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1 Introduction

In this thesis, wavelet-based computational tools have been developed and used for the
purpose of analyzing structural dynamics and diagnostic applications in mechanical
structures. This section initially discusses the foundational background and motivation
behind the research, followed by an exploration of the inherent challenges in modeling
and analyzing structural dynamics. Subsequently, a comprehensive literature review is
presented to investigate relevant prior studies and identify existing research gaps.
Finally, the research objectives, scope and novel contributions are outlined.

1.1 Background and Motivation

Structural dynamics offers a fundamental basis for comprehending the behavior of
engineering structures when subjected to both transient and periodic loads. Precise
dynamic analysis facilitates prediction of vibrational characteristics, fatigue life and
potential failure mechanisms within components exposed to operational or environmental
excitations. Modern industries, such as aerospace, automotive, mechanical, marine and
civil engineering, increasingly depend on dynamic simulations for design optimization
and safety assurance. Nevertheless, as structures have become lighter, thinner
and incorporate advanced materials, the complexity of these systems’ behavior has
significantly increased.

For instance, composite and functionally graded materials exhibit spatially variable
stiffness, density and damping characteristics, leading to highly coupled and nonlinear
dynamic responses. Similarly, micro and nanoscale structures demonstrate nonlocal
effects that classical continuum theory cannot adequately capture. Analytical solutions
for such complex systems are either limited or unattainable, thus highlighting the necessity
for efficient and accurate numerical formulations capable of explaining multiscale
dynamic behavior.

Simultaneously with advancements in computational mechanics, structural health
monitoring has emerged as a crucial domain for ensuring the integrity of infrastructure
and high performance systems. SHM methodologies increasingly leverage vibration-based
data, such as frequency response functions (FRFs), modal parameters and acceleration
signals, to identify, locate and quantify structural damage. Accurate numerical modeling
supports these endeavors by providing baseline dynamic characteristics for comparison
with experimental or in-service measurements. However, the dual challenge of precisely
modeling dynamic behavior and interpreting measured responses within uncertainty
persists as an unresolved research problem.

In this respect, wavelet theory has proved to be a particularly flexible mathematical
tool because of its ability to express localized features in both the time and frequency
domains and because it provides an efficient description of discontinuities and
transients. The Haar wavelet, for instance, provides an orthogonal and simple basis to
discretize differential equations efficiently on the one hand, while being a powerful tool
of signal analysis on the other. Exploiting this dual nature, wavelets are considered first
as a basis for numerical approximation, then applied as a data preprocessing operator to
improve the structural dynamic model and vibration-based damage detection.

Recently, the introduced HOHWM has outperformed HWM as reference method.
However, higher order Haar wavelet methods considered here are few studied and need
further evaluation and adaptation, especially in the case of complex engineering problems.
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1.2 Challenges in Modeling and Analysis of Structural Dynamics

Although computational mechanics and sensing technologies have progressed significantly,
several challenges persist in structural dynamics and SHM. These challenges can be
broadly categorized into three groups: numerical, physical, and diagnostic [1], [2], [3].

From a numerical standpoint, the governing equations for structural dynamics
are inherently nonlinear, coupled and time-dependent. Accurately solving these
equations necessitates fine discretization, which, in turn, escalates computational
expenses [4]. Conventional finite element methods frequently encounter difficulties with
localized discontinuities, intricate boundary conditions, and multiscale characteristics
[5]. Consequently, even moderately sized nonlinear dynamic problems may demand
thousands of elements and iterative time integration, potentially leading to slow
convergence rates and numerical instabilities [6].

From a physical modeling perspective, the emergence of advanced materials such as
functionally graded composites and nanostructures introduces further complexity. Their
mechanical behavior is contingent upon localized variations in material composition and
effects that are dependent on size. Accurately capturing these behaviors necessitates
the use of higher order or nonlocal formulations, which in turn escalate mathematical
and computational demands [7]. Traditional analytical methodologies are often
inadequate for accurately characterizing size-dependent phenomena, while conventional
numerical approaches frequently incur prohibitive computational costs. Furthermore,
the precise assessment of localized discontinuities within such intricate material systems
often necessitates integrated analytical and data-driven strategies, exemplified by
those employing Haar wavelet assisted learning [8]. From a diagnostic standpoint,
vibration-based damage detection entails the interpretation of noisy and frequently
incomplete data. Fluctuations in temperature, humidity or boundary conditions can
obscure or simulate damage signatures [9]. Furthermore, as structures increase in size
and intricacy, acquiring full-field measurements becomes unfeasible. Damage indicators
derived from modal parameters or frequency shifts often lack sensitivity to localized
degradation. Consequently, researchers have increasingly adopted signal processing and
machine learning techniques to extract more salient features from dynamic data [10].

The convergence of these challenges underscores the necessity for a computational
framework capable of efficiently resolving multiscale, nonlinear dynamic problems and
enhancing data-driven damage detection by emphasizing physically interpretable
features. The Haar wavelet method and its higher order extension offer a promising
foundation for achieving both of these objectives.

1.3 Literature Review

This literature review outlines the evolution of wavelet-based methods in structural
dynamics and structural health monitoring, highlighting key advancements and existing
gaps.

The application of wavelet theory has become widespread in engineering due to its
efficacy in representing localized phenomena with a minimal set of basis functions [11].
In the context of numerical analysis, wavelet-based methodologies were introduced as
alternatives to traditional discretization techniques, offering a synergistic balance
between global spectral precision and the localized adaptability characteristic of finite
element methods. Among these early formulations, the Haar Wavelet Method utilizes
step function bases, which facilitate piecewise approximation of derivatives and integrals
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[12]. Its inherent orthogonality simplifies matrix assembly, while its hierarchical structure
enables multiresolution refinement without the need for remeshing. Research indicates
that HWM demonstrates particular effectiveness in problems characterized by
discontinuities or sharp gradients, where polynomial basis methods may struggle to
achieve efficient convergence [13]. Furthermore, the Haar wavelet’s capacity for
singularity detection, coupled with its ability to handle noisy data, makes it particularly
suitable for vibration-based damage detection applications [14]. However, challenges
remain in optimizing wavelet scale selection for damage identification, particularly in
plate like structures with sparse response data [15].

Subsequently, the Higher-Order Haar Wavelet Method was developed to enhance
accuracy and broaden the applicability of Haar-based formulations. By repeatedly
integrating Haar functions, HOHWM creates higher order continuous approximations
while retaining compact support [16], [17]. This extension substantially improves the
order of convergence, facilitating precise solutions for both smooth and intricate
systems. HOHWM has been successfully deployed in the bending and vibration analyses
of beams and plates, as well as in nonlinear boundary value problems [18], [19].
Nevertheless, its application in transient structural dynamics or problems involving
nonlocal material behavior remains largely unexplored. However, its fundamental
advantages for handling discontinuities and its capacity for high order accuracy suggest
significant potential for these complex scenarios, warranting further investigation into
its adaptivity and computational efficiency.

Meanwhile, wavelet transforms have found extensive application in signal processing
and damage detection. Both discrete and stationary wavelet transforms are employed
to decompose vibration signals into distinct frequency bands, thereby isolating localized
energy variations indicative of stiffness degradation or crack formation [20], [21], [22],
[23]. These extracted features have proven effective in detecting and pinpointing damage
in composite beams, plates, and shells [24], [25], [26]. Despite the fact that wavelet
transform is a powerful tool for achieving good localization properties in both, time and
frequency domain (which can be instrumental in analyzing damage related data),
it introduces additional complexity to CPU calculations, which is why among many
mother wavelets, Haar has become very appealing for SHM due to its computational ease
as well as accurate time localization [27]. Nevertheless, most of these applications rely
on empirical signal decomposition, lacking a direct connection to the physical models
governing dynamic behavior.

More recently, machine learning and deep learning, particularly convolutional neural
networks, have gained prominence in structural health monitoring [28], [29], [30], [31],
[32]. These advanced techniques, when coupled with wavelet analysis, have shown
promising results in processing the complex, multidimensional data generated from
structural responses, offering enhanced capabilities for autonomous damage detection
and localization [21], [33].

While CNNs are highly effective in pattern recognition, they necessitate well-structured
input data [34], [35], [36]. The integration of wavelet transforms with CNNs has been
shown to enhance interpretability and improve sensitivity to localized changes [37], [38].
Although wavelet-assisted deep learning is frequently employed in vibration analysis and
fault detection, most existing research compartmentalizes wavelet-based numerical
modeling and wavelet-enhanced data-driven analysis into distinct areas. One-dimensional
convolutional neural networks have been shown to effectively classify cracks in composite
beams by directly extracting damage-sensitive features from raw vibration data [39].
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In another study, wavelet packet analysis coupled with an autoencoder neural network
was developed to localize structural damage under varying temperature conditions by
filtering environmental effects from wavelet packet energy ratio features [40]. This
integration allows for robust damage detection models, especially when applied to
complex structures such as composite beams and plates, where both natural frequencies
and mode shapes are sensitive to damage [39], [41]. However, selecting the optimal
mother wavelet function remains a significant challenge, often requiring extensive trial
and error or heuristic approaches [41].

Wavelets are commonly utilized for the time-frequency decomposition of vibration
signals before classification, while their application as numerical basis functions for
solving structural equations remains confined to independent analytical investigations.
Consequently, the integration of both perspectives within a cohesive framework, where
wavelets simultaneously underpin mathematical modeling and serve as a preprocessing
tool for machine learning, has been relatively scarce [42], [43], [44].

In this context, the Haar wavelet method presents a distinct advantage, due to its
orthogonality, computational simplicity and precise temporal localization, rendering it
suitable not only for the numerical discretization of governing equations but also for
highlighting localized damage-induced transients within vibration data [27]. These
attributes establish a coherent mathematical link between the deterministic modeling
and data-driven constituents of the current investigation, thus forming the bedrock for
the integrated wavelet framework developed herein. This thesis, therefore, embarks on
a novel exploration by unifying these typically disparate applications of wavelets,
demonstrating their synergistic potential in both structural modeling and data-driven
damage identification [41], [45]. Specifically, this study leverages the Haar Wavelet
Method to solve the inverse problem of crack identification in vibrating beams,
a technique that allows for the prediction of crack depth and location by analyzing
changes in vibrational characteristics [46]. This unique integration bridges the gap
between physics-based modeling and data-driven approaches, offering a comprehensive
and robust framework for structural health monitoring that overcomes limitations
inherent in standalone methodologies. The approach capitalizes on the localized sensitivity
of mode shapes to damage, utilizing wavelet transforms to identify singularities indicative
of crack presence and quantify their severity [47]. This allows for a baseline free damage
detection strategy, where the absolute structural response is sufficient for damage
localization, eliminating the need for comparisons with an undamaged state [48].
Furthermore, wavelet-based damage detection methods often rely on analyzing changes
in wavelet coefficients, which exhibit singularities at damage locations, thereby
facilitating precise spatial localization [49].

1.4 Research Objectives and Novelty

Main goal is to develop and evaluate wavelet-based methodologies for the mathematical
modeling and numerical analysis of engineering problems. The main objective can be
achieved by performing the following subtasks:

1. Develop and validate the Haar Wavelet Method for solving the equations of
motion that govern the vibration and transient dynamics of structural elements.

2. Extend the HWM to the Higher Order Haar Wavelet Method to enhance
accuracy and convergence, applying it to functionally graded and
nanostructured materials that incorporate nonlocal elasticity.
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3. Apply the HWM and HOHWM to transient nonlinear problems, specifically
the flight dynamics of fragments subjected to aerodynamic drag, to
demonstrate their capability in handling time-dependent coupled systems.

4. Integrate the Haar wavelet transform with Convolutional Neural Network
architectures for vibration-based damage detection in composite plates,
evaluating the impact of wavelet preprocessing on classification performance
and interpretability.

5. Compare and synthesize findings across all applications to assess the
effectiveness of Haar-based approaches in modeling, simulation and
Structural Health Monitoring.

The novelty of this thesis stems from its establishment of a cohesive framework that
bridges deterministic, wavelet-based numerical modeling with data-driven damage
identification. On the deterministic side, the Higher Order Haar Wavelet Method is
applied to Timoshenko beams, functionally graded Rayleigh-Bishop nanorods, and
nonlinear fragment dynamics, representing some of the few studies employing this
formulation for multiscale and transient structural problems. This methodology illustrates
that the underlying mathematical principles employed for discretizing differential
equations are equally effective in augmenting feature extraction from empirical vibration
data. Consequently, this research closes the gap between analytical techniques and
contemporary machine learning, thereby contributing significantly to both numerical
mechanics and intelligent structural monitoring.

Beyond the development of wavelet-based numerical and hybrid models, this
research also extends toward a decision-based analytical framework for evaluating
material properties and reliability under uncertainty. The integration of fuzzy multi-criteria
methods, such as the Analytic Hierarchy Process and the VIKOR technique [50], [51], [52],
provides a systematic means of prioritizing parameters and assessing performance when
experimental or computational data contain inherent variability. The coupling of
deterministic accuracy with fuzzy decision making enhances the interpretability of
results, allowing the proposed framework to serve not only as a computational tool but
also as a decision support methodology for material characterization and structural
assessment. This comprehensive approach offers a robust framework for structural
integrity assessment, especially when dealing with complex systems and incomplete
information.

1.5 Research Questions

The challenges identified in modeling and analyzing structural dynamics, particularly
those concerning accuracy, computational efficiency and data scarcity, serve as the
motivation for the research questions explored in this thesis. These questions are
formulated to bridge the divide between mathematical modeling, numerical
implementation and data-driven analysis using the Haar wavelet framework:

1. How can the Haar Wavelet Method and its higher order formulation be
systematically derived and effectively implemented to achieve efficient and
highly accurate numerical solutions for the governing differential equations
of structural dynamic systems?

2.  What distinct convergence behavior is demonstrated by the Higher Order
Haar Wavelet Method in comparison to the standard Haar formulation when
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applied to diverse problems, including beam vibration, graded nanorods and
nonlinear transient problems?

3. How do material gradation, geometric variation and nonlocal elasticity
influence the dynamic response and wave-propagation characteristics of
structures modeled using the Higher Order Haar Wavelet Method?

4. Can Haar wavelet based preprocessing enhance the learning stability and
classification accuracy of convolutional neural network models trained on
limited and noisy vibration datasets for damage detection in composite
structures?

5. How can Haar based numerical modeling and wavelet-enhanced deep
learning be integrated into a unified multiscale computational framework for
structural analysis and health monitoring?

In addressing these questions, it is hypothesized that the Higher Order Haar Wavelet
Method will exhibit superior convergence properties and enhanced numerical precision
relative to the standard Haar formulation, all while maintaining computational efficiency.
It is further anticipated that the incorporation of geometric variation, material gradation
and nonlocal elasticity within the Haar-based framework will accurately capture
scale-dependent effects in structural dynamics. For the data-driven analyses, Haar
wavelet preprocessing is posited to improve the training stability and classification
reliability of CNNs, particularly in the context of small and noisy datasets. Collectively,
these advancements are expected to establish a unified, multiscale methodology that
integrates physics-based modeling with data-driven feature learning, thereby ensuring
robust structural analysis and damage detection capabilities.

1.6 Scope and Structure of the Thesis

This thesis covers theoretical, numerical and data-driven investigations within the
domain of structural analysis. The scope includes the formulation of wavelet-based
methods, their application to diverse structural systems and their integration with
modern learning algorithms for damage identification.

The structure is as follows:

e Chapter 2 outlines the mathematical and numerical framework of the Haar
and Higher Order Haar Wavelet Methods, about their derivation, the
treatment of boundary conditions and a comprehensive convergence analysis.

e Chapter 3 details the selected case studies, which include the free vibration of
beams and plates, the vibration of functionally graded nanorods, the
dynamics of fragments and vibration-based damage detection utilizing a
Haar-CNN hybrid model. Each case study is presented with its physical
motivation, underlying modeling assumptions and computational setup.

e Chapter 4 presents the findings and subsequent discussions for all conducted
case studies, with particular emphasis on assessing accuracy, convergence,
computational efficiency and diagnostic performance.

e Chapter 5 concludes the thesis by summarizing the principal findings and
outlining promising avenues for future research.

The subsequent chapters will further elaborate on methodologies and results, providing
a comprehensive understanding of developed techniques and their implications for
structural engineering.
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2 Mathematical and Numerical Framework

This section provides an explanation of the mathematical foundations underpinning the
Haar Wavelet Method and the Higher Order Haar Wavelet Method, detailing their
formulation for solving differential equations and approximating functions [11], [17],
[53], [54].

2.1 Haar Wavelet Method (HWM)

The Haar Wavelet Method offers an effective numerical solution for differential
equations frequently encountered in structural dynamics. This technique relies on
expanding the highest order derivative within the governing equation using orthogonal
Haar basis functions, thereby converting the problem into a system of algebraic
equations via analytical integration. The formulation of Haar wavelet family is based on
notation used in [11]. This approach is particularly advantageous due to its computational
efficiency and straightforward implementation, making it suitable for a wide range of
engineering applications [13].

The discontinuous Haar wavelet is a foundational element among wavelets, notable
for its step-like discontinuity and its classification within a particular family of discrete
orthonormal wavelets. This primary wavelet generates a basis of additional wavelets,
each of which is orthonormal and normalized to unit length. This inherent property
facilitates the independent computation of wavelet coefficients. The Haar functions are
formally expressed as:

1 for x € [51(1'), fz(l))
hi(x) =4{-1 for x € [6(D), &) (1)
0 elsewhere

where

&) = A+ 2k + Duhx, i=m+k+1, u=—, szw, (2)
£() = A+ 2(k + 1ubx m

where k = 0,1, ..., m — 1 specifying the square wave’s location and m = 27 represents
the maximum number of square waves within the interval [A4, B]. Assuming that a
function f(x) is square integrable and finite within the interval, it can be expanded into

a series of Haar wavelets as follows:
2M

) =) ahi), e

i=1

where h;(x) denotes the Haar function and a; is the corresponding coefficient.
Subsequently, the integrals of the Haar functions of order n can be presented as:
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(- 60)" veldam)
. . x € [£,(D), &)
P = 1 (r—6®) —2(x-&0) O ). @)
) o - xefe®.&0)
(x - 51(1)) - Z(X - fz(l)) + (x - 53(1)) x € [&5(0),B)
%! else where

The piecewise constant nature of the Haar basis functions ensures that the resulting
matrices are sparse and well-conditioned. The boundary conditions are directly
integrated by modifying the relevant rows of the algebraic system, thereby
circumventing the need for auxiliary methods such as Lagrange multipliers or
transformation matrices. The Haar Wavelet Method exhibits a second order convergence
rate, rendering it suitable for solutions characterized by discontinuities or piecewise
smoothness.

2.2 Higher Order Haar Wavelet Method (HOHWM)

To achieve enhanced accuracy and smoothness, the Haar basis functions can undergo
multiple integrations prior to forming the approximation, which gives rise to the Higher
Order Haar Wavelet Method. This methodology, initially introduced in studies of vibration
and wave propagation, offers a continuous, higher order representation while retaining
the inherent simplicity of the original Haar basis [17].

This advancement enables higher orders of convergence, specifically achieving a
fourth order, sixth order rate, which significantly reduces computational errors without
a substantial increase in algorithmic complexity compared to the standard Haar Wavelet
Method [55].

As previously established, higher order Haar wavelet techniques facilitate a more
precise analysis of complex data patterns by meticulously capturing minute details and
subtle fluctuations. This enhanced resolution proves particularly beneficial in scenarios
where a high degree of information is crucial for accurately interpreting and
comprehending the underlying dynamics. The higher order wavelet expansion is formally
introduced as:

dn+25u(x) e
dxn+2s = Zaihi(x),s =12, ... (5)

i=1

f) =

The approximate solution is then expressed as:

dn+25u(x)

W = aTH(L', X), (6)

fx) =

where a” is the transposed coefficient vector and H(i,x) is the Haar matrix. It is

important to note that in a formulation based on HOHWM, the number of integration

constants increases. This issue can be mitigated by incorporating additional boundary

and initial conditions, periodicity conditions, or by applying the equation itself at grid or
collocation points.
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2.3 Evaluation Criteria for Accuracy and Convergence

The accuracy and convergence of wavelet-based methods are critical aspects for
assessing their reliability and efficiency in numerical simulations, particularly when
applied to complex engineering problems. The precision and convergence characteristics
of both the Haar Wavelet Method and the Higher Order Haar Wavelet Method were
consistently validated across all investigations by comparing their outcomes with
analytical solutions or finite element simulations.

For quantitative assessment, the relative error and the numerical convergence rate
were employed:
Fi,—F

Fr) Mg @), o)

Convergence rate = log (
where F, is the existing solution based on results from finite element method, other
numerical or analytical formulations, or from the literature.

In the analyses of vibration and trajectory, the standard Haar formulation consistently
demonstrated a convergence rate approaching second order. This aligns with the
inherent piecewise constant characteristic of the Haar basis, which yields first order
derivative continuity upon integration. The error trend of the Haar Wavelet Method can
be quantitatively described as:

e, x N72, (8)

where e, denotes the relative error, illustrating a quadratic improvement in accuracy as
the number of collocation points on a uniform grid increases. While the HWM offers
robust solutions for discontinuous or transient responses, its precision in handling
smooth higher order derivatives is limited, thus necessitating the development and
application of the higher order formulation.

The HOHWM, derived from multiple integrations of the Haar functions, substantially
enhances convergence without necessitating an increase in the number of collocation
points. The HOHWM therefore follows:

e, X N72725,5 =1,2,... . (9)

This effectively indicates higher order convergence for smooth field variables.
The accuracy is predominantly governed by the integration order p rather than the
resolution level j. Increasing p enhances the polynomial continuity of the basis, thereby
improving approximation quality even when using coarse grids. This characteristic
enables highly accurate results with as few as 16—32 collocation points, a notable
advantage compared to finite element models that often necessitate several hundred
nodes to achieve comparable precision.

2.4 Summary of the Framework

This chapter outlined the mathematical foundations and numerical methodology of the
Haar Wavelet Method and its higher order extension, as applied throughout this
research. The standard HWM approximates derivatives using orthogonal, piecewise
constant Haar functions, achieving a second order accuracy on a uniform grid.
Conversely, the Higher Order Haar Wavelet Method integrates the Haar basis
multiple times, generating smooth, continuous functions with fourth order convergence
or higher. Both methods produce sparse, well-conditioned algebraic systems and allow
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for the direct enforcement of boundary conditions. All computations in this thesis
employed uniformly spaced collocation points, thereby confirming that the higher order
integration of Haar functions alone is sufficient to achieve high accuracy without
adaptive refinement. The subsequent chapter applies these formulations to benchmark
problems in vibration, nonlocal elasticity and nonlinear fragment dynamics.

While the Higher Order Haar Wavelet Method offers notable accuracy and accelerated
convergence, it is not without specific numerical constraints. The process of integrating
discontinuous Haar functions to derive higher order bases can precipitate localized
numerical oscillations, particularly in regions characterized by steep gradients or
discontinuities within the solution field. These oscillations are a consequence of the
inherently piecewise constant nature of the original Haar functions and may subtly
impair the smoothness of higher derivatives if the chosen resolution level is suboptimal.

Furthermore, the accumulation of round-off errors during successive integrations,
especially at very elevated orders, can lead to minor deviations in the computed
coefficients. Consequently, despite the HOHWM'’s capacity to achieve fourth order
convergence or higher and to compute natural frequencies with high accuracy using a
comparatively small number of collocation points and precision are dependent upon the
careful selection of an appropriate combination of resolution level and integration order
tailored to the specific problem under investigation.
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3 Case Studies

This chapter presents four exemplary case studies utilized for validating and demonstrating
the numerical and hybrid frameworks developed previously. Each case study pertains to
a unique class of structural dynamics problems, where the Haar and Higher Order Haar
Wavelet Methods are applied. The first three cases address deterministic formulations
of governing equations for continuous systems, while the fourth integrates the Haar
wavelet transform as a preprocessing stage within convolutional neural network-based
damage detection methodologies.

Collectively, these studies substantiate the accuracy, efficiency and adaptability of
the Haar-based framework within both analytical and data-driven contexts. Table 1
summarizes the physical system, solution methodology and computational objective
associated with each individual case study. The selection of these diverse case studies,
ranging from foundational structural elements to advanced material systems and
data-intensive damage detection, ensures a thorough assessment of the proposed
methodologies across various complexities and application domains.

Table 1. Summary of the case studies.

Case  Physical System Main Method Objective

Validation of free vibration

| Timoshenko beam vibration HOHWM .
frequencies and convergence

Functionally graded Rayleigh- Study of gradation and nonlocal

1 HOHWM
Bishop nanorod effects on vibration
. . Evaluation of nonlinear
]l Flight dynamics of fragments HWM . -
trajectory prediction
Assessment of wavelet
FRP i | i i
v ¢ composite plate vibration Haar-CNN preprocessing in damage

data .
detection

3.1 Case I: Vibration Analysis of Structures

This initial case study examines the free vibration characteristics of Timoshenko beams
employing the Higher Order Haar Wavelet Method. The primary goal is to validate the
accuracy and convergence properties of the HOHWM against established analytical and
finite element solutions. The investigation further explores how boundary conditions,
beam geometry and resolution levels influence the computed natural frequencies.

Utilizing the Timoshenko beam theory, the fundamental governing differential
equations describing the transverse vibration of a beam with specified geometric and
material properties are expressed as follows:
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0 ow(x, %w(x,
0 dp(x,t) ow(x,t) %p(x,t) ’
a(EI(x)T) + KGA(x) <T—(p(x,t))—plT= 0 (11)

where w and ¢ are the transverse displacement and rotation. Also, here, E represents
Young’s modulus, I(x) denotes the second moment of area, A(x) signifies the cross
sectional area, G is the shear modulus, k functions as the shear correction factor, here is
chosen to be 5/6 and p corresponds to the density. In the case of a uniform beam, where
A(x) and I(x) are constant, the beam is speculated as homogeneous, isotropic and
prismatic. Following a series of transformations, including the homogenization of the
governing equation, it becomes feasible to derive an expression for the transverse
vibration of the Timoshenko beam that is exclusively dependent on the displacement
function, which can be written as:

o*w(x,t) (Elp *w(x, t) Ip?d*w(x,t) 0%w(x,t)
Bl _<ﬁ I)axzatz T R T ()

Moreover, in the case of tapered beam, shown in Figure. 1, the cross sectional area
A(x) and moment of inertia I(x) are presented as:

cxy\3
1--=

A(x)=A0(1—%),1(x)=IO( L), x€[0,L], (13)

where L is the length of the beam, A, and I, are area and moment inertia at the base of
the beam, respectively.

w,

Figure 1. Representation of a tapered beam.

The bending moment, M and shear force, Q, at any given cross section are determined
by the following expressions:

do ow
M = EIl(x)—, = kGA (—+ ) 14
(7o @ =kGA) (F-+¢ (14
Both simply supported and clamped-clamped boundary conditions are taken into
consideration and can be expressed as:

For the clamped edge: w =0, ¢ =0

For the pinned edge: w =0, M =0. (15)

The solution serves as benchmark problems for evaluating convergence behavior in
Chapter 4.
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3.2 Case Il: Dynamic Behavior of Functionally Graded Nanorods

This particular case study extends the application of the Higher Order Haar Wavelet
Method to the modeling of longitudinal vibrations within functionally graded nanorods.
The primary objective is to assess how material gradation and nonlocal elasticity
collectively influence dynamic behavior, with a specific focus on the interplay between
microstructural scale and variations in stiffness.

Figure 2. Schematic of Axially Graded Nanorod.

According to the Rayleigh-Bishop rod model, the longitudinal and lateral displacements
of the rod can be expressed as follows:

u=u(x,t)

E ulx, t
o) o

w=w(x,t) = r(ZG(x) -

n

where 71 is the Poisson’s ratio for nanorod and r denotes the distance of the lateral
displacement of a particle from the x-axis.

To represent the continuous material variation along the nanorod axis, the elastic and
inertial parameters together with the nonlocal parameter are defined using a unified
power-law function as follows:

E(xX)] [E, —E, E, . .

G(x) Gy — Go| & Go ! 0
[p(x)‘ Ipl —po|™ Teo| BT E| (17)
e(x) e, — € €o ! 0

where Ey, Gy, po, €9 and E;, G4, p1, €, are the properties at the left and right ends of the
nanorod, respectively. Also, k denotes the material-gradation or power-law index,
e refers to the nonlocal length-scale parameter in Eringen’s nonlocal elasticity theory and
s describes the material properties at the right side of nanorod.

The total kinetic and potential energies can be defined in accordance with nonlocal
elasticity theory, [56], [57], [58], as presented:
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where a is the distance between two atoms in the nanorod structure, I, is the polar
moment of inertia of nanorod and is equal tog(RZA‘ - R14), R; and R, are the inner and

outer radius of carbon nanotube, respectively. Thus, the Governing equation of motion
for the nonlocal Rayleigh-Bishop rod model, [57], can be expressed as:

0 ou(x,t) 02 0%u
a(’f("“ ox >_W( O )

6 0
2 (owaZ) - a at((e(x)a)z (p()
92 0%u(x, t) (20)
_n21P6x0t<p(x)< dxot ))

03 02
il zat<(e(x)“)2 (o ;‘(;‘t”))

By assuming the harmonic wave function, (u(x,t) = U(x) sin wt), and dimensionless
distance in the nanorod’s lattice structure, it can be rewritten as:

O0E(X) 0U(X) 2U(X) 92 2U(X)
AR 2R) +a (50 T2 - (e )

= —a)zA(p(X)U(X))
d d
S0 2 (pUD) + () o (p(xw(X)))

ou(x, t)>

2
@A\ 5x ax

L, (9pC0) (3UX) 62U(X)
o' ’P(W(W)*P(’” ax? ) 21

d%e(X) 0 5100, 4
—wznzlp(% ( X )L)

2ae(X) 92 ( x )aU(X)>+e(X) 93 <p( )auoo))

0x X3
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By implementing forth order Higher Order Haar wavelet method, the displacement
function of the nonorod will be obtained as:

3 2
UX) =a"P,(i,x) + CI% +C, > + C3X + Cy, (22)

where P,(i,x) represents the integration matrices, and C; denotes the integration
constants, which are determined by applying the boundary conditions. The boundary
conditions considered for this analysis are clamped-free and clamped-clamped.
The resulting equations are subsequently resolved utilizing the HOHWM, as detailed
in Chapter 4, to thoroughly investigate the frequency response and convergence
properties.

3.3 Case llI: Flight Dynamics of Fragments

Case lll involves the application of the Haar Wavelet Method to simulate the nonlinear
dynamics of high velocity fragments under the influence of aerodynamic drag and
gravitational forces. The objective is to evaluate the method’s stability and computational
efficiency in addressing coupled, nonlinear, time-dependent systems.

Prior to developing the numerical formulation, it is essential to determine the initial
coordinates and velocities related to the fragments’ positions. The ANSYS AUTODYN
solver, which is founded on the finite element approach and stochastic failure theory,
simulates the natural fragmentation of projectiles. For estimating fragment flight, a fixed
coordinate system is adopted, where the x-axis and the unfragmented projectile’s
axis of symmetry intersect on the projectile’s rear surface at a height of one meter.
Fragmentation of the projectile occurs at a 60 degree angle relative to the ground.
The x-y plane denotes the Earth’s surface and the fragments commence their flight at
t = 0 following the explosion [59].

The trajectory of a fragment subjected to both aerodynamic drag and gravitational
forces can be accurately predicted through the application of the point mass trajectory
model and presented as:

"o_ ApCD 2 2 12 !
X=Xy 2 x
ApC
y' == Ly gy (23)

2m
_ ApCp

_ S F Y227 g -
T y g

n

where x',y' and z' represent the velocities in their respective directions and
p =120 kg/m3 denotes the air density and g = 9.81 m/s? is the gravitational
acceleration, A is the fragment reference area, and m is the fragment mass. Additionally,
Cp signifies the drag coefficient, which is typically influenced by the Mach number.
However, for simplicity, a constant drag coefficient is assumed in this study [60]. To develop
a solution for the system of differential equations, various mathematical operations are
performed:

n ! !

X ! Yo Yo
_ = —_— = —}—d’ = — ’d = _— .
’ yr y cx ¢ x(r) Yo x(r) Xo (24)
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Quasilinearization is a numerical technique that iteratively solves a series of linearized
problems to approximate the solution of a nonlinear differential system. This process
involves linearizing the nonlinear problem around the current estimated solution at each
iteration, solving the resulting linearized problem and then updating the estimate of the
solution to the original nonlinear problem. This iterative procedure continues until
convergence is achieved. Subsequently, the system of three equations can be reduced to
two. As expressed as:

x"=—kJA+c)x2+2z%2x" =f(x',2")

(25)
72" =—kJ(1+c2)x2+22%2 —g=fo(x',2")

apC
substitute 2222 = k —
2m

To linearize the nonlinear systems, a Taylor Series expansion has been utilized. Which
can be written as:

0f f;
xn+1 - fl(xn'zn) + (xn+1 - xn) Ox , + (Zn+1 - Zn) 6;
n
n ! 1 ! af 1 6f (26)
Zni1 = (0, z0) + (Zpar — Zn) 5= a7, + (Xn+1 — *n) 6);
n
where
0 [ (1+cH)x'-x'
lll =—k ( ) +J(A+c2)x2 + Z'Z]
0x V(1 + c2)x'2 + 22
fy . [ x' -z ]
0z’ \/(1 ¥ cDx'2 + 72
f; _ . [ 1+ c®)x' -2 ] (27)
ox' _\/(1 + c2)x'2 + z'2
of, [ z' -z
= =-k +/(1+c2)x2 + 272
0z _\/(1 +c2)x'2 + z'2

In order to solve the system of equations, the HWM is employed:

Xp = a'H Zyp1 = b'H
x;l+1 = anl + xo Z;l+1 = bTPl + ZO (28)
where leads to:
of, of; 0fi i 9f;
T[H—PlaxZ] =bTP1a % +f1(xn:Zn)+(x0_xn) X! (ZO_Zn)a_Z;1
g1 (29)
0f2 ofa 0f 0f2
bT I:H_Plaz{l]: TPla , (xn:Zn)—I_(ZO_Zn) n+(x0 n)axn
g2

The problem is solved numerically in Chapter 4 to test computational convergence
and error evolution.
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3.4 Case IV: Damage Detection in Composite Plates Using Haar-CNN
Hybrid Model

This particular case study extends the existing wavelet-based modeling framework into
the domain of data-driven analysis by integrating the Haar wavelet transform with
convolutional neural networks for detecting damage through vibration analysis in CFRP
composite plates. The primary objective is to investigate how multilevel Haar wavelet
preprocessing affects feature extraction and, consequently, classification accuracy,
especially when dealing with small, experimentally obtained datasets that are inherently
subject to noise.

Two experimental datasets, [61], [62], are analyzed. The initial dataset comprises
vibration response signals acquired from CFRP plates that had attached masses, thereby
simulating localized reductions in stiffness. Each signal within this dataset corresponds
to a specific mass configuration, recorded under identical excitation and boundary
conditions [63], [64], [65]. The second dataset consists of frequency response
function measurements obtained from similar CFRP plates, which contained controlled
delamination defects [66], [67], [68], [69], [70]. Both datasets encompass a healthy
reference case alongside several damaged conditions, thus framing them as multi-class
classification problems. In both investigations, the Haar wavelet transform was employed
to decompose each vibration or FRF signal into multiresolution approximation and detail
coefficients. This process serves to highlight local variations while simultaneously
filtering out low-frequency trends. The decomposition depth was systematically varied
between levels 5 and 10 to thoroughly examine the impact of signal resolution on the
performance of the CNN.

Two distinct CNN architectures were developed to process the transformed data,
each corresponding to one of the two datasets.

The first architecture, specifically applied to the vibration dataset, implemented a two
dimensional CNN configuration. Each vibration signal underwent decomposition using
the stationary Haar wavelet transform, and the resultant approximation and detail
coefficients were subsequently arranged into a two dimensional coefficient map,
which then served as the input for the CNN. The network architecture featured two
convolutional layers with rectified-linear activation functions, followed by max-pooling,
dropout regularization, and two fully connected layers, culminating in a softmax classifier.
The model was trained using the Adam optimizer, with a learning rate of 0.001 and
categorical cross-entropy loss. To enhance convergence and mitigate overfitting, batch
normalization and early stopping techniques were applied. This configuration was
specifically optimized for small datasets, ensuring stable learning and generalization
capabilities even with limited training data.

The second architecture, designed for the FRF dataset, utilized a comparable CNN
structure but was tailored to process Haar-transformed frequency-response matrices.
Each FRF magnitude spectrum was decomposed up to level 10, and the approximation
and detail components were then stacked to create a two dimensional grayscale
representation indicative of the signal’s spectral energy distribution. This network
incorporated two convolutional layers, featuring 32 and 64 filters respectively, each
succeeded by rectified-linear activation, max-pooling, and dropout. The output from the
convolutional layers was then flattened and passed through two dense layers,
comprising 128 and 64 neurons, before reaching the final softmax classification layer.
The same optimization parameters as in the first case were utilized, enabling a direct
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comparison of training behavior and classification accuracy. This configuration effectively
captures spatial correlations within the wavelet coefficient maps, thereby extracting
multiscale vibration patterns that are associated with delamination-induced stiffness
changes.

Figure 3 provides a schematic representation of the Haar-CNN hybrid architecture,
illustrating the arrangement of convolutional, pooling, and fully connected layers for
both datasets.

Haar Wallet
Transformation

Activation Function Activation Function q B jO
|:> ] O |:>
’ O Output
Convolutional Pooling Convolutional Pooling Layer

Input Layer Layer Layer Layer O

Layer :

Fully Connected
Layers

Figure 3. Haar-CNN architecture.

Both networks were evaluated using a comprehensive set of metrics including
accuracy, precision, recall and Fi-score, augmented by confusion matrices to ascertain
classification consistency across all damage classes. Comparative analyses between raw
and Haar-preprocessed inputs unequivocally demonstrated that wavelet decomposition
significantly enhances the distinctiveness of features intrinsically linked to localized
damage. Furthermore, the influence of the decomposition level was investigated to
identify the most efficacious scale for optimal feature separation and network stability.

Consequently, the Haar-CNN hybrid approach establishes a crucial link between
physically interpretable signal transformation and automated feature extraction. By
synergistically combining the localization ability of the Haar transform with CNN-based
learning, this methodology achieves robust and generalizable classification performance
on small, experimentally derived vibration datasets, as thoroughly elaborated in
Chapter 4.

3.5 Summary

This chapter presented four distinct case studies, each representative of a specific category
within structural dynamics problems.

The initial three cases established the governing equations and boundary conditions
for deterministic analyses, whereas the fourth case integrated wavelet-based
preprocessing with deep learning for vibration-based damage detection in composite
plates.

Collectively, these problems underscore the versatility of the Haar and Higher Order
Haar Wavelet Methods across diverse domains, ranging from high order differential
modeling to hybrid data interpretation.

The subsequent chapter will detail the numerical results, convergence analysis and
comparative evaluation for each investigated case.
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4 Results and Discussion

This chapter presents the numerical and data-driven results obtained through the
application of the Haar Wavelet Method, the Higher Order Haar Wavelet Method and
the previously introduced Haar-CNN hybrid framework.

The analyses encompass four distinct problems, which collectively serve to validate
the accuracy, stability, and versatility of the proposed methodologies across various
physical and computational contexts. The initial three cases focus on deterministic
structural dynamics, specifically investigating the free vibration of Timoshenko beams,
longitudinal wave propagation in functionally graded nanorods, and the nonlinear
motion of fragments. The fourth case extends this framework to address vibration-based
damage detection, utilizing wavelet-enhanced convolutional neural networks.

For the deterministic studies, the results include computed natural frequencies and
dispersion characteristics, which are compared with analytical and numerical references
to assess numerical precision and convergence. The performance of both HWM and
HOHWM is evaluated based on relative error, convergence rate, and the smoothness of
the computed solutions. The discussion highlights the significant improvements achieved
through higher order Haar integration and the consistency of convergence across
problems of varying complexity and scale. In the context of the Haar-CNN application,
the results primarily concentrate on the classification performance attained both with
and without Haar-based preprocessing, exploring how multilevel wavelet decomposition
impacts feature separability and model robustness in small experimental datasets.

Throughout this chapter, quantitative comparisons are presented in tables and figures
adapted from the author’s published works. Each case study provides a brief verification
of numerical accuracy, followed by a discussion of the physical interpretation of the
results. The analysis demonstrates that the Haar-based numerical formulations maintain
an accuracy comparable to spectral or analytical methods, while the hybrid Haar-CNN
framework effectively enhances data-driven damage detection by incorporating
wavelet-domain feature representations. Collectively, these results establish the reliability
and general applicability of the proposed wavelet-based methodologies in the fields of
structural dynamics and damage assessment.

4.1 Vibration Analysis of Structures

The Higher Order Haar Wavelet Method was employed to analyze the free vibration
characteristics of Timoshenko beams, encompassing both uniform and linearly tapered
configurations. The primary objective was to substantiate the convergence and accuracy
of this higher order Haar formulation by comparing its results with established analytical
solutions.

The governing coupled equations for transverse displacement and rotation, detailed
in Chapter 3, were discretized using uniformly distributed collocation points, and boundary
conditions were directly integrated into the Haar integration framework. Table 2,
as presented in Paper |, presents the dimensionless neutral frequency of a uniform
Timoshenko beam under pinned-pinned boundary conditions, calculated using both the
conventional Haar Wavelet Method and its higher order counterpart. The findings affirm
a strong correlation between the HOHWM and analytical solutions. While the HWM
exhibits second order convergence, the HOHWM achieves fourth and sixth order accuracy,
underscoring the enhanced precision derived from the higher order integration of the
Haar basis.
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Table 2. Comparison of HWM and HOHWM for Timoshenko beams under pinned-pinned boundary
conditions.

HWM HOHWM 4th (s = 1) HOHWM 6th (s = 2)
Conv. Conv. Conv
Frequency A. error rate Frequency A. error rate Frequency A. error rate
4 [10.76068319(1.60E+00 9.16627318) 5.59E-03 9.16109539/4.12E-04

8 19.59208533 |4.31E-01|1.8954 [9.16088118| 1.98E-04 | 4.0580 |9.16069124| 8.05E-06 | 5.2583
16 [9.27047366 | 1.10E-01|1.9742 [9.16069928 1.61E-05|4.0268 |9.16068333(1.48E-07 | 5.6800
32 [9.18825306|2.76E-02 {1.9935 [9.16068724| 4.06E-06 | 4.0244 |9.16068322| 3.68E-08 | 5.7820
64 19.16758331 |6.90E-03 | 1.9983 [9.16068383| 6.42E-07 | 4.0240 [9.16068319| 6.74E-10 | 5.9221
12819.16240869 | 1.73E-03 | 1.9995 [9.16068327|8.79E-08 | 4.0133 [9.16068318|1.73E-11 | 5.9850
256(9.16111459 |4.31E-04|1.9998 |9.16068320| 1.74E-08 | 4.0054 |9.16068318| 3.90E-12 | 6.0130
Exact solution: 9.16068318

Table 2 shows the convergence behavior of the HWM and HOHWM for increasing Haar
resolution levels, previously reported in Paper I. The rapid convergence of the HOHWM
signifies that a limited number of collocation points is sufficient to attain high accuracy,
thereby substantially decreasing computational demands when compared to conventional
finite element method discretization. To further validate the method’s versatility,
clamped-clamped and clamped-pinned configurations were analyzed, see Table 3, as
presented in Paper Il.

Table 3. Comparison of HWM and HOHWM for Timoshenko beams under various boundary conditions.

HWM HOHWM 4th (s = 1) HOHWM 6th (s = 2)

N Conv. Conv. Conv.
Frequency A. error rate Frequency A. error Rate Frequency A.error rate

4 ]12.16296846 | 1.08E+00 11.12396203 | 4.15E-02 11.08476457 |2.27E-03
8 |[11.67284507 | 5.90E-01 | 2.0085 |11.08552579 | 3.03E-03 | 4.0017 | 11.08257904 |7.99E-05 | 6.1932
16 |11.16717818 | 8.47E-02 | 2.0065 | 11.08280853 | 3.09E-04 | 4.0153 | 11.08249987 |6.91E-07 | 6.1877
32 |11.08814918| 5.65E-03 | 2.0050 |11.08250835 | 9.17E-06 | 4.0153 |11. 08249920 |2.00E-08|6.1326

64 |11.08267527| 1.76E-04 | 2.0043 |11.08249969 | 5.14E-07 | 4.0010 |11. 08249919 |5.82E-09|6.1049

Clamped-Pinned

128 11.08254898 | 4.98E-05 | 2.0042 |11.08249985 | 6.72E-07 | 4.0099 | 11.08249918 |4.24E-10(6.0573

256 |11.08250581 | 6.63E-06 | 2.0024 |11.08249918 | 4.96E-09 | 4.0002 | 11.08249918 |3.35E-11| 6.0547

Exact solution: 11.08249918

4 113.96275845 | 1.28e-01 13.84197845 | 7.22e-03 13.83477975 |2.13e-05
8 [13.86655612 | 3.18e-02 | 2.0091 |13.83519214 | 4.34e-04 | 4.0576 | 13.83476001 | 1.56e-06 | 5.4358
16 |13.84269132 | 7.93e-03 | 2.003 |13.83478525| 2.68e-05 | 4.0146 | 13.83475854 | 8.43e-08 | 5.7522
32 |13.83674066 | 1.98e-03 | 2.0007 |13.83476012 | 1.67e-06 | 4.0036 | 13.83475846 |1.51e-09 | 5.9467

64 |13.83525392 | 4.95e-04 |2.00019 | 13.83475856 | 1.04e-07 | 4.0009 | 13.83475846 |7.71e-10| 5.9955

Clamped-Clamped

128 13.83488232 | 1.24e-04 | 2.00004 | 13.83475846 | 6.53e-09 | 4.0002 | 13.83475845 |4.08e-11| 5.9999

256 |13.83478942 | 3.10e-05 | 2.00001 | 13.83475845 | 4.08e-10 | 4.0000 [ 13.83475845 |1.40e-13 | 6.0000

Exact solution: 13.83475845
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The consistent agreement observed across all boundary conditions corroborates the
robustness of the HOHWM formulation.

To further evaluate the method’s versatility, it was applied to a linearly tapered
Timoshenko beam. The stiffness and mass distributions were directly incorporated into
the governing equations without modifying the underlying Haar framework. Table 4,
as presented in Paper Il, summarizes the fundamental nondimensional frequencies for
various taper ratios. The results indicate that the HOHWM accurately captures the
frequency reduction attributed to tapering, maintaining minimal deviation from the
existing solution.

Table 4. Effect of taper ratio on non-dimensional natural frequencies of the clamped-clamped
Timoshenko beam.

HWM HOHWM 4th HOHWM 6th
N
Conv. Conv. Conv.
Frequency  A.error rate Frequency A.error Rate Frequency A.error rate
=04 4 |13.38213007 | 9.60E-01 12.42216412 | 3.56E-02 12.42216313 | 4.40E-03

8 112.51071171 | 8.85E-02 | 2.0154 | 12.45779287 |7.62E-03 | 4.3451 | 12.42655937 | 7.71E-04 | 6.0527

16 |12.43177774 | 9.61E-03 | 2.0095 | 12.42293499 |7.72E-04 | 4.0623 | 12.42217245 | 9.32E-06 | 6.0129

32 112.42292193 | 7.59E-04 | 2.0037 | 12.42221943 |5.63E-05| 4.0103 | 12.42216313 | 4.41E-07 | 6.0099

64 |12.42223492 | 7.18E-05 | 2.0018 | 12.42978489 |9.92E-07| 4.0096 | 12.42293432 | 4.36E-09 | 6.0042

1281 12.42218071 | 1.76E-05 | 2.0008 | 12.42216317 {4.02E-08| 4.0073 | 12.42216357 | 7.28E-10 | 6.0017

256 | 12.42216626 | 3.13E-06 | 2.0003 | 12.42216313 |4.39E-09| 4.0023 | 12.42216313 | 2.71E-11 | 6.0009

Existing result = 12.422163

=08 4 11077014610 | 1.04E+00 9.738846102 | 1.17E-02 9.727997702 | 8.52E-04

8 |10.28714610 | 5.60E-01 | 2.0994 | 9.727886102 | 7.40E-04 | 4.0807 | 9.727181202 | 3.51E-05 | 6.0698

16 |9.782096102 | 5.50E-02 | 2.0848 | 9.727219602 | 7.35E-05| 4.0713 | 9.727147068 | 9.66E-07 | 6.0695

32 |9.728230102 | 1.08E-03 | 2.0631 | 9.727157102 | 1.10E-05| 4.0466 | 9.727146185 | 8.28E-08 | 6.0606

64 |9.727253202 | 1.07E-04 | 2.0480 | 9.727151332 | 5.23E-06 | 4.0402 | 9.727146103 | 6.74E-10 | 6.0326

12819.727156532 | 1.04E-05 | 2.0279 | 9.727146886 | 7.84E-07 | 4.0198 | 9.727146102 | 4.75E-11 | 6.0050

256 |9.727147652 | 1.55E-06 | 2.0051 | 9.727146151 | 4.90E-08| 4.0074 | 9.727146102 | 6.84E-12 | 6.0007

Exact solution=9.727146

The consistent accuracy of the HOHWM across both uniform and tapered geometries
highlights the method’s adaptability in addressing spatially varying stiffness properties
without compromising precision. The strong correlation between HOHWM, analytical,
and existing results corroborates the theoretical framework, affirming that the method
achieves higher order convergence while retaining the inherent simplicity and sparsity of
the Haar framework. These findings position the HOHWM as a dependable and
computationally efficient alternative to traditional high order numerical approaches for
structural vibration analysis.
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4.2 Dynamic Behavior of Functionally Graded Nanorods

The Higher Order Haar Wavelet Method underwent validation through its application to
the longitudinal vibration analysis of homogeneous Rayleigh-Bishop nanorods, considering
both local and nonlocal formulations. The numerical accuracy and fourth order
convergence of the HOHWM, particularly when compared to the standard Haar Wavelet
Method, were substantiated by the computed nondimensional frequencies, absolute
errors, and convergence rates presented in Table 5. More detailed investigation of these
findings are presented in paper Ill.

Table 5. Comparison of HWM and HOHWM for Homogenous Rayleigh-Bishop Rod.

HWM HOHWM 4th
N Frequency A.error Conv. rate Frequency A.error  Conv. Rate
€=0 | 4 2.319104 1.78e-02 2.302340 1.02e-03
8 2.305855 4.53e-03 1.9714 2.301383 6.21e-05 4.0372
16 2.302459 1.14e-03 1.9937 2.301324 3.85e-06 4.0096
32 2.301605 2.85e-04 1.9984 2.301321 2.41e-07 4.0024
64 2.301392 7.13e-05 1.9996 2.301320 1.50e-08 4.0006
128 2.301338 1.78e-05 1.9999 2.301320 9.39e-10 4.0001
256 2.301325 4.45e-06 1.9999 2.301320 5.87e-11 4.0000
Existing result = 2.30132095212840503962
e=0.1{ 4 2.210516 | 1.50e-02 2.196385 8.60e-04
8 2.199350 3.82e-03 1.9706 2.195577 5.24e-05 4.0374
16 2.196485 9.61e-04 1.9935 2.195528 3.25e-06 4.0097
32 2.195765 2.40e-04 1.9984 2.195525 2.03e-07 4.0024
64 2.195585 6.01e-05 1.9996 2.195525 1.27e-08 4.0006
128 2.195540 1.50e-05 1.9999 2.195525 7.92e-10 4.0001
256 2.195528 3.76e-06 1.9999 2.195525 4.75e-11 4.0000

Exact solution=2.195525123273453

The data substantiate a fourth order convergence rate for the HOHWM, whereas the
conventional HWM exhibits second order convergence. The utilization of the higher
order formulation leads to an approximate two order of magnitude reduction in absolute
error, with computed frequencies closely aligning with exact reference values,
demonstrating negligible deviation. These outcomes affirm the accuracy and efficacy of
the HOHWM in characterizing the longitudinal dynamics of both local and nonlocal
homogeneous Rayleigh-Bishop nanorods.

31



4.3 Flight Dynamics of Fragments

The nonlinear equations of motion fragments, subject to aerodynamic drag and gravity,
were analyzed using both the Haar Wavelet Method and the Higher Order Haar Wavelet
Method. The convergence and accuracy of these methods were assessed by comparing
their results against a numerical Runge-Kutta reference solution.

For a case study, a projectile weighing 12 kg and diameter of 105 mm was simulated.
This simulation generated approximately 3950 fragments during the 0.14 ms; the initial
position and velocity of one fragment were selected, and its position and velocity in all
directions were subsequently calculated at various time intervals using the formulation
presented previously, as detailed in Table 6 previously reported in Paper V.

Table 6. Position and velocities based on the HWM for a chosen fragment.

!

!

!

t x y z X y z
initial 0.1143 -0.1703 0.8062 -24.2968 -1121.0214 69.5044
1.0 -11.2112 -524.3401 29.8954 -6.14743 -285.0912 11.4625
2.0 -15.8341 -738.8114 34.3712 -3.5065 -162.7054 -1.2054
3.0 -18.7624 -874.7501 29.0023 -2.4553 -113.9810 -9.1834
4.0 -20.9146 -974.7061 16.4569 -1.8853 -87.5647 -15.7229

Table 7, as presented in Paper IV, presents the velocity and location for a chosen

fragment calculated with HWM and also HOHWM.

Table 7. Comparison of HWM and HOHWM for a chosen fragment at t = 2.5s.

HWM HOHWM 4th
N Value A.error  Conv. rate Value A.error  Conv. rate
x 4 | -17.29994925 | 1.28E-01 -17.42072359 | 7.23E-03
8 | -17.39615158 | 3.18E-02 | 2.0103933 | -17.42751557 | 4.34E-04 | 4.0576692
16 | -17.42001639 | 7.93E-03 | 2.0030078 | -17.42792242 | 2.68E-05 | 4.0146075
32 | -17.42596710 | 1.98E-03 | 2.0007748 | -17.42794758 | 1.67E-06 | 4.0036622
64 | -17.42745378 | 4.95E-04 | 2.0001951 | -17.42794915 | 1.04E-07 | 4.0009162
128 -17.42782539 | 1.24E-04 | 2.0000489 | -17.42794924 | 6.53E-09 | 4.0002289
256 -17.42791828 | 3.10E-05 | 2.0000122 | -17.42794925 | 4.08E-10 | 4.0000549
Runge-Kutta method: -17.42794925
x' 4 -2.78958350 | 9.85E-02 -2.88349768 | 4.63E-03
8 -2.86413772 | 2.40E-02 | 2.0383492 | -2.88784956 | 2.78E-04 | 4.0581877
16 | -2.88213661 | 5.99E-03 | 2.0015815 | -2.88811028 1.72E-05 | 4.0142098
32 | -2.88663071 | 1.50E-03 | 2.0009089 | -2.88812641 1.07E-06 | 4.0046429
64 | -2.88775339 | 3.74E-04 | 2.0003872 | -2.88812741 | 6.69E-08 | 4.0008970
128| -2.88803396 | 9.35E-05 | 2.0000500 | -2.88812748 | 4.18E-09 | 4.0002293
256 -2.88810410 | 2.34E-05 | 2.0000246 | -2.88812748 | 2.61E-10 | 4.0000268
Runge-Kutta method: -2.88812748
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The absolute error and convergence rates for both the HWM and HOHWM were
determined using the exact Runge-Kutta reference solution.

The numerical results, presented in Table 7, validate that the HOHWM consistently
achieves fourth order convergence, while the conventional HWM maintains second
order accuracy. This method consistently produces stable and smooth solutions for the
intricate nonlinear equations of motion, demonstrating accuracy comparable to the
analytical Runge-Kutta reference solution. These findings collectively affirm the
applicability of the higher order Haar formulation for accurately modeling fragment
trajectories under the influence of aerodynamic drag.

4.4 Damage Detection in Composite Plates Using Haar-CNN Hybrid Model

A convolutional neural network model, employing Haar wavelets, was assessed using
two experimental datasets derived from vibration analyses of carbon fiber reinforced
polymer composite plates. The initial dataset encompassed mass attachment scenarios,
indicative of various damage classifications, while the second dataset pertained to
delamination cases identified via frequency response function measurements. Both
datasets underwent processing through stationary Haar wavelet decomposition across
multiple levels, specifically ranging from 5 to 10.

The primary objective was to quantify the influence of the decomposition level on the
CNN'’s capacity to categorize distinct damage conditions and to ascertain the optimal
wavelet resolution for enhancing feature separability and model generalization.

For each dataset, two distinct models were trained:

1. A Baseline CNN: This model was trained directly using raw signals or frequency
response function inputs.

2. A Haar-CNN Hybrid: This model was trained on Haar-decomposed coefficients,
which were subsequently reconstructed into two-dimensional matrices.

The network architecture, as previously discussed in Chapter3, incorporated
convolutional layers, featuring ReLU activation, max-pooling, dropout regularization, and
fully connected dense layers, culminating in a softmax output layer. The Adam optimizer
was utilized with a learning rate set at 0.001, and categorical cross-entropy served as the
chosen loss function. Training proceeded for 100/200 epochs, with batch normalization
applied between convolutional layers, employing a 70-15-15 data split for training,
validation, and testing purposes.

4.4.1 Case 1: Mass-Attachment Dataset

The initial dataset comprises vibration signals collected from a carbon fiber reinforced
polymer plate configured with various mass attachments. Each configuration signifies
a distinct damage scenario characterized by localized stiffness reduction. However,
the dataset’s limited size, offering only a few samples per configuration, poses a
significant hurdle for data-driven modeling. This scarcity of examples restricts the
convolutional neural network’s generalization capability and heightens the training
process’s susceptibility to initialization variability and noise.

Figure 4 illustrates a representative signal, decomposed up to level 10, displaying the
detail coefficients Ds-D1p and the approximation component Ajg. This decomposition
effectively demonstrates how the Haar transform isolates transient, high-frequency
components, indicative of local disturbances, in the upper detail levels, while preserving
the global vibration trend in the lower approximation.
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Figure 4. Stationary Haar wavelet transform of a representative vibration signal.

Two models were evaluated under identical hyperparameter configurations: a baseline
CNN trained directly on raw vibration signals and a Haar-CNN model trained on
Haar-transformed coefficients derived from decomposition level 8. Both models shared
the same network architecture, activation functions, optimizer, and training duration,
ensuring that any observed discrepancies stemmed solely from the preprocessing stage.

Figure 5 illustrates a comparative analysis of the training and validation accuracy for
both the baseline CNN and the Haar-CNN. While both networks exhibited progressive
accuracy improvements over epochs, the baseline model displayed more pronounced
fluctuations and a clear divergence between its training and validation curves. In contrast,
the Haar-CNN model demonstrated smoother convergence and reduced disparity
between its training and validation accuracy. Although the ultimate accuracy remained
moderate, this limitation is primarily attributable to the exceptionally small dataset and
the inherent spectral similarity among certain mass-attachment cases, which complicates
class separation. The Haar-CNN’s smoother convergence corroborates that wavelet
representation stabilizes the learning process by filtering redundant information and
accentuating the most energetic transient components within the vibration signal.
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Figure 5. Training and validation accuracy for baseline CNN and Haar-CNN at Haar level 8 for the
mass-attachment dataset.

Figure 6 presents the confusion matrices for both models. The baseline CNN revealed
considerable overlap between adjacent classes, particularly in the mid-range damage
states where vibration patterns are spectrally analogous. Following Haar preprocessing,
the diagonal dominance increased, and off-diagonal elements diminished, indicating
enhanced recognition consistency across categories. This improvement reflects the Haar
transform’s capacity to highlight localized frequency alterations associated with subtle
stiffness variations.
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Figure 6. Confusion matrices for baseline CNN and Haar-CNN at Haar level 8 for the mass-attachment
dataset.

In conclusion, despite the inherent limitations on absolute accuracy imposed by the
smaller dataset size, the comparative enhancement achieved through Haar decomposition
suggests that integrating multiscale preprocessing can partially offset sparse data
challenges by improving feature clarity and network stability.
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4.4.2 Case 2: Delamination Dataset

This case study examines the impact of Haar wavelet preprocessing on the performance
of convolutional neural networks in classifying delamination within carbon fiber reinforced
polymer plates. The dataset comprises vibration response signals representing three
structural conditions: two distinct delamination sizes and a healthy configuration. Each
signal segment captures the steady state and transient frequency response of the plate
under consistent boundary and excitation conditions.

Figure 7 illustrates a representative vibration signal segment from the dataset.
The broadband, irregular pattern observed reflects the complex dynamic response
characteristic of composite materials, where multiple vibration modes often overlap.
Prior to analysis, the signal was standardized to eliminate scaling bias and emphasize
relative variations.

Amplitude (z-score)

T T T T
0 1000 2000 3000 4000
Sample

Figure 7. Original vibration signal segment from the delamination dataset.

Subsequently, the stationary Haar wavelet transform was applied at a decomposition
depth of eight levels, generating a multiresolution representation depicted in Figure 8.
This band-stack visualization effectively demonstrates how energy is distributed across
detail and approximation components (D1-Ds and Ag). Specifically, the higher levels capture
localized, high-frequency fluctuations associated with damage-induced discontinuities,
while the lower levels retain global modal behavior. This decomposition technique allows
for the simultaneous representation of vibration features in both the time and frequency
domains, thereby forming the input for the neural network.
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Figure 8. Stationary Haar wavelet transform (Haar, L = 10).

For comparative evaluation, two models were trained. The first network was
trained directly using the normalized vibration signals, whereas the second utilized
Haar-transformed coefficients at level eight as its input. Both networks shared a similar
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architecture, incorporating convolutional layers with rectified-linear activation and
max-pooling, followed by dropout regularization and fully connected layers culminating
in a softmax output. Training and validation data were partitioned identically to ensure
that any observed performance differences stemmed from the preprocessing stage
rather than architectural or parameter variations.

Figure 9 presents the results for the network trained on raw signals. The loss and
Fi-score histories indicate that while the model achieved consistent improvement,
the validation curve remained highly variable, suggesting sensitivity to data imbalance
and class similarity. The confusion matrix further reveals substantial overlap between the
two delamination cases, reflecting the close spectral resemblance of their vibration
signatures. Conversely, the healthy state, characterized by a distinct global frequency
pattern, was classified more reliably. These results underscore the inherent difficulty of
directly learning discriminative features from raw signals when faced with overlapping
spectral characteristics.
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Figure 9. Training, validation loss, Fi-score and confusion matrix for the baseline CNN.

Figure 10 illustrates the results obtained when the vibration data underwent Haar
wavelet preprocessing before CNN training. The training and validation curves exhibit
smoother convergence and reduced divergence between datasets, signifying improved
learning stability. The corresponding confusion matrix demonstrates clearer diagonal
dominance, indicating more distinct classification boundaries among the three structural
states. The Haar preprocessing effectively enhanced the network’s ability to isolate
frequency-localized patterns and mitigate the spectral overlap observed during raw-signal
training.
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Figure 10. Training, validation loss, F;-score and confusion matrix for the Haar-CNN.
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In conclusion, the overall comparison confirms that integrating Haar wavelet
decomposition prior to CNN training substantially improves both convergence behavior
and classification consistency. The wavelet representation adeptly captures the local
transient behavior associated with delamination while simultaneously preserving the
global vibration characteristics of the healthy state. Consequently, the Haar-CNN hybrid
approach offers a more robust and physically interpretable method for vibration-based
detection of delamination in composite plates, particularly in scenarios with limited
dataset size.

4.5 Summary of the Results

This section detailed the development and validation of the Haar Wavelet Method and
its higher-order variant for structural dynamics problems, alongside introducing the
Haar-CNN framework for data-driven damage detection. The Haar-based methodologies
consistently demonstrated high accuracy and rapid convergence across diverse analyses,
including free vibration, wave propagation and nonlinear transient analyses. Notably,
the HOHWM achieved higher order convergence determined by method parameter,
yielding smooth, continuous field approximations with a reduced number of collocation
points. Furthermore, the Haar-CNN hybrid model extended this approach to experimental
composite data, where multilevel Haar preprocessing significantly enhanced feature
localization and classification accuracy. Collectively, these findings underscore the
robustness and adaptability of the proposed Haar-based techniques for both deterministic
and data-driven structural analysis.
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5 Conclusions and Future Work

5.1 Summary of Main Contributions

This chapter concludes the thesis by summarizing the key outcomes and methodological
contributions of the Haar-based numerical and data-driven frameworks. The comprehensive
analyses confirmed the accuracy, convergence and broad applicability of the proposed
methodologies across different physical scales and problem types.

For enhanced accuracy and smoothness, Haar basis functions can be subjected to
multiple integrations before forming an approximation, thereby establishing the Higher
Order Haar Wavelet Method. This approach initially developed for studies in vibration
and wave propagation, provides a continuous, higher order representation while
maintaining the intrinsic simplicity and orthogonality of the original Haar basis.

The initial case study investigated the free vibration of Timoshenko beams, validating
the higher order Haar formulation against analytical and finite element benchmarks.
The incorporation of higher order Haar functions yielded smooth displacement and
rotation fields, underscoring higher order convergence with a reduced number of
collocation points. It should be mentioned that current formulation is among the few
where the Higher Order Haar Wavelet Method was evaluated with sixth-order
convergence (method parameter s = 2) and was applied to Timoshenko beams,
accurately representing shear deformation effects.

The second case study focused on longitudinal wave propagation in functionally
graded Rayleigh-Bishop nanorods within the framework of nonlocal elasticity. The results
indicated that the HOHWM accurately captured the influence of nonlocal parameters on
natural frequencies and wave dispersion characteristics. The method confirmed the
expected softening behavior with increasing nonlocal length scale and verified the
convergence rate observed in the beam problem, affirming the higher order formulation’s
generality for graded and nanoscale structures. This is one of the few applications of the
Higher Order Haar Wavelet Method at the nanoscale, developed for functionally graded
Rayleigh-Bishop nanorods with nanoparticle material.

The third case study examined the nonlinear flight dynamics of fragments, employing
the HWM and HOHWM to solve coupled trajectory equations under aerodynamic drag.
The HOHWM exhibited rapid convergence towards the Runge-Kutta reference solution,
reducing numerical error by two orders of magnitude compared to the standard
formulation. These findings validated the method’s efficiency in transient problems and
its capacity to maintain stability under nonlinear and time-dependent conditions.
This case verified that the Higher Order Haar Wavelet Method maintains higher
convergence in nonlinear flight problems, with input parameters obtained with finite
element simulations in ANSYS.

The fourth case study extended the Haar framework to data-driven damage identification
using convolutional neural networks. The Haar-CNN hybrid approach was assessed
using two experimental datasets of composite plates: one involving vibration-based
mass-attachment and another a delamination-based frequency-response dataset.
In both instances, Haar wavelet preprocessing improved feature localization and
enhanced convergence stability compared to training on raw data. The optimal wavelet
decomposition level was identified within the 7 to 9 range, offering the best balance
between feature richness and computational efficiency. The hybrid model demonstrated
reliable class separation, even with limited datasets, confirming the practical benefits of
integrating multiscale signal analysis with deep-learning-based classification.

39



All the research questions formulated in Chapter 1 have been addressed through the
numerical, analytical and data-driven investigations presented in this thesis.

Collectively, across all four studies, the Haar-based formulations exhibited robust
numerical stability, rapid convergence, and consistent accuracy over a wide spectrum of
structural problems. The higher order Haar extensions effectively improved smoothness
and precision in continuous domain analyses, while the wavelet-enhanced CNN framework
strengthened feature extraction and pattern recognition capabilities in experimental
datasets. Together, these results highlight the versatility of Haar wavelet formulations as
a unifying tool for both deterministic and data-driven modeling in structural dynamics
and damage detection.

5.2 Theoretical and Computational Contributions

The thesis theoretically advanced the formulation of the HWM and HOHWM for structural
dynamics problems governed by ordinary and partial differential equations. The higher
order framework achieved higher order convergence while maintaining the simplicity
and orthogonality inherent in the original Haar basis. The methods underwent validation
across both local and nonlocal continua, accurately reproducing analytical benchmarks
with minimal computational overhead.

Numerical findings confirmed that the HOHWM generates continuous displacement
and stress fields, exhibits stable convergence and produces sparse algebraic matrices.
Its performance remained consistent across a spectrum of linear and nonlinear problems,
encompassing transient fragment motion, graded nanostructures and classical vibration
analysis. The uniform grid formulation effectively eliminated the complexities associated
with adaptive meshing, all while preserving high accuracy and computational efficiency.

These results position the HOHWM as a compact yet highly precise solver for dynamic
systems, capable of serving as an alternative to more computationally demanding finite
element or spectral methods in analyses requiring moderate resolution.

This study notably contributes to the literature by demonstrating that the Higher Order
Haar Wavelet Method achieved higher order of convergence, thereby underscoring its
exceptional numerical precision.

5.3 Integration of Wavelet-Based Modeling and Machine Learning

A significant contribution of this research involves the integration of wavelet-based signal
processing with deep learning for structural health monitoring. By employing stationary
Haar wavelet decomposition on datasets comprising vibration and frequency response
data, the convolutional neural network models successfully extracted localized, multiscale
features directly correlated with various structural damage patterns. The analysis of two
composite plate datasets, one related to localized mass attachment and the other to
delamination, demonstrated that Haar wavelet preprocessing improved CNN learning
stability, mitigated overfitting and enhanced feature separability, even with limited data.
An optimal decomposition depth was determined to be between seven and nine levels,
a range that effectively preserved transient and modal information without introducing
redundant noise. This fusion of Haar-based preprocessing with CNN architectures bridges
physics-informed modeling and data-driven learning, enabling deep networks to process
physically interpretable features derived from the same mathematical foundation used
in numerical modeling.
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5.4 Practical Implications for Structural Dynamics and SHM

The present research findings offer direct implications for the comprehensive analysis,
intricate simulation and continuous monitoring of diverse structural systems. Specifically,
the HOHWM presents a computationally efficient alternative for dynamic simulations
where both precision and stability are paramount, such as in vibration-based design,
advanced nano-mechanical modeling and complex fragment dynamics. Its inherent
sparse and orthogonal matrix structure renders it highly suitable for integration into
large-scale simulations and embedded numerical solvers.

Furthermore, the Haar-CNN framework extends the applicability of wavelet
methodologies to experimental and operational monitoring contexts. Its multiresolution
preprocessing step markedly improves feature extraction from inherently noisy vibration
data, thereby enhancing the robustness of classification models utilized for identifying
damage, delamination, or other forms of structural degradation. This approach proves
particularly advantageous for datasets that are small or incomplete, where conventional
deep-learning techniques often encounter difficulties in generalization.

Collectively, these methodologies constitute a coherent computational toolset that
effectively integrates the interpretability characteristic of physics-based models with the
adaptability inherent in machine-learning frameworks. This synergy facilitates reliable
diagnostics and sophisticated predictive modeling in both laboratory-scale and
field-scale structural applications.

In summation, these findings corroborate that the research objectives, as outlined in
Chapter 1, have been comprehensively fulfilled. Each inquiry was addressed through
theoretical development, numerical validation or data-driven experimentation, thereby
affirming the capability of Haar based methods to integrate modeling accuracy,
computational efficiency and learning-driven damage detection within the domain of
structural dynamics.

5.5 Future Research

Future research endeavors can expand upon the current work in several key areas:

1. Extension of the Higher Order Haar Wavelet Method: Applying higher
order Haar formulations to intricate coupled multi-field systems, such as
thermo-mechanical and piezoelectric problems, to assess their efficacy in
multiphysics modeling.

2. Adaptive Wavelet Frameworks: Developing adaptive or hybrid grid schemes
within the Haar formulation to enhance computational efficiency for
localized nonlinear effects while preserving orthogonality.

3. Uncertainty Quantification: Integrating stochastic approaches with Haar-based
solvers to meticulously analyze the influence of material and boundary
uncertainties on dynamic responses.

4. Deep Learning Generalization: Expanding the Haar-CNN framework to
encompass 3D structural geometries and large-scale sensor networks,
incorporating transfer learning or physics-informed architectures to achieve
superior generalization under diverse operational conditions.

5. Real Time Structural Health Monitoring Implementation: Embedding
Haar-based preprocessing into onboard diagnostic systems for real time
vibration analysis and automated damage detection in critical industrial and
aerospace structures.
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These proposed directions aim to drive Haar-based modeling from theoretical
validation towards practical deployment within intelligent structural systems.
The continued integration of wavelet mathematics with data-driven techniques holds
significant promise for developing interpretable, efficient, and generalizable solutions to
complex challenges in structural dynamics and health monitoring.
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Abstract

Mathematical Modeling and Numerical Analysis of Structural
Dynamics with Applications to Damage Detection

Precise modeling of structural dynamic behavior and reliable identification of the
damage in structures remain central challenges in engineering design and maintenance.
Modern structures, from large-scale constructions to micro- and nanoscale components,
work under progressively complex dynamic conditions and are often made of advanced
and/or functionally graded materials. These new developments have brought with them
nonlinear behavior, spatial inhomogeneity and multiscale effects that in some cases
could exceed the analytical capacity of classical methods. On the other hand, vibration
based SHM relies on noisy and limited experimental data interpretation. This thesis
addresses both challenges and introduces a unified Haar wavelet-based framework that
integrates mathematical modeling, numerical analysis and data-driven interpretation of
structural dynamics. The approach proposed demonstrates that the same wavelet family
can be employed for both solving governing differential equations and enhancing
vibration-based damage detection through deep learning algorithms.

The theoretical foundation is based on the formulation of the Haar Wavelet Method
that approximates differential operators using piecewise-constant orthogonal functions.
This results in sparse and well-conditioned system matrices and facilitates easy
application of the boundary conditions. A Higher Order Haar Wavelet Method is then
constructed by integrating the Haar functions repeatedly to obtain continuous higher
order approximations with improved smoothness and faster rates of convergence. They
are evaluated in terms of accuracy, convergence rate and computation efficiency.

Haar wavelets based methods are implemented for four representative problems
chosen to illustrate their flexibility in various physical scales and computational contexts.
The first three problems are covered be deterministic numerical modeling and the
fourth combines wavelet preprocessing with a convolutional neural network for
vibration-based damage detection.

The first case study examines the free vibration analysis of both uniform and tapered
beams under various boundary conditions according to Timoshenko’s shear deformation
theory. The Higher Order Haar Wavelet Method Formulation exhibits improved accuracy
and faster convergence compared to the reference HWM based solution.

The second case study extends the method to the nonlocal Rayleigh-Bishop theory,
incorporating shear deformation and lateral inertia to study the longitudinal wave
propagation in axially graded nanorods. The Higher Order Haar Wavelet Method is used
to solve the governing motion equations, incorporating a nonlocal parameter within the
material graduation. The method is used to compute the natural frequencies and
evaluate the influence of the nonlocal parameter on the dynamic behavior of the nanorod.

The third case utilizes the Higher Order Haar wavelet method for the transient
nonlinear motion of fragments generated by high-pressure rupture, where the equations
of motion, including aerodynamic drag and gravitational effects, are discretized on the
Higher Order Haar wavelet basis and time-integrated. The results are in good agreement
with Runge-Kutta method, and the trajectory errors remained low, which verifies that
the developed formulation can accurately capture nonlinear, time-dependent responses
and yet retain numerical stability for systems with discontinuous acceleration histories.
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The final case integrates the Haar wavelet transform with a convolutional neural
network to improve vibration-based damage detection in composite plates. Two different
experimental datasets of frequency response functions for a composite plate with
various damage configurations are considered. Experimentally measured vibration and
frequency response data from carbon fiber reinforced polymer (CFRP) plates in various
damage conditions are analyzed using two CNN configurations: one trained on raw
input signals and another trained on Haar-decomposed representations. The wavelet
transformation emphasized localized transients and frequency variations while
suppressing noise, producing clearer and more distinctive input features. Both models
shared identical architectures and training parameters to isolate the effect of wavelet
preprocessing. The results indicate that Haar-based multiresolution filtering enhances
feature separability, improves model stability and provides a more robust representation
of structural response, particularly for small and noisy experimental datasets used in
vibration-based structural health monitoring.

The thesis demonstrates that wavelet-based numerical and hybrid methods can
function as an effective connection between classical mechanics as well as modern
data-driven structural analysis. The proposed framework increases the accuracy and
stability of numerical simulations and enhances the interpretability of vibration-based
diagnostics. In addition, it offers attractive properties in the sense of mathematical
modeling and simulation as well as structural damage identification for systems in the
presence of small data and complex dynamical behaviors. The results indicate that
further integration of higher-dimensional wavelet formulations and adaptive learning
architectures can extend this methodology to large-scale monitoring systems, advancing
the application of wavelet mathematics in structural health monitoring and dynamic
analysis.
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Lihikokkuvote

Konstruktsioonide diinaamika matemaatiline modelleerimine
ja numbriline analiiiis kahjustuste tuvastamise
rakendusndidetega

Konstruktsioonide diinaamilise kaitumise tdapne modelleerimine ja kahjustuste
usaldusvdarne tuvastamine konstruktsioonides on jatkuvalt keskseks valjakutseks
insenerteaduses, nii projekteerimisel kui hooldusel. Kaasaegsed konstruktsioonid, alates
suurtest ehitistest kuni mikro- ja nanomastaabis komponentideni, to6tavad jarjest
keerukamates diinaamilistes tingimustes ning on sageli valmistatud kdrgtehnoloogilistest
ja/vdi funktsionaalselt gradueeritud materjalidest. Need arengud toovad kaasa reeglina
mittelineaarse kaitumise, ruumilise ebailihtluse ja mitmemdotmelisuse efektid, mis
voivad Uletada klassikaliste meetodite analiiiitilised voimalused. Samal ajal tugineb
vibratsioonipdhine konstruktsioonide seisundi seire (SHM) sageli mirarikkale ja piiratud
eksperimentaalsete andmete tdlgendamisele. Kdesolev doktoritdd kdsitleb mdlemat
probleemi vottes kasutusele Haari lainikute pShise raamistiku, iGhendades matemaatilise
modelleerimise, numbrilise anallilisi ja andmepdhist konstruktsiooni diinaamika
télgendamise. Viljatootatud lahenemine véimaldab kasutada Haari lainikute perekonda
nii diferentsiaalvérrandite lahendamiseks kui ka vibratsioonipdhiste kahjustuste
tuvastamise algoritmide tdiustamiseks slivabppemeetodite abil.

Uurimistdo teoreetiline alus tugineb Haar’i lainikute meetodi formuleeringule, mis
lahendab diferentsiaaloperaatoreid kasutades tukiti konstantseid ortogonaalseid
funktsioone. Tulemusena saadakse hdredad ja hasti konditsioneeritud maatriksid ning
lihtne rajatingimuste rakendamine. Seejdrel rakendatakse kdrgemat jarku Haar’i
lainikute meetodit, integreerides Haar’i funktsioone korduvalt, et saada pidevad
korgema jargu lahendid parema siledusastme ja kiirema koonduvuskiirusega. Meetodeid
hinnatakse tdpsuse, koonduvuskiiruse ja arvutusmahu alusel.

Haari lainikutel pohinevaid meetodeid rakendatakse nelja probleemi lahendamiseks,
mis on valitud nende paindlikkuse demonstreerimiseks erinevatel fiilisikalistel ja
arvutuslikel tasanditel. Esimesed kolm probleemi sisaldavad deterministlikku numbrilist
modelleerimist, neljas Uhendab Haari lainikute pdhise eeltéétluse konvolutsioonilise
narviverguga, eesmargiga parandada vibratsioonipdhist kahjustuste tuvastamist.

Esimene juhtumuuring kasitleb Uhtlaste ja koonuseliste ristldigetega talade
vabavibratsioonianallilisi erinevate rajatingimuste korral, tuginedes Timoshenko
nihkedeformatsiooni teooriale. Kérgemat jarku Haar’i lainepShine meetod naitab
korgemat tadpsust ja kiiremat koonduvuskiirust vorreldes vordlusbaasiks kasutatava
HWM-ga.

Teine juhtumuuring laiendab kdrgemat jarku Haari lanikute meetodit mitte-lokaalsele
Rayleigh-Bishopi teooriale, hdolmates nihkedeformatsiooni ja kiilgjdu inertsiefekte, et
uurida pikilainete levikut aksiaalselt gradueeritud nanovarrastes. Kdrgemat jarku Haar’i
lainikute pdhist meetodit kasutatakse liikkumisvorrandite lahendamiseks, vottes arvesse
funktsionaalselt gradueeritud mitte-lokaalset parameetrit. Meetodi abil arvutatakse
nanovarda omasagedused ja hinnatakse mitte-lokaalse parameetri m&ju diinaamilisele
kaitumisele.

Kolmas juhtumuuring kasutab korgemat jarku Haar’i lainikute pd&hist meetodit
korgsurve purunemisel tekkivate fragmentide mittelineaarsete liikkumiste simuleerimiseks,
kus liikumisvérrandid (sh aerodiinaamiline takistus ja gravitatsioon) diskretiseeritakse
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korgemat jarku lainikute pohisel meetodil ning integreeritakse ajas. Tulemused on heas
kooskdlas Runge Kutta meetodi abil saadud tulemustega ning trajektoorivead pusivad
vaikesed. Tulemused kinnitavad, et vilja tootatud formulatsioon suudab tapselt
jdadvustada mittelineaarseid ajas muutuvaid funktsioone ja sdilitada arvutusliku
stabiilsuse slisteemides.

Neljas juhtumuuring Ghendab Haar’i lainikute pdhise teisenduse konvolutsioonilise
narvivorguga, et parandada vibratsioonipdhist kahjustuste tuvastamist komposiitmaterjalist
plaatide korral. Kasutatakse kahte erinevat eksperimentaalset sageduse funktsioonide
andmestikku komposiitplaadi kohta, millel on erinevad kahjustuste konfiguratsioonid.
Katsetulemused sisinikkiuga tugevdatud polimeerplaatide (CFRP) vibratsiooni- ja
sagedusreaktsioonide kohta erinevates kahjustustingimustes analiilisitakse kahe
CNN-mudeliga: Uks treenitakse tootlemata sisenditel, teine Haar’i lanikute abil
teisendatud sisenditel. LainikutepShine teisendus rdhutas lokaliseeritud siirdelisi ja
sagedusmuutusi, vdhendades samas mira ning luues selgemaid ja eristatavamaid
sisendomadusi. Mdlemal mudelil olid identsed arhitektuurid ja treeningparameetrid, et
eraldada lainikupGhise eelté6tluse moju. Tulemused naitavad, et Haar'i lainikutep&hine
mitmeresolutsiooniline filtreerimine parandab omaduste eristatavust, suurendab mudeli
stabiilsust ja annab vastupidavama struktuurivastuse esituse, eriti vdikeste ja
mirarikaste andmestike korral, mida kasutatakse vibratsioonipGhises konstruktsioonide
seisundiseires.

Doktorito6 tulemusena selgub, et lainikutepdhised arvutus- ja hiibriidmeetodid
vOivad toimida tdhusa sillana klassikalise mehaanika ja kaasaegse andmepdhise
struktuurianallitsi vahel. Esitatud raamistik suurendab arvutussimulatsioonide tapsust ja
stabiilsust ning parandab vibratsioonipGhiste diagnostikate t6lgendatavust. Lisaks pakub
see atraktiivseid omadusi matemaatilise modelleerimise, simulatsiooni ja kahjustuste
tuvastamise seisukohalt, eriti vaikese andmemahu ja keerulise diinaamilise kditumisega
sisteemides. Tulemused viitavad, et mitmemd&Gtmeliste Haari lainikutepdhiste
formulatsioonide ja adaptiivsete Oppearhitektuuride edasine integreerimine vdib
laiendada seda metoodikat suurobjektide seireks, edendades lainikutepdhise
matemaatika rakendusi konstruktsioonide seisundiseires ja diinaamilises analiisis.
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Abstract. In the current study, the higher order Haar wavelet method based formulation is developed for the analysis of the free
vibrations of the tapered Timoshenko beam. The clamped-clamped and clamped-pinned boundary conditions are explored and the
results with the 4th order and the 6th order of convergence are presented. The results are found to be in good agreement with the
corresponding results of the Ritz method. The proposed approach can be considered as the principal improvement of the widely used
Haar wavelet method providing the same accuracy with the several magnitudes lower mesh. Thus, the higher order Haar wavelet
method has reduced the computational cost in comparison with the widely used Haar wavelet method since the computational
complexity of both methods is determined by the mesh used. In the case of the fixed equal mesh used for both methods, the higher
order Haar wavelet method results in the several magnitudes lower absolute error without a remarkable increase in computational
complexity. The cost needed to pay for higher accuracy is hidden in a certain increase in the implementation complexity compared
with the widely used Haar wavelet method.

Key words: higher order Haar wavelet method, tapered Timoshenko beam, free vibration.

1. INTRODUCTION

Development and adaptation of computational methods and mathematical modelling techniques are rapidly
evolving research areas with the main focus on finding more accurate, less time-consuming, and simpler
approximations.

The Haar wavelet method (HWM) was first introduced in [1-2]. According to Chen and Hsiao’s approach,
the highest order of derivatives included in a differential equation is expanded into a series of Haar functions
[1-2]. This method is applied to solving differential and integro-differential equations covering applications
in various research areas such as engineering, natural sciences, etc. [3-9]. Furthermore, this method is used
as a numerical solution to linear and nonlinear delay differential equations [10], and space derivatives are
obtained through the Haar wavelet collocation method to solve 1D and 2D cubic nonlinear Schrodinger
equations [11]. In [12] the accuracy and convergence results of the HWM are presented. Based on the obtained
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results, it can be concluded that despite its simple implementation, the HWM needs refinement in order to
compete with such widely used numerical methods as the finite difference method and the differential
quadrature method.

Recently, the higher order Haar wavelet method (HOHWM) was introduced in [13] in order to improve
the accuracy and convergence of the previously proposed Haar wavelet method. The HOHWM has been
applied with success to solving differential equations, vibration, and buckling response of beams [14—18].
Theoretical and numerical analyses of the free and forced vibration of homogeneous and functionally graded
Timoshenko beams have been performed [19-22]. In the case of tapered beams, many approaches have been
used for analysing the Timoshenko beam that has a non-uniform cross-section [23-26].

The HOHWM is applied with success to the analysis of plate and shell structures using Euler—Bernoulli
and zig-zag theories. In this paper the HOHWM approach is adapted to the Timoshenko beam theory.

2. HOHWM APPROACH TO FREE VIBRATION ANALYSIS OF THE TIMOSHENKO BEAM

In this section, the formulation of the free vibration of the tapered Timoshenko beam and boundary conditions
are introduced.

2.1. Free vibration of the Timoshenko beam

A schematic view of the Timoshenko beam with a non-uniform cross-section along the length, x-direction,
is shown in Fig. 1.

Herein, free vibration of homogeneous tapered Timoshenko beams has been investigated. The material
properties of the beams are assumed to be constant. Firstly, the cross-sectional area A(x) and the moment of
inertia I(x) are presented as

cx
1-—

=) 1) =10(1—%)? x € [0,L], ()

A@) = 4o ( .

where A and I, are the area and the moment of inertia at the base of the beam, respectively. L is the length
of the beam, £ denotes Young’s modulus, G refers to shear modulus, p represents mass density, and & is the
shear correction factor which is chosen to be 5/6. For the described Timoshenko beam, the basic governing
differential equations for transverse vibration of the tapered beam can be presented as

i} g ow ¢
~(E10052) + kGAX) G — @) = pI 52 = 0

i} ow ?w
2 KCA) (G — )] —pA55=0

@

s

Fig. 1. Schematic view of a tapered beam.
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where w and ¢ are the transverse deflection and rotation of the cross-section, respectively. The bending
moment M and the shear force Q at any cross-section can be read as

N aw
M=El(x)--, Q=kGAX) (5, +¢). (3)
The boundary conditions for the beam can be expressed

for the clamped edge as: w =0, ¢ =0, )
for the pinned edge as: w =0, M =0.

2.2. Higher order Haar wavelet method

The higher order Haar wavelet method (HOHWM) is developed as an improvement of the widely used Haar
wavelet method (HWM) [13].
The n-th order ordinary differential equation, in general, can be presented as

Glx,u,u',u”, .. u® D ) =0, 5)

where n represents the order of the highest derivative involved in the differential equation. In the HOHWM,
in comparison to the Haar wavelet method, the order of expansion is increased by 2s, Eq. (6). Based on the
Haar wavelet, the expansion is presented as

dn+25 had
FOO) = sz(sx) - Z ahi(x),s =12, ..., 6)

i=1

in which h(x) is the Haar function [18]

1 for x € [£1(D),§2(1))
hi(x) = {—1 for x € [§2(D), §3(D)s ™
0 elsewhere

where i =m + k + 1, m = 2/ is a maximum number of square waves arranged in the interval [A,B] and the
parameter k indicates the location of the particular square wave [18]

& (D) = A+ 2kulx, &) = A+ (2k + DuAx, &) =A+2(k + 1)plx, ®)
u=M/m, Ax = (B — A)/(2M).
The integrals of the Haar functions (7) of order n can be expressed as [13]
( 0 S RAC)
I C0)s o
| nl x € [§1(1), §2()
D) = (=& ()" —2(x =, ()" for o ©9)
n! x € [$2(D), &5(D)
CRAO I AN 0 % € [£:(0), B)
n!
t 0 elsewhere

The differential equation can be satisfied in selected uniform grid points

i i
Xy, = oo xiR=1—m,L=O,...,s—1, (10)
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where L and R are the added collocation points on the left and right boundary, respectively. Then the numerical
order of the convergence of the method can be estimated by

o (Fi—l - FRef)
S\F - Fref
log(2)

where Fp, . is the existing solution, which in the current solution is obtained from the Ritz method [21].

(n

Convergence rate =

3. NUMERICAL RESULTS

In order to showcase the accuracy of the formulation proposed above, the values of natural frequencies of
the Timoshenko beam under two arbitrary boundary conditions are presented. Table 1 presents the effect of

Table 1. Effect of taper ratio on non-dimensional natural frequencies of the C-C Timoshenko beam

N HWM HOHWM 4th HOHWM 6th
Frequency A.error | Conv. Frequency A.error | Conv. Frequency A.error | Conv.
rate rate rate
c=0 4 | 13.96275845 | 1.28e-01 13.84197845 | 7.22e-03 13.83477975 | 2.13e-05

8 | 13.86655612 | 3.18e-02 [2.0091 | 13.83519214 | 4.34e-04 | 4.0576 | 13.83476001 | 1.56e-06 | 5.4358
16 | 13.84269132 | 7.93e-03 |2.003 13.83478525 | 2.68e-05 | 4.0146 | 13.83475854 | 8.43e-08 | 5.7522
32 | 13.83674066 | 1.98e-03 |2.0007 | 13.83476012 | 1.67¢-06 | 4.0036 | 13.83475846 | 1.51e-09 | 5.9467
64 | 13.83525392 | 4.95¢-04 [2.00019| 13.83475856 | 1.04e-07 | 4.0009 | 13.83475846 | 7.71e-10 | 5.9955

128 | 13.83488232 | 1.24e-04 |2.00004| 13.83475846 | 6.53e-09 | 4.0002 | 13.83475845 | 4.08e-11 | 5.9999
256 | 13.83478942 | 3.10e-05 |2.00001| 13.83475845 | 4.08e-10 | 4.0000 | 13.83475845 | 1.40e-13 | 6.0000

Existing result = 13.834758
c=04| 4] 1338213007 | 9.60E-01 12.42216412 | 3.56E-02 12.42216313 | 4.40E-03

8 | 12.51071171 | 8.85E-02 |2.0154 | 12.45779287 | 7.62E-03 | 4.3451 | 12.42655937 | 7.71E-04 | 6.0527
16 | 12.43177774 | 9.61E-03 | 2.0095 | 12.42293499 | 7.72E-04 | 4.0623 | 12.42217245 | 9.32E-06 | 6.0129
32 | 1242292193 | 7.59E-04 [2.0037 | 12.42221943 | 5.63E-05 | 4.0103 | 12.42216313 | 4.41E-07 | 6.0099
64 | 12.42223492 | 7.18E-05 [2.0018 | 12.42978489 | 9.92E-07 | 4.0096 | 12.42293432 | 4.36E-09 | 6.0042
128 | 12.42218071 | 1.76E-05 |2.0008 | 12.42216317 | 4.02E-08 | 4.0073 | 12.42216357 | 7.28E-10 | 6.0017
256 | 12.42216626 | 3.13E-06 [2.0003 | 12.42216313 | 4.39E-09 | 4.0023 | 12.42216313 | 2.71E-11 | 6.0009
Existing result = 12.422163
¢=0.8| 4[10.7701461 |1.04E+00 9.738846102 | 1.17E-02 9.727997702 | 8.52E-04
8 110.2871461 [5.60E-01 |2.0994 | 9.727886102 | 7.40E-04 | 4.0807 | 9.727181202 | 3.51E-05 | 6.0698

16 | 9.782096102|5.50E-02 [2.0848 | 9.727219602 | 7.35E-05 | 4.0713 | 9.727147068 | 9.66E-07 | 6.0695
32| 9.728230102 [1.08E-03 |2.0631 | 9.727157102 | 1.10E-05 | 4.0466 | 9.727146185 | 8.28E-08 | 6.0606
64 | 9.727253202 [1.07E-04 |2.0480 | 9.727151332 | 5.23E-06 | 4.0402 | 9.727146103 | 6.74E-10 | 6.0326
128 | 9.727156532|1.04E-05 |2.0279 | 9.727146886 | 7.84E-07 | 4.0198 | 9.727146102 | 4.75E-11 | 6.0050
256 | 9.727147652 |1.55E-06 |2.0051 | 9.727146151 | 4.90E-08 | 4.0074 | 9.727146102 | 6.84E-12 | 6.0007

Existing result = 9.727146

A. error — Absolute error
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Table 2. Effect of boundary conditions on non-dimensional natural frequencies of the tapered Timoshenko beam (¢ = 0.2)

N HWM HOHWM 4th HOHWM 6th
Frequency A.error | Conv. Frequency A.error | Conv. Frequency A.error | Conv.
rate rate rate
C-P 4 | 12.48688739 | 1.80E+00 11.05355589 | 3.67E-01 10.77030682 | 8.34E-02

8 | 11.05808739 | 3.70E-01 | 2.3120| 10.73676607 | 6.99E-02 | 4.8521 |10.68746912 | 5.82E-04 | 7.6790
16 | 10.75601079 | 6.91E-02 | 2.0624 | 10.6877406 | 8.53E-03 | 4.0629 |10.68692751 | 4.01E-05 | 6.6293
32 | 10.69501206 | 8.12E-03 | 2.0039| 10.6869284 | 4.10E-04 | 4.0132 |10.68688961 | 2.22E-06 | 6.0872
64 | 10.68781264 | 9.25E-04 | 2.0007 | 10.68688976 | 2.37E-05 | 4.0083 |10.6868877 | 3.06E-07 | 6.0034

128 | 10.68715151 | 2.64E-04 | 2.0003 | 10.68688778 | 3.94E-06 | 4.0019 |10.6868874 | 9.28E-09 | 6.0012
256 | 10.68695081 | 6.30E-05 [2.00002| 10.6868874 | 7.31E-07 | 4.0005 [10.68688739 | 2.79E-10 | 6.0008
Existing result = 10.68689
C-C 4| 14.32226684 | 1.10E+00 13.26456684 | 4.23E-02 13.22543684 | 3.17E-03

8| 13.95226684 | 7.30E-01 | 2.0906 | 13.22523684 | 2.97E-03 | 4.1523 | 13.22233484 | 6.80E-05 | 6.0228
16 | 13.28756684 | 6.53E-02 | 2.0746| 13.22246484 | 1.98E-04 | 4.0945 | 13.22226727 | 4.35E-07 | 6.0197
32| 13.22697684 | 4.71E-03 | 2.0595| 13.22227401 | 7.17E-06 | 4.0840 | 13.22226686 | 1.76E-08 | 6.0131
64 | 13.22245884 | 1.92E-04 | 2.0164 | 13.22226732 | 4.83E-07 | 4.0570 | 13.22226684 | 6.23E-09 | 6.0109

128 | 13.22232314 | 5.63E-05 | 2.0117 | 13.22226737 | 5.34E-07 | 4.0338 | 13.22226684 | 6.31E-10 | 6.0072
256 | 13.22227227 | 5.43E-06 | 2.0021 | 13.22226684 | 4.85E-09 | 4.0013 | 13.22226684 | 5.02E-11 | 6.0020
Existing result = 13.222267

taper ratio (c¢) for the beam under clamped-clamped (C-C) boundary conditions. The results are compared
with the existing results obtained from the Ritz method and alternative methods employed in [22,25].

As expected, for the beam with the taper ratio other than ¢ = 0, the non-dimensional natural frequency
decreases for the higher value of ¢. Moreover, as it can be observed, the results of the higher order Haar
wavelet method prove that in the case of the 4th and the 6th order of convergence, the absolute error reduces
much faster by increasing the number of terms in the Haar wavelet method. This matter could be essential in
the case of more complex problems, thus the accurate result can be obtained faster and with a smaller number
of terms.

The effect of boundary conditions is shown in Table 2. For the tapered Timoshenko beam (¢ = 0.2), the
results of two boundary conditions — clamped-clamped (C-C) and clamped-pinned (C-P) — are produced,
which prove the above-mentioned point for the higher order Haar wavelet method. In the future study, the
HOHWM is planned to be applied to design optimization of plate and shell structures [27-31].

4. CONCLUSIONS

During the last two years, the HOHWM has been applied with success to the analysis of plate and shell
structures by using Euler—Bernoulli and zig-zag theories. In the current study, the HOHWM is extended to the
vibration analysis of Timoshenko beams. The solution has been used to analyse the beam under two boundary
conditions, clamped-clamped and clamped-pinned. The results for beams with different taper ratios prove that
the higher order Haar wavelet method is accurate, and for the versions with the higher order of convergence
(4th and 6th order) the absolute error drops extremely fast. These results can be translated to a faster, simpler,
and more accurate solution for other structural analyses where the analytical solution is difficult to obtain.
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Muutuva ristldoikega Timoshenko tala vabavonkumiste analiiiis korgemat jarku
Haari lainikute meetodi abil

Marmar Mehrparvar, Jiiri Majak, Kristo Karjust ja Mustafa Arda

Viimase kahe aasta jooksul on rakendatud kdrgemat jarku Haari lainikute meetodit plaatide ja koorikute analiiiisiks,
kasutades peamiselt Euler-Bernoulli teooriat, tihes artiklis ka zig-zag teooriat. Kéesolevas t60s on laiendatud kdrgemat
jarku Haari lainikute meetod Timoshenko tala vabavonkumiste analiiiisiks. T60s on kasutatud jéik-jéik ja jaik-vaba
(vaba toetus) rajatingimusi. Analiiiisitud on erivate ristldike muutumise koefitsentidele vastavaid lahendusi. Korgemat
jarku Haari lainikute meetod osutus tépseks ja kiireks nii 4. kui 6. jarku koonduvuse korral (koonduvuse jark on maératud
meetodi parameetriga). Saadud tulemused on iildistatavad laiema plaatide/koorikute vabavonkumisi késitlevate {ilesan-
nete klassi jaoks, kattes ka juhtusid, kus analiiiitiline lahend puudub. Saadud tulemused on kooskolas laiemalt kasutatava
Haari lainikute meetodi ja Ritzi meetodi abil saadud tulemustega. Kdrgemat jéarku Haari lainikute meetodit vdib vaadelda
kui Haari lainikute meetodi edasiarendust, mis tagab kdrgemat jarku koonduvuskiiruse ja vdiksema absoluutse vea.
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Abstract. The current study aims to develop a numerical algorithm based on the higher-order Haar wavelet method
(HOHWM) to accurately investigate the free vibrations of the Timoshenko beam. The proposed solution is implemented
for beams with three different boundary conditions. Results of two specific cases of HOHWM, 4th and 6th order of
convergence, are presented and are compared with the well-known Haar wavelet method (HWM) and the existing exact
solution.

INTRODUCTION

Various numerical methods and algorithms have been used by engineers and researchers to pave the way for
solving complex scientific problems. In engineering problems, utilizing modern numerical methods, for instance the
Haar wavelet method, is one of the most common approaches to analyze all sorts of structures. The Haar wavelet
method (HWM) was first introduced by Chen and Hsiao [1] to solve ordinary differential equations in which the
highest order derivative in the differential equations will be expanded into Haar wavelets. Pioneering studies have
been done by U.Lepik in this area covering wide class of solid mechanics problems [2-3]. The HWM was recognized
as a method simple to implement and it was adapted for solving various differential [3-14] and integral/integro-
differential equations [15-17]. However, according to convergence theorem proved for HWM in 2015 in [18], the rate
of convergence of the Chen and Hsiao approach based HWM is equal to two. Thus, the HWM needs improvement in
order to compete with mainstream numerical methods used in engineering.

The higher order Haar wavelet method (HOHWM) was introduced in 2018 in [19] as principal improvement of
the HWM. The HOHWM has been implemented successfully for vibration analysis of Euler-Bernoulli beams,
composites plates, linear and nonlinear differential equations, vibration analysis of nanobeams, etc [20-26].

FORMULATION

In this section, the formulation for free vibration analysis of Timoshenko beams is presented, and then the essence
of the Haar wavelet method (HWM) and higher-order Haar wavelet method (HOHWM) are provided.



Timoshenko Beam

The Timoshenko model is an extension of the Euler-Bernoulli model by taking into account the shearing force
effect and the rotary motion effect. Consider a Timoshenko beam of length L, with bending stiffness of EI, shear
stiffness of G4, distributed rotational inertia per unit length of p/, and distributed mass of p4 per unit length which all
are dependent on the axial coordinate x measured from the end of the beam. Also, £ is the shear correction factor
which in the current study chosen to be 5/6. For a beam with the given geometry and material properties, by employing
the Timoshenko beam theory, basic governing differential equations for transverse vibration of beams read:

2’w(x, t) *w(x,t)  dp(x,t)
A% A T D=0 )
%p(x,t) Ay (x,t) 0% (x,t)
EI Ox2 +GkA( ox —<p(x,t))—1pT—0

where w and ¢ are the transverse deflection and rotation of cross-section at the neutral surface, respectively. After
some transformations, like the transformation of the homogeneous equation, it is possible to obtain an equation for
the transverse vibration of the Timoshenko beam that is only dependent on the displacement function w(x, t).

104W(x, t) Elp

*w(x, t) Ip?d*w(x,t) *w(x,t)
o Gk Gk *pd =0

E ox20t2 Gk  Ot* ot? )]

+1p)

Higher-order Haar Wavelet Method

The Haar wavelet, a special class of discrete orthonormal wavelets, is one of the most basic wavelets which is
discontinuous and similar to a step function. The other wavelets produced from the identical main wavelet form a
basis whose elements are orthonormal to each other and are normalized to unit length. This property allows each
wavelet coefficient to be computed independently of other wavelets. The Haar functions are given as

1 for  x € [& (D), &(0)
hi(x) ={-1 for  x € [&(0),&(D) &)
0 elsewhere

In (1) i=m+k+1,m =2/ is a maximum number of square waves deployed in the interval [4, B] and the
parameter k indicates the location of the particular square wave

& () = A+ 2kulx, &) =A+ 2k + Dulx, &) =A+ 2k + 1)ulx, 4
u=M/m, Ax = (B —-A)/(2M) )
The integrals of the Haar functions (3) of order n can be expressed as [8]
0 A& (0
( = &) xela@
G- 6O 26 - )" * eI

i (%) = 1 = o2 . . 5
Pril2) o w T remoam ©

| G800 = 200 = Ea0)" + (= Ea) X € (600, B)

k r(l) else where

Recently, the higher-order Haar wavelet method approach has been introduced [19]. The higher-order wavelet
expansion is introduced as:
dn+zsu(x) _

f) =52 = Y ah(x),s = 12,.. (6)



NUMERICAL RESULTS

To study the accuracy and speed of the method employed in this paper, the free vibration of Timoshenko beams
under different boundary conditions is presented in this section.

TABLE 1. Comparison of the dimensionless natural frequencies of Timoshenko beams with three different boundary
conditions

HWM HOHWM 4th (s = 1) HOHWM 6th (s = 2)

N Conv. Conv. Conv.
Frequency A. error rate Frequency A. error rate Frequency  A. error rate

4 110.76068319|1.60E+00 9.16627318 | 5.59E-03 9.16109539 [4.12E-04
8 19.59208533 |4.31E-01| 1.8954 | 9.16088118 | 1.98E-04 | 4.0580 [ 9.16069124 |8.05E-06| 5.2583
16 [ 9.27047366 | 1.10E-01 | 1.9742 | 9.16069928 | 1.61E-05|4.0268 | 9.16068333 | 1.48E-07|5.6800
32 | 9.18825306 | 2.76E-02 | 1.9935 [ 9.16068724 |4.06E-06 | 4.0244 | 9.16068322 |3.68E-08|5.7820
64 | 9.16758331 | 6.90E-03 | 1.9983 [ 9.16068383 | 6.42E-07 | 4.0240 | 9.16068319 |6.74E-10|5.9221
1281 9.16240869 | 1.73E-03 | 1.9995 | 9.16068327 | 8.79E-08 | 4.0133 [ 9.16068318 |1.73E-11]|5.9850
2561 9.16111459 |4.31E-04| 1.9998 | 9.16068320 | 1.74E-08 | 4.0054 [ 9.16068318 [3.90E-12|6.0130
4 [12.16296846(1.08E+00 11.12396203 | 4.15E-02 11.08476457 |2.27E-03

Pinned-Pinned
Exact: 9.16068318

= ; 8 [11.67284507|5.90E-01 | 2.0085 |11.08552579|3.03E-03| 4.0017 | 11.08257904 |7.99E-05|6.1932
§§ 16 |11.16717818|8.47E-02| 2.0065 |11.08280853 |3.09E-04 | 4.0153 | 11.08249987 [6.91E-07 | 6.1877
'05_) <l 32 [11.08814918| 5.65E-03 | 2.0050 |11.08250835|9.17E-06| 4.0153 | 11. 08249920 |2.00E-08 | 6.1326
gg 64 |11.08267527|1.76E-04 | 2.0043 |11.08249969|5.14E-07 | 4.0010 | 11. 08249919 |5.82E-09 | 6.1049
O 5 128111.08254898|4.98E-05 | 2.0042 |11.08249985| 6.72E-07 | 4.0099 | 11.08249918 |4.24E-10|6.0573
256111.08250581|6.63E-06 | 2.0024 |11.08249918|4.96E-09 | 4.0002 [ 11.08249918 |3.35E-11|6.0547
4 [13.96275845| 1.28e-01 13.84197845|7.22e-03 13.83477975 | 2.13e-05
'ng 8 113.86655612|3.18e-02 | 2.0091 [13.83519214| 4.34e-04 | 4.0576 | 13.83476001 | 1.56e-06 | 5.4358
,:_%E 16 |13.84269132|7.93e-03 | 2.003 |13.83478525|2.68e-05 | 4.0146 | 13.83475854 |8.43e-08 | 5.7522
g% 32 [13.83674066| 1.98e-03 | 2.0007 |13.83476012| 1.67¢-06 | 4.0036 | 13.83475846 | 1.51e-09 | 5.9467
;i‘g 64 [13.83525392|4.95e-04 {2.00019]13.83475856| 1.04e-07 | 4.0009 | 13.83475846 |7.71e-10 | 5.9955
S|
O | 12813.83488232 | 1.24¢-04 |2.00004(13.83475846| 6.53e-09 | 4.0002 | 13.83475845 | 4.08e-11 | 5.9999

256 (13.83478942 | 3.10e-05 [2.00001|13.83475845| 4.08e-10 | 4.0000 | 13.83475845 | 1.40e-13 | 6.0000

Table 1 exhibits the dimensionless neutral frequencies of a homogeneous beam under three arbitrary boundary
conditions, pinned-pinned, pinned-clamped, and clamped-clamped. Also, the results are validated by the given exact
solution which is calcuated by authors. As it can be seen the used method is proven to be accurate and by utilizing
HOHWM the solution converges faster which can be crucial for more complicated problems. However due to some
limitations in order to obtain the desired convergence rate some extra measures have been taken.

In the future study, the design optimization of the Timoshenko beam is planned based on previous long time
experience of the workgroup in area of traditional and evolutionary optimization [27-29]. First interest is related to
maximization of the fundamental frequency value. Development of optimization algorithms for wide class of
engineering structures is planned in cooperation with workgroup from Université Paris-Saclay [30-33]. Another
challenge is adaption of the HOHWM for analysis of nanostructures in cooperation with Trakya University [34-37].



CONCLUSION

In the current study, the higher order Haar wavelet method has been adapted for free vibration analysis of a

homogenous Timoshenko beam. The dimensionless natural frequencies of Timoshenko beam under three different
boundary conditions were evaluated. An analysis of the results allows confirming that the proposed HOHWM provides
principal improvement of accuracy and the rate of convergence in comparison with widely used HWM.
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LONGITUDINAL WAVE PROPAGATION IN AXIALLY
GRADED RAYLEGH-BISHOP NANORODS

M. Arda,"*" J. Majak,' and M. Mehrparvar!

Keywords: longitudinal wave propagation, Haar wavelet method, axially graded, Raylegh—Bishop rod,
nonlocal elasticity

Longitudinal wave propagation in axially graded nanotubes was explored. The effect of shear deformation and
lateral inertia on nanorods was considered using the nonlocal Raylegh—Bishop rod theory. As a novel approach,
a nonlocal parameter was assumed in the graded formulation. The higher order Haar wavelet method was
utilized for solving the governing equation of motion. The effects of material grading power-law index and
nonlocal parameters on the longitudinal wave response of axially graded nanorods were investigated. Phase
and group velocity variations of the axially graded nanorod were obtained. The present study may be useful in
the modeling of advanced functional composite nanowires.

1. Introduction

Carbon nanotubes are one of the most impressive nanomaterials, which have superior physical properties for a one-
dimensional structure. Besides the wide range of application areas, nanotubes can be improved with functionally graded
material (FGM). With the high conductivity characteristics and interaction with magnetic fields, carbon nanotubes are the
best candidate for nanowire applications. Designing a material in graded composition gives a huge advantage in specific
applications. Recently, graded nanotubes have been used as semiconductor alloy nanowires, which were produced in an
axially graded composition in single-walled carbon nanotubes [1].

Continuum modeling of the nano-sized structures can be achieved with the size-dependent gradient theories, which
consider the small-scale effects and long-range interactions in the nanostructure. One of these size-dependent theories
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Fig 1. Axially graded nanorod continuum model.

is the nonlocal stress gradient elasticity theory, which was proposed by Eringen [2, 3]. It has been mostly used theory in
statics and dynamics analysis of nanostructures [4-14]. Also, higher order [15] and shear deformation [16] beam models
have been developed for the analysis of nanotubes.

Nanorods can be modeled as continuous hollow rods with the help of nonlocal elasticity. In addition to the strain
and stress resultants in the axial direction, the lateral motion of particles has affected the nanorod dynamics. Bishop [17]
considered these effects by adding shear strain and rotational inertia terms in his model, which is the well-known Ray-
leigh—-Bishop model.

A comparison of longitudinal wave propagation with several rod models was carried out in [18, 19]. A similar
comparison was made by Aydogdu [20] for the nanorods by considering unimodal theories. Validation and calibration
of small-scale parameters for various models in wave propagation were carried out by using lattice dynamics results.
Longitudinal wave propagation and vibration of nanorods were investigated by Li et al. [21] with nonlocal unimodal rod
theories. Hosseini et al. used the Bishop rod model with strain gradient theory for modeling the nano-resonator [22] and
FG-reinforced composite microrods [23]. Karlicic et al. [24] studied the multiple Bishop nanorod system by utilizing the
nonlocal elasticity theory.

Materials with continuously varying properties in the length direction should be named axially functionally
graded (aFG) structures [25-28]. The nanoscale application of aFG materials for the wave characteristics of nanostruc-
ture was first studied by Kiani who proposed a nonlocal surface energy model for axially graded nanorods [29] and
nanobeams [30]. Elastic wave dispersion in FG double nanobeam system under the effect of thermal and magnetic fields
was studied by Ebrahimi and Dabbagh [31]. Yao et al. [32] investigated the vibrations and wave propagation of axially
moving FG nonlocal Timoshenko microbeams. In addition, continuum shell models were used in wave propagation
in several papers [33, 34]. Longitudinal and torsional dynamics of porous nanorods, which can be defined in terms of
FGM with deformable boundaries, were investigated by Yayli et al. in [35-39]. Vibration analysis of carbon nanotube
reinforced composite materials was studied in [40, 41].

In the majority of studies, related to axially graded nanostructures, the nonlocal parameter was assumed constant.
However, nonlocality is a material property like elasticity or density that should be considered a variable in the grading
directions. The novelty of the present work is that the nonlocal parameter is varied with power-law formulation, like other
material properties. Axially FG Rayleigh—Bishop nanorod model was obtained with nonlocal elasticity theory, Rayleigh—
Bishop rod theory, and minimum potential energy principle. To the best of the author’s knowledge for the first time in
the literature, the higher order Haar wavelet method (HOHWM) has been applied for the numerical solution of the wave
propagation problem of the nonlocal differential equation of motion with variable coefficients. Contrasting with the previous
work [42], the present study deals with wave propagation in axially graded nanorod structures. Aziz exhibited in several
studies that numerical solutions of second-order boundary value problems [43], delay partial differential equations [44] and
cubic nonlinear Schrodinger equation could be obtained with the Haar Wavelet method. The HOHWM has been introduced
by Majak et al. [45] and has been utilized with success for solving differential and integrodifferential equations [46-54].
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Material properties variation has been assumed the power-law function of the axial displacement. Effects of material
gradient index and nonlocal parameters were investigated. Results could be useful for the dynamical analysis of advanced
functional composite semiconductor alloy nanowires.

2. Analysis

An infinitely long axially FG nanorod is assumed. Cartesian coordinates are considered in which the x-axis is in the
direction of the length and the r-axis is in the cross-sectional radial direction of the nanorod (Fig. 1). The material properties
of the nanorod are varying along the x-direction.

Longitudinal (1) and lateral (w) displacements of the rod can be defined as the functions below according to the
Raylegh—Bishop rod model:

u:u(x,t), (D

Ou(x,t
w=w(x,l)=rn7( ) s 2)
Ox
where 7 is the distance of the lateral displacement of a particle from the x-axis and it is assumed to be proportional to the
longitudinal strain. The Poisson’s ratio n for the nanorod is defined as:

E(x)

"0 " @)

n

where E and G are the Young’s and shear moduli of the nanorod, respectively.

2.1. Nonlocal elasticity theory

Nonlocal constitutive relation for stress tensor is defined in differential form as below [55]:

2, E (x)v E(x)
(1_(6(")") \ )Tk/ :mgw% +m8k1= “)

where 7, is the nonlocal stress tensor, ¢,, is the sum of normal strains (8,,,. =g +&n+ 833) , 0y 1s the Kronecker Delta,
. . . . . 2, .

&y 1s the strain tensor, v is the Poisson’s ratio, (e(x)a) is called the nonlocal parameter, e(x) is the scale parameter,

and « is the distance between two atoms in the nanorod structure. For the longitudinal dynamics of an axially graded

nanorod, Eq. (4) should be written in the one-dimensional form:

[l(e(x)a)zaa;]G—E(x)g, ®)]

where ¢ and o are the normal strain and stress, respectively. Integration of the normal stress gives the normal force resultant

of nanorod:
N=[ocadd, (6)
4

where A is the cross-sectional area. Nonlocal normal force resultant can be interpreted as below:

2 A7 NL
NNL—(e(x)a)zaN =NE, 7

ox?
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where the local force resultant is defined in a conventional manner:

N* = E(x) 4e,, . ®)
2.2. Equation of motion for the Raylegh—Bishop nanorod

Governing equation of motion and boundary conditions for axial dynamics of the Raylegh—Bishop nanorod model
can be obtained using Hamilton’s minimum potential energy principle.
The total kinetic (E,) and potential (E,) energies can be defined according to nonlocal elasticity theory in Eq. (4) as

below [56-58]:
o252 el o0 [ 5o

+'L[p(x)n2]P£82u(x’t)] dx+T(e(x)a)2n2]P 0[p(x)525”(x”)] [a3u(x’l)]dx,, ©)

Ey

oxor o ox oxor ox’ot
L au(x,t) : L ) azu(x,l‘) ’
EP ZJ.E(X)A T dx+J.17 G(X)]P 672 dx , (10)
0 0 X

where p is the density, /, is the polar moment of inertia of the nanorod. It should be noted that £, G, p, and e are
variated by axial coordinate x . The polar moment of inertia for a hollow cylindrical rod can be defined as:

[P:%(RZ“—RI“), (11

where R, and R, are the inner and outer radii of the carbon nanotube. For brevity, variations of the kinetic and potential
energies are omitted herein. Interested readers can look [58] for comprehensive formulation. Governing equation of motion
for the nonlocal Raylegh—Bishop rod model is [58]:

;[E(X)Aﬁugz)] _aa;[nzg(x)z,, Z] :aal[p(x)Aa;]

52 azu(x,t) o3 20 62u(x,t)
-’ — -2 27 - -2 12
K P oxot p(x)[ 0xot n Paxzaz (e(x)a) Ox p(x) o0xOt (12)

and boundary conditions are:
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o%u 29
nZG(x)[Pﬁ + nzlp(e(x)a) By p(x)

Equation (12) is the governing motion equation for longitudinal dynamics of nonlocal axially graded Raylegh—
Bishop nanorod. Equation (12) can be turned into a classical continuum Rayleigh rod model if necessary, assumptions
(G =n=e=0) can be made.

2.3. Functionally graded materials

The functionally graded materials are the result of the combination of two different materials. Variations of the mate-
rial properties (elasticity modulus, shear modulus, density, and scale parameter) in the axially graded structure are assumed
as the power-law function:

E(x) E -E, E, P P
G(x) = G~ Go x’+ % and 1 =s i
p(x)| | pi—po Po PSP (15
u(x)| L mo 1o ol L

where y is the material grading or power-law index, E,, G, p,, to and E;, G;, p;, p; are the material properties at
the left and right side of the nanorod, respectively, s is a coefficient, which determines the material properties at the right side
of nanorod. Power-law variations of material properties are shown in Fig. 2. In the present study, dimensionless material
properties were assumed. y and s parameters can be determined according to the composition of materials selected and pro-
duction methods. For the analysis, s is assumed as 0.5, 1, 2 and y is assumed as 1, 2, 3. Besides that, these parameters can
be selected from fractional numbers.
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With the assumption of the harmonic wave function (u (x,7)=U(x)sin a)t) , dimensionless distance [ X = J in the
a

nanorod’s lattice structure, and nonlocality function ( p(X)=e(Xx )2), Eq. (12) turns into:

A[aE(X) au(x)] +A[E(X)azu()()] nzlpaz[G(X)azu(X)]

0X  0X ox>

ox ox

L 0u(X) & [p(X)aU(X)] ve(x) 2 (p(x)algﬁf)]] . (16)

ox  ox2 oX ox?

mznz,P[ ap(x)[ aq(x)] +p(X)aZU<X>J ) wznz,P[ @ZMX);([,J(X)@UW]

Equation (16) is an ordinary differential equation with variable coefficients and an analytical solution has not been
obtained. To solve this equation, a newly developed higher order Haar wavelet method was used in the present work.

2.4. Haar Wavelet Method (HWM)

Haar wavelets were introduced by Hungarian mathematician Alfred Haar in 1910. The Haar wavelets consist of
piecewise constant functions and are the simplest among all the wavelet families which is a good feature to integrate them
analytically at arbitrary times [59].

Haar wavelets (hl- (x)) defined as a group of square waves with magnitude +1 in given intervals and zero else-
where [59]

1 if xel:él (’.)752(’.)]
h(x)= {-1if xe[&(i).&(i)] )

0 elsewhere

where
3] (z) = A+2kuAx,

£ (i) =A+(2k+1)unx and = Ac-B=A (18)
m 2M

&(i)=A+2(k+1) pAx.

The wavelet number (i ) can be defined as i =m+k+1, and m (m=2/, M =27 is the maximum number of
square waves, which can be deployed sequentially in the interval [A, B] . J is the maximum level of resolution. The inter-
val [A,B] is divided into 2M subintervals of equal length which is Ax .

If the j increases, the wavelet becomes narrower. Because of that, ;j is called the dilatation parameter. The inte-
ger k is called the translation parameter which determines the position of the wavelet in the x -axis.
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Equation (18) is valid if i >1. In the case of i =1, /4 (x) is the scaling function:
h(x)=1 and m=0,& (1)= 4,5, (1) =& (1)= B (19)
The width of the i th wavelet is:
& (1)=& (i)=2urx=(B-A)m™ =(B-4)27. (20)

If the maximal level of resolution (J ) is assumed, it can be concluded that the Haar wavelets are orthogonal to
each other.

Let us assume that ¢(x) is a square-integrable and a finite function in the interval [ 4, B]. Then, function ¢(x)
can be expanded into Haar wavelets as:

o(x) = Xah (), @1

where a; is the Haar wavelet coefficient.
The integrals of the Haar functions according to o order can be expressed as [59]

0 it x<& (i)
ﬁ[x—é.(i)]a it ve[& (1.6 ()]

T g )] 25 ()T | it cela ()8 0)] .
i{[x—é(l)]a—2[x—€z(i)]a+[x—€3 (1] } i x> 2 (i).

Integrals in Eq. (22) can be used for i >1. In the case of i=1, boundary elements turn into & (1) =4 and

& (1) =& (1) = B . The integral of a function in this case (i =1) can be obtained with:
1 a

P, (x)=;[x—A] . (23)

Derivatives of the functions also may be expanded into the Haar wavelet series. Taking into consideration of

the present problem, the higher order derivative of the axial displacement function can be expanded to the Haar wavelet
series as below:

d'U(x) W™
o(x)=——F==>ah(x). (24
()= = 2 () )

Equation (24) can be expressed in matrix form as below:

d*U(X)

0 = aTH(i,x) , (25)

where a” is the transpose of the axial displacement vector of nanorod and H (i,x) is the Haar matrix. If Eq. (25) is inte-
grated analytically four times according to axial x -coordinate, the axial displacement function of the nanorod will be ob-

tained as below:
X3 X2
U(X):arﬁ(i,x)+Cl?+C27+C3X+C4, (26)

where P, (i, x) are the fourth-order integration matrices and C; stands for integration constants which can be determined by
using boundary conditions.
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2.5. Higher order Haar wavelet method (HOHWM)

Higher Order Haar wavelet method has the same theoretical background as HWM, except for the function expansion
process. In Eq. (24), the highest order derivative involved in the governing Eq. (16) is expanded to the Haar wavelet series.
Higher order HWM increases the order of derivative of the function by even numbers.

d"U(x) W
()= - S @)
In the case & =1, the wavelet expansion starts from the 6th order derivative of the function. It has been observed
by [45-47, 53, 60] that the HOHWM outperforms HWM by an increased rate of convergence and reduced absolute error.
In the case of HOHWM, extra boundary conditions or periodicity conditions can be utilized for determining complemen-
tary integration constants. Periodical relations for the wave equation can be obtained by applying Bloch—Floquet theory.

2.6. Bloch-Floquet theory

Bloch—Floquet theory [61] declares that an energy potential in the lattice structure is periodic in the unit length of the
lattice. Let us assume ¢ (x) function defines any energy potential in the lattice. Unit length in the lattice is assumed as a . The
Bloch-Floquet theory expression for ¢(x) is

o(x)=p(x+a). (28)

For the wave propagation in the lattice structure, the periodicity condition of the Bloch—Floquet theory can be used
in the displacement function and its derivatives using the Bloch wave vector as below for the present problem:

U(0)e™ =u(l), 29
dvU(O) eim'r — dvU(l) (30)
ax’ ax’ -’

where i is the complex number (i = J-1 ) and n is the Bloch wave vector. With the help of Egs. (29) and (30), necessary
periodicity conditions for determining the integration constants in Eq. (26) can be obtained.
If the periodicity conditions for the Haar Wavelet method are written in matrix form:

&1 0 0 0 o E(i,l)

1 m_1 0 0 ol P2(i,1) 31)
-1/2 -1 &"-1 0 ¢ P(i1)|
-1/6 -1/2 -1 "™ —1| | ¢ P, (1)

For the higher order Haar wavelet method, the periodicity conditions in matrix form can be expressed as below:

g 00 0 0 o 1[al [r@]
1 &m—-1 0 0 0 0 c, P, (i,1)
172 -1 ™1 0 0 0 e | _| B0 32)
“1/6 -1/2 -1 &™—1 0 0 ¢ Py (i,1)
~1/24 -1/6 -1/2 -1 ™ -1 0 e P (i1)
—1/120-1/24 —1/6 -1/2 -1 ™ 1] || | (i)
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TABLE 1. Validation for Homogenous R-B Rod (¢, =0, s =1)

J 241 HWM HOHWM

Frequency | True Error | Conv Rate Frequency | True Error | Conv Rate
1 4 2.319104 1.78x10° — 2.302340 1.02x107%3 —
2 8 2.305855 4.53x107% 1.9714 2.301383 6.21x10°% 4.0372
3 16 2.302459 1.14x10°% 1.9937 2.301324 3.85x10°% 4.0096
4 32 2.301605 2.85x10° 1.9984 2.301321 2.41x107 4.0024
5 64 2.301392 7.13x107°% 1.9996 2.301320 1.50x107% 4.0006
6 128 2.301338 1.78x107% 1.9999 2.301320 9.39x10°1° 4.0001
7 256 2.301325 4.45x107% 1.9999 2.301320 5.87x107" 4.0000
Exact value 2.301320952128405 [41]

With the help of Bloch-Floquet theory, integration constants can be defined for HWM and HOHWM using Egs. (31)
and (32). Axial displacement function and derivatives for axially graded the nanorod can be inserted into governing equation
of motion (Eq. (16)) and wave frequency can be determined.

Phase (V) and group velocities (V;; ) are important characteristics for traveling waves and can be defined as the
velocity of an individual particle that propagates in the structure (Eq. (33)) and the overall shape of the propagation of a group
of waves at similar frequency (Eq. (34)), respectively.

y,=2 (33)
n
do
Vo =—. 34
o= (34)

3. Numerical Results

Longitudinal wave responses of axially graded Raylegh—Bishop nanorods were investigated in the present Section.
Dimensionless material properties for the aFG nanorod are considered. The inner radius and thickness of the nanorod
are 0.41 and 0.066 nm, respectively. The Poisson ratio for nanotubes is 0.20.

Molecular dynamic simulations and nonlocal continuum models are compared for wave propagation in carbon
nanotubes [62]. The higher order Haar wavelet method is a newly developed numerical solution technique and the valida-
tion of the present nonlocal Raylegh—Bishop rod model was carried out by using homogenous local and nonlocal rod model
results in Tables 1 and 2, respectively.

Very good agreement can be observed with HWM and HOHWM in the “True Error” and “Convergence Rate”
parameters, which are defined in Egs. (35) and (36), respectively. Exact results for local and nonlocal rod models were
taken from [56].

g = ‘w(])—w(exac)

) (35)

w(J—l)—a)(exac)
B w(J)—w(exac)
CR= o2 . (36)

log
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TABLE 2. Validation for Nonlocal Homogenous R-B Rod (¢,=0.1, s = 1)

J 21 HWM HOHWM
Frequency | True Error | Conv Rate Frequency | True Error | Conv Rate
1 2.210516 1.50x1072 — 2.196385 8.60x10704 —
2 8 2.199350 3.82x107% 1.9706 2.195577 5.24x107% 4.0374
3 16 2.196485 9.61x10°% 1.9935 2.195528 3.25x10°% 4.0097
4 32 2.195765 2.40x107% 1.9984 2.195525 2.03x107%7 4.0024
5 64 2.195585 6.01x10°% 1.9996 2.195525 1.27x10°% 4.0006
6 128 2.195540 1.50x107% 1.9999 2.195525 7.92x1071° 4.0001
7 256 2.195528 3.76x107% 1.9999 2.195525 4.75x10™ 4.0000
Exact value 2.195525123273453 [41]
a b
g 0101 1.0 .
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Fig. 3. Nonlocal effect on the imaginary (a, c) and real (b, d) parts of wavenumber of homogenous
Rayleigh (a, b) and homogenous Rayleigh-Bishop (c, d) rods at s = 1.

It can be observed from Tables 1 and 2 that, HOHWM has a lower true error than HWM at the same resolution (J ).
The rate of convergence tends to be 4 and 2, in the case of HOHWM and HWM, respectively.

To see the effect of graded nonlocality, which is pointed out beforehand to be the novelty of the current study, the
comparison of wave frequencies of aFG Raylegh—Bishop nanorods are shown in Tables 3 and 4 for constant and graded nonlo-
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TABLE 3. Grading Nonlocal Effect on AFG Rayleigh-Bishop NanoRod with HWM (y =2)

J 1 Constant Nonlocality (e = 0.1) Grading Nonlocality (e, = 0.1)
s=0.5 [ s=1 [ s=2 s=0.5 [ s=1 [ s=2
1 4 2.282941 2.210516 2.180577 2.329669 2.210516 2.193185
2 8 2.276619 2.199350 2.171733 2.323278 2.199350 2.198548
3 16 2.275062 2.196485 2.169437 2.321706 2.196485 2.202387
4 32 2.274675 2.195765 2.168858 2.321315 2.195765 2.203862
5 64 2.274578 2.195585 2.168713 2.321217 2.195585 2.204290
6 128 2.274554 2.195540 2.168677 2.321192 2.195540 2.204402
7 256 2.274548 2.195528 2.168668 2.321186 2.195528 2.204430
a b
320
3.16
2 2
§ 312 \\\ G}
2 S 2
S3.08 £
~ s ~
304 F g0
mmm=egp=0.1 \‘
3.00 Il Il Il Il Il Il § Il
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c d
ERL - 32r
23.05F 228
2 2
2 4
2295 o 24
2 *, 2
S S
2.85 ep=0 “\‘ 20 =0 AN
----- ep=0.1 . mmmme g =0.1 \,~
275 I I I I I \I 1.6 I I I e
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Fig. 4. Nonlocal effect on the phase (a, b) and group (c, d) velocities of the homogenous Rayleigh (a, c)
and homogenous Rayleigh-Bishop (b, d) nanorods at s = 1.

cal parameters, respectively. Grading nonlocality increases the wave frequency for the enhancing (s = 2 ) material properties
case. This behavior can change with second material properties and the power-law parameter. Thus, the grading nonlocality
certainly affects the dynamics of the structure.

In Figs. 3, nonlocal effect on wave response of homogenous Rayleigh and Raylegh—Bishop rods can be seen. Wave
number has only the real number part in the homogenous rod. The nonlocal effect decreases the wave frequency with the
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TABLE 4. Grading Nonlocal Effect on AFG Rayleigh-Bishop NanoRod with HOHWM (y =2)

J e Constant Nonlocality (e =0.1) Grading Nonlocality (e, = 0.1)
s=0.5 [ s=1 [ s=2 s=0.5 [ s=1 [ s=2
1 2.271971 2.196385 2.168986 2.317916 2.196385 2.172353
2 8 2.273807 2.195577 2.168642 2.320188 2.195577 2.190910
3 16 2.274363 2.195528 2.168657 2.320924 2.195528 2.199760
4 32 2.274501 2.195525 2.168663 2.321119 2.195525 2.203085
5 64 2.274535 2.195525 2.168664 2.321168 2.195525 2.204084
6 128 2.274544 2.195525 2.168665 2.321180 2.195525 2.204350
7 256 2.274546 2.195525 2.168665 2.321183 2.195525 2.204417
a b
E 0.24 eg=0,y=1 1.0 - ep=0,y=1
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% A e"ig’ly:il E 08| mme eozgly=il »
o 0420 _\ 607 . ,y7 = . L07 . ,}7 Ng
= | WGELED ep=0.1,y=2 5 ----- ep=0.1,y=2 o
= | RS €=0.1,y=3 z | 60:01y23j
R Z 06 4
£ 0.16 |- “ Lg 3
D? " 204
2 \ £
£ o2k | 3
¥ | eewwm———I ~ 0.2
= 7/
0.08 L L L L L A I I I I
0 05 10 15 20 25 0 05 1.0 1.5 20 25
Frequency Frequency
C Lok d
E .
= o}
5 2 08f 2
s g 3
: 2 ol
s 000 mmashis
=
& £ 04f
E =
5 S 02}
< M ..
£
0 05 10 15 20 0 05 1.0 15 20
Frequency Frequency

Fig. 5. Nonlocal and gradient index effects on the imaginary (a, ¢) and real (b, d) parts of wavenum-
ber of aFG Rayleigh(a, b) and aFG Rayleigh-Bishop(c, d) rods at s =0.5.

well-known softening effect. Shear stiffness and rotational inertia effects in the Raylegh—Bishop rod model also decrease the
wave frequency in Fig. 3c, d.
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Fig. 6. Nonlocal and gradient index effects on the phase (a, b) and group (c, d) velocities of the aFG
Rayleigh (a, c) and aFG Rayleigh-Bishop (b, d) nanorods at s =0.5.

Phase and group velocity variation with wave frequency are shown in Figs. 4. The Rayleigh model presents constant
phase and group velocities however, the Raylegh—Bishop, which is a gradient model like nonlocal elasticity, decreases both
of them.

In Figs. 5a, b, the results of Rayleigh model for axially graded rod are presented. Material properties are assumed in
decreasing variation (s = 0.5 ). In low frequencies, the wavenumber has only an imaginary part and the real part is zero. After
a certain value, which is called cut-off frequency, the real part of wave frequency starts to increase and the imaginary part stops
decreasing and reaches a constant value. This behavior can be observed only in axially grading structures [63]. No wave can
propagate in the structure until the cut-off frequency has passed. Nonlocal effects become obvious at higher frequencies where
the real part of the wavenumber increases and the imaginary part decreases.

The effect of the power-law parameter can be observed clearly in the axially graded Raylegh—Bishop model in
Fig. 5c, d. If the variation of material properties is considered in Fig. 2, the mean value is the highest when the power-law is
assumed to be 3. That indicates, the structure is stiffer than the other cases, and as a result higher wave frequency is obtained.
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Fig. 7. Nonlocal and gradient index effects on the imaginary (a, c¢) and real (b, d) parts of the wave-
number of the aFG Rayleigh (a, b) and aFG Rayleigh-Bishop (c, d) rods at s =2.

The power-law parameter decreases the imaginary part of the wave number, in other words, it decreases the cut-off frequency.
Increasing the power-law parameter enhances the frequency.

Nonlocal and material grading index effects on phase velocity cannot be detected clearly in Figs. 6a, b. Only at higher
frequencies in the Rayleigh model (Fig. 6a), the nonlocal phase velocity separates from local counterpart in decreasing ways.
The aforementioned effects are more obvious for group velocity variation in Figs. 6¢, d. In the Rayleigh model (Fig. 6¢), group
velocity decreases with nonlocal, and power-law index parameter effects at high frequencies. Material gradient or power-law
index affects differently in the Raylegh—Bishop model (Fig. 6d). The highest power-law index gives the highest group velocity
at low frequencies, though this relation is reversed at higher frequencies. Nonlocality shows the decreasing effect on group
velocities for both the Rayleigh and the Raylegh—Bishop models.

Wave propagation on axially graded nanorods with enhancing material properties (s =2 ) can be seen in Fig. 7.
Similarly, with the variation characteristic of reducing material properties (s = 0.5 ), imaginary parts of the wave number in
the Rayleigh model (Figs. 6a, b) are not affected by nonlocal and grading index parameters. The real part of the wave number
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Fig. 8. Nonlocal and gradient index effects on the phase (a, b) and group (c, d) velocities of the aFG
Rayleigh (a, ¢) and aFG Rayleigh-Bishop (b, d) nanorods at s = 2.

has little difference only at the high frequencies. In the Rayleigh—Bishop model (Figs. 6¢c, d), nonlocality shows the same
decreasing effect on real and imaginary parts of the wave number, while the material grading index has an increasing effect
on the wave number contrary to the reducing material properties case. The reason for this behavior can be interpreted from
the mean values of material properties in Fig. 2. Higher material grading index reduces the material properties and increases
the frequency. Cut-off frequencies also increase with the power-law index.

Nonlocal and material grading index effects on phase velocities are more obvious in enhancing material properties
cases than reducing ones. The power-law parameter decreases the phase velocities, which can be seen clearly in the Raylegh—
Bishop model, however, the nonlocal effect increases them (Fig. 8a, b). In the enhancing material properties case, there is a
conflict between material grading and nonlocal effects. Nonlocality reduces the effects of enhancing material properties. This
conflict can be seen in Figs. 8c, d as well in the group velocity results obtained by Raylegh—Bishop model. For the linear
material variation ( y =1), the nonlocal group velocity is lower than the local counterpart. On quadratic and cubic variations,
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nonlocal frequencies are higher than local counterparts. The material grading effect becomes subtler with increasing the
power-law parameter.

4. Conclusion

The longitudinal wave response of axially functionally graded nanorods was investigated. To include the effect of
size, shear, and rotational inertia in nanostructures, Eringen’s nonlocal elasticity and Raylegh—Bishop theories were em-
ployed in the formulation of the problem. Governing equation of the motion for the axially graded nanorod was obtained
with Hamilton’s minimum energy potential principle. Governing differential equation of motion with variable coefficients
was solved by utilizing the higher order Haar wavelet method. The results were compared and validated with continuum
mechanics approaches. Effects of material grading index and nonlocal parameters on the wave dynamics of the aFG nanorod
were investigated.

Nonlocality is considered in a graded formulation, which is assumed constant in most of the literature. The Grading
nonlocal parameter increases the wave frequency according to the constant nonlocal parameter case.

Axially grading material properties bring out cut-off frequencies for the nanorod at low frequencies. Wave num-
bers consist of both real and imaginary parts. Gradient effects on axial displacement function like shear stiffness, rotational
inertia, and nonlocality become apparent at high frequencies. Nonlocality shows softening effect on enhancing and reduc-
ing material properties. The material grading index affects differently the wave response of the nanorod depending on the
enhancing or reducing material properties variation. In reducing cases, the material grading index works with nonlocality
and softens the structure. Although, in enhancing cases, material grading works against nonlocality and the nonlocal effect
decreases the stiffening effect of material grading. Axially grading material properties affect the low-frequency behavior
and higher order theories affect the high frequency behavior of the nanorod, respectively. Present results could be beneficial
in the modeling of semiconductor alloy composite nanowires.
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Abstract. Fragments that have an irregular shape and move at high speeds are difficult to assess since experiments require high-tech
solutions, and the differential equations that describe the motion cannot be solved analytically. Different numerical and function
approximation methods are used to find the trajectory model. This work uses a state-of-the-art, higher order Haar wavelet method to
approximate the trajectory model with empirically determined drag force. The initial conditions of the flight of the fragments are
determined by the finite element method. The results obtained by utilizing the Haar wavelet method and the higher order Haar wavelet
method are compared. The higher order Haar wavelet method outperforms the Haar wavelet method but allows for keeping the
implementation complexity of the method in the same range. Utilizing the higher order Haar wavelet method leads to a reduction in
the computational cost since the same accuracy with the Haar wavelet method can be achieved with the use of several order lower
mesh.

Keywords: higher order Haar wavelet method, Runge—Kutta method, finite element method, trajectory, fragmentation.

1. INTRODUCTION

The study of the flight of fragments provides an opportunity to assess the risk of fast-moving fragments
thrown into the environment. The risk of fragments depends on the density of fragments per volume unit and
the kinetic energy of the investigated fragment at the location under consideration [1]. The initial parameters
of fragmentation are determined by the fragmenting object and the nature of the formation. The fragmenting
objects can be fuel tanks, explosive devices, vehicle body parts, etc., and the nature of the formation is mostly
explosion, collision, or fracture. Simulations, experiments, and statistical models are used to study the
fragments produced by the explosion. Conducting experiments and collecting the information necessary for
the flight of fragments, such as fragment mass, dimensions, velocities, accelerations, and direction vectors,
are resource- and labor-intensive [2—4]. Statistical models can be used in limited situations based on specific
experiments and may not be appropriate for a specific case [5]. Djelosevic and Tepic introduced the
probabilistic mass method [6], Ahmed et al. utilized the arbitrary Lagrangian—Eulerian approach [3], and
Ugrci¢ adapted the stochastic failure theory [7] fragmentation analysis of metallic objects. The simulation
results can be utilized as initial data for the point mass trajectory model, described by a nonlinear system of
ordinary differential equations (ODE). Kljuno and Catovic [8], Szmelter and Lee [9] used the Runge—Kutta
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numerical method, and Djelosevic and Tepic [6] used the Taylor series numerical method to solve the ODE
system.

For the purpose of solving the trajectory system of equations, herein two recent numerical methods, the
Haar wavelet method (HWM) and the higher order Haar wavelet method (HOHWM), are implemented. The
HWM, introduced in 1997 by Chen and Hsiao, has been applied with success for solving a wide class of
differential and integro-differential equations [10—14]. Pioneering work in the development and application
of the HWM was done by Lepik, who considered integer and fractional differential equations as well as
integro-differential equations, covering a wide class of problems from mathematics, physics, and evolution
equations [10,15-20]. The HWM is known as a method with simple implementation since it is based on the
simplest wavelet [10]. Recently, the HWM was applied with success for solving Bratu-type equations [21] —
singularly perturbed differential equations with integral boundary conditions [22]. In [23-26], the HWM is
combined with Al methods and tools. However, the rate of convergence of the HWM is two, i.e., rather
humble. In 2018, the HOHWM was introduced as the principal improvement of the HWM [27]. The rate of
convergence of the HOHWM depends on the method parameter and, in simpler cases, is equal to four. The
HOHWM has been utilized with success by a number of authors in [28-39] for solving a wide class of ODE
[28-33], partial differential equations [34], and fractional Fredholm integro-differential equations [35], but
needs still further validation with more complex problems. Herein, the HWM and HOHWM are adapted for
solving nonlinear systems of trajectory equations of the fragments.

2. FORMULATION

In this section, the formulation of the flight dynamics of fragments is developed. Beforehand, initial coordinate
values, velocity values with regard to coordinates, air density, fragment mass, drag coefficient, and exposed
area are all necessary. Next, the trajectory model is simplified, which is then solved by employing the higher
order Haar wavelet method.

2.1. Flight dynamics of the fragments

The natural fragmentation simulation of an explosive projectile shell is based on the finite element method
and stochastic failure theory and is simulated in the ANSYS AUTODYN software.

The arbitrary Lagrangian—Eulerian approach with the Johnson—Cook strength and fracture method is used
to simulate fragmentation and the propagation of fragments into the surrounding air. Numerical analyses
determine the fragment’s initial position, velocity, mass, and volume. The coordinate system of the simulation
is based on the CAD model and is transformed into the coordinate system of the situation. On the rear surface
of the unfragmented projectile, the z-axis intersects with the axis of symmetry of the projectile and is at an
angle of 60 degrees from the ground. The xy-plane represents the ground surface. Figure 1 visualizes the
geometry used in the simulation, the coordinate system, and the scattering of fragments caused by the
explosion.

2.2. Trajectory model of the fragments

The path of a fragment moving while being affected by drag and gravitational force can be predicted using
the point mass trajectory model based on the Lord Rayleigh’s drag equation [5,9,40]:

ApCp \/7
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— 2 42 472! 1
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Fig. 1. Unfragmented projectile (a) and fragmentation and propagation of fragments (b).

where x’ y’ and z' are velocities in each direction,p = 1.20 % is the air density, and g = 9.81 m/s? is the
gravitational acceleration. Also, C,, is the drag coefficient, which as a rule is affected by the Mach number.
Still, €, = 0.6 is the result of the most common simplification applied in this study, which assumes a constant
drag coefficient [5]. A few mathematical operations are carried out in order to build a solution for the system
of differential equations; in Eq. (1) the value of y can be found in terms of x:

"y Y0 ¥
7=7 — y=cx+d,c=g,d=yo—z-x0. 2)

Quasilinearization is a numerical method that solves a series of linearized problems iteratively in order to
estimate the solution of the nonlinear differential system of equations. Essentially, quasilinearization involves
linearizing the nonlinear problem around the current estimate of the solution at each iteration, solving the
resulting linearized problem and using the solution to update the estimate of the solution to the original
nonlinear problem. Until convergence is reached, this process is continued iteratively. Then, by substituting
% = k, the system of three equations can be reduced to two equations:

x" = kAT OTT 22 = fyx', 2, o
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In order to linearize the nonlinear systems, the Taylor series expansion has been utilized in Eq. (4):
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2.3. Higher order Haar wavelet method

The discontinuous Haar wavelet, a specific family of discrete orthonormal wavelets with a step function-like
appearance, is one of the most basic wavelets. A basis, whose components are orthonormal to each other and
normalized to the unit length, is made up of the additional wavelets that are derived from the same basic
wavelet. This property allows wavelet coefficients to be computed independently of each other. The functions
for Haar are given as:

1 for x € [a(i),/?(i))
hi(x) =4-1 for x € [B(D), 7)) 6)
0 elsewhere,
where
a(i) = A+ 2kubx,
B = A+ 2k + Dulx,
v = A+ 2(k + DpAx, ™
. M B-A
i=m+k+1, u=—, Ax =—,
m 2M
where integer k = 0,1, ..., m — 1 specifies the location of the particular square wave, and m = 2/ is the

maximum number of square waves arranged in the interval [4,B]. Hence, the integrals of the Haar functions
of order n can be presented as in [14]:

0 x € [4, a(i))
(o — a(i))"
e x € [, B(D)
P () = (x — a()" — 2 — B) for x € [,y () ®)
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n!
k 0 elsewhere.

As mentioned before, the higher order Haar wavelet techniques make it easier to analyze complicated
data patterns more precisely, capturing minute details and subtle fluctuations. This improved resolution is
especially helpful in situations where a greater degree of information is essential for correctly interpreting
and comprehending the underlying dynamics. The higher order wavelet expansion is introduced in [27]:

dn+zsf( ) 0
dxnﬂsx = Zizlaihi(x), s=12,.. 9)

In Eq. (9), a; is a component of the unknown coefficient vector. Finally, the method’s numerical order of
convergence can then be calculated based on [14]:
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Convergence rate = log (M) /log(2), (10)

Fi—Fe

where F, is the existing solution in the literature.

3. NUMERICAL RESULTS

A projectile with a mass of 12 kg and a diameter of 105 mm was used in the simulation as a case study. The
0.17 ms simulation produced about 3950 fragments. Of these fragments, one was selected based on its initial
location and velocity. The fragment’s location and velocity with respect to the x-axis were then determined
using the formulation given in the previous section, and were compared to the results from the HWM
(Table 1). The convergence rate in both cases was calculated by Eq. (10), in which F, was obtained by
utilizing the well-known Runge—Kutta method as a reference at t =2.5 s.

In Table 1, N is the number of collocation points, N =2 - m. As can be observed, in the case of the
HOHWM, the absolute error decreases and converges much faster compared to the HWM, allowing for fewer
collection points to achieve an accurate result. In Table 2, the results of the location and velocities in each
direction are gathered for the same fragment mentioned before at various time steps.

It should be mentioned that since the initial values of coordinates and velocities are in a wide range, an
accurate method, such as the utilized HOHWM, and a precise programming process are needed to achieve
an accurate result.

Table 1. Comparison of HWM and HOHWM for selected fragment at t =2.5s

s N x Error Convergence x' Error Convergence
rate rate
4 —17.29994925 1.28E-01 —2.78958350 9.85E-02
8 —17.39615158 3.18E-02 2.0103933 —2.86413772 2.40E-02 2.0383492
flor 16 —17.42001639 7.93E-03 2.0030078 —2.88213661 5.99E-03 2.0015815
é’ 32 —17.42596710 1.98E-03 2.0007748 —2.88663071 1.50E-03 2.0009089
E 64 —17.42745378 4.95E-04 2.0001951 —2.88775339 3.74E-04 2.0003872
128 —17.42782539 1.24E-04 2.0000489 —2.88803396 9.35E-05 2.0000500
256 —17.42791828 3.10E-05 2.0000122 —2.88810410 2.34E-05 2.0000246
4 —-17.42072359 7.23E-03 —2.88349768 4.63E-03
= 8 —-17.42751557 4.34E-04 4.0576692 —2.88784956 2.78E-04 4.0581877
{'/" 16 —17.42792242 2.68E-05 4.0146075 —2.88811028 1.72E-05 4.0142098
E 32 —17.42794758 1.67E-06 4.0036622 —2.88812641 1.07E-06 4.0046429
% 64 —17.42794915 1.04E-07 4.0009162 —2.88812741 6.69E-08 4.0008970
= | 128 —17.42794924 6.53E-09 4.0002289 —2.88812748 4.18E-09 4.0002293
256 —17.42794925 4.08E-10 4.0000549 —2.88812748 2.61E-10 4.0000268

Runge—Kutta method: —17.42794925 Runge—Kutta method: —2.88812748
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Table 2. Position and velocities of selected fragment at various time steps

t x ‘ y ‘ z ‘ x' ‘ y' z'
initial 0.1143 -0.1703  0.8062 242968  -1121.0214  69.5044
05s -7.3394 3448664 21.2146 -9.8396 —455.8405  24.7261
Is —11.2112  -524.3401 29.8954  —6.14743  -285.0912  11.4625
1.5s | —13.8546  —646.9589 33.7039 —4.4587 —206.8792 4.0389
2s —-15.8341  -738.8114 343712  -3.5065 -162.7054  -1.2054
25s | -17.4279  -812.8022 32.6808 —2.8881 -134.0709  -5.4658

4. CONCLUSION

Using finite element analysis, the mass and shape of the fragments, their initial positions, and velocities have
been determined. The numerical solution of the fragment trajectory model was performed using the higher
order Haar wavelet method with a simplified approach for modeling drag coefficient behavior. The HWM
solution has been developed as a reference solution. The rates of convergence obtained by applying HWM
and HOHWM were equal to two and four, respectively. The HOHWM provides possibilities for further
increase of accuracy (by changing method parameters), but in the latter case, a remarkable increase of the
implementation complexity can be observed. Higher accuracy with the same mesh used or equal accuracy
with a lower mesh achieved by HOHWM leads to saving computing time, i.e., energy resources, etc.
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Fragmendi lennudiinaamika analiiiis korgemat jirku Haari lainikute meetodi abil
Lenart Kivistik, Marmar Mehrparvar, Martin Eerme ja Jiiri Majak

Ebakorrapérase kujuga ja suurel kiirusel liikuvate fragmentide lennudiinaamika on komplitseeritud, mistdttu
seda on raske hinnata, kuna katsed eeldavad korgtehnoloogilisi lahendusi ning liikumist kirjeldavad dife-
rentsiaalvorrandid pole analiiiitiliselt lahendatavad. Trajektoori mudeli koostamiseks leiab kirjandusest eri-
nevaid numbrilisi algoritme. Artiklis on kasutatud empiiriliselt méddratud dhutakistusega trajektoori mudeli
lahendamiseks korgemat jarku Haari lainikute meetodit. Fragmentide lennu algtingimused on méératud 16p-
like elementide meetodi abil. Vorreldud on Haari lainikute ja korgemat jarku Haari lainikute meetodite tule-
musi. Selgub, et sama keerukuse korral tagab korgemat jarku Haari lainikute meetod suurema tépsuse kui
Haari lainikute meetod. Korgemat jarku Haari lainikute meetodi kasutamine vdimaldab vdhendada arvutus-
mabhtu, kuna vordlusmeetodiga sama tépsus saavutati mitu jarku madalamat arvutusvorku kasutades.
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Abstract. The current study aims to develop a numerical formulation based on the Haar wavelet method (HWM) to analyze
the flight dynamics of fragments. The fragments’ differential equations are simplified and then the solution based on the
Haar wavelet method is developed where the value of the initial position and velocities of fragments are obtained based on
the finite element method. The results of coordinates and velocities of a chosen fragment at various time stamps are
presented and the formulation performance is studied.

INTRODUCTION

Developing robust mathematical methods is a necessity to deal with an ever more complex problem in the
constantly changing landscape of science research. The Haar wavelet method (HWM), which was first introduced by
Chen and Hsiao [1], due to its advantages is an important asset in this endeavor. In order to solve complex problems
across disciplines, it is a perfect choice because of its flexibility and computational efficiency. Over the years many
works implemented this method to solve various problems [2-10]. Many investigations have been done on the method,
for instance, in [11] is studied the accuracy and order of convergence of the Haar wavelet method. However, in 2018
Majak et al. [12] introduced the higher-order Haar wavelet method as a more accurate version of HWM, which could
be the subject of further investigation of the current problem. The HOHWM has been employed with success in a
number of studies by different authors [13-18]. The potential future study in the workgroup is implementing HOHWM
for numerical solutions of design optimization problems [19-28].

The dynamics of fragment flight, which gives insight into the impact characteristics, structural properties, and
safety measures, are essential for aviation, materials science, forensics, or meteoritics. It is essential to understand
these dynamics in order to conduct scientific research and practical applications, making it a vital cross-disciplinary
area of study [29,30].

In this paper, the main focus is on the Haar wavelet method. First, the initial coordinates and velocities are obtained
based on the finite element method. At that point, the trajectory model has been discussed and simplified in order to
maintain a system of differential equations which is then expanded by the HWM so that the system could be solved
numerically. The results for the location and velocity of a chosen fragment in different time stamps are presented and
the accuracy of the developed formulation is examined.



FORMULATION

In this section, at first, the flight dynamics of fragments are studied. The differential equations are simplified and then
by implementing the Haar wavelet method these equations are obtained.

However, before starting to develop the numerical formulation, The values of the initial coordinates and the velocities
concerning the fragments' coordinates (as well as the air density, exposed area, drag coefficient, and mass of the
fragment) are needed. The ANSYS AUTODYN solver simulates the natural fragmentation of projectiles and bases its
prediction on the finite element approach and stochastic failure theory.

When estimating the fragments' flight, a fixed coordinate system is employed, with the z-axis and the unfragmented
projectile's axis of symmetry intersecting on the projectile's rear surface at a height of one meter. Fragmentation of
the projectile occurs at a 60-degree angle with respect to the ground. The xy plane represents the earth’s surface. The
beginning of the fragments' flight occurs at t = 0.14 ms following the explosion.

Trajectory model of the fragments

The point mass trajectory model can be used to predict the trajectory of a fragment moving under the impact of
drag and gravitational force [29]:

x":—% [VZHVZ+VZ - x; y”=—% VZFVEHVZ-Y; Z”:_% VZHVEHVZ -2 —g. (1)
¥y y =z
k 14

where p = 1.20 kg/m? is the air density, g = 9.81 m/s? is the gravitational acceleration, and Cj, is the drag
coefficient. The value of the Mach number generally affects the drag coefficient. However, in this investigation, the
most often used simplification is used and the drag coefficient is assumed to be constant, hence €, = 0.6 [29].

In order to develop a solution for the system of differential equations, Eq. 1, some mathematical procedures are
done, and the value of y can be determined in terms of the x:

r_y = Le=0 gy D,
5 — y=cx+d;c on,d Yo Veo Xo 2)

The integration constants ¢ and d can be determined using the initial values of the coordinates and velocities.
Consequently, the system of 3 equations can be reduced to 2 equations.

x'"=—kJ@A+c)x?+2?%x" = f,(x",2"); z'=-kJA+c)x?+2?%2 —g=f(x',2") 3)
Haar Wavelet method

One of the most fundamental wavelets is the discontinuous Haar wavelet, which is a particular family of discrete
orthonormal wavelets that resembles a step function. The additional wavelets created from the same primary wavelet
constitute a basis, the elements of which are orthonormal to one another and normalized to the unit length. Because
of this characteristic, wavelet coefficients can be computed separately from one another. The Haar functions are
provided as

1 for x € [fl(i)lfz(i)) & () = A+ 2kulx
hi(x) =1-1 for x € [£(D), &), where &(D) = A+ (2k + Dudx 4)
0 elsewhere &3(0) = A+ 2(k + Dudx

. M B-A P . . .
wherei=m+k+1,u= - Ax = o m= 27 is a maximum number of square waves arranged in the interval

[4, B], and the parameter k indicates the location of the particular square wave. The integrals of the Haar functions of
order n can be stated as [11]
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NUMERICAL RESULTS

As a case study, in the simulation, a projectile with a mass of 12 kg and diameter of 105 mm was employed.
Approximately 3950 fragments were generated during the 0.14 ms simulation, out of these fragments, the initial
location and velocity of one of them are chosen, and based on the formulation provided in the previous section,
location, and velocity in all directions are calculated in various time stamps, table 1.

TABLE 1. Position and velocities based on the Haar wavelet method for the chosen fragment

t X y z V, v, v,
initial 0.1143 -0.1703 0.8062 -24.2968 -1121.0214 69.5044
1.0 -11.2112 -524.3401 29.8954 -6.14743 -285.0912 11.4625
2.0 -15.8341 -738.8114 34.3712 -3.5065 -162.7054 -1.2054
3.0 -18.7624 -874.7501 29.0023 -2.4553 -113.9810 -9.1834
4.0 -20.9146 -974.7061 16.4569 -1.8853 -87.5647 -15.7229

In order to verify the obtained results, the location of the fragment regarding the x-axis is also calculated with the
Runge-Kutta method [29,30], and the results are compared with the results from the Haar wavelet method.

TABLE 2. Validation of Haar wavelet method for chosen fragment at t = 4

N x Error Convergence rate
4 -19.29378311 1.62E+00
8 -20.46399640 4.51E-01 1.8455754
16 -20.79527850 1.20E-01 1.9123443
32 -20.88400206 3.11E-02 1.9451119
64 -20.90722492 7.90E-03 1.9779377
128 -20.91314451 1.98E-03 1.9956008
256 -20.91463048 4.95E-04 2.0001319

Runge — Kutta method: -20.91512575

where N is the number of collocation points, N = 2m, and the method's numerical order of convergence can then
be calculated by
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Convergence rate = log(

where Fy is the result calculated by the Runge-Kutta method.

CONCLUSION

In the current work, the HWM has been adapted for the trajectory model of the fragments. In order to predict the
initial locations and velocities of fragments finite element approach has been utilized. The trajectory model as a
system of differential equations is simplified mathematically and then expanded by the Haar wavelet method,
however, the drag coefficient is chosen to be constant. The result exhibits the ability of this method to solve this
sort of problem and the results of the fragment’s location and velocity are different times after explosion is
provided. The developed method can be used as an accurate numerical solution for the analysis of fragments flight
dynamics.
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Abstract. In order to ensure structural integrity, detecting cracks, as a common structural flaw, is crucial. The current study
presents a method for crack detection and prediction in plates under free vibration using the Convolutional Neural Network
(CNN) and the Haar wavelet transformation. The Haar wavelet method is employed to preprocess vibration data, extracting
key features that improve CNN's ability to identify and localize cracks. The proposed approach establishes high accuracy

in detecting crack locations and intensities, showcasing its potential for real-time structural health monitoring.

INTRODUCTION

Composite materials, due to their superior strength-to-weight ratios and their customizability are extensively used
in aerospace, civil, and mechanical engineering. However, there are many defects that can occur in them, such as
cracks, delamination, etc., that can impose significant challenges to the integrity of the structure. Cracks can
compromise the performance and safety of composite structures, thus making early detection and accurate prediction
is vital.

There are many crack detection methods already in use, for instance, visual inspection, ultrasonic testing, and other
non-destructive evaluation techniques [1-6]. Although, these traditional methods could fall short in terms of accuracy,
and efficiency and also could become time-consuming and expensive. However, with the advancement of
computational techniques, and machine learning a powerful tool emerged that can be trained in order to recognize
patterns, and classify and identify systems. Over the past few years, many studies have been conducted by employing
machine learning techniques, for instance, the Artificial Neural network (ANN) has been used to investigate the
structural health monitoring and presence of cracks and their severity [7-11]. Furthermore, the Convolutional Neural
Network (CNN) is a powerful tool that can be developed in order to automate crack detection, due to its power to
process data, recognize patterns, and even its ability to analyze visual data [12].

This paper explores the integration of the Haar wavelet transform with CNN for detecting and predicting cracks in
plates under free vibration. The Haar wavelet transform aids in feature extraction from vibration signals, and fed data
to enhance the CNN capability to identify crack location and severity accurately.

METHODOLOGY

In this section, a road map is provided to form a methodology for predicting crack location and intensity in a plate.
The process starts with the data collection as one of the most critical steps in machine learning. Afterward, the design
of the CNN algorithm and the training and validation steps are explained.

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).
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Data Collection

Accurate data collection is the first step for effective crack detection in structures using machine learning. In this
study, data was sourced from literature and finite element method (FEM) simulations. To increase the dataset, FEM
simulations were conducted. A detailed model of the plate was created using FEM software, modeling several crack
scenarios with different orientations, lengths, and positions. The FEM-generated data was validated against data from
the literature to confirm accuracy.

Data normalization was performed to ensure consistency, with crack positions scaled between -1 and 1 and
intensities normalized to a range of 0 to 1.

Convolutional Neural Network

Convolutional Neural Networks (CNNs) are gaining popularity for detecting cracks in structures due to their
powerful pattern recognition capabilities. The general form of the architecture is that it consists of layers for
convolution, pooling, and fully connected. Convolutional layers detect cracks’ essential features such as presence,
edges, and texture. Spatial dimensions can be reduced by using pooling layers to improve computational efficiency
and reduce overfitting. The presence of cracks in these entire regions can be effectively classified by connecting all
the detected features to fully connected layers at the end of the network. When Haar wavelet is integrated into CNN,
localized frequency information can be extracted which improves crack detection accuracy through highlighting
discontinuity signs associated with the crack initiation stage. This hybrid approach takes advantage of both spatial and
frequency domain features for robustly spotting cracks.

Training and Validation

The CNN is trained by using a labeled dataset of vibration signals, in which the crack locations and severities are
known. The dataset is divided into training, validation, and test sets. During training, backpropagation is applied to
optimize the network weights, and an appropriate loss function such as mean absolute error and mean squared error
are used. Performance metrics for this model include accuracy, precision recall, and F1- score. Cross-validation helps
to make sure that the model will be robust therefore preventing overfitting.

RESULTS

The integration of the Haar wavelet transform with CNNs significantly improves the accuracy of crack detection
in structure. As a case study in this section, an isotropic plate is modeled in various states, i.e. various crack sizes,
locations, and severities in FEM software, here ABAQUS is used. The data was fed to CNN, with the integration of
wavelet transformation as an enhancement to make the algorithm more robust.

Figure 1 presents the results for 20 predictions of the modeled CNN, the crack's actual location and intensity are
shown as well as the predicted results. As mentioned before, all the results are normalized to eliminate any
inconsistency in the data set and make it a more coherent dataset. Heatmaps showing the predicted crack locations
and severities are overlaid on images of the plates. These visualizations provide a clear representation of the model's
ability to predict.
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FIGURE 1. Crack location and intensity in an isotropic plate.

In order to have a visual of the prediction accuracy, the crack position and its corresponding mean absolute error
are shown in Figure 2. As it can be seen, for this case study the developed CNN model achieved an acceptable

accuracy.
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FIGURE 2. Comparison of actual crack position and predicted crack position, and the corresponding mean absolute error.

The key performance metrics are as follows:

e Accuracy: The CNN model achieves an accuracy of 96%, significantly higher than traditional methods and
standalone CNN models.

e Precision: The model's precision, defined as the ratio of true positive crack detections to the total predicted
positives, is 94%.
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e Recall: The recall, or the ratio of true positive crack detections to the total actual positives, is 97%.
e F1-Score: The Fl-score, which is the harmonic mean of precision and recall, stands at 95.5%.

Traditional methods often fail to detect sub-surface or fine cracks, whereas the proposed method successfully
identifies these defects with high reliability.

CONCLUSION

For the detection of cracks in structures under free vibrations, a formulation based on the combination of the Haar
wavelet transform and Convolutional Neural Networks (CNNs) is developed. This model combines the strengths of
both the CNN’s pattern recognition abilities and the Haar wavelet transform’s ability to capture local signal variations.
According to the findings, this fusion approach is proven to be a reliable and accurate model to detect cracks in a
structure. High precision and recall rates achieved by this model can be used for real-world applications such as
structural health monitoring and maintenance. In different engineering fields, this technique will enable automated,
accurate, and efficient crack detection method thereby improving safety.

Future studies will also investigate its applicability to various structures and materials. Optimal network
architecture design as well as the training process can further improve its performance for employing the model for
various structural flaws, and improve the prediction power.
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