impact on the dedicated PET data in experiment 6. The increase between experiment 1
(dedicated PET) and experiment 6 is 3.43% and there is a significant time difference due
to the additiona®0 random ptterns.

Table 19: Comparisorfor the significance of Random data
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