
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Ivan Tsud 177217IASM

DESIGN AND DEVELOPMENT OF MOBILE-
ORIENTED SOCIAL NETWORK. SERVER-

SIDE

Master's thesis

Supervisor: Eduard Petlenkov

Professor

Tallinn 2019

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Ivan Tsud 177217IASM

MOBIILSE SOTSIAALVÕRGUSTIKU
PROJEKTEERIMINE JA ARENDAMINE.

SERVERI POOL

Magistritöö

Juhendaja: Eduard Petlenkov

Professor

Tallinn 2019

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Ivan Tsud

05.03.2019

3

Abstract

This thesis is written in English language and is 53 pages long, including 8 chapters, 13

figures and 1 table.

Keywords: social network, server-side, node, express, database, programming language.

The object of research: server-side development for mobile platforms.

Theoretical research was implemented by studying the resources provided in the

References section.

In this master thesis, the server-side for the social network has been designed and

implemented.

It has the following features:

 • User Sign In and Sign Up,

 • User authentication,

 • Password reset,

 • File storage setup,

 • Routing security.

The practical value of the project is that it can be used as a starter, for any kind of

mobile application that needs describing above functionality.

4

List of abbreviations and terms

MVC Model View Controller

RAD Rapid Application Development

I/O Input / Output

ES6 ECMAScript 6

ES8 ECMAScript 8

RDMS Relational Database Management Systems

ORM Object-relational Mapping

ACID Atomicity, consistency, isolation, and durability.

DBA Database Administrator

NoSQL Not only SQL

API Application Programming Interface

REST Representational State Transfer

URI Uniform Resource Identifier

DAO Data Access Object

npm Node Package Manager

CTO Chief Technical Officer

5

Table of Contents

1 Introduction...10

2 Choosing Backend Technology Stack...12

2.1 General Reasoning..12

2.2 Programming Languages and Frameworks...14

2.3 TIOBE Index...17

2.4 Conclusions...17

3 Choosing the Database...18

3.1 Database Considerations and Requirements...18

3.2 Relational Database Management Systems (RDMS).......................................19

3.3 NoSQL Databases...20

3.4 Conclusions...21

4 REST API vs GraphQL API..22

4.1 REST API...22

4.2 GraphQL API..22

4.3 Conclusions...22

5 Choosing the Architecture...24

5.1 Monolithic Architecture..24

5.2 Microservices Architecture...25

5.3 Conclusions...26

6 Project Structure..27

7 Server Setup...29

7.1 User Authentication..30

7.1.1 User Sign Up Flow..30

7.2 User Schema Set Up...33

7.2.1 Username Field..34

7.2.2 Email Field..34

7.2.3 Password Field...35

6

7.2.4 Avatar Field...35

7.2.5 FirstName and LastName fields..37

7.2.6 Birth Date Field...37

7.2.7 Position Coordinates Fields...37

7.2.8 Gender Field..38

7.2.9 User Model Wrap-up...38

7.3 User Sign In Flow...39

7.3.1 JSON Web Tokens..39

7.3.2 Authentication Flow..40

7.4 Password Reset Flow..41

8 Conclusions...44

 References..46

 Appendix 1 – Code Samples..48

7

List of Figures

Figure 1. A typical monolithic architecture. [15]..24

Figure 2. A typical microservices architecture. [15]...25

Figure 3. New User Sign Up Flow Diagram...33

Figure 4. Username Field Schema...34

Figure 5. Username Field Schema...35

Figure 6. Avatar Field Schema..36

Figure 7. FirstName and LastName fields Schema...37

Figure 8. Birth Date field Schema...37

Figure 9. Geo-position fields Schema...38

Figure 10. Gender field Schema..38

Figure 11. JWT Signing Process...39

Figure 12. Authentication Flow Diagram..40

Figure 13. Password Reset Email..42

8

List of Tables

Table 1. TIOBE Index for March 2019. [12]..17

9

1 Introduction

Within this master thesis, I want to develop a Back End starter for the mobile

application. The main reason for that is the development of new skills and moving to

Full Stack development. As working as a Frontend Developer anyway, sometimes I find

myself digging into some backend stuff because Backend developer is extra busy and I

have to find a quick solution that will work. Anyway, that experience is so negligible,

so that can't be related to the experience at all.

That is why I decided to try myself in real backend development.

The idea (Oleksandr is the owner of the idea) of the mobile app is the following:

The main point for a target user is an improvement in the social aspects of everyday life.

With the MovieGo app, it is possible to grab your phone and see the most relevant

movies in a nearby cinema, choose the one you like, buy tickets and go!

But in contradiction to other similar services – the user does not have to go alone (in

case if no friends are available right now). It is possible to see other people who are

interested in a particular movie at the same time which is suitable for you in the same

cinema.

With just pressing a button, you already have a good plan for the evening, as it is not

ending at the cinema as you just made a new friend, so why not to prolong your good

time?

Have a walk, discuss the movie you have just watched or do whatever you want.

Before, when people wanted to visit a cinema, they used checking service, buying

tickets, watching the movie and that was it.

10

But it much more interesting to watch the movie with someone as it is becoming not

only up to a movie then.

Another important point of the app is to encourage people to do charity. It is not only

about the customers but also cinemas as well.

It is possible for cinemas to give the customers an opportunity to buy a ticket a bit

cheaper and spend the difference on charity. Thus, it will encourage users to visit the

cinemas more and more often for various reasons: tickets are cheaper, now it is much

more entertaining than before, and along with all these – they can help others. And

everybody wins!

From the description, provided above, I figured out that the following backend parts

should be developed and configured:

• Server setup.

• Database setup.

• Media files and their storage.

• User authentication.

• Server routing.

• Basic security.

The minimum plan for this master thesis would be:

• A basic server that can handle requests from the client and sends back responses.

• A simple database configuration to store user's data.

• User authentication with email and password.

11

2 Choosing Backend Technology Stack

Having no previous backend experience results in a huge problem in choosing the right

and reliable backend technology stack for the project as choosing the right one results in

a successful launch of the product. Backend development as any other development

types covers not only writing code with no bugs, but also optimization, scalability, and

security issues. Only the thoroughly done analysis can assure the correctness of the

chosen technology stack.

2.1 General Reasoning

As for me, the next reasons drive me when choosing the Tech Stack:

1. My personal sympathy to the stack.

2. Advice from a friend who has experience in the given development direction.

3. Somewhat same stack was used for a similar service, app, website, etc., because

of the possibility to use their "best practices" guides.

But there are problems arising from the stated above reasons:

1. Sympathy to the stack is way too subjective. What if the stack is not quite

appropriate for the current project or this technology going to be a legacy one?

2. Advice from a friend can be dangerous (except if he is not the CTO in a big

corporation, even though it is debatable), as he can’t know all the possible stacks

and also has subjective opinions.

12

3. Similar service may use the stack because of “just because” or “historical”

reasons. Maybe the stack has been used only because of popularity, or they used

legacy solutions of their own development.

So, nothing from the mentioned above is good reasoning for choosing the Tech Stack

and, the first step will be to specify the important, objective criteria.

After the research, I came up with the following criteria for the criteria while choosing

the Tech Stack:

1. Size and type of the project.

2. Complexity of the project.

3. Speed of implementing the technological aspects.

4. Development tools that are available at the moment.

5. Availability of already-implemented solutions.

6. Flexibility.

7. Community within the technology.

8. Trend.

9. Reliable and good specifications and documentation.

10. Support price.

11. Load requirements.

12. Security requirements.

13. Cross platform capabilities.

14. Possibility of integration with other solutions.

13

2.2 Programming Languages and Frameworks

Concerning the programming languages, it can be classified by 2 principal abstractions:

1. Vanilla programming language – let me say that it is a material that can be used

to build anything. The only thing that limits a developer – language restrictions.

On the top of vanilla languages, such products as Instagram [1] , YouTube [1] ,

Amazon [1] are built.

2. Framework – is a unique environment for the development that has built-in rules

and tools which speed-up and simplifies the development process. But every

framework has limitations.

It is obvious that the bigger the project, the bigger the technology stack is going to be

used in there. While building huge products as usual developers use several languages

as one programming language can be good for solving one specific task, the other one –

another task. For example, Google uses [1] a plenty of different languages, like

JavaScript, Objective-C, Python, Dart, and others. That is needed because millions of

people use Google every day, and there is a need to sustain the stability of the system.

I considered the following languages for backend:

1. Python – modern language that allows quick and easy development [2] . But

mainly I have heard about it in the Data Science sphere.

2. Ruby – modern language that allows quick development with the focus on

simplicity [3] .

3. Java – old language, with the postulate on hard and long development. Usually

used for huge project with specific business logic [4] .

4. JavaScript – quite old, but rapidly develops, is the most trending one with huge

community, and used for any kind of project [5] .

The frameworks and platforms related to the mentioned languages:

14

1. Django — open-source framework for backend web applications based on

Python. Its main goals are simplicity, flexibility, reliability, and scalability.

Django has its own naming system for all functions and components. It also has

an admin panel, and other technical features, including:

• Simple syntax.

• Its own web server.

• MVC core architecture.

• HTTP libraries.

• Middleware support.

• A Python unit test framework. [6]

2. Ruby on Rails.

• The process of programming is much faster than with other frameworks

and languages, partly because of the object-oriented nature of Ruby and

the vast collection of open source code available within the Rails

community.

• The Rails conventions also make it easy for developers to move between

different Rails projects, as each project will tend to follow the same

structure and coding practices.

• Rails are good for rapid application development (RAD), as the

framework makes it easy to accommodate changes.

• Ruby code is very readable and mostly self-documenting. This increases

productivity, as there is less need to write out separate documentation,

making it easier for other developers to pick up existing projects.

• Rails have developed a strong focus on testing and have good testing

frameworks. [7]

15

3. Spring.

The Spring Framework provides a comprehensive programming and

configuration model for modern Java-based enterprise applications — on any

kind of deployment platform.

A key element of Spring is infrastructural support at the application level:

Spring focuses on the "plumbing" of enterprise applications so that teams can

focus on application-level business logic, without unnecessary ties to specific

deployment environments. [8]

4. Node.

Actually Node is not a framework, but platform, on top of which the following

frameworks are built:

1. Express – is the most popular framework in Node community. It is minimal

and flexible. Doesn’t enforce developer in using any pattern. It is also one of

the best performing frameworks. [9]

2. Koa – is even more minimalistic framework than Express. It also has more

of recent features from JavaScript. [10]

During the last few years Node.js became extremely popular and because of that has

had explosive growth, mainly because of its top performance and the benefit that allows

you to build End-to-End JavaScript applications (both server and client), making the

systems more scalable and maintainable as a whole.

The major factor that makes Node performance better over other frameworks is because

of its non-blocking, event-driven I/O with a single thread paradigm, making servers

handle all requests in a single thread, allowing much better scalability than traditional

multithreaded servers.

16

The main drawback of the single thread paradigm is that the processes that need a huge

amount of calculations, could in the end block the thread for unreasonably long time

that resulting in overall performance of the server. [11]

2.3 TIOBE Index

Table 1. TIOBE Index for March 2019. [12]

March 2019 March 2018 Programming language Rating Change

1 1 Java 14.880% -0.06%

3 4 Python 8.262% +2.39%

7 8 JavaScript 2.426% -1.49%

15 9 Ruby 1.202% -1.54%

From the Table 2 it is clearly seen that the leaders are Java and Python. Nevertheless,

JavaScript gained a lot of popularity during last years due to introducing new features

(like ES6 to ES8).

2.4 Conclusions

After all the research and comparing the benchmarks [13] JavaScript, particularly

Node.js with Express.js framework seem to be the best choice, due to the performance,

huge community, popularity (the stack will be trendy for several years from now),

flexibility, scalability, development tools available, possibility to integrate with other

solutions, and ability to use the same codebase on the client and server.

17

3 Choosing the Database

Choosing the right database is one of the most important key things developers should

consider while starting a new project.

3.1 Database Considerations and Requirements

The database should be capable of doing the following with the entries stored there:

create, read, update and delete.

But there are some other functional and non-functional system considerations and

requirements [14] :

1. Consistency, availability, and partition tolerance.

2. Robustness and availability.

3. Scalability.

4. Performance and speed.

5. Distributability.

6. In-database analytics and monitoring.

7. Operational and querying capabilities.

8. Storage management.

9. Data model flexibility.

10. Database security.

18

3.2 Relational Database Management Systems (RDMS)

Relational database management systems are used for storing and querying structured

relational data. Relational data is the data stored in different tables of the database and

often each table has a relation to a different table. Relations could be one to another, one

to many or many to many. Each table consists of rows and columns, with a unique

identifier per row.

Data often needs to be stored and accessed across multiple tables due to its relational

nature, and this creates a mismatch between applications and database data

representations that is usually referred to as the object-relational impedance mismatch.

This mismatch occurs more specifically due to the need to map software objects to

database tables created from relational schemas. In order to address this mismatch,

various architectural patterns and software applications have been created to map

software objects to database tables and vice versa. This is known as object-relational

mapping (ORM).

RDMS are generally focused on providing strong consistency and ACID1 transactions,

stability, and strong reliability. They are also very well-suiting for complex querying

and non-real time analytics applications. Atomicity indicates that a transaction is all or

nothing, which means that any failure in a transaction causes the entire transaction to

fail and therefore leaves the database unchanged. Consistency ensures that all

transactions result in a valid state of the database, and that all validation rules and

constraints are met, and required actions are carried out. Isolation means that the

database is able to perform concurrent transactions that result in the same database state

as if the transactions had occurred one after the other. This is a form of concurrency

control, which can be implemented in different ways, with serializability referring to the

highest level of isolation. Durability ensures that a committed transaction persists, or is

permanently stored under any and all conditions.

1 ACID stands for database transaction properties and includes atomicity, consistency, isolation, and
durability.

19

Lastly, RDMS systems can be complex to install, manage, take full advantage of (e.g.,

complex queries, stored procedures, triggers, …), and optimize. As a result, these

systems have traditionally been worked on by highly specialized people with roles such

as Database Administrator (DBA), and less so by software engineers. [14]

3.3 NoSQL Databases

NoSQL database systems were created for, and have gained widespread popularity

primarily due to benefits relating to scalability and high availability. They favour the

eventual consistency model, and these systems typically model and store data in ways

other than the traditional tabular relations of relational databases.

These systems are also characterized as being modern web-scale databases that are

typically schema-free (dynamic schemas, and do not suffer from schema rigidity),

provide easy replication, have simple APIs.

There are multiple types of NoSQL databases, with document, key-value, graph, and

wide-column being the most prevalent. The different types refer mainly to how the data

is stored and the characteristics of the database system itself.

Each type involves tradeoffs between preferred data model, simplicity, querying and

operational capabilities, partition ability, consistency, availability, performance,

tolerance for object impedance mismatch, and so on.

Benefits of NoSQL databases are simplicity, scalability, flexibility, speed, low latency,

high availability, high throughput, and partition tolerance.

Unlike RDMS systems, many NoSQL databases can be easily installed, managed, and

almost fully utilized by software engineers without requiring a DBA background. This

is important since they do not require multiple highly specialized roles, and since having

the same people write software and database queries/operations is highly efficient, more

agile, faster, and less error-prone.

20

The simplified database API and querying language used by many of these systems are

also very software engineer-friendly and familiar, with JSON as a primary example.

This allows for common and developer-friendly language usage between database and

application coding. [14]

3.4 Conclusions

Due to the described above facts, I would choose the NoSQL database because of the

following reasons:

1. Simplicity.

2. Availability to have flexible schema.

3. No need to write any complex queries.

4. High speed of the operation.

5. High scalability.

6. JSON, XML data formats.

21

4 REST API vs GraphQL API

4.1 REST API

REST is an architecture for building web services. It follows principal directives,

making users ask for actions and resources through a URI and an HTTP method (GET,

POST, PUT, DELETE), and making transactions stateless.

REST actually does a pretty good job in most of the cases but following its conventions

usually results in getting more data than needed or getting less data, forcing doing more

requests. [11]

4.2 GraphQL API

GraphQL API has a data schema and a set of manipulations that client requests. A client

accesses the API with requests to a single URI, and a JSON like a body that specifies

which data wants to be received and which manipulations have to be executed, allowing

them to specify completely what fields they want to receive and how.

This new paradigm allows much more flexible interactions between client and server,

reducing the overall amount of data and requests that need to go through the network.

[11]

4.3 Conclusions

GraphQL seems really a good replacement for REST, but due to the fact that the

technique is a new one, there are no good reference and patterns.

22

So, for now, I would use REST and after some time will migrate to GraphQL if it still

be alive.

23

5 Choosing the Architecture

5.1 Monolithic Architecture

The top layer will generally handle the client requests and after doing some validations

it will forward the request to service layer where all the business logic is implemented.

A service will make use of various adapters like database access components in DAO

layer, messaging components, external APIs or other services in the same layer to

prepare the result and return it back to the controller which intern returns it to the client.

Such applications are generally packaged and deployed as a monolith. Applications like

these are pretty common and have many advantages, they are easy to comprehend,

manage, develop, test and deploy.

But it has drawbacks:

24

Figure 1. A typical monolithic architecture. [15]

1. Language / Framework lock: No way in experimenting and injection of new

technologies as the entire application is written in a single tech stack.

2. Difficult to understand: Once the app becomes larger it becomes difficult to

understand such a large codebase.

3. Deployment of a single feature: No way to deploy a single feature

independently. [15]

5.2 Microservices Architecture

Microservices architecture solves a problem by dividing it into smaller sub-problems.

Each microservice implements its own function. Each service can be written in any

language/framework that suits the use case.

All requests from clients first go through the API Gateway. It then routes requests to the

appropriate microservice. The API Gateway will often handle a request by invoking

multiple microservices and aggregating the results. It might have other responsibilities

such as authentication, monitoring, load balancing, caching and static response

25

Figure 2. A typical microservices architecture. [15]

handling. Since this gateway provides client-specific APIs it reduces the number of

round-trips between the client and application which reduces network latency and it also

simplifies the client code.

Microservices also brings some complex challenges:

1. Distributed Computing Challenges: Since different microservices will need to

run in a distributed environment it will be needed to take care of the behavior

and the locations of the components of the system will constantly change.

2. Handling Service Unavailability: It is needed to design the system to handle

unavailability or slowness of services. [15]

5.3 Conclusions

It is understandable that monolithic architecture has scalability and maintainability

problems, but as of now, I see no point in setting up the microservices architecture.

Probably, with the future development of the product, there will be a reason to move to

the microservices architecture.

26

6 Project Structure

In this section I will go deeper into planning of the project structure and main

components.

In general, project should consists of 3 main components:

1) React Native UI library. It should be deployed as a package to `npm` [16]

because of the following reason: it will allows us to use the `Leuchtturm` for any

future React Native project and have a ready solution for the UI. We also will be

writing documentation for the package as we go. The documentation should has

description for all implemented UI components. For now, we considering to use

`docsify.js` as a documentation site generator [17] . We also considering of

usage Storybook, as it will allow write self-documenting components [18] . But

it will consume quite a lot of time to start the project, so it will be implemented

later. The static website with documentation will be deployed to the Netlify,

because it is one of the easiest and fastest ways to host static websites for free

[19] . It has all features we need: it automatically deploys pushes to the master

branch, allows custom domain names, allows modify build preferences, deploys

everything in an ease. All the UI components part will be explained by

Oleksandr in more details.

2) React Native Client App “MovieGO”, is going to be built with React Native

framework for the development of cross-platform apps for iOS and Android [20]

. We also will write documentation as we go, to keep all main aspects in one

place. We will write client part together. Oleksandr will be focusing on UI part,

while I will be covering functional part, that is related to the server (making

request, upload files).

27

https://eager-panini-2b8d34.netlify.com/#/?id=leuchtturm-ui-kit
https://eager-panini-2b8d34.netlify.com/#/?id=leuchtturm-ui-kit
https://eager-panini-2b8d34.netlify.com/#/?id=leuchtturm-ui-kit

3) And last, but not least, Express Node Server. This is the core of the application

as it handles all the requests and responses for the Client App. Node has been

taken as a base for the server [21] . Express has been taken as a core framework

for Node [9] . The main reasoning of using Node and React Native – the one

codebase. For a database for the app, I have chosen MongoDB [22] . The

database will be hosted on mLab [23] . The main reason of choosing MongoDB

and mLab because there is a minimal setup needed, it is free for the beginning

and as a whole it has Database as a Service features, that simplifies the

development and configuration. And finally, for now, the server will be

deployed to the Heroku [24] . Once there will be a need in several separate

microservices, probably the server will be migrated to the Docker [25] .

The reasoning of choosing the stack was in the corresponding sections above,

dedicated to the comparison of all considered services, products, languages and

technologies.

All these 3 projects going to live on the Bitbucket [26] . The main reason why we have

chosen Bitbucket – because of ability to have a free private project for collaboration for

a team of less than 5 people.

28

7 Server Setup

The server will be configured with the following stack:

• Node.js as a runtime environment.

• Express.js as a Node.js Framework.

• MongoDB as a NoSQL database.

• Passport.js as a middleware for User Authentication.

Project structure:

• ./src/ - is the main folder with the source files.

◦ /avatar-upload/ - folder that will contain all the configuration for the helper

that will handle uploading of the user’s avatar to the server.

◦ /controllers/ - folder that will contain all the controllers (core things that

will manipulate accordingly and trigger the Model or make actions to

interact with View).

◦ /db/ - folder with the config of the database. See Figure 1. Part of the source

code of ./src/db/index.js for reference.

◦ /mail/ - folder that will contain config for reset password emailing flow.

◦ /middlewares/ - folder that will contain middlewares that will serve as

helpers for the core controllers.

◦ /models/ - folder that will contain defined schemas of the database instances,

like User structure, structure of the Film, etc.

29

◦ /passport/ - folder that will contain configuration files for the PassportJS

middleware.

◦ /routes/ - folder that will contain logic of the application routing.

◦ /app.js – there will be initialized Express server, routes, and all other stuff

related to the Express, authentication middlewares and their configs. See

Figure 2. Part of the source code of ./src/app.js for source code example.

• ./start.js - entry point of the whole application. It runs server, connects to the

database, links environment variables, etc. See Figure 3. Part of the source code

of ./start.js for more details.

7.1 User Authentication

Before creating core microservices and doing any server logic side, the first thing, that

should be implemented – User Authentication. It allows verify the user identity and

protects the routes if the access to the user is not granted.

7.1.1 User Sign Up Flow

When a new user signs up, he/she sends a bunch of personal information from the React

Native App to the Server. All the data is being sent by a single POST request, that

comes to the https://moviego-express-server.herokuapp.com/user/register. The

information that is being sent (fields) presented below:

1. Username – is a unique combination of the characters that will identify user

among others in chats.

2. Email,

3. Password,

4. Confirm password,

30

https://moviego-express-server.herokuapp.com/user/register

5. Avatar Uri,

6. First Name,

7. Last Name,

8. Birth Date,

9. Latitude,

10. Longitude,

11. Gender.

For more information about the fields, please see Chapter 7.2 where all the information

about Database Schema set up will be placed.

The logic of Sign Up Flow:

The Route Handler verifies whether the endpoint is valid. Basically, the route handler

check whether there is a set-up for a route the client trying to reach. At the time, I have

the following route setups:

• `/` - home route, that just will display a dummy information about the server.

• `/avatar-upload` - route that handles all the necessary steps to upload avatar to

Amazon AWS S3 [27] and is described in more details in section Avatar Field.

• `/user/register` - route that handles registration for a new user. If the

`/user/register` route can be handled, the data is passed to the Data Validation

Middleware. See Figure 4. User Middleware to Validate data for more

information.

This middleware checks whether all the needed data is present and data has

correct formatting. This middleware runs sanitization for major fields, so we are

sure that fields does not include script tags in the username, firstName and

lastName. `sanitizeBody()` method can be accessed on `req` because in the

31

`app.js` I inject `app.use(expressValidator())`, so it adds a bunch of methods

available on 'req' for validating data. And if I have a request, I can just call

different validation methods that live on the top of it, without importing a library

again and again.

As a result, all the data is being standardised and then passed to the Registration

Controller. See Figure 5. Register Controller for more information.

The register() controller creates a new user instance of off the obtained fields

from request. Then by calling a `register()` method on the User model, where

internal parameters are: created user instance, password and callback function.

The password is sent to the Passport.js middleware in a plain form and then it is

saved to the database in a form of a hash. It is possible to call register() method

on User model because in while setting up User model, the passport-local-

mongoose [28] plugin was added there.

And then, all the data composed to a single User object and passed to the MongoDB

with the help of Mongoose. The flow diagram is presented below in Figure 3.

32

7.2 User Schema Set Up

Although MongoDB allowing pushing data to the database without any schemas, it is a

good thing to set up basic data validation before pushing it to the database.

33

Figure 3. New User Sign Up Flow Diagram

7.2.1 Username Field

• type: String defines the type of the field. Basically, I expect a string for the

username field.

• trim: true removes the spaces in the beginning and the end of the field as

sometimes users register with something like that: “ myUsername ”, but to

the database this field will be stored as “myUsername”.

• minlength: 3 specifies that it should be at least 3 characters in the username.

• unique: true will throw an error if somebody signing up with the username that

already in use.

• required: “Username is required!” specifies the field as required and it’s not

possible not to specify it.

7.2.2 Email Field

34

username: {

 type: String,

 trim: true,

 minlength: 3,

 unique: true,

 required: 'Username is required!'

 },

Figure 4. Username Field Schema

• type, trim, minlength, unique, required purposes are the same as in username

field. See Username Field for more details.

• lowercase: true will unify the emails to avoid something like this

“Ivan.TSUd@GmaIL.cOm” as it is absolutely not readable.

• validate: [validator.isEmail, 'Invalid email address!'] checks whether

provided email structure is not just some random text. It is done with ‘validator’

package. [29]

7.2.3 Password Field

The password field is not specified in the Schema as PassportJS [30] will take care of

the password by itself. It will add hashed password to the database instead of the plain

password. It increases the security of users’ accounts. As in case if the database will

leak, nobody will be able to use the accounts.

7.2.4 Avatar Field

35

email: {

 type: String,

 trim: true,

 minlength: 5,

 unique: true,

 required: 'Email is required!',

 lowercase: true,

 validate: [validator.isEmail, 'Invalid email address!']

 },

Figure 5. Username Field Schema

mailto:Ivan.TSUd@GmaIL.cOm

The avatar is stored in a database as a URI link to the file hosting. The only validation

here only for making sure that the “avatarUri” is unique and is a String.

Amazon AWS S3 [27] is used as a hosting for images.

The process user avatar saving and upload is the following:

1. Setup image upload permissions, so client app could request access to the file

system.

a) For “ios”, permissions are defined in “Info.plist” file.

b) For “android”, permissions are defined in “AndroidManifest.xml” file.

2. Select the photo from photo gallery or take a new one using the camera on the

Client App using “react-native-image-picker” module. [31]

3. Link “react-native-image-picker” module to the React Native app. The reason of

linking the module is that this module has native dependencies for both “ios”

and “android”. So, there is a need to link that with native code to have full

access and being able to use setted permissions.

4. Store photo it in the app’s state.

5. Once photo has been successfully uploaded to the app’s state, form a request and

using POST method send it to the server route “/avatar-upload”.

6. Using the AWS S3 SDK [32] for Node.js, configure endpoint and upload the

photo to the file hosting. See Figure 6. Upload Avatar to the Amazon AWS S3

for the source code.

36

avatarUri: {

 type: String,

 unique: true,

 required: 'Avatar is required!'

 },

Figure 6. Avatar Field Schema

7. AWS sends back a link, it then it is back to the client app.

7.2.5 FirstName and LastName fields

type, trim, minlength, required purposes are the same as in username field. See

Username Field for more details.

7.2.6 Birth Date Field

Birth Date is passed to the server as a formatted string that looks in the following way:

“Sep 30, 1995”. The field is required as we need to be sure that the person is eligible to

use the service.

7.2.7 Position Coordinates Fields

37

firstName: {

 type: String,

 trim: true,

 minlength: 2,

 required: 'Please provide your First Name!'

 },

 lastName: {

 type: String,

 trim: true,

 minlength: 2,

 required: 'Please provide your Last Name!'

 },

Figure 7. FirstName and LastName fields Schema.

birthDate: {

 type: String,

 required: 'Please provide the birth date!'

 },

Figure 8. Birth Date field Schema.

Once the user allowed to track geolocation, the “latitude” and “longitude” are going to
be tracked and send to the server in the following form: “latitude”: 37.785834, longit-
ude: -122.406417.

As the client app was initialized with `react-native-cli` [33] , it is possible to track loca-
tion using `navigator.geolocation.getCurrentPosition()`. See code for more details Fig-
ure 7. Get User Location

The Geolocation API exists as a global navigator object in React Native, just like on the
web. It’s accessible via navigator.geolocation in our source code and there is no need to
import it.

The `getCurrentPosition` method from the Geolocation API is used. This method al-
lows a mobile app to request a user’s location and accepts three parameters: a success
callback, an error callback, and a configuration object. [34]

7.2.8 Gender Field

Gender field is not necessary, but for those who would like to set it, there will be an op-
tion to do it. The only checking here: checking for type of the field. It should be a
String.

7.2.9 User Model Wrap-up

So, in general, there are 9 fields that are specified in the User Model Schema for the

MongoDB. They describe the User and what properties user model may have.

38

latitude: {

 type: Number

 },

 longitude: {

 type: Number

 },

Figure 9. Geo-position fields Schema.

gender: {

 type: String

 },

Figure 10. Gender field Schema.

7.3 User Sign In Flow

Sign In process is not a straightforward one. I have been searching for the strategies that
will be well-suitable for both mobile and web so later there won't be a need to change
Auth Flow for the Web client.

Among those cases, JSON Web Tokens is the strategy that is well-used to mobile devel-
opment and web development, where the server is a RESTful API.

7.3.1 JSON Web Tokens

JSON Web Token is a token that is obtained by the client from the server and then
saved in a device local storage and then JWT is placed to the header of every request
sent to the server. See the Figure 11. JWT Signing Process. below for more details:

1. The user sends data as a `POST` request to the server.

2. The server authenticate the data received from the server, creates JWT and sends
it to the client. The client saves it to the device local storage.

3. The server decodes the JWT for every request and verifies whether it is a valid
token, and it can be used for identification and authentication purposes.

Pros of using JWT for Authentication:

• Stateless: While using JSON Web Tokens, a Server REST API never need to
store user sessions or any other related information. Here, the token may contain
all needed information for user authentication. The token itself may also contain
information, like User Role and different permissions.

• Scalable: As far as JSON Web Tokens assume it to be stateless, all the systems
pretending to use JWT could be scaled easily with respect to the state-dependent
systems. As a result, I no longer need to think about the right user sessions man-
agement across multiple servers and databases – instead, the server can respond

39

Figure 11. JWT Signing Process.

to requests and authenticate users based only on the secret key used to sign the
tokens.

• Unpredictable behavior of cookies: As far as traditional sessions rely on the
browser to store a cookie, it may be a big problem to use it on mobile devices
due to a variety of browsers and different permissions used on mobile platforms.
In some cases, cookies even can't be sent to the server and request cannot be au-
thorized.

7.3.2 Authentication Flow

The User Sign In flow is implemented in `userController.js` file. This file contains
both `login` and `register` controllers. See Figure 8. Login Controller and Figure 5.
Register Controller for code samples.

The `authController.js` file deals with all of the heavy lifting for signing in, making
sure that the user logged in, JSON Web tokens are valid and the user has access to the
account. See Figure 9. JWT Auth Controller for code samples.

According to the Figure 12. Authentication Flow Diagram., the following steps are ap-
plied for user to be signed in:

1. `POST` request is sent to the `/user/login` route. The request body has email
and password in it. If server does not have such route, the error will be thrown.

40

Figure 12. Authentication Flow Diagram.

2. Route handler will receive that data and pass data as a `req.body` to the Pass-
portJS which will hash the password and send it to the Mongoose.

3. Mongoose receives the user credentials and makes an access to the MongoDB.

4. MongoDB returns back to the Mongoose a User object or error if the User in-
stance is not found.

5. If PassportJS will receive a User instance, it will sign the JSON Web token with
a secret code, stored in `.env` file.

6. PassportJS takes token and sends back to the Route handler which sends back it
to the client.

7. Client takes the token and stores it in the device local storage (async storage).

8. From there, for every request will contain a header with token which will be
checked on the server and if token check shows that the token is valid, user will
be authorized (while user trying to access private routes), otherwise the user ac-
cess will be rejected.

7.4 Password Reset Flow

We are all humans and all we tend to forget passwords we use for different services,

especially if all the passwords are different.

The password reset flow is minimalistic here:

1. User is prompted to enter an email address he used to register an account in a

special screen and press submit button.

2. Check email and find there a temporary password.

3. Log into his account with the temporary password and change it.

Now to the technical aspects:

On the client app there is a special navigation flow for the password reset. On the `Sign

In` screen there is a `Forgot password?` button which on click redirects to the

`ForgotPassword` screen where user can enter an email and press on `Reset

41

Password` button. Pressing the mentioned button triggers the

`_handlePasswordReset()` function which takes `email` as an incoming value,

makes a `POST` request to the `/user/account/forgot-password` route.

`forgotPassword` controller accepts the request and do the following:

1. Check if there is a record in the database for a user with the provided email. If

not, the error is thrown to the client, so it can notify the user that the email is not

correct.

2. Use of password-generator [35] module to generate a secure password that will

be sent to the user.

3. Update the password in the database and save the changes made on user model.

4. Send an email with the temporary password to the user. Nodemailer [36] was

used as a middleware for sending email and Mailtrap [37] was used as a “fake”

SMTP server.

And as a result, the Password Reset Emails looks like following:

42

Figure 13. Password Reset Email.

See Figure 10. Forgot Password Controller for the code reference.

43

8 Conclusions

As of this Master Thesis I have been doing back-end development for a mobile

application. And up tho this point I have implemented the following:

1. Has been constantly deploying npm package `Leuchtturm` while Oleksandr has

been developing it. [38]

2. Have configured the basic Node server with Express.

3. Have deployed the server to the Heroku. [39]

4. Have implemented user registration and sign in with the PassportJS.

5. Have implemented handling of the user authorization with the JSON Web

Tokens and access flow for the private routes.

6. Have implemented password reset flow.

7. Have configured mail server for sending emails.

8. Partially done Facebook Authentication, meaning that the user entry can be

created, but the user can’t access the account yet.

During the development I have been using WesBos course on Node, StackOverflow,

Spencer Carli guides and plenty of Medium articles that are mentioned in the references

section.

Still, there’s plenty of work left and still many improvements need to be done. There is

a need to create a database of films and a microservice that will be pushing films to the

database. Chat function for the registered users, and so on.

44

https://www.npmjs.com/package/leuchtturm

During this small period of time I’ve done as many as I could and happy about results.

This project gave me new knowledge about databases, back-end stacks, servers, types of

architecture. Within this project, I have increased my level as a developer and now I see

things on a bigger scale, not only what end users see, but also the part that is hidden

from them.

45

References

[1] Siftery [Electronic resource]

[2] Python. Official Python Documentation [Electronic resource]

[3] Ruby. Official Ruby FAQ [Electronic resource]

[4] "Why Should You Use Java for Your Backend Infrastructure?", Aran Davies
[Electronic resource]

[5] "About JavaScript", Mozilla Documentation [Electronic resource] - Mar 23, 2019

[6] "Why We Use Django Framework & What Is Django Used For", Djangostars
[Electronic resource]

[7] "Ruby on Rails: What it is and why you should use it for your web application",
Bitzesty 01 [Electronic resource] - March 03, 2014

[8] "Overview of Spring Framework", Spring [Electronic resource]

[9] "Overview of the framework", ExpressJS [Electronic resource]

[10] "Overview of the framework", KoaJS [Electronic resource]

[11] "Choosing Back-end Tech in 2018", Andrés Cádiz Vidal [Electronic resource] -
Aug 11, 2018

[12] "TIOBE Index for May 2019", TIOBE [Electronic resource] - May, 2019

[13] The Computer LanguageBenchmarks Game [Electronic resource]

[14] "How to Choose the Right Database System: RDBMS vs. NoSql vs. NewSQL",
Alex Castrounis [Electronic reference]

[15] "Designing scalable backend infrastructures from scratch", Anshul Chauhan
[Electronic resource] - Apr 30, 2017

[16] NPM. Official page [Electronic resource]

[17] DocsifyJS. Official Page [Electronic resource]

[18] StorybookJS. Official page [Electronic resource]

[19] Netlify. Official page [Electronic resource]

[20] React-native framework, Facebook [Electronic resource]

[21] NodeJS. Official documentation [Electronic resource]

[22] Mongodb. Official page [Electronic source]

46

https://www.mongodb.com/
https://nodejs.org/en/
https://facebook.github.io/react-native/
https://www.netlify.com/
https://storybook.js.org/
https://docsify.js.org/
https://www.npmjs.com/
https://medium.com/@helloansh/designing-scalable-backend-infrastructures-from-scratch-af80f5767ccc
https://medium.com/@helloansh/designing-scalable-backend-infrastructures-from-scratch-af80f5767ccc
https://www.innoarchitech.com/how-choose-right-database-system-relational-rdbms-vs-nosql-vs-newsql/
https://www.innoarchitech.com/how-choose-right-database-system-relational-rdbms-vs-nosql-vs-newsql/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/faster/node-yarv.html
https://www.tiobe.com/tiobe-index/
https://medium.com/educalabs/choosing-a-backend-tech-stack-in-2018-b415e5f436d3
https://medium.com/educalabs/choosing-a-backend-tech-stack-in-2018-b415e5f436d3
https://koajs.com/
https://expressjs.com/
https://spring.io/projects/spring-framework
https://bitzesty.com/2014/03/03/ruby-on-rails-what-it-is-and-why-we-use-it-for-web-applications/
https://bitzesty.com/2014/03/03/ruby-on-rails-what-it-is-and-why-we-use-it-for-web-applications/
https://djangostars.com/blog/why-we-use-django-framework/
https://djangostars.com/blog/why-we-use-django-framework/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript
https://www.devteam.space/blog/why-should-you-use-java-for-your-backend-infrastructure/
https://www.devteam.space/blog/why-should-you-use-java-for-your-backend-infrastructure/
https://www.ruby-lang.org/en/documentation/faq/2/
https://www.python.org/about/
https://siftery.com/

[23] Mlab. Official documentation [Electronic resource]

[24] Heroku. Official page [Electronic resource]

[25] Docker. Official page [Electronic resource]

[26] Bitbucket. Official page [Electronic resource]

[27] Amazon S3 Overview [Electronic resource]

[28] passport-local-mongoose, NPM package, Christoph Walcher [Electronic resource]

[29] Validator, NPM package, Chris O'Hara [Electronic resource]

[30] PassportJS. Official documentation [Electronic reference]

[31] React-native-image-picker, NPM package, React Native Community [Electronic
resource]

[32] Aws-sdk, NPM package, Amazon Web Services [Electronic resource]

[33] React Native documentation for react-native-cli [Electronic resource]

[34] "Using Geolocation in React Native", Aman Mittal [Electronic resource] - Sep 30,
2018

[35] Password-generator, NPM package, Bermi Ferrer [Electronic resource] - 2017

[36] Nodemailer. Official documentation [Electronic resource]

[37] Mailtrap. Official page [Electronic resource]

[38] Leuchtturm, NPM package, O. Shabala, I.Tsud [Electronic resource] - Apr 4,

2019

[39] "Moviego Server", Ivan Tsud [Electronic resource] - May 6, 2019

47

https://moviego-express-server.herokuapp.com/
https://www.npmjs.com/package/leuchtturm
https://www.npmjs.com/package/leuchtturm
https://mailtrap.io/
https://nodemailer.com/about/
https://www.npmjs.com/package/password-generator
https://alligator.io/react/geolocation-react-native/
https://alligator.io/react/geolocation-react-native/
https://facebook.github.io/react-native/docs/understanding-cli
https://www.npmjs.com/package/aws-sdk
https://github.com/react-native-community/react-native-image-picker
https://github.com/react-native-community/react-native-image-picker
http://www.passportjs.org/
https://www.npmjs.com/package/validator
https://github.com/saintedlama/passport-local-mongoose
https://aws.amazon.com/s3/
https://bitbucket.org/
https://www.docker.com/
https://www.heroku.com/
https://mlab.com/

Appendix 1 – Code Samples

48

// Connect to Database and if there errors - throw to the terminal

mongoose

 .connect(process.env.DATABASE, { useNewUrlParser: true,
useCreateIndex: true })

 .then(() => console.log('Successfully connected to the
DATABASE.'))

 .catch(error => {

 console.error(`There was an error while connecting to the
DATABASE: ${error.message}`);

 });

Figure 1. Part of the source code of ./src/db/index.js

// Create Express app

const app = express();

// Add properties to requests to use it as `req.body`

app.use(bodyParser.json());

app.use(cookieParser());

// Add validation methods for single `req`

app.use(expressValidator());

app.use(passport.initialize());

// Apply Passport Config

require('./passport/passportConfig');

// Handle routes

app.use('/', routes);

Figure 2. Part of the source code of ./src/app.js

49

// Make sure that host uses Node 7.6+

const [major, minor] =
process.versions.node.split('.').map(parseFloat);

if (major < 7 || (major === 7 && minor <= 5)) {

 console.log(

 'To run the project. Node 7.6+ has to be installed. Go to
https://nodejs.org/ and download version 7.6 or greater.'

);

 process.exit();

}

// Import environmental variables from .env file

require('dotenv').config({ path: '.env' });

// Connect to the DB

require('./src/db/index');

// Connect models

require('./src/models/User');

// Start Server

const app = require('./src/app');

// Set server PORT

app.set('port', process.env.PORT || 4444);

// Run Server

const server = app.listen(app.get('port'), () => {

 console.log(`Server started on http://localhost:$
{server.address().port}`);

});

Figure 3. Part of the source code of ./start.js

50

exports.validateRegisterData = (req, res, next) => {

 // sanitization of username

 req.sanitizeBody('username').trim();

 req.checkBody('username', 'Username length should be at least 3
characters').isLength({ min: 3 });

 req.checkBody('username', 'Username should be
supplied!').notEmpty();

 // sanitization of email

 req.checkBody('email', 'The email is not valid!').isEmail();

 req.sanitizeBody('email').normalizeEmail({

 remove_dots: false,

 remove_extension: false,

 gmail_remove_subaddress: false

 });

 // sanitization of password

 req.checkBody('password', 'Password cannot be
empty!').notEmpty();

 req.checkBody('password', 'Password length should be at least 8
characters').isLength({ min: 8 });

 // sanitization of confirm password

 req.checkBody('confirmPassword', 'Confirm password cannot be
empty!').notEmpty();

 req.checkBody('confirmPassword', 'Passwords should
match!').equals(req.body.password);

 // sanitization of firstName and lastName

 req.checkBody('firstName', 'First Name field cannot be
empty!').notEmpty();

 req.checkBody('lastName', 'Last Name field cannot be
empty!').notEmpty();

 // if there are errors, send status of the error and error
message

 const errors = req.validationErrors();

 if (errors) {

 errors.map(error => res.status(400).send(error.msg));

 return;

 }

 next();

};

Figure 4. User Middleware to Validate data

51

 // Register user and hash the password

 User.register(newUser, password, (error, user) => {

 if (error) {

 return res.status(400).send(error);

 }

 if (!user) {

 return res.status(400).send();

 }

 return res.status(200).send(user);

 });

};

Figure 5. Register Controller

 const avatarUpload = multer({

 storage: multerS3({

 s3: new aws.S3(),

 bucket: 'moviego-avatar-storage',

 acl: 'public-read',

 ContentType: 'image/jpeg',

 metadata(req, file, cb) {

 cb(null, { fieldName: file.fieldname });

 },

 key(req, file, cb) {

 cb(null, `${file.originalname}_avatar.$
{file.mimetype.split('/')[1]}`);

 }

 })

});

Figure 6. Upload Avatar to the Amazon AWS S3

52

getLocation = () => {

 navigator.geolocation.getCurrentPosition(

 position => {

 this.setState({

 latitude: position.coords.latitude,

 longitude: position.coords.longitude

 });

 },

 error => console.log(error.message),

 { enableHighAccuracy: true, timeout: 20000, maximumAge:
1000 }

);

 };

Figure 7. Get User Location

passport.authenticate('local', function(err, user) {

 if (err) {

 return res.status(400).json({ error: err });

 }

 if (user) {

 const token = jwt.sign({ id: user._id, email: user.email },
secret);

 return res

 .status(200)

 .header('x-auth', token)

 .send('Successfully authenticated!');

 }

 return res.status(401).json({ error: 'Invalid credentials.' });

 })(req, res);

Figure 8. Login Controller

53

passport.authenticate('jwt', function(err, user) {

 if (err) {

 // internal server error occurred

 return req.status(400).json({ error: err });

 }

 if (user) {

 // successful auth

 return res.status(200).send(user);

 }

 // no JWT or user found

 return res.status(401).json({ error: 'Invalid credentials.' });

 })(req, res);

Figure 9. JWT Auth Controller

exports.forgotPassword = async (req, res) => {

 // check if the user exists

 const user = await User.findOne({ email: req.body.email });

 if (!user) {

 return res.status(401).json({ error: 'Invalid credentials.' });

 }

 // generate new password

 const tempPassword = generatePassword(12, false, /[\w\d-]/);

 // update the password in the DB

 await user.setPassword(tempPassword);

 await user.save();

 // send email with temporary password

 mail.send({

 user,

 subject: 'Password Reset',

 tempPassword,

 filename: 'password-reset'

 });

 return res.status(200).send();

};

Figure 10. Forgot Password Controller

	1 Introduction 10
	2 Choosing Backend Technology Stack 12
	2.1 General Reasoning 12
	2.2 Programming Languages and Frameworks 14
	2.3 TIOBE Index 17
	2.4 Conclusions 17

	3 Choosing the Database 18
	3.1 Database Considerations and Requirements 18
	3.2 Relational Database Management Systems (RDMS) 19
	3.3 NoSQL Databases 20
	3.4 Conclusions 21

	4 REST API vs GraphQL API 22
	4.1 REST API 22
	4.2 GraphQL API 22
	4.3 Conclusions 22

	5 Choosing the Architecture 24
	5.1 Monolithic Architecture 24
	5.2 Microservices Architecture 25
	5.3 Conclusions 26

	6 Project Structure 27
	7 Server Setup 29
	7.1 User Authentication 30
	7.2 User Schema Set Up 33
	7.3 User Sign In Flow 39
	7.4 Password Reset Flow 41

	8 Conclusions 44
	References 46
	Appendix 1 – Code Samples 48
	1 Introduction
	2 Choosing Backend Technology Stack
	2.1 General Reasoning
	2.2 Programming Languages and Frameworks
	2.3 TIOBE Index
	2.4 Conclusions

	3 Choosing the Database
	3.1 Database Considerations and Requirements
	3.2 Relational Database Management Systems (RDMS)
	3.3 NoSQL Databases
	3.4 Conclusions

	4 REST API vs GraphQL API
	4.1 REST API
	4.2 GraphQL API
	4.3 Conclusions

	5 Choosing the Architecture
	5.1 Monolithic Architecture
	5.2 Microservices Architecture
	5.3 Conclusions

	6 Project Structure
	7 Server Setup
	7.1 User Authentication
	7.1.1 User Sign Up Flow

	7.2 User Schema Set Up
	7.2.1 Username Field
	7.2.2 Email Field
	7.2.3 Password Field
	7.2.4 Avatar Field
	7.2.5 FirstName and LastName fields
	7.2.6 Birth Date Field
	7.2.7 Position Coordinates Fields
	7.2.8 Gender Field
	7.2.9 User Model Wrap-up

	7.3 User Sign In Flow
	7.3.1 JSON Web Tokens
	7.3.2 Authentication Flow

	7.4 Password Reset Flow

	8 Conclusions
	References
	Appendix 1 – Code Samples

