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1 Introduction 
In this thesis, wavelet-based computational tools have been developed and used for the 
purpose of analyzing structural dynamics and diagnostic applications in mechanical 
structures. This section initially discusses the foundational background and motivation 
behind the research, followed by an exploration of the inherent challenges in modeling 
and analyzing structural dynamics. Subsequently, a comprehensive literature review is 
presented to investigate relevant prior studies and identify existing research gaps. 
Finally, the research objectives, scope and novel contributions are outlined. 

1.1 Background and Motivation 
Structural dynamics offers a fundamental basis for comprehending the behavior of 
engineering structures when subjected to both transient and periodic loads. Precise 
dynamic analysis facilitates prediction of vibrational characteristics, fatigue life and 
potential failure mechanisms within components exposed to operational or environmental 
excitations. Modern industries, such as aerospace, automotive, mechanical, marine and 
civil engineering, increasingly depend on dynamic simulations for design optimization 
and safety assurance. Nevertheless, as structures have become lighter, thinner 
and incorporate advanced materials, the complexity of these systems’ behavior has 
significantly increased. 

For instance, composite and functionally graded materials exhibit spatially variable 
stiffness, density and damping characteristics, leading to highly coupled and nonlinear 
dynamic responses. Similarly, micro and nanoscale structures demonstrate nonlocal 
effects that classical continuum theory cannot adequately capture. Analytical solutions 
for such complex systems are either limited or unattainable, thus highlighting the necessity 
for efficient and accurate numerical formulations capable of explaining multiscale 
dynamic behavior. 

Simultaneously with advancements in computational mechanics, structural health 
monitoring has emerged as a crucial domain for ensuring the integrity of infrastructure 
and high performance systems. SHM methodologies increasingly leverage vibration-based 
data, such as frequency response functions (FRFs), modal parameters and acceleration 
signals, to identify, locate and quantify structural damage. Accurate numerical modeling 
supports these endeavors by providing baseline dynamic characteristics for comparison 
with experimental or in-service measurements. However, the dual challenge of precisely 
modeling dynamic behavior and interpreting measured responses within uncertainty 
persists as an unresolved research problem. 

In this respect, wavelet theory has proved to be a particularly flexible mathematical 
tool because of its ability to express localized features in both the time and frequency 
domains and because it provides an efficient description of discontinuities and 
transients. The Haar wavelet, for instance, provides an orthogonal and simple basis to 
discretize differential equations efficiently on the one hand, while being a powerful tool 
of signal analysis on the other. Exploiting this dual nature, wavelets are considered first 
as a basis for numerical approximation, then applied as a data preprocessing operator to 
improve the structural dynamic model and vibration-based damage detection. 

Recently, the introduced HOHWM has outperformed HWM as reference method. 
However, higher order Haar wavelet methods considered here are few studied and need 
further evaluation and adaptation, especially in the case of complex engineering problems. 
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1.2 Challenges in Modeling and Analysis of Structural Dynamics 
Although computational mechanics and sensing technologies have progressed significantly, 
several challenges persist in structural dynamics and SHM. These challenges can be 
broadly categorized into three groups: numerical, physical, and diagnostic [1], [2], [3]. 

From a numerical standpoint, the governing equations for structural dynamics  
are inherently nonlinear, coupled and time-dependent. Accurately solving these 
equations necessitates fine discretization, which, in turn, escalates computational 
expenses [4]. Conventional finite element methods frequently encounter difficulties with 
localized discontinuities, intricate boundary conditions, and multiscale characteristics 
[5]. Consequently, even moderately sized nonlinear dynamic problems may demand 
thousands of elements and iterative time integration, potentially leading to slow 
convergence rates and numerical instabilities [6]. 

From a physical modeling perspective, the emergence of advanced materials such as 
functionally graded composites and nanostructures introduces further complexity. Their 
mechanical behavior is contingent upon localized variations in material composition and 
effects that are dependent on size. Accurately capturing these behaviors necessitates  
the use of higher order or nonlocal formulations, which in turn escalate mathematical 
and computational demands [7]. Traditional analytical methodologies are often 
inadequate for accurately characterizing size-dependent phenomena, while conventional 
numerical approaches frequently incur prohibitive computational costs. Furthermore, 
the precise assessment of localized discontinuities within such intricate material systems 
often necessitates integrated analytical and data-driven strategies, exemplified by  
those employing Haar wavelet assisted learning [8]. From a diagnostic standpoint, 
vibration-based damage detection entails the interpretation of noisy and frequently 
incomplete data. Fluctuations in temperature, humidity or boundary conditions can 
obscure or simulate damage signatures [9]. Furthermore, as structures increase in size 
and intricacy, acquiring full-field measurements becomes unfeasible. Damage indicators 
derived from modal parameters or frequency shifts often lack sensitivity to localized 
degradation. Consequently, researchers have increasingly adopted signal processing and 
machine learning techniques to extract more salient features from dynamic data [10]. 

The convergence of these challenges underscores the necessity for a computational 
framework capable of efficiently resolving multiscale, nonlinear dynamic problems and 
enhancing data-driven damage detection by emphasizing physically interpretable 
features. The Haar wavelet method and its higher order extension offer a promising 
foundation for achieving both of these objectives. 

1.3 Literature Review 
This literature review outlines the evolution of wavelet-based methods in structural 
dynamics and structural health monitoring, highlighting key advancements and existing 
gaps. 

The application of wavelet theory has become widespread in engineering due to its 
efficacy in representing localized phenomena with a minimal set of basis functions [11]. 
In the context of numerical analysis, wavelet-based methodologies were introduced as 
alternatives to traditional discretization techniques, offering a synergistic balance 
between global spectral precision and the localized adaptability characteristic of finite 
element methods. Among these early formulations, the Haar Wavelet Method utilizes 
step function bases, which facilitate piecewise approximation of derivatives and integrals 
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[12]. Its inherent orthogonality simplifies matrix assembly, while its hierarchical structure 
enables multiresolution refinement without the need for remeshing. Research indicates 
that HWM demonstrates particular effectiveness in problems characterized by 
discontinuities or sharp gradients, where polynomial basis methods may struggle to 
achieve efficient convergence [13]. Furthermore, the Haar wavelet’s capacity for 
singularity detection, coupled with its ability to handle noisy data, makes it particularly 
suitable for vibration-based damage detection applications [14]. However, challenges 
remain in optimizing wavelet scale selection for damage identification, particularly in 
plate like structures with sparse response data [15]. 

Subsequently, the Higher-Order Haar Wavelet Method was developed to enhance 
accuracy and broaden the applicability of Haar-based formulations. By repeatedly 
integrating Haar functions, HOHWM creates higher order continuous approximations 
while retaining compact support [16], [17]. This extension substantially improves the 
order of convergence, facilitating precise solutions for both smooth and intricate 
systems. HOHWM has been successfully deployed in the bending and vibration analyses 
of beams and plates, as well as in nonlinear boundary value problems [18], [19]. 
Nevertheless, its application in transient structural dynamics or problems involving 
nonlocal material behavior remains largely unexplored. However, its fundamental 
advantages for handling discontinuities and its capacity for high order accuracy suggest 
significant potential for these complex scenarios, warranting further investigation into 
its adaptivity and computational efficiency.  

Meanwhile, wavelet transforms have found extensive application in signal processing 
and damage detection. Both discrete and stationary wavelet transforms are employed 
to decompose vibration signals into distinct frequency bands, thereby isolating localized 
energy variations indicative of stiffness degradation or crack formation [20], [21], [22], 
[23]. These extracted features have proven effective in detecting and pinpointing damage 
in composite beams, plates, and shells [24], [25], [26]. Despite the fact that wavelet 
transform is a powerful tool for achieving good localization properties in both, time and 
frequency domain (which can be instrumental in analyzing damage related data),  
it introduces additional complexity to CPU calculations, which is why among many 
mother wavelets, Haar has become very appealing for SHM due to its computational ease 
as well as accurate time localization [27]. Nevertheless, most of these applications rely 
on empirical signal decomposition, lacking a direct connection to the physical models 
governing dynamic behavior. 

 More recently, machine learning and deep learning, particularly convolutional neural 
networks, have gained prominence in structural health monitoring [28], [29], [30], [31], 
[32]. These advanced techniques, when coupled with wavelet analysis, have shown 
promising results in processing the complex, multidimensional data generated from 
structural responses, offering enhanced capabilities for autonomous damage detection 
and localization [21], [33]. 

While CNNs are highly effective in pattern recognition, they necessitate well-structured 
input data [34], [35], [36]. The integration of wavelet transforms with CNNs has been 
shown to enhance interpretability and improve sensitivity to localized changes [37], [38]. 
Although wavelet-assisted deep learning is frequently employed in vibration analysis and 
fault detection, most existing research compartmentalizes wavelet-based numerical 
modeling and wavelet-enhanced data-driven analysis into distinct areas. One-dimensional 
convolutional neural networks have been shown to effectively classify cracks in composite 
beams by directly extracting damage-sensitive features from raw vibration data [39].  
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In another study, wavelet packet analysis coupled with an autoencoder neural network 
was developed to localize structural damage under varying temperature conditions by 
filtering environmental effects from wavelet packet energy ratio features [40]. This 
integration allows for robust damage detection models, especially when applied to 
complex structures such as composite beams and plates, where both natural frequencies 
and mode shapes are sensitive to damage [39], [41]. However, selecting the optimal 
mother wavelet function remains a significant challenge, often requiring extensive trial 
and error or heuristic approaches [41].  

Wavelets are commonly utilized for the time-frequency decomposition of vibration 
signals before classification, while their application as numerical basis functions for 
solving structural equations remains confined to independent analytical investigations. 
Consequently, the integration of both perspectives within a cohesive framework, where 
wavelets simultaneously underpin mathematical modeling and serve as a preprocessing 
tool for machine learning, has been relatively scarce [42], [43], [44]. 

In this context, the Haar wavelet method presents a distinct advantage, due to its 
orthogonality, computational simplicity and precise temporal localization, rendering it 
suitable not only for the numerical discretization of governing equations but also for 
highlighting localized damage-induced transients within vibration data [27]. These 
attributes establish a coherent mathematical link between the deterministic modeling 
and data-driven constituents of the current investigation, thus forming the bedrock for 
the integrated wavelet framework developed herein. This thesis, therefore, embarks on 
a novel exploration by unifying these typically disparate applications of wavelets, 
demonstrating their synergistic potential in both structural modeling and data-driven 
damage identification [41], [45]. Specifically, this study leverages the Haar Wavelet 
Method to solve the inverse problem of crack identification in vibrating beams,  
a technique that allows for the prediction of crack depth and location by analyzing 
changes in vibrational characteristics [46]. This unique integration bridges the gap 
between physics-based modeling and data-driven approaches, offering a comprehensive 
and robust framework for structural health monitoring that overcomes limitations 
inherent in standalone methodologies. The approach capitalizes on the localized sensitivity 
of mode shapes to damage, utilizing wavelet transforms to identify singularities indicative 
of crack presence and quantify their severity [47]. This allows for a baseline free damage 
detection strategy, where the absolute structural response is sufficient for damage 
localization, eliminating the need for comparisons with an undamaged state [48]. 
Furthermore, wavelet-based damage detection methods often rely on analyzing changes 
in wavelet coefficients, which exhibit singularities at damage locations, thereby 
facilitating precise spatial localization [49]. 

1.4 Research Objectives and Novelty 
Main goal is to develop and evaluate wavelet-based methodologies for the mathematical 
modeling and numerical analysis of engineering problems. The main objective can be 
achieved by performing the following subtasks: 
 

1. Develop and validate the Haar Wavelet Method for solving the equations of 
motion that govern the vibration and transient dynamics of structural elements. 

2. Extend the HWM to the Higher Order Haar Wavelet Method to enhance 
accuracy and convergence, applying it to functionally graded and 
nanostructured materials that incorporate nonlocal elasticity. 
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3. Apply the HWM and HOHWM to transient nonlinear problems, specifically 
the flight dynamics of fragments subjected to aerodynamic drag, to 
demonstrate their capability in handling time-dependent coupled systems. 

4. Integrate the Haar wavelet transform with Convolutional Neural Network 
architectures for vibration-based damage detection in composite plates, 
evaluating the impact of wavelet preprocessing on classification performance 
and interpretability. 

5. Compare and synthesize findings across all applications to assess the 
effectiveness of Haar-based approaches in modeling, simulation and 
Structural Health Monitoring. 

 

The novelty of this thesis stems from its establishment of a cohesive framework that 
bridges deterministic, wavelet-based numerical modeling with data-driven damage 
identification. On the deterministic side, the Higher Order Haar Wavelet Method is 
applied to Timoshenko beams, functionally graded Rayleigh-Bishop nanorods, and 
nonlinear fragment dynamics, representing some of the few studies employing this 
formulation for multiscale and transient structural problems. This methodology illustrates 
that the underlying mathematical principles employed for discretizing differential 
equations are equally effective in augmenting feature extraction from empirical vibration 
data. Consequently, this research closes the gap between analytical techniques and 
contemporary machine learning, thereby contributing significantly to both numerical 
mechanics and intelligent structural monitoring. 

Beyond the development of wavelet-based numerical and hybrid models, this 
research also extends toward a decision-based analytical framework for evaluating 
material properties and reliability under uncertainty. The integration of fuzzy multi-criteria 
methods, such as the Analytic Hierarchy Process and the VIKOR technique [50], [51], [52], 
provides a systematic means of prioritizing parameters and assessing performance when 
experimental or computational data contain inherent variability. The coupling of 
deterministic accuracy with fuzzy decision making enhances the interpretability of 
results, allowing the proposed framework to serve not only as a computational tool but 
also as a decision support methodology for material characterization and structural 
assessment. This comprehensive approach offers a robust framework for structural 
integrity assessment, especially when dealing with complex systems and incomplete 
information. 

1.5 Research Questions 
The challenges identified in modeling and analyzing structural dynamics, particularly 
those concerning accuracy, computational efficiency and data scarcity, serve as the 
motivation for the research questions explored in this thesis. These questions are 
formulated to bridge the divide between mathematical modeling, numerical 
implementation and data-driven analysis using the Haar wavelet framework: 

 

1. How can the Haar Wavelet Method and its higher order formulation be 
systematically derived and effectively implemented to achieve efficient and 
highly accurate numerical solutions for the governing differential equations 
of structural dynamic systems? 

2. What distinct convergence behavior is demonstrated by the Higher Order 
Haar Wavelet Method in comparison to the standard Haar formulation when 
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applied to diverse problems, including beam vibration, graded nanorods and 
nonlinear transient problems? 

3. How do material gradation, geometric variation and nonlocal elasticity
influence the dynamic response and wave-propagation characteristics of
structures modeled using the Higher Order Haar Wavelet Method?

4. Can Haar wavelet based preprocessing enhance the learning stability and
classification accuracy of convolutional neural network models trained on
limited and noisy vibration datasets for damage detection in composite
structures?

5. How can Haar based numerical modeling and wavelet-enhanced deep
learning be integrated into a unified multiscale computational framework for 
structural analysis and health monitoring?

In addressing these questions, it is hypothesized that the Higher Order Haar Wavelet 
Method will exhibit superior convergence properties and enhanced numerical precision 
relative to the standard Haar formulation, all while maintaining computational efficiency. 
It is further anticipated that the incorporation of geometric variation, material gradation 
and nonlocal elasticity within the Haar-based framework will accurately capture 
scale-dependent effects in structural dynamics. For the data-driven analyses, Haar 
wavelet preprocessing is posited to improve the training stability and classification 
reliability of CNNs, particularly in the context of small and noisy datasets. Collectively, 
these advancements are expected to establish a unified, multiscale methodology that 
integrates physics-based modeling with data-driven feature learning, thereby ensuring 
robust structural analysis and damage detection capabilities. 

1.6 Scope and Structure of the Thesis 
This thesis covers theoretical, numerical and data-driven investigations within the 
domain of structural analysis. The scope includes the formulation of wavelet-based 
methods, their application to diverse structural systems and their integration with 
modern learning algorithms for damage identification. 
The structure is as follows: 

• Chapter 2 outlines the mathematical and numerical framework of the Haar
and Higher Order Haar Wavelet Methods, about their derivation, the
treatment of boundary conditions and a comprehensive convergence analysis.

• Chapter 3 details the selected case studies, which include the free vibration of
beams and plates, the vibration of functionally graded nanorods, the
dynamics of fragments and vibration-based damage detection utilizing a
Haar-CNN hybrid model. Each case study is presented with its physical
motivation, underlying modeling assumptions and computational setup.

• Chapter 4 presents the findings and subsequent discussions for all conducted 
case studies, with particular emphasis on assessing accuracy, convergence,
computational efficiency and diagnostic performance.

• Chapter 5 concludes the thesis by summarizing the principal findings and
outlining promising avenues for future research.

The subsequent chapters will further elaborate on methodologies and results, providing 
a comprehensive understanding of developed techniques and their implications for 
structural engineering. 
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2 Mathematical and Numerical Framework 
This section provides an explanation of the mathematical foundations underpinning the 
Haar Wavelet Method and the Higher Order Haar Wavelet Method, detailing their 
formulation for solving differential equations and approximating functions [11], [17], 
[53], [54]. 

2.1 Haar Wavelet Method (HWM) 
The Haar Wavelet Method offers an effective numerical solution for differential 
equations frequently encountered in structural dynamics. This technique relies on 
expanding the highest order derivative within the governing equation using orthogonal 
Haar basis functions, thereby converting the problem into a system of algebraic 
equations via analytical integration.  The formulation of Haar wavelet family is based on 
notation used in [11]. This approach is particularly advantageous due to its computational 
efficiency and straightforward implementation, making it suitable for a wide range of 
engineering applications [13].  

The discontinuous Haar wavelet is a foundational element among wavelets, notable 
for its step-like discontinuity and its classification within a particular family of discrete 
orthonormal wavelets. This primary wavelet generates a basis of additional wavelets, 
each of which is orthonormal and normalized to unit length. This inherent property 
facilitates the independent computation of wavelet coefficients. The Haar functions are 
formally expressed as: 

 

ℎ𝑖𝑖(𝑥𝑥) = �
1
−1
0

for 𝑥𝑥 ∈ �𝜉𝜉1(𝑖𝑖), 𝜉𝜉2(𝑖𝑖)�
for 𝑥𝑥 ∈ �𝜉𝜉2(𝑖𝑖), 𝜉𝜉3(𝑖𝑖)�

elsewhere

 ,  (1)  

 

where 
 
𝜉𝜉1(𝑖𝑖) = 𝐴𝐴 + 2𝑘𝑘𝑘𝑘Δ𝑥𝑥

𝜉𝜉2(𝑖𝑖) = 𝐴𝐴 + (2𝑘𝑘 + 1)𝜇𝜇Δ𝑥𝑥
𝜉𝜉3(𝑖𝑖) = 𝐴𝐴 + 2(𝑘𝑘 + 1)𝜇𝜇Δ𝑥𝑥

, 𝑖𝑖 = 𝑚𝑚 + 𝑘𝑘 + 1, 𝜇𝜇 =
𝑀𝑀
𝑚𝑚

, Δ𝑥𝑥 =
𝐵𝐵 − 𝐴𝐴

2𝑀𝑀
, (2)  

 

where 𝑘𝑘 = 0, 1, … ,𝑚𝑚− 1 specifying the square wave’s location and 𝑚𝑚 = 2𝑗𝑗  represents 
the maximum number of square waves within the interval [𝐴𝐴,𝐵𝐵]. Assuming that a 
function 𝑓𝑓(𝑥𝑥) is square integrable and finite within the interval, it can be expanded into 
a series of Haar wavelets as follows: 

𝑓𝑓(𝑥𝑥) = �𝑎𝑎𝑖𝑖ℎ𝑖𝑖(𝑥𝑥)
2𝑀𝑀

𝑖𝑖=1

, (3)  

 

where ℎ𝑖𝑖(𝑥𝑥) denotes the Haar function and 𝑎𝑎𝑖𝑖 is the corresponding coefficient. 
Subsequently, the integrals of the Haar functions of order 𝑛𝑛 can be presented as: 
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𝑝𝑝𝑛𝑛,𝑖𝑖(𝑥𝑥) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

0
�𝑥𝑥 − 𝜉𝜉1(𝑖𝑖)�𝑛𝑛

𝑛𝑛!
�𝑥𝑥 − 𝜉𝜉1(𝑖𝑖)�𝑛𝑛 − 2�𝑥𝑥 − 𝜉𝜉2(𝑖𝑖)�𝑛𝑛

𝑛𝑛!
�𝑥𝑥 − 𝜉𝜉1(𝑖𝑖)�𝑛𝑛 − 2�𝑥𝑥 − 𝜉𝜉2(𝑖𝑖)�𝑛𝑛 + �𝑥𝑥 − 𝜉𝜉3(𝑖𝑖)�𝑛𝑛

𝑛𝑛!
0

  

𝑥𝑥 ∈ �𝐴𝐴, 𝜉𝜉1(𝑖𝑖)�

𝑥𝑥 ∈ �𝜉𝜉1(𝑖𝑖), 𝜉𝜉2(𝑖𝑖)�

𝑥𝑥 ∈ �𝜉𝜉2(𝑖𝑖), 𝜉𝜉3(𝑖𝑖)�
𝑥𝑥 ∈ [𝜉𝜉3(𝑖𝑖),𝐵𝐵)

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒

. (4)  

 
The piecewise constant nature of the Haar basis functions ensures that the resulting 

matrices are sparse and well-conditioned. The boundary conditions are directly 
integrated by modifying the relevant rows of the algebraic system, thereby 
circumventing the need for auxiliary methods such as Lagrange multipliers or 
transformation matrices. The Haar Wavelet Method exhibits a second order convergence 
rate, rendering it suitable for solutions characterized by discontinuities or piecewise 
smoothness. 

2.2 Higher Order Haar Wavelet Method (HOHWM) 
To achieve enhanced accuracy and smoothness, the Haar basis functions can undergo 
multiple integrations prior to forming the approximation, which gives rise to the Higher 
Order Haar Wavelet Method. This methodology, initially introduced in studies of vibration 
and wave propagation, offers a continuous, higher order representation while retaining 
the inherent simplicity of the original Haar basis [17].  

This advancement enables higher orders of convergence, specifically achieving a 
fourth order, sixth order rate, which significantly reduces computational errors without 
a substantial increase in algorithmic complexity compared to the standard Haar Wavelet 
Method [55].  

As previously established, higher order Haar wavelet techniques facilitate a more 
precise analysis of complex data patterns by meticulously capturing minute details and 
subtle fluctuations. This enhanced resolution proves particularly beneficial in scenarios 
where a high degree of information is crucial for accurately interpreting and 
comprehending the underlying dynamics. The higher order wavelet expansion is formally 
introduced as: 

𝑓𝑓(𝑥𝑥) =
𝑑𝑑𝑛𝑛+2𝑠𝑠𝑢𝑢(𝑥𝑥)
𝑑𝑑𝑥𝑥𝑛𝑛+2𝑠𝑠

= �𝑎𝑎𝑖𝑖ℎ𝑖𝑖(𝑥𝑥)
∞

𝑖𝑖=1

, 𝑠𝑠 = 1,2, …  . (5)  

 

The approximate solution is then expressed as: 
 

𝑓𝑓(𝑥𝑥) =
𝑑𝑑𝑛𝑛+2𝑠𝑠𝑢𝑢(𝑥𝑥)
𝑑𝑑𝑥𝑥𝑛𝑛+2𝑠𝑠

= 𝑎𝑎𝑇𝑇𝐻𝐻(𝑖𝑖, 𝑥𝑥), (6)  
 
where 𝑎𝑎𝑇𝑇 is the transposed coefficient vector and 𝐻𝐻(𝑖𝑖, 𝑥𝑥) is the Haar matrix. It is 

important to note that in a formulation based on HOHWM, the number of integration 
constants increases. This issue can be mitigated by incorporating additional boundary 
and initial conditions, periodicity conditions, or by applying the equation itself at grid or 
collocation points. 
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2.3 Evaluation Criteria for Accuracy and Convergence 
The accuracy and convergence of wavelet-based methods are critical aspects for 
assessing their reliability and efficiency in numerical simulations, particularly when 
applied to complex engineering problems. The precision and convergence characteristics 
of both the Haar Wavelet Method and the Higher Order Haar Wavelet Method were 
consistently validated across all investigations by comparing their outcomes with 
analytical solutions or finite element simulations. 

For quantitative assessment, the relative error and the numerical convergence rate 
were employed: 

Convergence rate = log �
𝐹𝐹𝑖𝑖−1 − 𝐹𝐹𝑒𝑒
𝐹𝐹𝑖𝑖 − 𝐹𝐹𝑒𝑒

� /log (2), (7) 

where 𝐹𝐹𝑒𝑒 is the existing solution based on results from finite element method, other 
numerical or analytical formulations, or from the literature. 

In the analyses of vibration and trajectory, the standard Haar formulation consistently 
demonstrated a convergence rate approaching second order. This aligns with the 
inherent piecewise constant characteristic of the Haar basis, which yields first order 
derivative continuity upon integration. The error trend of the Haar Wavelet Method can 
be quantitatively described as: 

𝑒𝑒𝑟𝑟 ∝ 𝑁𝑁−2, (8) 

where 𝑒𝑒𝑟𝑟 denotes the relative error, illustrating a quadratic improvement in accuracy as 
the number of collocation points on a uniform grid increases. While the HWM offers 
robust solutions for discontinuous or transient responses, its precision in handling 
smooth higher order derivatives is limited, thus necessitating the development and 
application of the higher order formulation. 

The HOHWM, derived from multiple integrations of the Haar functions, substantially 
enhances convergence without necessitating an increase in the number of collocation 
points. The HOHWM therefore follows: 

𝑒𝑒𝑟𝑟 ∝ 𝑁𝑁−2−2𝑠𝑠, 𝑠𝑠 = 1, 2, …  . (9) 

This effectively indicates higher order convergence for smooth field variables. 
The accuracy is predominantly governed by the integration order 𝑝𝑝 rather than the 
resolution level 𝑗𝑗. Increasing 𝑝𝑝 enhances the polynomial continuity of the basis, thereby 
improving approximation quality even when using coarse grids. This characteristic 
enables highly accurate results with as few as 16–32 collocation points, a notable 
advantage compared to finite element models that often necessitate several hundred 
nodes to achieve comparable precision. 

2.4 Summary of the Framework 
This chapter outlined the mathematical foundations and numerical methodology of the 
Haar Wavelet Method and its higher order extension, as applied throughout this 
research. The standard HWM approximates derivatives using orthogonal, piecewise 
constant Haar functions, achieving a second order accuracy on a uniform grid. 

 Conversely, the Higher Order Haar Wavelet Method integrates the Haar basis 
multiple times, generating smooth, continuous functions with fourth order convergence 
or higher. Both methods produce sparse, well-conditioned algebraic systems and allow 
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for the direct enforcement of boundary conditions. All computations in this thesis 
employed uniformly spaced collocation points, thereby confirming that the higher order 
integration of Haar functions alone is sufficient to achieve high accuracy without 
adaptive refinement. The subsequent chapter applies these formulations to benchmark 
problems in vibration, nonlocal elasticity and nonlinear fragment dynamics. 

While the Higher Order Haar Wavelet Method offers notable accuracy and accelerated 
convergence, it is not without specific numerical constraints. The process of integrating 
discontinuous Haar functions to derive higher order bases can precipitate localized 
numerical oscillations, particularly in regions characterized by steep gradients or 
discontinuities within the solution field. These oscillations are a consequence of the 
inherently piecewise constant nature of the original Haar functions and may subtly 
impair the smoothness of higher derivatives if the chosen resolution level is suboptimal.  

Furthermore, the accumulation of round-off errors during successive integrations, 
especially at very elevated orders, can lead to minor deviations in the computed 
coefficients. Consequently, despite the HOHWM’s capacity to achieve fourth order 
convergence or higher and to compute natural frequencies with high accuracy using a 
comparatively small number of collocation points and precision are dependent upon the 
careful selection of an appropriate combination of resolution level and integration order 
tailored to the specific problem under investigation. 
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3 Case Studies 
This chapter presents four exemplary case studies utilized for validating and demonstrating 
the numerical and hybrid frameworks developed previously. Each case study pertains to 
a unique class of structural dynamics problems, where the Haar and Higher Order Haar 
Wavelet Methods are applied. The first three cases address deterministic formulations 
of governing equations for continuous systems, while the fourth integrates the Haar 
wavelet transform as a preprocessing stage within convolutional neural network-based 
damage detection methodologies.  

Collectively, these studies substantiate the accuracy, efficiency and adaptability of  
the Haar-based framework within both analytical and data-driven contexts. Table 1 
summarizes the physical system, solution methodology and computational objective 
associated with each individual case study. The selection of these diverse case studies, 
ranging from foundational structural elements to advanced material systems and  
data-intensive damage detection, ensures a thorough assessment of the proposed 
methodologies across various complexities and application domains. 

Table 1. Summary of the case studies. 

Case Physical System Main Method Objective 

I Timoshenko beam vibration HOHWM Validation of free vibration 
frequencies and convergence 

II Functionally graded Rayleigh-
Bishop nanorod HOHWM Study of gradation and nonlocal 

effects on vibration 

III Flight dynamics of fragments HWM Evaluation of nonlinear 
trajectory prediction 

IV CFRP composite plate vibration 
data Haar-CNN 

Assessment of wavelet 
preprocessing in damage 
detection 

3.1 Case I: Vibration Analysis of Structures 
This initial case study examines the free vibration characteristics of Timoshenko beams 
employing the Higher Order Haar Wavelet Method. The primary goal is to validate the 
accuracy and convergence properties of the HOHWM against established analytical and 
finite element solutions. The investigation further explores how boundary conditions, 
beam geometry and resolution levels influence the computed natural frequencies. 

Utilizing the Timoshenko beam theory, the fundamental governing differential 
equations describing the transverse vibration of a beam with specified geometric and 
material properties are expressed as follows: 
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∂
∂𝑥𝑥

�𝜅𝜅𝜅𝜅𝜅𝜅(𝑥𝑥) �
∂𝑤𝑤(𝑥𝑥, 𝑡𝑡)
∂𝑥𝑥

− 𝜑𝜑(𝑥𝑥, 𝑡𝑡)�� − 𝜌𝜌𝜌𝜌
∂2𝑤𝑤(𝑥𝑥, 𝑡𝑡)
∂𝑡𝑡2

= 0

∂
∂𝑥𝑥

�𝐸𝐸𝐸𝐸(𝑥𝑥)
∂𝜑𝜑(𝑥𝑥, 𝑡𝑡)
∂𝑥𝑥

� + 𝜅𝜅𝜅𝜅𝜅𝜅(𝑥𝑥) �
∂𝑤𝑤(𝑥𝑥, 𝑡𝑡)
∂𝑥𝑥

− 𝜑𝜑(𝑥𝑥, 𝑡𝑡)� − 𝜌𝜌𝜌𝜌
∂2𝜑𝜑(𝑥𝑥, 𝑡𝑡)
∂𝑡𝑡2

= 0
, 

(10) 

(11) 

where 𝑤𝑤 and 𝜑𝜑 are the transverse displacement and rotation. Also, here, 𝐸𝐸 represents 
Young’s modulus, 𝐼𝐼(𝑥𝑥) denotes the second moment of area, 𝐴𝐴(𝑥𝑥) signifies the cross 
sectional area, 𝐺𝐺 is the shear modulus, 𝑘𝑘 functions as the shear correction factor, here is 
chosen to be 5/6 and 𝜌𝜌 corresponds to the density. In the case of a uniform beam, where 
𝐴𝐴(𝑥𝑥) and 𝐼𝐼(𝑥𝑥) are constant, the beam is speculated as homogeneous, isotropic and 
prismatic. Following a series of transformations, including the homogenization of the 
governing equation, it becomes feasible to derive an expression for the transverse 
vibration of the Timoshenko beam that is exclusively dependent on the displacement 
function, which can be written as: 

𝐸𝐸𝐸𝐸
∂4𝑤𝑤(𝑥𝑥, 𝑡𝑡)
∂𝑥𝑥4

− �
𝐸𝐸𝐸𝐸𝐸𝐸
𝐺𝐺𝐺𝐺

+ 𝐼𝐼𝐼𝐼�
∂4𝑤𝑤(𝑥𝑥, 𝑡𝑡)
∂𝑥𝑥2 ∂𝑡𝑡2

+
𝐼𝐼𝜌𝜌2

𝐺𝐺𝐺𝐺
∂4𝑤𝑤(𝑥𝑥, 𝑡𝑡)

∂𝑡𝑡4
+ 𝜌𝜌𝜌𝜌

∂2𝑤𝑤(𝑥𝑥, 𝑡𝑡)
∂𝑡𝑡2

= 0. (12) 

Moreover, in the case of tapered beam, shown in Figure. 1, the cross sectional area 
𝐴𝐴(𝑥𝑥) and moment of inertia 𝐼𝐼(𝑥𝑥) are presented as:   

𝐴𝐴(𝑥𝑥) = 𝐴𝐴0 �1 −
𝑐𝑐𝑐𝑐
𝐿𝐿 �

, 𝐼𝐼(𝑥𝑥) = 𝐼𝐼0 �1 −
𝑐𝑐𝑐𝑐
𝐿𝐿 �

3
,      𝑥𝑥 ∈ [0, 𝐿𝐿], (13) 

where L is the length of the beam, 𝐴𝐴0 and 𝐼𝐼0 are area and moment inertia at the base of 
the beam, respectively. 

Figure 1. Representation of a tapered beam. 

The bending moment, 𝑀𝑀 and shear force, 𝑄𝑄, at any given cross section are determined 
by the following expressions: 

𝑀𝑀 = 𝐸𝐸𝐸𝐸(𝑥𝑥)
∂𝜑𝜑
∂𝑥𝑥

,       𝑄𝑄 = 𝑘𝑘𝑘𝑘𝑘𝑘(𝑥𝑥) �
∂𝑤𝑤
∂𝑥𝑥

+ 𝜑𝜑�. (14) 

Both simply supported and clamped-clamped boundary conditions are taken into 
consideration and can be expressed as: 

For the clamped edge:  𝑤𝑤 = 0,       𝜑𝜑 = 0 
For the pinned edge:  𝑤𝑤 = 0,       𝑀𝑀 = 0. (15) 

The solution serves as benchmark problems for evaluating convergence behavior in 
Chapter 4. 
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3.2 Case II: Dynamic Behavior of Functionally Graded Nanorods 
This particular case study extends the application of the Higher Order Haar Wavelet 
Method to the modeling of longitudinal vibrations within functionally graded nanorods. 
The primary objective is to assess how material gradation and nonlocal elasticity 
collectively influence dynamic behavior, with a specific focus on the interplay between 
microstructural scale and variations in stiffness. 

Figure 2. Schematic of Axially Graded Nanorod. 

According to the Rayleigh-Bishop rod model, the longitudinal and lateral displacements 
of the rod can be expressed as follows: 

𝑢𝑢 = 𝑢𝑢(𝑥𝑥, 𝑡𝑡)

𝑤𝑤 = 𝑤𝑤(𝑥𝑥, 𝑡𝑡) = 𝑟𝑟 �
𝐸𝐸(𝑥𝑥)

2𝐺𝐺(𝑥𝑥)
− 1�

���������
𝜂𝜂

𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝜕𝜕

, (16) 

where 𝜂𝜂 is the Poisson’s ratio for nanorod and 𝑟𝑟 denotes the distance of the lateral 
displacement of a particle from the x-axis. 

To represent the continuous material variation along the nanorod axis, the elastic and 
inertial parameters together with the nonlocal parameter are defined using a unified 
power-law function as follows: 

⎣
⎢
⎢
⎡
𝐸𝐸(𝑥𝑥)
𝐺𝐺(𝑥𝑥)
𝜌𝜌(𝑥𝑥)
𝑒𝑒(𝑥𝑥)⎦

⎥
⎥
⎤

= �

𝐸𝐸1 − 𝐸𝐸0
𝐺𝐺1 − 𝐺𝐺0
𝜌𝜌1 − 𝜌𝜌0
𝑒𝑒1 − 𝑒𝑒0

� 𝑥𝑥𝑘𝑘 + �

𝐸𝐸0
𝐺𝐺0
𝜌𝜌0
𝑒𝑒0

�    𝑎𝑎𝑎𝑎𝑎𝑎   �
𝐸𝐸1
𝜌𝜌1
𝑒𝑒1
� = 𝑠𝑠 �

𝐸𝐸0
𝜌𝜌0
𝑒𝑒0
� (17) 

where 𝐸𝐸0,𝐺𝐺0,𝜌𝜌0, 𝑒𝑒0 and 𝐸𝐸1,𝐺𝐺1,𝜌𝜌1, 𝑒𝑒1 are the properties at the left and right ends of the 
nanorod, respectively. Also, 𝑘𝑘 denotes the material-gradation or power-law index, 
𝑒𝑒 refers to the nonlocal length-scale parameter in Eringen’s nonlocal elasticity theory and 
𝑠𝑠 describes the material properties at the right side of nanorod. 

The total kinetic and potential energies can be defined in accordance with nonlocal 
elasticity theory, [56], [57], [58], as presented: 
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where 𝑎𝑎 is the distance between two atoms in the nanorod structure, 𝐼𝐼𝑃𝑃 is the polar 
moment of inertia of nanorod and is equal to 𝜋𝜋

2
�𝑅𝑅24 − 𝑅𝑅14�, 𝑅𝑅1 and 𝑅𝑅2 are the inner and

outer radius of carbon nanotube, respectively. Thus, the Governing equation of motion 
for the nonlocal Rayleigh-Bishop rod model, [57], can be expressed as:  
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By assuming the harmonic wave function, (𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑈𝑈(𝑥𝑥) 𝑠𝑠𝑠𝑠𝑠𝑠𝜔𝜔𝜔𝜔), and dimensionless 
distance in the nanorod’s lattice structure, it can be rewritten as: 
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𝜕𝜕2𝑈𝑈(𝑋𝑋)
𝜕𝜕𝑋𝑋2

�

= −𝜔𝜔2𝐴𝐴�𝜌𝜌(𝑋𝑋)𝑈𝑈(𝑋𝑋)�

+ 𝜔𝜔2𝐴𝐴�
𝜕𝜕𝜕𝜕(𝑋𝑋)
𝜕𝜕𝜕𝜕

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝜌𝜌(𝑋𝑋)𝑈𝑈(𝑋𝑋)� + 𝑒𝑒(𝑋𝑋)
𝜕𝜕2

𝜕𝜕𝑋𝑋2
�𝜌𝜌(𝑋𝑋)𝑈𝑈(𝑋𝑋)��

+ 𝜔𝜔2𝜂𝜂2𝐼𝐼𝑃𝑃 �
𝜕𝜕𝜕𝜕(𝑋𝑋)
𝜕𝜕𝜕𝜕

�
𝜕𝜕𝑈𝑈(𝑋𝑋)
𝜕𝜕𝜕𝜕

� + 𝜌𝜌(𝑋𝑋)
𝜕𝜕2𝑈𝑈(𝑋𝑋)
𝜕𝜕𝑋𝑋2

�

− 𝜔𝜔2𝜂𝜂2𝐼𝐼𝑃𝑃 �
𝜕𝜕2𝑒𝑒(𝑋𝑋)
𝜕𝜕𝑋𝑋2

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝜌𝜌(𝑋𝑋)
𝜕𝜕𝑈𝑈(𝑋𝑋)
𝜕𝜕𝜕𝜕

�

+ 2
𝜕𝜕𝜕𝜕(𝑋𝑋)
𝜕𝜕𝜕𝜕

𝜕𝜕2

𝜕𝜕𝑥𝑥2
�𝜌𝜌(𝑋𝑋)

𝜕𝜕𝑈𝑈(𝑋𝑋)
𝜕𝜕𝜕𝜕

� + 𝑒𝑒(𝑋𝑋)
𝜕𝜕3

𝜕𝜕𝑋𝑋3
�𝜌𝜌(𝑋𝑋)

𝜕𝜕𝑈𝑈(𝑋𝑋)
𝜕𝜕𝜕𝜕

��. 
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By implementing forth order Higher Order Haar wavelet method, the displacement 
function of the nonorod will be obtained as: 

𝑈𝑈(𝑋𝑋) = 𝑎𝑎𝑇𝑇𝑃𝑃4(𝑖𝑖, 𝑥𝑥) + 𝐶𝐶1
𝑋𝑋3

6
+ 𝐶𝐶2

𝑋𝑋2

2
+ 𝐶𝐶3𝑋𝑋 + 𝐶𝐶4, (22) 

where 𝑃𝑃4(𝑖𝑖, 𝑥𝑥) represents the integration matrices, and 𝐶𝐶𝑖𝑖 denotes the integration 
constants, which are determined by applying the boundary conditions. The boundary 
conditions considered for this analysis are clamped-free and clamped-clamped. 
The resulting equations are subsequently resolved utilizing the HOHWM, as detailed 
in Chapter 4, to thoroughly investigate the frequency response and convergence 
properties. 

3.3 Case III: Flight Dynamics of Fragments 
Case III involves the application of the Haar Wavelet Method to simulate the nonlinear 
dynamics of high velocity fragments under the influence of aerodynamic drag and 
gravitational forces. The objective is to evaluate the method’s stability and computational 
efficiency in addressing coupled, nonlinear, time-dependent systems. 

Prior to developing the numerical formulation, it is essential to determine the initial 
coordinates and velocities related to the fragments’ positions. The ANSYS AUTODYN 
solver, which is founded on the finite element approach and stochastic failure theory, 
simulates the natural fragmentation of projectiles. For estimating fragment flight, a fixed 
coordinate system is adopted, where the x-axis and the unfragmented projectile’s 
axis of symmetry intersect on the projectile’s rear surface at a height of one meter. 
Fragmentation of the projectile occurs at a 60 degree angle relative to the ground. 
The x-y plane denotes the Earth’s surface and the fragments commence their flight at 
𝑡𝑡 = 0 following the explosion [59]. 

The trajectory of a fragment subjected to both aerodynamic drag and gravitational 
forces can be accurately predicted through the application of the point mass trajectory 
model and presented as: 

𝑥𝑥′′ = −
𝐴𝐴𝐴𝐴𝐶𝐶𝐷𝐷

2𝑚𝑚
�𝑥𝑥′2 + 𝑦𝑦′2 + 𝑧𝑧′2 ⋅ 𝑥𝑥′

𝑦𝑦′′ = −
𝐴𝐴𝐴𝐴𝐶𝐶𝐷𝐷

2𝑚𝑚
�𝑥𝑥′2 + 𝑦𝑦′2 + 𝑧𝑧′2 ⋅ 𝑦𝑦′

𝑧𝑧′′ = −
𝐴𝐴𝐴𝐴𝐶𝐶𝐷𝐷

2𝑚𝑚
�𝑥𝑥′2 + 𝑦𝑦′2 + 𝑧𝑧′2 ⋅ 𝑧𝑧′ − 𝑔𝑔

(23) 

where 𝑥𝑥′,𝑦𝑦′ and 𝑧𝑧′ represent the velocities in their respective directions and 
𝜌𝜌 = 1.20 𝑘𝑘𝑘𝑘/𝑚𝑚3 denotes the air density and 𝑔𝑔 = 9.81 𝑚𝑚/𝑠𝑠2 is the gravitational 
acceleration, 𝐴𝐴 is the fragment reference area, and 𝑚𝑚 is the fragment mass. Additionally,  
𝐶𝐶𝐷𝐷 signifies the drag coefficient, which is typically influenced by the Mach number. 
However, for simplicity, a constant drag coefficient is assumed in this study [60]. To develop 
a solution for the system of differential equations, various mathematical operations are 
performed: 

𝑥𝑥′′

𝑥𝑥′
=
𝑦𝑦′′

𝑦𝑦′
⟶    𝑦𝑦 = 𝑐𝑐𝑐𝑐 + 𝑑𝑑 ;  𝑐𝑐 =

𝑦𝑦0′

𝑥𝑥0′
 ,𝑑𝑑 = 𝑦𝑦0 −

𝑦𝑦0′

𝑥𝑥0′
⋅ 𝑥𝑥0  . (24)
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Quasilinearization is a numerical technique that iteratively solves a series of linearized 
problems to approximate the solution of a nonlinear differential system. This process 
involves linearizing the nonlinear problem around the current estimated solution at each 
iteration, solving the resulting linearized problem and then updating the estimate of the 
solution to the original nonlinear problem. This iterative procedure continues until 
convergence is achieved. Subsequently, the system of three equations can be reduced to 
two. As expressed as: 

substitute 𝐴𝐴𝐴𝐴𝐶𝐶𝐷𝐷
2𝑚𝑚

= 𝑘𝑘 →
𝑥𝑥′′ = −𝑘𝑘�(1 + 𝑐𝑐2)𝑥𝑥′2 + 𝑧𝑧′2 𝑥𝑥′ = 𝑓𝑓1(𝑥𝑥′, 𝑧𝑧′)

𝑧𝑧′′ = −𝑘𝑘�(1 + 𝑐𝑐2)𝑥𝑥′2 + 𝑧𝑧′2 𝑧𝑧′ − 𝑔𝑔 = 𝑓𝑓2(𝑥𝑥′, 𝑧𝑧′)
 (25) 

To linearize the nonlinear systems, a Taylor Series expansion has been utilized. Which 
can be written as: 

𝑥𝑥𝑛𝑛+1′′ = 𝑓𝑓1(𝑥𝑥𝑛𝑛′ , 𝑧𝑧𝑛𝑛′ ) + (𝑥𝑥𝑛𝑛+1′ − 𝑥𝑥n′ )
∂𝑓𝑓1
∂𝑥𝑥n′

+ (𝑧𝑧n+1′ − 𝑧𝑧n′ )
∂𝑓𝑓1
∂𝑧𝑧n′

𝑧𝑧𝑛𝑛+1′′ = 𝑓𝑓2(𝑥𝑥𝑛𝑛′ , 𝑧𝑧𝑛𝑛′ ) + (𝑧𝑧𝑛𝑛+1′ − 𝑧𝑧n′ )
∂𝑓𝑓2
∂𝑧𝑧n′

+ (𝑥𝑥n+1′ − 𝑥𝑥n′ )
∂𝑓𝑓2
∂𝑥𝑥n′

 (26) 

where 
∂𝑓𝑓1
∂𝑥𝑥′

= −𝑘𝑘 �
(1 + 𝑐𝑐2)𝑥𝑥′ ⋅ 𝑥𝑥′

�(1 + 𝑐𝑐2)𝑥𝑥′2 + 𝑧𝑧′2
+ �(1 + 𝑐𝑐2)𝑥𝑥′2 + 𝑧𝑧′2�

∂𝑓𝑓1
∂𝑧𝑧′

= −𝑘𝑘 �
𝑥𝑥′ ⋅ 𝑧𝑧′

�(1 + 𝑐𝑐2)𝑥𝑥′2 + 𝑧𝑧′2
�

∂𝑓𝑓2
∂𝑥𝑥′

= −𝑘𝑘 �
(1 + 𝑐𝑐2)𝑥𝑥′ ⋅ 𝑧𝑧′

�(1 + 𝑐𝑐2)𝑥𝑥′2 + 𝑧𝑧′2
�

∂𝑓𝑓2
∂𝑧𝑧′

= −𝑘𝑘 �
𝑧𝑧′ ⋅ 𝑧𝑧′

�(1 + 𝑐𝑐2)𝑥𝑥′2 + 𝑧𝑧′2
+ �(1 + 𝑐𝑐2)𝑥𝑥′2 + 𝑧𝑧′2�

(27) 

In order to solve the system of equations, the HWM is employed: 

𝑥𝑥𝑛𝑛+1
′′ = 𝑎𝑎⊤𝐻𝐻 𝑧𝑧𝑛𝑛+1

′′ = 𝑏𝑏⊤𝐻𝐻
𝑥𝑥𝑛𝑛+1
′ = 𝑎𝑎⊤𝑃𝑃1 + 𝑥𝑥0 𝑧𝑧𝑛𝑛+1

′ = 𝑏𝑏⊤𝑃𝑃1 + 𝑧𝑧0
(28) 

where leads to: 

𝑎𝑎⊤ �𝐻𝐻 − 𝑃𝑃1
∂𝑓𝑓1
∂𝑥𝑥n′

� = 𝑏𝑏⊤𝑃𝑃1
∂𝑓𝑓1
∂𝑧𝑧n′

+ 𝑓𝑓1(𝑥𝑥n′ , 𝑧𝑧n′ ) + (𝑥𝑥0 − 𝑥𝑥n′ )
∂𝑓𝑓1
∂𝑥𝑥n′

+ (𝑧𝑧0 − 𝑧𝑧n′ )
∂𝑓𝑓1
∂𝑧𝑧n′���������������������������

𝑔𝑔1

𝑏𝑏⊤ �𝐻𝐻 − 𝑃𝑃1
∂𝑓𝑓2
∂𝑧𝑧n′

� = 𝑎𝑎⊤𝑃𝑃1
∂𝑓𝑓2
∂𝑥𝑥n′

+ 𝑓𝑓2(𝑥𝑥n′ , 𝑧𝑧n′ ) + (𝑧𝑧0 − 𝑧𝑧n′ )
∂𝑓𝑓2
∂𝑧𝑧n′

+ (𝑥𝑥0 − 𝑥𝑥n′ )
∂𝑓𝑓2
∂𝑥𝑥n′���������������������������

𝑔𝑔2

 (29) 

The problem is solved numerically in Chapter 4 to test computational convergence 
and error evolution. 
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3.4 Case IV: Damage Detection in Composite Plates Using Haar-CNN 
Hybrid Model 
This particular case study extends the existing wavelet-based modeling framework into 
the domain of data-driven analysis by integrating the Haar wavelet transform with 
convolutional neural networks for detecting damage through vibration analysis in CFRP 
composite plates. The primary objective is to investigate how multilevel Haar wavelet 
preprocessing affects feature extraction and, consequently, classification accuracy, 
especially when dealing with small, experimentally obtained datasets that are inherently 
subject to noise. 

Two experimental datasets, [61], [62], are analyzed. The initial dataset comprises 
vibration response signals acquired from CFRP plates that had attached masses, thereby 
simulating localized reductions in stiffness. Each signal within this dataset corresponds 
to a specific mass configuration, recorded under identical excitation and boundary 
conditions [63], [64], [65]. The second dataset consists of frequency response 
function measurements obtained from similar CFRP plates, which contained controlled 
delamination defects [66], [67], [68], [69], [70]. Both datasets encompass a healthy 
reference case alongside several damaged conditions, thus framing them as multi-class 
classification problems. In both investigations, the Haar wavelet transform was employed 
to decompose each vibration or FRF signal into multiresolution approximation and detail 
coefficients. This process serves to highlight local variations while simultaneously 
filtering out low-frequency trends. The decomposition depth was systematically varied 
between levels 5 and 10 to thoroughly examine the impact of signal resolution on the 
performance of the CNN. 

Two distinct CNN architectures were developed to process the transformed data, 
each corresponding to one of the two datasets. 

The first architecture, specifically applied to the vibration dataset, implemented a two 
dimensional CNN configuration. Each vibration signal underwent decomposition using 
the stationary Haar wavelet transform, and the resultant approximation and detail 
coefficients were subsequently arranged into a two dimensional coefficient map, 
which then served as the input for the CNN. The network architecture featured two 
convolutional layers with rectified-linear activation functions, followed by max-pooling, 
dropout regularization, and two fully connected layers, culminating in a softmax classifier. 
The model was trained using the Adam optimizer, with a learning rate of 0.001 and 
categorical cross-entropy loss. To enhance convergence and mitigate overfitting, batch 
normalization and early stopping techniques were applied. This configuration was 
specifically optimized for small datasets, ensuring stable learning and generalization 
capabilities even with limited training data. 

The second architecture, designed for the FRF dataset, utilized a comparable CNN 
structure but was tailored to process Haar-transformed frequency-response matrices. 
Each FRF magnitude spectrum was decomposed up to level 10, and the approximation 
and detail components were then stacked to create a two dimensional grayscale 
representation indicative of the signal’s spectral energy distribution. This network 
incorporated two convolutional layers, featuring 32 and 64 filters respectively, each 
succeeded by rectified-linear activation, max-pooling, and dropout. The output from the 
convolutional layers was then flattened and passed through two dense layers, 
comprising 128 and 64 neurons, before reaching the final softmax classification layer. 
The same optimization parameters as in the first case were utilized, enabling a direct 



27 

comparison of training behavior and classification accuracy. This configuration effectively 
captures spatial correlations within the wavelet coefficient maps, thereby extracting 
multiscale vibration patterns that are associated with delamination-induced stiffness 
changes. 

Figure 3 provides a schematic representation of the Haar-CNN hybrid architecture, 
illustrating the arrangement of convolutional, pooling, and fully connected layers for 
both datasets. 

Figure 3. Haar-CNN architecture. 

Both networks were evaluated using a comprehensive set of metrics including 
accuracy, precision, recall and F₁-score, augmented by confusion matrices to ascertain 
classification consistency across all damage classes. Comparative analyses between raw 
and Haar-preprocessed inputs unequivocally demonstrated that wavelet decomposition 
significantly enhances the distinctiveness of features intrinsically linked to localized 
damage. Furthermore, the influence of the decomposition level was investigated to 
identify the most efficacious scale for optimal feature separation and network stability. 

Consequently, the Haar-CNN hybrid approach establishes a crucial link between 
physically interpretable signal transformation and automated feature extraction. By 
synergistically combining the localization ability of the Haar transform with CNN-based 
learning, this methodology achieves robust and generalizable classification performance 
on small, experimentally derived vibration datasets, as thoroughly elaborated in 
Chapter 4. 

3.5 Summary 
This chapter presented four distinct case studies, each representative of a specific category 
within structural dynamics problems. 

The initial three cases established the governing equations and boundary conditions 
for deterministic analyses, whereas the fourth case integrated wavelet-based 
preprocessing with deep learning for vibration-based damage detection in composite 
plates. 

Collectively, these problems underscore the versatility of the Haar and Higher Order 
Haar Wavelet Methods across diverse domains, ranging from high order differential 
modeling to hybrid data interpretation. 

The subsequent chapter will detail the numerical results, convergence analysis and 
comparative evaluation for each investigated case. 
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4 Results and Discussion 
This chapter presents the numerical and data-driven results obtained through the 
application of the Haar Wavelet Method, the Higher Order Haar Wavelet Method and 
the previously introduced Haar-CNN hybrid framework. 

 The analyses encompass four distinct problems, which collectively serve to validate 
the accuracy, stability, and versatility of the proposed methodologies across various 
physical and computational contexts. The initial three cases focus on deterministic 
structural dynamics, specifically investigating the free vibration of Timoshenko beams, 
longitudinal wave propagation in functionally graded nanorods, and the nonlinear 
motion of fragments. The fourth case extends this framework to address vibration-based 
damage detection, utilizing wavelet-enhanced convolutional neural networks.  

For the deterministic studies, the results include computed natural frequencies and 
dispersion characteristics, which are compared with analytical and numerical references 
to assess numerical precision and convergence. The performance of both HWM and 
HOHWM is evaluated based on relative error, convergence rate, and the smoothness of 
the computed solutions. The discussion highlights the significant improvements achieved 
through higher order Haar integration and the consistency of convergence across 
problems of varying complexity and scale. In the context of the Haar-CNN application, 
the results primarily concentrate on the classification performance attained both with 
and without Haar-based preprocessing, exploring how multilevel wavelet decomposition 
impacts feature separability and model robustness in small experimental datasets.  

Throughout this chapter, quantitative comparisons are presented in tables and figures 
adapted from the author’s published works. Each case study provides a brief verification 
of numerical accuracy, followed by a discussion of the physical interpretation of the 
results. The analysis demonstrates that the Haar-based numerical formulations maintain 
an accuracy comparable to spectral or analytical methods, while the hybrid Haar-CNN 
framework effectively enhances data-driven damage detection by incorporating 
wavelet-domain feature representations. Collectively, these results establish the reliability 
and general applicability of the proposed wavelet-based methodologies in the fields of 
structural dynamics and damage assessment. 

4.1 Vibration Analysis of Structures 
The Higher Order Haar Wavelet Method was employed to analyze the free vibration 
characteristics of Timoshenko beams, encompassing both uniform and linearly tapered 
configurations. The primary objective was to substantiate the convergence and accuracy 
of this higher order Haar formulation by comparing its results with established analytical 
solutions.  

The governing coupled equations for transverse displacement and rotation, detailed 
in Chapter 3, were discretized using uniformly distributed collocation points, and boundary 
conditions were directly integrated into the Haar integration framework. Table 2, 
as presented in Paper I, presents the dimensionless neutral frequency of a uniform 
Timoshenko beam under pinned-pinned boundary conditions, calculated using both the 
conventional Haar Wavelet Method and its higher order counterpart. The findings affirm 
a strong correlation between the HOHWM and analytical solutions. While the HWM 
exhibits second order convergence, the HOHWM achieves fourth and sixth order accuracy, 
underscoring the enhanced precision derived from the higher order integration of the 
Haar basis. 
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Table 2. Comparison of HWM and HOHWM for Timoshenko beams under pinned-pinned boundary 
conditions. 

N 
HWM HOHWM 4th (𝑠𝑠 = 1) HOHWM 6th (𝑠𝑠 = 2) 

Frequency A. error Conv.
rate Frequency A. error Conv.

rate Frequency A. error Conv.
rate 

4 10.76068319 1.60E+00 9.16627318 5.59E-03 9.16109539 4.12E-04 

8 9.59208533 4.31E-01 1.8954 9.16088118 1.98E-04 4.0580 9.16069124 8.05E-06 5.2583 

16 9.27047366 1.10E-01 1.9742 9.16069928 1.61E-05 4.0268 9.16068333 1.48E-07 5.6800 

32 9.18825306 2.76E-02 1.9935 9.16068724 4.06E-06 4.0244 9.16068322 3.68E-08 5.7820 

64 9.16758331 6.90E-03 1.9983 9.16068383 6.42E-07 4.0240 9.16068319 6.74E-10 5.9221 

128 9.16240869 1.73E-03 1.9995 9.16068327 8.79E-08 4.0133 9.16068318 1.73E-11 5.9850 

256 9.16111459 4.31E-04 1.9998 9.16068320 1.74E-08 4.0054 9.16068318 3.90E-12 6.0130 

 Exact solution: 9.16068318 

Table 2 shows the convergence behavior of the HWM and HOHWM for increasing Haar 
resolution levels, previously reported in Paper I. The rapid convergence of the HOHWM 
signifies that a limited number of collocation points is sufficient to attain high accuracy, 
thereby substantially decreasing computational demands when compared to conventional 
finite element method discretization. To further validate the method’s versatility, 
clamped-clamped and clamped-pinned configurations were analyzed, see Table 3, as 
presented in Paper II. 

Table 3. Comparison of HWM and HOHWM for Timoshenko beams under various boundary conditions. 

N 
HWM  HOHWM 4th (𝑠𝑠 = 1) HOHWM 6th (𝑠𝑠 = 2) 

Frequency A. error Conv.
rate Frequency A. error Conv.

Rate Frequency A. error Conv.
rate 

Cl
am

pe
d-

Pi
nn

ed
 

 

4 12.16296846 1.08E+00 11.12396203 4.15E-02 11.08476457 2.27E-03 

8 11.67284507 5.90E-01 2.0085 11.08552579 3.03E-03 4.0017 11.08257904 7.99E-05 6.1932 

16 11.16717818 8.47E-02 2.0065 11.08280853 3.09E-04 4.0153 11.08249987 6.91E-07 6.1877 

32 11. 08814918 5.65E-03 2.0050 11.08250835 9.17E-06 4.0153 11. 08249920 2.00E-08 6.1326 

64 11. 08267527 1.76E-04 2.0043 11.08249969 5.14E-07 4.0010 11. 08249919 5.82E-09 6.1049 

128 11.08254898 4.98E-05 2.0042 11.08249985 6.72E-07 4.0099 11.08249918 4.24E-10 6.0573 

256 11.08250581 6.63E-06 2.0024 11.08249918 4.96E-09 4.0002 11.08249918 3.35E-11 6.0547 

  Exact solution: 11.08249918 

Cl
am

pe
d-

Cl
am

pe
d 

4 13.96275845 1.28e-01 13.84197845 7.22e-03 13.83477975 2.13e-05 

8 13.86655612 3.18e-02 2.0091 13.83519214 4.34e-04 4.0576 13.83476001 1.56e-06 5.4358 

16 13.84269132 7.93e-03 2.003 13.83478525 2.68e-05 4.0146 13.83475854 8.43e-08 5.7522 

32 13.83674066 1.98e-03 2.0007 13.83476012 1.67e-06 4.0036 13.83475846 1.51e-09 5.9467 

64 13.83525392 4.95e-04 2.00019 13.83475856 1.04e-07 4.0009 13.83475846 7.71e-10 5.9955 

128 13.83488232 1.24e-04 2.00004 13.83475846 6.53e-09 4.0002 13.83475845 4.08e-11 5.9999 

256 13.83478942 3.10e-05 2.00001 13.83475845 4.08e-10 4.0000 13.83475845 1.40e-13 6.0000 

 Exact solution: 13.83475845 
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The consistent agreement observed across all boundary conditions corroborates the 
robustness of the HOHWM formulation.  

To further evaluate the method’s versatility, it was applied to a linearly tapered 
Timoshenko beam. The stiffness and mass distributions were directly incorporated into 
the governing equations without modifying the underlying Haar framework. Table 4,  
as presented in Paper II, summarizes the fundamental nondimensional frequencies for 
various taper ratios. The results indicate that the HOHWM accurately captures the 
frequency reduction attributed to tapering, maintaining minimal deviation from the 
existing solution. 

Table 4. Effect of taper ratio on non-dimensional natural frequencies of the clamped-clamped 
Timoshenko beam. 

 

N 
HWM  HOHWM 4th HOHWM 6th 

Frequency A. error Conv. 
rate Frequency A. error Conv. 

Rate Frequency A. error Conv. 
rate 

c=0.4 4 13.38213007 9.60E-01  12.42216412 3.56E-02  12.42216313 4.40E-03  

8 12.51071171 8.85E-02 2.0154 12.45779287 7.62E-03 4.3451 12.42655937 7.71E-04 6.0527 

16 12.43177774 9.61E-03 2.0095 12.42293499 7.72E-04 4.0623 12.42217245 9.32E-06 6.0129 

32 12.42292193 7.59E-04 2.0037 12.42221943 5.63E-05 4.0103 12.42216313 4.41E-07 6.0099 

64 12.42223492 7.18E-05 2.0018 12.42978489 9.92E-07 4.0096 12.42293432 4.36E-09 6.0042 

128 12.42218071 1.76E-05 2.0008 12.42216317 4.02E-08 4.0073 12.42216357 7.28E-10 6.0017 

256 12.42216626 3.13E-06 2.0003 12.42216313 4.39E-09 4.0023 12.42216313 2.71E-11 6.0009 

  Existing result = 12.422163 

c=0.8 4 10.77014610 1.04E+00  9.738846102 1.17E-02  9.727997702 8.52E-04  

8 10.28714610 5.60E-01 2.0994 9.727886102 7.40E-04 4.0807 9.727181202 3.51E-05 6.0698 

16 9.782096102 5.50E-02 2.0848 9.727219602 7.35E-05 4.0713 9.727147068 9.66E-07 6.0695 

32 9.728230102 1.08E-03 2.0631 9.727157102 1.10E-05 4.0466 9.727146185 8.28E-08 6.0606 

64 9.727253202 1.07E-04 2.0480 9.727151332 5.23E-06 4.0402 9.727146103 6.74E-10 6.0326 

128 9.727156532 1.04E-05 2.0279 9.727146886 7.84E-07 4.0198 9.727146102 4.75E-11 6.0050 

256 9.727147652 1.55E-06 2.0051 9.727146151 4.90E-08 4.0074 9.727146102 6.84E-12 6.0007 

  Exact solution= 9.727146 

 
The consistent accuracy of the HOHWM across both uniform and tapered geometries 

highlights the method’s adaptability in addressing spatially varying stiffness properties 
without compromising precision. The strong correlation between HOHWM, analytical, 
and existing results corroborates the theoretical framework, affirming that the method 
achieves higher order convergence while retaining the inherent simplicity and sparsity of 
the Haar framework. These findings position the HOHWM as a dependable and 
computationally efficient alternative to traditional high order numerical approaches for 
structural vibration analysis. 
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4.2 Dynamic Behavior of Functionally Graded Nanorods 
The Higher Order Haar Wavelet Method underwent validation through its application to 
the longitudinal vibration analysis of homogeneous Rayleigh-Bishop nanorods, considering 
both local and nonlocal formulations. The numerical accuracy and fourth order 
convergence of the HOHWM, particularly when compared to the standard Haar Wavelet 
Method, were substantiated by the computed nondimensional frequencies, absolute 
errors, and convergence rates presented in Table 5. More detailed investigation of these 
findings are presented in paper III. 

Table 5. Comparison of HWM and HOHWM for Homogenous Rayleigh-Bishop Rod. 

N 
HWM HOHWM 4th 

Frequency A. error Conv. rate Frequency A. error Conv. Rate

e0=0  4 2.319104 1.78e-02 --- 2.302340 1.02e-03 --- 

8 2.305855 4.53e-03 1.9714 2.301383 6.21e-05 4.0372 

16 2.302459 1.14e-03 1.9937 2.301324 3.85e-06 4.0096 

32 2.301605 2.85e-04 1.9984 2.301321 2.41e-07 4.0024 

64 2.301392 7.13e-05 1.9996 2.301320 1.50e-08 4.0006 

128 2.301338 1.78e-05 1.9999 2.301320 9.39e-10 4.0001 

256 2.301325 4.45e-06 1.9999 2.301320 5.87e-11 4.0000 

 Existing result = 2.30132095212840503962 

e0=0.1  4 2.210516 1.50e-02 --- 2.196385 8.60e-04 --- 

8 2.199350 3.82e-03 1.9706 2.195577 5.24e-05 4.0374 

16 2.196485 9.61e-04 1.9935 2.195528 3.25e-06 4.0097 

32 2.195765 2.40e-04 1.9984 2.195525 2.03e-07 4.0024 

64 2.195585 6.01e-05 1.9996 2.195525 1.27e-08 4.0006 

128 2.195540 1.50e-05 1.9999 2.195525 7.92e-10 4.0001 

256 2.195528 3.76e-06 1.9999 2.195525 4.75e-11 4.0000 

 Exact solution= 2.195525123273453 

The data substantiate a fourth order convergence rate for the HOHWM, whereas the 
conventional HWM exhibits second order convergence. The utilization of the higher 
order formulation leads to an approximate two order of magnitude reduction in absolute 
error, with computed frequencies closely aligning with exact reference values, 
demonstrating negligible deviation. These outcomes affirm the accuracy and efficacy of 
the HOHWM in characterizing the longitudinal dynamics of both local and nonlocal 
homogeneous Rayleigh-Bishop nanorods. 
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4.3 Flight Dynamics of Fragments 
The nonlinear equations of motion fragments, subject to aerodynamic drag and gravity, 
were analyzed using both the Haar Wavelet Method and the Higher Order Haar Wavelet 
Method. The convergence and accuracy of these methods were assessed by comparing 
their results against a numerical Runge-Kutta reference solution.  

For a case study, a projectile weighing 12 𝑘𝑘𝑘𝑘  and diameter of 105 𝑚𝑚𝑚𝑚 was simulated. 
This simulation generated approximately 3950 fragments during the 0.14 𝑚𝑚𝑚𝑚; the initial 
position and velocity of one fragment were selected, and its position and velocity in all 
directions were subsequently calculated at various time intervals using the formulation 
presented previously, as detailed in Table 6 previously reported in Paper V. 

Table 6. Position and velocities based on the HWM for a chosen fragment. 

𝒕𝒕 𝒙𝒙 𝒚𝒚 𝒛𝒛 𝒙𝒙′ 𝒚𝒚′ 𝒛𝒛′ 

initial 0.1143 -0.1703 0.8062 -24.2968 -1121.0214 69.5044 

1.0 -11.2112 -524.3401 29.8954 -6.14743 -285.0912 11.4625 

2.0 -15.8341 -738.8114 34.3712 -3.5065 -162.7054 -1.2054

3.0 -18.7624 -874.7501 29.0023 -2.4553 -113.9810 -9.1834

4.0 -20.9146 -974.7061 16.4569 -1.8853 -87.5647 -15.7229

Table 7, as presented in Paper IV, presents the velocity and location for a chosen 
fragment calculated with HWM and also HOHWM. 

Table 7. Comparison of HWM and HOHWM for a chosen fragment at 𝑡𝑡 = 2.5𝑠𝑠. 

N 
HWM HOHWM 4th 

Value A. error Conv. rate Value A. error Conv. rate 
𝒙𝒙 4 -17.29994925 1.28E-01 -17.42072359 7.23E-03 

8 -17.39615158 3.18E-02 2.0103933 -17.42751557 4.34E-04 4.0576692 

16 -17.42001639 7.93E-03 2.0030078 -17.42792242 2.68E-05 4.0146075 

32 -17.42596710 1.98E-03 2.0007748 -17.42794758 1.67E-06 4.0036622 

64 -17.42745378 4.95E-04 2.0001951 -17.42794915 1.04E-07 4.0009162 

128 -17.42782539 1.24E-04 2.0000489 -17.42794924 6.53E-09 4.0002289 

256 -17.42791828 3.10E-05 2.0000122 -17.42794925 4.08E-10 4.0000549 
 Runge-Kutta method:  -17.42794925 

𝒙𝒙′ 4 -2.78958350 9.85E-02 -2.88349768 4.63E-03 

8 -2.86413772 2.40E-02 2.0383492 -2.88784956 2.78E-04 4.0581877 

16 -2.88213661 5.99E-03 2.0015815 -2.88811028 1.72E-05 4.0142098 

32 -2.88663071 1.50E-03 2.0009089 -2.88812641 1.07E-06 4.0046429 

64 -2.88775339 3.74E-04 2.0003872 -2.88812741 6.69E-08 4.0008970 

128 -2.88803396 9.35E-05 2.0000500 -2.88812748 4.18E-09 4.0002293 

256 -2.88810410 2.34E-05 2.0000246 -2.88812748 2.61E-10 4.0000268 
 Runge-Kutta method:  -2.88812748 
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The absolute error and convergence rates for both the HWM and HOHWM were 
determined using the exact Runge-Kutta reference solution.  

The numerical results, presented in Table 7, validate that the HOHWM consistently 
achieves fourth order convergence, while the conventional HWM maintains second 
order accuracy. This method consistently produces stable and smooth solutions for the 
intricate nonlinear equations of motion, demonstrating accuracy comparable to the 
analytical Runge-Kutta reference solution. These findings collectively affirm the 
applicability of the higher order Haar formulation for accurately modeling fragment 
trajectories under the influence of aerodynamic drag. 

4.4 Damage Detection in Composite Plates Using Haar-CNN Hybrid Model 
A convolutional neural network model, employing Haar wavelets, was assessed using 
two experimental datasets derived from vibration analyses of carbon fiber reinforced 
polymer composite plates. The initial dataset encompassed mass attachment scenarios, 
indicative of various damage classifications, while the second dataset pertained to 
delamination cases identified via frequency response function measurements. Both 
datasets underwent processing through stationary Haar wavelet decomposition across 
multiple levels, specifically ranging from 5 to 10.  

The primary objective was to quantify the influence of the decomposition level on the 
CNN’s capacity to categorize distinct damage conditions and to ascertain the optimal 
wavelet resolution for enhancing feature separability and model generalization. 

For each dataset, two distinct models were trained: 
1. A Baseline CNN: This model was trained directly using raw signals or frequency

response function inputs.
2. A Haar-CNN Hybrid: This model was trained on Haar-decomposed coefficients,

which were subsequently reconstructed into two-dimensional matrices.

The network architecture, as previously discussed in Chapter3, incorporated 
convolutional layers, featuring ReLU activation, max-pooling, dropout regularization, and 
fully connected dense layers, culminating in a softmax output layer. The Adam optimizer 
was utilized with a learning rate set at 0.001, and categorical cross-entropy served as the 
chosen loss function. Training proceeded for 100/200 epochs, with batch normalization 
applied between convolutional layers, employing a 70-15-15 data split for training, 
validation, and testing purposes. 

4.4.1 Case 1: Mass-Attachment Dataset 
The initial dataset comprises vibration signals collected from a carbon fiber reinforced 
polymer plate configured with various mass attachments. Each configuration signifies 
a distinct damage scenario characterized by localized stiffness reduction. However, 
the dataset’s limited size, offering only a few samples per configuration, poses a 
significant hurdle for data-driven modeling. This scarcity of examples restricts the 
convolutional neural network’s generalization capability and heightens the training 
process’s susceptibility to initialization variability and noise. 

Figure 4 illustrates a representative signal, decomposed up to level 10, displaying the 
detail coefficients D5-D10 and the approximation component A10. This decomposition 
effectively demonstrates how the Haar transform isolates transient, high-frequency 
components, indicative of local disturbances, in the upper detail levels, while preserving 
the global vibration trend in the lower approximation. 
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Figure 4. Stationary Haar wavelet transform of a representative vibration signal. 

Two models were evaluated under identical hyperparameter configurations: a baseline 
CNN trained directly on raw vibration signals and a Haar-CNN model trained on 
Haar-transformed coefficients derived from decomposition level 8. Both models shared 
the same network architecture, activation functions, optimizer, and training duration, 
ensuring that any observed discrepancies stemmed solely from the preprocessing stage. 

Figure 5 illustrates a comparative analysis of the training and validation accuracy for 
both the baseline CNN and the Haar-CNN. While both networks exhibited progressive 
accuracy improvements over epochs, the baseline model displayed more pronounced 
fluctuations and a clear divergence between its training and validation curves. In contrast, 
the Haar-CNN model demonstrated smoother convergence and reduced disparity 
between its training and validation accuracy. Although the ultimate accuracy remained 
moderate, this limitation is primarily attributable to the exceptionally small dataset and 
the inherent spectral similarity among certain mass-attachment cases, which complicates 
class separation. The Haar-CNN’s smoother convergence corroborates that wavelet 
representation stabilizes the learning process by filtering redundant information and 
accentuating the most energetic transient components within the vibration signal. 
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Baseline CNN Haar-CNN 

Figure 5. Training and validation accuracy for baseline CNN and Haar-CNN at Haar level 8 for the 
mass-attachment dataset. 

Figure 6 presents the confusion matrices for both models. The baseline CNN revealed 
considerable overlap between adjacent classes, particularly in the mid-range damage 
states where vibration patterns are spectrally analogous. Following Haar preprocessing, 
the diagonal dominance increased, and off-diagonal elements diminished, indicating 
enhanced recognition consistency across categories. This improvement reflects the Haar 
transform’s capacity to highlight localized frequency alterations associated with subtle 
stiffness variations. 

 

  
Baseline CNN Haar-CNN 

Figure 6. Confusion matrices for baseline CNN and Haar-CNN at Haar level 8 for the mass-attachment 
dataset. 

In conclusion, despite the inherent limitations on absolute accuracy imposed by the 
smaller dataset size, the comparative enhancement achieved through Haar decomposition 
suggests that integrating multiscale preprocessing can partially offset sparse data 
challenges by improving feature clarity and network stability. 
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4.4.2 Case 2: Delamination Dataset 
This case study examines the impact of Haar wavelet preprocessing on the performance 
of convolutional neural networks in classifying delamination within carbon fiber reinforced 
polymer plates. The dataset comprises vibration response signals representing three 
structural conditions: two distinct delamination sizes and a healthy configuration. Each 
signal segment captures the steady state and transient frequency response of the plate 
under consistent boundary and excitation conditions. 

Figure 7 illustrates a representative vibration signal segment from the dataset. 
The broadband, irregular pattern observed reflects the complex dynamic response 
characteristic of composite materials, where multiple vibration modes often overlap. 
Prior to analysis, the signal was standardized to eliminate scaling bias and emphasize 
relative variations.  

Figure 7. Original vibration signal segment from the delamination dataset. 

Subsequently, the stationary Haar wavelet transform was applied at a decomposition 
depth of eight levels, generating a multiresolution representation depicted in Figure 8. 
This band-stack visualization effectively demonstrates how energy is distributed across 
detail and approximation components (D₁-D₈ and A₈). Specifically, the higher levels capture 
localized, high-frequency fluctuations associated with damage-induced discontinuities, 
while the lower levels retain global modal behavior. This decomposition technique allows 
for the simultaneous representation of vibration features in both the time and frequency 
domains, thereby forming the input for the neural network. 

Figure 8. Stationary Haar wavelet transform (Haar, 𝐿𝐿 =  10). 

For comparative evaluation, two models were trained. The first network was 
trained directly using the normalized vibration signals, whereas the second utilized 
Haar-transformed coefficients at level eight as its input. Both networks shared a similar 
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architecture, incorporating convolutional layers with rectified-linear activation and  
max-pooling, followed by dropout regularization and fully connected layers culminating 
in a softmax output. Training and validation data were partitioned identically to ensure 
that any observed performance differences stemmed from the preprocessing stage 
rather than architectural or parameter variations. 

Figure 9 presents the results for the network trained on raw signals. The loss and  
F₁-score histories indicate that while the model achieved consistent improvement,  
the validation curve remained highly variable, suggesting sensitivity to data imbalance 
and class similarity. The confusion matrix further reveals substantial overlap between the 
two delamination cases, reflecting the close spectral resemblance of their vibration 
signatures. Conversely, the healthy state, characterized by a distinct global frequency 
pattern, was classified more reliably. These results underscore the inherent difficulty of 
directly learning discriminative features from raw signals when faced with overlapping 
spectral characteristics. 

 

 
Figure 9. Training, validation loss, F₁-score and confusion matrix for the baseline CNN. 

Figure 10 illustrates the results obtained when the vibration data underwent Haar 
wavelet preprocessing before CNN training. The training and validation curves exhibit 
smoother convergence and reduced divergence between datasets, signifying improved 
learning stability. The corresponding confusion matrix demonstrates clearer diagonal 
dominance, indicating more distinct classification boundaries among the three structural 
states. The Haar preprocessing effectively enhanced the network’s ability to isolate 
frequency-localized patterns and mitigate the spectral overlap observed during raw-signal 
training. 

 

 
Figure 10. Training, validation loss, F₁-score and confusion matrix for the Haar-CNN. 
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In conclusion, the overall comparison confirms that integrating Haar wavelet 
decomposition prior to CNN training substantially improves both convergence behavior 
and classification consistency. The wavelet representation adeptly captures the local 
transient behavior associated with delamination while simultaneously preserving the 
global vibration characteristics of the healthy state. Consequently, the Haar-CNN hybrid 
approach offers a more robust and physically interpretable method for vibration-based 
detection of delamination in composite plates, particularly in scenarios with limited 
dataset size. 

4.5 Summary of the Results 
This section detailed the development and validation of the Haar Wavelet Method and 
its higher-order variant for structural dynamics problems, alongside introducing the 
Haar-CNN framework for data-driven damage detection. The Haar-based methodologies 
consistently demonstrated high accuracy and rapid convergence across diverse analyses, 
including free vibration, wave propagation and nonlinear transient analyses. Notably, 
the HOHWM achieved higher order convergence determined by method parameter, 
yielding smooth, continuous field approximations with a reduced number of collocation 
points. Furthermore, the Haar-CNN hybrid model extended this approach to experimental 
composite data, where multilevel Haar preprocessing significantly enhanced feature 
localization and classification accuracy. Collectively, these findings underscore the 
robustness and adaptability of the proposed Haar-based techniques for both deterministic 
and data-driven structural analysis. 
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5 Conclusions and Future Work 
5.1 Summary of Main Contributions 
This chapter concludes the thesis by summarizing the key outcomes and methodological 
contributions of the Haar-based numerical and data-driven frameworks. The comprehensive 
analyses confirmed the accuracy, convergence and broad applicability of the proposed 
methodologies across different physical scales and problem types. 

For enhanced accuracy and smoothness, Haar basis functions can be subjected to 
multiple integrations before forming an approximation, thereby establishing the Higher 
Order Haar Wavelet Method. This approach initially developed for studies in vibration 
and wave propagation, provides a continuous, higher order representation while 
maintaining the intrinsic simplicity and orthogonality of the original Haar basis. 

The initial case study investigated the free vibration of Timoshenko beams, validating 
the higher order Haar formulation against analytical and finite element benchmarks. 
The incorporation of higher order Haar functions yielded smooth displacement and 
rotation fields, underscoring higher order convergence with a reduced number of 
collocation points. It should be mentioned that current formulation is among the few 
where the Higher Order Haar Wavelet Method was evaluated with sixth-order 
convergence (method parameter 𝑠𝑠 = 2) and was applied to Timoshenko beams, 
accurately representing shear deformation effects. 

The second case study focused on longitudinal wave propagation in functionally 
graded Rayleigh-Bishop nanorods within the framework of nonlocal elasticity. The results 
indicated that the HOHWM accurately captured the influence of nonlocal parameters on 
natural frequencies and wave dispersion characteristics. The method confirmed the 
expected softening behavior with increasing nonlocal length scale and verified the 
convergence rate observed in the beam problem, affirming the higher order formulation’s 
generality for graded and nanoscale structures. This is one of the few applications of the 
Higher Order Haar Wavelet Method at the nanoscale, developed for functionally graded 
Rayleigh-Bishop nanorods with nanoparticle material. 

The third case study examined the nonlinear flight dynamics of fragments, employing 
the HWM and HOHWM to solve coupled trajectory equations under aerodynamic drag. 
The HOHWM exhibited rapid convergence towards the Runge-Kutta reference solution, 
reducing numerical error by two orders of magnitude compared to the standard 
formulation. These findings validated the method’s efficiency in transient problems and 
its capacity to maintain stability under nonlinear and time-dependent conditions. 
This case verified that the Higher Order Haar Wavelet Method maintains higher 
convergence in nonlinear flight problems, with input parameters obtained with finite 
element simulations in ANSYS. 

The fourth case study extended the Haar framework to data-driven damage identification 
using convolutional neural networks. The Haar-CNN hybrid approach was assessed 
using two experimental datasets of composite plates: one involving vibration-based 
mass-attachment and another a delamination-based frequency-response dataset. 
In both instances, Haar wavelet preprocessing improved feature localization and 
enhanced convergence stability compared to training on raw data. The optimal wavelet 
decomposition level was identified within the 7 to 9 range, offering the best balance 
between feature richness and computational efficiency. The hybrid model demonstrated 
reliable class separation, even with limited datasets, confirming the practical benefits of 
integrating multiscale signal analysis with deep-learning-based classification. 
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All the research questions formulated in Chapter 1 have been addressed through the 
numerical, analytical and data-driven investigations presented in this thesis. 

Collectively, across all four studies, the Haar-based formulations exhibited robust 
numerical stability, rapid convergence, and consistent accuracy over a wide spectrum of 
structural problems. The higher order Haar extensions effectively improved smoothness 
and precision in continuous domain analyses, while the wavelet-enhanced CNN framework 
strengthened feature extraction and pattern recognition capabilities in experimental 
datasets. Together, these results highlight the versatility of Haar wavelet formulations as 
a unifying tool for both deterministic and data-driven modeling in structural dynamics 
and damage detection. 

5.2 Theoretical and Computational Contributions 
The thesis theoretically advanced the formulation of the HWM and HOHWM for structural 
dynamics problems governed by ordinary and partial differential equations. The higher 
order framework achieved higher order convergence while maintaining the simplicity 
and orthogonality inherent in the original Haar basis. The methods underwent validation 
across both local and nonlocal continua, accurately reproducing analytical benchmarks 
with minimal computational overhead. 

Numerical findings confirmed that the HOHWM generates continuous displacement 
and stress fields, exhibits stable convergence and produces sparse algebraic matrices. 
Its performance remained consistent across a spectrum of linear and nonlinear problems, 
encompassing transient fragment motion, graded nanostructures and classical vibration 
analysis. The uniform grid formulation effectively eliminated the complexities associated 
with adaptive meshing, all while preserving high accuracy and computational efficiency. 

These results position the HOHWM as a compact yet highly precise solver for dynamic 
systems, capable of serving as an alternative to more computationally demanding finite 
element or spectral methods in analyses requiring moderate resolution. 

This study notably contributes to the literature by demonstrating that the Higher Order 
Haar Wavelet Method achieved higher order of convergence, thereby underscoring its 
exceptional numerical precision. 

5.3 Integration of Wavelet-Based Modeling and Machine Learning 
A significant contribution of this research involves the integration of wavelet-based signal 
processing with deep learning for structural health monitoring. By employing stationary 
Haar wavelet decomposition on datasets comprising vibration and frequency response 
data, the convolutional neural network models successfully extracted localized, multiscale 
features directly correlated with various structural damage patterns. The analysis of two 
composite plate datasets, one related to localized mass attachment and the other to 
delamination, demonstrated that Haar wavelet preprocessing improved CNN learning 
stability, mitigated overfitting and enhanced feature separability, even with limited data. 
An optimal decomposition depth was determined to be between seven and nine levels, 
a range that effectively preserved transient and modal information without introducing 
redundant noise. This fusion of Haar-based preprocessing with CNN architectures bridges 
physics-informed modeling and data-driven learning, enabling deep networks to process 
physically interpretable features derived from the same mathematical foundation used 
in numerical modeling. 
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5.4 Practical Implications for Structural Dynamics and SHM 
The present research findings offer direct implications for the comprehensive analysis, 
intricate simulation and continuous monitoring of diverse structural systems. Specifically, 
the HOHWM presents a computationally efficient alternative for dynamic simulations 
where both precision and stability are paramount, such as in vibration-based design, 
advanced nano-mechanical modeling and complex fragment dynamics. Its inherent 
sparse and orthogonal matrix structure renders it highly suitable for integration into 
large-scale simulations and embedded numerical solvers. 

Furthermore, the Haar-CNN framework extends the applicability of wavelet 
methodologies to experimental and operational monitoring contexts. Its multiresolution 
preprocessing step markedly improves feature extraction from inherently noisy vibration 
data, thereby enhancing the robustness of classification models utilized for identifying 
damage, delamination, or other forms of structural degradation. This approach proves 
particularly advantageous for datasets that are small or incomplete, where conventional 
deep-learning techniques often encounter difficulties in generalization. 

Collectively, these methodologies constitute a coherent computational toolset that 
effectively integrates the interpretability characteristic of physics-based models with the 
adaptability inherent in machine-learning frameworks. This synergy facilitates reliable 
diagnostics and sophisticated predictive modeling in both laboratory-scale and  
field-scale structural applications. 

In summation, these findings corroborate that the research objectives, as outlined in 
Chapter 1, have been comprehensively fulfilled. Each inquiry was addressed through 
theoretical development, numerical validation or data-driven experimentation, thereby 
affirming the capability of Haar based methods to integrate modeling accuracy, 
computational efficiency and learning-driven damage detection within the domain of 
structural dynamics. 

5.5 Future Research 
Future research endeavors can expand upon the current work in several key areas: 

 

1. Extension of the Higher Order Haar Wavelet Method: Applying higher  
order Haar formulations to intricate coupled multi-field systems, such as 
thermo-mechanical and piezoelectric problems, to assess their efficacy in 
multiphysics modeling. 

2. Adaptive Wavelet Frameworks: Developing adaptive or hybrid grid schemes 
within the Haar formulation to enhance computational efficiency for 
localized nonlinear effects while preserving orthogonality. 

3. Uncertainty Quantification: Integrating stochastic approaches with Haar-based 
solvers to meticulously analyze the influence of material and boundary 
uncertainties on dynamic responses. 

4. Deep Learning Generalization: Expanding the Haar-CNN framework to 
encompass 3D structural geometries and large-scale sensor networks, 
incorporating transfer learning or physics-informed architectures to achieve 
superior generalization under diverse operational conditions. 

5. Real Time Structural Health Monitoring Implementation: Embedding  
Haar-based preprocessing into onboard diagnostic systems for real time 
vibration analysis and automated damage detection in critical industrial and 
aerospace structures. 
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These proposed directions aim to drive Haar-based modeling from theoretical 
validation towards practical deployment within intelligent structural systems. 
The continued integration of wavelet mathematics with data-driven techniques holds 
significant promise for developing interpretable, efficient, and generalizable solutions to 
complex challenges in structural dynamics and health monitoring. 
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Abstract 
Mathematical Modeling and Numerical Analysis of Structural 
Dynamics with Applications to Damage Detection 
Precise modeling of structural dynamic behavior and reliable identification of the 
damage in structures remain central challenges in engineering design and maintenance. 
Modern structures, from large-scale constructions to micro- and nanoscale components, 
work under progressively complex dynamic conditions and are often made of advanced 
and/or functionally graded materials. These new developments have brought with them 
nonlinear behavior, spatial inhomogeneity and multiscale effects that in some cases 
could exceed the analytical capacity of classical methods. On the other hand, vibration 
based SHM relies on noisy and limited experimental data interpretation. This thesis 
addresses both challenges and introduces a unified Haar wavelet-based framework that 
integrates mathematical modeling, numerical analysis and data-driven interpretation of 
structural dynamics. The approach proposed demonstrates that the same wavelet family 
can be employed for both solving governing differential equations and enhancing 
vibration-based damage detection through deep learning algorithms.  

The theoretical foundation is based on the formulation of the Haar Wavelet Method 
that approximates differential operators using piecewise-constant orthogonal functions. 
This results in sparse and well-conditioned system matrices and facilitates easy 
application of the boundary conditions. A Higher Order Haar Wavelet Method is then 
constructed by integrating the Haar functions repeatedly to obtain continuous higher 
order approximations with improved smoothness and faster rates of convergence. They 
are evaluated in terms of accuracy, convergence rate and computation efficiency. 

Haar wavelets based methods are implemented for four representative problems 
chosen to illustrate their flexibility in various physical scales and computational contexts. 
The first three problems are covered be deterministic numerical modeling and the 
fourth combines wavelet preprocessing with a convolutional neural network for 
vibration-based damage detection. 

 The first case study examines the free vibration analysis of both uniform and tapered 
beams under various boundary conditions according to Timoshenko’s shear deformation 
theory. The Higher Order Haar Wavelet Method Formulation exhibits improved accuracy 
and faster convergence compared to the reference HWM based solution. 

The second case study extends the method to the nonlocal Rayleigh-Bishop theory, 
incorporating shear deformation and lateral inertia to study the longitudinal wave 
propagation in axially graded nanorods. The Higher Order Haar Wavelet Method is used 
to solve the governing motion equations, incorporating a nonlocal parameter within the 
material graduation. The method is used to compute the natural frequencies and 
evaluate the influence of the nonlocal parameter on the dynamic behavior of the nanorod. 

 The third case utilizes the Higher Order Haar wavelet method for the transient 
nonlinear motion of fragments generated by high-pressure rupture, where the equations 
of motion, including aerodynamic drag and gravitational effects, are discretized on the 
Higher Order Haar wavelet basis and time-integrated. The results are in good agreement 
with Runge-Kutta method, and the trajectory errors remained low, which verifies that 
the developed formulation can accurately capture nonlinear, time-dependent responses 
and yet retain numerical stability for systems with discontinuous acceleration histories. 
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The final case integrates the Haar wavelet transform with a convolutional neural 
network to improve vibration-based damage detection in composite plates. Two different 
experimental datasets of frequency response functions for a composite plate with 
various damage configurations are considered. Experimentally measured vibration and 
frequency response data from carbon fiber reinforced polymer (CFRP) plates in various 
damage conditions are analyzed using two CNN configurations: one trained on raw 
input signals and another trained on Haar-decomposed representations. The wavelet 
transformation emphasized localized transients and frequency variations while 
suppressing noise, producing clearer and more distinctive input features. Both models 
shared identical architectures and training parameters to isolate the effect of wavelet 
preprocessing. The results indicate that Haar-based multiresolution filtering enhances 
feature separability, improves model stability and provides a more robust representation 
of structural response, particularly for small and noisy experimental datasets used in 
vibration-based structural health monitoring. 

The thesis demonstrates that wavelet-based numerical and hybrid methods can 
function as an effective connection between classical mechanics as well as modern 
data-driven structural analysis. The proposed framework increases the accuracy and 
stability of numerical simulations and enhances the interpretability of vibration-based 
diagnostics. In addition, it offers attractive properties in the sense of mathematical 
modeling and simulation as well as structural damage identification for systems in the 
presence of small data and complex dynamical behaviors. The results indicate that 
further integration of higher-dimensional wavelet formulations and adaptive learning 
architectures can extend this methodology to large-scale monitoring systems, advancing 
the application of wavelet mathematics in structural health monitoring and dynamic 
analysis. 
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Lühikokkuvõte 
Konstruktsioonide dünaamika matemaatiline modelleerimine 
ja numbriline analüüs kahjustuste tuvastamise 
rakendusnäidetega 

Konstruktsioonide dünaamilise käitumise täpne modelleerimine ja kahjustuste 
usaldusväärne tuvastamine konstruktsioonides on jätkuvalt keskseks väljakutseks 
insenerteaduses, nii projekteerimisel kui hooldusel. Kaasaegsed konstruktsioonid, alates 
suurtest ehitistest kuni mikro- ja nanomastaabis komponentideni, töötavad järjest 
keerukamates dünaamilistes tingimustes ning on sageli valmistatud kõrgtehnoloogilistest 
ja/või funktsionaalselt gradueeritud materjalidest. Need arengud toovad kaasa reeglina 
mittelineaarse käitumise, ruumilise ebaühtluse ja mitmemõõtmelisuse efektid, mis 
võivad ületada klassikaliste meetodite analüütilised võimalused. Samal ajal tugineb 
vibratsioonipõhine konstruktsioonide seisundi seire (SHM) sageli mürarikkale ja piiratud 
eksperimentaalsete andmete tõlgendamisele. Käesolev doktoritöö käsitleb mõlemat 
probleemi võttes kasutusele Haari lainikute põhise raamistiku, ühendades matemaatilise 
modelleerimise, numbrilise analüüsi ja andmepõhist konstruktsiooni dünaamika 
tõlgendamise. Väljatöötatud lähenemine võimaldab kasutada Haari lainikute perekonda 
nii diferentsiaalvõrrandite lahendamiseks kui ka vibratsioonipõhiste kahjustuste 
tuvastamise algoritmide  täiustamiseks süvaõppemeetodite abil. 

Uurimistöö teoreetiline alus tugineb Haar’i lainikute meetodi formuleeringule, mis 
lähendab diferentsiaaloperaatoreid kasutades tükiti konstantseid ortogonaalseid 
funktsioone. Tulemusena saadakse hõredad ja hästi konditsioneeritud maatriksid ning 
lihtne rajatingimuste rakendamine. Seejärel rakendatakse kõrgemat järku Haar’i 
lainikute meetodit, integreerides Haar’i funktsioone korduvalt, et saada pidevad 
kõrgema järgu lähendid parema siledusastme ja kiirema koonduvuskiirusega. Meetodeid 
hinnatakse täpsuse, koonduvuskiiruse ja arvutusmahu alusel.  

Haari lainikutel põhinevaid meetodeid rakendatakse nelja probleemi lahendamiseks, 
mis on valitud nende paindlikkuse demonstreerimiseks erinevatel füüsikalistel ja 
arvutuslikel tasanditel. Esimesed kolm probleemi sisaldavad deterministlikku numbrilist 
modelleerimist, neljas ühendab Haari lainikute põhise  eeltöötluse konvolutsioonilise 
närvivõrguga, eesmärgiga parandada vibratsioonipõhist kahjustuste tuvastamist. 

Esimene juhtumuuring käsitleb ühtlaste ja koonuseliste ristlõigetega talade 
vabavibratsioonianalüüsi erinevate rajatingimuste korral, tuginedes Timoshenko 
nihkedeformatsiooni teooriale. Kõrgemat järku Haar’i lainepõhine meetod näitab 
kõrgemat täpsust ja kiiremat koonduvuskiirust võrreldes võrdlusbaasiks kasutatava 
HWM-ga. 

Teine juhtumuuring laiendab kõrgemat järku Haari lanikute meetodit mitte-lokaalsele 
Rayleigh-Bishopi teooriale, hõlmates nihkedeformatsiooni ja külgjõu inertsiefekte, et 
uurida pikilainete levikut aksiaalselt gradueeritud nanovarrastes. Kõrgemat järku Haar’i 
lainikute põhist meetodit kasutatakse liikumisvõrrandite lahendamiseks, võttes arvesse 
funktsionaalselt gradueeritud mitte-lokaalset parameetrit. Meetodi abil arvutatakse 
nanovarda omasagedused ja hinnatakse mitte-lokaalse parameetri mõju dünaamilisele 
käitumisele. 

Kolmas juhtumuuring kasutab kõrgemat järku Haar’i lainikute põhist meetodit 
kõrgsurve purunemisel tekkivate fragmentide mittelineaarsete liikumiste simuleerimiseks, 
kus liikumisvõrrandid (sh aerodünaamiline takistus ja gravitatsioon) diskretiseeritakse 
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kõrgemat järku lainikute põhisel meetodil ning integreeritakse ajas. Tulemused on heas 
kooskõlas Runge Kutta meetodi abil saadud tulemustega ning trajektoorivead püsivad 
väikesed. Tulemused kinnitavad, et välja töötatud formulatsioon suudab täpselt 
jäädvustada mittelineaarseid ajas muutuvaid funktsioone ja säilitada arvutusliku 
stabiilsuse süsteemides. 

Neljas juhtumuuring ühendab Haar’i lainikute põhise teisenduse konvolutsioonilise 
närvivõrguga, et parandada vibratsioonipõhist kahjustuste tuvastamist komposiitmaterjalist 
plaatide korral. Kasutatakse kahte erinevat eksperimentaalset sageduse funktsioonide 
andmestikku komposiitplaadi kohta, millel on erinevad kahjustuste konfiguratsioonid. 
Katsetulemused süsinikkiuga tugevdatud polümeerplaatide (CFRP) vibratsiooni- ja 
sagedusreaktsioonide kohta erinevates kahjustustingimustes analüüsitakse kahe 
CNN-mudeliga: üks treenitakse töötlemata sisenditel, teine Haar’i lanikute abil 
teisendatud sisenditel. Lainikutepõhine teisendus rõhutas lokaliseeritud siirdelisi ja 
sagedusmuutusi, vähendades samas müra ning luues selgemaid ja eristatavamaid 
sisendomadusi. Mõlemal mudelil olid identsed arhitektuurid ja treeningparameetrid, et 
eraldada lainikupõhise eeltöötluse mõju. Tulemused näitavad, et Haar’i lainikutepõhine 
mitmeresolutsiooniline filtreerimine parandab omaduste eristatavust, suurendab mudeli 
stabiilsust ja annab vastupidavama struktuurivastuse esituse, eriti väikeste ja 
mürarikaste andmestike korral, mida kasutatakse vibratsioonipõhises konstruktsioonide 
seisundiseires. 

Doktoritöö tulemusena selgub, et lainikutepõhised arvutus- ja hübriidmeetodid 
võivad toimida tõhusa sillana klassikalise mehaanika ja kaasaegse andmepõhise 
struktuurianalüüsi vahel. Esitatud raamistik suurendab arvutussimulatsioonide täpsust ja 
stabiilsust ning parandab vibratsioonipõhiste diagnostikate tõlgendatavust. Lisaks pakub 
see atraktiivseid omadusi matemaatilise modelleerimise, simulatsiooni ja kahjustuste 
tuvastamise seisukohalt, eriti väikese andmemahu ja keerulise dünaamilise käitumisega 
süsteemides. Tulemused viitavad, et mitmemõõtmeliste Haari lainikutepõhiste 
formulatsioonide ja adaptiivsete õppearhitektuuride edasine integreerimine võib 
laiendada seda metoodikat suurobjektide seireks, edendades lainikutepõhise 
matemaatika rakendusi konstruktsioonide seisundiseires ja dünaamilises analüüsis. 
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Abstract. In the current study, the higher order Haar wavelet method based formulation is developed for the analysis of the free 
vibrations of the tapered Timoshenko beam. The clamped-clamped and clamped-pinned boundary conditions are explored and the 
results with the 4th order and the 6th order of convergence are presented. The results are found to be in good agreement with the 
corresponding results of the Ritz method. The proposed approach can be considered as the principal improvement of the widely used 
Haar wavelet method providing the same accuracy with the several magnitudes lower mesh. Thus, the higher order Haar wavelet 
method has reduced the computational cost in comparison with the widely used Haar wavelet method since the computational 
complexity of both methods is determined by the mesh used. In the case of the fixed equal mesh used for both methods, the higher 
order Haar wavelet method results in the several magnitudes lower absolute error without a remarkable increase in computational 
complexity. The cost needed to pay for higher accuracy is hidden in a certain increase in the implementation complexity compared 
with the widely used Haar wavelet method.  
 
Key words: higher order Haar wavelet method, tapered Timoshenko beam, free vibration. 
 
 
1. INTRODUCTION 
 
Development and adaptation of computational methods and mathematical modelling techniques are rapidly 
evolving research areas with the main focus on finding more accurate, less time-consuming, and simpler 
approximations.   

The Haar wavelet method (HWM) was first introduced in [1–2]. According to Chen and Hsiao’s approach, 
the highest order of derivatives included in a differential equation is expanded into a series of Haar functions 
[1–2]. This method is applied to solving differential and integro-differential equations covering applications 
in various research areas such as engineering, natural sciences, etc. [3–9]. Furthermore, this method is used 
as a numerical solution to linear and nonlinear delay differential equations [10], and space derivatives are 
obtained through the Haar wavelet collocation method to solve 1D and 2D cubic nonlinear Schrodinger 
equations [11]. In [12] the accuracy and convergence results of the HWM are presented. Based on the obtained 
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results, it can be concluded that despite its simple implementation, the HWM needs refinement in order to 
compete with such widely used numerical methods as the finite difference method and the differential 
quadrature method.    

Recently, the higher order Haar wavelet method (HOHWM) was introduced in [13] in order to improve 
the accuracy and convergence of the previously proposed Haar wavelet method. The HOHWM has been 
applied with success to solving differential equations, vibration, and buckling response of beams [14–18]. 
Theoretical and numerical analyses of the free and forced vibration of homogeneous and functionally graded 
Timoshenko beams have been performed [19–22]. In the case of tapered beams, many approaches have been 
used for analysing the Timoshenko beam that has a non-uniform cross-section [23–26].  

The HOHWM is applied with success to the analysis of plate and shell structures using Euler–Bernoulli 
and zig-zag theories. In this paper the HOHWM approach is adapted to the Timoshenko beam theory.     
 
 
2. HOHWM  APPROACH  TO  FREE  VIBRATION  ANALYSIS  OF  THE  TIMOSHENKO  BEAM  
 
In this section, the formulation of the free vibration of the tapered Timoshenko beam and boundary conditions 
are introduced. 
 
2.1. Free  vibration  of  the  Timoshenko  beam 
 
A schematic view of the Timoshenko beam with a non-uniform cross-section along the length, x-direction, 
is shown in Fig. 1. 

Herein, free vibration of homogeneous tapered Timoshenko beams has been investigated. The material 
properties of the beams are assumed to be constant. Firstly, the cross-sectional area ( ) and the moment of 
inertia ( ) are presented as   
 

 
 
 where 0 and 0 are the area and the moment of inertia at the base of the beam, respectively. L is the length 
of the beam, E denotes Young’s modulus, G refers to shear modulus,  represents mass density, and k is the 
shear correction factor which is chosen to be 5/6. For the described Timoshenko beam, the basic governing 
differential equations for transverse vibration of the tapered beam can be presented as 
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Fig. 1. Schematic view of a tapered beam. 

 

 (1) (1),, ,

, (2) (2)

,



where  and  are the transverse deflection and rotation of the cross-section, respectively. The bending 
moment M and the shear force Q at any cross-section can be read as 
 
 
 

The boundary conditions for the beam can be expressed 
 
                                         for the clamped edge as:  = 0,      = 0, 
                                         for the pinned edge as:  = 0,      = 0. 
 
2.2. Higher  order  Haar  wavelet  method 
 
The higher order Haar wavelet method (HOHWM) is developed as an improvement of the widely used Haar 
wavelet method (HWM) [13]. 

The -th order ordinary differential equation, in general, can be presented as 
 
                                                                               
 
where  represents the order of the highest derivative involved in the differential equation. In the HOHWM, 
in comparison to the Haar wavelet method, the order of expansion is increased by 2s, Eq. (6). Based on the 
Haar wavelet, the expansion is presented as 
 

 
 
 
in which ( ) is the Haar function [18] 
 
  
 
 
 
where  =  +  + 1,  = 2  is a maximum number of square waves arranged in the interval [ , ] and the 
parameter  indicates the location of the particular square wave [18] 
 
 
 
 The integrals of the Haar functions (7) of order n can be expressed as [13] 

 
 
 
 

 
 
 
 
The differential equation can be satisfied in selected uniform grid points 
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. (3) (3),
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,  (7) 
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(8),,,
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. (9) (9)

 

 (10) (10), , , , ,



where L and R are the added collocation points on the left and right boundary, respectively. Then the numerical 
order of the convergence of the method can be estimated by 
 

 
 
 
where  is the existing solution, which in the current solution is obtained from the Ritz method [21]. 
 
 3. NUMERICAL  RESULTS  
 
In order to showcase the accuracy of the formulation proposed above, the values of natural frequencies of 
the Timoshenko beam under two arbitrary boundary conditions are presented. Table 1 presents the effect of 
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 (11) (11),

 
c 

c 

c 

Table 1. Effect of taper ratio on non-dimensional natural frequencies of the C-C Timoshenko beam 

A. error – Absolute error 



taper ratio (c) for the beam under clamped-clamped (C-C) boundary conditions. The results are compared 
with the existing results obtained from the Ritz method and alternative methods employed in [22,25]. 

As expected, for the beam with the taper ratio other than c = 0, the non-dimensional natural frequency 
decreases for the higher value of c. Moreover, as it can be observed, the results of the higher order Haar 
wavelet method prove that in the case of the 4th and the 6th order of convergence, the absolute error reduces 
much faster by increasing the number of terms in the Haar wavelet method. This matter could be essential in 
the case of more complex problems, thus the accurate result can be obtained faster and with a smaller number 
of terms. 

The effect of boundary conditions is shown in Table 2. For the tapered Timoshenko beam (c = 0.2), the 
results of two boundary conditions – clamped-clamped (C-C) and clamped-pinned (C-P) – are produced, 
which prove the above-mentioned point for the higher order Haar wavelet method. In the future study, the 
HOHWM is planned to be applied to design optimization of plate and shell structures [27–31]. 
 
 
4. CONCLUSIONS  
 
During the last two years, the HOHWM has been applied with success to the analysis of plate and shell 
structures by using Euler–Bernoulli and zig-zag theories. In the current study, the HOHWM is extended to the 
vibration analysis of Timoshenko beams. The solution has been used to analyse the beam under two boundary 
conditions, clamped-clamped and clamped-pinned. The results for beams with different taper ratios prove that 
the higher order Haar wavelet method is accurate, and for the versions with the higher order of convergence 
(4th and 6th order) the absolute error drops extremely fast. These results can be translated to a faster, simpler, 
and more accurate solution for other structural analyses where the analytical solution is difficult to obtain.   
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 Table 2. Effect of boundary conditions on non-dimensional natural frequencies of the tapered Timoshenko beam (c = 0.2) 



ACKNOWLEDGEMENTS 
 
The study was supported by the Estonian Centre of Excellence in Zero Energy and Resource Efficient Smart 
Buildings and Districts, ZEBE, TK146 funded by the European Regional Development Fund (grant 2014-
2020.4.01.15-0016); Smart Industry Centre (SmartIC) funded by the Estonian Research Council TT2; 
Estonian Research Council project MOBJD704 “Development of numerical methods for analysis of advanced 
composite and nanostructures”; AR20013 Smart City Centre of Excellence (1.01.2020–31.08.2023). The 
publication costs of this article were covered by the Estonian Academy of Sciences. 
 
 
REFERENCES 
 
1. Chen, C. F. and Hsiao, C. H. Haar wavelet method for solving lumped and distributed-parameter systems. IEE Proc. Control 

Theory Appl., 1997, 144(1), 87–94. 
2. Hsiao, C. H. State analysis of the linear time delayed systems via Haar wavelets. Math. Comput. Simul., 1997, 44(5), 457–470. 
3. Lepik, Ü. Buckling of elastic beams by the Haar wavelet method. Estonian J. Eng., 2011, 17(3), 271–284. 
4. Lepik, Ü. Numerical solution of differential equations using Haar wavelets. Math. Comput. Simul., 2005, 68(2), 127–143. 
5. Lepik, Ü. Numerical solution of evolution equations by the Haar wavelet method. Appl. Math. Comput., 2007, 185(1), 695–704. 
6. Hein, H. and Feklistova, L. Computationally efficient delamination detection in composite beams using Haar wavelets. Mech. 

Syst. Signal Process., 2011, 25(6), 2257–2270. 
7. Hein, H. and Feklistova, L. Free vibrations of non-uniform and axially functionally graded beams using Haar wavelets. Eng. 

Struct., 2011, 33(12), 3696–3701. 
8. So, S.-R., Yun, H., Ri, Y., O, R. and Yun, Y.-I. Haar wavelet discretization method for free vibration study of laminated composite 

beam under generalized boundary conditions. J. Ocean Eng. Sci., 2021, 6(1), 1–11. 
9. Aziz, I.  and Šarler, B. The numerical solution of second-order boundary-value problems by collocation method with the Haar 

wavelets. Math. Comput. Model., 2010, 52(9–10), 1577–1590. 
10. Aziz, I. and Amin, R. Numerical solution of a class of delay differential and delay partial differential equations via Haar 

wavelet. Appl. Math. Model., 2016, 40(23–24), 10286–10299. 
11. Pervaiz, N. and Aziz, I. Haar wavelet approximation for the solution of cubic nonlinear Schrodinger equations. Physica A, 

2020, 545, 123738. 
12. Majak, J., Shvartsman, B., Karjust, K., Mikola, M., Haavajõe, A. and Pohlak, M. On the accuracy of the Haar wavelet 

discretization method. Compos. B. Eng., 2015, 80, 321–327. 
13. Majak J., Pohlak, M., Karjust, K., Eerme, M., Kurnitski, J. and Shvartsman, B. S. New higher order Haar wavelet method: 

Application to FGM structures. Compos. Struct., 2018, 201, 72–78. 
14. Majak, J., Pohlak, M., Eerme, M. and Shvartsman, B. Solving ordinary differential equations with higher order Haar wavelet 

method. AIP Conf. Proc., 2019, 2116, 330002. 
15. Majak, J., Shvartsman, B., Ratas, M., Bassir, D., Pohlak, M.,  Karjust, K. and Eerme, M. Higher-order Haar wavelet method for 

vibration analysis of nanobeams. Mater. Today Commun., 2020, 25, 101290.  
16. Jena, S. K., Chakraverty, S. and Malikan, M. Implementation of Haar wavelet, higher order Haar wavelet, and differential 

quadrature methods on buckling response of strain gradient nonlocal beam embedded in an elastic medium. Eng. Comput., 2021, 
37(2), 1251–1264. 

17. Ratas, M., Salupere, S. and Majak, J. Solving nonlinear PDEs using the higher order Haar wavelet method on nonuniform and 
adaptive grids. Math. Model. Anal., 2021, 26(1), 147–169. 

18. Sorrenti, M., Di Sciuva, M., Majak, J. and Auriemma, F. Static response and buckling loads of multilayered composite beams 
using the refined zigzag theory and higher-order Haar wavelet method. Mech. Compos. Mater., 2021, 57(1), 1–18. 

19. Majkut, L. Free and forced vibrations of Timoshenko beams described by single difference equation. J. Theor. Appl. Mech., 2009, 
47(1),193–210. 

20. Shahba, A., Attarnejad, R., Marvi, M. T. and Hajilar, S. Free vibration and stability analysis of axially functionally graded tapered 
Timoshenko beams with classical and non-classical boundary conditions. Compos. B. Eng., 2011, 42(4), 801–808. 

21. Zhou, D. and Cheung, Y. K. Vibrations of tapered Timoshenko beams in terms of static Timoshenko beam functions, J. Appl. 
Mech., 2001, 68(4), 596–602. 

22. Pradhan, K. K. and Chakraverty, S. Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh–Ritz method. 
Compos. B. Eng., 2013, 51,175–184. 

23. Attarnejad, R., Semnani, S. J. and Shahba, A. Basic displacement functions for free vibration analysis of non-prismatic 
Timoshenko beams. Finite Elem. Anal. Des., 2010, 46(10), 916–929. 

24. Sohani, F. and Eipakchi, H. R. Analytical solution for modal analysis of Euler–Bernoulli and Timoshenko beam with an arbitrary 
varying cross-section. Math. Model. Eng., 2018, 4(3), 164–174. 

Proceedings of the Estonian Academy of Sciences, 2022, 71, 1, 77–8382



25. Tang, A.-Y., Wu, J.-X., Li, X.-F. and Lee, K. Y. Exact frequency equations of free vibration of exponentially non-uniform 
functionally graded Timoshenko beams. Int. J. Mech. Sci., 2014, 89, 1–11. 

26. Huang, Y., Yang, L.-E. and Luo, Q.-Z. Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-
section. Compos. B. Eng., 2013, 45(1), 1493–1498. 

27. Guessasma, S. and Bassir, D. Optimization of the mechanical properties of virtual porous slids using a hybrid approach. Acta 
Mater., 2010, 58(2), 716–725. 

28. Guessasma, S. and Bassir, D. Identification of mechanical properties of biopolymer composites sensitive to interface effect using 
hybrid approach. Mech. Mater., 2010, 42(3), 344–353. 

29. Snatkin, A., Eiskop, T., Karjust, K. and Majak, J. Production monitoring system development and modification. Proc. Estonian 
Acad. Sci., 2015, 64(4S), 567–580. 

30. Guessasma, S., Bassir, D. and Hedjazi, L. Influence of interphase properties on the effective behaviour of a starch-hemp composite. 
Mater. Des., 2015, 65, 1053–1063. 

31. Abouzaid, K., Bassir, D., Guessasma, S. and Yue, H. Modelling the process of fused deposition modelling and the effect of 
temperature on the mechanical, roughness, and porosity properties of resulting composite products. Mech. Compos. Mater., 2021, 
56, 805–816. 

 
 

Muutuva  ristlõikega  Timoshenko  tala  vabavõnkumiste  analüüs  kõrgemat  järku   
Haari  lainikute  meetodi  abil  

 
Marmar Mehrparvar, Jüri Majak, Kristo Karjust ja Mustafa Arda 

 
Viimase kahe aasta jooksul on rakendatud kõrgemat järku Haari lainikute meetodit plaatide ja koorikute analüüsiks, 
kasutades peamiselt Euler-Bernoulli teooriat, ühes artiklis ka zig-zag teooriat. Käesolevas töös on laiendatud kõrgemat 
järku Haari lainikute meetod Timoshenko tala vabavõnkumiste analüüsiks. Töös on kasutatud jäik-jäik ja jäik-vaba 
(vaba toetus) rajatingimusi. Analüüsitud on erivate ristlõike muutumise koefitsentidele vastavaid lahendusi. Kõrgemat 
järku Haari lainikute meetod osutus täpseks ja kiireks nii 4. kui 6. järku koonduvuse korral (koonduvuse järk on määratud 
meetodi parameetriga). Saadud tulemused on üldistatavad laiema plaatide/koorikute vabavõnkumisi käsitlevate ülesan-
nete klassi jaoks, kattes ka juhtusid, kus analüütiline lahend puudub. Saadud tulemused on kooskõlas laiemalt kasutatava 
Haari lainikute meetodi ja Ritzi meetodi abil saadud tulemustega.  Kõrgemat järku Haari lainikute meetodit võib vaadelda 
kui Haari lainikute meetodi edasiarendust, mis tagab kõrgemat järku koonduvuskiiruse ja väiksema absoluutse vea.  
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Abstract. The current study aims to develop a numerical algorithm based on the higher-order Haar wavelet method 
(HOHWM) to accurately investigate the free vibrations of the Timoshenko beam. The proposed solution is implemented 
for beams with three different boundary conditions. Results of two specific cases of HOHWM, 4th and 6th order of 
convergence, are presented and are compared with the well-known Haar wavelet method (HWM) and the existing exact 
solution. 

INTRODUCTION 

Various numerical methods and algorithms have been used by engineers and researchers to pave the way for 
solving complex scientific problems. In engineering problems, utilizing modern numerical methods, for instance the 
Haar wavelet method, is one of the most common approaches to analyze all sorts of structures. The Haar wavelet 
method (HWM) was first introduced by Chen and Hsiao [1] to solve ordinary differential equations in which the 
highest order derivative in the differential equations will be expanded into Haar wavelets. Pioneering studies have 
been done by Ü.Lepik in this area covering wide class of solid mechanics problems  [2-3]. The HWM was recognized 
as a method simple to implement and it was adapted for solving various differential [3-14] and integral/integro-
differential equations [15-17]. However, according to convergence theorem proved for HWM in 2015 in [18], the rate 
of convergence of the Chen and Hsiao approach based HWM is equal to two. Thus, the HWM needs improvement in 
order to compete with mainstream numerical methods used in engineering. 

 The higher order Haar wavelet method (HOHWM) was introduced in 2018 in [19] as principal improvement of 
the HWM. The HOHWM has been implemented successfully for vibration analysis of Euler-Bernoulli beams, 
composites plates, linear and nonlinear differential equations, vibration analysis of nanobeams, etc [20-26]. 

FORMULATION 

In this section, the formulation for free vibration analysis of Timoshenko beams is presented, and then the essence 
of the Haar wavelet method (HWM) and higher-order Haar wavelet method (HOHWM) are provided. 



Timoshenko Beam 

The Timoshenko model is an extension of the Euler-Bernoulli model by taking into account the shearing force 
effect and the rotary motion effect.  Consider a Timoshenko beam of length L, with bending stiffness of EI, shear 
stiffness of GA, distributed rotational inertia per unit length of I, and distributed mass of A per unit length which all 
are dependent on the axial coordinate x measured from the end of the beam. Also, k is the shear correction factor 
which in the current study chosen to be 5/6. For a beam with the given geometry and material properties, by employing 
the Timoshenko beam theory, basic governing differential equations for transverse vibration of beams read: 

 , , , 0, , , , 0 (1) 

 
where  and  are the transverse deflection and rotation of cross-section at the neutral surface, respectively. After 

some transformations, like the transformation of the homogeneous equation, it is possible to obtain an equation for 
the transverse vibration of the Timoshenko beam that is only dependent on the displacement function , . 

 , , , , 0 
 

(2) 

Higher-order Haar Wavelet Method 

The Haar wavelet, a special class of discrete orthonormal wavelets, is one of the most basic wavelets which is 
discontinuous and similar to a step function. The other wavelets produced from the identical main wavelet form a 
basis whose elements are orthonormal to each other and are normalized to unit length. This property allows each 
wavelet coefficient to be computed independently of other wavelets. The Haar functions are given as 

 110 for ,
for ,

elsewhere
 (3) 

 
In (1) 1, 2  is a maximum number of square waves deployed in the interval ,  and the 

parameter k indicates the location of the particular square wave 
 2 ,  2 1 , 2 1 ,/ , / 2  (4) 

 
The integrals of the Haar functions (3) of order n can be expressed as [8] 
 

,
0!2!2 !0

               
, ,,, 

 (5) 

 
Recently, the higher-order Haar wavelet method approach has been introduced [19]. The higher-order wavelet 

expansion is introduced as: , 1,2, …  (6) 



NUMERICAL RESULTS 

To study the accuracy and speed of the method employed in this paper, the free vibration of Timoshenko beams 
under different boundary conditions is presented in this section. 

 

TABLE 1. Comparison of the dimensionless natural frequencies of Timoshenko beams with three different boundary 
conditions 

 

N 

HWM  HOHWM 4th ( 1) HOHWM 6th ( 2) 

Frequency A. error Conv. 
rate Frequency A. error Conv. 

rate Frequency A. error Conv. 
rate 

Pi
nn

ed
-P

in
ne

d 
Ex

ac
t: 

9.
16

06
83

18
 

4 10.76068319 1.60E+00  9.16627318 5.59E-03  9.16109539 4.12E-04  

8 9.59208533 4.31E-01 1.8954 9.16088118 1.98E-04 4.0580 9.16069124 8.05E-06 5.2583 

16 9.27047366 1.10E-01 1.9742 9.16069928 1.61E-05 4.0268 9.16068333 1.48E-07 5.6800 

32 9.18825306 2.76E-02 1.9935 9.16068724 4.06E-06 4.0244 9.16068322 3.68E-08 5.7820 

64 9.16758331 6.90E-03 1.9983 9.16068383 6.42E-07 4.0240 9.16068319 6.74E-10 5.9221 

128 9.16240869 1.73E-03 1.9995 9.16068327 8.79E-08 4.0133 9.16068318 1.73E-11 5.9850 

256 9.16111459 4.31E-04 1.9998 9.16068320 1.74E-08 4.0054 9.16068318 3.90E-12 6.0130 

C
la

m
pe

d-
Pi

nn
ed

 
Ex

ac
t: 

11
.0

82
49

91
8 

4 12.16296846 1.08E+00  11.12396203 4.15E-02  11.08476457 2.27E-03  

8 11.67284507 5.90E-01 2.0085 11.08552579 3.03E-03 4.0017 11.08257904 7.99E-05 6.1932 

16 11.16717818 8.47E-02 2.0065 11.08280853 3.09E-04 4.0153 11.08249987 6.91E-07 6.1877 

32 11. 08814918 5.65E-03 2.0050 11.08250835 9.17E-06 4.0153 11. 08249920 2.00E-08 6.1326 

64 11. 08267527 1.76E-04 2.0043 11.08249969 5.14E-07 4.0010 11. 08249919 5.82E-09 6.1049 
128 11.08254898 4.98E-05 2.0042 11.08249985 6.72E-07 4.0099 11.08249918 4.24E-10 6.0573 

256 11.08250581 6.63E-06 2.0024 11.08249918 4.96E-09 4.0002 11.08249918 3.35E-11 6.0547 

C
la

m
pe

d-
C

la
m

pe
d 

Ex
ac

t: 
13

.8
34

75
84

5 

4 13.96275845 1.28e-01  13.84197845 7.22e-03  13.83477975 2.13e-05  

8 13.86655612 3.18e-02 2.0091 13.83519214 4.34e-04 4.0576 13.83476001 1.56e-06 5.4358 

16 13.84269132 7.93e-03 2.003 13.83478525 2.68e-05 4.0146 13.83475854 8.43e-08 5.7522 

32 13.83674066 1.98e-03 2.0007 13.83476012 1.67e-06 4.0036 13.83475846 1.51e-09 5.9467 

64 13.83525392 4.95e-04 2.00019 13.83475856 1.04e-07 4.0009 13.83475846 7.71e-10 5.9955 
128 13.83488232 1.24e-04 2.00004 13.83475846 6.53e-09 4.0002 13.83475845 4.08e-11 5.9999 

256 13.83478942 3.10e-05 2.00001 13.83475845 4.08e-10 4.0000 13.83475845 1.40e-13 6.0000 
 
Table 1 exhibits the dimensionless neutral frequencies of a homogeneous beam under three arbitrary boundary 

conditions, pinned-pinned, pinned-clamped, and clamped-clamped. Also, the results are validated by the given exact 
solution which is calcuated by authors. As it can be seen the used method is proven to be accurate and by utilizing 
HOHWM the solution converges faster which can be crucial for more complicated problems. However due to some 
limitations in order to obtain the desired convergence rate some extra measures have been taken.   

In the future study, the design optimization of the Timoshenko beam is planned based on previous long time 
experience of the workgroup in area of traditional and evolutionary optimization [27-29]. First interest is related to 
maximization of the fundamental frequency value. Development of optimization algorithms for wide class of 
engineering structures is planned in cooperation with workgroup from Université Paris-Saclay [30-33]. Another 
challenge is adaption of the HOHWM for analysis of nanostructures in cooperation with Trakya University [34-37]. 



CONCLUSION 

In the current study, the higher order Haar wavelet method has been adapted for free vibration analysis of a 
homogenous Timoshenko beam. The dimensionless natural frequencies of Timoshenko beam under three different 
boundary conditions were evaluated. An analysis of the results allows confirming that the proposed HOHWM provides 
principal improvement of accuracy and the rate of convergence in comparison with widely used HWM. 
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LONGITUDINAL WAVE PROPAGATION IN AXIALLY 

GRADED RAYLEGH–BISHOP NANORODS

M. Arda,1,2* J. Majak,1 and M. Mehrparvar1

Keywords: longitudinal wave propagation, Haar wavelet method, axially graded, Raylegh–Bishop rod, 
nonlocal elasticity

lateral inertia on nanorods was considered using the nonlocal Raylegh–Bishop rod theory. As a novel approach, 

1. Introduction

Carbon nanotubes are one of the most impressive nanomaterials, which have superior physical properties for a one-
dimensional structure. Besides the wide range of application areas, nanotubes can be improved with functionally graded 

applications. Recently, graded nanotubes have been used as semiconductor alloy nanowires, which were produced in an 
axially graded composition in single-walled carbon nanotubes [1].

Continuum modeling of the nano-sized structures can be achieved with the size-dependent gradient theories, which 
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is the nonlocal stress gradient elasticity theory, which was proposed by Eringen [2, 3]. It has been mostly used theory in 
statics and dynamics analysis of nanostructures [4-14]. Also, higher order [15] and shear deformation [16] beam models 
have been developed for the analysis of nanotubes.

Nanorods can be modeled as continuous hollow rods with the help of nonlocal elasticity. In addition to the strain 

-
leigh–Bishop model.

A comparison of longitudinal wave propagation with several rod models was carried out in [18, 19]. A similar 
comparison was made by Aydogdu [20] for the nanorods by considering unimodal theories. Validation and calibration 
of small-scale parameters for various models in wave propagation were carried out by using lattice dynamics results. 
Longitudinal wave propagation and vibration of nanorods were investigated by Li et al. [21] with nonlocal unimodal rod 
theories. Hosseini et al. used the Bishop rod model with strain gradient theory for modeling the nano-resonator [22] and 
FG-reinforced composite microrods [23]. Karlicic et al. [24] studied the multiple Bishop nanorod system by utilizing the 
nonlocal elasticity theory.

Materials with continuously varying properties in the length direction should be named axially functionally 
graded (aFG) structures [25-28]. The nanoscale application of aFG materials for the wave characteristics of nanostruc-

was studied by Ebrahimi and Dabbagh [31]. Yao et al. [32] investigated the vibrations and wave propagation of axially 
moving FG nonlocal Timoshenko microbeams. In addition, continuum shell models were used in wave propagation 

FGM with deformable boundaries, were investigated by Yayli et al. in [35-39]. Vibration analysis of carbon nanotube 
reinforced composite materials was studied in [40, 41].

In the majority of studies, related to axially graded nanostructures, the nonlocal parameter was assumed constant. 
However, nonlocality is a material property like elasticity or density that should be considered a variable in the grading 
directions. The novelty of the present work is that the nonlocal parameter is varied with power-law formulation, like other 
material properties. Axially FG Rayleigh–Bishop nanorod model was obtained with nonlocal elasticity theory, Rayleigh–

work [42], the present study deals with wave propagation in axially graded nanorod structures. Aziz exhibited in several 

z

x

R

Fig 1. Axially graded nanorod continuum model.
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 N E x AL
xx� � � � . (8)

2.2. Equation of motion for the Raylegh–Bishop nanorod

can be obtained using Hamilton’s minimum potential energy principle.
The total kinetic (EK) and potential (E

below [56-58]:
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where  is the density, IP  is the polar moment of inertia of the nanorod. It should be noted that E , G , ,  and e  are 
variated by axial coordinate x

 I R RP � �� ��
2

2

4

1

4 , (11)

where R1  and R2  are the inner and outer radii of the carbon nanotube. For brevity, variations of the kinetic and potential 

for the nonlocal Raylegh–Bishop rod model is [58]:
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and boundary conditions are:
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(G e� � �� 0 ) can be made.

2.3. Functionally graded materials

-
rial properties (elasticity modulus, shear modulus, density, and scale parameter) in the axially graded structure are assumed 
as the power-law function:
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where y  is the material grading or power-law index, E0 , G0 , 0 , �
�0  and E1 , G1 , 1 , 1  are the material properties at 

the left and right side of the nanorod, respectively, s
of nanorod. Power-law variations of material properties are shown in Fig. 2. In the present study, dimensionless material 
properties were assumed. y and s parameters can be determined according to the composition of materials selected and pro-
duction methods. For the analysis, s is assumed as 0.5, 1, 2 and y is assumed as 1, 2, 3. Besides that, these parameters can 
be selected from fractional numbers. 
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With the assumption of the harmonic wave function u x t U x t, sin� � � � �� �� , dimensionless distance X x
a

�
�

�
���

�
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���  in the 

nanorod’s lattice structure, and nonlocality function � X e X� � � � �� �2 ,
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2.4. Haar Wavelet Method (HWM)

Haar wavelets were introduced by Hungarian mathematician Alfred Haar in 1910. The Haar wavelets consist of 
piecewise constant functions and are the simplest among all the wavelet families which is a good feature to integrate them 
analytically at arbitrary times [59].

Haar wavelets h xi � �� � 1  in given intervals and zero else-
where [59]

 h x

x i i

x i ii � � �
 � � � ��� ��

�  � � � ��� ��

! 1

1

0

1 2

2 3

if

if

" "

" "

,

,

elsewhere

##
$$

%
$
$

, (17)

where
 " �1 2i A k x� � � 	 ,  

 " �2 2 1i A k x� � � 	 	� �  and � � �
�M

m
x B A

M
, ,

2

 (18)

 " �3 2 1i A k x� � � 	 	� � .  

The wavelet number ( i i m k� 	 	1 , and m m Mj J� �� �2 2,  is the maximum number of 
A B,& ' .  is the maximum level of resolution. The inter-

val A B& '  is divided into 2M x .
If the j  increases, the wavelet becomes narrower. Because of that, j  is called the dilatation parameter. The inte-

ger k  is called the translation parameter which determines the position of the wavelet in the x -axis.
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i 1 . In the case of i 1 , h x1 � �  is the scaling function:

 h x1 1� � (  and m A B� � � � � � � � � �0 1 1 11 2 3, ," " " . (19)

The width of the i th wavelet is:

 " " �2 1
12 2i i x B A m B A j� � � � � � � �� � � �� �� �) . (20)

If the maximal level of resolution ( ) is assumed, it can be concluded that the Haar wavelets are orthogonal to 
each other.

Let us assume that * x� � A B,& ' . Then, function * x� �  
can be expanded into Haar wavelets as:

 * x a h x
i

M

i i� � � � �
�
+

1

2

, (21)

where ai
The integrals of the Haar functions according to th  order can be expressed as [59]

 P x

x i

x i x i i

xi,

,

"

,
" " "

,
",

!
,

!

� � �

- � �
� � ��� ��  � � � ��� ��

�

0

1

1

1

1 1 2

if

if

11 2 2 3

1

2

1

i x i x i i

x i

� ��� �� � � � ��� ��. /  � � � ��� ��

� � ��� �

, ,
" " "

,
"

if ,

! �� � � � ��� �� 	 � � ��� ��. / 0 � �

!

#

$
$
$
$

%

$
$
$
$

, , ,
" " "2 2 3 3x i x i x iif .

 (22)

i 1 . In the case of i 1 , boundary elements turn into "1 1� � � A  and 
" "2 31 1� � � � � � B . The integral of a function in this case ( i 1) can be obtained with:

 P x x A,
,

,,
!

1

1� � � �& ' . (23)

Derivatives of the functions also may be expanded into the Haar wavelet series. Taking into consideration of 
the present problem, the higher order derivative of the axial displacement function can be expanded to the Haar wavelet 
series as below:

 * x
d U X
dX

a h x
i

M

i i� � � � �
� � �

�
+

4

4
1

2

. (24)

 
d U X
dX

a H i xT
4

4

� �
� � �, , (25)

where aT  is the transpose of the axial displacement vector of nanorod and H i x,� � -
grated analytically four times according to axial x -coordinate, the axial displacement function of the nanorod will be ob-
tained as below:

 U X a P i x C X C X C X CT� � � � � 	 	 	 	4 1

3

2

2

3 4
6 2

, , (26)

where P i x4 ,� �  are the fourth-order integration matrices and Ci  stands for integration constants which can be determined by 
using boundary conditions.
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2.5. Higher order Haar wavelet method (HOHWM)

Higher order HWM increases the order of derivative of the function by even numbers.

 U x
d U X
dX

a h x
i

M

i i� � � � �
� � �

	

	
�
+

� "

� "

2

2
1

2

. (27)

In the case " �1 , the wavelet expansion starts from the 6th order derivative of the function. It has been observed 

-

2.6. Bloch–Floquet theory

lattice. Let us assume * x� � a . The 
* x� �  is:

 * *x x a� � � 	� � . (28)

in the displacement function and its derivatives using the Bloch wave vector as below for the present problem:

 U e Uin0 1� � � � �� , (29)

 
d U
dX

e
d U
dX

in
�

�
�

�

�

0 1� �
�

� � , (30)

where i  is the complex number ( i � �1)  and n

If the periodicity conditions for the Haar Wavelet method are written in matrix form:

 

e
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e
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. (31)

For the higher order Haar wavelet method, the periodicity conditions in matrix form can be expressed as below:
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Phase (VP ) and group velocities (VG

 V
nP �
� , (33)

 V d
dnG �
� . (34)

3. Numerical Results

Longitudinal wave responses of axially graded Raylegh–Bishop nanorods were investigated in the present Section. 
Dimensionless material properties for the aFG nanorod are considered. The inner radius and thickness of the nanorod 
are 0.41 and 0.066 nm, respectively. The Poisson ratio for nanotubes is 0.20.

Molecular dynamic simulations and nonlocal continuum models are compared for wave propagation in carbon 
-

tion of the present nonlocal Raylegh–Bishop rod model was carried out by using homogenous local and nonlocal rod model 
results in Tables 1 and 2, respectively.

taken from [56].

 � � �t J exac� � � � � � , (35)

 CR

J exac
J exac

�

�� � � � �
� � � � �

log

log

� �
� �

1

2
. (36)

TABLE 1. Validation for Homogenous R–B Rod ( e0  = 0, s  = 1)

2 +1 HWM
True Error Conv Rate True Error Conv Rate

1 4 2.319104 1.78×10–02 ––– 2.302340 1.02 10–03 –––
2 8 2.305855 4.53 10–03 1.9714 2.301383 6.21 10–05 4.0372
3 16 2.302459 1.14 10–03 1.9937 2.301324 3.85 10–06 4.0096
4 32 2.301605 2.85 10–04 1.9984 2.301321 2.41 10–07 4.0024
5 64 2.301392 7.13 10–05 1.9996 2.301320 1.50 10–08 4.0006
6 128 2.301338 1.78 10–05 1.9999 2.301320 9.39 10–10 4.0001
7 256 2.301325 4.45 10–06 1.9999 2.301320 5.87 10–11 4.0000
Exact value 2.301320952128405 [41]
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Rayleigh (a, b) and homogenous Rayleigh-Bishop (c, d) rods at s  = 1.

TABLE 2. Validation for Nonlocal Homogenous R–B Rod ( e0 =0.1, s  = 1)

2 +1 HWM
True Error Conv Rate True Error Conv Rate

1 4 2.210516 1.50 10–02 ––– 2.196385 8.60 10–04 –––
2 8 2.199350 3.82 10–03 1.9706 2.195577 5.24 10–05 4.0374
3 16 2.196485 9.61 10–04 1.9935 2.195528 3.25 10–06 4.0097
4 32 2.195765 2.40 10–04 1.9984 2.195525 2.03 10–07 4.0024
5 64 2.195585 6.01 10–05 1.9996 2.195525 1.27 10–08 4.0006
6 128 2.195540 1.50 10–05 1.9999 2.195525 7.92 10–10 4.0001
7 256 2.195528 3.76 10–06 1.9999 2.195525 4.75 10–11 4.0000
Exact value 2.195525123273453 [41]
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s 2 ) material properties 
case. This behavior can change with second material properties and the power-law parameter. Thus, the grading nonlocality 
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and homogenous Rayleigh-Bishop (b, d) nanorods at s  = 1.

y  = 2)

2 +1 Constant Nonlocality (e = 0.1) Grading Nonlocality (e0 = 0.1)
s = 0.5 s = 1 s = 2 s = 0.5 s = 1 s = 2

1 4 2.282941 2.210516 2.180577 2.329669 2.210516 2.193185
2 8 2.276619 2.199350 2.171733 2.323278 2.199350 2.198548
3 16 2.275062 2.196485 2.169437 2.321706 2.196485 2.202387
4 32 2.274675 2.195765 2.168858 2.321315 2.195765 2.203862
5 64 2.274578 2.195585 2.168713 2.321217 2.195585 2.204290
6 128 2.274554 2.195540 2.168677 2.321192 2.195540 2.204402
7 256 2.274548 2.195528 2.168668 2.321186 2.195528 2.204430
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ber of aFG Rayleigh(a, b) and aFG Rayleigh-Bishop(c, d) rods at s  = 0.5.
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y  = 2)

2 +1 Constant Nonlocality (e = 0.1) Grading Nonlocality (e0 = 0.1)
s = 0.5 s = 1 s = 2 s = 0.5 s = 1 s = 2

1 4 2.271971 2.196385 2.168986 2.317916 2.196385 2.172353
2 8 2.273807 2.195577 2.168642 2.320188 2.195577 2.190910
3 16 2.274363 2.195528 2.168657 2.320924 2.195528 2.199760
4 32 2.274501 2.195525 2.168663 2.321119 2.195525 2.203085
5 64 2.274535 2.195525 2.168664 2.321168 2.195525 2.204084
6 128 2.274544 2.195525 2.168665 2.321180 2.195525 2.204350
7 256 2.274546 2.195525 2.168665 2.321183 2.195525 2.204417
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phase and group velocities however, the Raylegh–Bishop, which is a gradient model like nonlocal elasticity, decreases both 
of them.

In Figs. 5a, b, the results of Rayleigh model for axially graded rod are presented. Material properties are assumed in 
decreasing variation ( s 0 5.

decreasing and reaches a constant value. This behavior can be observed only in axially grading structures [63]. No wave can 

the real part of the wavenumber increases and the imaginary part decreases.

Fig. 5c, d. If the variation of material properties is considered in Fig. 2, the mean value is the highest when the power-law is 
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velocities for both the Rayleigh and the Raylegh–Bishop models.
Wave propagation on axially graded nanorods with enhancing material properties ( s 2 ) can be seen in Fig. 7. 

Similarly, with the variation characteristic of reducing material properties ( s 0 5. ), imaginary parts of the wave number in 
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on the wave number contrary to the reducing material properties case. The reason for this behavior can be interpreted from 
the mean values of material properties in Fig. 2. Higher material grading index reduces the material properties and increases 

cases than reducing ones. The power-law parameter decreases the phase velocities, which can be seen clearly in the Raylegh–

material variation ( y 1
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power-law parameter.

4. Conclusion

size, shear, and rotational inertia in nanostructures, Eringen’s nonlocal elasticity and Raylegh–Bishop theories were em-

was solved by utilizing the higher order Haar wavelet method. The results were compared and validated with continuum 

were investigated.
Nonlocality is considered in a graded formulation, which is assumed constant in most of the literature. The Grading 

-

-

enhancing or reducing material properties variation. In reducing cases, the material grading index works with nonlocality 

in the modeling of semiconductor alloy composite nanowires.
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Abstract. In order to ensure structural integrity, detecting cracks, as a common structural flaw, is crucial. The current study 

presents a method for crack detection and prediction in plates under free vibration using the Convolutional Neural Network 

(CNN) and the Haar wavelet transformation. The Haar wavelet method is employed to preprocess vibration data, extracting 
key features that improve CNN's ability to identify and localize cracks. The proposed approach establishes high accuracy 

in detecting crack locations and intensities, showcasing its potential for real-time structural health monitoring. 

INTRODUCTION 

Composite materials, due to their superior strength-to-weight ratios and their customizability are extensively used 

in aerospace, civil, and mechanical engineering. However, there are many defects that can occur in them, such as 

cracks, delamination, etc., that can impose significant challenges to the integrity of the structure. Cracks can 

compromise the performance and safety of composite structures, thus making early detection and accurate prediction 

is vital. 

There are many crack detection methods already in use, for instance, visual inspection, ultrasonic testing, and other 

non-destructive evaluation techniques [1-6]. Although, these traditional methods could fall short in terms of accuracy, 

and efficiency and also could become time-consuming and expensive. However, with the advancement of 

computational techniques, and machine learning a powerful tool emerged that can be trained in order to recognize 

patterns, and classify and identify systems. Over the past few years, many studies have been conducted by employing 

machine learning techniques, for instance, the Artificial Neural network (ANN) has been used to investigate the 

structural health monitoring and presence of cracks and their severity [7-11].  Furthermore, the Convolutional Neural 

Network (CNN) is a powerful tool that can be developed in order to automate crack detection, due to its power to 

process data, recognize patterns, and even its ability to analyze visual data [12]. 

This paper explores the integration of the Haar wavelet transform with CNN for detecting and predicting cracks in 

plates under free vibration. The Haar wavelet transform aids in feature extraction from vibration signals, and fed data 

to enhance the CNN capability to identify crack location and severity accurately.  

 

METHODOLOGY 
 

In this section, a road map is provided to form a methodology for predicting crack location and intensity in a plate. 

The process starts with the data collection as one of the most critical steps in machine learning. Afterward, the design 

of the CNN algorithm and the training and validation steps are explained. 
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Data Collection 

Accurate data collection is the first step for effective crack detection in structures using machine learning. In this 

study, data was sourced from literature and finite element method (FEM) simulations. To increase the dataset, FEM 

simulations were conducted. A detailed model of the plate was created using FEM software, modeling several crack 

scenarios with different orientations, lengths, and positions. The FEM-generated data was validated against data from 

the literature to confirm accuracy. 

Data normalization was performed to ensure consistency, with crack positions scaled between -1 and 1 and 

intensities normalized to a range of 0 to 1. 

Convolutional Neural Network 

Convolutional Neural Networks (CNNs) are gaining popularity for detecting cracks in structures due to their 

powerful pattern recognition capabilities. The general form of the architecture is that it consists of layers for 

convolution, pooling, and fully connected. Convolutional layers detect cracks’ essential features such as presence, 

edges, and texture. Spatial dimensions can be reduced by using pooling layers to improve computational efficiency 

and reduce overfitting. The presence of cracks in these entire regions can be effectively classified by connecting all 

the detected features to fully connected layers at the end of the network. When Haar wavelet is integrated into CNN, 

localized frequency information can be extracted which improves crack detection accuracy through highlighting 

discontinuity signs associated with the crack initiation stage. This hybrid approach takes advantage of both spatial and 

frequency domain features for robustly spotting cracks. 

Training and Validation 

The CNN is trained by using a labeled dataset of vibration signals, in which the crack locations and severities are 

known. The dataset is divided into training, validation, and test sets. During training, backpropagation is applied to 

optimize the network weights, and an appropriate loss function such as mean absolute error and mean squared error 

are used. Performance metrics for this model include accuracy, precision recall, and F1- score. Cross-validation helps 

to make sure that the model will be robust therefore preventing overfitting. 

 
 

RESULTS 

The integration of the Haar wavelet transform with CNNs significantly improves the accuracy of crack detection 

in structure. As a case study in this section, an isotropic plate is modeled in various states, i.e. various crack sizes, 

locations, and severities in FEM software, here ABAQUS is used. The data was fed to CNN, with the integration of 

wavelet transformation as an enhancement to make the algorithm more robust. 

Figure 1 presents the results for 20 predictions of the modeled CNN, the crack's actual location and intensity are 

shown as well as the predicted results. As mentioned before, all the results are normalized to eliminate any 

inconsistency in the data set and make it a more coherent dataset. Heatmaps showing the predicted crack locations 

and severities are overlaid on images of the plates. These visualizations provide a clear representation of the model's 

ability to predict. 
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(a) (b) 

FIGURE 1. Crack location and intensity in an isotropic plate. 

 

In order to have a visual of the prediction accuracy, the crack position and its corresponding mean absolute error 

are shown in Figure 2. As it can be seen, for this case study the developed CNN model achieved an acceptable 

accuracy. 

 

 

FIGURE 2. Comparison of actual crack position and predicted crack position, and the corresponding mean absolute error. 
 

 

The key performance metrics are as follows: 

 Accuracy: The CNN model achieves an accuracy of 96%, significantly higher than traditional methods and 

standalone CNN models. 

 Precision: The model's precision, defined as the ratio of true positive crack detections to the total predicted 

positives, is 94%. 
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 Recall: The recall, or the ratio of true positive crack detections to the total actual positives, is 97%. 

 F1-Score: The F1-score, which is the harmonic mean of precision and recall, stands at 95.5%. 

 

Traditional methods often fail to detect sub-surface or fine cracks, whereas the proposed method successfully 

identifies these defects with high reliability.  

 

CONCLUSION 

For the detection of cracks in structures under free vibrations, a formulation based on the combination of the Haar 

wavelet transform and Convolutional Neural Networks (CNNs) is developed. This model combines the strengths of 

both the CNN’s pattern recognition abilities and the Haar wavelet transform’s ability to capture local signal variations. 
According to the findings, this fusion approach is proven to be a reliable and accurate model to detect cracks in a 

structure. High precision and recall rates achieved by this model can be used for real-world applications such as 

structural health monitoring and maintenance. In different engineering fields, this technique will enable automated, 

accurate, and efficient crack detection method thereby improving safety. 

Future studies will also investigate its applicability to various structures and materials. Optimal network 

architecture design as well as the training process can further improve its performance for employing the model for 

various structural flaws, and improve the prediction power. 
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