
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Aleksandr Ivanov 211489IAPM

OVERCOMING DATASET LIMITATIONS: ADVANCED

AUGMENTATION TECHNIQUES FOR FISH SPECIES

CLASSIFICATION WITH CONVOLUTIONAL NEURAL

NETWORKS

Master’s Thesis

Supervisor: Elizaveta Dubrovinskaya
PhD

Co-supervisor: Jeffrey Andrew Tuhtan
Associate Professor

Tallinn 2023

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Aleksandr Ivanov 211489IAPM

ANDMEKOGUMITE PIIRANGUTE ÜLETAMINE:
ARENENUD SUURENDAMISTEHNIKAD KALALIIKIDE

KLASSIFIKATSIOONIKS KONVOLUTSIOONILISTE

NEURONAALSETE VÕRKUDE ABIL

Magistritöö

Juhendaja: Elizaveta Dubrovinskaya
PhD

Kaasjuhendaja: Jeffrey Andrew Tuhtan
Associate Professor

Tallinn 2023

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Aleksandr Ivanov

07.05.2023

1

Abstract

Fish species classification is a critical task in underwater ecosystem monitoring, It remains
highly challenging due to the limited availability and poor quality of datasets. Convolu-
tional neural networks (CNNs) have shown promising results in fish species classification,
but their performance heavily depends on the quality and size of datasets. This study has
investigated the effectiveness of various image augmentation techniques in improving the
performance of a specific CNN model for fish species multi-class classification in the
context of limited, low-quality datasets. The author compared traditional augmentation
techniques with novel ones, such as Stable Diffusion, and evaluated their impact on the
classification model’s performance and time costs. This study has also explored the feasi-
bility of applying these techniques to small initial datasets and assessed their effectiveness
in mitigating issues related to dataset imbalances and overfitting.

Achieved findings have suggested that a combination of synthetic images generated us-
ing Stable Diffusion, fine-tuned with Supplementary and AFFiNe datasets, along with
additional RandAugment transformations, yielded the best performance improvements in
terms of evaluation metrics of ResNet18 and ResNet50 models. It was also discovered
that advanced image augmentation techniques, such as Stable Diffusion, can be effectively
applied in limited data scenarios, contributing to the development of robust fish species
classification models.

The results of this study have implications for the field of fish species classification,
including the potential for novel augmentation techniques to be worth applying and the
contribution of advanced models to monitor and preserve underwater ecosystems. Future
work could focus on refining the proposed solution by improving the prompts used, training
custom image upscaling models, or investigating alternative augmentation techniques.
Ultimately, the study demonstrates the potential for advanced augmentation techniques
to make a significant contribution to the development of robust fish species classification
models.

The thesis is written in English and is 57 pages long, including 8 chapters, 65 figures, and
20 tables.

2

Annotatsioon
Andmekogumite piirangute ületamine: Arenenud

suurendamistehnikad kalaliikide klassifikatsiooniks konvolutsiooniliste
neuronaalsete võrkude abil

Kalaliikide klassifitseerimine on veealuste ökosüsteemide jälgimisel kriitiline ülesanne,
kuid piiratud ja madala kvaliteediga andmekogumite tõttu on see keeruline. Konvo-
lutsioonilised neuronaalsed võrgud (CNN-id) näitavad selles valdkonnas paljulubavaid
tulemusi, kuid nende jõudlus sõltub andmekogumite kvaliteedist ja suurusest. Käesolev
uuring uuris pildi suurendamise tehnikate tõhusust CNN-mudeli jõudluse parandamisel
kalaliikide klassifikatsioonil, võrreldes traditsioonilisi tehnikaid uutega, nagu stabiilne
difusioon.

Uuring näitas, et stabiilse difusiooni, peenhäälestatud andmekogumite ja täiendavate trans-
formatsioonidega genereeritud sünteetiliste piltide kombinatsioon parandas kõige enam
ResNet18 ja ResNet50 mudelite jõudlust. Stabiilne difusioon osutus tõhusaks ka piiratud
andmetega stsenaariumides, aidates kaasa tugevate kalaliikide klassifikatsioonimudelite
arendamisele.

Uuringu tulemused viitavad uute suurendamistehnikate väärtusele kalaliikide klassifikat-
siooni valdkonnas ning nende panusele veealuste ökosüsteemide jälgimise ja säilitamise
arendamisel. Edasised uurimissuunad võivad keskenduda lahenduse täiustamisele, kohan-
datud pildi suurendamise mudelite koolitamisele või alternatiivsete tehnikate uurimisele.
Lõppkokkuvõttes näitab uuring arenenud suurendamistehnikate potentsiaali panustada
oluliselt tugevate kalaliikide klassifikatsioonimudelite arendamisse.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 57 leheküljel, 8 peatükki, 65
joonist, 20 tabelit.

3

List of Abbreviations and Terms

AA AutoAugment
ANN Artificial Neural Network
BfG The German Federal Institute of Hydrology (Bundesanstalt

für Gewässerkunde)
CNN Convolutional Neural Network
CPU Computer’s processor
CV Computer Vision
Frame A part of an image or an individual image of a video at a

specific moment of time
FP False Positive
FN False Negative
GAN Generative Adversarial Network
GPU Graphics card
Hyperparameter External model parameter, that cannot be estimated from

data, used to control the learning process
RA RandAugment
RL Reinforcement Learning
SD Stable Diffusion
SVD Singular Value Decomposition
TP True Positive
TN True Negative
UI User Interface
VAE Variational Autoencoder
VRAM GPU’s memory
YOLO You only look once. Object detection model

4

Table of Contents

1 Introduction . 11
1.1 Related literature . 12
1.2 Problem statement . 15
1.3 Author contribution and scope . 16
1.4 Thesis structure . 17

2 Preliminaries . 18
2.1 CNN model selection . 18

2.1.1 ResNet . 20
2.2 Data augmentation pipeline . 21
2.3 Basic augmentation . 22
2.4 Advanced augmentation . 22

2.4.1 AutoAugment . 23
2.4.2 Fast and Faster AutoAugment 24
2.4.3 RandAugment . 25
2.4.4 AugMix . 26

2.5 Stable Diffusion . 27
2.5.1 Stable Diffusion v1.5 and v2.1 28
2.5.2 Fine-tuning: DreamBooth . 29
2.5.3 Fine-tuning: LoRA . 30

2.6 Model training . 30
2.7 Validation . 31

3 Datasets . 33
3.1 Supplementary . 33

3.1.1 Challenges . 34
3.1.2 Preprocessing . 35

3.2 AFFiNe . 37

4 Experiments . 39
4.1 Experimental setup . 39
4.2 Data and model preparation . 40

4.2.1 Dataset . 40
4.2.2 Data transformation . 41
4.2.3 Dataloader and Data sampler . 42

5

4.2.4 Model preparation . 43
4.3 BASELINE model training . 44
4.4 AutoAugment . 44
4.5 Faster AutoAugment . 45

4.5.1 Optimal policy searching . 45
4.5.2 Model training . 45

4.6 RandAugment . 46
4.7 AugMix . 46
4.8 Stable Diffusion: Data preparation . 47

4.8.1 Supplementary . 47
4.8.2 AFFiNe . 49
4.8.3 Images captioning . 49

4.9 Fine-tuning: DreamBooth . 51
4.10 Fine-tuning: LoRA . 51
4.11 Checkpoint selection . 53
4.12 Synthetic datasets generation . 54
4.13 Model training using synthetic datasets 54
4.14 Model training using a mix of augmentations 54

5 Validation and results . 55
5.1 BASELINE model evaluation . 55
5.2 Model training with augmentation evaluation 56

5.2.1 Selection of RandAugment . 57
5.2.2 Selection of AugMix . 58
5.2.3 Faster AutoAugment search . 59
5.2.4 Synthetic datasets . 61
5.2.5 Total metrics comparison . 62
5.2.6 Total spent time comparison . 63

5.3 Best models evaluation . 64
5.4 Problem analysis . 65

6 Discussion and further work . 66

7 Summary . 67

8 Acknowledgements . 68

References . 69

Appendix 1 – Non-Exclusive License for Reproduction and Publication of a
Graduation Thesis . 73

6

Appendix 2 – Annotation tool . 74

Appendix 3 – Caption tool . 75

Appendix 4 – Custom dataset class . 76

Appendix 5 – Custom training loop . 77

Appendix 6 – SD Supplementary fine-tuning dataset 79

Appendix 7 – SD AFFiNe fine-tuning dataset 80

Appendix 8 – RunPod post-installation script 81

Appendix 9 – Checkpoint selection . 82

Appendix 10 – Synthetic datasets . 88

7

List of Figures

1 Comparison of GAN-based augmentation to latent diffusion [23]. 15

2 ANN structure [24]. 18
3 Principe of convolutional layer1. 19
4 Typical CNN structure2. 19
5 Comparison of plain CNN and ResNet layers [25]. 20
6 A block with residual connection [25]. 20
7 CNN model training pipeline without augmentation. 21
8 CNN model training pipeline with augmentation. 21
9 Examples of basic augmentation techniques [7]. 22
10 AutoAugment best policy search optimization cycle [28]. 23
11 An procedure of best policies search in Fast AA [30]. 24
12 Differentiable data augmentation training in Faster AA [31]. 25
13 Example images augmented by RandAugment [29]. 26
14 Example of AugMix application on an image [32]. 26
15 Example of AugMix application on an image [33]. 27
16 Example of AugMix application on an image [11]. 28
17 U-Net noise predictor with text attention layers3. 28
18 Comparison of "photo if an eel" generated by SD and a real photo. 29
19 Fine-tuning Stable Diffusion using DreamBooth. 29
20 Example of Underfitting and Overfitting4. 31
21 Example of confusion matrix [39]. 32

22 Supplementary dataset raw frames examples [40]. 33
23 Examples of challenges with Supplementary dataset [40]. 34
24 Supplementary dataset distribution after automatic extraction [40]. 35
25 Supplementary dataset frames examples after prepossessing [40]. 36
26 Supplementary dataset distribution after prepossessing [40]. 36
27 AFFiNE dataset raw frames examples [34]. 37
28 AFFiNE dataset distribution [34]. 37

29 Example of test subset images [40]. 40
30 Visual comparison of a default and a new transformation [40]. 42
31 Difference of Undersampling and Oversampling5. 42
32 Example of a synthetic bleak fish generated from bad training samples. . . 48
33 Example of various upscaling models in stable-diffusion-webui. 48

8

34 Baseline ResNet18 model training and validation accuracy. 55
35 Baseline ResNet50 model training and validation accuracy. 55
36 Normalized confusion matrices of baseline models. 56
37 Faster AA search training loss. 60
38 Normalized confusion matrices of SD_SUP_COMBINED_RAND models. 64
39 Examples of images with an incorrectly predicted label [40]. 65

40 Annotation tool [40]. 74
41 Image description caption tool [40]. 75
42 Supplementary images used for fine-tuning Stable Diffusion [40]. 79
43 AFFiNe images used for fine-tuning Stable Diffusion [34]. 80
44 SD v1.5 Supplementary checkpoint analysis (LoRA). 82
45 SD v1.5 Supplementary checkpoint analysis (DreamBooth). 82
46 SD v2.1 Supplementary checkpoint analysis (LoRA). 83
47 SD v2.1 Supplementary checkpoint analysis (DreamBooth). 83
48 SD v1.5 AFFiNe checkpoint analysis (LoRA). 84
49 SD v1.5 AFFiNe checkpoint analysis (DreamBooth). 84
50 SD v2.1 AFFiNe checkpoint analysis (LoRA). 85
51 SD v2.1 AFFiNe checkpoint analysis (DreamBooth). 85
52 SD v1.5 Supplementary+AFFiNe checkpoint analysis (LoRA). 86
53 SD v1.5 Supplementary+AFFiNe checkpoint analysis (DreamBooth). . . 86
54 SD v2.1 Supplementary+AFFiNe checkpoint analysis (LoRA). 87
55 SD v2.1 Supplementary+AFFiNe checkpoint analysis (DreamBooth). . . 87
56 SD v1.5 Supplementary synthetic images (LoRA). 88
57 SD v1.5 Supplementary synthetic images (DreamBooth). 89
58 SD v2.1 Supplementary synthetic images (LoRA). 90
59 SD v2.1 Supplementary synthetic images (DreamBooth). 91
60 SD v1.5 Supplementary+AFFiNe synthetic images (LoRA). 92
61 SD v1.5 Supplementary+AFFiNe synthetic images (DreamBooth). 93
62 SD v2.1 Supplementary+AFFiNe synthetic images (LoRA). 94
63 SD v2.1 Supplementary+AFFiNe synthetic images (DreamBooth). 95

9

List of Tables

1 Image augmentation choice per classifier architecture [6]. 12

2 Grid search for the best RandomAugment hyperparameters. 46
3 Grid search for the best AugMix hyperparameters. 47
4 Caption prefixes for fine-tuning datasets. 50
5 DreamBooth training settings. 51
6 Synthetic data generation final candidates. 53

7 Baseline models metrics. 56
8 RandAugment augmentation metrics on ResNet18 model. 57
9 RandAugment augmentation metrics on ResNet50 model. 57
10 AugMix augmentation metrics on ResNet18 model. 58
11 AugMix augmentation metrics on ResNet50 model. 59
12 Faster AA augmentation metrics on ResNet18 model. 60
13 Faster AA augmentation metrics on ResNet50 model. 60
14 Training with synthetic data on ResNet18 model. 61
15 Training with synthetic data on ResNet50 model. 61
16 Total metrics comparison on ResNet18 model. 62
17 Total metrics comparison on ResNet50 model. 62
18 Total time spent on each technique (hours:minutes). 63
19 Baseline models metrics. 64
20 Best achieved models metrics. 64

10

1. Introduction

The rapid expansion of human activities in underwater environments made it necessary
to perform efficient and reliable monitoring of underwater ecosystems, with the accurate
classification of underwater objects and, in particular, fish species playing a crucial role
[1]. Supporting healthy and diverse fish population maintain ecological balance, food
security, and support economic activities related to fishing and aquaculture. Monitoring and
understanding fish behavior is vital for determining the impact of human-made structures,
such as hydroelectric power plants, and implementing measures to mitigate potential
adverse effects on aquatic life. Accurate classification of fish species enables researchers
to collect reliable data and make informed decisions, benefiting numerous applications and
stakeholders.

Current fish species classification methods often rely on a combination of machine learning
algorithms and image recognition techniques. Among the most popular approaches for
image classification are deep learning-based approaches, such as Convolutional Neural
Networks (CNNs) [2, 3]. These models in their training process automatically infer various
features and complex patterns from large datasets of labeled images, leading to accurate
classification results. However, the performance of these classifiers depends heavily on the
quality and quantity of the available training data. Underwater images are often subject to
degraded quality and visibility due to factors such as light attenuation, scattering, color
distortion, and noise [3, 4]. Moreover, collecting and annotating large-scale datasets of
fish species is time-consuming, labor-hungry, expensive, and in some cases, physically
challenging due to limited access to certain habitats or species.

There are various large good-quality datasets available, such as ImageNet1, Pascal2,
COCO3 and others; that can be used as a base in a transfer learning process. How-
ever, the statistical properties of such datasets might be very different from the domain of
application. Taking into account the above, these limitations pose a significant challenge
to the development of robust and accurate classifiers.

Image augmentation has been widely used, besides increasing models’ robustness, to
address data scarcity issues, by creating new synthetic training samples from existing data
through various transformations, such as rotation, flipping, scaling, and various visual

1https://www.image-net.org/
2http://host.robots.ox.ac.uk/pascal/VOC/
3https://cocodataset.org/

11

https://www.image-net.org/
http://host.robots.ox.ac.uk/pascal/VOC/
https://cocodataset.org/

adjustments. By creating a more diverse and robust dataset, image augmentation techniques
have the potential to significantly improve the generalization capabilities of classifiers,
leading to better performance on unseen data and reducing the risk of overfitting [5, 6, 7].

There are numerous image augmentation techniques available, ranging from relatively
simple geometric and color-based transformations [5, 8] to more sophisticated approaches
based on deep learning architectures like Generative Adversarial Networks (GANs) [9],
Variational Autoencoders (VAEs) [10], and latent diffusion models [11], such as Stable
Diffusion [12]. Each of these methods has its unique advantages and drawbacks, and their
effectiveness in enhancing the performance of image classifiers may vary depending both
on the training dataset and the domain of the task [6, 13]; and on the specific architecture
of CNN (and not only) models (see Table 1).

Table 1. Image augmentation choice per classifier architecture [6].

Architecture Proposed augmentation algorithms
AlexNet Translate, Flip, Intensity Changing

ResNet Crop, Flip

DenseNet Flip, Crop, Translate

MobileNet Crop, Elastic distortion

NasNet Cutout, Crop, Flip

ResNeSt AutoAugment, Mixup, Crop

DeiT AutoAugmentat, RandAugment, Random Erasing, Mixup, CutMix

Swin Transformer RandAugment, Mixup, CutMix, Random Erasing

Although various image augmentation techniques have been used for improving the perfor-
mance of image classifier models, the impact of the application of these approaches on
a specific case is unknown and is a subject to address. Moreover, with the recent boom
of new generative models, such as Stable Diffusion [14, 15, 12], the comparison of novel
approaches with the classic ones is also subject to address.

1.1 Related literature

The importance of image augmentation techniques in enhancing the performance of
image classification models has been widely recognized for a long time. Several recent
articles [16, 6, 7] provide comprehensive surveys of the various techniques available,
ranging from basic transformations to more complex methods involving GANs. One
survey present [16] the taxonomy of some augmentation techniques (including generative
models) as well as evaluating the results of applying each technique on well-known open

12

datasets like CIFAR-104 and CIFAR-1004 on the multiple Computer Vision (CV) tasks,
including image classification as well as presenting possible challenges in achieving the
best results. However, it is unknown if applying described approach will lead to similar
model improvements in different conditions and it was not fully clear which augmentation
technique was applied to get the particular result.

Later surveys [6, 7] expanded the taxonomy presenting and explaining the basics of a wide
range of augmentation techniques, and, while authors in [6] did not provide any evaluations,
[7] compared each5 approach of various datasets, such as CIFAR-10, CIFAR-100, ImageNet;
with AutoAugment and RandAugment based approaches achieving the stable and robust
results in every tested dataset. Also, the same approaches (AutoAugment and RandAugment)
were found in state-of-the-art solutions of Fine-Grained Image Classification tasks (at the
state of 06-04-2023)6.

The problems with the presented results are that they were achieved on big clean popular
datasets, fully or partially not related to the classification of fish species, and, moreover,
not covering the new possible image augmentation candidates, such as latent diffusion
models.

Moving to the fish species image classification, in one article [3] authors proposed a
classification method on custom CNN with some image thresholding and achieved an
increase in 4, 29% of a classifier performance compared to the previous papers. They
did not use any augmentation and their dataset contained 27k unbalanced image-label
pairs. The fact that they have used the accuracy metric might gave the overestimated
expectations due to possible overfitting. Authors of another article [17] compared the
combination of various CNN models (AlexNet, GoogLeNet, Caffenet and VGGNet) and
some basic augmentation techniques (Rotating, Mask) and achieved an 3% improvement
of a combination of augmentation compared to the baseline models (with no augmentation).
They have also used accuracy as a metric, but the application of augmentation might have
saved the model from overfitting and they have also used loss value of a test dataset as a
metric which also makes the result look more confident.

In one recent article [18] authors presented the approach of conditional augmentation
based on the class loss gradient, applying augmentation on images of a class that has
convergence problems. With this approach they have achieved up to 0.65% increase of
accuracy, and up to 3.19% increase of precision. It should be noted that such small

4https://www.cs.toronto.edu/~kriz/cifar.html
5despite that GAN was presented, the evaluation of it was not demonstrated
6https://paperswithcode.com/task/fine-grained-image-classification

13

https://www.cs.toronto.edu/~kriz/cifar.html
https://paperswithcode.com/task/fine-grained-image-classification

changes are related to the quality of baseline models. However, it was not clear, which
particular augmentation techniques were applied conditionally, and it is also unknown how
conditional augmentation might affect overfitting.

Fish species image classification remains a challenging topic due to factors such as un-
derwater image quality and data scarcity. While several studies have explored this area,
they tend to be limited to basic augmentation techniques. The performance improvements
achieved through these techniques are often modest compared to the original model perfor-
mance, making it difficult to distinguish between different augmentation techniques and
identify the best one. Also, the choice of evaluation metrics is debatable, not accounting
for class imbalance and possible overfitting. Moreover, the used datasets are quite large, in
many cases, and the application of image classification and augmentation in limited-data
scenarios needs to be investigated.

In one similar study [19], the author explored the use of GAN-based image augmentation
to improve the classification performance of a CNN model for Parkinson’s disease using a
dataset of only 930 images on two classes. The approach resulted in a 2.3% increase in
validation performance, while basic augmentation techniques led to a decrease in perfor-
mance. The author has also provided deep analysis on different GAN-based approaches
and the challenges that might occur in training and evaluation steps.

The recent boom of latent diffusion models has generated considerable interest in their
potential use for image augmentation [14, 15]. These models are capable of producing
photo-realistic images that, in some cases, can surpass the results achieved with GANs (see
Figure 1). The application of these advanced models to fish species image classification
could potentially yield significant improvements in model performance. However, training
such models from scratch requires a dataset containing millions of images. To address
that, the various fine-tuning techniques have been presented, such as DreamBooth [20] and
adapted for image generation LoRA [21], allowing to transfer a new concept having only a
few (3-5) images of a subject, with saved fidelity and ability to apply learned subject to
a different context (i.e. changing the background). Moreover, some articles [22] already
have suggested improvements to better control of a generative process, leading to better
preservation of a target dataset domain, however, that might give the synthetic data a too
high bias towards the original one.

14

(a) BigGAN-deep (b) latent diffusion (c) original images

Figure 1. Comparison of GAN-based augmentation to latent diffusion [23].

1.2 Problem statement

CNNs have been used for the classification of various objects, in particular fish species,
their performance heavily relies on the availability of large, high-quality datasets. This is
particularly challenging in the context of fish species classification, as underwater images
often suffer from degraded quality and visibility. Although large open datasets could
potentially be used as initial weights or on their own, they are too different in the domain
of images. To address these problems, image augmentation has been used.

However, while much research was done on good-quality large datasets, it was not clear,
how this would work in low-quality limited data scenarios, where alternative ways of
collecting more real data are not financially profitable or too time-consuming, in particular,
in terms of image classification model improvements. Also, new augmentation techniques,
such as latent diffusion models, have not been extensively tested in the context of fish
species classification, where basic augmentation techniques are still predominantly used.
In addition, current research studies have often reported results in terms of accuracy metric,
which are prone to data imbalances and may lead to overestimated results due to overfitting

To fill the gap, this study has investigated the impact of various image augmentation
techniques on fish species classification in the described scenario, with a focus on evaluating
and comparing the performance of traditional techniques and novel ones, such as Stable

15

Diffusion, in terms of both effects on a final classification model and costs of applying
each one. Additionally, the study has explored the feasibility of applying these techniques
to small initial datasets and will assess their effectiveness in mitigating issues related to
dataset imbalances and overfitting.

The main goal of this work was, starting with a predefined small fish species dataset
and a specific choice of CNN classification model architectures, to try to improve the
performance of the baseline model by applying various augmentation techniques and
reporting the results of their application. The compulsory goal was to answer the following
research questions:

1. What are the specific combinations of augmentation techniques that yield the optimal
performance improvements in a specific model?

2. Would it be possible to evaluate the effect of augmentation techniques application
on a dataset in the context of a low-quality limited-data scenario?

3. Is novel argumentation techniques, such as diffusion models, can create synthetic
data that lead to models outperforming ones trained with traditional augmentation
methods?

4. In overall, can advanced image augmentation techniques be effectively applied in
limited data scenarios?

1.3 Author contribution and scope

Given the vast range of image augmentation techniques and CNN models, it was not
possible to cover all possible combinations in this study. Therefore, the scope of this work
was limited to specific aspects of the problem:

■ The author has focused primarily on well-known popular augmentation techniques,
such as AutoAugment, RandAugment, and others; along with novel advanced tech-
niques, such as Stable Diffusion. This study has helped to assess the effectiveness of
state-of-the-art methods in the context of fish species multi-class classification in
limited data scenarios, while also providing a comparison with traditional techniques.

■ The author have considered a pair of popular CNN models — ResNet18 and
ResNet50 with no pre-trained weights. This has limited the time and resources
spent on model training and evaluation while providing sufficient information.

16

1.4 Thesis structure

The rest of this work is organized as follows:

Chapter 2 describes the theory and technical background of state-of-the-art augmentation
techniques and other necessary information as well as provides justification for selected
ones for the experiments.

Chapter 3 describes the data used in this study as well as the challenges and initial
pre-processing necessary for the experiments.

Chapter 4 describes the experimental workflow and intermediate artifacts.

Chapter 5 presents the validation of achieved results.

Chapter 6 discusses the application of achieved results and contribution to further research
as well as answers to the research questions.

17

2. Preliminaries

The process of CNN model training can be segmented into various parts:

1. Data acquisition
2. Data prepossessing
3. Model architecture selection
4. Data augmentation
5. Model training
6. Model evaluation

This chapter aims to provide necessary technical background and description necessary to
understand the following chapters. Data acquisition and initial prepossessing parts are
described in a separate chapter (see Chapter 3).

2.1 CNN model selection

CNN are a class of deep learning models specifically designed for processing large grid-like
data, such as images. Unlike traditional Artificial Neural Networks (ANNs), which have
full connections between each neuron (see figure 2), CNN extends that by convolutions (as
well as other techniques). Within that, they are widely used in various CV tasks like image
classification, object detection, and semantic segmentation [24].

Figure 2. ANN structure [24].

As the name suggests the main part of a CNN is convolutional layers. These layers are
the core building blocks of CNNs. They perform convolution operations on the input data

18

using a set of learnable filters (or kernels). Each filter is applied to a local region (window)
of the input and produces a feature map (see Figure 3). By learning different filters, the
convolutional layer can capture various spatial features like edges, textures, and shapes.

Figure 3. Principe of convolutional layer1.

A typical CNN is composed of multiple layers, including convolutional layers, pooling
layers (that reduce the size of the matrix by taking either average (avg-pooling) or max
(max-pooling) value of a window), and fully connected layers. Each layer is responsible
for learning and extracting different levels of features from the input data. The general
structure of a CNN can be summarized as follows (see Figure 4).

Figure 4. Typical CNN structure2.

Typically at the end of CNN there is a fully connected layer and in the case of image
classification, it has as many output neurons as there are classes.

1https://mlnotebook.github.io/post/CNN1/
2https://vitalflux.com/different-types-of-cnn-architectures-explained-examples/

19

https://mlnotebook.github.io/post/CNN1/
https://vitalflux.com/different-types-of-cnn-architectures-explained-examples/

2.1.1 ResNet

One of the main problems of the standard CNNs is that with the increase of the number
of the layers aiming to make a more robust model, at some point a model becomes such
deep, that weights updates (gradients) disappear in a propagation through the net in a
process called back-propagation. The problem of vanishing gradients not only doesn’t
help the model to generalize input data but also leads to degradation in accuracy as the
network grows deeper. To address that a concept of residual connections (see Figure 5)
was introduced which enables more efficient training of deeper networks [25].

Figure 5. Comparison of plain CNN and ResNet layers [25].

A block with residual connection acts very similar to the plain CNN one, the only difference
of combining the output of the current convolutional layer block F (x) with the output of
the previous block x producing the final output H(x) (see Figure 6).

Figure 6. A block with residual connection [25].

ResNet was presented in various depths, such as ResNet-18, ResNet-34, ResNet-50, ResNet-

101, and ResNet-152, where the numbers indicate the total number of layers in the network.
While the ResNet-18 has similar performance compared to the plain CNN with the same
amount of layers, ResNet-50 shows the increase in performance due to the residual
connection. With a layer size of 152, ResNet managed to achieve 3.57% top-5 error on the
ImageNet, having better performance and a much less complex structure than for example
VGG model.

In this study results of the augmentation application were done on ResNet-18 and ResNet-
50. While ResNet-30 performs better than ResNet-18, it has more layers, so ResNet-18

was selected as the simplest one, and ResNet-50 as more complex and hence robust, while
being relatively fast to train.

20

2.2 Data augmentation pipeline

By default CNN are bad at learning the invariance of unseen data, which is especially a
problem with small datasets [26]. This can be fixed by either providing more training
examples (i.e. collecting more data, which is not the case for this study) or making some
changes to the training data to help a model generalize it. This is what data augmentation
is used for.

There are differing opinions on whether to apply augmentation to only the training subset
or the entire dataset. The most common approach is to apply it to the training subset (see
Figures 7–8), allowing the model to learn from diverse examples while testing on original
data. The alternative approach makes the test data look similar to the training data, which
can help the model when augmentations significantly alter the data.

CNN model

train subset

test subset

validation subset

image dataset

Training

Evaluation

Figure 7. CNN model training pipeline without augmentation.

CNN model

train subset

test subset

validation subset

image dataset

Training

Evaluation

Augmentation

Figure 8. CNN model training pipeline with augmentation.

In this study, the augmentations were applied only to the training dataset, to see how the
model will perform in general cases (unmodified evaluation images). Also in terms of
the generative augmentation techniques, synthetic images were used only as additional
training samples.

21

2.3 Basic augmentation

Basic data augmentation techniques are (typically) simple functions that are applied to the
input images. They can be segmented into the following categories (see also Figure 9):

■ Geometric augmentations (a.k.a. affine transformations)
■ Non-geometric augmentations (visual transformations)
■ Erasing augmentations

(a) Affine (b) Visual (c) Erasing

Figure 9. Examples of basic augmentation techniques [7].

Geometric augmentations are used to teach a model positional invariance and among the
most common transformations are rotation, translation, and shearing. Visual augmen-

tations gives makes a model robust to various positional visual invariances, among the
most common are: flipping, color-spacing (grayscale) cropping, and resizing. Erasing

augmentation share the same idea as dropout [27], removing some parts of the image to
prevent individual parts of a model to rely only on those parts [7].

These basic augmentation techniques can be combined in various ways to create a more di-
verse and robust training dataset. However not all augmentations are suitable for particular
datasets, for example, flipping and rotation are not suitable for the famous digits dataset
MNIST, due to indistinguishability between rotated digits 6 and 9 [5].

2.4 Advanced augmentation

One of the main problems of basic augmentation techniques is to find out which trans-
formations to use, with which probability, order, and other hyperparameters. Advanced
augmentation techniques address that problem by introducing an optimization process of
finding the most useful basic augmentations and their combinations.

22

2.4.1 AutoAugment

AutoAugment (AA) is an advanced data augmentation technique proposed by researchers
at Google Brain in 2019 [28]. It is designed to automatically discover and apply the best
augmentation policies to improve the performance of deep learning models for image
classification tasks. The key idea behind AA is to use a search algorithm, that utilizes
Reinforcement Learning (RL) to explore the space of possible augmentation policies and
find the most effective ones for a given dataset and model.

Figure 10. AutoAugment best policy search optimization cycle [28].

The search space in AA is defined as the set of possible basic augmentation operations

(rotation, flipping, translation, shearing, etc.) and their corresponding ranges for param-
eters (angle of rotation, translation factor, etc.). A policy is a sequence of augmentation
operations with their associated probabilities and magnitudes. In AA, a policy consists
of 5 sub-policies and each sub-policy includes two operations. The algorithm learns the
optimal policy by searching through the space of possible policies.

AA automatically discovers the best augmentation policy for a specific dataset, eliminating
manual tuning of parameters and operations. It has been shown to improve the performance
of deep learning models on various image classification datasets such as CIFAR-10, CIFAR-

100, SVHN3, and ImageNet [29]. However, AA requires additional controller training in a
very big search space (AA with 5 sub-policies has (16 ·10 ·11)10 ≈ 2.9 ·1032 possibilities),
which increases the time and computational resources and just not worth training for testing
purposes. This problem can be solved by using policies found by AA for other datasets
(AutoAugment-transfer) [28], but there is no guarantee that a specific policy will work
well for all datasets.

AA implementation is built into popular machine learning frameworks like Pytorch, with
predefined policies for ImageNet, CIFAR-10, and SVHN datasets4.
3https://paperswithcode.com/dataset/svhn
4https://pytorch.org/vision/main/generated/torchvision.transforms.
AutoAugment.html#torchvision.transforms.AutoAugment

23

https://paperswithcode.com/dataset/svhn
https://pytorch.org/vision/main/generated/torchvision.transforms.AutoAugment.html#torchvision.transforms.AutoAugment
https://pytorch.org/vision/main/generated/torchvision.transforms.AutoAugment.html#torchvision.transforms.AutoAugment

2.4.2 Fast and Faster AutoAugment

Proposed at NAVER AI Lab in 2019 [30] Fast AA aims to reduce the high computational
cost and complexity of AA while maintaining compatible effective augmentation policies.
Fast AA utilizes a more efficient search strategy by replacing the RL-based controller in
AA with a more efficient Bayesian optimization approach and distributed training.

In Fast AA, the dataset is divided into K equal-sized subsets (folds), each containing a pair
of DM and DA subsets. Then a classification model parameter θ is trained on a DM . After
that, a bundle of suggested policies is obtained by the Bayesian optimization algorithm
and evaluated on a DA, with top N policies beige added to a global set of found policies
(see Figure 11).

Figure 11. An procedure of best policies search in Fast AA [30].

However in their paper authors proposed a Fast AA version that utilizes distributed learning,
which makes it hard to run for a particular dataset on a home machine.

Proposed by RIKEN in 2019 [31], Faster AA achieves even faster policy searching for
data augmentation than AA and Fast AA without a significant performance drop. The two
core concepts of Faster AA are fully differentiable basic data augmentations, that allow
one to train a model to predict best augmentation policies via back-propagation; and a
modified GAN where instead of a traditional generator G and discriminator D, G applies
a specific augmentation and D tries to guess if this was a real image or an augmented one
(see Figure 12).

Unlike Fast AA Faster AA does not require distributed training and can be easily trained
on a home machine. In particular a ready-to-use solution was implemented for a popular
python augmentation library Albumentations [5] — AutoAlbument5.
5https://albumentations.ai/docs/autoalbument/

24

https://albumentations.ai/docs/autoalbument/

Figure 12. Differentiable data augmentation training in Faster AA [31].

2.4.3 RandAugment

RandAugment (RA) is a data augmentation technique introduced by researchers at Google
Brain in 2019 [29] as a more efficient and simpler alternative to AA and Fast AA. RA is a
ready-to-use advanced augmentation technique that, unlike AA, Fast AA, and Faster AA
does not require any complex search algorithms or additional training phases.

RA has two main hyperparameters: N , representing the number of augmentation operations
per image, and M , controlling the global magnitude of the applied operations. With only 2
hyperparameters the search space is dramatically reduced, which allows one to find optimal
hyperparameters using brute force (grid search). Given all possible basic augmentations, a
tuple of N is selected with a uniform distribution and then applied to the input image with
M magnitude (see figure 13).

The drawback of this approach is a stochastic behavior due to a random aspect of basic
augmentations selection, which might require several training cycles of a target model to
get an objective evaluation of selected N and M hyperparameters.

Implementation of RA has been build-in into Pytorch framework6.

6https://pytorch.org/vision/main/generated/torchvision.transforms.
RandAugment.html#torchvision.transforms.RandAugment

25

https://pytorch.org/vision/main/generated/torchvision.transforms.RandAugment.html#torchvision.transforms.RandAugment
https://pytorch.org/vision/main/generated/torchvision.transforms.RandAugment.html#torchvision.transforms.RandAugment

Figure 13. Example images augmented by RandAugment [29].

2.4.4 AugMix

AugMix is a data augmentation technique proposed by researchers at Google Research
in 2020 [32] to improve the robustness and generalization of deep learning models. Like
RA AugMix utilizes a stochastic approach of selecting a group of basic augmentation
operations (chains). Then a mixing weight is assigned to each chain forming a complex
augmentation pipeline. After that each image is merged with the same image but after
passing this pipeline resulting in a slightly different image, which is enough for creating a
diverse and robust to image distortions augmented dataset (see figure 14).

Figure 14. Example of AugMix application on an image [32].

AugMix introduces additional hyperparameters, such as the number of augmented versions
to blend and the strength of consistency regularization. Tuning these hyperparameters may
require additional computational resources and experimentation.

Implementation of AugMix has been build-in into Pytorch framework7.

7https://pytorch.org/vision/main/generated/torchvision.transforms.

26

https://pytorch.org/vision/main/generated/torchvision.transforms.AugMix.html#torchvision.transforms.AugMix
https://pytorch.org/vision/main/generated/torchvision.transforms.AugMix.html#torchvision.transforms.AugMix

2.5 Stable Diffusion

There is some limitation of using basic transformations (or their combination in terms of
advanced augmentation techniques): the augmented data is still very similar to the original
images, while such transformations are likely to affect the image itself rather than the
object on that image.

Stable Diffusion (SD) presented by Stability Ai is a novel text-to-image generative model
guided by the user text descriptions (prompts). It is a complex model consisting of the
following main components [12]:

■ Text encoder
■ Diffusion model (UNet + Sampler)
■ Image decoder

Text encoder is part of a large language model from the Natural Language Supervision
domain [33]. The general idea is by utilizing the text encoder and image encoder (both
convert initial data into a relatively small vector space) to find a match between textual
description and input image (see Figure 15). Stable diffusion uses that text encoder to
transform user prompts into vectors that can be used to guide the image generator model.

Figure 15. Example of AugMix application on an image [33].

Diffusion models (or latent diffusion models) are a class of generative models that have
recently gained attention for their ability to generate high-quality images. While they have
primarily been used for unconditional image synthesis, with guidance from a prompt, they
can be used to generate specific images with any context. Under the hood, they are Markov
chain models that are learned to recreate images from noise by step-by-step noise removal
(the reverse diffusion process) [11] (see Figure 16).

Diffusion models by themselves consist of two major components: a U-Net backbone

AugMix.html#torchvision.transforms.AugMix

27

https://pytorch.org/vision/main/generated/torchvision.transforms.AugMix.html#torchvision.transforms.AugMix
https://pytorch.org/vision/main/generated/torchvision.transforms.AugMix.html#torchvision.transforms.AugMix
https://pytorch.org/vision/main/generated/torchvision.transforms.AugMix.html#torchvision.transforms.AugMix
https://pytorch.org/vision/main/generated/torchvision.transforms.AugMix.html#torchvision.transforms.AugMix
https://pytorch.org/vision/main/generated/torchvision.transforms.AugMix.html#torchvision.transforms.AugMix
https://pytorch.org/vision/main/generated/torchvision.transforms.AugMix.html#torchvision.transforms.AugMix
https://pytorch.org/vision/main/generated/torchvision.transforms.AugMix.html#torchvision.transforms.AugMix
https://pytorch.org/vision/main/generated/torchvision.transforms.AugMix.html#torchvision.transforms.AugMix
https://pytorch.org/vision/main/generated/torchvision.transforms.AugMix.html#torchvision.transforms.AugMix
https://pytorch.org/vision/main/generated/torchvision.transforms.AugMix.html#torchvision.transforms.AugMix
https://pytorch.org/vision/main/generated/torchvision.transforms.AugMix.html#torchvision.transforms.AugMix
https://pytorch.org/vision/main/generated/torchvision.transforms.AugMix.html#torchvision.transforms.AugMix
https://pytorch.org/vision/main/generated/torchvision.transforms.AugMix.html#torchvision.transforms.AugMix
https://pytorch.org/vision/main/generated/torchvision.transforms.AugMix.html#torchvision.transforms.AugMix
https://pytorch.org/vision/main/generated/torchvision.transforms.AugMix.html#torchvision.transforms.AugMix
https://pytorch.org/vision/main/generated/torchvision.transforms.AugMix.html#torchvision.transforms.AugMix
https://pytorch.org/vision/main/generated/torchvision.transforms.AugMix.html#torchvision.transforms.AugMix
https://pytorch.org/vision/main/generated/torchvision.transforms.AugMix.html#torchvision.transforms.AugMix
https://pytorch.org/vision/main/generated/torchvision.transforms.AugMix.html#torchvision.transforms.AugMix
https://pytorch.org/vision/main/generated/torchvision.transforms.AugMix.html#torchvision.transforms.AugMix
https://pytorch.org/vision/main/generated/torchvision.transforms.AugMix.html#torchvision.transforms.AugMix
https://pytorch.org/vision/main/generated/torchvision.transforms.AugMix.html#torchvision.transforms.AugMix
https://pytorch.org/vision/main/generated/torchvision.transforms.AugMix.html#torchvision.transforms.AugMix
https://pytorch.org/vision/main/generated/torchvision.transforms.AugMix.html#torchvision.transforms.AugMix
https://pytorch.org/vision/main/generated/torchvision.transforms.AugMix.html#torchvision.transforms.AugMix
https://pytorch.org/vision/main/generated/torchvision.transforms.AugMix.html#torchvision.transforms.AugMix

Figure 16. Example of AugMix application on an image [11].

and a sampler. While samplers are responsible for defining the amount of noise removal
schedule, the U-Net backbone is responsible for the reverse diffusion process. In Stable
diffusion, U-Net was updated to add attention layers that guide the denoising process by
text description vectors (see Figure 17).

Figure 17. U-Net noise predictor with text attention layers8.

The last part of Stable diffusion — Image decoder is responsible for converting an image
in latent space to a real image in pixel space. Initially, diffusion models were used on bare
images, which make both the training and evaluating processes extremely slow [12].

2.5.1 Stable Diffusion v1.5 and v2.1

With the release of their paper, Stability AI also releases first v1.x (v1.5) model9 and
then v2.x model10 both under CreativeML Open RAIL-M licence11 that allows for both
commercial and non-commercial usage.

8https://jalammar.github.io/illustrated-stable-diffusion/
9https://stability.ai/blog/stable-diffusion-public-release
10https://stability.ai/blog/stablediffusion2-1-release7-dec-2022
11https://huggingface.co/spaces/CompVis/stable-diffusion-license

28

https://jalammar.github.io/illustrated-stable-diffusion/
https://stability.ai/blog/stable-diffusion-public-release
https://stability.ai/blog/stablediffusion2-1-release7-dec-2022
https://huggingface.co/spaces/CompVis/stable-diffusion-license

2.5.2 Fine-tuning: DreamBooth

While Stable Diffusion gives large possibilities of what it can produce just by using some
text description, the domain of produced images though depends on training data that was
given to it. Trained on LAION dataset12 plain Stable Diffusion cannot produce images of a
correct fish specie suitable for this work (see Figure 18).

(a) Generated (b) Real [34]

Figure 18. Comparison of "photo if an eel" generated by SD and a real photo.

In their paper [20] authors present a novel approach to fine-tuning the Stable Diffusion
model with a few (typically 3–5) images of a subject. They did this by freezing the initial
model and training its copy. Using a unique identifier (in the paper authors suggest using
rare word up to 3 symbols) and class preservation loss they fine-tuned the model in the
way that the image produced by the trained model of the original class stays close to that
generated by the frozen model, while image generated with identifier stays closer to the
train images (see Figure 19). This makes a fine-tuned model more robust to overfitting
(which is important as the train set is very-very small).

Figure 19. Fine-tuning Stable Diffusion using DreamBooth.

12https://laion.ai/

29

https://laion.ai/

There are plenty of training scripts, utilizing DreamBooth, in particular for this study
fast-Dreambooth colab notebook was used13.

2.5.3 Fine-tuning: LoRA

There are a few problems with DreamBooth: it is still time-consuming to train, especially
in cases where the fine-tuning dataset is more than a few images; and the resulting model
is as big as the initial model which is problematic for experimentation purposes.

Initially released for Large Language Model finetuning, LoRA utilizes the approach of
low-rank update matrices. In simple words, instead of fine-tuning the entire model authors
of [21] proposed a way of training small additional weights ∆W decomposed by Singular
Value Decomposition (SVD) into a low-rank format.

This idea was further adapted by [35] for Stable Diffusion fine-tuning. This gives an end
user the ability to train a subject onto a pre-trained Stable Diffusion model even faster than
DreamBooth (because only a low rand additional model in being trained), and resulting
models are consuming very little space to store. Additionally, these models can be further
controlled by modifying the merge constant α, which can reduce the effect of LoRA in
case of overfitting and also allows to combine different LoRA models together to create an
infinite amount of generative models (see equation 2.1).

W ′ = W + α∆W (2.1)

For this study the script by Kohya’s was used14

2.6 Model training

CNN model training (just like general model training) does not always succeed, in partic-
ular, a model suffers from two most common problems: Overfitting and Underfitting.
While underfitting is just a general artifact of undertrained models when either model
structure, training data, or the whole process together does not lead to a good performance
of an end model. Unlike underfitting, overfitting creates more confusion for model eval-
uation because, from the perspective of training data, the model performs well, but is
failing on previously unseen data because of the memorization of training data instead of

13https://github.com/TheLastBen/fast-stable-diffusion
14https://github.com/bmaltais/kohya_ss

30

https://github.com/TheLastBen/fast-stable-diffusion
https://github.com/bmaltais/kohya_ss

generalization (see Figure 20) [36]. Data augmentation might help solve both of these
problems, but might also make training slower, which under the same number of steps
might lead to underfitting compared to other models.

Figure 20. Example of Underfitting and Overfitting15.

Another problem is Data Leakage which can lead to a wrong performance evaluation
because some of previously unseen data was not fully unseen but actually mixed with
training samples. To solve that, with regards to augmentation, test data should be separated
from train data before the augmentation step [37].

2.7 Validation

To evaluate trained models and, in particular, evaluate the effect of specific augmentation
techniques, a model must be tested under different evaluation metrics. This section presents
validation techniques used in this work to evaluate and analyze the results.

Cross-validation. Not a metric but rather an approach to getting more statistically confi-
dent results by training a model several times on different subsets of data (folds) [38].

Confusion matrix. A useful way of representing predicted values of true values (see Figure
21), especially in terms of multi-class classification which in this work is fish-species
classification. Closely related definitions are True Positive (TP), True Negative (TN),
False Positive (FP), False Negative (FN). TP and FP represent the number of correct and
incorrect predictions of a specific class while TN and FN represent the number of correct
and incorrect predictions of any other class [39].

Accuracy shows the general performance of models (total proportion of correctly predicted
labels over all predictions). Ideally, this value should be close to 1 (or to 100%). The
drawback of this metric is that it is not agnostic to class imbalance, say, having good
predictions for a major class accuracy might show that model performs almost 100%, but

15https://www.fastaireference.com/overfitting

31

https://www.fastaireference.com/overfitting

Figure 21. Example of confusion matrix [39].

in reality, the model just picks that major class for all of its predictions. See the formula in
equation 2.2.

ACC =
TP + TN

TP + TN + FP + FN
(2.2)

To give a more confident evaluation there are Precision, Recall (Sensitivity), and Speci-
ficity (true negative rate) (see equations 2.3-2.5).

Precision =
TP

TP + FP
(2.3)

Recall =
TP

TP + FN
(2.4)

TNR =
TN

TN + FP
(2.5)

F1-score was designed to combine Precision and Recall metrics together into a single one.
F1-score formula is defined as follows (see equation 2.6):

F1 = 2 · Precision ·Recall

Precision+Recall
(2.6)

32

3. Datasets

As was stated in Chapter 1, this study was investigating the application of various image
augmentation techniques in low-quality limited data scenarios, where collecting more data
of the target domain is not for some reasons suitable. In this chapter, two datasets are
presented: Supplementary is a target dataset of the domain of interest, while AFFiNe is
an additional dataset legally obtained from the internet to be used with generative models
fine-tuning.

3.1 Supplementary

Supplementary [40] is a dataset used in this study for baseline model training and further
augmentation techniques evaluation. This is a private dataset, and the right to use it was
kindly given by The German Federal Institute of Hydrology (BfG)1 as this study is part of
a collaboration project between a research group at Taltech and BfG. This dataset contains
50 videos of 10 different fish species, that were automatically detected2 at various fish
counters at Koblenz, Germany. Each video has one specific label attached to it (i.e. each
video presumable has only one kind of fish). Examples of video frames can be seen in
Figure 22.

Figure 22. Supplementary dataset raw frames examples [40].
1https://www.bafg.de/EN/03_The_%20BfG/the_bfg_node.html
2Note: as this study was investigating the limited-data scenarios, the real possibility of obtaining more data
was not considered

33

https://www.bafg.de/EN/03_The_%20BfG/the_bfg_node.html

3.1.1 Challenges

Because this dataset represents underwater fish images captured through the glass of fish
counters, it has various visual aspects, that might have been challenging for the model, in
particular (see also the examples in Figure 23):

■ Some videos have low resolution
■ Some videos are taken in darkness
■ Algae growing on a glass
■ Some videos are mostly empty with just a few frames containing fish
■ There is little chance of fish appearance of a different species, than those with which

the video is labeled
■ There is a certain imbalance of fish species frames (see Figure 26)
■ Some video frames are overexposed
■ Some video frames have blurry water
■ Noise
■ Fish are swimming, hence the full body of fish is not always captioned
■ Some fish species are too big (catfish) to fully fit in the frame

(a) blury water with algae (b) low resolution (c) cropped

(d) camera laser (e) overexposure (f) cropped in darkness (g) nighttime

Figure 23. Examples of challenges with Supplementary dataset [40].

34

3.1.2 Preprocessing

To work with images, they have to be extracted from the videos first. To do so each video
was processed using python library OpenCV and frame-by-frame saved in sub-directories
according to the corresponding label of that video. Because frames are mostly similar,
which brings no use neither for model training, frame labeling, and checking, each frame
was compared automatically with the previous one, and if the difference was beyond the
specific threshold, the frame was extracted, otherwise skipped. The distribution of labels
and overall frames number can be seen in Figure 24.

Figure 24. Supplementary dataset distribution after automatic extraction [40].

However automatic extraction was not enough to work with this dataset. After the extrac-
tion process, most frames were still empty and fish in most cases has covered only a small
part of a frame. Next, each frame was manually checked and labeled with a corresponding
bounding box around the fish. This was done using a custom Python Jupyter Notebook
widget (see Appendix 2) with a help of a pre-trained fish detection model (You only look
once (YOLO)).

After manually filtrating 7117 frames (removing frames with no fish, extracting bounding
box around the fish, etc), only 2771 of them were left for further use. Filtered frames then
were cropped with respect to bounding boxes and saved separately. Examples of filtered
dataset frames and new label distribution can be seen in Figures 25–26.

35

Figure 25. Supplementary dataset frames examples after prepossessing [40].

Figure 26. Supplementary dataset distribution after prepossessing [40].

36

3.2 AFFiNe

AFFiNe [34] is a publicly available3 collection of over 7k images of 30 freshwater fish
species found in the Netherlands. This dataset is designed to help in the development of
machine-learning models for image classification and object detection in the context of fish
species. The dataset has been published under a "CC BY-NC-SA 4.0" license4, making it
suitable for non-commercial applications such as this study. Examples of AFFiNe dataset
frames and labels distribution can be seen in Figures 27–28

Figure 27. AFFiNE dataset raw frames examples [34].

Figure 28. AFFiNE dataset distribution [34].

As the training process of generative augmentation techniques is by itself data consuming
process, and the quality of the data matters a lot, the use of this dataset aims to improve the
3https://www.kaggle.com/datasets/jorritvenema/affine
4https://vaartsoftware.nl/beeldherkenning-nederlandse-vissoorten-openbare-dataset/

37

https://www.kaggle.com/datasets/jorritvenema/affine

performance of these techniques trained on Supplementary dataset by introducing more
data of the similar domain. However, since datasets are still fundamentally different it
is necessary to compare the effect of generative augmentation techniques fine-tuned on
just Supplementary with the effect of those that were fine-tuned on a combination of
Supplementary and AFFiNe datasets.

As this dataset is already cropped to have fish in the center of the frame, no additional
prepossessing was necessary at this step. Note: model training-specific particular transfor-
mations are not covered in this chapter and will be explained in the following chapter in
detail.

Unlike Supplementary, AFFiNe has fish taken out of the water, moreover some images
have fish being held by a human, which is another factor, which might make model training
more challenging. On the other side, having fish in various conditions might help the
model catch the necessary invariances to successfully classify fish species.

Also, both AFFiNe and Supplementary have an overlap of fish labels with AFFiNe having
almost all species that are present in Supplementary, except for bleak (Alburnus alburnus)
and nase (Chondrostoma nasus). From one perspective this might help the model trained
on both datasets generate more correct species, but the lack of presence of two species
might introduce another point of class imbalance.

38

4. Experiments

In this chapter, the experimentation workflow is described, including test condition setup,
model-specific image transformation, and application of each augmentation technique
discussed in this study.

4.1 Experimental setup

All experiments were done in Python using the popular deep learning library PyTorch1.

As was previously described in Chapter 2 two models were used for the evaluation of
augmentation techniques: ResNet18 and ResNet50. Both models (as well as models with
more layers) were obtained from torch.hub in a not pre-trained format (see Listing 4.1):

Listing 4.1. ResNet18 and ResNet50 loading code.

t o r c h . hub . l o a d (’ p y t o r c h / v i s i o n : v0 . 1 0 . 0 ’ , r e s n e t 1 8 , w e i g h t s =None)

t o r c h . hub . l o a d (’ p y t o r c h / v i s i o n : v0 . 1 0 . 0 ’ , r e s n e t 5 0 , w e i g h t s =None)

To make all experiments fair for every augmentation technique the following additional
conditions were setup (see Listing 4.2):

Listing 4.2. Model training configuration.

BATCH_SIZE = 32

MAX_EPOCH = 100

NUM_WORKERS = 24

LR = 1e −1

l o s s _ f n = t o r c h . nn . C r o s s E n t r o p y L o s s

o p t i m i z e r = t o r c h . opt im . Adam (. . .)

s c h e d u l e r = t o r c h . opt im . l r \ _ s c h e d u l e r . Cos ineAnneal ingLR (. . .)

Almost every computation was done on a TalTech: Environmental Sensing and Intelligence
group private development server using NVIDIA GeForce RTX 3080 Ti with 12 GB of
VRAM.
1https://pytorch.org/

39

https://pytorch.org/

4.2 Data and model preparation

Before anything could be done it was necessary to both prepare data for training and the
models.

4.2.1 Dataset

As was previously described in Chapter 3, Supplementary dataset consist of 10 unique fish
species and 5 videos per each specie (50 in total). After extracting and filtrating images
the dataset of over 2k images was divided into two main subsets: the training subset and
the test subset with the proportion of 4 train+validation videos per class and 1 for testing.
Testing videos were manually selected with as best quality (resolution, lighting conditions,
etc) as possible (see Listing 4.3 and Figure 29) and that was not uncompromising:

Listing 4.3. Test videos.

t e s t _ v i d e o s = [
" o r i g i n a l / e e l /20190410 _211027562 . a v i " ,
" o r i g i n a l / na se /20190329 _181208678 . a v i " ,
" o r i g i n a l / p e r c h /20171010 _090409551 . a v i " ,
" o r i g i n a l / r o a c h /20171008 _194306707 . a v i " ,
" o r i g i n a l / b a r b e l /20190930 _155816446 . a v i " ,
" o r i g i n a l / b l e a k /20170814 _060813737 . a v i " ,
" o r i g i n a l / bream /20190710 _155802204 . a v i " ,
" o r i g i n a l / c a r p /20190613 _104052513 . a v i " ,
" o r i g i n a l / c a t f i s h /20190627 _015724073 . a v i " ,
" o r i g i n a l / chub /20171006 _191548412 . a v i " ,

]

Figure 29. Example of test subset images [40].

40

This division is essential for evaluating the performance of the image classification model
with data leakage as minimal as possible. Next the five pairs of train+val subsets were
created:

■ 4vs1 (rest of images split into 70% train and 30% validation data)
■ 3+1vs1 (per each class 3 non-test random videos for train and 1 video for validation)

– Subset A
– Subset B
– Subset C
– Subset D

The purpose of 4vs1 is to demonstrate data leakage and its consequences on training
and evaluation, and 3+1vs1 to train models in cross-validation style minimizing the
data leakage. Unlike 4vs1, videos of subsets 3+1vs1 do not overlap between train and
validation data. These splits (into test and train+validation) were done once and each further
model+augmentation technique was trained on the same data to make the comparison fair.

4.2.2 Data transformation

The ResNet18 and ResNet50 models from torch.hub come with specific transformations
for input images (see Listing 4.4):

Listing 4.4. Default transformations for ResNet models2.

p r e p r o c e s s = t r a n s f o r m s . Compose ([

t r a n s f o r m s . R e s i z e (2 5 6) ,

t r a n s f o r m s . Cen te rCrop (2 2 4) ,

t r a n s f o r m s . ToTensor () ,

t r a n s f o r m s . Normal i ze (mean = [0 . 4 8 5 , 0 . 4 5 6 , 0 . 4 0 6] ,

s t d = [0 . 2 2 9 , 0 . 2 2 4 , 0 . 2 2 5])

])

Two modifications were made for the training Supplementary dataset. First, input resizing
was changed, as the original transformation stretched the images, while the new version
pads the images with black color to preserve the original aspect ratio (see figure 30).
Second, the out-of-the-box normalization values were calculated for the ImageNet dataset.
To help the model converge faster, the mean and standard deviation were re-calculated for
the Supplementary dataset. The final transformation code can be seen in Listing 4.5.

2https://pytorch.org/hub/pytorch_vision_resnet/

41

https://pytorch.org/hub/pytorch_vision_resnet/

(a) Stretched (b) Padded

Figure 30. Visual comparison of a default and a new transformation [40].

Listing 4.5. New transformations for Supplementary training.

t r a n s f o r m = T . Compose ([

T . R e s i z e (2 5 6 , max_s ize =257) ,

T . Cen te rCrop (2 2 4) ,

T . ToTensor () ,

T . Normal i ze (mean = [0 . 2 7 7 5 , 0 . 2 8 7 2 , 0 . 2 0 5 4] ,

s t d = [0 . 2 6 4 0 , 0 . 2 7 2 4 , 0 . 2 0 8 8]) ,

])

4.2.3 Dataloader and Data sampler

Another thing mentioned in Chapter 3 — class imbalance needed to be addressed. One
way to solve it is to either randomly delete images of the major class (undersampling) or
randomly duplicate images of the minor class (oversampling) (see Figure 31).

Figure 31. Difference of Undersampling and Oversampling3.

Here an automatic approach was selected — torch.utils.data.WeightedRandomSampler.
The main idea is to instead of manually copying and deleting files, WeightedRandomSam-

pler picks samples randomly with a gives the probability of images of individual classes.
3https://medium.com/analytics-vidhya/undersampling-and-oversampling-an-old-and-a-new-approach-
4f984a0e8392

42

To control these probabilities one can use the frequency of representatives (see Listing
4.6).

Listing 4.6. Application of WeightedRandomSampler.

_ , c o u n t s = np . u n iq ue (l a b e l s , r e t u r n _ c o u n t s =True)

w e i g h t s = 1 . 0 / t o r c h . t e n s o r (coun t s , d t y p e = t o r c h . f l o a t)

s a m p l e r = WeightedRandomSampler (w e i g h t s [l a b e l s] ,

l e n (l a b e l s) , r e p l a c e m e n t =True)

])

Then this sampler was plugged-in torch.utils.data.DataLoader which distributes images
into batches that can be loaded into GPU memory in one go.

4.2.4 Model preparation

After ResNet18 and ResNet50 models were retrieved, still they required additional configu-
ration. By default, ResNet was designed to solve the ImageNet dataset, which has 1000
unique classes. However, in this case, the Supplementary dataset consists of only 10 fish
species. To accommodate this, the last fully-connected layer of each ResNet model was
replaced with a custom one (see Listing 4.7):

Listing 4.7. Replacing last fully-connected layer of the ResNet model.

model_fc = model . f c

model . f c = nn . L i n e a r (i n _ f e a t u r e s = model_fc . i n _ f e a t u r e s ,

o u t _ f e a t u r e s = l e n (d a t a s e t . CLASSES))

])

Initially also usage of dropouts [27] was planned, but as it makes the model’s convergence
slower and torch has some problems with saving models with dropout attached, this idea
was abandoned.

Besides that also implementations of custom dataset class and model training cycle utilized
in this study are available in Appendix 4 and Appendix 5.

43

4.3 BASELINE model training

Taking into account all prerequisites a baseline model was trained. In particular 5 models
(1 model 4vs1 and 4 models 3+1vs1 for each subset) for each model class (ResNet18 and
ResNet50). Each ResNet18 model has completed training in 34 minutes with an average of
6 minutes per each subset. ResNet50 doubles this time to 67 minutes total and 13 minutes
in average per each subset.

4.4 AutoAugment

As AutoAugment has a very big search space, there are 3 pre-calculated optimal policies
for ImageNet, CIFAR, and SVHN datasets that can be utilized for model training on a
custom dataset. Unfortunately, no scripts for own policy finding were included within
torch. There are two possible ways of applying augmentation in torch: either run n times
transformation function to increase physically dataset or to generate augmented samples
on the fly. The obvious drawback of the first approach is space-consuming, so the second,
the simplest, approach was selected.

To apply predefined AA policies the initial transformation was temporarily updated (see
an example of applying ImageNet AA policies in Listing 4.8):

Listing 4.8. Plugging AA into transformation function.

b a s e _ t r a n s f o r m = T . Compose ([

T . R e s i z e (2 5 6 , max_s ize =257) ,

T . Cen te rCrop (2 2 4) ,

T . ToTensor () ,

T . Normal i ze (mean = [0 . 2 7 7 5 , 0 . 2 8 7 2 , 0 . 2 0 5 4] ,

s t d = [0 . 2 6 4 0 , 0 . 2 7 2 4 , 0 . 2 0 8 8]) ,

])

b a s e _ t r a n s f o r m . t r a n s f o r m s . i n s e r t (0 ,

T . AutoAugment (T . AutoAugmentPol icy . IMAGENET))

AA transformation could be plugged directly into T.Compose function, but as the training
script was put in a cycle, it was a more convenient (and human-error-safe) way of operating.

A total of 30 models were produced (2 · 5 · 3), with a total of 37–38 minutes on ResNet18

models (per one policy) and 64–65 minutes on ResNet50 models.

44

4.5 Faster AutoAugment

For own policy finding the optimization algorithm proposed as Faster AA was utilized
within implementation in AutoAblument4 library.

4.5.1 Optimal policy searching

Before applying AutoAblument for searching one has to prepare a dataset class and adjust
search.yaml config file. A custom dataset class used for all models training (see Appendix
4) was slightly modified: first, as AutoAblument is based on Albumentations library, the
basic transformation function was changed from torch implementation to albumentations

one, luckily the syntax hasn’t changed much; second, instead of loading images using PIL

library this version used skimage.io module to load images in a numpy format.

Also, the input data were filtered in such a way, that optimal policy searching was done on
training data only, to avoid biasing toward test data.

The default configuration used policy searching (modified GAN training) for 20 epochs,
this was changed to 300 epochs. Also, like in the case of ResNet’s default transformations,
the normalization constants were also defined for the ImageNet dataset and were changes
to these calculated for Supplementary dataset. After searching, optimal policies were saved
per each epoch of searching in a json file format. A total of 13 hours were spent on finding
optimal policies.

4.5.2 Model training

The same migrating from torch transformations to albumentations ones were done for
model training transformations and found policies were plugged in the following way (see
Listing 4.9).

A three policies were chosen: for 20 epochs (AutoAblument defaults), 150 epochs and 300
epochs. A total of 30 models were produced (2 · 5 · 3), with a total of 33–37 minutes on
ResNet18 models (per one policy) and 60–63 minutes on ResNet50 models.

4https://albumentations.ai/docs/autoalbument/

45

https://albumentations.ai/docs/autoalbument/

Listing 4.9. Found AA policies and updated transformatios5.

t r a n s f o r m _ p r e = A. S e q u e n t i a l ([

A. Longes tMaxSize (max_s ize =256 , i n t e r p o l a t i o n =1) ,

A. PadI fNeeded (m i n _ h e i g h t =256 , min_width =256 , border_mode =0 ,

v a l u e = (0 , 0 , 0)) ,

A. Cen te rCrop (h e i g h t =224 , wid th =224)

t r a n s f o r m = A. l o a d (e x p e r i m e n t [’ p o l i c y ’])

t r a n s f o r m . t r a n s f o r m s . i n s e r t (0 , t r a n s f o r m _ p r e)

])

4.6 RandAugment

PyTorch implementation of RA comes with the same hyperparamenters described in
original paper [29]: number of sequential operations N and magnitude M . As a starting
point the following hyperparameters were used in a grid search to find the best ones (see
Table 2).

Table 2. Grid search for the best RandomAugment hyperparameters.

N = 1 N = 2 N = 3

M = 5 RAND_AUGMENT_01 RAND_AUGMENT_07 RAND_AUGMENT_13

M = 7 RAND_AUGMENT_02 RAND_AUGMENT_08 RAND_AUGMENT_14

M = 9 RAND_AUGMENT_03 RAND_AUGMENT_09 RAND_AUGMENT_15

M = 11 RAND_AUGMENT_04 RAND_AUGMENT_10 RAND_AUGMENT_16

M = 13 RAND_AUGMENT_05 RAND_AUGMENT_11 RAND_AUGMENT_17

M = 15 RAND_AUGMENT_06 RAND_AUGMENT_12 RAND_AUGMENT_18

A total of 180 models were produced (2 ·5 ·18), with a total of 38–43 minutes on ResNet18

models (per one typle of (N,M)) and 62–69 minutes on ResNet50 models. The total time
of the grid search was ≈ 32 hours.

4.7 AugMix

The same approach was done for the PyTorch implementation of AugMix. The hyperparam-
eters have a similar nature to those in RA. Default parameters in PyTorch are severity = 3

and mixture_width = 3, so the grid search was done around these values (see Table 3).

5experiment[’policy’] contains a path to a json file

46

Table 3. Grid search for the best AugMix hyperparameters.

width = 2 width = 3 width = 4

severity = 1 AUGMIX_00 AUGMIX_04 AUGMIX_08

severity = 3 AUGMIX_01 AUGMIX_05 AUGMIX_09

severity = 5 AUGMIX_02 AUGMIX_06 AUGMIX_10

severity = 7 AUGMIX_03 AUGMIX_07 AUGMIX_11

A total of 120 models were produced (2 ·5 ·12), with a total of 48–64 minutes on ResNet18

models (per one typle of (width, severity)) and 76–89 minutes on ResNet50 models.
So far this was the slowest augmentation, with a time increase proportional to increased
hyperparameter values. The total time of the grid search was ≈ 28 hours.

4.8 Stable Diffusion: Data preparation

Generative models such as Stable Diffusion differs from the standard augmentation tech-
niques in the way of creating new data — instead of modifying already existing images, it
imagines completely new data, which with the side-effect of biasing towards a fine-tuning
samples makes it a good candidate for data augmentation.

But before such data can be generated, one has to train (fine-tune) these big generative
models. Training such a big model from scratch would require a gigantic amount of
training data and computational resources. Instead fine-tuning approaches - DreamBooth

and LoRA are used. A big advantage is that fine-tuning requires much less data, however,
the ones used for classification model training are not suitable right away.

In terms of fine-tuning Stable Diffusion train images typically have 512x512 or 768x768
resolution (can be other, but these or most common ones) and are always squared (have
a 1:1 aspect ratio). For this work a target resolution was chosen to be 768x768 as it
would preserve more small details and, in overall, would increase the quality of generated
samples.

4.8.1 Supplementary

A problem with Supplementary used for a target model training is that it has various aspect
ratios (though in a model transformation, it is padded with black color to fit in a square) and
the size of all images is lower than even 512x512. Upscaling it trivially would introduce
various image artifacts that will affect generator performance (see Figure 32).

47

(a) Original quality [40] (b) Generated

Figure 32. Example of a synthetic bleak fish generated from bad training samples.

As there was no way of changing data to something else, instead of trivial upscaling,
special upscaling models were utilized. It is worth to be mentioned that the analysis and
synthetic images generation within Stable Diffusion was done using stable-diffusion-webui

by Automatic11116, which, besides having tools to work with Stable Diffusion, has image
upscaling models. Among available ones were: Lanczos, Nearest, ESRGAN_4x, LDSR,
R-ESRGAN 4x+, R-ESRGAN 4x+ Anime6B and SwinIR_4x. None of the mentioned were
producing very decent results, but with R-ESRGAN 4x+ upscaled image looks less distorted
(see Figure 33).

(a) Original [40] (b) Lanczos (c) Nearest

(d) LDSR (e) R-ESRGAN 4x+ (f) R-ESRGAN 4x+ Anime6B

Figure 33. Example of various upscaling models in stable-diffusion-webui.

6https://github.com/AUTOMATIC1111/stable-diffusion-webui

48

https://github.com/AUTOMATIC1111/stable-diffusion-webui

Also, to minimize the impact of padding (filling with black color) used for fixing aspect
ratios of a target model training, utilizing the same bounding boxes data (see Chapter 3)
frames were cropped again in such way that bounding box around the fish were resized to
a square using the longest side as a final resolution. Then a total of 150 images (15 for
each fish specie) was selected and upscaled using R-ESRGAN 4x+ model. The selection
was done with a focus on selecting unique images with the best possible quality, which
was not uncompromising.

See Supplementary dataset for fine-tuning in Appendix 6.

4.8.2 AFFiNe

As was described in Chapter 3, the idea of using AFFiNe dataset was to make an additional
bias toward the fish domain, which might help Stable Diffusion produce better images
in the context of data augmentation. Moreover, besides domain shift, as most of the fish
species are present in both AFFiNe and Supplementary, also the visual appearance of fish
present in AFFiNe might help distinguish specific species of Supplementary where image
quality interferes with this.

The situation with AFFiNe images was quite the opposite. The resolution of images was
much higher than Supplementary, but there was no bounding box data and original frames

to make images squared. There were two possible solutions: either crop the images (fish
would also be cropped) or pad them. It was decided that losing the information would
have more negative effects rather than leaving black borders, so the second approach was
selected. A total of 120 images were picked (2 species of Supplementary are missing in
AFFiNe) and padded to fit in a 1:1 aspect ratio.

See AFFiNe dataset for fine-tuning in Appendix 7).

4.8.3 Images captioning

As was done in the Original paper of DreamBooth[20] each species class was mapped
with a specific unique identifier up to 3 symbols to associate a new knowledge with that
identifier, taking manually from pre-calculated file sorted by token frequency of appearance
in language7. However up-to-date training scripts have an extended functionality by
utilizing external caption files. The purpose of that is to describe an image in more detail,
which helps the Stable Diffusion to understand the context better.

7https://github.com/2kpr/dreambooth-tokens/blob/main/all_single_tokens_
to_4_characters.txt

49

https://github.com/2kpr/dreambooth-tokens/blob/main/all_single_tokens_to_4_characters.txt
https://github.com/2kpr/dreambooth-tokens/blob/main/all_single_tokens_to_4_characters.txt

To create initial descriptions, a BLIP (model_base_caption_capfilt_large.pth) model was
used, provided with stable-diffusion-webui. There were no settings to control the model,
but analyzing the code undercover the following configuration (see Listing 4.10):

Listing 4.10. Configuration for BLIP image captioning.

{
. . .
" i n t e r r o g a t e _ c l i p _ n u m _ b e a m s " : 1 ,
" i n t e r r o g a t e _ c l i p _ m i n _ l e n g t h " : 24 ,
" i n t e r r o g a t e _ c l i p _ m a x _ l e n g t h " : 48 ,
" i n t e r r o g a t e _ c l i p _ d i c t _ l i m i t " : 1500 ,
. . .

}

Both for Supplementary and AFFiNe fine-tune datasets captions were created and then
manually checked and fixed using a custom gradio-based application (see Appendix 3).
While for AFFiNe automatic captions provided by BLIP were okay, describing general
information, such as: "fish is being held in hands", captions for Supplementary were total
nonsense, where each image was described as containing various objects and none of
them were fish-related. Instead Supplementary were manually captioned with a focus on
describing visual defects mentioned in Chapter 38.

In addition the following prefix structure: "<unique ID> fish, <unique ID> <Supplementary

label>, <AFFine label>" was added to both dataset’s captions (see Table 4).

Table 4. Caption prefixes for fine-tuning datasets.

Supplementary class AFFiNe class prefix
carp Cyprinus carpio bdg fish, bdg barbel, Cyprinus carpio

catfish Silurus glanis cq fish, cq catfish, Silurus glanis

bream Abramis brama ddc fish, ddc bream, Abramis brama

eel Anguilla anguilla fbs fish, fbs eel, Anguilla anguilla

chub Leuciscus
cephalus

hns fish, hns chub, Leuciscus cephalus

perch Perca fluviatilis pz fish, pz perch, Perca fluviatilis

barbel Barbus barbus rsc fish, rsc barbel, Barbus barbus

roach Rutilus rutilus szn fish, szn roach, Rutilus rutilus

bleak - ccd fish, ccd bleak, Alburnus alburnus

nase - kts fish, kts nase, Chondrostoma nasus

8Example prompt: "... warm white color palette, blurry water, overexposure"

50

4.9 Fine-tuning: DreamBooth

The total of 4 models were produced by DreamBooth fine-tuning:

■ A: Stable Diffusion v1.5 on Supplementary dataset
■ B: Stable Diffusion v2.1_768 on Supplementary dataset
■ C: Stable Diffusion v1.5 on AFFiNe dataset
■ D: Stable Diffusion v2.1_768 on AFFiNe dataset

Each model was trained using the following settings9 (see Table 5):

Table 5. DreamBooth training settings.

Settings Model A Model B Model C Model D
Base model version 1.5 2.1_768 1.5 2.1_768

U-Net steps 15’000 15’000 15’000 15’000

U-Net lr 2e-6 2e-6 2e-6 2e-6

Encoder steps 6’000 6’000 6’000 6’000

Encoder lr 1e-6 1e-6 1e-6 1e-6

Encoder concept steps 0 0 0 0

Resolution 768 768 768 768

Offset noise False False False False

External captions True True True True

Save checkpoint every 3’000 3’000 3’000 3’000

Each model was trained for about 2.5 hours for text encoder training and about 5.5 hours
for U-Net training (8 hours per model) with a total of 32 hours. The training was done
using Colab Pro subscription and Tesla T4 GPU.

4.10 Fine-tuning: LoRA

Also, the same amount of 4 models was produced by LoRA fine-tuning:

■ A: Stable Diffusion v1.5 on Supplementary dataset
■ B: Stable Diffusion v2.1_768 on Supplementary dataset
■ C: Stable Diffusion v1.5 on AFFiNe dataset
■ D: Stable Diffusion v2.1_768 on AFFiNe dataset

9that were directly visible in a colab cell

51

There is a possibility to install Kohya’s script locally or use it in colab, but due to major
differences in scripts, an older local version was used. The training was using GPU
rent service — RunPod10 using NVIDIA GeForce RTX 3090 with 24 GB of VRAM
and NVIDIA GeForce RTX 4090 with 24 GB of VRAM GPU’s. RunPod utilizes a
containers11 system. To run the training runpod/stable-diffusion:web-automatic-3.0.0 was
used with custom post-installation script (see Appendix 8).

Models based on a 1.5 version were trained using the following command:

Listing 4.11. LoRA training settings for 1.5 version.

a c c e l e r a t e l a u n c h −− n u m _ c p u _ t h r e a d s _ p e r _ p r o c e s s =2 " t r a i n _ n e t w o r k . py " \
−− p r e t r a i n e d _ m o d e l _ n a m e _ o r _ p a t h =" s t a b i l i t y a i / s t a b l e − d i f f u s i o n −1 −5" \
−− t r a i n _ d a t a _ d i r = " / workspace / < d a t a s e t _ d i r >" −− r e s o l u t i o n =768 ,768 \
−− o u t p u t _ d i r = " / workspace / < o u t p u t _ d i r >" \
−− l o g g i n g _ d i r = " / workspace / < l o g _ d i r >" −− n e t w o r k _ a l p h a ="256" \
−− save_mode l_as = s a f e t e n s o r s −−network_module = n e t w o r k s . l o r a \
−− t e x t _ e n c o d e r _ l r =5e −5 −− u n e t _ l r =0 .0001 −−network_dim =256 \
−− outpu t_name ="<model_name >" −− l r _ s c h e d u l e r _ n u m _ c y c l e s ="300" \
−− l e a r n i n g _ r a t e = " 0 . 0 0 0 1 " −− l r _ s c h e d u l e r =" c o s i n e " \
−− l r _ w a r m u p _ s t e p s =" <900 or 1125 >" −− t r a i n _ b a t c h _ s i z e ="4" \
−− m a x _ t r a i n _ s t e p s ="< 9000 or 11250 >" −− s a v e _ e v e r y _ n _ e p o c h s ="100" \
−− m i x e d _ p r e c i s i o n =" bf16 " −− s a v e _ p r e c i s i o n =" bf16 " −− seed ="1234" \
−− c a p t i o n _ e x t e n s i o n = " . t x t " −− c a c h e _ l a t e n t s −− o p t i m i z e r _ t y p e ="AdamW8bit " \
−− m a x _ t o k e n _ l e n g t h =225 −− b u c k e t _ r e s o _ s t e p s =64 −− f l i p _ a u g −− x f o r m e r s −− b u c k e t _ n o _ u p s c a l e

Models based on a 2.1 version were trained using the following command:

Listing 4.12. LoRA training settings for 2.1 version.

a c c e l e r a t e l a u n c h −− n u m _ c p u _ t h r e a d s _ p e r _ p r o c e s s =2 " t r a i n _ n e t w o r k . py " \
−−v2 −− v _ p a r a m e t e r i z a t i o n \
−− p r e t r a i n e d _ m o d e l _ n a m e _ o r _ p a t h =" s t a b i l i t y a i / s t a b l e − d i f f u s i o n −2 −1" \
. . . r e s t i s t h e same f o r 1 . 5 v e r s i o n

Each model was fully trained 3.5 hours on RTX 3090 and 2 hours on RTX 4090, which is
much faster taking into account that using LoRA both text encoder and U-Net were trained
3 times longer (according to the number of iteration steps) while taking 2–3 times less
time than DreamBooth. The whole training was done in about 12 hours.

10https://www.runpod.io/
11https://www.docker.com/

52

https://www.runpod.io/
https://www.docker.com/

4.11 Checkpoint selection

After 8 fine-tuned models were trained, there still were multiple versions to select for
further synthetic dataset generation. Regarding DreamBooth each model was saved every
3000 steps, but only one of each was chosen. As for LoRA, despite having the same saving
each n epoch, only the final versions were used, however as LoRA have mixing constant α,
the selection of optimal one was analyzed.

Dealing with the combination of Supplementary and AFFiNe was different. The initial plan
was to use fine-tuned with AFFiNe data model and fine-tune it further with Supplementary

data. However, trying that using DreamBooth results in an error both on 1.5 and 2.1-based
versions. Also, merging a LoRA with a base model12 was not working for 2.1 based model.
To solve these problems an alternative approach was selected — merge different models
together13.

Checkpoint comparison plots that were used to decide on a final selection can be seen in
Appendix 9. The general rule was to avoid visual defects and at the same time avoid high
biasing toward the original data (overfitting). It is worth to be mentioned that none of the
models were perfect, some have broken fish, and some have not a fish at all14 See the final
models used for synthetic data generation in Table 6:

Table 6. Synthetic data generation final candidates.

Name Recipe
sup_v1.5_lora v1.5 base + 0.8 · sup_768_v1.5

sup_v2.1_lora v2.1 base + 0.8 · sup_768_v2.1

sup_v1.5_dream sup_768_1.5_10_step_15000

sup_v2.1_dream sup_768_2.1_10_step_15000

sup+_v1.5_lora sup_v1.5_lora + 0.5 · affine_768_v1.5

sup+_v2.1_lora sup_v2.1_lora + 0.5 · affine_768_v2.1

sup+_v1.5_dream 0.6 · sup_v1.5_dream + 0.4 · affine_768_1.5_10_step_12000

sup+_v2.1_dream 0.5 · sup_v2.1_dream + 0.5 · affine_768_2.1_10_step_15000

12not the same as applying a LoRA with a base model
13that have the same base model and fine-tune approach
14for example szn roach was interpreted by some models as cockroach

53

4.12 Synthetic datasets generation

As there is no obvious answer on the optimal amount of synthetic data, using each model,
1000 synthetic images (100 images per specie) were generated, with a total of 8000
synthetic images. Each set generation took approximately 3.5–4 hours with a total of
around 30 hours. Examples of generated datasets are presented in Appendix 10.

4.13 Model training using synthetic datasets

Using created synthetic datasets a pair of ResNet18 and ResNet50 were trained. No
additional transformations were necessary, just original and synthetic data were combined
for each set of synthetic data. A synthetic set was labeled as SD and mixed into each of the
5 training subsets.

A total of 80 models were produced (2 · 5 · 8), with a total of 43–45 minutes on ResNet18

models and 88–94 minutes on ResNet50 models. Such an increase is not surprising taking
into account the increase of the training samples and hence the increase of iteration steps.

In addition, a pair of models were trained on synthetic subsets combined together. The
resulting dataset increased from 2k to 10k samples. Resulting training time increase to 2.5
hours and 4.5 hours respectively.

4.14 Model training using a mix of augmentations

Lastly, a combination of all synthetic data together and RA (N = 2,M = 9) were trained
the same way. As RA did not increase time much previously, resulting training time
remains approximately the same, 2.5 hours and 4.5 hours respectively.

54

5. Validation and results

In this chapter, the results of the experiments are presented, including baseline model
evaluation, the impact of different augmentation techniques target model, evaluation of
various metrics and total time spent on each technique as well as the selection of the best
approach and unresolved problems discussion.

5.1 BASELINE model evaluation

To understand the effect of augmentation and select potentially the best one, it is necessary
to understand the baseline performance. The first thing is as was mentioned in Chapters 2
and 4, there is indeed a clear presence of data leakage that can be seen in Figures 34–35:

(a) 4vs1 (b) 3+1vs1

Figure 34. Baseline ResNet18 model training and validation accuracy.

(a) 4vs1 (b) 3+1vs1

Figure 35. Baseline ResNet50 model training and validation accuracy.

Models that were trained on 4vs1 subset were both trained and validation set to share
the saved video origins. While validation accuracy is pretty good, the reality of 3+1vs1

shows a clear case of overfitting. This effect stays present for both ResNet18 and ResNet50

architectures, though ResNet50 shows a more linear increase in training accuracy.

55

The confusion matrices of baseline models are available in Figure 36. To properly display
class imbalance the values of each confusion matrix were normalized over the prediction
axis:

(a) ResNet18 (b) ResNet50

Figure 36. Normalized confusion matrices of baseline models.

As can be seen, there are not many values over the main diagonal in both matrices, which
should be evidence that the model is not able to predict anything. While ResNet18 was
able to predict one class almost correctly — nase, both of the models show more random
guessing behavior. It should be noted here, that the accuracy of label prediction of 10
classes is in the range of 0.1 up to 1, where 0.1 is random picking. Table 7 shows that
unfortunately baseline models indeed predict the label not better than random guessing.

Table 7. Baseline models metrics.

Model Accuracy Precision Recall TNR F1-score

ResNet18 0.070 0.133 0.065 0.899 0.068

ResNet50 0.130 0.111 0.106 0.904 0.101

5.2 Model training with augmentation evaluation

Then the analysis and the selection of the best model was done. The selection is on the
basis of the metrics, described in Chapter 2. It should be noted that, unlike other domains,
there were no preferences toward any specific metric.

56

5.2.1 Selection of RandAugment

The tables below present the evaluation metrics for ResNet18 and ResNet50 with the
application of RandAugment technique. The hyperparameters behind each experiment are
available in the corresponding section of Chapter 4. One immediate notice is that in overall
evaluation metrics of ResNet18 and ResNet50 were proportional to the hyperparameter’s
values increase. Among ResNet18 models the RAND_AUGMENT_16 was selected as it
has both top recall and F1-score, as well as decent accuracy and precision.

Table 8. RandAugment augmentation metrics on ResNet18 model.

Model Accuracy Precision Recall TNR F1-score

RAND_AUGMENT_01 0.256 0.356 0.186 0.918 0.202

RAND_AUGMENT_02 0.256 0.177 0.190 0.917 0.171

RAND_AUGMENT_03 0.252 0.152 0.163 0.916 0.150

RAND_AUGMENT_04 0.222 0.143 0.144 0.914 0.133

RAND_AUGMENT_05 0.258 0.211 0.182 0.918 0.175

RAND_AUGMENT_06 0.240 0.273 0.163 0.915 0.164

RAND_AUGMENT_07 0.250 0.355 0.182 0.918 0.209

RAND_AUGMENT_08 0.303 0.366 0.230 0.921 0.225

RAND_AUGMENT_09 0.232 0.291 0.158 0.914 0.162

RAND_AUGMENT_10 0.295 0.354 0.229 0.923 0.234

RAND_AUGMENT_11 0.272 0.330 0.194 0.918 0.206

RAND_AUGMENT_12 0.301 0.209 0.200 0.922 0.201

RAND_AUGMENT_13 0.326 0.426 0.225 0.925 0.239

RAND_AUGMENT_14 0.297 0.305 0.205 0.921 0.230

RAND_AUGMENT_15 0.286 0.271 0.194 0.920 0.205

RAND_AUGMENT_16 0.324 0.397 0.255 0.926 0.303
RAND_AUGMENT_17 0.292 0.305 0.220 0.920 0.240

RAND_AUGMENT_18 0.330 0.289 0.231 0.926 0.246

The same way RAND_AUGMENT_18 was selected among ResNet50 models, though
there was also RAND_AUGMENT_15 as a decent option:

Table 9. RandAugment augmentation metrics on ResNet50 model.

Model Accuracy Precision Recall TNR F1-score

RAND_AUGMENT_01 0.258 0.290 0.198 0.917 0.199

Continues...

57

Table 9 – Continues...

Model Accuracy Precision Recall TNR F1-score

RAND_AUGMENT_02 0.232 0.223 0.151 0.915 0.144

RAND_AUGMENT_03 0.279 0.164 0.176 0.920 0.166

RAND_AUGMENT_04 0.240 0.173 0.177 0.915 0.158

RAND_AUGMENT_05 0.274 0.242 0.192 0.918 0.189

RAND_AUGMENT_06 0.258 0.217 0.170 0.918 0.181

RAND_AUGMENT_07 0.277 0.348 0.195 0.919 0.207

RAND_AUGMENT_08 0.272 0.322 0.196 0.918 0.214

RAND_AUGMENT_09 0.295 0.341 0.206 0.921 0.210

RAND_AUGMENT_10 0.267 0.296 0.193 0.918 0.213

RAND_AUGMENT_11 0.225 0.342 0.162 0.913 0.183

RAND_AUGMENT_12 0.288 0.317 0.172 0.920 0.186

RAND_AUGMENT_13 0.258 0.338 0.186 0.917 0.200

RAND_AUGMENT_14 0.277 0.389 0.205 0.919 0.231

RAND_AUGMENT_15 0.306 0.328 0.228 0.923 0.247
RAND_AUGMENT_16 0.263 0.285 0.193 0.918 0.205

RAND_AUGMENT_17 0.227 0.268 0.159 0.915 0.155

RAND_AUGMENT_18 0.337 0.326 0.227 0.926 0.233

5.2.2 Selection of AugMix

The situation with the application of AugMix was quite the opposite to RandAugment

as the experiments with lower hyperparameter’s values have achieved better results (see
Tables 10–11). Again all hyperparameters behind each experiment are available in the
corresponding section of Chapter 4. Among ResNet18 models AUGMIX_01 was selected.

Table 10. AugMix augmentation metrics on ResNet18 model.

Model Accuracy Precision Recall TNR F1-score

AUGMIX_00 0.265 0.320 0.172 0.920 0.180

AUGMIX_01 0.344 0.397 0.245 0.928 0.228

AUGMIX_02 0.321 0.308 0.239 0.926 0.213

AUGMIX_03 0.303 0.250 0.225 0.924 0.206

AUGMIX_04 0.247 0.244 0.155 0.918 0.175

AUGMIX_05 0.330 0.266 0.238 0.927 0.213

AUGMIX_06 0.328 0.309 0.243 0.926 0.231
Continues...

58

Table 10 – Continues...

Model Accuracy Precision Recall TNR F1-score

AUGMIX_07 0.256 0.229 0.197 0.919 0.170

AUGMIX_08 0.279 0.229 0.197 0.921 0.187

AUGMIX_09 0.333 0.244 0.246 0.927 0.217

AUGMIX_10 0.306 0.361 0.220 0.925 0.204

AUGMIX_11 0.277 0.210 0.203 0.921 0.180

As for ResNet50 models — AUGMIX_02 showed the best evaluation results.

Table 11. AugMix augmentation metrics on ResNet50 model.

Model Accuracy Precision Recall TNR F1-score

AUGMIX_00 0.263 0.330 0.203 0.918 0.214

AUGMIX_01 0.301 0.393 0.223 0.924 0.203

AUGMIX_02 0.341 0.345 0.241 0.928 0.226

AUGMIX_03 0.259 0.218 0.192 0.918 0.176

AUGMIX_04 0.290 0.325 0.204 0.922 0.211

AUGMIX_05 0.315 0.307 0.227 0.925 0.208

AUGMIX_06 0.323 0.314 0.236 0.926 0.221

AUGMIX_07 0.333 0.267 0.245 0.927 0.220

AUGMIX_08 0.292 0.293 0.208 0.923 0.214

AUGMIX_09 0.330 0.333 0.248 0.927 0.235
AUGMIX_10 0.276 0.263 0.197 0.921 0.184

AUGMIX_11 0.249 0.348 0.188 0.918 0.171

5.2.3 Faster AutoAugment search

Faster AA requires additional policy searching, evaluation of which in AutoAlbument

library is done on the performance of the small cnn, which in reality was ResNet18. See
the training loss in Figure 37. While there was a clear loss drop which suggests that there
was a positive effect of the found policies, the application of them on target models was
not very successful. The numbers near each experiment refer to the search epochs elapsed
for each selected policy: 20 epochs, 150 epochs, and 300 epochs.

59

Figure 37. Faster AA search training loss.

Surprisingly the ResNet18 models performances (see Table 12) were in a linear relationship
to the epoch number of selected policies, with 300 epochs achieving the best results,
probably due to the same ResNet18 model architecture used both for policy searching
and evaluation. However, the results are still not very interesting as it was close to
random guessing. It might be that with even further training this approach might produce
better results, but as the policy searching itself consumes a lot of time, this idea was not
investigated further.

Table 12. Faster AA augmentation metrics on ResNet18 model.

Model Accuracy Precision Recall TNR F1-score

FASTER_AA_01 0.119 0.088 0.108 0.901 0.091

FASTER_AA_02 0.110 0.102 0.092 0.901 0.089

FASTER_AA_03 0.121 0.113 0.108 0.903 0.098

With ResNet50 models (see Table 13), there was no such effect, and the results were
not particularly interesting, as other augmentation techniques achieved better evaluation
metrics.

Table 13. Faster AA augmentation metrics on ResNet50 model.

Model Accuracy Precision Recall TNR F1-score

FASTER_AA_01 0.160 0.136 0.149 0.907 0.133
FASTER_AA_02 0.205 0.143 0.134 0.913 0.133
FASTER_AA_03 0.142 0.119 0.090 0.906 0.101

60

5.2.4 Synthetic datasets

With the use of synthetic datasets, 3 approaches, in general, were evaluated:

■ One synthetic dataset per experiment
■ All synthetic datasets together in one experiment
■ As the previous one but with extra RandAugment application

Among the first approach dataset generated using Stable Diffusion v2.1 fine-tuned by LoRA

show decent results both in the case of ResNet18 and ResNet50 (see Tables 14–15). The
combined approach has increased the metrics even further, making it comparable with
RandAugment and AugMix augmentation techniques. But the absolute best results were
achieved using the almost-accidental approach of combining both the synthetic data and
standard augmentation techniques like RandAugment.

Table 14. Training with synthetic data on ResNet18 model.

Model Accuracy Precision Recall TNR F1-score

SD_SUP_LORA_15 0.180 0.206 0.114 0.910 0.130

SD_SUP_LORA_21 0.259 0.254 0.165 0.919 0.179
SD_SUP_DREAM_15 0.196 0.218 0.151 0.913 0.163

SD_SUP_DREAM_21 0.142 0.128 0.093 0.907 0.102

SD_SUP+_LORA_15 0.173 0.170 0.119 0.910 0.130

SD_SUP+_LORA_21 0.207 0.144 0.124 0.913 0.129

SD_SUP+_DREAM_15 0.119 0.110 0.070 0.904 0.083

SD_SUP+_DREAM_21 0.168 0.160 0.119 0.909 0.128

SD_SUP_COMBINED 0.346 0.342 0.252 0.928 0.239

SD_SUP_COMBINED_RAND 0.575 0.503 0.440 0.952 0.418

Table 15. Training with synthetic data on ResNet50 model.

Model Accuracy Precision Recall TNR F1-score

SD_SUP_LORA_15 0.184 0.186 0.127 0.911 0.136

SD_SUP_LORA_21 0.321 0.202 0.240 0.925 0.204
SD_SUP_DREAM_15 0.186 0.137 0.124 0.912 0.130

SD_SUP_DREAM_21 0.195 0.166 0.124 0.911 0.126

SD_SUP+_LORA_15 0.196 0.180 0.128 0.913 0.138

Continues...

61

Table 15 – Continues...

Model Accuracy Precision Recall TNR F1-score

SD_SUP+_LORA_21 0.142 0.157 0.094 0.906 0.101

SD_SUP+_DREAM_15 0.169 0.147 0.092 0.908 0.098

SD_SUP+_DREAM_21 0.178 0.151 0.113 0.910 0.123

SD_SUP_COMBINED 0.328 0.253 0.238 0.926 0.235

SD_SUP_COMBINED_RAND 0.510 0.408 0.387 0.944 0.359

5.2.5 Total metrics comparison

Then each best result was further compared among each other (see Tables 16–17). While
both RandAugment and AugMix show decent results and for some metrics that was the case
for AutoAugment pre-defined policy for ImageNet dataset, the best results were achieved
using a combination of synthetic data and RandAugment, beating every other technique
by every evaluation metric both for ResNet18 and ResNet50 models.

Table 16. Total metrics comparison on ResNet18 model.

Model Accuracy Precision Recall TNR F1-score

BASELINE 0.070 0.133 0.065 0.899 0.068

AA_CIFAR10 0.314 0.359 0.240 0.923 0.253

AA_IMAGENET 0.348 0.328 0.270 0.927 0.268

AA_SVHN 0.252 0.284 0.162 0.918 0.195

RAND_AUGMENT_16 0.324 0.397 0.255 0.926 0.303

AUGMIX_01 0.344 0.397 0.245 0.928 0.228

FASTER_AA_03 0.121 0.113 0.108 0.903 0.098

SD_SUP_LORA_21 0.259 0.254 0.165 0.919 0.179

SD_SUP_COMBINED 0.346 0.342 0.252 0.928 0.239

SD_SUP_COMBINED_RAND 0.575 0.503 0.440 0.952 0.418

Table 17. Total metrics comparison on ResNet50 model.

Model Accuracy Precision Recall TNR F1-score

BASELINE 0.130 0.111 0.106 0.904 0.101

AA_CIFAR10 0.265 0.297 0.199 0.918 0.200

AA_IMAGENET 0.312 0.344 0.256 0.923 0.253

Continues...

62

Table 17 – Continues...

Model Accuracy Precision Recall TNR F1-score

AA_SVHN 0.234 0.179 0.151 0.915 0.147

RAND_AUGMENT_18 0.337 0.326 0.227 0.926 0.233

AUGMIX_02 0.341 0.345 0.241 0.928 0.226

FASTER_AA_02 0.205 0.143 0.134 0.913 0.133

SD_SUP_LORA_21 0.321 0.202 0.240 0.925 0.204

SD_SUP_COMBINED 0.328 0.253 0.238 0.926 0.235

SD_SUP_COMBINED_RAND 0.510 0.408 0.387 0.944 0.359

5.2.6 Total spent time comparison

But before the final evaluation of the best models so far, a few words should be addressed
regarding the time spent on preparing and application of each augmentation technique (see
Table 18):

Table 18. Total time spent on each technique (hours:minutes).

Approach ResNet18 ResNet50 Preparation Total

BASELINE 00:34 01:07 00:00 00:34–01:07

AutoAugment (grid search) 00:38 01:01 00:00 00:38–01:01

RandAugment (grid search) 00:40 01:06 12:00 + 20:00 12:40–21:06

AugMix 00:56 01:22 11:12 + 16:30 12:08–17:52

Faster AA 00:35 00:62 13:00 13:35–13:62

Synthetic data 00:44 01:30 (03:00–08:00) + 04:00 10:14–11:00

Combined synthetic data 02:30 04:30 12:00 + 32:00 + 30:00 76:30–78:30

Combined synthetic data + Ran-
dAugment

02:30 04:30 12:00 + 32:00 + 30:00 76:30–78:30

As can be seen, despite a combinational approach of synthetic data together with Ran-

dAugment having the best result with regards to evaluation metrics, it is far from the most
time-efficient approach. The standard popular approaches like RandAugment and AugMix

have much less time as if one commits the grid search, they are the fastest way, especially
to test proof-of-concept. If one includes grid search time, there is a more time-efficient
approach —utilizing Stable Diffusion generation on a single model. Though it will not
produce the best results always, in addition to synthetic data for model training, there is a
useful artifact of fine-tuned Stable Diffusion model that can be utilized again and again
and with proper evaluation can be used in similar domains.

63

5.3 Best models evaluation

So far the best model was achieved using a combination of synthetic data and RandAugment.
The same normalized confusion matrices are presented for the best models in Figure 38.
Unline the baseline model by looking at the main diagonals there are certain improvements
in distinguishing between classes. However, there are still some problems, such as
predicting perch as barbel.

(a) ResNet18 (b) ResNet50

Figure 38. Normalized confusion matrices of SD_SUP_COMBINED_RAND models.

Overall, in comparison with the baseline model, the proposed approach increased accuracy

and precision metrics by 5 times and the rest by 3.5-4 times (except for TNR where values
were already close to the 1) (see Tables 19–20).

Table 19. Baseline models metrics.

Model Accuracy Precision Recall TNR F1-score

ResNet18 0.070 0.133 0.065 0.899 0.068

ResNet50 0.130 0.111 0.106 0.904 0.101

Table 20. Best achieved models metrics.

Model Accuracy Precision Recall TNR F1-score

ResNet18 0.575 0.503 0.440 0.952 0.418

ResNet50 0.510 0.408 0.387 0.944 0.359

64

5.4 Problem analysis

As the achieved results are still far from being ideal1 an additional analysis was applied.
Using CleanLab2 predicted labels were analyzed to determine the largest label error3.
Examples of images with the largest label errors can be seen in Figure 39:

(a) SD_SUP_COMBINED_RAND ResNet18 (b) SD_SUP_COMBINED_RAND ResNet50

Figure 39. Examples of images with an incorrectly predicted label [40].

As can be seen, the majority of images with incorrect labels have very tough visual
conditions and to be more specific, probably even a human will not be able to correctly
classify most of them. The interesting was the prediction of perch fish, as it has quite a
unique appearance among other species that were present in the Supplementary dataset.
However, as CNN models have no common-sense understanding (typically), most probably
the stones behind the fish were interpreted as part of that fish, which, from the perspective
of models, makes fish larger, and hence the choice was made in favor of larger fish species,
like catfish.

In addition, comparing different models on this test dataset might have introduced extra
challenges, however, this choice was made to maintain the original quality of the data.

1close to 1 (or 100%)
2https://github.com/cleanlab/cleanlab
3in the case where the predicted label was not the same as true one

65

https://github.com/cleanlab/cleanlab

6. Discussion and further work

Throughout the study, a number of important questions were addressed, leading to key
findings and insights. The optimal combination of augmentation techniques for improving
the performance of a specific model was discovered to be synthetic images generated using
Stable Diffusion fine-tuned with Supplementary and AFFiNe datasets, combined with addi-
tional RandAugment transformations. This combination allowed for better generalization
of positional invariances of fish in the images, which lead to the increase of evaluation
metrics by 4-5 times.

Additionally, it was determined that it is possible to evaluate the effect of augmentation
techniques in the context of low-quality limited-data dataset scenarios, where due to
some factors, alternative ways of collecting more real data are not financially profitable
or time-consuming. However, this process turned out to be quite challenging, and the
improvements observed were modest. Despite this, the results demonstrated the potential
for novel augmentation techniques, such as diffusion models, to be worth applying in low-
quality limited-data scenarios, compared to traditional ones. Although considerable time
was spent on fine-tuning and further synthetic data generation, other techniques did not
lead to performance improvements that outperform those achieved with Stable Diffusion
alone and even matched those achieved with a mixed approach. Moreover, the produced
Stable Diffusion models have potential applications beyond synthetic data generation for
model training, as they are capable of recreating trained objects in different contexts.

Both the results and described workflow provide a wide roadmap for further research.
A further step could be to prune the synthetic data before using it as training data: for
example, make 100000 synthetic images, and pick only those which are as similar to
"real images" as possible, based on some threshold. Researchers might also continue
investigating and improving the proposed solution, perhaps by creating better prompts,
training a custom image upscaling model to fine-tune Stable Diffusion with low-quality
images of fish, or exploring alternative augmentation techniques that could yield better
results. Another, more traditional-popular, possible avenue for future research would be
to focus on collecting more real data to enhance the training dataset and then using that
together with the proposed solution to achieve even better results.

66

7. Summary

In conclusion, this study addressed the challenges in fish species classification in the
context of data-limited, low-quality datasets. The study has investigated and evaluated
various image augmentation techniques, aiming to improve the performance of ResNet18

and ResNet50 models for fish species classification.

The results demonstrated that a combination of synthetic images generated using Stable
Diffusion fine-tuned with Supplementary and AFFiNe datasets, along with additional
RandAugment transformations, yielded the best performance improvements in the specific
model, increasing the evaluation metrics by 4-5 times. The study also highlighted the
potential for novel augmentation techniques, such as diffusion models, in particular fine-
tuned Stable Diffusion, to be worth applying compared to traditional ones. Moreover, the
study explored the practicability of applying advanced image augmentation techniques to
small initial datasets and assessed their effectiveness in mitigating issues related to dataset
imbalances and overfitting. While the improvements observed were modest due to the
limited, low-quality data available, the study showed that advanced image augmentation
techniques can be effectively applied in limited data scenarios.

The results of this work have several implications for the field of fish species classification
and the broader application of image augmentation techniques. By identifying optimal
combinations of augmentation techniques and demonstrating the potential of novel meth-
ods, the study contributes to the advancement of fish species classification models, which
can be used to monitor and preserve underwater ecosystems and support various economic
activities.

Future work in this area could focus on further investigation of the proposed solution by
improving the prompts used, training custom image upscaling models, or investigating
alternative augmentation techniques. Additionally, researchers could concentrate on col-
lecting more real data to enhance the training dataset, further improving the performance of
fish species classification models. The potential applications of the Stable Diffusion models
beyond synthetic data generation for model training could also be explored, contributing
to the broader understanding of these techniques.

The source code of all the experiments is available at GitLab.

67

https://gitlab.cs.ttu.ee/aleksi/fish-species-augmentation-release

8. Acknowledgements

The author would like to thank the German Federal Institute of Hydrology (BfG) for
allowing the use of the Supplementary dataset. The Supplementary dataset was provided
by Bundesanstalt für Gewässerkunde / Federal Institute of Hydrology as a part of "BfG-
Project Smart fish counter for monitoring species, size, migration behavior and
environmental conditions" project1.

The opportunity to work on this project as part of a collaboration between research groups at
TalTech and BfG has been greatly appreciated. The guidance, experience, and cooperation
of both parties played an important role in the workflow and results of this study. The
author is grateful for the continued support, encouragement, and general enthusiasm for
the subject shown by all project participants.

1https://www.etis.ee/Portal/Projects/Display/669139e4-524b-4562-9aad-a1164b870823

68

References

[1] Jürgen Soom et al. “Environmentally adaptive fish or no-fish classification for river
video fish counters using high-performance desktop and embedded hardware”. In:
Ecological Informatics 72 (2022). [Accessed: 22-04-2023], p. 101817. ISSN: 1574-
9541. DOI: https://doi.org/10.1016/j.ecoinf.2022.101817.
URL: https://www.sciencedirect.com/science/article/pii/
S1574954122002679.

[2] Y. LeCun et al. “Backpropagation Applied to Handwritten Zip Code Recognition”.
In: Neural Computation 1.4 (1989). [Accessed: 19-03-2023], pp. 541–551. DOI:
10.1162/neco.1989.1.4.541.

[3] Dhruv Rathi, Sushant Jain, and Dr. S. Indu. Underwater Fish Species Classification

using Convolutional Neural Network and Deep Learning. [Accessed: 21-03-2023].
2018. arXiv: 1805.10106 [cs.CV].

[4] Mutasem K. Alsmadi and Ibrahim Almarashdeh. “A survey on fish classifica-
tion techniques”. In: Journal of King Saud University - Computer and Informa-

tion Sciences 34.5 (2022). [Accessed: 21-03-2023], pp. 1625–1638. ISSN: 1319-
1578. DOI: https://doi.org/10.1016/j.jksuci.2020.07.005.
URL: https://www.sciencedirect.com/science/article/pii/
S1319157820304195.

[5] Alexander Buslaev et al. “Albumentations: Fast and Flexible Image Augmenta-
tions”. In: Information 11.2 (Feb. 2020). [Accessed: 19-03-2023], p. 125. DOI:
10.3390/info11020125. URL: https://doi.org/10.3390%5C%
2Finfo11020125.

[6] Mingle Xu et al. A Comprehensive Survey of Image Augmentation Techniques for

Deep Learning. [Accessed: 21-03-2023]. 2022. arXiv: 2205.01491 [cs.CV].

[7] Teerath Kumar et al. Image Data Augmentation Approaches: A Comprehensive

Survey and Future directions. [Accessed: 21-03-2023]. 2023. arXiv: 2301.02830
[cs.CV].

[8] Marcus D. Bloice, Christof Stocker, and Andreas Holzinger. Augmentor: An Image

Augmentation Library for Machine Learning. [Accessed: 19-03-2023]. 2017. arXiv:
1708.04680 [cs.CV].

[9] Ian J. Goodfellow et al. Generative Adversarial Networks. [Accessed: 19-03-2023].
2014. arXiv: 1406.2661 [stat.ML].

69

https://doi.org/https://doi.org/10.1016/j.ecoinf.2022.101817
https://www.sciencedirect.com/science/article/pii/S1574954122002679
https://www.sciencedirect.com/science/article/pii/S1574954122002679
https://doi.org/10.1162/neco.1989.1.4.541
https://arxiv.org/abs/1805.10106
https://doi.org/https://doi.org/10.1016/j.jksuci.2020.07.005
https://www.sciencedirect.com/science/article/pii/S1319157820304195
https://www.sciencedirect.com/science/article/pii/S1319157820304195
https://doi.org/10.3390/info11020125
https://doi.org/10.3390%5C%2Finfo11020125
https://doi.org/10.3390%5C%2Finfo11020125
https://arxiv.org/abs/2205.01491
https://arxiv.org/abs/2301.02830
https://arxiv.org/abs/2301.02830
https://arxiv.org/abs/1708.04680
https://arxiv.org/abs/1406.2661

[10] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. [Accessed:
19-03-2023]. 2022. arXiv: 1312.6114 [stat.ML].

[11] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic

Models. [Accessed: 19-03-2023]. 2020. arXiv: 2006.11239 [cs.LG].

[12] Robin Rombach et al. High-Resolution Image Synthesis with Latent Diffusion

Models. [Accessed: 19-03-2023]. 2022. arXiv: 2112.10752 [cs.CV].

[13] Tara M. Pattilachan et al. A Critical Appraisal of Data Augmentation Methods for

Imaging-Based Medical Diagnosis Applications. [Accessed: 19-03-2023]. 2022.
arXiv: 2301.02181 [eess.IV].

[14] Alex Nichol and Prafulla Dhariwal. Improved Denoising Diffusion Probabilistic

Models. [Accessed: 19-03-2023]. 2021. arXiv: 2102.09672 [cs.LG].

[15] Alex Nichol et al. GLIDE: Towards Photorealistic Image Generation and Editing

with Text-Guided Diffusion Models. [Accessed: 19-03-2023]. 2022. arXiv: 2112.
10741 [cs.CV].

[16] Suorong Yang et al. Image Data Augmentation for Deep Learning: A Survey. [Ac-
cessed: 21-03-2023]. 2022. arXiv: 2204.08610 [cs.CV].

[17] Ziqiang Zheng et al. “Fish Recognition from a Vessel Camera Using Deep Convolu-
tional Neural Network and Data Augmentation”. In: 2018 OCEANS - MTS/IEEE

Kobe Techno-Oceans (OTO). [Accessed: 21-03-2023]. May 2018, pp. 1–5. DOI:
10.1109/OCEANSKOBE.2018.8559314.

[18] Abdelouahid Ben Tamou, Abdesslam Benzinou, and Kamal Nasreddine. “Tar-
geted Data Augmentation and Hierarchical Classification with Deep Learning
for Fish Species Identification in Underwater Images”. In: Journal of Imag-

ing 8.8 (2022). [Accessed: 21-03-2023]. ISSN: 2313-433X. DOI: 10.3390/
jimaging8080214. URL: https://www.mdpi.com/2313-433X/8/8/
214.

[19] Erik Dzotsenidze. Generative Adversarial Networks as a Data Augmentation Tool

for CNN-based Parkinson’s Disease Diagnostics. [Accessed: 21-03-2023]. URL:
https://digikogu.taltech.ee/en/Item/101ba2d0-0229-4a38-

96fa-2671988503ba.

[20] Nataniel Ruiz et al. DreamBooth: Fine Tuning Text-to-Image Diffusion Models for

Subject-Driven Generation. [Accessed: 19-03-2023]. 2023. arXiv: 2208.12242
[cs.CV].

[21] Edward J. Hu et al. LoRA: Low-Rank Adaptation of Large Language Models. [Ac-
cessed: 19-03-2023]. 2021. arXiv: 2106.09685 [cs.CL].

70

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2301.02181
https://arxiv.org/abs/2102.09672
https://arxiv.org/abs/2112.10741
https://arxiv.org/abs/2112.10741
https://arxiv.org/abs/2204.08610
https://doi.org/10.1109/OCEANSKOBE.2018.8559314
https://doi.org/10.3390/jimaging8080214
https://doi.org/10.3390/jimaging8080214
https://www.mdpi.com/2313-433X/8/8/214
https://www.mdpi.com/2313-433X/8/8/214
https://digikogu.taltech.ee/en/Item/101ba2d0-0229-4a38-96fa-2671988503ba
https://digikogu.taltech.ee/en/Item/101ba2d0-0229-4a38-96fa-2671988503ba
https://arxiv.org/abs/2208.12242
https://arxiv.org/abs/2208.12242
https://arxiv.org/abs/2106.09685

[22] Brandon Trabucco et al. Effective Data Augmentation With Diffusion Models. [Ac-
cessed: 19-03-2023]. 2023. arXiv: 2302.07944 [cs.CV].

[23] Prafulla Dhariwal and Alex Nichol. Diffusion Models Beat GANs on Image Synthesis.
[Accessed: 21-03-2023]. 2021. arXiv: 2105.05233 [cs.LG].

[24] Keiron O’Shea and Ryan Nash. An Introduction to Convolutional Neural Networks.
[Accessed: 19-04-2023]. 2015. arXiv: 1511.08458 [cs.NE].

[25] Kaiming He et al. Deep Residual Learning for Image Recognition. [Accessed:
19-04-2023]. 2015. arXiv: 1512.03385 [cs.CV].

[26] Valerio Biscione and Jeffrey S. Bowers. Convolutional Neural Networks Are Not

Invariant to Translation, but They Can Learn to Be. [Accessed: 20-04-2023]. 2021.
arXiv: 2110.05861 [cs.CV].

[27] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”. In: Journal of Machine Learning Research 15.56 (2014). [Accessed:
20-04-2023], pp. 1929–1958. URL: http://jmlr.org/papers/v15/
srivastava14a.html.

[28] Ekin D. Cubuk et al. AutoAugment: Learning Augmentation Policies from Data.
[Accessed: 31-03-2023]. 2019. arXiv: 1805.09501 [cs.CV].

[29] Ekin D. Cubuk et al. RandAugment: Practical automated data augmentation with

a reduced search space. [Accessed: 31-03-2023]. 2019. arXiv: 1909.13719
[cs.CV].

[30] Sungbin Lim et al. Fast AutoAugment. [Accessed: 31-03-2023]. 2019. arXiv: 1905.
00397 [cs.LG].

[31] Ryuichiro Hataya et al. Faster AutoAugment: Learning Augmentation Strategies

using Backpropagation. [Accessed: 31-03-2023]. 2019. arXiv: 1911.06987
[cs.CV].

[32] Dan Hendrycks et al. AugMix: A Simple Data Processing Method to Improve

Robustness and Uncertainty. [Accessed: 31-03-2023]. 2020. arXiv: 1912.02781
[stat.ML].

[33] Alec Radford et al. Learning Transferable Visual Models From Natural Language

Supervision. [Accessed: 21-04-2023]. 2021. arXiv: 2103.00020 [cs.CV].

[34] Vaart Software (vaartsoftware.nl). AFFiNe - Angling Freshwater Fish Netherlands.
[non-commercial purposes only] [Accessed: 24-04-2023]. URL: https://www.
kaggle.com/datasets/jorritvenema/affine.

[35] Simo Ryu. Low-rank Adaptation for Fast Text-to-Image Diffusion Fine-tuning.
[Accessed: 21-04-2023]. URL: https://github.com/cloneofsimo/
lora.

71

https://arxiv.org/abs/2302.07944
https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2110.05861
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1805.09501
https://arxiv.org/abs/1909.13719
https://arxiv.org/abs/1909.13719
https://arxiv.org/abs/1905.00397
https://arxiv.org/abs/1905.00397
https://arxiv.org/abs/1911.06987
https://arxiv.org/abs/1911.06987
https://arxiv.org/abs/1912.02781
https://arxiv.org/abs/1912.02781
https://arxiv.org/abs/2103.00020
https://www.kaggle.com/datasets/jorritvenema/affine
https://www.kaggle.com/datasets/jorritvenema/affine
https://github.com/cloneofsimo/lora
https://github.com/cloneofsimo/lora

[36] Daniel Bashir et al. An Information-Theoretic Perspective on Overfitting and Under-

fitting. [Accessed: 22-04-2023]. 2020. arXiv: 2010.06076 [cs.LG].

[37] Jason Brownlee. How to Avoid Data Leakage When Performing Data Prepara-

tion. [Accessed: 22-04-2023]. URL: https://web.archive.org/web/
20230315012105/https://machinelearningmastery.com/data-

preparation-without-data-leakage/.

[38] Charu C. Aggarwal. Data Mining: The Textbook. [Accessed: 22-04-2023]. URL:
https://link.springer.com/book/10.1007/978-3-319-14142-

8.

[39] Tom Fawcett. “An introduction to ROC analysis”. In: Pattern Recognition Let-

ters 27.8 (2006). [Accessed: 22-04-2023], pp. 861–874. ISSN: 0167-8655. DOI:
https : / / doi . org / 10 . 1016 / j . patrec . 2005 . 10 . 010. URL:
https : / / www . sciencedirect . com / science / article / pii /

S016786550500303X.

[40] Bundesanstalt für Gewässerkunde / Federal Institute of Hydrology. Supplementary

dataset | ’BfG-Project Smart fish counter for monitoring species, size, migration

behavior and environmental conditions’ project. [any usage, copying, sharing,
or publication of the data without consultation and approval from the BfG is
prohibited].

72

https://arxiv.org/abs/2010.06076
https://web.archive.org/web/20230315012105/https://machinelearningmastery.com/data-preparation-without-data-leakage/
https://web.archive.org/web/20230315012105/https://machinelearningmastery.com/data-preparation-without-data-leakage/
https://web.archive.org/web/20230315012105/https://machinelearningmastery.com/data-preparation-without-data-leakage/
https://link.springer.com/book/10.1007/978-3-319-14142-8
https://link.springer.com/book/10.1007/978-3-319-14142-8
https://doi.org/https://doi.org/10.1016/j.patrec.2005.10.010
https://www.sciencedirect.com/science/article/pii/S016786550500303X
https://www.sciencedirect.com/science/article/pii/S016786550500303X

Appendix 1 – Non-Exclusive License for Reproduction and
Publication of a Graduation Thesis2

I Aleksandr Ivanov

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my
thesis “Overcoming Dataset Limitations: Advanced Augmentation Techniques for
Fish Species Classification with Convolutional Neural Networks”, supervised by
Elizaveta Dubrovinskaya and Jeffrey Andrew Tuhtan
1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library
of Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to
be entered in the digital collection of the library of Tallinn University of
Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection Act
or rights arising from other legislation.

07.05.2023

2The non-exclusive licence is not valid during the validity of access restriction indicated in the student’s
application for restriction on access to the graduation thesis that has been signed by the school’s dean,
except in case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation
thesis is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted,
by the set deadline, the student defending his/her graduation thesis consent to reproduce and publish the
graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive
license shall not be valid for the period.

73

Appendix 2 - Annotation tool

This additional material presents annotation tool User Interface (UI). This is a Jupyter
Notebook widget that allows one to iterate over images and annotate them with bounding
boxes. This tool was updated by the author, adding new UI features, better navigation,
and additional background processing. The main core of is jupyter-bbox-widget available
online3. On Figure 40 UI components of this tool are explained:

1

3

2

4

56

7

8

Figure 40. Annotation tool [40].

1 Frame preview
2 Bounding box around a fish with not_full class
3 Selection of active class
4 Fast navigation to a frame with a specific index
5 Frame database status and submit button
6 Previous and next frames navigation
7 Current frame index, name, and progress bar
8 Additional buttons: Remove bounding boxes, Show previous, Run build-in YOLO model to detect

fish, Auto YOLO running on a new frame toggle

3https://github.com/gereleth/jupyter-bbox-widget

74

https://github.com/gereleth/jupyter-bbox-widget

Appendix 3 – Caption tool

This additional material presents caption tool UI to manually create captions (description
of an image) for further latent diffusion model training and finetuning. This tool is built on
top of gradio4 framework. After the user has selected the working directory, every image
is loaded (on demand) and a corresponding .txt file is created. After that user can write a
prompt for that image, or go to the different one. There is also a bulk image renaming tool,
which automatically renames every image and corresponding caption file to a specified
format. On Figure 41 UI components of this tool are explained:

6

5

4

2

1

3

Figure 41. Image description caption tool [40].

1 Working directory selection. Additional buttons are load and unload
2 Prompt text area. Text is automatically saved to a caption file
3 Active image
4 Navigation toolbar
5 Bulk image renaming toolbar
6 Image gallery for fast and convenient selection

4https://gradio.app/docs/

75

https://gradio.app/docs/

Appendix 4 – Custom dataset class

Here is an implementation of a custom dataset class for model training in Pytorch.

The use of a custom dataset class gives the ability to control the form of image saving
(comparing to torchvision.datasets.ImageFolder5 where images must be physically stored
and separated into train and val subfolders) and additional manipulation with data (in
this case labels are converted into number-format with preservation of original labels +
additional meta can be accessed, such as belonging to a specific subset)

1 c l a s s F i s h S p e c i e s D a t a s e t (D a t a s e t) :
2 d e f _ _ i n i t _ _ (s e l f , d a t a s e t _ c s v , i m a g e s _ r o o t = " " , t r a n s f o r m =None , r a n d o m _ s t a t e = 4 2) :
3 s e l f . d a t a = pd . r e a d _ c s v (d a t a s e t _ c s v)
4
5 s e l f . img_pa ths = i m a g e s _ r o o t + s e l f . d a t a [’ image_path ’] . to_numpy ()
6
7 s e l f . CLASSES , s e l f . l a b e l s = np . un iqu e (s e l f . d a t a [’ l a b e l ’] ,
8 r e t u r n _ i n v e r s e =True)
9 s e l f . l a b e l s = t o r c h . t e n s o r (s e l f . l a b e l s)

10
11 s e l f . t r a n s f o r m = t r a n s f o r m
12
13 d e f __ len__ (s e l f ,) :
14 r e t u r n l e n (s e l f . l a b e l s)
15
16 d e f _ _ g e t i t e m _ _ (s e l f , i n d e x) :
17 x = Image . open (s e l f . img_pa ths [i n d e x])
18 y = s e l f . l a b e l s [i n d e x]
19
20 i f s e l f . t r a n s f o r m :
21 x = s e l f . t r a n s f o r m (x)
22
23 r e t u r n x , y

5https://pytorch.org/vision/main/generated/torchvision.datasets.
ImageFolder.html

76

https://pytorch.org/vision/main/generated/torchvision.datasets.ImageFolder.html
https://pytorch.org/vision/main/generated/torchvision.datasets.ImageFolder.html

Appendix 5 – Custom training loop

Here is an implementation of custom model training in Pytorch.

There are ready scripts available6 for popular model training using Pytorch and torchvision

libraries. However, utilizing a custom script gives a better understanding and control over
what is happening under the hood.

1 d e f t r a i n _ m o d e l (t r a i n _ s e t , v a l _ s e t , s ave2) :
2
3 # ===================================
4
5 model = ge t_mode l ()
6
7 l o s s _ f n = nn . C r o s s E n t r o p y L o s s ()
8 o p t i m i z e r = t o r c h . opt im . Adam(model . p a r a m e t e r s () , l r =LR)
9 s c h e d u l e r = t o r c h . opt im . l r _ s c h e d u l e r . Cos ineAnneal ingLR (o p t i m i z e r , T_max=MAX_EPOCH)

10
11 # ===================================
12
13 pba r = tqdm (t o t a l =MAX_EPOCH)
14
15 t r a i n _ l o s s = np . z e r o s (MAX_EPOCH)
16 t r a i n _ a c c = np . z e r o s (MAX_EPOCH)
17 v a l _ a c c = np . z e r o s (MAX_EPOCH)
18 l r = np . z e r o s (MAX_EPOCH)
19
20 t r a i n _ l o a d e r = g e t _ l o a d e r (t r a i n _ s e t)
21 v a l _ l o a d e r = g e t _ l o a d e r (v a l _ s e t)
22
23 t r a i n _ b a t c h e s = l e n (t r a i n _ l o a d e r)
24 v a l _ b a t c h e s = l e n (v a l _ l o a d e r)
25
26 f o r epoch i n r a n g e (MAX_EPOCH) :
27
28 t r a i n _ l o s s x = np . z e r o s (t r a i n _ b a t c h e s)
29 t r a i n _ a c c x = np . z e r o s (t r a i n _ b a t c h e s)
30 v a l _ a c c x = np . z e r o s (v a l _ b a t c h e s)
31
32 # ================ t r a i n c y c l e ================
33
34 model . t r a i n ()
35
36 f o r b a t c h _ i d x , (X, y) i n enumera t e (t r a i n _ l o a d e r) :
37 X_c = X. cuda (n o n _ b l o c k i n g =True)
38 y_c = y . cuda (n o n _ b l o c k i n g =True)
39
40 raw = model (X_c)

6https://github.com/pytorch/vision/tree/main/references/classification

77

https://github.com/pytorch/vision/tree/main/references/classification

41 l o s s = l o s s _ f n (raw , y_c)
42
43 o p t i m i z e r . z e r o _ g r a d ()
44 l o s s . backward ()
45 o p t i m i z e r . s t e p ()
46
47 pred = raw . argmax (1)
48
49 t r a i n _ a c c x [b a t c h _ i d x] = (t o r c h . sum (p red ==y_c) / l e n (p red)) . cpu ()
50 t r a i n _ l o s s x [b a t c h _ i d x] = l o s s . i t em ()
51
52 s c h e d u l e r . s t e p ()
53
54 # ================ save model ================
55
56 i f (epoch % SAVE_EVERY) == 0 :
57 t o r c h . s ave (model , os . p a t h . j o i n (save2 , f ’ model_ { epoch } . pt ’))
58
59 # ================ v a l c y c l e ================
60
61 model . e v a l ()
62
63 wi th t o r c h . i n f e r e n c e _ m o d e () :
64 f o r b a t c h _ i d x , (X, y) i n enumera t e (v a l _ l o a d e r) :
65 X_c = X. cuda (n o n _ b l o c k i n g =True)
66 y_c = y . cuda (n o n _ b l o c k i n g =True)
67
68 pred = model (X_c) . argmax (1)
69
70 v a l _ a c c x [b a t c h _ i d x] = (t o r c h . sum (p red ==y_c) / l e n (p red)) . cpu ()
71
72 # ================ i n f o ================
73
74 mean_ loss = np . mean (t r a i n _ l o s s x)
75 mean_tacc = np . mean (t r a i n _ a c c x)
76 mean_vacc = np . mean (v a l _ a c c x)
77
78 # u p d a t e s t a t i s t i c s
79 t r a i n _ l o s s [epoch] = mean_ loss
80 t r a i n _ a c c [epoch] = mean_tacc
81 v a l _ a c c [epoch] = mean_vacc
82 l r [epoch] = o p t i m i z e r . pa ram_groups [0] [" l r "]
83
84 # u p d a t e b a r
85 pba r . u p d a t e ()
86 pba r . s e t _ d e s c r i p t i o n (f ’ Epoch { epoch +1} ’)
87 pba r . s e t _ p o s t f i x ({ ’ l o s s ’ : f ’ { mean_ loss : . 4 E} ’ ,
88 ’ t r a i n acc ’ : f ’ { mean_tacc : . 2 f } ’ ,
89 ’ v a l acc ’ : f ’ { mean_vacc : . 2 f } ’ ,
90 ’ l r ’ : f ’ { o p t i m i z e r . pa ram_groups [0] [" l r "] : . 2 E} ’ })
91
92 r e t u r n (pd . DataFrame ({
93 " epoch " : np . a r a n g e (MAX_EPOCH) + 1 , " l r " : l r ,
94 " l o s s " : t r a i n _ l o s s , " t r a i n acc " : t r a i n _ a c c ,
95 " v a l acc " : v a l _ a c c }) , model , o p t i m i z e r , s c h e d u l e r)

78

Appendix 6 – SD Supplementary fine-tuning dataset

Figure 42. Supplementary images used for fine-tuning Stable Diffusion [40].

79

Appendix 7 – SD AFFiNe fine-tuning dataset

Figure 43. AFFiNe images used for fine-tuning Stable Diffusion [34].

80

Appendix 8 – RunPod post-installation script

This script was manually inserted into the remote console with one reconnecting to initialize
conda system. Answers to "accelerate config" were [This machine, No distributed training,

NO, NO, NO, 0, bf16].

cd / workspace
ap t − g e t u p d a t e

g i t c l o n e h t t p s : / / g i t h u b . com / b m a l t a i s / kohya_ss . g i t
cd / workspace / kohya_ss

a p t i n s t a l l python3 − t k −y
p i p i n s t a l l −U p i p s e t u p t o o l s
ap t − g e t i n s t a l l f fmpeg l i b sm6 l i b x e x t 6 u n z i p −y

mkdir −p / workspace / min iconda3
wget h t t p s : / / r epo . anaconda . com / min iconda / Miniconda3 − l a t e s t −Linux −x86_64 . sh \
−O / workspace / min iconda3 / min iconda . sh
bash / workspace / min iconda3 / min iconda . sh −b −u −p / workspace / min iconda3
rm − r f / workspace / min iconda3 / min iconda . sh
/ workspace / min iconda3 / b i n / conda i n i t bash
/ workspace / min iconda3 / b i n / conda i n i t z sh

cd / workspace / kohya_ss

conda c r e a t e −−name kohya_ss py thon =3.10 −y
conda a c t i v a t e kohya_ss

a p t i n s t a l l python3 − t k −y
p i p i n s t a l l −U p i p s e t u p t o o l

p i p i n s t a l l t o r c h ==1 .12 .1+ cu116 t o r c h v i s i o n ==0 .13 .1+ cu116 \
−− e x t r a − index − u r l h t t p s : / / download . p y t o r c h . o rg / whl / cu116
p i p i n s t a l l −−use −pep517 −− upgrade − r r e q u i r e m e n t s . t x t
p i p i n s t a l l −U − I −−no− deps h t t p s : / / g i t h u b . com / C43H66N12O12S2 / s t a b l e − d i f f u s i o n − \
webui / r e l e a s e s / download / l i n u x / x fo rmers − 0 . 0 . 1 4 . dev0 −cp310 −cp310 − l i n u x _ x 8 6 _ 6 4 . whl
conda i n s t a l l c u d a t o o l k i t −y

a c c e l e r a t e c o n f i g

81

Appendix 9 – Checkpoint selection

Figure 44. SD v1.5 Supplementary checkpoint analysis (LoRA).

Figure 45. SD v1.5 Supplementary checkpoint analysis (DreamBooth).

82

Figure 46. SD v2.1 Supplementary checkpoint analysis (LoRA).

Figure 47. SD v2.1 Supplementary checkpoint analysis (DreamBooth).

83

Figure 48. SD v1.5 AFFiNe checkpoint analysis (LoRA).

Figure 49. SD v1.5 AFFiNe checkpoint analysis (DreamBooth).

84

Figure 50. SD v2.1 AFFiNe checkpoint analysis (LoRA).

Figure 51. SD v2.1 AFFiNe checkpoint analysis (DreamBooth).

85

Figure 52. SD v1.5 Supplementary+AFFiNe checkpoint analysis (LoRA).

Figure 53. SD v1.5 Supplementary+AFFiNe checkpoint analysis (DreamBooth).

86

Figure 54. SD v2.1 Supplementary+AFFiNe checkpoint analysis (LoRA).

Figure 55. SD v2.1 Supplementary+AFFiNe checkpoint analysis (DreamBooth).

87

Appendix 10 – Synthetic datasets

Figure 56. SD v1.5 Supplementary synthetic images (LoRA).

88

Figure 57. SD v1.5 Supplementary synthetic images (DreamBooth).

89

Figure 58. SD v2.1 Supplementary synthetic images (LoRA).

90

Figure 59. SD v2.1 Supplementary synthetic images (DreamBooth).

91

Figure 60. SD v1.5 Supplementary+AFFiNe synthetic images (LoRA).

92

Figure 61. SD v1.5 Supplementary+AFFiNe synthetic images (DreamBooth).

93

Figure 62. SD v2.1 Supplementary+AFFiNe synthetic images (LoRA).

94

Figure 63. SD v2.1 Supplementary+AFFiNe synthetic images (DreamBooth).

95

	Introduction
	Related literature
	Problem statement
	Author contribution and scope
	Thesis structure

	Preliminaries
	CNN model selection
	ResNet

	Data augmentation pipeline
	Basic augmentation
	Advanced augmentation
	AutoAugment
	Fast and Faster AutoAugment
	RandAugment
	AugMix

	Stable Diffusion
	Stable Diffusion v1.5 and v2.1
	Fine-tuning: DreamBooth
	Fine-tuning: LoRA

	Model training
	Validation

	Datasets
	Supplementary
	Challenges
	Preprocessing

	AFFiNe

	Experiments
	Experimental setup
	Data and model preparation
	Dataset
	Data transformation
	Dataloader and Data sampler
	Model preparation

	BASELINE model training
	AutoAugment
	Faster AutoAugment
	Optimal policy searching
	Model training

	RandAugment
	AugMix
	Stable Diffusion: Data preparation
	Supplementary
	AFFiNe
	Images captioning

	Fine-tuning: DreamBooth
	Fine-tuning: LoRA
	Checkpoint selection
	Synthetic datasets generation
	Model training using synthetic datasets
	Model training using a mix of augmentations

	Validation and results
	BASELINE model evaluation
	Model training with augmentation evaluation
	Selection of RandAugment
	Selection of AugMix
	Faster AutoAugment search
	Synthetic datasets
	Total metrics comparison
	Total spent time comparison

	Best models evaluation
	Problem analysis

	Discussion and further work
	Summary
	Acknowledgements
	References
	Appendix 1 – Non-Exclusive License for Reproduction and Publication of a Graduation Thesis
	Appendix 2 – Annotation tool
	Appendix 3 – Caption tool
	Appendix 4 – Custom dataset class
	Appendix 5 – Custom training loop
	Appendix 6 – SD Supplementary fine-tuning dataset
	Appendix 7 – SD AFFiNe fine-tuning dataset
	Appendix 8 – RunPod post-installation script
	Appendix 9 – Checkpoint selection
	Appendix 10 – Synthetic datasets

