TALLINNA POLUTEHNILISE INSTITUUDI TOIMETISED

ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

СЕРИЯ А

№ 230

СБОРНИК СТАТЕЙ

ПО ХИМИИ И ХИМИЧЕСКОЙ ТЕХНОЛОГИИ XIII

ТАLLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА СЕРИЯ А № 230 1965

1000

Ep. 6./

УДК 662.67

СБОРНИК СТАТЕЙ

ПО ХИМИИ И ХИМИЧЕСКОЙ ТЕХНОЛОГИИ ХШ

ТАЛЛИН 1965

120000

СОДЕРЖАНИЕ

1.0.93

1.	А. Я. Аарна, К. Э. Уров. Изучение структуры керогена горю-	
	Дегидрогенизация керогенов сланцев Кашпирского, Ухтинского	
	и Кендерлыкского месторождений. Элементарная сера в горю-	
2.	чих сланцах А. Я. Аарна, К. Э. Уров. О содержании в керогенах некото-	3
	рых горючих сланцев гидроароматического водорода повышен-	13
3.	А Я Аарна, К.Э. Уров Определение сопряженных двойных	10
	связей в керогенах некоторых горючих сланцев СССР	23
4.	А. Я. Аарна, К. Э. Уров. Исследование гидроксильных групп	
	керогена сланца-кукерсита	33
5.	Х. В. Липпмаа. Аналитическое применение донор-акцепторных	
0	комплексов кислородных соединений. І	43
6.	А. Я. Аарна, Е. Б. Карьяма. Криоскопическое определение	57
7	молекулярного веса двухатомных фенолов	51
1.	А. Б. ЛИППМАА. АНАЛИТИЧЕСКОЕ ПРИМЕНЕНИЕ ДОНОР-акцептор-	61
8	Х Я Киппер Х Т Раулсени Исследование синтеза и	01
0.	свойств оксибензофуранов. Сообщение II	67
9.	Х. Я. Киппер, И. Р. Клесмент, С. Я. Салусте, О. Г. Эй-	
	зен, Х. Т. Раудсепп. Исследование синтеза и свойств окси-	
	бензофуранов. Сообщение III. Хроматографическое разделение	
10	оксибензофуранов	77
10.	Л. П. Аарет, Я. Я. Ансо, М. А. Вейдерма, Ю. К. Трууза.	07
11	Исследование процесса вызревания простого суперфосфата	01
11.	М. А. Бейдерма. Результаты и задачи исследовательских ра-	
	фосфоритов	95
12.	Ю. А. Варвас, П. Л. Кукк. Исследование фотоэлектрических	
	свойств поликристаллического сульфида кадмия, легированного	
	медью и хлором	101
13.	П. Л. Кукк. Исследование токового шума и пороговой чувстви-	
	тельности поликристаллических сернисто-кадмиевых фотосопро-	100
14	тивлений	109
14.	11. Л. К УКК. Исследование шума в поликристаллическом суль-	195

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

СЕРИЯ А

№ 230

1965

УДК 662. 67. 094. 18:546. 22. 541. 6

А. Я. Аарна, К. Э. Уров

ИЗУЧЕНИЕ СТРУКТУРЫ КЕРОГЕНА ГОРЮЧИХ СЛАНЦЕВ МЕТОДОМ ДЕГИДРОГЕНИЗАЦИИ СЕРОЙ

(Сообщение 3)

Дегидрогенизация керогенов сланцев Кашпирского, Ухтинского и Кендерлыкского месторождений. Элементарная сера в горючих сланцах

Исходя из результатов опытов по окислению керогена кашпирского сланца [1, 2, 3], можно полагать, что в нем содержится некоторое количество конденсированных или алкил-замешенных ароматических структур, а поэтому вероятно также наличие гидроароматических циклов. Относительно ухтинского и кендерлыкского сланцев такие данные отсутствуют.

В опытах использовали концентраты кашпирского (шахта № 3, 1 пачка) и ухтинского (район р. Айювы, слой Ј₃, Нижний Волжский ярус) сланцев, приготовленные многократным центрифугированием размолотых до 0,100 мм и обработанных 5%-ной уксусной кислотой сланцев из растворов хлористого цинка в сочетании с отмучиванием глинистых компонентов [4]. Выход беззольного вещества кашпирского сланца составил 89%, ухтинского — 85%. Проба кендерлыкского сланца была отобрана из более крупной партии, доставленной на Сланцеперерабатывающий комбинат им. В. И. Ленина в гор. Кохтла-Ярве для опытной переработки [5]. Вследствие преимущественно глинистого характера минерального материала и тесной ассоциированности минерального и органического составляющих этого сланца удовлетворительной степени его обогащения достичь не удалось. Использованный концентрат был приготовлен двукратным центрифугированием размолотого до 0,100 мм и обработанного 5%-ной уксусной кислотой сланца из водного раствора хлористого цинка плотностью 1700 кг/м3. Выход керогена составил 90%. Характеристика исходных сланцев и полученных концентратов приведена в таблице 1. Содержание конституционной влаги вычислялось по ме-

3

тоду В. С. Крыма [6], а содержание органической массы — по формуле (обозначения по табл. 1):

 $O^{c} = 100 - A^{c} - W^{c}_{_{M}} - CO_{2}^{_{C}c}_{_{R}} - 0,625S_{_{K}}^{c} + 2,5 (S_{A}^{c} - S_{_{CT}}^{c}).$

Элементарный состав керогенов рассчитывался по данным элементарного анализа концентратов с введением поправок на содержание органической массы, гигроскопической и конституционной влаги и минеральной углекислоты.

Методика опытов дегидрогенизации серой описана нами ранее [7, 8]. Продолжительность обработки керогенов серой определялась по аналогии с предыдущими опытами [8] и ви-

Таблица 1

		M State	Me	стор	ожде	ние	
		Каш	пир- ое	Ухтин	ское	Кенд	ерлык- кое
NeMe III	Показатели	Сла- нец	Кон- цен- трат	Сла- нец	Кон- цен- трат	Сла- нец	Кон- цен- трат
1	Влажность, W ^а %	4,12	1,96	3,76	1,82	0,72	0,67
2 3 4 5 6 7	На сухое вещество: Зола, А°, % Минеральная СО ₂ °, % Сера общая, S°общ, % колчеданная, S [°] с, % сульфатная, S [°] с, % сульфатная золы, S [°] A, % Экстрагируемое соляной кислотой железо, Fe ₂ O ₃ °, % Вода кристаллогидратов, W [°] _M , % Органическая масса, O°, %.	47,25 17,21 6,38 1,33 0,25 3,21 1,04 1,42 40,69	12,09 0,22 10,26 0,28 0,07 0,03 0,51 1,07 86,35	48,30 11,96 5,12 0,90 0,32 2,51 0,89 2,43 42,22	16,01 0,25 8,23 0,48 0,09 0,06 0,63 1,45 81,92	80,63 3,98 0,98 0,69 0,12 0,16 3,68 7,04 8,02	43,76 0,17 1,52 0,58 0,01 0,04 2,36 4,03 51,75
8	Элементарный состав керо- гена концентратов, % С° Н° S° № №	66, 7 11, 0 13,	03 ,67 ,48 ,96 86	6	8,63 7,79 9,35 1,38 2,85		81,54 10,04 1,80 1,77 4,85

Характеристика исходных сланцев и их концентратов

¹ Содержание хлора во всех концентратах в пределах погрешности определения по Принсгейму.

4

зуально по прекращению выделения сероводорода. Результаты опытов приведены в таблице 2. Из данных таблицы 2 явствует, что при термической обработке без добавления серы даже высокосернистые сланцы теряют в примененных условиях в виде сероводорода небольшую часть водорода керогенов. Поэтому соответствующую поправку не вводили, тем более, что выделение сероводорода разложения может быть также связано с дегидрогенизацией гидроароматических циклов. При этом, однако, данные о выделении сероводорода из кашпирского сланца уже при 200°С подтверждают соответствующие наблюдения И. К. Илларионова [9] и расходятся с данными о том, что сероводород появляется в газах термического разложения кашпирского сланца лишь при 300°С [10].

С другой стороны, керогены кашпирского и ухтинского сланцев теряют при низкотемпературном разложении заметную часть серы и поэтому, в отличие от опытов с керогеном кукерсита, для введения поправки на химически связанную серу от всей серы дегидрированного остатка вычитали не ко-

Фиг. 1. Инфракрасные спектры концентратов кашпирского и ухтинского горючих сланцев:

1 — концентрат кашпирского сланца;

2 — концентрат ухтинского сланца.

Спектры сняты на спектрофотометре ИКС-14 в таблетках из бромистого калия с применением призм из фтористого лития и хлористого натрия

Д	егидрогенизация	серой	керогенов	горючих	сланцев	Кашпирского,
---	-----------------	-------	-----------	---------	---------	--------------

і сланец	Усло	овия ята	центрата ого), <i>е</i>	Іавеске, <i>г</i>	61, <i>2</i>	ношение epa = 1:	керо-	cepo-	Выдел водор виде водо	иилось ода в серо- рода
Исследуемый	°C	час	Навеска кон сланца (сухо	Керогена в 1	Навеска сер	Весовое соот кероген : се	Водорода в гене, г	Выделилось водорода, г	5	% на водо- род керо- гена
1	2	3	4	5	6	7	8	9	10	11
Кашпирский	200	350	2,466	2,129	6,853	3,22	0,163	1,808	0,1070	65,6
	240	100	2,910	2,513	7,964	3,17	0,193	2,327	0,1377	71,3
	260	70	2,175	1,878	6,252	3,33	0,144	1,790	0,1059	73,5
	280	50	2,153	1,859	6,016	3,24	0,143	2,157	0,1276	89,2
	320	20	1,753	1,514	4,811	3,18	0,116	1,871	0,1107	95,4
Ухтинский	200	350	2,474	2,027	6,791	3,35	0,158	1,720	0,1017	64,4
	240	100	2,189	1,793	5,812	3,24	0,140	1,850	0,1094	78,1
	280	50	1,280	1,048	3,413	3,26	0,082	1,172	0,0693	84,5
	320	20	1,906	1,561	5.061	3,24	0,122	1,978	0,1170	95,9
Кендерлыкский	200	350	2,031	1,051	3,152	3,00	0,106	1,163	0,0688	64,9
	240	100	1,819	0,941	2,923	3,11	0,094	1,354	0,0801	85,2
	260	70	1,702	0,881	2,873	3,26	0,088	1,305	0,0772	87,7
	280	50	1,402	0,725	2,277	3,14	0,073	1,171	0,0693	94,9
	320	20	1,880	0,973	3,112	3,20	0,098	1,646	0,0974	99,4

личество серы в исходном концентрате, а количество ее, остающееся в концентрате при нагревании в тех же условиях без серы, что устанавливалось специальными опытами.

Из данных таблицы 2 видно, что содержание в изучаемых керогенах гидроароматического водорода, вычисленное по результатам проведенных при различных температурах опытов, сравнительно постоянно для температур 240—260°.

То же наблюдалось и при дегидрогенизации кукерсита [8]. Характерно, что керогены исследовавшихся сланцев, в особенности кашпирского, интенсивно реагируют с серой уже при 200°С и дегидрируются при этом почти в той же мере, как при 240 и 260°С, что, по нашему мнению, свидетельствует о большем, по сравнению с керогеном кукерсита, удельном весе в

Таблица 2

	серы	Содера серн оста	жание ы в итке	Распр ние о оста	еделе- серы тка	Сооти вующо соед шейс, колич водо	ветст- ее при- инив- я сере чество орода	рогена вы- и аромати-	Сран тель опыт сер	вни- ные ы без ры
	Освооожденн несвязанной остаток, г	%	5	пер- вичная, г	присое- динив- шаяся, г	S	% на водо- род ке- рогена	Водорода ке делилось пр зации, %	Водорода вы лилось в вид сероводорода	Серы в оста на 1 г исхо ного концен рата, г
11-11-	12	13	14	15	16	17	18	19	20	21
	2,818 3,503 2,644 2,557 2,263	36,4 38,3 38,1 38,2 39,4	1,03 1,34 1,01 0,98 0,89	0,21 0,23 0,15 0,12 0,07	0,82 1,11 0,86 0,86 0,82	0,051 0,070 0,054 0,054 0,051	31,3 36,3 37,5 37,8 44,0	34,3 35,0 36,0 51,4 51,4	0,7 1,2 2,3 3,5 4,8	0,087 0,079 0,069 0,054 0,042
the second secon	2,804 2,697 1,639 2,426	31,2 35,6 36,7 37,9	0,88 0,96 0,60 0,92	$\begin{array}{c} 0,19\\ 0,14\\ 0,06\\ 0,08 \end{array}$	0,69 0,82 0,54 0,84	$\begin{array}{c} 0,043 \\ 0,051 \\ 0,034 \\ 0,053 \end{array}$	27,2 36,4 41,5 43,4	37,2 41,7 43,0 52,5	0,5 0,9 2,9 3,7	0,075 0,064 0,049 0,043
	2,081 2,368 2,324 1,849 2,394	23,5 27,3 27,0 30,3 31,8	0,49 0,65 0,63 0,56 0,76	0,03 0,03 0,03 0,02 0,03	$\begin{array}{c} 0,46\\ 0,62\\ 0,60\\ 0,54\\ 0,73\end{array}$	0,029 0,039 0,038 0,034 0,046	27,4 41,5 43,2 46,6 46,9	37,5 43,7 44,5 48,3 52,5	 Следы ,, ,, ,,	0,015 "" "

Ухтинского и Кендерлыкского месторождений

структуре этих керогенов гидроароматических циклов, сконденсированных с ароматическими ядрами или частично ненасыщенных [11].

Учитывая приведенные ранее литературные и опытные данные [7, 8], содержание в керогенах кашпирского, ухтинского и кендерлыкского сланцев гидроароматического водорода (без поправки на реакцию длинных алифатических цепей с серой) можно оценить соответственно в 35, 42 и 45% на водород керогенов.

Исходя из данных о количестве и составе карбоновых кислот, полученных при окислении керогенов кашпирского [2, 3] и кендерлыкского [12, 13] сланцев, содержание в этих керогенах длинных (более шести атомов углерода) алифатических цепей можно ориентировочно принять равным соответственно 10—15% и 15—20% на углерод керогенов. По ухтинскому сланцу аналогичные сведения отсутствуют, но принимая во внимание одинаковый геологический возраст, близость элементарных составов и подобие инфракрасных спектров (фиг. 1) кашпирского и ухтинского сланцев, содержание в керогене последнего длинных алифатических цепей можно также оценить в 10—15% на углерод керогена. Данные о содержании в исследовавшихся керогенах гидроароматических структурных элементов, полученные после введения поправки на реакцию алифатических цепей с серой [7, 8], приведены в таблице 3.

Для сравнения приведены данные о выходе смолы полукоксования из указанных керогенов и керогена кукерсита.

Месторождение	Содержани матических	е гидроаро- циклов, %	Выход смолы по- лукоксования в
горючего сланца	по углероду керогена	по водороду керогена, не менее	алюминиевои ре- торте, % на керо- ген
Кашпирское Ухтинское Кендерлыкское Прибалтийское	$\begin{array}{r} 42 - 45 \\ 49 - 52 \\ 55 - 58 \\ 58 - 63 \end{array}$	30—32 36—38 37—39 39—42	38 45 56 67

Содержание в керогенах гидроароматических структурных элементов

Таблица З

Представленные данные свидетельствуют о том, что установленное для каменных углей примерное соответствие содержания в топливе гидроароматических циклов выходу из него смолы полукоксования [14, 15] выполняется и в случае керогенов исследовавшихся сланцев.

В связи с изучением взаимодействия керогенов с элементарной серой были проведены опыты по определению содержания последней в горючих сланцах. Обнаружение элементарной серы в каменных углях [16—18] и сапропелях [19] свидетельствует в пользу гипотезы об элементарной сере как одном из основных источников образования вторичной органической серы каменных углей [17, 18].

Анализу подвергли образцы кашпирского, ухтинского и кендерлыкского сланцев, характеристика которых приведена в таблице 1, и пробу кукерсита со следующими показателями: влажность — 2,17%; на сухое вещество, в %; зола — 46,27;

минеральная углекислота — 15,63; органическая масса (испр.) — 39,55; общая сера — 2,18; органическая сера — 0,72.

Определение элементарной серы проводили сульфитным методом [18, 20—22], применявшимся также при анализе каменных углей.

Навеску сланца (7—10 г), размолотого до 0,06—0,10 мм, кипятили с 50 мл 5%-ного водного раствора сульфита натрия; по окончанию опыта раствор отфильтровывали, добавляли к нему 20 мл 36%-ного водного раствора формальдегида и 15 мл ледяной уксусной кислоты и титровали образовавшийся тиосульфат 0,05 н раствором иода.

Результаты опытов приведены в таблице 4.

Таблица 4

Определение содержания элементарной серы в горючих сланцах (в %)

	N N N N N N N N N N N N N N N N N N N	Продол	жительнос	сть обрабо	отки, час
	месторождение горючего сланца	na lens	2	4	6
1 2 3 4	Кашпирское Ухтинское Кендерлыкское Прибалтийское	0,040 0,048 0,004 0,002	0,047 0,052 0,005 0,004	0,050 0,057 0,005 0,005	0,052 0,064 0,005 0,006

В таблице 5 сопоставлены данные о содержании в изучавшихся сланцах элементарной и органической серы, указывающие на явную взаимозависимость этих величин.

Таблица 5

Сопоставление данных о содержании в горючих сланцах элементарной и органической серы

	Месторождение	Содержа- ние органи-	Найденное элементарн	содержание ой серы, %
	горючего сланца	ческои серы, % на сла- нец	на сланец	на органи- ческую серу сланца
1 2 3 4	Кашпирское Ухтинское Кендерлыкское Прибалтийское	4,80 3,90 0,93 0,72	0,052 0,064 0,005 0,006	1,1 1,6 0,5 0,8

Элементарная сера изучавшихся сланцев, как и свободная сера каменных углей [17, 18], представлена, по-видимому, пре-

имущественно аморфной разновидностью Sµ, обычно образующейся в результате химических реакций в растворах, так как качественные реакции на растворимую в органических растворителях кристаллическую модификацию S λ при помощи пиперидина [23] и медной пластинки [21] дали отрицательные результаты.

Активное взаимодействие керогенов исследовавшихся горючих сланцев с элементарной серой, зависимость содержания элементарной серы от количества органической серы и вероятная принадлежность свободной серы сланцев к аморфной модификации свидетельствуют, по нашему мнению, о том, что гипотеза о роли элементарной серы в происхождении вторичной органической серы каменных углей может быть распространена и на горючие сланцы.

Выводы

1. Методом дегидрогенизации серой установлено, что вероятными пределами содержания в керогенах кашпирского, ухтинского и кендерлыкского горючих сланцев гидроароматических структурных элементов являются соответственно 42—45%, 49—52% и 55—58% по углероду керогенов.

2. Высказано предположение, что значительная часть гидроароматических циклов в керогенах изучавшихся сланцев, особенно кашпирского, частично дегидрирована или сконденсирована с ароматическими ядрами.

3. Определено содержание элементарной серы в горючих сланцах Кашпирского, Ухтинского, Кендерлыкского и Прибалтийского месторождений.

ЛИТЕРАТУРА

- 1. В. А. Ланин, М. В. Пронина. Изв. АН СССР, 1944, № 10/11, стр. 745.
- 2. В. А. Проскуряков, В. И. Яковлев, В. М. Потехин. Труды ВНИИТ, вып. 12, стр. 11 (1963).
- 3. В. И. Яковлев. Окисление волжских сланцев кислородом воздуха.
- Автореферат. Ленинград, 1964. А. Я. Аарна, К. Э. Уров. Труды Таллинского политехн. ин-та, серия А, № 215, стр. 3 (1964). 4.
- 5. К. Хельп, Н. Серебрянников, В. Ефимов. Бюл. научнотех. инф. «Горючие сланцы», 1963, № 1-2, стр. 9.
- Т. А. Зикеев, А. И. Карелин. Анализ энергетического топлива. Госэнергоиздат, М.,-Л., 1948. 6.
- А. Я. Аарна, К. Э. Уров. Труды Таллинского политехн. ин-та, 7. серия А, № 228, стр. 9, (1965).
- А. Я. Аарна, К. Э. Уров. Труды Таллинского политехн. ин-та, серия А, № 228, стр. 27, (1965). 8.
- 9. И. К. Илларионов. Изв. высш. учебн. заведений. Геол. и разведка. 1961, № 7, стр. 104—9.
- 10. А. В. Кожевников. Горючие сланцы, ч. П. Изд. «Научная литература», Тарту, 1947.
- II. P. A. Plattner. Derhydrierungen mit Schwefel, Selen und Platinmetallen, «Neuere Methoden der präparativen organischen Chemie», Berlin, 1944.
- 12. В. А. Проскуряков, Г. В. Брой-Каррэ. Труды ВНИИТ, вып. 12, стр. 5 (1963).
- В. А. Проскуряков, Н. А. Емельянова, Е. Н. Новожи-лов. Ленинградский технол, ин-т им. Ленсовета. Работы в области химии и технологии топлива. Вып. 63, стр. 45 (1964).
- 14. B. K. Mazumdar, S. K. Chakrabartty, S. S. Chowdury, A. Lahiri. Proceedings of the Symposium on the Nature of Coal, Jealgora, India, 1959, p. 219. B. K. Mazumdar, S. K. Chakkrabartty, A. Lahiri. Fuel, 38,
- 15. 112 (1959) А. З. Юровский, В. С. Каминский, А. Л. Рубинштейн.
- 16. Химия и технология топлива и масел, 1957, № 7, стр 20.
- В. С. Каминский, А. Л. Рубинштейн, А. З. Юровский. 17. Сб. «Генезис твердых горючих ископаемых», Москва, 1959, стр. 344. 18. А. З. Юровский. Сера каменных углей. Изд. АН СССР, 1960. 19. Е. М. Титов. Труды Лаборатории сапропелевых отложений, Инсти-
- тут Леса, 1951, № 5, стр. 127.
- 20. В. Болотников, В. Гуров. Журнал резиновой промышленности, 10, 61 (1933).
- 21. H. E. Morris. R. E. Lacombe, W. H. Lane. Anal. Chem., 20, 1037 (1948).
- A. R. Vasudeva Murthy. V. R. Bao, Satyanarayana. J. 22. Scient. and Ind. Res., BC 18, № 1, стр. B 40 (1959); PЖX, 34531 (1960).
- 23. W. Schneider. Arch. Pharmazie, 289/61, 299 (1956).

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

СЕРИЯ А

№ 230

1965

УДК 662.67:541.6

А. Я. Аарна, К. Э. Уров

О СОДЕРЖАНИИ В КЕРОГЕНАХ НЕКОТОРЫХ ГОРЮЧИХ СЛАНЦЕВ ГИДРОАРОМАТИЧЕСКОГО ВОДОРОДА ПОВЫШЕННОЙ ЛАБИЛЬНОСТИ

1. Дегидрогенизация при помощи п-бензохинона

Опыты по дегидрогенизации элементарной серой [1, 2] дают представление об общем содержании в керогенах гидроароматических циклов, однако не характеризуют форм связи этих циклов между собой и с другими структурными составляющими, в частности с ароматическими ядрами. При дегидрогенизации серой были получены лишь косвенные свидетельства о содержании в керогенах кашпирского и ухтинского сланцев гидроароматических группировок, сконденсированных с ароматическими циклами или частично дегидрированных [2]. Исходя из представления о некотором содержании в керогене кукерсита ароматических ядер [3—5], вполне возможно наличие в нем смешанных нафтено-ароматических систем.

Для установления содержания подвижного водорода гидроароматических циклов, сконденсированных с ароматическими ядрами, в керогенах горючих сланцев Прибалтийского, Кашпирского и Ухтинского месторождений применяли метод дегидрогенизации п-бензохиноном. п-Бензохинон не взаимодействует с насыщенными циклами, но дегидрирует гидроароматические циклы, сконденсированные с ароматическими ядрами [6—8].

В опытах исходили из концентратов, приготовленных центрифугированием размолотых до 0,10—0,06 *мм* сланцев Прибалтийского, Кашпирского (1 пачка) и Ухтинского (район г. Айювы, слой J_3) месторождений из растворов неорганических солей [9]. Выход беззольного вещества составил соответственно 87, 89 и 85%.

Характеристика полученных концентратов приведена в таблице 1,

Таблица 1

Характеристика исходных концентратов

Месторож-		На ш	сухое ество,	ве- %	Элем	тентари	ный сос нов, %	тав ке	pore-
дение сланца	Вла- га, %	Зола А ^с	Ми- нер. СО2 ^с	Орга- нич. масса О ^с	C ⁰	H0	S ⁰	Nº	0°+ +Clº
Прибалтий- ское Кашпирское Ухтинское .	0,54 1,96 1,82	5,08 12,09 16,01	0,47 0,22 0,25	94,45 86,35 81,92	77,41 66,03 68,63	9,57 7,67 7,79	1,51 11,48 9,35	0,17 0,96 1,38	11,34 13,86 12,85

Примечание. Вследствие низкой зольности концентрата кукерсита содержание в нем органического вещества вычисляли по формуле $O^c = 100 - A^c - CO_2^c$, при характеристике же концентратов кашпирского и ухтинского сланцев учитывали также содержание воды кристаллогидратов и разновидностей серы [10].

Для проведения опыта к навеске концентрата керогена (0,4—0,6 г) в стеклянной ампуле прибавляли 20 мл 4%-ного раствора *п*-бензохинона в очищенном от перекисей диоксане, ампулу запаивали, помещали в пробирочный автоклав и ставили в термостат. Реакцию проводили при 150°С. По окончанию опыта твердый продукт отфильтровывали, промывали диоксаном и водой и в ряде случаев высушивали для определения прироста в весе. Объем фильтрата доводили в мерной колбе до 250 мл дистиллированной водой. В 25 миллилитрах полученного раствора определяли содержание п-бензохинона иодометрически, а в другой аликвотной части — суммарное содержание хинона и гидрохинона также иодометрически после окисления гидрохинона в хинон гексацианоферратом (III) калия [11]; по разности находили количество образовавшегося гидрохинона. Количество присоединившегося к керогену хинона определяли, вычитая из количества п-бензохинона в исходном реагенте суммарное количество хинона и гидрохинона в реагенте после опыта. Контрольные опыты показали, что диоксан в примененных условиях инертен по отношению к п-бензохинону.

Поскольку *п*-бензохинон может взаимодействовать с фенольными гидроксильными группами [7], аналогичные опыты были проведены также с ацетилированными керогенами.

Результаты опытов с керогеном кукерсита приведены в таблице 2.

Из приведенных в таблице 2 данных видно, что при дегидрогенизации исходного керогена *n*-бензохиноном на 1 г кероВзаимодействие керогена кукерсита с п-бензохиноном

Таблица 2

の何ちに御田の一年は少の日人	2	Mc	холный	Kenor	Н	TT I	I.I.	Апетил	ирован	ный ке	поген	
Показатели	E F			Пр	ажиодо	тельно	crb pea	КЦИИ, ч	Hac	D.		1102
	2	4	8	12	16	20	2	4	8	12	16	20
Выделилось гидрохинона, мэкв/г на сухой концентрат на исходный кероген .	$1,73 \\ 1,83$	2,85 3,02	4,49 4,75	5,57 5,90	6,11 6,47	6,28 6,65	1,49 1,70	2,35 2,68	3,10 3,53	3,46 3,94	3,64 4,15	3,62 4,12
Присоединилось <i>n</i> -бензохинона, мэкв/г на сухой концентрат на исходный кероген	1,32 1,40	1,95	2,29 2,42	2,48 2,63	2,60	2,64 2,80	0,57	0,89 1,01	1,10	1,33	1,45 1,65	1,46 1,66
Вес продукта реакции, % от веса исходного концентрата	105	108		HIN CHART	112	112	101	102	104	106	106	107

Примечание. Вес концентрата увеличился при ацетилировании на 7,31%.

гена выделяется около 7 миллиэквивалентов гидрохинона, при дегидрогенизации же ацетилированного керогена — около 4 миллиэквивалентов. Частично эта разница может быть обусловлена реакцией гидроксильных групп керогена с хиноном, частично — создаваемыми ацетильными группами пространственными препятствиями, роль которых, учитывая бимолекулярный механизм реакции [6], может быть значительной, однако наиболее вероятно, что часть подвижного водорода керогена выделяется уже при ацетилировании в присутствии пиридина.

Действительно, при кипячении концентрата керогена ($C^c = 73,26\%$, $H^c = 9,04\%$) в пиридине в течение 25 часов в раствор перешло 0,74% вещества; нерастворимый остаток, высушенный в атмосфере азота, имел состав: $C^c = 73,96\%$, $H^c = 8,80\%$, т. е. кероген потерял при экстрагировании 3,4% водорода, только небольшая часть которого может принадлежать экстракту, остальная же выделилась, очевидно, в результате дегидрогенизации.

Учитывая вышесказанное, содержание в керогене кукерсита лабильного, извлекаемого *n*-бензохиноном водорода можно оценить в 5—6% на водород керогена, что соответствует 7—9% углерода керогена в активированных гидроароматических группировках. Принимая за основу расчета в качестве гипотетической структуру тетралина, получим, что в таком случае 18—22% углерода керогена входит в смешанные нафтено-ароматические конденсированные системы.

Из таблицы 2 явствует, что дегидрогенизация *n*-бензохиноном сопровождается присоединением хинона к керогену. Из инфракрасного спектра дегидрированного керогена (фиг. 1) видно, что это не адсорбция хинона керогеном, так как в спектре нет ряда характерных для *n*-бензохинона полос поглощения (1315, 1090, 940, 910 и 755 см⁻¹), но имеются отсутствующие в спектре исходного керогена полосы поглощения 1650 см⁻¹ (валентные колебания C = 0 хинонов) и 1505 см⁻¹ (C = C колебания ароматических циклов), а интенсивность полос 1160 см⁻¹ и 850 см⁻¹, характерных для замещенных ароматических циклов, возросла [12]. Аналогичные изменения наблюдались в спектре ацетилированного керогена после реакции с бензохиноном.

Как диенофил, *n*-бензохинон может присоединяться по месту сопряженных двойных связей, однако вывода о количественном содержании последних в керогене кукерсита сделать нельзя, так как кроме диенового синтеза могут протекать также различные реакции конденсации и в небольшой степени образование комплексов типа хингидрона. Таблица 3

Взаимодействие ацетилирова	инных 1	кероген	ов каш	пирско	го и уз	ктинско	LO CJ	анцев (с п-бен	онихое	WOH	
	10	Каі	ппирск	ий слан	нец			_{Vx}	тински	й слан	- Ле	
Показатели			-	Пр	Іжподо	ительно	сть реа	КЦИИ, 4	tac			
	2	4	8	12	16	20	2	4	8	12	16	20
Зыделилось гидрохинона, <i>мэкв/г</i> на концентрат на исходный кероген	2,93	4,95 6,07	8,03 9,85	11,94 14,64	12,86 15,77	13,00 15,94	3,18 3,95	5,07 6,29	7,92 9,83	10,31 12,79	10,90 13,52	11,24 13,95
Трисоединилось <i>n</i> -бензохинона, <i>мэкв/с</i> на концентрат на исходный кероген	0,88 1,08	1,81	4,23 5,19	5,58 6,84	6,24 7,65	6,48 7,95	1,95 2,42	3,44 4,27	5,40 6,70	6,27 7,78	6,95 8,62	7,26 9,01
дес продукта реакции, % от веса ацетилированного концентрата	ting to an		- I	128	131	132	i.			130	135	137

Примечание. Вес концентратов кашпирского и ухтинского сланцев увеличился при ацетилировании соответ-ственно на 5,55% и 1,61%.

Фиг. 1. Инфракрасные спектры керогена кукерсита до и после реакции с *п*-бензохиноном (150°С, 16 часов):

продукт реакции,

исходный концентрат.

Спектры сняты на спектрофотометре ИКС-14 в таблетках из бромистого калия. Призмы из фтористого лития и хлористого натрия. Толщина таблеток около 1,0 *мм*, концентрация вещества в таблетке 0,9%.

В опытах с керогенами сланцев Кашпирского и Ухтинского месторождений исходили из ацетилированных керогенов.

Результаты опытов приведены в таблице 3.

Из представленных в таблице 3 данных видно, что если в керогене кукерсита относительно немного гидроароматического водорода повышенной лабильности, то в керогенах кашпирского и ухтинского сланцев содержание его значительно: на 1 г керогена выделяется соответственно 16 и 14 миллиэквивалентов гидрохинона, т. е. соответственно 21% и 18% водорода (при расчете на метиновые группы) и 29% и 25% углерода этих керогенов входит в активированные гидроароматические группировки. Если условно исходить из структуры тетралина, то в конденсированных гидроароматическо-ароматических системах содержится 73% углерода керогена кашпирского сланца и 63% углерода керогена ухтинского сланца. При этом еще не учтена возможная дегидрогенизация этих керогенов при ацетилировании, определение степени которой затруднялось повышенной растворимостью органического вещества кашпирского и ухтинского сланцев в пиридине (соответственно 1,77% и 4,79%).

2. Дегидрогенизация N-бромсукцинимидом

На основании предыдущих опытов можно полагать, что если в керогенах кашпирского и ухтинского сланцев основная часть гидроароматических циклов входит в более крупные, частично ароматизированные конденсированные системы, то в керогене кукерсита бо́льшая часть гидроароматических группировок, по-видимому, представлена частично или полностью насыщенными изолированными и конденсированными циклами. Экспериментальные данные, свидетельствующие в пользу наличия в керогене кукерсита конденсированных циклов, были получены в опытах с N-бромсукцинимидом.

Реакция аллильного бромирования N-бромсукцинимидом [13], имеющая главным образом препаративное значение, обычно протекает без выделения бромистого водорода. В сочетании с последующим дегидробромированием реакция нашла применение для дегидрирования в основном ненасыщенных полициклических соединений [14, 15] и применялась с этой целью также при изучении структуры каменных углей [16, 17].

К самопроизвольному дегидробромированию при реакции с N-бромсукцинимидом склонны преимущественно ненасыщенные полициклические соединения [13, 15].

В опытах использовали концентрат керогена кукерсита, характеристика которого приведена в таблице 1. К навеске концентрата около 5 г прибавляли 15 г N-бромсукцинимида и 50 мл бензола; смесь кипятили под обратным холодильником. В ходе реакции наблюдалось выделение бромистого водорода, которое продолжалось при высушивании (105°С, атмосфера азота) продукта реакции. Данные опытов приведены в таблице 4.

Из приведенных в таблице 4 данных видно, что кероген теряет в результате реакции 22—23% водорода, при этом выделение 13—14% водорода не сопровождается фиксацией атома брома. Обработанный кероген содержит значительное количество фенольных гидроксильных групп, определявшихся при помощи реакций с гидроокисью бария и ацетатом бария [18, 19].

Продукт реакции керогена с N-бромсукцинимидом дегидробромировали ацетатом калия в ледяной уксусной кислоте и пиридином при кипячении.

Характеристика продуктов дегидробромирования приведена в таблице 5.

Судя по выходу продуктов дегидробромирования и содержанию в них брома (таб. 5), при дегидробромировании выделяется еще 4—6% водорода керогена. Содержание феноль-

2*

аблица 4	, фенольных ных групп, сө/е	на исходный кероген	1.16		аблица 5	е фенольных ных групп, кв/е	на исходный кероген	1.38 1,20 1,36
	Содержание гидроксиль мэн	в продукте реакции	0,68 0,61		Т Модимини	Содержание гидроксиль мэн	в продукте реакций	0,96 0,95 0,92
моди	а керогена эсь без Мома, %	выделило выделило Водорода	13,6 12,7	ила	N-бромсукц	Содержа- ние брома	в остатке, %	26,3 13,8 25,7
омсукциним	содный лдорода, брому коли- вующее свя-	Соответст занному чество вс % на исх	8,5	екиси бензо	кукерсита с	Выход родукта, % а исходный	керогена	136,2 119,1 139,8
a c N-6 _f	% оср при я керогена	Водород. Водорода реакции,	22,1 23,2	10 г пер	рогена 1	a T	tc	8 4 8
укерсит	став 1, %	z	0,27 0,24	вии 0,0	ции ке	и опыт	211	
гена кук	рный со реакции	Br	38,2 43,6	лсутст	в реак	Услови	D	$\frac{-127}{115}$
я керо	лентарн (укта р	H	4,37 3,98	я в пр	одукто	CREATE SAND TELE	NE ORI	125
Реакци	Элеі	U	46,83 42,47	оводилс	ние пр	ниа		· · · · · · ·
	гродукта, %	п дохла Выход п дохэн вн	161,2 174,5	Опыт 2 про	бромирова	Реагент		калия. ин
ninu Cote	овия ыта	нас	9.9	ание.	Дегидро	легилт		Ацетал Пирид Ацетал
OT AL	Vc.	S.	80—81 80—81	римеч		Inbita		511
anos	№ Мариания Опыта	مېلې له. وهمه يې لوړې د د مالېمېدې،	2	E	Sign)	Nº O		+ +

ных гидроксильных групп при дегидробромировании также возрастает.

Учитывая, что самопроизвольное дегидробромирование присуще прежде всего полициклическим гидроароматическим соединениям, что циклизация алифатических цепей в данных условиях невероятна и что ароматизация при действии N-бромсукцинимида редко бывает полной [15], полученные результаты, по нашему мнению, свидетельствуют в пользу того, что общее содержание в керогене кукерсита полициклических систем, имеющих, вероятно, характер гидроароматических спиртов, составляет не менее 20—30% по углероду.

Выводы

1. Показано, что примерно 8% углерода керогена кукерсита, 21% углерода керогена кашпирского и 18% углерода керогена ухтинского сланцев входит в дегидрируемые *n*-бензохиноном гидроароматические циклы, по всей вероятности, сконденсированные с ароматическими ядрами.

2. Установлено, что керогены горючих сланцев Прибалтийского, Кашпирского и Ухтинского месторождений химически связывают *n*-бензохинон.

3. Высказано предположение, что не менее 20—30% углерода керогена кукерсита входит в конденсированные циклические системы, имеющие характер гидроароматических спиртов.

ЛИТЕРАТУРА

- А. Я. Аарна, К. Э. Уров. Труды Таллинского политехн. ин-та, се-1. рия А, № 228, стр. 27 (1965). 2. А. Я. Аарна, К. Э. Уров. Наст. сборник, стр. 3 3. Х. Т. Раудсепп. Изв. АН СССР, отд. техн. наук, 1954, № 3, стр. 130.
- 4. А. Я. Аарна, Э. Т. Липпмаа. ЖПХ, 30, 419 (1957).
- 5. А. Ф. Добрянский. Сб. «Низкотемпературные каталитические превращения углеводородов», Ленинград, 1962, стр. 12.
- 6. E. A. Braude, L. M. Jackman, R. P. Linstead. J. Chem. Soc.,
- 1954, p. 3548.
 M. E. Peover. J. Chem. Soc., 1960, p. 5020.
 B. K. Mazumdar, A. C. Bhatta charyya, S. Ganguly, A. Lahiri, Fuel, 41, 105 (1960).
- А. Я. Аарна, К. Э. Уров. Труды Таллинского политехн. ин-та, серия А. № 215, стр. З (1964). Т. А. Зикеев, А. И. Карелин. Анализ энергетического топлива. Госэнергоиздат, М.-Л., 1948. 9
- 10.
- В. Я. Михкельсон. Труды Таллинского политехн. ин-та, серия А, 11. № 63, стр. 127 (1955).
- 12. Л. Беллами. Инфракрасные спектры молекул. Москва, 1957.
- 13. И. В. Мачинская, В. А. Бархаш. Реакции и методы исследования органических соединений. Кн. 9, стр. 287-381. Москва, 1959.

- R. A. Barnes, J. Am. Chem. Soc., 70, 145 (1948).
 R. Filler, Chemical Reviews, 63, 21 (1963).
 P. H. Given, M. E. Peover, W. F. Wyss. Fuel, 39, 323 (1960).
 P. H. Dicker, M. K. Flagg, A. F. Gaines, T. G. Martin.
- 18.
- J. Аррі. Сhem., 13, 44 (1963).
 К. И. Сысков, Т. А. Кухаренко. Зав. лабор., 13, 25 (1947).
 А. Я. Аарна, Э. Т. Липпмаа. Труды Таллинского политехн. ин-та, серия А, № 63, стр. 3 (1955). 19.

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

СЕРИЯ А

№ 230

1965

УДК 662. 67:541. 6. А. Я. Аарна, К. Э. Уров

ОПРЕДЕЛЕНИЕ СОПРЯЖЕННЫХ ДВОЙНЫХ СВЯЗЕЙ В КЕРОГЕНАХ НЕКОТОРЫХ ГОРЮЧИХ СЛАНЦЕВ СССР

В пользу наличия в керогене кукерсита ненасыщенных связей свидетельствуют результаты опытов по хлорированию керогена [1] и характер его взаимодействия с элементарной серой [2]. Двойные углерод-углеродные связи обнаружены также в керогенах горючих сланцев Югославии [3] и США [4]. На основе спектров электронного парамагнитного резонанса керогена кукерсита сделан вывод о содержании в керогене цепей с сопряженными двойными связями [5]. На возможность наличия сопряженных двойных связей указывает также способность керогена кукерсита присоединять п-бензохинон [6]. Исходя из того, что присутствие в керогенах подобных структурных группировок представляет значительный интерес с точки зрения выяснения генезиса горючих сланцев, а сведения об их количественном содержании необходимы при изучении структуры керогенов (в частности, статистическим методом [7, 8]), в настоящей работе сделана попытка определения сопряженных связей в керогенах сланцев Прибалтийского, Кашпирского и Ухтинского (район р. Айювы) месторождений при помощи реакции с малеиновым ангидридом. Метод применялся ранее при исследовании керогена колорадского сланца [9], причем присоединения малеинового ангидрида не наблюдалось.

Возможности метода

Ангидрид малеиновой кислоты взаимодействует при комнатной или повышенной (100—150°С) температуре с ациклическими и циклическими диенами [10—13] и полиенами [12, 14, 15], содержащими сопряженные двойные связи природными алифатическими]16, 17[и циклическими [18] кислотами, стероидами [19] и витаминами [20], а также с фураном и его производными [10—12, 21—23]. В реакцию не вступают лишь немногие диены с громоздкими заместителями в положениях 2 и 3 [11, 24], общие же размеры реагирующей молекулы при этом значения не имеют [11]. Вследствие вышесказанного реакция с малеиновым ангидридом нашла применение для количественного определения неароматических углерод-углеродных двойных связей в жирах и жирных кислотах [25, 26], в углеводородных смесях [27—29] и смоляных кислотах [30], в том числе и в присутствии соединений с изолированными двойными связями [10, 29, 31].

Однако, применяя реакцию с малеиновым ангидридом для анализа таких сложных веществ как керогены горючих сланцев, необходимо учитывать возможность протекания ряда побочных реакций, искажающих результаты.

Из ароматических углеводородов в обычных для диенового анализа условиях (100—150°С, отсутствие катализаторов) с малеиновым ангидридом реагируют только антрацен и более конденсированные [11, 12, 32]; в керогене кукерсита соответствующие группировки отсутствуют.

Малеиновый ангидрид может взаимодействовать с несопряженными непредельными соединениями

но эта реакция протекает, как правило, при 200°С и выше [33—39].

Как ангидрид карбоновой кислоты, малеиновый ангидрид может реагировать со спиртами с образованием сложных эфиров, что неоднократно наблюдалось при диеновом анализе гидроксилсодержащих соединений и смесей [40—43].

И, наконец, при взаимодействии с концентратом горючего сланца малеиновый ангидрид, по всей вероятности, будет в какой-то мере реагировать с минеральной частью (например, с остаточными карбонатами).

Таким образом, если реакция малеинового ангидрида с ароматическими и несопряженными непредельными группировками в условиях диенового анализа маловероятна, то его взаимодействие с гидроксильными группами и минеральной частью необходимо учитывать.

Эксперимент и результаты

В опытах использовали концентрат керогена кукерсита, выделенный шестикратным центрифугированием размолотого до 0,060 мм сланца из растворов хлористого кальция понижающейся плотности. Выход керогена составил 82%. Характеристика концентрата:

влажность — 0,73 %; на сухое вещество, — %; зола — 4,30; минеральная углекислота — 0,42.

Элементарный состав керогена, %: углерод — 77,75; водород — 9,62; сера — 1,54; хлор — 0,59; азот — 0,20; кислород (по разности) — 10,30.

Для проведения реакции 0,5-1 г концентрата, подсушенного над пятиокисью фосфора, нагревали в запаянной стеклянной ампуле с 20 мл 0,1 *М* раствора малеинового ангидрида. Во избежание вредного влияния малеиновой кислоты [12, 19] ангидрид перед использованием дважды перегоняли. В качестве растворителей применяли сухие ацетон, метилэтилкетон, бензол и м-ксилол. Опыты проводили при 100, 140 и 180°С. По окончанию опыта твердый продукт реакции отфильтровывали и промывали; количество прореагировавшего ангидрида (в миллиэквивалентах малеиновой кислоты) определяли по разности результатов титрования фильтрата и контрольного опыта 0,2 н водным раствором гидроокиси калия при интенсивном перемешивании. Полученные данные приведены в таблице 1.

Таблица 1

Темпера-		ПП	родолж	ительн	ость оі	пыта, ч	ac
тура опыта, °С	Растворитель	3	6	12	24	48	96
100	ацетон	0,06	0,11	0,21	0,33	0,43	0,49
140	бутанон-2 бензол м-ксилол	0,17 0,50 0,51	0,29 0,63 0,66	0,51 0,78 0,84	0,62 1,04 1,01	0,74 1,32 1,25	0,87 1,48 1,57
180	бутанон-2 бензол	0,55	0,67,1,23	0,94 1,54	1,32 1,89	1,66 2,35	

Расход малеинового ангидрида при взаимодействии с концентратом керогена кукерсита (мэкв/г)

Из представленных данных вытекает, что

1) реакция протекает быстрее в ароматических растворителях и,

2) хотя в примененных условиях реакция диенового синтеза должна протекать до конца, расход малеинового ангид-

Фиг. 1. Инфракрасные спектры керогена кукерсита до и после обработки бензольным раствором малеинового ангидрида при 180°С в течение 24 часов.

исходный кероген,

обработанный кероген.

Спектры сняты на спектрофотометре ИКС-14 в таблетках из бромистого калия. Толщина таблеток около 1,0 *мм*, концентрация керогена 0,8%. Призма из хлористого натрия

рида продолжает возрастать, что говорит о протекании побочных реакций.

Из приведенных на фиг. 1 инфракрасных спектров керогена до и после обработки малеиновым ангидридом видно, что наряду с ожидаемыми в спектре изменениями (появление характерной для ангидридов карбоновых кислот полосы поглощения 1800 cm^{-1} и полосы внеплоскостных деформаций гидроксильных групп этих кислот 930 cm^{-1} , а также возрастание интенсивности поглощения карбонильными группами карбоновых кислот в области 1720 cm^{-1} [44, 45]), наблюдается уменьшение интенсивности полосы валентных колебаний гидроксильных групп 3380 cm^{-1} , причем полоса приобретает характерную для карбоновых числот форму. Таким образом, изменение в спектре свидетельствует о том, что при реакции керогена с малеиновым ангидридом действительно имеет место этерификация, и, следовательно, при прямом определении сопряженных двойных связей получаются явно завышенные результаты.

0			1	
	0	7	3	
			T II	
	~	-	10	
1	5			

F

Реакция керогена кукерсита с раствором маленнового ангидрида в бензоле при 140°С

		Mc	й индох:	кероге	Н		Аце	етилиро	ованный	й керог	ен
Показатели				Прод	олжите	льность	опыта,	, uac	53		
	3	9	12	24	48	96	3	9	12	24	48
Расход малеинового ангидрида, мэкв/г, на сухой концентрат на исходный кероген	0,50 0,52	0,63	0,78 0,82	1,04	1,32 1,39	1,48 1,55	0,20 0,23	0,31	0,45 0,51	0,51	0,57 0,65
Прирост веса пробы, %	1,1	1,5	2,0	3,0	4,6	5,6	0,5	0,8	1,5	1,7	2,0
Расход щелочи на омыление, мэкв/г, на продукт реакции на исходный кероген	1,32 1,40	1,40 1,49	1,49 1,60	$1,72 \\ 1,86$	2,02 2,22	2,13 2,37	3,08 3,51	3,16 3,61	3,24 3,73	3,31 3,82	3,29 3,81
К керогену присоединилось кислотных и потенциально-кислотных групп, мэкв/г	0,22	0,31	0,42	0,68	1,04	1,19	0,17	0,27	0,39	0,48	0,47
Примечание. Вес концентрата ув	синило	з идп во	ацет или]	ровании	на 7,4	0%. Pa	сход щ	инопа	HA OMb	ление 1	чсход-

ного и ацетилированного керогена ссставлял соответственно 1,18 мака/г и 3,09 (3,34 в пересчете на исходный кероген) мэкв/г. С целью учета побочных реакций более подробно исследовалось взаимодействие керогена с бензольным раствором малеинового ангидрида при 140°С. Поскольку и нормальный диеновый синтез, и реакция с изолированными двойными связями, и этерификация протекают с сохранением кислотных или потенциально-кислотных групп, то разность чисел омыления обработанного и исходного керогенов соответствует сумме этих реакций и позволит таким образом учесть реакцию малеинового ангидрида с минеральной частью, а также возможное разложение реагента, катализуемое концентратом и не учитываемое контрольным опытом. Омыление проводили 0,5 κ спиртовым раствором гидроокиси калия в течение 3 часов на водяной бане в свободной от углекислого газа среде.

Результаты опытов приведены в таблице 2.

Из представленных в таблице 2 данных видно, что количество присоединившихся к керогену кислотных и потенциальнокислотных групп действительно на 0,3-0,4 мэкв/г меньше расхода реагента. Для исключения реакции этерификации кероген предварительно ацетилировали. Из данных таблицы 2 вытекает, что ацетилированный кероген связывает на 0,3-0,7 мэкв/г меньше реагента, что соответствует его расходу на этерификацию гидроксильных групп неацетилированного керогена. Данные о присоединении ацетилированным керогеном малеинового ангидрида, найденные по разности чисел омыления продукта реакции и исходного ацетилированного керогена, показывают, что предельное значение достигается при 140°С за 24 часа и составляет 0,4-0,5 мэкв/г, что, по-видимому, и соответствует количеству неароматических сопряженых двойных связей в керогене кукерсита (1,2-1,5% на углерод керогена).

Таблица З

		h. Lawy	Ha	cyxoe i	вещести	30, %		
Горючий сланец	Вла- га, %	Зола	Ми- нер. СО ₂	Об- щая	Се Кол- чедан- ная	ра Суль- фат- ная	Орга- ниче- ская	Орга- нич. масса
Кашпирский	1,96	12,09	0,22	10,26	0,28	0,07	9,91	86,35
Ухтинский	1,82	16,01	0,25	8,23	0,48	0,09	7,66	81,92

Характеристика концентратов горючих сланцев Кашпирского и Ухтинского месторождений

	4	-	
	5	σ	
	II	1	
	L II	TT	
1	0	5	
	0	a	
		-	

Реакция ацетилированных керогенов сланцев Кашпирского и Ухтинского месторождений с раствором малеинового ангидрида в бензоле при 140°С

Manchiologi							THE TANK	Contraction of the local distance		
		Кашп	ирский	сланец			Ухти	нский	сланец	
			Πp	тжиото	ительное	ть опы	га, час			
ПОКазатели	3	9	12	24	48	3	9	12	24	48
Расход малеинового ангидрида, <i>мэкв/г</i> на сухой концентрат на исхолный кероген	0,79	1,04 1,27	1,69 2,07	1,94 2,38	2,15 2,63	0,83 1,03	1,08 1,34	1,70 2,11	2,06 2,56	2,51 3,11
Прирост веса пробы, %	1,2	2,4	4,1	4,6	4,9	0,7	1,0	2,5	3,8	5,2
Расход щелочи на омыление, <i>мэкв/г</i> на продукт реакции на исходный кероген	3,90 4,84	4,08 5,13	4,40 5,62	4,41 5,67	4,45 5,73	3,74 4,68	3,86 4,84	4,02 5,11	4,15	4,16 5,45
К керогену присоединилось кислотных и потен- циально-кислотных групп, мэкв/г	0,58	0,87	1,36	1,41	1,47	0,47	0,63	0;90	1,14	1,24
Примечание. Вес концентратов кашпи ственно на 5,55 и 1,61%. Расход щелочи на омыление ацетилирова 4,14 <i>мэкв/г</i> (4,26 и 4,21 <i>мэкв/г</i> в перерасчете н	оского 4 иных ке а исходи	а ухтин pore нон ные кеן	іского с з этих рогены).	ланцев сланг	увеличи	ился пр ставлял	и ацети	илиров. тветств	ании со	оответ- 4,02 и

Учитывая некоторую возможность реагирования малеинового ангидрида по месту изолированных двойных связей, полученное значение правильнее рассматривать как максимальное.

Проведенные опыты дают дополнительные данные к характеристике еще определенно не установленной природы полосы поглощения 1600—1630 см⁻¹ в инфракрасных спектрах твердых горючих ископаемых, в том числе и кукерсита, одной из возможных интерпретаций которой является наличие ациклических сопряженных двойных связей [45, 46]. Поскольку после обработки керогена кукерсита малеиновым ангидридом даже в довольно жестких условиях ни форма, ни интенсивность данного максимума не изменились, то, по нашему мнению, ациклические сопряженные двойные связи не являются основной причиной наличия в инфракрасном спектре керогена кукерсита указанной полосы поглощения.

В опытах с керогенами сланцев Кашпирского и Ухтинского месторождений применялись концентраты, приготовленные многократным центрифугированием размолотых сланцев из растворов хлористого цинка и отмучиванием [46]. Характеристика концентратов приведена в таблице 3, данные о присоединении к ацетилированным керогенам малеинового ангидрида представлены в таблице 4.

В соответствии с приведенными в таблице 4 данными содержание сопряженных двойных связей в керогенах кашпирского и ухтинского сланцев можно оценить соответственно в 1,5 и 1,3 *мэкв/г* (по малеиновой кислоте) или в 5,5 и 4,5% на углерод керогенов, т. е. значительно больше, чем в керогене кукерсита, что и понятно, учитывая более молодой возраст этих сланцев. Однако поскольку не исключается наличие в этих сланцах высококонденсированных ароматических структур [47—49], то результаты должны также рассматриваться как максимальные.

Выводы

1. Усовершенствована методика диенового анализа с учетом побочных реакций, имеющих место при взаимодействии концентратов горючих сланцев с малеиновым ангидридом.

2. Показано, что посредством неароматических сопряженных двойных связей, способных к реакции диенового синтеза, в керогенах горючих сланцев Прибалтийского, Кашпирского и Ухтинского месторождений связано соответственно не более 1,5, 5,5 и 4,5% углерода керогенов.

3. Установлено, что содержание ациклических сопряженных двойных связей не является основной причиной наличия в инфракрасном спектре керогена кукерсита полосы поглошения 1630 *см*⁻¹.

ЛИТЕРАТУРА

- I. P. N. Kogerman. Archiv für die Naturkunde Estlands, 10, N2 (1931).
- 2. А. Я. Аарна, К. Э. Уров. Труды Таллинского политехн. ин-та, серия А, № 228, стр. 27 (1965).
- 3. G. Stefanovitš, D. Vitorovič. J. Chem. Eng. Data, 4, 162 (1959).
- 4. U. S. A. Bureau of Mines. Inf. Circ. Nr. 7968, р. 64 (1960). 5. М. Я. Губергриц, Б. Х. Бродская, К. А. Куйв, Л. П. Паальме. Горючие сланцы. Химия и технология. Вып. 4, стр. 75 (1961).

- 6. А. Я. Аарна, К. Э. Уров. Наст. сборник, стр. 13.
 7. С. С. Семенов. Изв. АН ЭССР, 3, 391 (1954).
 8. А. Я. Аарна, Э. Т. Липпмаа. Труды Таллинского политехн. ин-та, серия А, № 63, стр. 160 (1955).
 9. Б. М. Вломар, Е. С. Саркар, Ind. Бит. Сит. Со. (2010) (1010).
- 9. F. M. Brower, E. L. Graham. Ind. Eng. Chem., 50, 1059 (1958). 10. J. A. Norton. Chemical Reviews, 31, N 2 (1942).
- 11. K. Alder. Neuere Methoden der präparativen organischen Chemie I, Berlin, 1944.
- 12. М. С. Клетцель. Органические реакции. Сб. 4, стр. 7 (1951).
- М. С. Клетцель. Органические реакции. Со. 4, стр. 7 (1951).
 А. В. Медду, R. Robinson. Nature, 140, 282 (1937).
 R. Kuhn, T. Wagner Jauregg. Helv. Chim. Acta, 13, 9 (1930).
 K. Alder, H. Brachel, K. Kaiser. Ann., 608, 195 (1957).
 R. S. Morrel, H. Samuels. J. Chem. Soc., 1932, p. 2251.
 R. S. Morrel, W. R. Davis. J. Chem. Soc., 1936, p. 1481.
 W. Sandermann. Ber., 71, 2005 (1938).
 W. Bergmann, F. Hirschmann. J. Org. Chem., 4, 40 (1939).
 K. Kawakami, Sci. Papers Inst. Phys. Chem. Research (Tokyo). 26

- K. Kawakami. Sci. Papers Inst. Phys. Chem. Research (Tokyo), 26, 77 (1935); C. A. 29, 2545 (1935).
 M. G. Van Campen, J. R. Johnson. J. Am. Chem. Soc., 55, 430
- (1933).
- 22. H. H. Hodgson, R. R. Davies. J. Chem. Soc., 1939, p. 806. 23. R. B. Woodward, H. Baer. J. Am. Chem. Soc., 70, 1161 (1948).
- 24. Ch. Weizmann, E. Bergmann, L. Haskelberg. J. Chem. Soc., 1939, p. 391.
- 25. H. P. Kaufmann, J. Baltes. Fette u. Seifen, 43, 93 (1936); C. A. 30, 7885 (1936).
- 26. Н. Р. Каџѓ mап n, J. Baltes, Н. Büter. Ber., 70 В, 903 (1937).
 27. А. А. Коротков. Синтет. каучук, № 4, стр. 23 (1933).
 28. S. F. Birch, W. D. Scott. Ind. Eng. Chem., 24, 49 (1932).

- 29. H. Grosse-Oetringhaus. Petroleum Z., 35, 567 (1939); C. A. 34, 975 (1940).
- 30. W. Sandermann. Seifensieder Ztg., 64, 402 u. 421 (1937); C. A. 31, 8228 (1937).
- Г. Дьячков, М. Ермолова. Каучук и резина, № 3, стр. 24 (1937);
 С. А. 31, 6138 (1937).
- 32. E. Mameli, A. Pancotto, V. Crestani. Gazz. chim. ital., 67, 669 (1937); C. A. 32, 4571 (1937).
- 33. Buu-Hoi, Dat-Xuong. Bull. soc. chim. France, 1948, p. 751.
- 34. H. Plimmer, J. Oil and Colour Chemist Assoc., 32, 99 (1949).
 35. K. Alder, H. Söll. Ann., 565, 57 (1949).
 36. K. Alder, H. Söll. Ann., 565, 72 (1949).

- 37. Y. Shigeno, S. Komori. Technol. Repts. Osaka Univ., 6, 179 (1956); C. A. 51, 8453 (1957).
- E. Eslami. J. Rech. Centre Natl. Rech. Sci., Lab. Bellevue, Nr.61 p. 333 (1962); C. A. 60, 403 (1964). 38.
- Англ. патент 954901, 8 апр. 1964; С. А. 60, 15739 (1964). 39.
- 40. S. Sabetay, Y. R. Naves. Bull. soc. chim., 4, 2105 (1937). 41. R. J. Bruce, P. G. Denley. Chem. and Ind., 1937, p. 937.
- W. G. Bickford, F. G. Dollear, K. S. Markley. J. Am. Chem. 42. Soc., 59, 2744 (1937).
- 43. W. G. Bickford, F. G. Dollear, K. S. Markley. Oil and Soap, 15, 256 (1938); C. A. 33, 421 (1939).
- 44. Л. Беллами. Инфракрасные спектры молекул. М., 1957.
- 45. А. Кросс. Введение в практическую инфракрасную спектроскопию. M., 1961.
- 46. А. Я. Аарна, К. Э. Уров. Труды Таллинского политехн. ин-та, серия А, № 215, стр. 3 (1964).
- 47. В. А. Ланин, М. В. Пронина. Изв. АН СССР, отд. техн. наук, № 10/11 (1944).
- 48. В. И. Яковлев. Окисление волжских сланцев кислородом воздуха. Автореферат. Ленинград, 1964.
- 49. В. А. Проскуряков, В. И. Яковлев, В. М. Потехин. Труды ВНИИТ, вып. 12, стр. 11 (1963).

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

СЕРИЯ А № 230 1965

УДК 662. 67:541. 6 А. Я. Аарна, К. Э. Уров

ИССЛЕДОВАНИЕ ГИДРОКСИЛЬНЫХ ГРУПП КЕРОГЕНА СЛАНЦА-КУКЕРСИТА

Общее содержание в керогене кукерсита гидроксильных групп, определенное методом ацетилирования, оценивается в 0,8—2,2 мэкв/г [1, 2]. Вследствие преимущественно нейтрального характера гидроксильных групп керогена [2] метилирование диазометаном дает значительно более низкие результаты [3, 4]. Поскольку ацетилирование уксусным ангидридом в пиридине не дает количественных результатов при наличии в веществе третичных спиртовых [5, 6] и фенольных гидроксильных групп определенных типов [5, 7], а также имеются указания о его неколичественном протекании [8—10] и других трудностях [11, 12] при анализе твердых топлив, в настоящей работе для уточнения общего содержания гидроксильных групп в керогене были использованы реакции с 3,5-динитробензоилхлоридом и гексаметилдисилазаном.

Количественные данные о содержании в керогене кукерсита первичных, вторичных и третичных гидроксильных групп отсутствуют. Отмечено наличие в инфракрасном спектре керогена полосы поглощения третичных спиртов [13]. Опыты по дегидрогенизации керогена элементарной серой [14] и N-бромсукцинимидом [15] показали, что значительная часть гидроксильных групп керогена связана с гидроароматическими циклами.

В настоящей работе приводятся результаты опытов по установлению количественного распределения гидроксильных групп керогена кукерсита на первичные, вторичные и третичные.

Экспериментальная часть

В опытах использовали концентраты кукерсита, приготовленные двумя споссбами. Концентрат № 1 был получен ступенчатым центрифугированием размолотого до 0,060 мм и обработанного 5%-ной уксусной кислотой сланца из растворов

З Химия

хлористого кальция плотностью 1400, 1300, 1200, 1150 и 1120 кг/м³. Выход беззольного вещества составил 87%. Концентрат пониженной зольности (концентрат № 2) был приготовлен методом селективного размола [16] в сочетании с центрифугированием из растворов плотностью 1130 и 1110 кг/м³; в концентрат перешло 22% керогена исходного сланца.

Характеристика полученных концентратов приведена в таблице 1.

Таблица 1

E. F.	Вла-	30-	Ми-	Sc	Элем	ентари	ный со	остав	керог	ена,0/0
Наименование образца	га, %	ла А ^с , %	нер. СО ₂ е, %	колч. %	Ċ	H	S	N	C1	0
Концентрат №1	0,54	5,08	0,47	0,31	77,41	9,57	1,51	0,17	0,59	10,75
Концентрат №2	0,50	2,88	0,18	0,17	78,41	9,89	1,35	0,16	0,51	9,68

Характеристика исходных концентратов

исходный кероген,

ацетилированный кероген.

Спектры снимались на спектрофотометре ИКС-14 в таблетках из бромистого калия. Призма из хлористого натрия. Толшина таблеток около 1,0 мм, концентрация керогена — 0,8%
Содержание в концентратах № 1 и 2 гидроксильных групп, определенное ацетилированием, составило соответственно 2,13 и 2,10 (2,27 и 2,18 на кероген) *мэкв/г*.

Ацетилирование проводилось в течение 4 часов при 100°С, соотношение кероген : реагент — 1:5, соотношение ангидрид уксусной кислоты : пиридин в реагенте — 1:4.

На фиг. 1 приведен инфракрасный спектр тщательно высушенного ацетилированного концентрата № 1.

Наличие в инфракрасном спектре ацетилированного керогена заметной полосы поглощения гидроксильной группы $3400 \ cm^{-1}$ обусловлено, по-видимому, неполнотой этерификации гидроксильных групп керогена, так как небольшое количество карбоксильных групп керогена не может вызвать поглощения такой интенсивности. Из других изменений в спектре интересно отметить, что полосы валентных колебаний С = О и С — О ацетатов сдвинуты в области, характерные для фенолацетатов (1775 и 1205 cm^{-1}) [17], что очевидно связано с принадлежностью значительной части гидроксильных групп керогена гидроароматическим циклам [14, 15] и служит дополнительным свидетельством в пользу этого.

3,5-динитробензоилхлорид, впервые примененный для определения гидроксильных групп И. В. Березиным [18], активно реагирует со спиртовыми, в том числе и третичными, и фенольными гидроксильными группами [19, 20]:

Для приготовления реагента к раствору 33 г частично гидролизовавшегося продажного 3,5-динитробензоилхлорида в 350 мл сухого пиридина прибавляли 5 мл хлористого тионила для переведения 3,5-динитробензойной кислоты в ее хлорид. Примерно 50 мл полученного раствора отгоняли (избыток хлористого тионила) и остаток профильтровывали. К навеске концентрата керогена около 0,5 г прибавляли 20 мл реагента и нагревали смесь на кипящей водяной бане в отсутствии доступа влаги. Продукт реакции отфильтровывали, промывали и высушивали. В остатке определяли содержание азота по Кьельдалю с предварительным восстановлением нитро-групп иодистоводородной кислотой [21]. Содержание гидроксильных групп рассчитывали по формуле:

$$OH = \frac{N_2 - N_1}{0,1941 (14,43 - N_2)},$$

где: ОН — содержание в концентрате гидроксильных групп, *мэкв/г;*

N₁ — содержание азота в исходном концентрате, %:

N2 — содержание азота в продукте реакции, %.

Результаты опытов приведены в таблице 2.

Таблица 2

Наименование	Показатоли	Прод	олжите.	льность	реакци	ин, час
образца	Показатели	1	2	4	8	20
Концентрат № 1	Содержание азота в продукте реак- ции, % ОН мэкв/г, на концентрат на кероген	3,62 1,65 1,76	4,05 1,93 2,05	4,50 2,25 2,39	4,78 2,47 2,63	4,83 2,51 2,67
Концентрат № 2	Содержание азота в продукте реак- ции, % ОН мэкв/г, на концентрат на кероген	3,41 1,52 1,58	3,82 1,78 1,85	4,19 2,03 2,11	4,55 2,29 2,37	4,53 2,28 2,36

Определение гидроксильных групп керогена при помощи 3,5-динитробензоилхлорида

Из приведенных в таблице 2 данных видно, что реакция керогена кукерсита с 3,5-динитробензоилхлоридом заканчивается за 8—10 часов, причем содержание гидроксильной группы в керогене составляет около 2,7 *мэкв/г*. Кероген концентрата № 2 присоединяет меньше 3,5-динитробензоильной группы — примерно 2,4 *мэкв/г*.

В инфракрасном спектре продукта реакции сохраняется незначительное поглощение при 3480 см⁻¹, которое может быть отнесено за счет карбоксильных групп керогена.

Гексаметилдисилазан, впервые примененный для анализа спиртов в 1958 году [22], реагирует с гидроксильными группами всех типов, включая блокированные хелатными связями, и карбоксильными группами с образованием триметилкремниевых эфиров [7, 20, 23, 24]:

2ROH + [(CH_3)_3Sil_NH - (CH_3)_3SiCe 2ROSi(CH_3)_3 + NH_3

Гексаметилдисилазан синтезировали из триметилхлорсилана и сухого аммиака в основном по Лангеру [23].

Для определения гидроксильных групп к навеске концентрата керогена 0,4—0,6 г прибавляли 2,5 мл гексаметилдисилазана, 1—2 капли триметилхлорсилана и 10 мл сухого пиридина. Реакцию проводили в запаянных стеклянных ампулах при 150°С. По окончанию опыта ампулу вскрывали, кероген отфильтровывали, промывали пиридином и петролейным эфиром (пределы кипения 50—60°С) и высушивали при 105°С до постоянного веса.

Содержание гидроксильных групп определяли по весу продукта реакции и содержанию в нем кремния, определявшегося в виде двуокиси кремния. Для этого к навеске сухого продукта реакции в платиновом тигле добавляли 2—3 *мл* олеума, выпаривали содержимое тигля на песчаной бане досуха и озоляли при 900°С. (При прямом озолении часть кремния улетучивается).

Фиг. 2. Инфракрасный спектр керогена кукерсита, обработанного гексаметилдисилазаном при 150°С в течение 48 часов.

Спектр снят на спектрофотометре ИКС-14 в таблетке из бромистого калия с призмой из хлористого натрия. Толщина таблетки 0,96 мм, концентрация вещества 0,91% Таблица 3

Определение гидроксильных групп керогена кукерсита при помощи гексаметилдисилазана

			Продо	лжительнс	ость реакц	ии, час	
ование зца	Показатели	3	9	12	24	48	96
нтрат 1	Прирост веса образца, % Остаток прокаливания, % ОН, <i>мэкв/г</i> на концентрат на кероген	17,7 15,20 2,03 2,16	19,2 16,08 2,25 2,40	19,5 16,65 2,37 2,52	20,3 17,42 2,55 2,71	20,3 17,80 2,79 2,79	20,5 17,79 2,63 2,80
нграт	Прирост веса образца, % Остаток прокаливания, % ОН, <i>мэкв/</i> г на концентрат на кероген	17,4 12,81 2,00 2,07	17,8 13,20 2,08 2,16	18,6 13,65 2,19 2,27	20,0 14,02 2,29 2,37	19,8 14,22 2,33 2,42	20,2 14,25 2,35 2,44

11 римечание: Остаток окисления олеумом и прокаливания исходных концентратов составлял: концентрат № 1 — 5,66%; концентрат № 2 — 3,03%. Содержание гидроксильных групп рассчитывалось по формуле:

$$OH = \frac{A_2 (1 + 0.01 \delta) - A_1}{6.01},$$

где: ОН — содержание гидроксильных групп в концентрате, мэкв/г;

A₁ — остаток прокаливания исходного концентрата, %;

A₂ — остаток прокаливания продукта реакции, %;

δ — прирост веса концентрата при реакции, %.

Результаты опытов приведены в таблице 3, инфракрасный спектр продукта реакции — на фиг. 2.

Учитывая, что содержание карбоксильных групп в керогене обоих концентратов составляло 0,02 *мэкв/г*, по данным таблицы 3 содержание гидроксильных групп в керогене концентрата № 1 составит примерно 2,8 *мэкв/г*, в керогене концентрата № 2 — 2,4 *мэкв/г*. Почти полное исчезновение полосы поглощения гидроксильной группы в инфракрасном спектре продукта реакции (фиг. 2) свидетельствует о практически полной этерификации гидроксильных групп керогена.

К ожидаемым в спектре изменениям относится появление очень интенсивных полос поглощения групп —Si(CH₃)₃ (1250, 840 и 755 см⁻¹) [17].

Совпадающие результаты определения гидроксильных групп двумя химическими методами в сочетании с методом инфракрасной спектроскопии позволяют сделать вывод, что кероген кукерсита содержит в среднем 2,8 *мэкв/г* гидроксильных групп, в которых связано около 42% кислорода керогена. Таким образом, гидроксильные группы являются основной функцией кислорода в керогене кукерсита. Полученные данные свидетельствуют также о том, что кероген несколько неоднороден в отношении содержамия гидроксильных групп, так как часть его (кероген концентрата № 2) содержит лишь 2,4 *мэкв/г* гидроксильных групп, что соответствует 40% кислорода фракции керогена.

Для определения содержания в керогене первичных гидроксильных групп проводилась их этерификация фталевым ангидридом в условиях, в которых вторичные и третичные гидроксильные группы не реагируют [25, 26]. Навеску концентрата около 1 г нагревали с навеской фталевого ангидрида 1,0— 1,2 г и 5 мл бензола на кипящей водяной бане. По истечению определенного времени к смеси прибавляли 45 мл воды и 5 мл пиридина, нагревали еще 10 минут и титровали избыток фталевой кислоты 0,2 м раствором гидроокиси калия. Результаты опытов приведены в таблице 4.

Martin Participation	Pacxo	д фталевого	ангидрида,	мэкв/г
Продолжитель-	Концент	рат № 1	Концентр	ат № 2
uac	на концен-	на керо-	на концен-	на керо-
	трат	ген	трат	ген
1	0,07	$0,07 \\ 0,22 \\ 0,26 \\ 0,26 \\ 0,26$	0,06	0,06
2	0,21		0,18	0,19
4	0,24		0,22	0,23
6	0,24		0,23	0,24

Фталирование керогена кукерсита

Из приведенных данных видно, что расход фталевого ангидрида достигает предельного значения за 3—4 часа и составляет 0,24—0,26 *мэкв/г*, что и соответствует примерному содержанию первичных гидроксильных групп в керогене кукерсита.

Данные о содержании в керогене кукерсита первичных гидроксильных групп свидетельствуют о преимущественно циклической природе керогена. Определяющее значение в балансе конечных групп керогена, очевидно, имеют метильная, карбоксильная и первичная гидроксильная группы. Содержание метильной группы в керогене можно на основании данных о выходе и составе летучих с водяным паром кислот при окислении [27, 28] и содержании метоксильной группы [4] оценить в 0,5—0,7 мэкв/г; содержание карбоксильной группы составляет до 0,3 мэкв/г [1, 2]. Учитывая содержание первичных гидроксильных групп получим, что кероген кукерсита содержит 0,7—1,2 мэкв/г конечных групп или лишь 1—2 конечные группы на 100 атомов углерода.

Для определения содержания в керогене третичных гидроксильных групп, которое по разности между общим содержанием гидроксильных групп и содержанием ацетилируемых групп можно ориентировочно оценить в 0,2—0,5 мэкв/г, использовали их свойство замещаться хлором при действии концентрированной соляной кислоты при комнатной температуре [29—31]. Навеску концентрата керогена 2,8—3,0 г обрабатывали 50 мл соляной кислоты (плотность 1,18 г/см³) при комнатной температуре в течение 48 часов. Содержание хлора в промытом и высушенном остатке определяли по Прингсгейму. Результаты опытов приведены в таблице 5.

Таблица 5

and manual and	Содержан в концен	ие хлора трате, %	Вес ос- татка, %	Присое, хлора,	цинилось мэкв/г
Наименование образца ^v	до обра- ботки	после обра- ботки	исход- ного концен- трата	на кон- центрат	на керо- ген
Концентрат № 1	0,55	2,02	99,57	0,41	0,44
Концентрат № 2	0,49	1,83	99,53	0,38	0,39

Взаимодействие керогена кукерсита с концентрированной соляной кислотой

Из представленных данных видно, что к керогену присоединилось около 0,4 *мэкв/г* хлора. Поскольку не исключается присоединение хлора в результате некоторых других реакций, содержание в керогене кукерсита третичных гидроксильных групп 0,4 *мэкв/г* следует считать максимальным.

На основании проведенных опытов можно дать примерное распределение гидроксильных групп керогена кукерсита по типам: первичные — 10%, вторичные — 75%, третичные — 15%.

Выводы

1. Уточнено содержание гидроксильных групп в керогене кукрсита. Показано, что кероген содержит в среднем 2,8 мэкв/г гидроксильных групп, в которых связано около 42% кислорода керогена. Гидроксильные группы являются основной функцией кислорода в керогене кукерсита.

2. Установлено приблизительное распределение гидроксильных групп керогена кукерсита по типам: первичные — 10%, вторичные — 75%, третичные — 15%.

3. Показано, что отдельные фракции керогена кукерсита несколько различаются по содержанию гидроксильных групп.

4. В совокупности с данными о содержании в керогене кукерсита метильных и карбоксильных групп, незначительное содержание в нем первичных гидроксильных групп свидетельствует о преимущественно циклическом характере керогена: на 100 атомов углерода приходится 1—2 конечные группы.

ЛИТЕРАТУРА

- 1. С. С. Семенов, Ю. И. Корнилова, Б. Е. Гуревич, Н. С. Орлова. Труды ВНИИПС, вып. 3, стр. 11 (1955).
- 2. А. Я. Аарна, Э. Т. Липпмаа. Труды Таллинского политехн. ин-та, серия А, № 63, стр. 3 (1955).
- 3. Н. А. Орлов, О. А. Радченко. Химия твердого топлива, 5, 506 (1934).
- 4. С. С. Семенов, Ю. И. Корнилова, Н. Д. Докшина. Труды ВНИИТ, вып. 8, стр. 28 (1959).
- 5. Губен-Вейль. Методы органической химии. Том II. Методы анализа. Москва, 1963, стр. 344 и 978.
- 6. R. A. Glenn, E. D. Olleman. Anal. Chem., 26, 350 (1954).
- S. Friedman, M. L. Kaufman, W. A. Steiner, I. Wender, Fuel, 40, 33 (1961).
- J. D. Brooks, R. A. Durie, S. Sternhell. Australian J. Appl. Sci., 8. 9,63 (1958).
- R. Jones, S. Sternhell. Fuel, 41, 457 (1962). 9.
- 10. C. Kröger, G. Darsow. Erdöl und Kohle, 17,88 (1964).
- 11. J. D. Brooks. Proceedings of the Symposium on the Nature of Coal. C. F. R. I, Jealgora, India, 1959, p. 167.
- 12. О. Н. Брагиловская. Сб. научн. тр. Укр. н.-и. углехим. ин-та, вып. 14, стр. 113 (1963).
- 13. М. Я. Губергриц, Б. Х. Бродская, К. А. Куйв, Л. П. Паальм е. Горючие сланцы, Химия и технология. Вып. 4, стр. 75. Таллин, 1961.
- 14. А. Я. Аарна, К. Э. Уров. Труды Таллинского политехн. ин-та, серия А, № 228, стр. 27 (1965). А. Я. Аарна, К. Э. Уров. Настоящий сборник, стр. 13. А. Я. Аарна, К. Э. Уров. Труды Таллинского политехн. ин-та, се-
- 15.
- 16. рия А, № 215, стр. 3 (1964).
- 17. Л. Беллами. Инфракрасные спектры молекул. Москва, 1957.
- 18. И. В. Березин. Доклады АН СССР, 99, 563 (1954).
- W. T. Robinson, R. H. Cundiff, P. S. Markunas. Anal. Chem., 19. 33, 1030 (1961). W. Wildenhein, G. Heinichen, G. Henseke. J. pr. Chem., 20,
- 20. 35 (1963).
- Weygand-Hilgetag. Organisch chemische Experimentier-21. kunst. Leipzig, 1964, S. 1025.
- 22. S. H. Langer, R. A. Friedel, I. Wender, A. G. Sharkey. Anal. Chem., 30, 1353 (1958).
- 23. S. H. Langer, S. Connell, I. Wender. J. Org. Chem., 23, 50 (1958).
- 24. S. Friedman, Ch. Zahn, M. L. Kaufman, I. Wender. U. S. Bur. Mines, Bull. Nr. 609, 1963. S. Sabetay, J. R. Naves. Ann. chim. anal., 19, 35 (1937).
- 25.
- 26. Губен-Вейль. Методы органической химии. Том 11. Методы анализа. Москва, 1963, стр. 329. А. С. Фомина, Л. Я. Побуль. Изв. АН ЭССР, 2, 551 (1953).
- 27.
- 28. В. П. Цыбасов. Научн. докл. высш. школы. Химия и хим. технол., 1958, № 3, стр. 563.
- 29. H. J. Lucas. J. Am. Chem. Soc., 52, 802 (1930).
- 30. G. M. Bennet, F. M. Reynolds. J. Chem. Soc., 1935, p. 131.
- 31. J. F. Norris, A. W. Olmsted. Org. Synth., 8, 50 (1928).

TALLINNA POLUTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

СЕРИЯ А

.№ 230

1965

УДК 543. 85

Х. В. Липпмаа

АНАЛИТИЧЕСКОЕ ПРИМЕНЕНИЕ ДОНОР-АКЦЕПТОРНЫХ КОМПЛЕКСОВ КИСЛОРОДНЫХ СОЕДИНЕНИЙ

I

Полный групповой анализ смеси высококипящих кислородных соединений — очень сложная задача. Даже аналитические методы для определения гидроксильных, карбонильных и карбоксильных групп имеют только ограниченную применимость в случае соединений с температурой кипения выше 250°С [68, 69]. Количественное определение содержания альдегидов, хинонов и сложных эфиров еще сложнее и для определения высококипящих простых эфиров до сих пор не существует аналитических методов. Методы, обоснованные на гидролизе простоэфирной связи, дают достоверные результаты только для низкокипящих алкильных эфиров (примерно до C₄H₉O —) [70, 71]. Эти трудности связаны с неспособностью эфирного кислорода к образованию дополнительных неполярных ковалентных связей, отсутствием только простым эфирам характерных реакций расщепления и, наконец, большим химическим разнообразием простых эфиров. Ни одна кислородная функциональная группа не объединяет столь разнообразных соединений, как соединения с простым кислородным мостиком. В химических свойствах диэтилового эфира, фурана и ксантона почти нет ничего общего, хотя они все содержат формально одинаковую связь С — О — С. Соответственно, для полного определения простых эфиров в сложной смеси фактически требуется определение групп С — О — С с сильно отличающимися электронными структурами. При этом электронная структура определяет кроме химических свойств и спектры соединений. Это обстоятельство может быть основой для аналитического определения эфиров, тем более, что соответствующие полосы поглощения сильные и характерные [72, 73, 74]. Все эти полосы поглощения расположены в области от 250 см⁻¹ до 1500 см⁻¹ и поэтому часто перекрываются полосами другого

43

происхождения [85]. Перекрывание вызывает осложнения отнесений полос к различным колебаниям даже в простых молекулах. Для определения полос поглощения, связанных с колебаниями связей кислородного атома, иногда применяют химические методы, наблюдая за изменениями характерных частот под влиянием реагентов, образующих слабые связи с кислородными атомами [12]. Так отнесены в ИК-спектрах полосы тетрагидрофурана [75, 76] и диоксана [12]. Молекулярные соединения являются единственными характерными соединениями простых эфиров, и хотя применение соответствующих реакций для анализа менее удобно, чем применение реакций, связанных с образованием или разрывом сильных ковалентных связей (определение гидроксильной, карбонильной, карбоксильной, альдегидной и др.), нет других возможностей. Методы гидролитического разрыва простоэфирной связи связаны с многочисленными осложнениями и могут быть применены только после предварительного определения характера присутствующих в смеси соединений.

Молекулярные соединения кислородных соединений

Образование молекулярных соединений с простыми эфирами и другими кислородными соединениями связано наличием свободных электронных пар у атома кислорода. Кислородные соединения, так же как и азотистые и сернистые, являются n- (ониум) основаниями в номенклатуре Мулликена [77, 78, 79]. Ароматические эфиры могут одновременно являться и π-основаниями. Первые могут отдать электроны для образования дативной связи в молекулярном соединении от несвязывающей молекулярной орбиты, а последние — от связывающей орбиты ароматической или алифатической л-связи. В молекулярных соединениях кислородсодержащих групп роль кислоты выполняют обычно υ-кислоты с вакантными орбитами (как AlX₃, TiX₄ и др.) или *d*-кислоты (диссоциативные кислоты, как HCl), которые являются слабыми кислотами Льюиса, но потенциально сильными кислотами Бренстеда, и только редко π-кислоты, способные принимать электрон в систему л-связей своей молекулы (тринитробензол, тетрадианэтилен, йод) и *i*-кислоты (ионные кислоты, как Ag⁺ и H⁺). Последние два типа кислот дают слабые связи с п-основаниями и в настоящей работе не рассматриваются. Кислородные соединения образуют самые сильные связи с *v*-кислотами. При этом следствием донор-акцепторного взаимодействия возникает новая связь с частичной передачей электронной пары от донора к акцептору по схеме Льюиса [80]. Схема Мулликена является очень общей и включает все возможные частные

Для аналитических целей представляют интерес только соединения с донор-акцепторной связью типа R₂O · AlX₃ или R₂O⁺ — AlX₈⁻. Эти соединения значительно прочнее оксониевых соединений, где роль кислоты играет HCl или HF [12], и соединений с переносом заряда, образование которых не связано с присутствием неподеленных пар электронов донора.

Соединения с донор-акцепторной связью образуются обычно с соотношением компонентов 1:1 или 2:1, причем в избытке акцептора почти всегда в соотношении 1:1 [21, 33, 29]. Только полифункциональные соединения с несколькими кислородсодержащими группами (диоксан [34] и спирты, азотистые соединения и N_2O_4 [6, 32, 14]) образуют соединения в других соотношениях.

Прочность связи тем больше, чем ниже энергия ионизации основания (и больше ее основность), чем больше сродство к электрону у кислоты и чем ближе могут располагаться центры зарядов (чем меньше пространственные затруднения). При этом существует ряд основностей [77]: NR₃>PR₃>AsR₃>SbR₃ = OR₂>SR₂>SeR₂>TeR₂. На факт, что прочность связи в подобных соединениях увеличивается с увеличением полярности эфира, указывал уже Меншуткин [82]. Как правило, комплексы кетонов прочнее комплексов эфиров. Среди эфиров наиболее устойчивыми являются соединения с алициклическими эфирами, наименее устойчивыми соединения с ароматическими и ненасыщенными эфирами. Алифатические эфиры занимают промежуточное положение [12]. Максютин [83] приводит следующий ряд основностей эфиров: диэтиловый эфир > фэнетол > дивиниловый эфир > дифениловый эфир > винилкрезиловый эфир.

Наилучшими акцепторами являются галогениды элементов, расположенных в средней части периодической системы вдоль диагонали Be—W, а в частности производные галоидов Al, B, Ti, Zr, Sn, V, Nb, Ta, Cr, Mo, Fe, Be, Zn и Sb. Среди производных галоидов наименее активными акцепторами являются йодиды, наиболее активными — хлориды (AlCl₃, TiCl₄, SnCl₄, FeCl₃, BeCl₂, ZnCl₂) и иногда фториды (BF₃) [12, 16].

Донор-акцепторные соединения с перечисленными активными кислотами являются промежуточными продуктами многих реакций органического синтеза. В соответствующих условиях (полное отсутствие влаги и галоидоводородных кислот НХ, низкая температура) эти соединения обычно устойчивые и с потерей НХ реагируют только спирты [14], фенолы [61] и некоторые альдегиды [49]. Эфиры не реагируют, исключение составляют только трехчленные эпоксиды, которые реагируют с раскрытием цикла [23] и триоксан [21]. В более жестких условиях эти реагенты могут быть применены для разложения эфиров, как алифатических [17], так и алициклических [30] и ароматических [84]. Ненасыщенные углеводороды могут полимеризоваться под влиянием сильных кислот, но винилфениловый эфир [25], кумарон [88] и дибензилиденкетон [49] дают молекулярные соединения без полимеризации.

Образование соединений с донор-акцепторной связью сопровождается изменением всех физико-химических показателей системы. При соотношениях, соответствующих образованию устойчивых соединений, эти изменения скачкообразные и могут быть использованы для исследования системы, даже для количественного анализа и титрования.

TiCl₄, SnCl₄, AlCl₃ и другие подобные реагенты могут быть применены для кондуктометрического [90, 91] и высокочастотного [14, 47, 92, 93] титрования очень слабых оснований в хлористом ацетиле [90, 91], ацетонитриле [94], бензоле [47] и нитробензоле [92, 93]. В последнем случае в результате лучшей проводимости раствора может быть применено потенциометрическое титрование [92, 93] и могут быть применены индикаторы. В основном были так определены азотистые соединения, только Хичкок определил некоторые эфиры и кетоны высокочастотным титрованием с SnCl₄ в бензоле [14, 47]. Иногда были использованы и термометрические [28, 40, 6, 15, 16, 27, 29, 43], вискозиметрические [44], манометрические [5, 26] денсиметрические [44] и другие методы для определения состава образующихся соединений. Эти методы, однако, не употребляемы для анализа смесей, так как свойства отдельных групп кислородных соединений сильно перекрываются и только один показатель (проводимость, температура и др.) не может быть применен для определения конечной точки. Нужной селективностью обладает только инфракрасная спектроскопия, но эту методику практически невозможно связывать с титрованием, поскольку некоторые реакции образования комплекса очень медленные и требуют даже нагревания в течение нескольких часов [61]. Несмотря на затруднения, образование комплексов может быть применено для определения полос поглощения эфирных групп в инфракрасных спектрах.

В таблице 1 дается обзор о молекулярных комплексах кислородных соединений, изготовленных до 1965 г.

Таблица 1

-			the second s
№ -	Донор		Акцептор
	эфиры:		. See more the applied of the second
1	диметиловый эфир		SnCl ₄ 2:1 [1], ZrCl ₄ 2:1 [2], BeCl ₂ 2:1 [3, 12], BeBr ₂ 2:1 [4], BeJ ₂ 2:1 [4], BF ₃ [5, 35, 36], TiCl ₄ [цит. 21].
2	диэтиловый эфир		FeCl ₃ [7, 37, 38], MgBr ₂ 2:1 [8], MgCl ₂ [8], MgJ ₂ [9], BF ₃ [5, 10, 35, 36] 1:1 [11], AlCl ₃ [12, 38], AlBr ₃ [8, 13, 39], BeCl ₂ 2:1 [12], SnCl ₄ 2:1 [1, 13, 14, 15, 47], GeCl ₄ [15], TiCl ₄ [38, цит. 21], SnBr ₄ 2:1 [16], HGeCl ₃ [17], ZnCl ₂ [38], SnCl ₂ [38], BCl ₃ 18] BeBr ₂ 2:1 [12], N ₂ O ₄ [19].
3	н-пропиловый эфир		N ₂ O ₄ [20], FeCl ₃ [7, 37], SnCl ₄ [47], TiCl ₄ [21].
4	<i>н</i> -бутиловый эфир		FeCl ₃ [7, 37], BeCl ₂ [3, 12], N ₂ O ₄ [20], TiCl ₄ [цит. 21], SnCl ₄ 2:1 [14].
5	диизоамиловый эфир		FeC12 [7]
6	третичный дибутиловый эфир		N_2O_4 [20].
7	пропиленоксид		BF ₃ [22], BCl ₃ [22, 23], FeCl ₃ [24].
8	винилфениловый эфир		SnCl4 [25].
9	виниламинофениловый эфир		SnCl ₄ [25].
10	диметилиловый эфир этиленгликоля	<i>J</i>	BeCl ₂ [3].
11	диэтиловый эфир этиленгликоля		N ₂ O ₄ 2:1 [20].
12	этиленоксид		BC1 ₃ [22, 23], BF ₃ [22, 26].
13	пиперонал		ТіСІ4 [цит. 21].
14	тетрагидрофуран		BCl ₃ [22, 23], SnCl ₄ [14] 2:1 [15, 28, 29, 47], FeCl ₃ [37], MgBr ₂ [8], TiBr ₄ 2:1 [30, 34], BeCl ₂ 2:1 [12], TiCl ₄ 1:1, 2:1 [21], CCl ₄ [15], N ₂ O ₄ 1:1 [19], LiBH ₄ [31], BF ₃ 1:1 [10, 26], SnBr 2:1 [16], SiHCl ₃ 1:1 [16].

15

2,5-диметилтетрагидрофуран N₂O₄ 2:1 [27], SnCl₄ 2:1 [28], BF₃ 1:1 [33].

47

N₂	Донор	Акцептор
16	2-метилтетра- гидрофуран	SnCl ₄ 2:1 [28], BF ₃ [33].
17	перфлуоротетрагид- рофуран	N ₂ O ₄ [20].
18	тетрагидропиран	BF ₃ 1:1 [22, 26], FeCl ₃ [37], TiBr ₄ 2:1 [30, 34], BeCl ₂ 2:1 [12], SnCl ₄ [15, 28], TiCl ₄ 1:1 [21], BCl ₃ 1:1 [22, 23], SnBr ₄ 2:1 [16].
19	2-метилтетрагидропиран	N ₂ O ₄ 2:1 [19, 20], BF ₃ [33].
20	4-метилтетрагидропиран	SnCl ₄ 2:1 [28].
21	1,4-диоксан	BCl ₃ [53], SnCl ₄ 1:1, 2:1 [14, 40, 47], FeCl ₃ [37], BF ₃ 1:1, 1:2 [22], SbCl ₃ 1:1 [41], C ₂ J ₂ 1:1 [42], TiBr ₄ 1:1 [30], HgCl ₂ 1:1 [41], BeCl ₂ 1:1 [12], TiCl ₄ 1:1, 2:1 [55].
22	1,3-диоксан	N_2O_4 [20].
23	1-хлор- 2,3-эпок- сипропан	BCl ₃ [23].
24	анизол	BeCl ₂ [3], SiCl ₄ 1:1, 1:2 [43], SnCl ₄ [43, 44], 2:1 [46], TiCl ₄ 1:1 [21, 45].
25	1,3-диоксолан	FeCl ₃ [37], N ₂ O ₄ 3:2 [27].
26	триоксан	N ₂ O ₄ [20].
27	дифениловый эфир	SiCl ₄ , GeCl ₄ , SnCl ₄ [43], TiCl ₄ [45].
'28	фенетол	SnCl ₄ [46], TiCl ₄ 1:1 [45].
29	м-метиланизол	SnCl ₄ [46].
30	о-метиланизол	SnCl ₄ [46].
31	н-пропилфениловый эфир	SnCl ₄ [46].
32	цинеол	SnCl4 [47].
33	2,6-диметилтетра- гидропиран	BF ₃ [33].
34	морфолин	SnCl ₄ 2:1 [29].
35	пиперонал	TiCl ₄ [цит. 21], SnCl ₄ [48], SnBr ₄ [48].
36	триметиленоксид	BF ₃ [26], BCl ₃ [23], N ₂ O ₄ 1:1, 2:1 [27].
	Кетоны:	
1	диметиловый кетон	BF ₃ [49, 52], TiCl ₄ [50, 51, 52, 57], SnCl ₄ [39, 47, 52], AlBr ₃ [39, 52], MgCl ₂ , ZnCl ₂ , FeCl ₃ [52], AlCl ₂ [39],

Nº	Донор	Акцептор
2	метилэтилкетон	BF ₃ [49, 54], TiCl ₄ [50, 51, 54], SnCl ₄ [47], SbCl ₃ [54].
3	метилпропилкетон	BF ₃ [49].
4	диэтиловый кетон	BF ₃ [49], TiCl ₄ [50, 51].
5	н-дипропиловый кетон	BF ₃ [49, 56, 58], TiCl ₄ [50, 51], MgCl ₂ , ZnCl ₂ , SnCl ₄ , AlCl ₃ , AlBr ₃ , FeCl ₃ [52].
6	диизопропиловый кетон	BF ₃ [49].
7	этил-н-пропилкетон	TiCl ₄ [50, 51].
8	метил-изопропиловый кетон	BF ₃ [49].
9	метил-н-бутиловый кетон	TiCl ₄ [50, 51].
10	метил-изобутиловый кетон	TiCl ₄ [50, 51], BF ₃ [49].
11	метиламиловый кетон	BF ₃ [49].
12	диизобутиловый кетон	BF ₃ [49].
13	этил-изобутиловый кетон	TiCl ₄ [50, 51].
14	этил-н-бутилкетон	BF ₃ [49].
15	метилгексиловый кетон	BF ₃ [49], TiCl ₄ [50, 51].
16	ацетофенон	BF ₃ [49, 52, 58, 59], ZnCl ₂ [52, 59], TiCl ₄ 1:1, 2:1 [52, 60], MgCl ₂ [52], SnCl ₄ [52], AlCl ₃ [52, 59], FeCl ₃ [52, 59], AlBr ₃ [52], HgBr ₂ [64], CdBr ₂ , CdJ ₂ [65].
17	<i>п</i> -гидроксиацетофенон	ZnCl ₂ [61], TiCl ₄ [61].
18	о-гидроксиацетофетон	ZnCl ₂ [61], TiCl ₄ [61].
19	2-гидрокси-5-метил- ацетофенон	ZnCl ₂ , TiCl ₄ [61].
20	п-хлорацетофенон	ZnCl ₂ , TiCl ₄ [62].
21	п-метилацетофенон	ZnCl ₂ , TiCl ₄ [62].
22	п-метоксиацетофенон	ZnCl ₂ , TiCl ₄ [62].
23	п-нитроацетофенон	TiCl ₄ [62].
24	п-аминоацетофенон	ZnCl ₂ , TiCl ₄ [62].
25	м-нитроацетофенон	TiCl ₄ [63].
26	м-бромацетофенон	TiCl, [63].
27	м-метилацетофенон	TiCl ₄ [63].
28	м-метоксиацетофенон	TiCl ₄ [63].
29	этилфенилкетон	TiCl ₄ [50, 51].

Nº	Д́онор	Акцептор
30	бензофенон	TiCl ₄ [50, 51, 52, 60], BF ₃ [52, 58, 59], CdBr ₂ , CdJ ₂ [65], HgBr ₂ [64], MgCl ₂ , ZnCl ₄ , SnCl ₄ , AlCl ₃ , FeCl ₃ , AlBr ₃ [52].
31	аценафтенон	HgBr ₂ [64], CdBr ₂ , CdJ ₂ [65].
32	циклогексанон	SnCl ₄ [47].
33	ксантон	TiCl ₄ , BF ₃ , SbCl ₃ [54].
34	дибензилиденацетон	BF ₃ [49].
	Фенолы:	anita manufacture and a state of the
1	фенол	TiCl ₄ [67].
2	о-бромфенол	TiCl ₄ [67].
3	<i>п</i> -бромфенол	TiCl ₄ [67].
4	п-хлорфенол	TiCl ₄ [67].
5	п-нитрофенол	TiCl ₄ [67].
6	п-крезол	TiCl ₄ [67], FeCl ₃ [66].
7	β-нафтол	TiCl ₄ [67].
8	гваякол	FeCl ₃ [66].
9	резорцин	FeCl ₃ [66].
10	пирокатехин	FeCl ₃ [66].
11	ТИМОЛ	FeCl ₃ [66].
12	карвакрол	FeCl ₃ [66].
13	1, 2, 3-, 1, 2, 4- 1, 3, 5-, 1, 4, 5- ксиленолы	FeCl ₃ [66].
14	1-, 2-тетралолы	FeCl ₃ [66].

Из таблицы следует, что посредством молекулярных соединений исследованы главным образом акцепторы, а не доноры. Исследовано всего только 36 простых эфиров, 34 кетона и 14 фенолов, причем среди исследованных соединений отсутствуют многие важные группы соединений. Сдвиги характерных полос поглощения в инфракрасных спектрах исследованы только для 13 эфиров.

Мало исследованы ароматические эфиры и кетоны.

Для выяснения общих закономерностей в сдвигах инфракрасных полос поглощения были изготовлены молекулярные соединения с некоторыми акцепторами.

Изготовление молекулярных соединений

Соединения изготовлялись по описанной ранее методике в сухой камере [85]. Поскольку большинство исследованных соединений были нерастворимые в апротных растворителях, были применены суспензии в сухом парафиновом масле. Это вызывает некоторые дополнительные сдвиги полос поглощения, обусловленные взаимодействием молекул в твердой фазе, но частично компенсируется тем, что спектр сравнения также снимался от суспензии твердого чистого вещества. Последняя методика критикуется Гайворонским [50], однако несмотря на это, очень широко применяется многими авторами [52, 55–62]. Спектры твердого комплекса $AlCl_3 \cdot (C_2H_5)_2O$ и его эфирного раствора хорошо совпадают [12, 86, 87].

На ничтожное значение подобных эффектов указывают и очень малые сдвиги спектральных линий тех групп, которые не подвергаются непосредственному воздействию акцептора [88]. Целесообразно употреблять жидкий акцептор. Как твердые, так и газообразные акцепторы вызывают дополнительные осложнения. Из жидких акцепторов самые сильные доноракцепторные связи дают SnCl₄ и TiCl₄. При сравнении разных акцепторов в комплексах ацетофенона и бензофенона получили следующий ряд активностей: HgCl₂<ZnCl₂<BF₃<SnCl₄<TiCl₄<AlCl₃<FeCl₃<AlBr₃ [50].Этот ряд соответствует активностям катализаторов в синтезе Фриделя-Крафтца [97].

Из таблицы 2 следует, что в комплексах простых эфиров самые большие сдвиги наблюдаются в соединениях с TiCl₄. Это согласуется с тем, что атом титана имеет октаэдрические d²sp³ орбиты, которые в результате острой направленности обеспечивают сильную донор-акцепторную связь [12, 21]. Кроме того, размеры атомов галогена в TiCl₄ соответствуют минимальным пространственным затруднениям при образовании донор-акцепторной связи. TiBr₄ и TiJ₄ являются менее активными акцепторами [21].

Как видно из таблицы, в случае изученных доноров разницы сдвигов полос поглощения в соединениях, полученных с SnCl₄ и TiCl₄ небольшие, но равновесие в случае SnCl₄ достигается гораздо медленнее, спектр комплекса постепенно изменяется. Изменения в спектрах 7—9 не могут быть следствием разложения вератрола, поскольку в спектрах 8 и 9 не удается обнаружить даже следов комплекса гваякола с SnCl₄. Кроме того, окна кювет из KBr легче очищать от соединений TiCl₄, чем от липких соединений SnCl₄. Полное удаление же FeCl₃ невозможно без дополнительной шлифовки окон. Предварительные опыты с безводным FeCl₃, изготовленным в кварцевом реакторе из металлического железа в потоке хлора при

4*

0 Таблица

> с TiCle и SnCle (особенно сильные линии указаны жирным шрифтом, слабые в скобках) Сдвиги характерных полос при образовании соединений

0

		740 735 736	PH SKRS
	750	748 748 740 740 752 752	950 951 950
	837 822	(819) 780 (810) 762 762	1096
	893 893	810 (850) (850)	1119 1119 1119
$I \mapsto W$		(850) (840) (840) (893) (850)	1176 1176 1176
TOTH C	Al XSM.	(903) (905) 900 970 965	(1228) 1239
ble yac	930 973 965	(970) 965 990 1010 1028 1028	1261 1261 1261
рактерн	· • • • •	1040 1040 1029 (1051) (1045) (1045)	1317 1317 1317
Xa	1023 1028	(1113)	1550 1537
		1130 1130 1125 1125 1125 1130 (1153)	1605 1605
	1078 1078 1078)	1180 1180 1173 1173 1178 1178 1178 (1185)	1605 1644 1627
	1243 1300 1306	1261 1261 1261 1238 1261 1261 1261 1261 1238	1719 (1719) (1719)
	N. K.	1339 1339 1339 1339 1339 1339 1339	1760
Соединение	Дигидропиран + ТіСІ4 + SnCI4	Beparpo.n + TiCl, 1) + TiCl, 2) + SnCl, 3) + SnCl, 3) + SnCl, 5)	Кумарин + TiCla + SnCla
āNr	351	400280	10 11 12

соединение красного цвета, образуется в избытке вератрола
 соединение желтого цвета, образуется в избытке ТіСІ₄
 с избытком SnCI₄, сразу после изготовления
 с избытком SnCI₄, 2 часа после изготовления
 с избытком SnCI₄, 2 цага после изготовления
 с избытком SnCI₄, 2 дня после изготовления

с избытком SnCl4, 2 часа после изготовления, с избытком SnCl4, 2 дня после изготовления,

450—500°С [95, 96], показали, что этого акцептора непременно нужно использовать в растворителе. В парафиновом масле реакции практически не происходят, несмотря на длительное растирание с донором. Полосы поглощения растворителя (обычно бензола) сильно мешали бы исследованию полос поглощения кислородных соединений и поэтому FeCl₃ в следующих опытах не применялось.

Выводы

1. Образование донор-акцепторных комплексов со сильными кислотами Льюиса является общим свойством кислородных соединений. Происходящие при этом изменения физикохимических показателей, в частности сдвиги инфракрасных полос поглощения могут быть применены для группового анализа этих соединений.

2. Составлен полный обзор о донор-акцепторных комплексах кислородных соединений.

3. Предварительными опытами показано, что наилучшим доступным реагентом для образования донор-акцепторных комплексов является четыреххлористый титан.

ЛИТЕРАТУРА

- 1. А. Теренин, Н. Ярославский. Acta phys. chim. URSS, 17, 240 (1942). CA 37, 65537.
- (1912): СА 57, 60537.
 2. G. Rossmy, H. Stamm. Апп., 618, 59 (1958).
 3. Н. Я. Турова, А. В. Новоселова, К. Н. Семененко. Ж. неорг. химии, 5 (8), 1705 (1960).
 4. Н. Я. Турова, А. В. Новоселова, Ж. неорг. химии. 8 (2),
- 525 (1963). 5. D. E. McLaughlin, M. Tamres, J. Am. Chem. Soc., 82, 5618
- (1960).
- 6. Т. Н. Сумарокова, Д. С. Сакенова. ЖОХ, 34 (8), 2696 (1964).
- 7. Фомин, Моргунов. ЖОХ, 5, 1385 (1960).

- ФОМИН, Моргунов. АСА, 5, 1565 (1960).
 R. Hamelin, S. Hayes. Compt. rend., 252, 1616 (1961).
 W. Zeil. Z. Elektrochem., 56, 789 (1952).
 R. C. Osthoff, C. A. Brown, J. A. Hawkins, J. Am. Chem. Soc., 73, 5480 (1951).
 T. C. Waddington, F. Klanberg, J. Chem. Soc., 2339 (1960).
 H. Я. Турова, К. Н. Семененко, А. В. Новоселова. Ж. иконския 4, 882 (1963).
- неорг. химии, 8 (4), 882 (1963). 13. В. Н. Филимонов, А. Н. Терении. ДАН СССР, 109, 799
- (1956).
- 14. E. T. Hitchcock, P. J. Elving. Anal. Chim. Acta, 28, 417 (1963). (1963).
- 15. H. H. Sisler, H. H. Batey, B. Pfahler, R. Mattair, J. Am. Chem. Soc., 70 (11), 382 (1948).

- 16. H. H. Sisler, E. E. Schilling, W. O. Growes, J. Am. Chem. Soc., 73 (1), 426 (1951).
- 17. О. М. Нефедов, С. П. Колесников. Изв. АН СССР, Сер. хим., 11, 2068 (1963).
- Е. А. Никитина. Успехи химии, 15, 707 (1946). 18.
- 19. B. Rubin, H. H. Sisler, H. Shechter. J. Am. Chem. Soc., 74, 877 (1952).
- J. C. Whanger, H. H. Sisler, J. Am. Chem. Soc., 75, 5188 (1953). 20.
- P. M. Hamilton, R. McBeth, W. Bekebrede, H. H. Sis-21. J. Grimley, A. K. Holliday, J. Chem. Soc., 1212 (1954). J. D. Edwards, W. Gerrard, M. F. Lappert, J. Chem. Soc.,
- 23. 348 (1957).
- 24. Л. А. Бакало, Б. А. Кренцел, В. Д. Оппенгейм, А. В. Топчиев. ДАН СССР, 142, 347 (1962).
- 25. М. Ф. Шостаковский, Г. Г. Скворцова, К. В. Запун-ная, Н. И. Шергина, Н. Н. Чипанина. ДАН СССР, 149 (4) 862 (1963).
- 26. D. McLaughlin, M. Tamres, S. Searles. J. Am. Chem. Soc., 82, 562 (1960).
- H. H. Sisler, P. E. Perkins. J. Am. Chem. Soc., 78, 1135 (1956). 27.
- 28. F. J. Cioffi, S. T. Zenchelsky. J. Phys. Chem., 67 (2), 357 (1963).
- S. T. Zenchelsky, P. R. Segatto. J. Am. Chem. Soc., 80, 4796 29. (1958).
- 30. R. F. Rolsten, H. H. Sisler. J. Am. Chem. Soc., 79 (5), 1068 (1957).

- T. L. Kolski, G. W. Schaeffer, J. Phys, Chem., 64, 1696 (1960).
 Ю. Н. Вольнов. Ж. физ. химии, 31, 133 (1957).
 D. Е. McLaughlin, M. Tamres, S. Searles, S. Nukina, J. Inorg. and Nuclear Chem., 17, 112 (1961). CA 55, 21951h.
 R. F. Rolsten, H. H. Sisler, J. Am. Chem. Soc., 79 (8), 1819
- (1957).
- 35. J. Lascombe, J. LeCalve, M. T. Forel. Compt. rend., 258 (23), 5611 (1964).
- .36. S. M. Bauer, G. F. Finlay, A. W. Laubengayer. J. Am. Chem. Soc., 65, 889 (1943). 37. P. A. McCusker, T. J. Lane, S. M. S. Kennard, J. Am. Chem.
- Soc., 81, 2976 (1959).
- 38. Sohachiro Hayakawa. Bull. Chem. Soc., Japan, 28, 447 (1955). CA 52, 13418e.
- 39. В. Н. Филимонов, Д. С. Быстров, А. Н. Теренин. Опт. и спектроскопия, 3, 480 (1957).
- J. R. Goates,, J. B. Ott, N. F. Mangelson. J. Chem. Eng. Data, 40. 9 (3), 330 (1964). CA 61, 6448f.
- L. W. Daasch. Spectrochim. acta, 726 (1959). 41.
- 42. P. Cagnaux, B. Susz. Helv chim. acta, 43, 948 (1960).

- 43. Н. Н. Sisler, J. С. Соту. J. Ат. Chem. Soc., 69 (6), 1515 (1947).
 44. М. М. Усанович, Е. Пичугина. ЖОХ, 26, 2415 (1956).
 45. J. R. Goates, J. B. Ott, N. F. Mangelson, R. J. Jensen. J. Phys. Chem., 68 (9), 2617 (1964).
- H. H. Sisler, W. J. Wilson, B. J. Gibbins, H. H. Batey, 46. B. Pfahler, R. Mattair. J. Am. Chem. Soc., 70 (11), 3818 (1948).
- 47. E. T. Hitchcock, P. J. Elving. Anal. chim. acta, 28, 301 (1963).
- 48. Словарь органических соединений. т. З. ИЛ, Москва, 1949, стр. 503.
- 49. R. Lombard, J. P. Stephan. Bull. soc. chim. France, 1369 (1957). CA 52, 9953b.

54

- 50. В. И. Гайворонский. Материалы 4-ой научной конференции аспирантов. Сб., Ростовский ун-т, 1962. Стр. 146 и сл.
- О. А. Осипов, В. И. Гайворонский. ЖОХ, 33, 1346, (1963). 51. 52.
- 53.
- B. P. Susz. Compt. rend., 248, 2569 (1959).
 A. K. Holliday. J. Sowler. J. Chem. Soc., 11 (1952).
 P. N. Gates, E. F. Mooney. J. Chem. Soc., 4648 (1964). 54.
- B. P. Susz. Rev. chim., acad. rep. populaire Roumaine, 7 (1), 579 (1962). 55. CA 59, 6213e.

- 56. P. Chalandon, B. P. Susz. Helv. chim. acta, 41, 697 (1958).
 57. D. Cassimatis, B. P. Susz. Helv. chim. acta, 43, 852 (1960).
 58. P. Chalandon, B. P. Susz. Arch. sci., 9, 461 (1959). CA 51, 10237d.
- 59. B. P. Susz, P. Chalandon. Helv. chim. acta, 41, 1332 (1958).
 60. B. P. Susz, A. Lachavanne. Helv. chim. acta, 41, 634 (1958).
- J. Göhring, G. P. Rossetti, B. P. Susz. Helv. chim. acta, 46, 61. 2639 (1963). 62. G. P. Rossetti, B. P. Susz. Helv. chim. acta, 47, 289 (1964).
- 63. G. P. Rossetti. Helv. chim. acta, 47, 2053 (1964).
- V. Balzani, L. Moggi. Ann. chim., 53 (1-2), 166 (1963). CA 60, 64. 10180e.
- 65. V. Balzani, L. Moggi. Ann. chim., 53 (1-2), 173 (1963). CA 60, 10180f.
- 66. W. Hückel, R. Wehrung. Arch. pharm., 291, 650 (1958). CA 54, 5010e.
- D. Schwartz, W. Cross. J. Chem. Eng. Data, 8 (3), 463 (1963). 67. CA 59, 8631e.
- 68. А. Я. Аарна, Х. В. Липпмаа, В. Т. Палуоя. Труды ТПИ, серия А, № 215, 97 (1964). 69. А. Я. Аарна, Х. В. Липпмаа. Труды ТПИ, серия А, № 215, 109 (1964).
- 70. L. Meites. Handbook of Analytical Chemistry. McGrew Hill Book Co., New York-London, 1963.
- Губен-Вейль. Методы органической химии, 2, Методы анализа. 71. ГХИ, Москва, 1963.
- 72. В. Вест. Применение спектроскопии в химии. ИЛ, Москва, 1959.

- Ю. Г. Бородько, Я. К. Сыркин. Ж. стр. химии, 2, 480 (1961). Ю. Г. Бородько, Я. К. Сыркин. ДАН СССР, 139, 102 (1961). R. S. Mulliken. J. Am. Chem. Soc., 74 (2), 811 (1952). 75.
- 76.
- 77.
- 78. R. S. Mulliken, J. Phys. Chem., 56 (7), 801 (1952).
 79. L. E. Orgel, R. S. Mulliken, J. Am. Chem. Soc., 79, 4839 (1957). 80. E. S. Gold. Mechanismus und Struktur in der organischen Chemie. Verl. Сhemie, Weinheim, 1962. 81. В. П. Парини. Успехи химии, 31 (7), 822 (1962).
- 82. Б. Н. Меншуткин. Об эфиратах и других молекулярных соединениях бромистого и йодистого магния, СПб, 1907. Цит. [12].
- 83. Ю. К. Максютин, Ю. Л. Фролов, А. В. Калабина, В. А. Шевельева. ЖФХ, 38 (11), 2604 (1964).
- А. Я. Аарна, Э. Т. Липпмаа, ЖПХ, 30, 312 (1957). 84.

- 85. А. Я. Аарна, Х. В. Липпмаа. Статья в печати. 86. G. Briegleb, W. Lauppe. Z. phys. Chem., 35B, 42 (1937). 87. H. Luter, D. Mootz, F. Radwitz, J. prakt. Chem., 5 (4), 242 (1957).
- А. Я. Аарна, Х. В. Липпмаа. См. наст. сб. 88.
- 89. Ч. Томас. Безводный хлористый алюминий в органической химин ИЛ, Москва, 1949.

- Kamla Goyal, Ram Chand Paul, Sarjit Singh Sandhu, J. Chem. Soc., 322 (1959).
 Baldev Singh Manhas, Ram Chand Paul, Sarjit Singh Sandhu. J. Chem. Soc., 325 (1959).
 C. B. Riolo, T. F. Soldi, C. Occhipinti. Ann. chim., 53, 1531 (1963). CA 60, 15203.
 C. B. Riolo, T. F. Soldi, C. Occhipinti. Ann. chim., 51, 1178 (1961). CA 56, 10916a.
 E. T. Hitchcock, P. J. Elving. Anal. chim. acta, 27, 501 (1962).
 T. J. Lane, P. A. McCusker, B. C. Curran, J. Am. Chem. Soc., 64, 2026 (1942).

- 64, 2076 (1942).
- G. Bornemann. Anorg. Preparate. Leipzig. Verl. vonL. Voss, 1926, 96. S. 234.
- 97. O. C. Dermer, D. M. Wilson, V. H. Dermer, J. Am. Chem. Soc., 62, 2881 (1941).

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

СЕРИЯ А № 230

1965

УДК 541. 24. 08 А. Я. Аарна, Е. Б. Карьяма

КРИОСКОПИЧЕСКОЕ ОПРЕДЕЛЕНИЕ МОЛЕКУЛЯРНОГО ВЕСА ДВУХАТОМНЫХ ФЕНОЛОВ

В настоящее время одним из наиболее широкое распространение получившим методом определения молекулярного веса является криоскопический метод Бекмана [1] и его модификации [2, 3, 4]. Точность измерения разности температур до и после введения определяемого вещества в растворитель и правильный выбор растворителя обеспечивают получение надежных результатов измерения молекулярного веса. Употребляемый растворитель должен хорошо растворять определяемое вещество, не реагировать с ним, не вызывать ассоциацию молекул определяемого вещества.

Для определения молекулярных весов в наших лабораториях широко используется криоскопический метод с применением термометра сопротивления [4], который обеспечивает точность измерения температур в 0,001°. В качестве растворителя применяется сухой бензол. Однако при определении молекулярных весов двухатомных сланцевых фенолов и на их базе полученных продуктов приходилось сталкиваться с рядом трудностей, как плохая растворимость веществ в бензоле и завышенные результаты молекулярных весов.

Так, Рятсеп [5] указывает, что при определении молекулярных весов 5-метилрезорцина и 2,5-диметилрезорцина имеются расхождения между молекулярными весами, полученными криоскопическим и эбулиоскопическим методами определения. Данные, полученные при измерении молекулярного веса криоскопическим методом, выше теоретических, что указывает на возможность ассоциации молекул определяемых веществ в бензоле.

Целью настоящей работы было найти подходящий растворитель для определения молекулярных весов двухатомных фенолов криоскопическим методом.

В качестве растворителя для криоскопического определения молекулярных весов нами был выбран нитробензол, хотя Нурксе и Сиповский [6], основываясь на неудобную очистку нитробензола, отказались от его применения. С другой стороны Роберт и Бури [7] указывают, что сухой нитробензол является прекрасным растворителем для криоскопического определения молекулярных весов.

Нитробензол «чистый, реактивный» очищался трехкратной кристаллизацией при —5 ÷ —8°С так, что в общей сложности половина из взятого количества сливалась в виде маточного раствора. После этого нитробензол сушился еще над хлористым кальцием.

Для получения сравнительных данных определения молекулярных весов в бензоле и нитробензоле, в качестве анализируемых веществ применяли резорцин, 2,5-диметилрезорцин и их производные. Также было проведено определение молекулярных весов тех же веществ эбулиоскопическим методом в ацетоне [8]. 2,5-диметилрезорцин был получен методом селективной кристаллизации [5] из дистиллированных двухатомных фенолов подсмольной воды переработки горючих сланцев. Пределы кипения используемой фракции двухатомных фенолов были 272—290°С при 760 *мм рт. ст.* Диметиловые эфиры и диацетаты резорцина и 2,5-диметилрезорцина были синтезированы нами, используя данные исследований Е. Клармана [9]. Глубину протекания реакции этерификации и ацетилирования

Таблица 1

NºNº	Наименование	Константа	Мето, Крис пиче	ц опред оско- ский	еления Эбули- оско- пиче-	Тео- рет. вычис-
пп	вещества	в °С	в бен- золе	в нит- робен- золе		ный мол. вес.
$\frac{1}{2}$	Резорцин Диметиловый эфир	т. п. 109,5	149	112		110
2	резорцина	94—95,5/ 5 MM pt. ct.	135	137	137	138
3	Диацетат резорцина	5 мм рт. ст.	197	195	198	194
4	2,5-диметил- резорцин	т. п. 140	147	136	129	138
5	Диметиловый эфир 2,5-диметил резор-	84—102/	162	162	163	166
6	цина Диацетат 2,5-диметил-	5 MM pt. ct.	In the second			The second
1000	резорцина	5 мм рт. ст.	221	220	219	222

Результаты определений молекулярных весов

58

двухатомных фенолов проверяли определением гидроксильных групп. Полученные продукты — бесцветные жидкости, температуры кипения которых приведены в таблице 1.

Из приведенных в таблице 1 данных видно, что молекулярные веса диметиловых эфиров и диацетатов резорцина и 2,5-диметилрезорцина имеют сравнительно хорошее совпадение с теоретическими данными. Из этих данных вытекает, что молекулярные веса производных дифенолов, в которых обе гидроксильные группы замещены, могут быть определены криоскопическим методом с применением в качестве растворителя бензола или нитробензола.

Результаты эбулиоскопического определения также хорошо совпадают с теоретически вычисленными данными.

Определение молекулярных весов резорцина и 2,5-диметилрезорцина в бензоле криоскопическим методом связано с неточностями. Во-первых, для получения совпадающих результатов параллельных определений пришлось уменьшить концентрацию анализируемого вещества (вместо навески в 100 *мг* — употреблять 30 *мг* на 20 *мл* растворителя). При большей концентрации анализируемого вещества происходило его выкристаллизирование из раствора в начале опыта. Вовторых, даже при указанной небольшой концентрации анализируемого вещества получены завышенные результаты молекулярных весов (147 и 149 вместо 110 и 138). Увеличенные результаты молекулярных весов вызваны частичной ассоциацией молекул резорцина и диметилрезорцина в бензоле.

Производя определения молекулярных весов в нитробензоле, навеска анализируемого вещества увеличена до 50—60 *мг* на 20 *мл* нитробензола. Растворение навески в нитробензоле происходит легко при комнатной температуре. Молекулярные веса резорцина и 2,5-диметилрезорцина хорошо совпадают с

Таблица 2

NoNo	Молекуля определенны	рные веса, ме в бензоле	Молекулярные веса, определенные в нитробензоле в
	1962 г.	1963 г.	1965 r.
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $	126 139 155 164 184 201	126 137 155 162 184 205	122 141 146 163 178 195

Результаты определения молекулярных весов фенольных фракций

теоретически вычисленными, что указывает на отсутствие ассоциации молекул анализируемых веществ в нитробензоле.

В продолжении работы было произведено определение молекулярных весов в нитробензоле шести фракциям масляных фенолов, молекулярные веса которых криоскопическим методом в бензоле были определены уже раньше.

В таблице 2 приведены результаты определения молекулярных весов указанных фенольных фракций.

Из этих данных видно, что при хранении фракций сланцевых фенолов в течение длительного периода не наблюдается изменения молекулярных весов. В низкокипящих фракциях, где отсуствуют двухатомные фенолы, не наблюдается больших расхождений в результатах определения молекулярных весов в бензоле или нитробензоле. Существенные расхождения появляются во фракциях, где имеется значительное содержание двухатомных фенолов.

Выводы

1. Показано, что для определения молекулярных весов двухатомных фенолов бензол в качестве растворителя не пригоден.

2. Предложено растворителем при криоскопическом определении молекулярных весов двухатомных фенолов использовать нитробензол.

ЛИТЕРАТУРА

- 1. E. Bekmann. Z. phys. Chem., 2, 638 (1888); 7, 323 (1891); 44, 161 (1904).
- 2. К. Вейганд. Мет. эксперимента в орг. химии, часть 3, 1951 г.
- 3. H. Meyer. Analyse und Konstitutionsermittlung organischer Verbindungen. Berlin, 1931.
- 4. В. Я. Михкельсон. Журнал анал. химии, 9, 22 (1954).
- А. Я. Рятсеп. Автореферат диссертации. ТПИ, 1965 г.
 А. Я. Рятсеп. Автореферат диссертации. ТПИ, 1965 г.
 К. Нурксе, Г. В. Сиповски. Химия и технология горючих слан-цев, 12, 152 (1963).
 Н. М. Roberts, С. R. Вигу. J. Chem. Soc., 123., 2037 (1923).
 В. Я. Михкельсон, Труды ТПИ, Серия А, 210, 267 (1964).

- 9. E. Klarmann. J. Am. Chem. Soc., 53, 3391 (1931).

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

СЕРИЯ А

№ 230

1965

УДК 543.85

Х. В. Липпмаа

АНАЛИТИЧЕСКОЕ ПРИМЕНЕНИЕ ДОНОР-АКЦЕПТОРНЫХ КОМПЛЕКСОВ КИСЛОРОДНЫХ СОЕДИНЕНИЙ

H

Характерные инфракрасные полосы поглощения кислородных соединений занимают широкий диапазон частот. Важнейшие частоты приводятся в следующей таблице 1 [1, 2, 3, 4, 5, 6], стр. 62.

1. Изготовление и спектры молекулярных компелксов кислородных соединений

Из таблицы 1 следует, что только гидроксильные и карбонильные группы могут быть однозначно определены из инфракрасного спектра. Характерные полосы поглощения всех других групп перекрываются.

Для выяснения возможностей отнесения перекрывающихся полос поглощения к отдельным группам были изготовлены молекулярные комплексы кислородных соединений с сильным акцептором — четыреххлористым титаном [7], а для определения полос, связанных с кислотными гидроксильными группами в фенолах и кислотах — соединения с сильными основаниями, где исследуемое вещество служит донором протона. Последние соединения хорошо известны [8]. Образование сильных внутри- или межмолекулярных водородных связей ведет к уменьшению частот валентных колебаний О—Н и изменению частот валентных колебаний С — ОН.

Все комплексы с четыреххлористым титаном были изготовлены по ранее описанной методике [9], все спектры сняты в парафиновом масле. Спектры полученных соединений приводятся в таблицах от 2 до 6 (см. Приложение).

В таблице 7 приведены инфракрасные спектры комплексов кислородных соединений с аминами. Эти соединения были изготовлены по следующей методике: смешивали 0,05 молярный раствор кислородного соединения в четыреххлористом угле-

Таблица 1

Основные инфракрасные полосы поглощения кислородных соединений

Группа соединений	Тип и частотный диапа	азон колебаний	й, в <i>см</i> -1
Спирты Фенолы	Валентные колебания Валентные колебания Плоские деформацион- ные колебания Неплоские деформацион- ные колебания	ν 0-H ν C-OH δ 0-H γ 0-H	2500—3640 1010—1220 1160—1470 650—750
Эфиры	Асимметричные валент- ные колебания Симметричные валент-	v c - 0 - C y = C - 0 - C	1050—1170 (1180) 1200—1300
18 31 11 1 11	ные колебания	v -C-O-C	1020—1075
Кетали, спирокетали		v C-O-C- -O-C	1200—1040 1350— 650
Эпоксиды	Симметричные валент- ные колебания кольца Асимметричные валент- ные колебания кольца	V кольца	1250 790—950
Кетоны	Валентные колебания	v > c = 0 v = cc = 0	1690—1780 1615—1720
Карбоновые кислоты (насыщенные)	Валентные колебания Комбинированные плос- кие деформационные и валентные колебания	$\begin{array}{ c c c c } v & -c = 0 \\ v & c c 0 \end{array}$	1760—1710 ⁻ 1150—1 270
Сложные эфиры	Валентные колебания Асимметричные и сим-	v C=0	1650—1785
au 24-26	колебания	ν c-0	1320—1080
α-и γ- Пироны			1560—1740
Фураны	Колебания кольца Валентные колебания Плоские деформацион-	ω кольца ν СС	1000—1040 1470—1600
	ные колебания Неплоские деформацион- ные колебания	δ СН	1020—1260 740—920

62

роде с 10%-ным раствором амина в четыреххлористом углероде. Работали с компенсацией.

Из приведенных данных следует:

1. Алифатические и алициклические простые эфиры имеют сильные полосы поглощения в области 1070—1150 см⁻¹ от валентных колебаний связи С—О. Эти полосы расширяются и почти исчезают в результате сдвига на больше, чем 100 см⁻¹ к меньшим волновым числам в соединениях этих эфиров с TiCl₄. Это обстоятельство обеспечивает надежное определение подобных эфирных групп.

2. Эфиры фенолов также имеют сильные полосы поглощения в области 1020—1075 cm^{-1} от симметричных валентных колебаний связи С—О и в области 1200—1275 cm^{-1} от асимметричных колебаний. Последние являются особенно сильными при ароматических эфирах. Эфиры двухатомных фенолов показывают сдвиги этих полос к меньшим волновым числам, подобно алифатическим эфирам. В эфирах одноатомных фенолов сдвиги могут быть очень малыми, ниже точности измерения на ИКС-14, несмотря на образование кристаллических соединений (анизол). Обычно появляется новая сильная полоса на частоте 940—990 cm^{-1} .

3. Фураны и бензофураны имеют кроме вышеуказанных еще несколько полос поглощения, обусловленных главным образом деформационными колебаниями ядра (1000—1300 см⁻¹). Все эти полосы преимущественно сдвигаются к меньшим волновым числам и расширяются под воздействием TiCl₄.

4. Карбонильная группа в кетонах, альдегидах, хинонах и кислотных производных имеет характерные валентные колебания связи С=О в области 1740—1650 с m^{-1} (в дикетонах и пиронах до 1560 с m^{-1}) и более слабые полосы, обусловленные комбинированными валентными и деформационными колебаниями связи С—СО в области 1100—1300 с m^{-1} . При образовании комплекса с TiCl₄ частота валентных колебаний С=О сильно уменьшается и наблюдается уменьшение интенсивности и сдвиг полос в области 1100—1300 с m^{-1} , часто к большим частотам. Если эти полосы являются дублетами (ненасыщенные кетоны и альдегиды), то интенсивности линии переменяются.

5. В инфракрасных спектрах соединений фенолов с TiCl₄ наблюдается значительное уменьшение интенсивности и часто сдвиг к меньшим частотам полос в области 1180—1280 см⁻¹, обусловленных валентными колебаниями связи С—ОН. Часто наблюдается появление новой сильной полосы в области 920—980 см⁻¹ и слабое влияние на полосы валентных колебаний связи О—Н.

6. В комплексах фенолов с аминами наблюдается появление новой сильной полосы валентных колебаний ассоциированных связей О—Н в области 2500—3200 см⁻¹ и одновременный сдвиг и изменение интенсивности полос валентных колебаний связи С—ОН в области 1050—1300 см⁻¹ и различных полос поглощения на более низких частотах.

7. Появление новой полосы в комплексах с аминами на частоте 1900 см⁻¹ является признаком присутствия карбоксильных групп и его производных. Поглощение на более высоких частотах обусловлено и кислыми спиртовыми группами.

8. В комплексах с аминами частоты характерных полос поглещения эфирных и карбонильных групп существенно не изменяются.

9. Изменения, происходящие с углеводородами под воздействием TiCl₄, на спектрах мало отражаются. Появляется одна новая полоса поглощения при 815 см⁻¹, что не мешает исследованию спектров кислородных соединений.

10. Бифункциональные соединения, которые способны образовать сильные внутри- и межмолекулярные водородные связи, не образуют молекулярных соединений с TiCl₄ и аминами в употребленных условиях. Эти химически инертные вещества тоже не реагируют с реагентами для определения функциональных групп или реагируют неполностью [10, 11].

Из полученных данных следует, что образование молекулярных соединений открывает некоторые новые возможности в анализе кислородных соединений. Как и при всех других методах качественного или количественного определения функциональных групп и здесь наблюдаются недостатки и отклонения, однако в большинстве случаев возможно получение более надежных результатов.

Для практического применения вышеуказанных закономерностей при анализе кислородных соединений, необходимо иметь от каждого соединения четыре спектра, один из которых снят в присутствии акцептора (TiCl₄), второй — в присутствии сильного основания (10%-ный раствор пиридина в CCl₄), а третий и четвертый — спектры чистого вещества в виде суспензии в парафиновом масле и раствора в CCl₄. Последние два спектра необходимы для сравнения сдвигов полос поглощения. Исследуемое вещество должно иметь высокую степень чистоты. Образующиеся соединения являются в парафиновом масле достаточно инертными и в кювете между пластинками из бромистого калия с атмосферной влагой не реагируют.

2. Исследование состава донор-акцепторных комплексов

Многие из приведенных в этой статье соединений изготовлены впервые и охарактеризованы только инфракрасным спектром. Весьма вероятно, что в избытке TiCl₄ комплексные соединения образуются в соотношении компонентов 1:1. Однако не ясно, в каком соотношении образуются комплексы с бифункциональными соединениями. Поэтому были изготовлены некоторые молекулярные соединения и определены соотношения компонентов.

Для изготовления комплексных соединений использовали пробирки центрифуги, которые были закрыты резиновыми пробками. Пробирку с веществом в сухой камере продували сухим азотом и после охлаждения вещества прибавили избыток TiCl₄. После нескольких часов при помощи шприца прибавили четыреххлористый углерод и после центрифугирования осадка раствор удаляли шприцом. Процесс повторяли 3—4 раза. Затем комплексное соединение разлагали 0,5—1 нормальным раствором нитрата аммония и определяли титан весовым методом в виде окиси титана [12].

Результаты опытов приводятся в таблице 8.

Таблица 8

Соотношения компонентов в комплексах с четыреххлористым титаном

№	Донор	Соотношение компонентов
1 2 3	Тетрагидрофуран Дигидропиран Вератрол Диметиловый эфир гидрохинона Гваякол Кумарон	1,02 0,96 1,24
4 5 6		2,07 2,10 1,04

Оказывается, что в большинстве случаев каждая кислородсодержащая функциональная группа образует соединение с акцептором. Исключение составляет вератрол, который склонен к образованию нескольких соединений, что отражается и в инфракрасных спектрах этих соединений [9].

При помощи инфракрасных спектров можно следить и за полнотой образования комплексов кислородных соединений. Только в спектре антрахинона наблюдается наложение комплекса и исходного вещества, во всех других спектрах наложений невозможно обнаружить.

5 Химия

Выводы

1. Исследованы молекулярные комплексы кислородных соединений с акцептором TiCl4. Из этих многие соединения изготовлены впервые.

2. Определен состав пяти новых молекулярных соединений простых эфиров.

3. Разработана методика для определения в исследуемом веществе следующих функциональных групп:

- а) алифатический или алициклический простой эфир;
- б) фенольная гидроксильная группа;
- в) карбоксильная группа;
- г) карбонильная группа.

Кроме того, во многих случаях можно получить дополнительные данные о присутствии в веществе фенольноэфирных групп или фуранового цикла.

ЛИТЕРАТУРА

- К. Наканиси. Инфракрасные спектры и строение органических со-единений. «Мир», Москва, 1965.
 Л. Беллами. Инфракрасные спектры молекул. ИЛ, Москва, 1957.

- В. Вест. Применение спектроскопии в химии. ИЛ, Москва, 1959.
 Н. М. Rauen, R. Kuhn. Biochemisches Taschenbuch, I. Springer, 1964.
- 5. J. P. Phillips. Spectra-structure Correlation. Acad. Press, NY .- London, 1964.
- F. C. Nachod, W. D. Phillips. Determination of Organic Structures by Physical Methods. Vol. 2. Acad. Press, NY.—London, 1962.
 А. Я. Аарна, Х. В. Липпмаа. Сборник статей в печати.
- 8. Дж. Пиментель, О. Мак-Клеллан. Водородная связь. «Мир», Москва, 1964.
- 9. Х. В. Липпмаа. См. наст. сборник, стр. 43.
- А. Я. Аарна, Х. В. Липпмаа, В. Т. Палуоя. Труды ТПИ, серия А, № 215, 97 (1964).
 А. Я. Аарна, Х. В. Липпмаа. Труды ТПИ, сер. А, № 215, 109
- (1964).
- 12. В. Ф. Гиллебранд, Г. Э. Лендель, Г. А. Брайт, Д. И. Гофман. Практическое руководство по неорганическому анализу. ГХИ, Москва, 1957.
- 13. F. J. Cioffi, S. T. Zenchelsky. J. Phys. Chem., 67 (2), 357 (1963).

ТАLLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА СЕРИЯ А № 230 1965

УДК 547. 728. 1

Х. Я. Киппер, Х. Т. Раудсепп

ИССЛЕДОВАНИЕ СИНТЕЗА И СВОЙСТВ ОКСИБЕНЗОФУРАНОВ

(Сообщение II)

В нашей предыдущей работе [1] был описан синтез 6-окси-3-метилбензофурана по схеме:

Названный метод может являться универсальным методом синтеза оксибензофуранов. Из использованных разных двухатомных фенолов и α -галоидных карбонильных соединений можно получать всевозможные замещенные и незамещенные (если R = R' = H) оксибензофураны.

Однако весьма незначительное количество известных в настоящее время оксикумаронов свидетельствует о трудностях, возникающих при синтезе оксибензофуранов. Отметим, что при синтезе простейшего представителя оксибензофуранов, 6-оксибензофурана Каррером, Гладфельдером и Видмером [2] выход целевого продукта составлял только 1,1% от теоретического.

Важным этапом в образовании оксибензофуранов является замыкание фуранового кольца. Образование фуранового кольца следует рассматривать как процесс нуклеофильного присоединения ароматического ядра к карбонильной группе феноксикетона, зависящий от электронной плотности при ортоатоме углерода в ароматическом ядре. Образование фуранового ядра зависит, следовательно, от положения — ОН группы в молекуле оксифеноксикетона. Повышенная электронная плотность при других углеродных атомах ароматического ядра может содействовать образованию продуктов поликонденсации. С другой стороны, группы R и R' в галоидокетоне R—CHX— СО—R' должны оказывать существенное влияние как на процесс циклизации, так и отщепления H₂O. Значение этих факторов должно определить применимость вышеназванного метода при синтезе оксибензофуранов.

За последнее время опубликовано несколько работ о синтезе оксибензофуранов из двухатомных фенолов, моноэфиров двухатомных фенолов и α-галоидокетонов. Синтезирован [3] 5-окси-2,3-диметилбензофуран конденсацией 4-метоксифенола с хлорэтилметилкетоном, последующей циклизацией образовавшегося оксифеноксикетона с концентрированной серной кислотой и отщеплением метильной группы иодистоводородной кислотой в уксусной кислоте. Синтезированы 2,3-диметил и 2-метил-3-фенил производные оксибензофуранов тем же методом, путем применения при циклизации вместо серной кислоты POCl₃ или полифосфорной кислоты и при отшеплении метоксигруппы хлористым пиридином [4, 5, 6]. Однако авторы не указывают на какие-нибудь общие закономерности в процессе образования оксибензофуранов и не говорят о влиянии на процесс образования бензофуранов структуры галоидокетонов, эфиров и двухатомных фенолов.

Целью настоящей работы было выяснение общих закономерностей синтеза оксибензофуранов путем конденсации двухатомных фенолов или их моноэфиров с α-галоидокетонами.

Экспериментальная часть

Синтез оксибензофуранов проводился в два этапа. В первом этапе конденсированием двухатомных фенолов или их моноэфиров с α-галоидокетонами в присутствии щелочных реагентов были получены оксифеноксикетоны (или алкоксифеноксикетоны). Во втором этапе полученные оксифеноксикетоны (или алкоксифеноксикетоны) циклизировали в соответствующие бензофураны в присутствии щелочных или кислых реагентов. Как показано нами [1], реакция циклизации протекает в некоторых случаях уже в процессе конденсации фенола с галоидокетоном. При использовании моноэфиров двухатомных фенолов полученные циклизацией эфиры деалкилировали нагреванием в присутствии хлористого пиридина.

В настоящей работе в качестве исходных веществ использовали резорцин, пирокатехин, гидрохинон и *о*-нитрофенол, монометиловый эфир пирокатехина, моноэтиловый эфир гидрохинона и, с другой стороны, хлор- и бромацетоны, хлорэтилметилкетон, хлорметил-этилкетон, хлор- и бромацетофеноны. Процессы конденсации были проведены при возможно низкой температуре, но так, чтобы продолжительность реакции не превышала 2—3 часов. Ход реакции конденсации контролировали анализами. Продукты реакции выделялись из реакционной смеси путем экстракции эфиром. Из полученного экстракта соединения фенольного характера выделялись раствором щелочи. Для разделения продуктов реакции использовался также метод распределительной хроматографии со стационарной фазой — метанол на силикогеле, подвижная фаза — смеси бензола и метанола. Разделение продуктов реакции описано подробно в предыдущей работе [1].

1. Конденсация резорцина с а-галоидокетонами

Исследовалась реакция конденсации резорцина с хлор- и бромацетоном, хлорэтил-метилкетоном, хлорметил-этилкетоном, хлор- и бромацетофеноном. В качестве щелочного реагента использовали алкоголят натрия, едкий натрий, карбонат и бикарбонат натрия. Реакция проводилась в водной среде, в растворе метанола, этанола, пропанола и инертных растворителей, ацетона, диоксана и бензола. Были проведены опыты конденсации сухого фенолята суспензированного в бензоле с бромацетоном. Исходные соединения резорцин и а-галоидокетоны брались в эквимолекулярных количествах. Щелочной реагент использовался с 10% избытком. При использовании в качестве щелочного реагента карбоната и бикарбоната натрия и калия последние брались с 50% избытком. Температуру реакции выбирали таким образом, чтобы продолжительность конденсации не превышала 2-3 часов. Продукты реакции содержат нейтральную часть, образовавшуюся при конденсации двух молекул галоидокетона с резорцином, и неустойчивые соединения, которые даже при вакуумной дистилляции переходят в нерастворимые высокомолекулярные продукты. Фенольная часть, растворимая в щелочи, содержит непрореагировавший резорцин, оксифеноксикетон или соответствующий оксибензофуран и продукты поликонденсации, которые не перегоняютя при вакуумной перегонке и вымываются при хроматографировании из колонны только метанолом. Результаты опытов приведены в таблице 1. В таблице 1 приведены также результаты опытов из нашей предыдущей работы [1].

Результаты опытов показывают, что при конденсации резорцина с а-галоидокетонами большое влияние на ход реакции имеет строение галоидокетона. При конденсации резорцина с хлор- и бромацетоном и хлорметил-этилкетоном образуются соответствующие 3-оксифенокси-кетоны. Однако последние при нагревании с 2-нормальным раствором NaOH циклизируются и дают почти со 100% выходом соответствующие окси-

	Выход целевого про- дукта, в % от теорет. *)	34,6 30,8 41,8 52,3 59,5 70,5 70,5 35,5
10Генокетонов. етона	Целевой продукт	3-оксифенокси-ацетон ————————————————————————————————————
	Продукты поликон- денсации, в с	5,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2
огенок	,туудоди йовэлэ. акилимилих	16,9 26,59 20,55 20,55 20,55 20,55 28,66 28,56 28,56 11,1 18,9 11,53 31,5 16,4 16,4 16,4 16,4 16,4 22,0 5 30,5 5 22,0 5 30,5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
цина и ей гал	вницоеэд дохыВ хвиомиллим а	23,3 33,4 40,6 40,5 40,5 33,4 40,5 33,5 55,0 55,0 53,5
о ммол	Выход нейтральных компонентов, в с	1,5 1,5 1,5 1,5 1,5 1,5 1,5
инов из на и 10	Температура Реакцин, °С	255 202 205 205 205 205 205 205 205 205
нзофура езорции	Продолжительность реакции, в часах	2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
Результаты синтеза оксибен Взято 100 ммолей р	Растворитель	$\begin{array}{c} CH_{3}-CH_{3}-OH\\ H_{2}O\\\\\\ CH_{3}OH\\ CH_{3}-CH_{2}-CH_{3}\\ CH_{3}-CH_{2}OH\\ CH_{3}-CH_{2}OH\\ H_{2}O\\\\\\ CH_{3}-CH\\\\\\\\ CH_{3}-CH\\$
	Щелочный реагент	С ₂ H ₅ ONa NaOH NaOCA Na9CO3 NaHCO3 Na-фенолят NaHCO3
	Галондо- кетон	CH2BrCOCH3
	U/H ONON	12 4 13 12100 88 4 6 21 4 33 7 1

Таблица

* В пересчете на прореагировавший резорцин.
| the second second | Выход
целевого
продукта
в % от
теорет. | 47,0 | 33,8 | 33,9 | 7.79 | 30,8 | | 57.0 | 55,0 |
|--|--|-------------------------------|--------------------------|-------------------------------|--|---------|-------------------------------|----------------------------|-------------------------------|
| | Целевой
продукт | 2-окси-
фенокси-
ацетон | -, | | 4-окси-
фенокси- | -,"- | | 2-нитро-
фенокси- | -"- |
| | Продукть
поликон-
денсации
в е | 2,0 | 5,6 | 5,0 | 3,8 | 3,2 | 1 | | |
| | Целевой
продукт,
в милли-
молях | 18,0 | 23,8 | 25,3 | 17,8 | 20,1 | одукты | 57,0 | 55,0 |
| | Выход
резор-
цина,
в милли-
молях | 61,8 | 29,5 | 25,4 | 35,6 | 34,5 | разные пр | | |
| | Выход
нейт-
ральных
компонен-
тов, в е | 1,8 | 3,1 | 2,4 | 1,4 | 2,2 | смолооб | | |
| and the second second | Темпера-
тура ре-
акции, °С | 20 | 70 | 80 | 47 | 65 | 80 | 104 | 80 |
| 11 11 11 11 11 11 11 11 11 11 11 11 11 | Продол-
житель-
ность
реакции,
в часах | 2,0 | 1,0 | 2,0 | 2,5 | 2,0 | 2,0 | 2,0 | 2,0 |
| 10 10 mm | ACTBO-
ATEJIÞ | H ₂ O | CH2OH | C ₆ H ₆ | H ₂ O | HO-8 | C ₆ H ₆ | аоксан | C ₆ H ₆ |
| 1 | Pid | | CH ₅ (| U | | CH | 0 | Д | |
| | Щелочный Ра
реагент рі | NaOH | Na-алко- СН ₅ | голят
Na-фенолят (| NaHCO ₃ | -,,- CH | Na-фенолят С | ц
–"– | |
| いたのの意思のの | Наимено
вание
фенола реагент рі | Пиро-
катехин | Na-алко- СН ₅ | —…— голят
Ма-фенолят (| Гидро- NaHCO ₃]
• хинон | -"- CH | —,,— Nа-фенолят С | О-нитро-
фенол —,, — Ді | |

Таблица 2

Результаты конденсации пирокатехина, гидрохинона и о-нитрофенола с бромацетоном. Взято 100 ммолей фенола и 100 ммолей бромацетона

. 71

бензофураны. При конденсации резорцина с хлорэтил-метилкетоном и хлорацетофеноном в присутствии бикарбоната натрия соответствующие оксибензофураны образуются уже в процессе конденсации. Из этого можно сделать вывод, что при конденсации резорцина с а-галоидокетонами в присутствии бикарбоната натрия образуются с удовлетворительными выходами оксибензофураны или оксифеноксикетоны, причем последние легко переводятся в соответствующие оксибензофураны. На процесс циклизации оказывает влияние строение галогенокетонов. Фенильная группа при карбонильной группе кетона содействует образованию оксибензофурана. Аналогично, оксибензофураны с алкильными группами в положении 2,3 образуются из соответствующих галоидокетонов уже в процессе конденсации в присутствии NaHCO3. При этих исходных соединениях не удалось изолировать из реакционной смеси оксифеноксикетонов. Характер растворителя в процессе конденсации имеет меньшее значение. Можно отметить более низкую температуру реакции в полярных растворителях, однако выход целевых продуктов при этом не увеличивается. Из щелочных реагентов, используемых при конденсации, лучшие результаты получены с бикарбонатом натрия.

2. Конденсация пирокатехина, гидрохинона и о-нитрофенола с бромацетоном

Конденсация орто-, пара-диоксибензола и орто-нитрофенола с бромацетоном протекает достаточно гладко с образованием соответствующих оксифеноксикетонов. Конденсация в присутствии разных растворителей дает примерно одинаковые результаты. Интересно отметить, что при конденсации фенолята гидрохинона (как и резорцина) суспендированного в сухом бензоле, с галондокетонами образовывались только смолистые вещества, между тем как этот метод при конденсации других фенолов, моноэфиров фенолов и о-нитро-фенола дает хорошие результаты. Результаты опытов конденсации приведены в таблице 2.

Попытки циклизации полученных оксифеноксикетонов не дали положительных результатов. При циклизации были использованы как щелочные, так и кислотные реагенты, однако при этом образовывались только смолистые и высокомолекулярные вещества, из которых даже методами хроматографии не удалось изолировать оксибензофуранов. Не давал результатов также термический метод циклизации при температурах 400—600° в токе CO₂. Во всех случаях, кроме непрореагировавшего исходного вещества, были получены нерастворимые в растворителях темные поликонденсаты и только при циклизации 4-оксифеноксиацетона удалось проанализировать продукты реакции.

При нагревании 1,52 г 4-оксифеноксиацетона с 15 мл 1,8 нормального водного раствора NaOH в течение 1 часа образовалось 0,06 г нейтральных соединений и 1,18 г фенольных соединений, из которых хроматографированием выделено 40,5% 4-оксифеноксиацетона, 32,8% гидрохинона и 26,7% продуктов конденсации.

При пропускании 0,273 г 4-оксифеноксиацетона в токе CO_2 , при скорости $CO_2 - 12 \ mn/mun$, через нагретую до 560° кварцевую трубку диаметром 20 *мм*, было собрано в приемнике 0,150 г вещества, содержащего 12,1% 4-оксифеноксиацетона, 57,4% гидрохинона и 30,5 неидентифицируемых продуктов.

Необходимо отметить, что при циклизации 4-оксифеноксиацетона образуется значительное количество гидрохинона, что указывает на легкость расщепления эфирной связи в оксифеноксикетоне.

Из результатов опытов можно сделать вывод, что 2-оксифеноксикетоны и 4-оксифеноксикетоны не циклизируются с образованием соответствующих оксибензофуранов, как это наблюдается при 3-оксифеноксикетонах. Следует, что повышенная электронная плотность при атоме углерода, находящегося в орто-положении по отношению к оксикетонной группе в ароматическом ядре, индуцированная со стороны находящейся в пара положении ОН группы, делает возможным нуклеофильное присоединение ароматического ядра к карбонильной группе (напр. у 3-оксифеноксикетонов). Нахождение — ОН группы в других положениях, как например при 2-оксифеноксикетонах и 4-оксифеноксикетонах, не активизирует ароматического ядра и в нужном положении, вследствие чего не происходит нуклеофильного присоединения к карбонильной группе и образования цикла.

3. Конденсация моноэфиров пирокатехина и гидрохинона с галоидокетонами

Как показала предыдущая серия опытов, оксифеноксикетоны, образующиеся при конденсации α -галоидокетонов с пирокатехином, ортонигрофенолом и гидрохиноном, не дают продуктов циклизации — оксибензофуранов, что объясняется деактивизацией углеродного атома в бензольном ядре, принимавшего участие в образовании фуранового кольца, находящегося со стороны *OH* группы в метаположении по отношению к названному углеродному атому. Можно предположить, что этерификация *OH* группы резко уменьшит дезактивирующее действие гидроксильной группы и создаст возможность для образования фуранового кольца.

Поэтому в дальнейших опытах синтеза оксибензофуранов были использованы моноэфиры фенолов: 4-этоксифенол и 2-метоксифенол. В качестве галоидокетонов применяли хлорацетон и хлорэтилметилкетон. Синтез алкоксифеноксикетонов проводился в присутствии карбоната калия и бикарбоната натрия. Лучшие результаты получены в присутствии растворителя диоксана. Интересно отметить, что при конденсации моноэфиров двухатомных фенолов с хлорэтилметилкетоном получаются более высокие выходы, чем при конденсации с хлорацетоном. По некоторым литературным данным [4] бромацетофенон дает также более низкий выход алкоксифеноксикетонов, чем хлорэтилалкилкетоны. Результаты синтеза алкоксифеноксикетонов даны в таблице 3.

Таблица З

Результаты конденсации 4-этоксифенола и 2-метоксифенола с хлорацетоном и хлорэтилметилкетоном

№№ п/п	Продукт реакции	Щелоч- ной реа- гент	Раство- ритель	Про- дол- жи- тель- ность реак- ции в ча- сах	Тем- пера- тура реак- ции, в °С	Вы- ход, в % от теор.
and the sea	where a start of the start	South Marth	1 1 1 1	1 State	1997121	
1	4-этокси-фенокси-ацетон	NaHCO ₃	H ₂ O	3	65	31,2
2		संराध स्ट्रामी ६३	Диоксан	3	104	39,0
3	4-этокси-фенокси-бутанон-2	"	"	8	104	67,0
4	2-метокси-фенокси-бутанон-2	K ₂ CO ₃	53	12	104	80,6

Для циклизации алкоксифеноксикетоны нагревали с хлорокисью фосфора. К алкоксифеноксикетонам прибавляли двойное количество POCl₃. Образовавшуюся гомогенную смесь нагревали при постоянном перемешивании, пока не начиналась экзотермическая реакция с выделением HCl. Определением выделившегося HCl контролировали ход протекания реакции. Реакция циклизации 3- (4-этоксифенокси)-2-бутанона и 3- (2-метоксифенокси)-2-бутанона начиналась при 60°. Реакция проводилась охлаждением реакционной смеси при 75°. После нагревания в течение 10 минут, при этой же температуре, реакционная смесь была вылита в холодную воду. Путем экстракции бензолом были выделены продукты реакции. Оксибензофураны выделялись вакуумной перегонкой. Реакция циклизации 4-этоксифеноксиалетона с POCI[®] начиналась при 80°С. В течение 30 минут выделялось теоретическое количество HCl. Однако из продуктов реакции не удалось выделить оксибензофурана.

Для отщепления эфирной группировки, полученные алкоксибензофураны нагревали с двукратным количеством хлористого пиридина при 210°С в течение 60 минут. Реакционную смесь растворяли в воде, экстрагировали бензолом. Из бензольного экстракта оксибензофураны выделяли раствором щелочи. При подкислении щелочного раствора оксибензофуран выпадал в виде кристаллов.

Выход 5-этокси-2,3-диметилбензофурана при циклизации составлял 90% от теоретического, выход 5-оксибензофурана при деэтилировании — 82,5%. Соответствующие выходы при синтезе 7-окси-2,3-диметилбензофурана равны 73,5 и 86,2% от теоретического. В сводной таблице 4 приведены температуры плавления синтезированных соединений.

Таблица 4

	in a support of the support	Температура п	лавления, в °С	Литератур-
<u>№№</u> п/п	Наименование соединений	получено	литературные данные	ный источ- ник
1	3-оксифенокси-ацетон	83—84	84	[1]
-	бензофуран	103	103	[7]
3	2,3-диметил-6-окси-	100	107 5 109	rei
4	З-фенил-6-оксибензо-	108	107,5—108	[0]
	фуран	139,5—140	141	[6]
5	З-оксифенокси-аце-	119 1195	. 118	· [4]
6	2-оксифеноксиацетон	98-99	98-99	[8]
7	4-оксифеноксиацетон	108		
9	2-нитрофеноксиацетон 2.3-лиметил-5-этокси-	69	69	[9]
1	бензофуран	50-51	man - i O	
10	2,3-диметил-7-ме-	20	20 5	161
11	2,3-диметил-5-окси-	59	38,5	[0]
10	бензофуран	79—80	80	[6]
12	2,3-диметил-7-окси-	100-101	00.5	[6]
and the second	o chood y pun	100-101	55,5	[0]

Температура плавления синтезированных соединений

Выволы

1. Показано, что при конденсации резорцина с α-галоидокетонами в присутствии щелочных реагентов (NaOH, Na₂CO₃, К₂СО₃, NaHCO₃ и т. д.) образуются 6-оксибензофураны и 3-оксифеноксикетоны. Последние при нагревании в присутствии щелочей переходят в соответствующие 6-оксибензофураны.

2. Показано, что при конденсации пирокатехина, гидрохинона и о-нитрофенола с α-галоидокетонами в присутствии щелочных реагентов образуются оксифенокси-кетоны, которые однако не циклизируются в соответствующие оксибензофураны ни в присутствии щелочных и кислых реагентов, ни при нагревании при температуре до 560°.

3. Показано, что моноэфиры пирокатехина и гидрохинона при конденсации с *а*-галоидокетонами, R—CHX—CO—R', дают алкоксифеноксикетоны, которые при действии РОСІ3 переходят в эфиры оксибензофуранов. Деалкилирование полученных эфиров нагреванием с хлористоводородной солью пиридина дает соответствующие оксибензофураны.

4. Показано, что при конденсации двухатомных фенолов и их моноэфиров с галогенокетонами целесообразно применять в качестве конденсирующего щелочного реагента карбонаты и бикарбонаты калия и натрия.

ЛИТЕРАТУРА

- 1. Х. Т. Раудсепп, Х. Я. Киппер. Труды ТПИ, серия А, № 215, 1964, 79-86.
- 2. P. Karrer, A. Glattfelder, Fr. Widmer. Helv. 3, 541 (1920).
- J. S. Beer, H. F. Davenport, A. Robertson. J. Chem. Soc 1953, 1262-4; ref. C. A. 48, 3962 (1954).
 Royer René, Hubry Claude, Bull. soc. chim. France, 1961, № 5,
- 939—943; геf. РЖХим. 1962, № 10Ж 229.
- 5. Візадпі Етіle, Royer Rene. Bull. soc. chim. France, 1962, № 5. 925—932; ref. РЖХим. 1963, 19Ж 152.
- 6. Royer René, Bisagni Emile, Hudry Claude, Chentin Andreé, Desvoye Marie-Louise, Bull. soc. chim. France, 1963, № 5, 1003-1007; ref. РЖХим. 1964, 2Ж 180.
 7. K. Freis, M. Nöhren, B. 58, 1027 (1925); ref. C. 1925, II, 818.
 8. Beilsteins Handbuch der organischen Chemie, I Band. Crp. 423, Berlin, 1000
- 1918.
- 9. B. 30, 1634 (1897).

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

СЕРИЯ А

№ 230

1965

УДК 547. 728. 1

Х. Я. Киппер, И. Р. Клесмент, С. Я. Салусте, О. Г. Эйзен, Х. Т. Раудсепп

ИССЛЕДОВАНИЕ СИНТЕЗА И СВОЙСТВ ОКСИБЕНЗОФУРАНОВ

(Сообщение III)

Хроматографическое разделение оксибензофуранов

Фенолы сланцевой смолы, как показали исследования одного из авторов настоящей статьи [1, 2], содержат большое количество гетероциклических фенолов типа оксибензофуранов (оксикумаронов), идентифицирование которых, однако, методами хроматографии не являлось до сих пор возможным вследствие полного отсутствия данных о свойствах оксибензофуранов при их хроматографировании. Поэтому представляет большой интерес выяснение свойств оксибензофуранов при их хроматографировании, что дало бы возможность для более детального выяснения состава сланцевых фенолов. С другой стороны, изучение свойств соединений при их хроматографировании, сравнение полученных данных с результатами хроматографирования других ароматических оксисоединений позволило бы выяснить общие закономерности влияния структуры ароматических оксисоединений на их свойства при хроматографировании.

1. Синтез оксибензофуранов

Использованные при проведении настоящей работы оксибензофураны синтезировали по ранее разработанному методу [3, 4]. Алкилированные 6-оксибензофураны были синтезированы из соответствующих *а*-хлоркетонов и резорцина, а алкилированные 5-оксибензофураны и 7-оксибензофураны из соответствующих *а*-хлоркетонов и моноэфиров пирокатехина и гидрохинона. Использовались следующие *а*-хлоркетоны, температуры кипения которых приведены в таблице 1.

Таблица 1

	Температура кипения				
Наименование хлоркетонов	°C	Давл., мм Hg			
а-хлоргептилметилкетон	95—97	5			
α-хлоргексилметилкетон	90—91	5			
α-хлорбутилэтилкетон	170—172	760			
α-хлорпропилпропилкетон	63—65	5			
α-хлорметилфенилкетон	40-41	5			
α-хлорэтилметилкетон	114-115	760 ·			

Температуры кипения α-хлоркетонов

Для синтеза 6-оксибензофуранов в колбе, снабженной механической мешалкой, обратным холодильником и термометром, смешивали 0,1 моля резорцина, 0,1 моля α-хлоркетона, 0,12 молей K₂CO₃ и 50 мл сухого диоксана. Конденсация проводилась при температуре кипения реакционной смеси в течение 3 часов. Образовавшиеся оксифеноксикетоны циклизировали нагреванием в присутствии раствора NaOH. Выделенные экстракцией оксибензофураны очищались перегонкой и кристаллизацией.

5-оксибензофураны и 7-оксибензофураны синтезировали в три этапа. В первом этапе, аналогично конденсации резорцина с хлоркетонами, конденсировали моноэфиры пирокатехина и гидрохинона с хлоркетонами при температуре кипения реакционной смеси. Полученные алкоксифеноксикетоны циклизировали при 60—75°С с помощью POCl₃. Из синтезированных алкоксибензофуранов отщепляли алкоксигруппы нагреванием с хлористым пиридином при температуре 215—220°С. Выделенные экстракцией бензолом оксибензофураны очищались перегонкой в вакууме и кристаллизацией. В таблице 2 приведены элементарные составы и некоторые физико-химические показатели синтезированных оксибензофуранов.

2. Хроматография оксибензофуранов в тонком слое

Хроматографические показатели ароматических оксисоединений зависят в значительной степени от структуры ароматического соединения. Адсорбционная способность хроматографируемых индивидуальных ароматических оксисоединений к твердой фазе зависит главным образом от состояния гидроксильной группы и в меньшей степени от ароматического ядра.

	E Ll	коэффилинини Коэффилини	1,5393
		ладалка и С. в. С. в. с	82 53 66 66 103 103 103 99,5
101	E	Температур. кипения при 5 мм, в °C Температ.	190–200 160–230 160–170 140–150 130–131 130–131 ca 200
	ОНО	—ОН, мэкв/г	4,31 4,58 4,90 4,90 4,76
	Вычисле	%H	8,62 8,26 7,85 4,77
		C%	77,6 77,1 76,5 80,0
	0	—ОН, мэкв/г	4,33 4,36 4,4,63 5,4,96 7,4,96 7,32
hair win	Толучен	%H	8,72 8,76 8,70 8,234 8,234 7,98 7,98 4,83
I HENDIO	I	C %	77,5 77,5 77,1 77,1 76,5 76,5 79,6
Элементарные составы и		Наименование оксибензофуранов	2-гексил-3-метил-6-оксибензофуран 2-гексил-3-метил-7-оксибензофуран 2-гексил-3-метил-5-оксибензофуран 2-пентил-3-метил-7-оксибензофуран 2-пентил-3-метил-7-оксибензофуран 2-пропил-3-этил-6-оксибензофуран 2-пропил-3-этил-6-оксибензофуран 3-фенил-6-оксибензофуран 3.3-диметил-6-оксибензофуран 3.3-диметил-6-оксибензофуран 2.3-диметил-6-оксибензофуран 2.3-диметил-7-оксибензофуран
		nêNê NêNê	-96.4006805135

Таблица 2

изико-химические показатели оксибензофуранов

Таблица 3

P
15
0
1
0
X
1
1
-
N
-
5
N
E
N
Z
5
H
5
a
-
2
2
N
. *
0
-
T
-
C
0
5
ú
Z
0
-
T
-
2
-
8
Z
Z
H
5
m
-
2
1
-
4
B
0
-
0
F
à
-
W
MO
mod
wodx
wodx 1
модх и
wodx иdi
модх идп
в при хром
модх иди ас
иов при хром
модх идп аоц
модх идп аоцо
модх идп аоцон
ченолов при хром
фенолов при хром
фенолов при хром
и фенолов при хром
и фенолов при хром
и фенолов при хром
в и фенолов при хром
юв и фенолов при хром
нов и фенолов при хром
анов и фенолов при хром
ранов и фенолов при хром
уранов и фенолов при хром
руранов и фенолов при хром
фуранов и фенолов при хром
офуранов и фенолов при хром
зофуранов и фенолов при хром
нзофуранов и фенолов при хром
ензофуранов и фенолов при хром
бензофуранов и фенолов при хром
ибензофуранов и фенолов при хром
сибензофуранов и фенолов при хром
ксибензофуранов и фенолов при хром
оксибензофуранов и фенолов при хром
оксибензофуранов и фенолов при хром
с оксибензофуранов и фенолов при хром
их оксибензофуранов и фенолов при хром
ых оксибензофуранов и фенолов при хром
рых оксибензофуранов и фенолов при хром
орых оксибензофуранов и фенолов при хром
торых оксибензофуранов и фенолов при хром
оторых оксибензофуранов и фенолов при хром
которых оксибензофуранов и фенолов при хром
екоторых оксибензофуранов и фенолов при хром
некоторых оксибензофуранов и фенолов при хром
некоторых оксибензофуранов и фенолов при хром
f некоторых оксибензофуранов и фенолов при хром

		Окис	сь алюмини	IS		Сил	икогель	
Ω I / II	Наименование	хлороформ + этил- ацетат 4:1	бензол + метанол 9:1	хлоро- форм 3Х	бензол + метанол 19:1	бензол	мdоф -odoirx	окраска с иодом
	 3-метил-б-оксибензофуран 3-лиметил-б-оксибензофуран 2,3-лиметил-б-оксибензофуран 2,3-лиметил-7-оксибензофуран 2,3-лиметил-7-оксибензофуран 2,3-лиопил-6-оксибензофуран 2-пропил-3-этил-6-оксибензофуран 2-пропил-3-этил-6-оксибензофуран 2-пропил-3-этил-6-оксибензофуран 2-пентил-3-метил-7-оксибензофуран 2-гексил-3-метил-7-оксибензофуран 2-гексил-3-метил-7-оксибензофуран 2-гексил-3-метил-7-оксибензофуран 2-гексил-3-метил-7-оксибензофуран 2-гексил-3-метил-7-оксибензофуран 2-боло скибензофуран 2-боло скибензофуран 2-боло скибензофуран 2-боло скибензофуран 2-боло скибензофуран 2-боло скибензофуран 3-фенм-6-оксибензофуран 3-боло скибензофуран 3-боло скибензофиран 3-боло скибензофуран 	$\begin{array}{c} 0,32\\ 0,37\\ 0,41\\ 0,55\\ 0,55\\ 0,45\\ 0,45\\ 0,45\\ 0,46\\ 0,46\\ 0,46\\ 0,48\\ 0,46\\ 0,48\\ 0,46\\ 0,48\\ 0,46\\ 0,48\\ 0,46\\ 0,48\\ 0,46\\ 0,58\\ 0,46\\ 0,58\\$	$\begin{array}{c} 0.52\\ 0.47\\ 0.55\\ 0.48\\ 0.67\\ 0.67\\ 0.61\\ 0.61\\ 0.61\\ 0.63\\ 0.63\\ 0.63\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.62\\$	$\begin{array}{c} 0,33\\ 0,40\\ 0,43\\ 0,44\\ 0,47\\ 0,47\\ 0,45\\ 0,45\\ 0,43\\ 0,43\\ 0,43\\ 0,43\\ 0,43\\ 0,43\\ 0,43\\ 0,43\\ 0,45\\ 0,45\\ 0,45\\ 0,45\\ 0,45\\ 0,45\\ 0,68\\ 0,68\\ 0,68\\ 0,14\\ 0,30\\$	$\begin{array}{c} 0.41\\ 0.39\\ 0.45\\ 0.45\\ 0.53\\ 0.53\\ 0.55\\ 0.53\\ 0.55\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.55\\ 0.53\\ 0.54\\ 0.54\\ 0.54\\ 0.54\\ 0.55\\ 0.54\\ 0.54\\ 0.54\\ 0.54\\ 0.54\\ 0.54\\ 0.54\\ 0.54\\ 0.54\\ 0.55\\$	$\begin{array}{c} 0,29\\ 0,31\\ 0,32\\ 0,32\\ 0,33\\ 0,33\\ 0,33\\ 0,33\\ 0,33\\ 0,33\\ 0,40\\ 0,44\\ 0,44\\ 0,44\\ 0,44\\ 0,44\\ 0,44\\ 0,44\\ 0,33\\ 0,33\\ 0,33\\ 0,31\\ 0,41\\ 0,44\\ 0,44\\ 0,44\\ 0,44\\ 0,44\\ 0,44\\ 0,44\\ 0,44\\ 0,44\\ 0,44\\ 0,44\\ 0,44\\ 0,44\\ 0,44\\ 0,41\\$	$\begin{array}{c} 0,33\\ 0,25\\ 0,26\\ 0,44\\ 0,44\\ 0,44\\ 0,44\\ 0,44\\ 0,27\\ 0,26\\ 0,44\\ 0,23\\ 0,23\\ 0,23\\ 0,31\\ 0,33\\ 0,31\\ 0,33\\ 0,31\\ 0,32\\ 0,31\\ 0,32\\ 0,31\\ 0,32\\ 0,31\\ 0,32\\ 0,31\\ 0,32\\ 0,31\\ 0,32\\$	зеленая 6. желтая коричневая коричневая моллеговая фиолеговая фиолеговая фиолеговая коричневая зеленая коричневая желтая коричневая желтая желтая фиолеговая фиолеговая фиолеговая фиолеговая фиолеговая фиолеговая фиолеговая фиолеговая желтая желтая желтая желтая фолеговая

Поэтому различные группы в ароматическом ядре оказывают большое влияние на свойства ОН-группы и тем самым также на хроматографические показатели индивидуальных соединений, Кроме того, на свойства гидроксильной группы могут оказать влияние близстоящие группы вследствие стерических эффектов. Поэтому хроматографические показатели соединения могут характеризовать в большой степени структуру хроматографируемого соединения. Определение хроматографических показателей было проведено на адсорбентах: окись алюминия и силикогель. При хроматографировании использовались пластинки размером 20 × 20 см. Толщина слоя адсорбента 0,5 мм [5]. Используемая окись алюминия марки «для хроматографии» проходила через сито с отверстиями 0,1 мм. Используемый силикогель марки ШСК измельчали, просеивали. Применяли фракцию 0,07-0,12 мм. Для определения хроматографических показателей капля 10% раствора исследуемых оксибензофуранов наносилась на пластинку и элюировалась разными сольвентами. После сушки пятна проявляли парами иода. Использовалось также многократное элюирование [6]. В таблице 3 на стр. 80 приведены Rf исследованных оксибензофуранов при хроматографировании их на окиси алюминия и силикогеле. В таблице приведены также Rf некоторых фенолов и их моноэфиров.

Сравнивая данные хроматографирования исседованных оксибензофурганов, необходимо отметить, что фенольные соединения более крепко адсорбированы на окиси алюминия, чем на силикогеле. Это можно объяснить основными свойствами окиси алюминия. Фенольные соединения образуют с окисью алюминия фенолятные связи, которые более крепки, чем связи с силикогелем, обусловленные только силами адсорбции. Это показывает, что главное значение при хроматографировании фенольных соединений на окиси алюминия имеет степень поляризованности ковалентной связи между водородным и кислородным атомами гидроксильной группы. Можно предположить, что это потому, что основное влияние на Rf имеют индукционные эффекты со стороны ароматических ядер и заместителей. Это подтверждается и результатами опытов.

На поляризуемость связи в —ОН группе оксибензофуранов несомненно должен оказать влияние кислородный атом фуранового кольца. Результаты опытов показывают, что при равных заместителях в бензофурановом кольце —ОН группа в положении 7 (в ортоположении относительно кислородного атома фуранового ядра) наиболее поляризована. Далее следует —ОН группа в положении 5 (пара-положение относительно кислородного атома фуранового ядра) и —ОН группа в положении 6 (опыты 2, 3, 4, таблица 3). Rf 6-окси-2,3-диме-

6 Химия

тилбензофурана больше Rf соответствующих 7-окси- и 5-оксиизомеров. Аналогичное явление наблюдается также при Rf окси-2-гексил-3-метил бензофуранов (опыты 10, 11, 12). Хотя в этих соединениях длинная боковая цепь — гексильная группа — увеличивает Rf всех названных соединений и тем самым приравнивает Rf всех изомеров, все же 6-окси-2-гексил-3-метил-бензофуран имеет значительно более высокое значение Rf, чем 5-окси- и 7-оксинзомеры. То же самое наблюдается и при хроматографировании некоторых двухатомных фенолов, Rf которых приведены в таблице 4. При хроматографировании на окиси алюминия ортодиоксисоединения имеют наиболее низкие Rf, чем соответствующие метасоединения. Интересно отметить, что тот же эффект наблюдается при диоксидифениле.

Таблица 4

Contraction of the second seco	Окись алюминия	Силикогель
Наименование	этилацетат	хлороформ + этилацетат 3:1
		A DRIVE THE WORLD
1,3-диоксибензол	0,20	0,27
1,2-диоксибензол	0	0,28
2,7-диоксинафталин	0,23	0,35
2,3-диоксинафталин	0	0,57
4,4'-диоксидифенил	0,48	0,55
2,2'-диоксидифенил	0,05	0,69

Rf некоторых двухатомных фенолов при хроматографировании на окиси алюминия и силикогеле в тонком слое

Выводы о влиянии других групп в бензофурановом кольце на основании приведенных опытов еще трудно сделать. Можно полагать, что характер групп в положении 3 имеет большее влияние на Rf, чем характер групп в положении 2. Зависимость хроматографических показателей оксибензофуранов от структуры исследуемых соединений при хроматографировании их на силикогеле выражена менее четко. Несомненно при хроматографировании на силикогеле наибольшее влияние на адсорбционные свойства соединений имеет распределение плотности π-электронов на отдельных участках бензофуранового ядра. Как и при хроматографировании на окиси алюминия длинные алкильные группы уменьшают адсорбционную способность соединений и увеличивают Rf.

Некоторая закономерность наблюдается и в окраске отдельных оксибензофуранов при их проявлении парами иода: 5-оксибензофураны дают желтую окраску, 7-оксибензофураны бурую окраску, между тем как 6-оксибензофураны дают пятна зелено-фиолетовой окраски.

3. Газо-жидкостная хроматография оксибензофуранов

При изучении хроматографических показателей оксибензофуранов при газо-жидкостной хроматографии использовался хроматограф УХ-1. Хроматографирование проводилось при 200°С, высота колонны 3 метра, неподвижная фаза 15% апиезон Л на хромосорбе W, газ-носитель — водород, скорость движения газа 120 мл/мин. Относительная продолжительность удерживания дана по сравнению с 1-нафтолом, продолжительность удерживания которого принята за 100. Результаты опытов приведены в таблице 5.

Таблица 5

Относительное время удерживания некоторых оксибензофуранов

No No Относительное время Наименование оксибензофуранов п/п удерживания 1 3-метил-6-оксибензофуран 54 2 2,3-диметил-5-оксибензофуран 91 3 2,3-диметил-6-оксибензофуран 91 2,3-диметил-7-оксибензофуран 4 74 2-этил-3-пропил-6-оксибензофуран 5 240 2-пропил-3-этил-5-оксибензофуран 6 247 7 2-пропил-3-этил-6-оксибензофуран 238 8 2-пентил-3-метил-6-оксибензофуран 437 9 2-пентил-3-метил-7-оксибензофуран 375 2-гексил-3-метил-5-оксибензофуран 741 10 2-гексил-3-метил-6-оксибензофуран 655 11 12 2-гексил-3-метил-7-оксибензофуран 555 13 Нафтол-1 100

при газо-жидкостной хроматографии. Нафтол = 100

Сравнение результатов опытов показывает, что алкилированный 2,3-диметил-оксибензофуран $C_{10}H_{10}O_2$ имеет меньшее относительное время удерживания, чем 1 нафтол $C_{10}H_8O$, между тем как относительное время удерживания высших алкилоксибензофуранов в несколько раз больше удерживания 1 нафтола. Интересно отметить, что время удерживания 7-оксибензофуранов меньше, чем 5-окси- и 6-оксибензофуранов.

6*

4. Определение стабильности фуранового скелета методом гидрогенизации

Стабильность исследовалась при гидрировании фуранового скелета на хроматографе, снабженном микрореактором для гидрирования [7, 8]. Оксибензофураны (и фенолы) гидрировались в микрореакторе в токе водорода на палладиевом катализаторе (2 мл, 5% Pd на силикогеле). Продукты гидрирования анализировались газо-жидкостным хроматографом, присоединенным непосредственно к микрореактору. Использовалась колонка высотой 6 м, неподвижная фаза 20% полиэтиленгликоля 4000 на носителе хромосорб W, скорость движения газа 120 мл/мин. При гидрировании фенолов и ароматических углеводородов в качестве носителя использовался силоцел С-22, скорость водорода 60 мл/мин. Результаты опытов показывают, что при гидрогенизации над палладиевым катализатором при 340°С элиминируются атомы кислорода, деструктируется фурановое кольцо и в качестве основного продукта образуется алкильное производное бензола с сохранением углеродного скелета исходного оксибензофурана. Поэтому 5-окси-, 6-окси- и 7-окси-алкилбензофураны дают при гидрогенизации один и тот же продукт реакции.

Результаты гидрогенизации приведены в таблице 6. Продуктов реакции не удалось идентифицировать из-за отсутствия эталонов. Относительное время удерживания полученных углеводородов дано по отношению к индану (время удерживания 100).

Таблица 6

№№ п/п	Наименование оксибензофурана	Относит. время удержи- вания основного про- дукта реакции
1	З-метил-6-оксибензофуран	44
2	2,3-диметил-5-оксибензофуран	56
3	2,3-диметил-6-оксибензофуран	56
4	2,3-диметил-7-оксибензофуран	56
5	2-этил-3-пропил-6-оксибензофуран	147
6	2-пропил-3-этил-5-оксибензофуран	147
7	2-пропил-3-этил-6-оксибензофуран	147
8	2-пентил-3-метил-6-оксибензофуран	384
9	2-пентил-3-метил-6-оксибензофуран	384
10	2-гексил-3-метил-5-оксибензофуран	545
11	2-гексил-3-метил-6-оксибензофуран	545
12	2-гексил-3-метил-7-оксибензофуран	545

Относительное время удерживания основного продукта гидрогенизации оксибензофуранов. Продолжительность удерживания индана — 100

В зависимости от структуры углеродного скелета происхо дит некоторая деструкция углеродного скелета боковой цепи. В таблице 7 приведены результаты анализа продуктов реакции гидрирования метил- и диметилоксибензофуранов.

Таблица 7

Результаты	гидрогенизации	некоторых	оксикумаронов	над	палладием
	при	температур	e 340°C		

	1.39.0	all all	Вь	іход, в	%	S. F. A.	
Наименование исход- ного оксибензофурана	Бензол	Толу- ол	Этил- бензол	Изо- про- пил- бензол	Про- пил- бензол	2-бу- тил бензол	Про- чие про- дукты разло- жения
3-метил-6-оксибензофу-	65	0.4	38.	78.5	49		59
2,2-диметил-5-оксибен- зофуран			5,1	-		82,5	12,5
2,3-диметил-6-оксибен- зофуран	-		1,7	0,2	0,1	86,0	12,0
зофуран	4,8	-	2,2	0,6	-	78,7	13,7

Выводы

1. Разработан метод синтеза оксибензофуранов и синтезированы некоторые оксибензофураны, из них 8, не описанных в литературе.

2. Определены Rf синтезированных оксибензофуранов при хроматографировании на окиси алюминия и силикогеле в тон-ком слое.

Показано, что Rf оксибензофуранов при хроматографировании в тонком слое на окиси алюминия зависят от поляризованности в гидроксильной группе связи водород-кислород. Показана зависимость поляризованности — OH группы от структуры оксибензофуранов.

3. Определены относительные времена удерживания оксибензофуранов при газо-жидкостной хроматографии.

4. Исследованы процессы гидрогенизации оксибензофуранов на палладиевом катализаторе при 340°С. Показано, что при гидрогенизации оксибензофуранов кислородные атомы элиминируются при сохранении углеродного скелета в виде боковых цепей бензола.

- 1. Х. Раудсепп. Сб. Горючие сланцы. Химия и технология, вып. 2. Изд. АН Эст. ССР, Таллин, 1956, стр. 107.
- Х. Т. Раудсепп. Труды Таллинского политехн. инст., серия А, № 63, 2. 90. (1955).
- Х. Т. Раудсепп, Х. Я. Киппер. Труды Таллинского политехн. инст., 3. серия А, № 215, 79 (1964).

- 4. Х. Я. Киппер, Х. Т. Раудсепп. Настоящий сборник, стр. 5. Е. А. Mistryukov. Coll. Czech. Chem. Commun., 26, 2071 (1961). 6. А. А. Ахрем, А. К. Кузнецова. Тонкослойная хроматография. Изд. «Наука», Москва, 1964.
- И. Р. Клесмент, С. А. Ранг, О. Г. Эйзен. Нефтехимия, том Ш. 7. 867 (1963).
- 8. И. Р. Клесмент. Изв. АН Эст. ССР. Серия физ. хим. и техн. наук № 4. 297, 1964.

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

СЕРИЯ А

Constant of the second

№ 230

1965

УДК 661. 632. 2

Л. П. Аарет, Я. Я. Ансо, М. А. Вейдерма, Ю. К Трууза

ИССЛЕДОВАНИЕ ПРОЦЕССА ВЫЗРЕВАНИЯ ПРОСТОГО СУПЕРФОСФАТА

Выпуск и качество простого суперфосфата на большинстве заводов лимитируются стадией его вызревания на складе. Поэтому интенсификация этого медленного, затухающего во времени процесса является актуальной задачей.

Как известно, скорость процесса вызревания суперфосфата определяется химическим и фазовым составом камерного суперфосфата и режимом его обработки на складе [1]. Более детальные исследования этого процесса проведены лишь в лабораторных или полузаводских условиях. Данные о вызревании суперфосфата на заводских складах весьма скудные и ограничиваются небольшим числом исследований. Получение дополнительных данных о вызревании суперфосфата в заводских условиях содействовало бы разрешению вышеупомянутой задачи.

В описываемой совместной работе кафедры технологии неорганических веществ Таллинского политехнического института и центральной заводской лаборатории Маардуского химкомбината проведено исследование процесса вызревания простого суперфосфата на Маардуском химкомбинате.

Сырьем для производства суперфосфата на Маардуском химкомбинате служит стандартный апатитовый концентрат и башенная серная кислота местного производства. Для нейтрализации применяется фосфоритная мука, вырабатываемая на комбинате. Операционное отделение оборудовано тремя непрерывными вращающимися камерами малого диаметра (5,2 м). При поступлении камерного суперфосфата на склад он подвергается распылению с помощью барабанного расбрасывателя. Перелопачивание суперфосфата на полуоткрытом складе осуществляется мостовыми грейферными кранами. Перед погрузкой в железнодорожные вагоны к вызревшему суперфосфату добавляется фосфоритная мука как нейтрализу-

ющее средство; сама погрузка производится механическим погрузчиком конструкции Гипрохима. Увеличение мощности цеха лимитируется в настоящее время недостаточной площадью и интенсивностью работы склада.

Исследование вызревания суперфосфата производилось в мае—июне месяцах 1964 года путем определения изменений в составе и температуре двух партий суперфосфата в течение протекания всего складского процесса, а также наблюдением изменений, происходящих в суперфосфате после его нейтрализации и отгрузки. Пробы складского суперфосфата были отобраны ежедневно из 25—30 точек кучи, находящихся на глубине 1—1,5 *м* от поверхности. Измерение температуры суперфосфата внутри куч производилось термометрами сопротивления, длиной 2 *м*. Итого было проанализировано 81 проба суперфосфата и выполнено более 600 химических определений. Методика анализов была стандартная (2).

Основные показатели технологического режима операционного отделения и складского вызревания суперфосфата в пе-

Фиг. 1. Изменение содержания усвояемой и свободной Р₂О₅ при вызревании и нейтрализации суперфосфата партии № 1 риод исследования приведены в табл. 1, температурный режим суперфосфата на складе — в табл. 2. Графическое изображение происходящих в составе суперфосфата изменений дано на фигурах 1—4.

Данные исследования показывают, что в течение складского процесса содержание влаги в суперфосфате снижается на 1,5—2%. При этом удаление влаги происходит в основном при расбрасывании и перелопачивании суперфосфата и почти не имеет места при его хранении в кучах. Снижение влагосодержания при одном перелопачивании составляет в среднем около 0,5%. Для исключения влияния меняющегося влагосодержания на ход изменения аналитических показателей по содержанию различных форм P₂O₅, последние пересчитаны на условный продукт, содержащий 10% влаги. Определения влаги в пробах суперфосфата были выполнены в строго одинаковых условиях.

Среднесуточные изменения в составе суперфосфата обеих партии примерно одинаковые — снижение содержания сво-

Фиг. 2. Изменение содержания усвоеямой и свободной Р₂О₅ при вызревании и нейтрализации суперфосфата партии № 2

Технологический режим операционного отделения и склада суперфосфата в период исследования

Показатели режима	Единии измере ния	ца Партия - № 1	Партия № 2
норма серной кислоты концентрация варочной кислоты температура варочной кислоты температура пульпы в смесителе коэффициент разложения апатита	% °C °C	72,1 67,8 49,9 112,1	71,0 67,8 50,0 112,2
в пульпе температура суперфосфата в камере производительность камер выход камерного суперфосфата	% °С т/ч т/т	56,1 115,6 30,1 1,92	56,2 119,5 28,6 1,90
анализ камерного суперфосфата: содержание P_2O_5 общ " P_2O_5 усв " P_2O_5 своб	% %	20,50 17,60 12,30	20,85 17,60 12,22
сульфатов (в переочете на H ₂ SO ₄) "H ₂ O "F общ "F водораствор коэффициент разложения апатита количество суперфосфата в партии	% % % % 7	. 37,60 11,32 0,767 0,368 85,85 3304	37,42 11,01 0,815 0,520 84,49 3263
режим оораоотки суперфосфата на складе		уборна из- под расбра- сывателя + Двукратное перелопа- чивание	уборка из- под расбра- сывателя + двукратное перелопа- чивание
средняя продолжительность пребывания суперфосфата на складе, в том числе в I куче во II куче в III куче норма фосфоритной муки	сутки " "	10,2 5,2 2,7 2,3 7,6	11,0 5,7 3,1 2,2 7,9

Таблица 2

Температура суперфосфата на складе (°С)

Температура суперфосфата	Партия № 1	Партия № 2
на подкамерной ленте под расбрасывателем в I куче во II куче в III куче	90-91 61 61-64 50-53 48-49	$\begin{array}{r} 92-93\\ 54\\ 60-65\\ 54-57\\ 52\end{array}$

бодной P₂O₅ составляет (до момента нейтрализации) в среднем около 0,5 % в сутки, увеличение содержания усвояемой P₂O₅ — в среднем 0,22%. По графикам на фиг. 1 и 2 возможно установить изменения этих показателей в различных стадиях процесса вызревания. В первой куче среднесуточный прирост содержания усвояемой P₂O₅ составляет около 0,3%, во второй куче — около 0,15%, в третьей куче — около 0,1%. Хорошо видно, что при хранении суперфосфата в одной куче скорость его вызревания во времени затухает, а перелопачивание его значительно ускоряет вызревание. Более высокая начальная скорость вызревания суперфосфата партии № 2 объясняется, по-видимому, более глубоким его охлаждением при распылении.

Добавка к суперфосфату фосфоритной муки ведет вначале к снижению содержания как усвояемой P_2O_5 , так и свободной P_2O_5 за счет механического разубоживания суперфосфата. Снижение величин этих показателей тем больше, чем меньше содержание P_2O_5 в добавке и больше ее норма. В результате начинающей реакции между свободной кислотой суперфосфата и фосфоритной мукой содержание усвояемой P_2O_5 в смеси снова возрастает, но абсолютная величина его остается зависимой от этих факторов.

Среднесуточное увеличение содержания усвояемой P_2O_5 в течение первых пяти суток после отгрузки (до проведения анализа экспедиционного суперфосфата по ГОСТ 8382—57) составляет 0,23 — 0,26%, в течение последующих пяти суток — 0,05 — 0,06%. Реакция нейтрализации практически прекращается через 7—8 суток после отгрузки. Применением более тонкой фосфоритной муки и более совершенных способов ее смешения с суперфосфатом имеется возможность увеличивать скрость нейтрализации.

Соблюдение нормального режима работы склада (с двукратным перелопачиванием, правильной нейтрализацией и т. д.) вполне обеспечивает получение всей продукции в виде суперфосфата высшего сорта (содержание усвояемой P₂O₅ выше 19,5%). Наоборот, нарушение этого режима, например, проведением только одного перелопачивания, привело к ухудшению качества суперфосфата.

Баланс фтора показал, что из общего количества фтора, содержащего в апатитовом концентрате, около 50% поступает на склад с камерным суперфосфатом. При вызревании на складе заметного снижения содержания фтора в суперфосфате не обнаружено и оно держится на уровне 0,9%. Однакс содержание водорастворимого фтора снижается в 2 раза — от 0,5 — 0,6% в камерном суперфосфате до 0,2 — 0,3% в вызревшем продукте. Это соответствует литературным данным о

постепенном переходе фтора суперфосфата в нерастворимую форму по мере снижения его свободной кислотности (3).

Из данных таблицы 2 видно, что охлаждение суперфосфата на складе происходит в основном при его распылении и перелопачивании. Снижение температуры при распылении зависит во многом от температуры воздуха и скорости ветра и составляет 30—40°.

Первое перелопачивание снижало температуру в среднем на 10°, второе — на 4—5°. Увеличение температуры суперфосфата при его хранении в кучах было обычно небольшое — в пределах нескольких градусов.

В целом, в период обследования температура суперфосфата на складе была в среднем на 10—15° выше оптимальных (по [1] 40—50°), что замедляет процесс вызревания и является основным недостатком работы склада на Маардуском химкомбинате. Для устранения этого недостатка предложены следующие мероприятия: 1) увеличение числа оборотов барабанного расбрасывателя; 2) равномерное распределение суперфосфата по сечению новой кучи при перелопачивании; 3) проведение опытной проверки схемы складского процесса с двумя распылениями суперфосфата.

Для сравнения работы складов суперфосфата рекомендуется включить в число отчетных показателей заводов напряженность склада, т. е. количество выработанного суперфосфата с единицы площади склада в единице времени. Для склада суперфосфата Маардуского химкомбината этот показатель составлял около 340 кг/м² в сутки.

ЛИТЕРАТУРА

- М. Л. Чепелевецкий, Е. Б. Бруцкус. Суперфосфат, физико-химические основы производства. Госхимиздат, 1958.
- Аналитический контроль производства серной кислоты и суперфосфата. Под ред. Б. В. Михальчука. Госхимиздат, 1955.
- М. Е. Позин, Б. А. Копылев. Новые методы производства минеральных удобрений. Госхимиздат, 1963.

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

СЕРИЯ А

№ 230

1965

УДК 661. 632. 001. 5 М. А. Вейдерма

РЕЗУЛЬТАТЫ И ЗАДАЧИ ИССЛЕДОВАТЕЛЬСКИХ РАБОТ ПО ИЗУЧЕНИЮ СВОЙСТВ И ПРОЦЕССОВ ПЕРЕРАБОТКИ ОБОЛОВЫХ ФОСФОРИТОВ.*

Большое развитие производства минеральных удобрений требует соответственного расширения фосфатно-сырьевой базы. Наряду с хибинскими апатитами вовлекаются к переработке все возрастающие количества фосфоритов различных месторождений. В последнее время особенно вырос выпуск концентрата из фосфоритов Эстонской ССР и Ленинградской области или так называемых оболовых фосфоритов. Эти фосфориты образовались в результате скопления фосфатных раковин плеченогих — беззамковых брахиопод родов Obolus, Schmidtia и др. — в прибрежной зоне ордовикского моря. Раковины брахиопод и их обломки, содержащие в среднем 35—36% Р₂O₅, рассеяны в большем или меньшем количестве в песчанике. Оболовый фосфорит залегает почти на всем южном побережье Финского залива и обладает запасами руды около полумиллиарда тонн.

Рыхлый характер руды, физическая расчлененность и низкая степень срастания отдельных минералов содействуют ее обогащению. Поэтому, несмотря на низкое содержание P_2O_5 в руде (от 6 до 12%), из нее путем флотации, электросепарации, гидроклассификации и других методов получаются концентраты, содержащие до 30% и более P_2O_5 .

Для определения особенностей в свойствах и оптимальных путей использования оболовых фосфоритов нами дана их минералогическая и физико-химическая характеристика и проведено их сравнение с другими основными фосфатами СССР [1—4]. Основные обобщенные результаты этого сравнения приведены в таблице. Из данных этой таблицы вытекает, что концентраты оболовых фосфоритов отличаются от других фос-

* Сокращенный текст доклада на XX юбилейной научной конференции ТПИ (май 1965 г.) форитных концентратов СССР не только бо́льшим содержанием P_2O_5 , но и меньшим содержанием примесей, вредных при кислотной переработке. Этих примесей (представленных в таблице в виде Fe_2O_3 и MgO) содержится в пределах норм, допускаемых для кислотной переработки. Соотношение CaO к P_2O_5 в концентратах оболовых фосфоритов также относительно низко. Поэтому, при их переработке расход кислоты на весовую единицу P_2O_5 в продукте является более низким, чем при использовании большинства других фосфоритных концентратов СССР.

В 6-й графе таблицы дано соотношение CO₂:P₂O₅ в фосфатном минерале фосфоритов. Это показывает, что фосфатное вещество фосфоритов СССР относится к фторкарбонатапатитам, а фосфатный минерал оболового фосфорита к разновидности их, называемой франколитом или коллофаном. Это подтверждается также данными термического анализа, рентгеноструктурных исследований, определений физических и оптических свойств.

В 7 графе приведены величины общей удельной поверхности гранулометрического класса концентратов 100—150 *мк* (в квадратных метрах на грамм материала), которые определялись методом низкотемпературной адсорбции азота (Брунауэра, Эммета и Теллера). Оказалось, что при одинаковой внешней поверхности материалов общая удельная поверхность меняется в широких пределах — от 0,5 у апатитового концентрата до 15 $m^2/2$ у желваковых (подмосковских, вятских и др.) фосфоритов. При этом внешняя поверхность частиц концентратов составляет менее 2% от их общей поверхности. Оболовые фосфориты занимают по общей удельной поверхности среднее место.

В 8 графе приведены коэффициенты разложения фосфата в 2%-ном растворе лимонной кислоты, которые показывают, что наиболее высокую лимоннорастворимость имеют оболовые фосфориты. Однако, как показывают полевые и вегетационные опыты ВИУА и других институтов (графа 9), по агрономической эффективности оболовые фосфориты уступают желваковым фосфоритам. Это находится в соответствии с выводами Хилла, Каро и других американских авторов о том, что природные фосфаты тем более эффективны при непосредственном применении, чем выше их общая удельная поверхность и содержание связанного в фосфатном веществе углерода. Несоответствие между лимоннорастворимостью и агрономической эффективностью этих фосфоритов объясняется главным образом повышенным содержанием примесей в желваковых фосфоритах. Последние взаимодействуют с лимонной кислотой, вследствие чего активность раствора по отноTeómma 2

Приложение (Таблицы от 2 до 7)

Фенолы

Con L	1	675		13	LAS ST	100		1. Pinews
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000	685 685				8		
A CARE			728	8		727 7		
		749 750 749	0	768 7	740	750	571	3
		810 810	80	790	918 812	08		8
State State	100	(830) (828)	55 <u>8</u>	() (860) 860 &	80) <u>84</u> 9		848	M 3
		885 21 (888)	85 858 8	(877) 23 877	(888)	880		
		75) ⁻ (965) <u>9</u> 75)	343	(096)	959 (932)		. 88	88
		(000) (9)) [000) (9	(0001)		375			
	T- W	(1030) (102(1030)	TIOI	I020			12 B	
	002-0	I075 (1067 1075 ([(1060)	IOSI				
	ICTR I'70	II60 II60	<u>3901</u> 3	(00II)		1100	I093	
	B OÓJIE	1181 00	111 181	IIS	1179 11	178		all B
	TRCTOTH	1238	I		12.18	T 8611	81 1198 1213	0121
The second	терные	<u>561</u>	<u>1243</u> (1243	0 I243	12.57		121	
	Харак	H	308	00 00	12.86	12.72		
and the second			1525 I	21 21 21	[580)	1337	575)	1656
and a second second		(605) (605)	I603)	<u>1603</u>)		1590 1590	(505) (IE	
and the second			8		338		0	
and the second second	-		II6		1772 IG	фенил	ILIH O	
and the second second	инение	T1014 SBC14	Ticl4	Fron Ticla	EO.E T1G14	TORCER	TICLE	TICI.
and	Coe	фенол +	TEMOL	ox - Hat +	8 - Hağı +	0- IN	+	Thurpon
-	12	н	01	00		10	10	-

Taounua 3

KetoHM

1		apoeno oga pa		
*	е Соединение	Характерные частоты в области 1700 - 700 см	- 1	
н	มีหดังฐานกอยปรี ออัมจุ B กลุ่อลุดหคอยดน พละนะ + Ticl4	(1807) (1262)(1240) . (1603) (1520) (1355) (1280) (1262) (11	<u>1120</u> (1041) (960) 178) 1080 960 940	- (837) 850 767
N	Дигептиловый эфир в парафиновом масле + тісл ₄	1755 (1807) (1268) (1620)	<u>1118</u> 1050 <u>977</u>	867
co 1	Динзоамиловый афирн парафиновом масле + тлол ₄	1308 I289 I247 I14 1308 I289 I247 I178	59 <u>1108</u> 1030 972 (920) 1044 <u>966</u>	(837)(817)(770)(686) 822 750
4	Кумарон в парафино. вом масле + тісі ₄	I 1620 I602 I538 <u>1258</u> I128] 1602 I 1822 <u>1225</u> I163	(132 1107 1038 1010 962 931 890 1107 1028 975 931 890	196 <u>856</u> (803) <u>762 742</u> 1 850 817 <u>747</u>
in l	Тетрагидрофуран в парафиновом масле + тісі ₄	(1300) (1213) [190 1610 [1800 [213 [175	(1050) <u>990</u> 955 915	680
6	Диоксан в парафи- новом масле + тісі ₄	1239 1260 <u>112</u> 1305 1261 (112	2 1089 1052 881 20)(1095) 1050 888) 878 (687)) 855 832 (670)
1	Дигидропиран в па- раџиновом масле + т1014, + Sn014,	I657 (1335) <u>1247</u> (1554) 1800 I603 1306 1210 I152	IO78 (I025) 932 898 (I078) 973 898 (I078) 1028 <u>965</u> 898	887 750
00	Анизол в перафино- вом масле + SnCl4 + TiCl4	I6IZ 1502 (13%2) 1310 <u>1255</u> 1180() 16IZ 1502 (13%2) 1310 <u>1250</u> 1180 1 16IZ 1502 (1383) 1304 <u>1250</u> 1180 1	II63)1088 <u>I058</u> (1002)(970) 888 1163 I088 <u>I052</u> (1002)(970) 888 1150 I078 <u>I046</u> (990)965 877	788 <u>750</u> 686 <u>750</u> 686 807 780 <u>750</u> 686
6	Вератрол в парафи- новом масле+ тісl ₄	I605 <u>I505</u> I339 <u>I261</u> I180 I I605 <u>I505</u> I339 <u>I238</u> I173 I	(130 1040 (970) (903) (9 125 <u>1029</u> 990 <u>900</u> (9	550) (819) 74 <u>8</u> 740 340) 810 740

Tadzuga 4

	Соединение	Характ	терные частоты в области 1	Продолжение 1700 – 700 см. ⁻¹
A	бенаиловый эфир	(I603)	(1305)	(1260) (1207) <u>1098</u> <u>1076</u> 1030 (960)900 (841) <u>730</u> <u>692</u>
	+ Ticl4	I603	(1305)	I264 (I201)(I164)(I077) (I030) 913 <u>888</u> <u>842</u> <u>809</u> <u>692</u>
Ť MŢ	ениловый эфир	I600	I489 I338	1295 1235 1208 1167 1074 1028(975) 895 880 864(821) 797 748 686
2	+ T1014	I600	I489 I338	1294 1286 1208 1167 1074 1023 975 895 867 821 797 748 686
Me	тиловый афир 3 - нафтола	I639 I6I0	(I52I)	<u>1274</u> <u>1220</u> <u>1176</u> (1157) 1126 <u>1036</u> (965) 949 896 (873) <u>832</u> 812 (766) <u>740</u> 695
	+ Ticl4	I639 I6I0	<u> 1521</u> <u> 1320</u>	<u>1274</u> <u>1280</u> 1176 1157 (1126) (1036) 965 896 <u>838</u> <u>812</u> <u>756</u> <u>746</u> (635)
HA LTN	метиловый афир дрохинона + тісі ₄	(1650) (1610)	1300 I 1300 I 1300	1240 II78 II10 1047 (939) 822 710 1230 II78 II43 (II10) 1057 (I018) 950 853 322 722
01	ะหมาอหม่น อดัพ p เрет-бутилญ้енола + TiCl4	I623 I628	(1595) <u>1515</u> <u>1306</u> (1595) <u>1515</u>	<u>1250 1182</u> 1119 <u>1045</u> (933) <u>827</u> (804) 790 <u>1250 1182</u> 1119 <u>1045</u> 975(933) 827(804) 790
-	ваякол + тісі ₄	I600) (I600)	<u>1510</u> 1320 <u>1493</u> 1320	I260 I222 II180 II155 II10 I040 I027 (918) (832) 750 737 1242 II155 II10 (1027) 983(930) 963(822) 766 750
6 +	Диметоксибена- альдегид меньше тыс14 + тыс14	+191 (0891) +191 (0891) 0891	1590 1320 1590 (1320) 1590 1338 <u>12</u> 1	IZ70 II174 I068 I000 908 808 733 750 IZ70 I174 I067 993 920 805 783 750 737 87 I287 I193 I077 (985)366 920 810 737 727
A	яисовый альдегид + тісі4	2020 1898 <u>1695</u> <u>1600</u>	I5I5 I320 I582 <u>I562</u> I5I5 I350(I	1260 1218 1160 1035 968 940 850 830 763 715 820) 1280 1163 1007 1007 260 327 763 715
	ицетилкумарон + т1с1 ₄	<u>I680</u> I610	<u>1565</u> 1386 1587 1360 132	I 332 I 266 (I 12) I 112 I 084 I 080) I 009 I 750 I 750 0 I 266 I 219 I 142 I 1122 (1077) 992 980 849 760
1				

Tadanna 4

Таблица 5

Полифункциональные соединения

F			1				TOOD TOOD	- 700	I - 10	1100							
-	Соединение		Xa	рактерные	частот	FI B COT	HOLT TLOO		HO HO			0		9	0	(670)	
	4- Гидроксикумарин + тісі _н	<u>1718</u>	<u>1605</u> 1558 (I5I5) <u>I3I</u> (I5I5) <u>I3</u>	9 I285	I250	I200 (II I200 (II	20) II (05	28 (IO3	7) <u>950</u> (8 (568)	373 8	2 20		742	(670)	
1 0	р-Метилумбеллиферон + т-101	<u>1695</u>	<u>1603</u> 1603	I 338	126	32 I243 32 I243	(I218) I <u>I218</u> I	11 191 11 191	40 I068	(I020) 9 (I020) 9	82 (900) 82 <u>900</u>	868 <u>84</u> <u>868 84</u>	2(808)	760	742 ((069	
1	terr										101 00	TON OF	C	220 000	000	670	
07	2-Autero-I-нафтол + mici.	<u>1628</u> 1628	<u>1576</u> 1576	(I502) <u>I</u>	338 120	32 <u>1252</u> 1256	I208 I208	II42 II60 I	160	I022 997	80 80	378	813	750	17	0.679	
>	theorem										0101000	010	000		666		
	п-Гидроксипрониофенон • милл	I658 I658	I603 <u>I565</u> (1 I603 <u>I589</u> (1	521) I	1288 300	I230 1230	<u>1170</u>	2	I076	I020	950	860	803		722	1	19.84
+																	
5 C	п-Гидроксиацетофенон + тісі4	I658 I658	<u>1603</u>	H H	02 II	260	<u>1175</u>	(112	0 I088 0)(I086	(0201)	966 8	87 838	822	776	Q		
-											Stration of the						

la 6			780 780			742	(753)	705	760 688 722 670	
Таблии Таблии	тоты в области I700 - 700 см -1	I035 (963) (862) 1035 (963) 870 818	818	BIB	BIB)(II00)(I075) 970 893 (844) (828) (972) 873 822	(1030)990 222 852 (1030)(990) 875 852 832 220	867 842 <td>(10%2)(1030) <u>916</u> (842) (10%2)(1030) 916 (880) <u>820</u></td> <td>I066 I017 (963) <u>893</u> (1066)(I017)(963) (887) (820)</td>	(10%2)(1030) <u>916</u> (842) (10%2)(1030) 916 (880) <u>820</u>	I066 I017 (963) <u>893</u> (1066)(I017)(963) (887) (820)
У г левод	Характерные час	(1167)				- (1655)(1623) (1167)(1128 (1655)(1623) (1167)	(I6I4) I6I4	IGI4 IGI4	(I6I4) (II56) I6I4 (II56)	1742 I670 II67 II33 I607 (II67)
/	Соединение	. Бензол + ТіСl4	Нафталин + Тісі ₄	Антрацен+тісі4	Фщуорен + TiCl4	І-Ноне <u>ж</u> + тісі ₄	Винилмезитилен + тісі4	п-Дивинилбен- зол+ тіс14	CTMJEGEH + TiCl4	Лимонен + TiCl4
- Law	里	Ι	2	co	4	cu .	9	2	8	6

частоти в са 2785 2785 2580 2580 2580 (1 2580 2580 15 2500 2500 2500 2500 2500 2500 2500	160E
ri ⁻¹ <u>1600</u> 1500 1500 1500 1500 1588 1588 1588 1588 1588 1588 1588 1588 1588 1588 1588 1588 1588 1497 1603 1503 1477 1603 1477 1503 1477 1503 1477 1503 1477 1503 1477 1503 15	1547
I476 I550 I255 I82 I156 (1067) (800) 1496 1387 1273 1244 (1155) (1052) (1050) (1050) 1480 1387 1273 1244 (1155) (1052) (800) 1480 1384 1265 1213 1175 1109 (1040) (990) (922) 1480 1384 1265 1213 1175 1109 (1040) (930) (830) 1440 1386 1262 1273 (1190) 1140 (1029) 992 (850) 1440 1386 1273 1290 1140 (1077) 922 908 (812) 1440 1446 1896 1273 1180 1166 1107 922 908 (812) 1440 1443 1886 1273 1175 1175 1157 1040 992 922 940 92 1441 1444 1886 1273	.460 1405 (1820)1288 1242 1193 1157 1060 1035 1000 930 870 828 71

THAMIN

Комплексы кислородных соединений с аминами

Таблица 7

upodomaente zaon. 7	Vacroru z ow -I	(5600)3195 1613 1472 (1386) 1385 1295 1160 1062 (959) (920) (758) 3195 3075 1613 1472 1386 1239 (1230)(1160) 1075 (990) (922) (887) (728)	3535 (2945) 1600 1501 1458 1370 1220 1222 (1176) 1108 1027 (910) (882) 711 (3535)3170 2945 (1600) 1501 1458 1370 1260 1226 1218 1176 1002 (910) (882) 705	3540 2975 I695 I622 (1450) I350 I280 II98 I179 I120 (982)(915)(941) 625 2975 2630 I622 1450 I350 I280 I275 I193 I179 I100)(975)(982)915 841 720	# 3438 2985 1693 1610 (1360) 1273 1170 (951) (888) (715) 2985 2805 2685 1680 1360 1273 1170 951 838 715	2895 2725 2540 1719 1608 1550 12820 1274 1239 1149 1100 950 812 718 (2895)2755 2540 1719 1603 1542 1274 1230 1179 1100 920 868 (819) 787 718	3310 1650 1585 1448 1388 1302 1160 700 2945 2845 1585 1448 1405(1853)1302 1138 1160 (1000)(950) 700	3030 2630 1703 1540 1408 1223 1192(1140)(1112) 330 818 716 532 2895 2805 2505 1910 1703 (1546)(1540)(1493)(1430) 1262 1215 1140 1030 1030 812 710	2895 1695 1545 1408 1243 1205 1000 965 820 718 2895 2505 1898 1718 (1545) 1420 1350 1238 1200 965 820 718	3420 3030 1680 1585 (1500)(1449) 1888 1280 1255 1188 068 965 649 715 630 3420 3030 1639 (1449)(1405) 1288 1285 1188 1080 1068 965 6449 715 630 3420 3200 3030 1639 (1449)(1405) 1288 1285 1188 1068 1068 970 649 715 680	без изменений	без измеделий
A strategy with the	Соединение	Р-Метилрезорции в ссі ₄ + пиридин) Граякол в сс14 + пиридим	4-Бензоидрезорцин - В ОСІ ₄ + пиридип	п-Гидроксиацетофенов в ссі4 + пиридив	4-Гидроксикумарин в осі4 + пкридин	Прогокатехуальдегид в СС14 + пиридин	офеницуксусная кислота в сол ₄ + пиридии	Пробиован кислота в 0014 + пиридин	Бенвоин в Со14 + пирадия	I8 2-Ацето-І-нафтол с пиридином	19 Анисовый альдегид с пиридином
100	01		0		i cu	00	4	-	2			

х) Спектр твердого комплекса в парафиновом масле.

-
64
-
-
-
10
0
-

Сравнительная характеристика флотационных фосфатных концентратов СССР

Сравн.	эффект. на кисл. почве (фон=100)	6	1	107110	152—192	141-162	
Коэфф.	разлож. в 2% лим. кисл., %	8	7,2	18,1	25,5-26,3	32,2	
Ofin.	удельн. поверхн., M^2/c	2	0,5	5,4	11,2—14,7	4,0-5,4	
	$\frac{\text{CO}_2}{\text{P}_2\text{O}_5}$	9	1	0,078	0,170-0,190	0,090-0,094	
оотношения	$\frac{MgO}{P_2O_5}$	5		0,06-0,08	не опр.	0,01-0,06	
Becobble c	$\frac{Fe_2O_3}{P_2O_5}$	4	0,01	0,05-0,07	0,11-0,14	0,03-0,08	のない時に
	CaO P ₂ O ₅	3	1,32	1,40-1,45	1,50—1,60	1,40—1,47	
	Содерж. Р ₂ О ₅ %	2	39,4	27—29	27—28	2732	同時時間の
	Название концентрата	1 .	Апатитовый	Кара-Тауский	Желваковых росфоритов	Эболовый	

7 Химия

1

шению к фосфату снижается и результаты анализа оказываются заниженными.

Нами изучена также кинетика разложения различных фосфатов кислотами. На фигуре 1 представлены характерные им кривые разложения, полученные с применением фосфорной кислоты и в незагустевающих пультах. Разложение оболовых фосфоритов кислотами в начальной стадии процесса происходит с примерно одинаковой скоростью или несколько медленнее, чем желваковых фосфоритов, в последующих стадиях с более высокой скоростью и полнотой разложения. Причиной более быстрого разложения желваковых фосфоритов в начале процесса, по-видимому, является их более высокая удельная поверхность, а причиной замедления их разложения в последующих стадиях — более высокое содержание примесей и вызванные ими вторичные реакции.

7 41 mm 14
Продукты переработки оболовых фосфоритов отличаются более высокой усвояемостью содержащегося в них фосфата. Например, соотношение содержаний водорастворимой P_2O_5 , к усвояемой P_2O_5 в них более высокое, чем исходя из желваковых фосфоритов. Во всех стадиях кислотной переработки оболовые фосфориты разлагаются значительно быстрее апатитового концентрата и концентрата Кара-Тау.

В проведенной нами работе изучена также влияние тонины помола на разложение оболовых фосфоритов как при непосредственном внесении в почву (совместно с Эстонской сельскохозяйственной академией), так и в процессах кислотной переработки. Показано, что оболовые фосфориты реагируют сильно на тонину помола. Фракция + 180 мк, которая по ныне действующему ГОСТу составляет до 20% от веса фосфоритной муки, почти не обладает агрономической ценностью. В кислотных процессах глубина помола оболового фосфорита должна быть не менее тонины помола ныне выпускаемого апатитового концентрата. Поэтому необходимо поставить задачу более тонкого помола фосфоритной муки из оболовых фосфоритов.

Благодаря своей высокой реакционной способности оболовые фосфориты применяются в настоящее время на многих заводах как нейтрализующая добавка при производстве простого суперфосфата. Широко используется смесь оболовой фосфоритной муки с простым суперфосфатом в весовом соотношении 1:1, которая сочетает достоинства ее компонентов и не обладает характерными им неудовлетворительными физико-химическими свойствами [5]. Проведены промышленные опыты получения простого суперфосфата из оболовой фосфоритной муки [6]. При этом разложение фосфата в камерном продукте составляет 90%, а после 3—5 суточного хранения на складе превышает 95%. В стадии внедрения находится производство двойного суперфосфата по непрерывно-поточным схемам.

Нами совместно с Научным институтом по удобрениям и инсектофунгицидам установлены особенности оболовых фосфоритов также в процессе их гидротермической переработки с получением обесфторенных фосфатов [7—9]. Они являются более тугоплавкими в сравнении с каратаускими и желваковыми фосфоритами, а обесфториваются при температурах на 100—150° ниже, чем апатитовый концентрат. Эти данные служили нам в основу разработки технологии получения кормовых фосфатов путем переработки оболовых фосфоритов в печах вращающихся или кипящего слоя.

Из выполненных работ следует, что оболовые фосфориты являются перспективным сырьем для процессов, требующих

легкоразложимое сырье, в частности, для производства двойного суперфосфата. Желваковые же фосфориты, с учетом их максимальной агрономической эффективности, должны быть и впредь использованы главным образом в виде фосфоритной МУКИ.

Задачами следующих исследовательских и опытных работ по переработке концентратов оболовых фосфоритов являются:

1. детальное изучение состава, физико-химических и технологических свойств концентратов оболовых фосфоритов всех основных месторождений и различных способов обогашения:

2. систематическое исследование кислотных процессов переработки оболовых фосфоритов на фосфорную кислоту, двойной суперфосфат, сложные удобрения и др., опытно-промышленное внедрение их в оптимальных условиях и варианте;

3. опытно-промышленное внедрение процесса гидротермической переработки оболовых фосфоритов на кормовые фосфаты и удобрения.

ЛИТЕРАТУРА

- 1. Я. Я. Ансо, М. А. Вейдерма, С. П. Касесалу. Хим. пром., № 7, 1962.
- 2. М. А. Вейдерма. Хим. пром., № 5, 1963. 3. М. А. Вейдерма, Я. Я. Ансо, С. П. Касесалу. Труды ТПИ, сер. A, № 198, 1962.
- 4. М. А. Вейдерма. Труды ТПИ, сер. А, № 210, 1964 (3 статьи).
- 5. М. А. Вейдерма. Хим. пром., № 10, 1961.

- 6. М. А. Вейдерма. Труды ТПИ., сер. А. № 198, 1962. 7. М. А. Вейдерма, С. И. Вольфкович. Хим. пром., № 8, 1964. 8. М. А. Вейдерма, С. И. Вольфкович. Журн. прикл. химии, № 5, 1964.
- 9. М. А. Вейдерма. Сланцевая и химическая промышленность, № 2, 1965.

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

СЕРИЯ А

№ 230

1965

УДК 537. 311. 33 Ю. А. Варвас, П. Л. Кукк

ИССЛЕДОВАНИЕ ФОТОЭЛЕКТРИЧЕСКИХ СВОИСТВ ПОЛИКРИСТАЛЛИЧЕСКОГО СУЛЬФИДА КАДМИЯ, ЛЕГИРОВАННОГО МЕДЬЮ И ХЛОРОМ

Введение

Настоящий комплекс измерений предпринят с целью выяснения некоторых наиболее интересных фотоэлектрических характеристик сильнолегированного сульфида кадмия (CdS: Cu: Cl), являющегося основой для изготовления фотосопротивлений C-092, отличающихся высокой фоточувствительностью и большим темновым сопротивлением. Метод введения примесей в CdS и технология изготовления C-092 описаны в [1, 2]. По внешному виду C-092, подобно ранее разработанным типам CdS фотосопротивлений [3, 4], представляют собой таблетку диаметром 6 мм и толщиной 0,8 мм с растровыми индиевыми электродами на одной стороне таблетки; межэлектродное расстояние 0,4 мм, фоточувствительная площадь 12 мм². Измерения проводились как на готовых фотосопротивлениях C-092, так и на таблетках без электродов (измерение оптического поглощения).

1. Спектр поглощения (СП)

Показатель поглощения æ определялся из соотношений

$$\Phi_1 = \Phi_0 e^{-a \epsilon d_1} \Phi_2 = \Phi_0 e^{-a \epsilon d_2} \left\langle a = \frac{1}{d_2 - d_1} \ln \frac{\Phi_1}{\Phi_2}, \quad (1) \right\rangle$$

измерив прошедшие сквозь образцы толщиной $d_1 = 0,5 \, \text{мм}$ и $d_2 = 0,8 \, \text{мм}$ потоки света Φ_1 и Φ_2 . При этом устраняются ошибки на отражение и рассеяние света от поверхности образца, однако не учитывается диффузное прохождение света сквозь таблетку, что приводит к несколько заниженным значениям æ. Точность данного метода резко спадает с ростом æ и для æ >100 1/см он практически не применим. Поэтому удалось достоверно определить \mathfrak{x} лишь в области примесного поглощения с λ =700- \div 850 *нм*.

Измерения проводились на монохроматоре УМ-2. В качестве детектора прошедшего света использовалось фотосопротивление из селенистого кадмия [5], обладающее высокой чувствительностью в указанной части спектра. Фототок замерялся электрометром type 2517 М фирмы Orion-Keti, Венгрия. Измеряемые образцы и детектор надежно защищались от попадания постороннего света.

Фиг. 1. Спектр поглощения

Фиг. 2. Спектр фотопроводимости: 1 (левая шкала) — расположение электродов на одной стороне таблетки (фотосопротивления С-092), U = 50 s; 2 (правая шкала) — расположение электродов на противоположных сторонах таблетки

Спектр поглощения приведен на фиг. 1.

Как видно, сильное примесное поглощение распространяется от края собственного поглощения вплоть до 700 *нм*, что видимо вызвано центрами Си [6]. Далее æ монотонно падает, достигая значения 10 *1/см* при λ =850 *нм*. Для наших образцов с толщиной d=0,08 *см* это — область т. н. объемного поглощения, так как 1/æ>d. Следовательно, для обеспечения равномерной концентрации фотоносителей по всей глубине образца необходимо применять свет с λ >700 *нм*.

2. Спектр фотопроводимости (СФ)

СФ измерялся с помощью монохроматора УМ-2, калиброванного на постоянную энергию в спектре вариацией ширины щелей. Детектором при калибровке служил полупроводниковый болометр с усилителем. Интенсивность падающего на образец излучения определялась термостолбиком фирмы Филипс (также люксметром с последующим пересчетом в энергетические единицы) и оказалась $\Phi = 7,2 \cdot 10^{-7} \ st/cm^2$.

СФ фотосопротивлений С-092 приведен на фиг. 2, кривая 1. Максимум собственной проводимости при λ =520 нм маскируется более широкой полосой примесной проводимости с максимумом при λ =600 нм. Далее для λ >700 нм фоточувствительность резко спадает.

Для сравнения измерялся СФ и при расположении электродов на противоположных сторонах таблетки, т. е. когда фототок протекает параллельно потоку возбуждающего излучения, см. фиг. 2, кривая 2. Здесь фотопроводимость в основном определяется концентрацией свободных носителей у задней неосвещенной стенки образца, т. е. свет как бы проходит сквозь CdS:Cu:Cl, фильтр и влияние СП более рельефно, чем для кривой 1. Сильное возрастание фотопроводимости в области λ =650—710 *нм* указывает на резкое уменьшение поглощения при достаточной еще фотоактивности и является независимым критерием достоверности результатов главы I. Спад фотопроводимости при λ >720 *нм* обусловлен, как и в первом случае, дальнейшим уменьшением æ и отсутствием фотоактивных центров в средней части запрещенной зоны CdS.

3. Люкс-амперная характеристика (ЛАХ)

ЛАХ снималась на монохроматическом свете с λ =600 *нм* в пределах интенсивности Φ =10⁻⁸ - 10⁻⁴ *вт/см*² при разных температурах. Образец помещался в вакуумном криостате [7].

Фиг. 3. Люксамперная характеристика. Напряжение на образце $U=1\ s$

Для охлаждения использовался жидкий азот. Температуры выше комнатной поддерживались электронным регулятором тока нагревателя держателя образца и не превышали +50°C во избежание необратимых изменений проводимости.

ЛАХ приближенно выражается степенным законом, см. фиг. 3,

$$i = A \Phi^{\alpha}$$
,

где і — фототок, Ф — интенсивность освещения, А — коэффициент пропорциональности; а растет с увеличением температуры. При Т= $+50^{\circ}$ С отчетливо выделяются участки с линейной (α =1) и квадратичной (α =2) зависимостями. Эти результаты качественно согласуются с теорией суперлинейности ЛАХ Р. Бьюба [8—10].

4. Температурная зависимость проводимости (ТЗП)

Использовалась та же установка, что и в главе 3. ТЗП снималась при 7 разных интенсивностях освещения, включая и Φ =0, см. фиг. 4. При сильной освещенности, следовательно, высокой концентрации фотоносителей, проводимость незначительно зависит от температуры. С уменьшением Φ все более отчетливо выступает температурное гашение проводимости. Наиболее круто спадает с ростом Т кривая темновой проводимости 7.

Фиг. 4. Температурная завысимость проводимости:

 $\begin{array}{l} I - \Phi = 10^{-4} \ {}_{\textit{BT}/\textit{CM}^2}, \ 2 - \Phi = 2 \cdot 10^{-5} \ {}_{\textit{BT}/\textit{CM}^2}, \\ 3 - \Phi = 4,5 \cdot 10^{-6} \ {}_{\textit{BT}/\textit{CM}^2}, \ 4 - \Phi = 9 \cdot 10^{-7} \ {}_{\textit{BT}/\textit{CM}^2}, \\ 5 - \Phi = 2,1 \cdot 10^{-7} \ {}_{\textit{BT}/\textit{CM}^2}, \ 6 - \Phi = 5 \cdot 10^{-8} \ {}_{\textit{BT}/\textit{CM}^2}, \\ 7 - \Phi = 0; \ U = 1 \ {}_{\textit{B}} \end{array}$

5. Вольт-амперная характеристика (ВАХ)

ВАХ измерялась при комнатной температуре (T=+22°C) и разных освещенностях. Источником тока служил стабилизированный выпрямитель на полупроводниках с диапазоном напряжений от 10⁻³ в до 10⁺³ в.

Как видно на фиг. 5, в достаточно широкой области напряжений U выполняется закон Ома, лишь для U>100 в обнаруживается стремление фототока к насыщению. Одной из возможных причин этого явления может быть джоулевый нагрев образца, что при отрицательном температурном коэффициенте (см. гл. 4) приводит к уменьшению проводимости.

ЛИТЕРАТУРА

- 1. Ю. А. Варвас. О фотопроводниках типа сульфида кадмия. Доклад на ХХ научной конференции ТПИ, 1965 г.
- 2. Отчет хоздоговоров ТПИ, 331, 333, 406.
- J. Varvas, P. Kukk. «Tehnika ja tootmine» пr. 6,37 (1962).
 Ю. А. Варвас. П. Л. Кукк. А. Х. Сталь, М. Г. Ляэтс. Труды ТПИ сер. А, 195, 143 (1962).
- 5. Л. Ю. Тюрн. О некоторых свойствах фотосопротивлений из селенида кадмия. Доклад на XX научной конференции ТПИ, 1965 г.
- 6. В. В. Сердюк, Т. Я. Сёра. Изв. высших учебных заведений 2, 132 (1961).
- 7. П. Л. Кукк, А. Ю. Сюгис, Ю. А. Варвас, Э. Т. Липп-маа. Труды ТПИ (в печати).
- 8. R. H. Bube. Photoconductivity of Solids. New-York-London, 1960.
- 9. R. H. Bube. J. Phys. Chem. Solids I, 234 (1957).

10. F. Cardon, R. H. Bube. J. Appl. Phys. 35, 11, 3344 (1964).

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

СЕРИЯ А

№ 230

1965

УДК 537.311.33 П. Л. Кукк

ИССЛЕДОВАНИЕ ТОКОВОГО ШУМА И ПОРОГОВОЙ ЧУВСТВИТЕЛЬНОСТИ ПОЛИКРИСТАЛЛИЧЕСКИХ СЕРНИСТО-КАДМИЕВЫХ ФОТОСОПРОТИВЛЕНИЙ

Введение

Теоретически вопрос о пороговой чувствительности фотопроводящих изоляторов типа CdS рассматривался в [1, 2]. Изготовлением селективного усилителя [3] стало возможным не только экспериментальная проверка выведенных в [1, 2] расчетных формул и определение наиболее выгодных условий работы CdS фотосопротивлений, но и установление вида шума в поликристаллическом сульфиде кадмия.

Для проведения настоящей работы использовались фотосопротивления С-092 [4], как одни из наиболее чувствительных имеющихся к настоящему времени поликристаллических сернисто-кадмиевых фотосопротивлений. Габариты и фотоэлектрические характеристики С-092 приведены в [5].

Методика эксперимента

Измерительная аппаратура описана в [3]. Режим возбуждения выбран исходя из практических условий: на фоне постоянной подсветки интенсивности Φ_0 действует световой сигнал Φ_s в виде симметричных П-импульсов частоты f, причем $\Phi_s \ll \Phi_0$ и Φ_s, Φ_0 монохроматичны с длиной волны $\lambda = 600 \ нм.$

Главным ограничивающим чувствительность к Φ_3 фактором является собственный шум фотопроводника при Φ_0 . Поэтому снимались спектр фотоотклика (сигнала) $\Delta \bar{u} = \Delta \bar{u}$ (f) при Φ_0 и Φ_s и спектр шума S = S (f) при Φ_0 . Поскольку S (спектральная плотность ЭДС эквивалентного шумового генератора) содержит $\overline{u^2}$.

 $\overline{u^2}$ — средний квадрат ЭДС шума, Δf — полоса пропускания усилителя,

то на тех же графиках спектры среднего значения сигнала отложены также квадратичной функцией $\overline{\Delta u^2} = \overline{\Delta u^2}$ (f). Так как слабые световые импульсы Φ_s можно рассматривать как частный вид «упорядоченных» флуктаций в потоке возбуждающего света, то $\Delta \bar{u}^2$ — отклик детектора на фотонный шум, т. е. флуктуации проводимости, обусловленные целиком флуктуациями излучения. При указанном построении графиков легко установить, имеется ли корреляция между шумом чисто фотонного происхождения и действительно наблюдающимся шумом.

Третья кривая на фигурах 1-8 — отношение сигнал/шум

$$g = \frac{\overline{\Delta u}}{\sqrt{S}}.$$
 (2)

По спектру g аналогичен $D = g \Phi_s^{-1}$ (detectivity), введенному Р. Джонсом [6] для классификации детекторов по частотной зависимости семейства D.

Порог чувствительности Q определялся как наименьшая интенсивность Φ_s , при которой сигнал еще вдвое превышает шум на единицу полосы пропускания

$$Q = \frac{2\gamma \overline{s}}{\overline{\Delta u}} \Phi_s \,. \tag{3}$$

По данным измерений S и Δu рассчитывались зависимости Q OT f, $\Phi_0 \mu \Phi_s$.

Побочные измерения (здесь не приведены) показали, что зависимость Q^{-1} от λ сходна спектру фоточувствительности [5], следовательно, Q наименьший в области $\lambda = 560-640$ нм. Этим и определялся выбор Φ_{\circ} и Φ_{s} с $\lambda = 600$ нм.

Измерения сигнала и шума проводились при двух температурах: $T = +22^{\circ}C$ (комнатная) и $T = -170^{\circ}C$ (охлаждение жидким азотом), что дает некоторое представление о температурной зависимости исследуемых величин. Более подробная кривая температурной зависимости была получена для Δu , см. фиг. 12.

Результаты и их обсуждение

Спектр шума, см. фиг. 1-8, относительно слабо зависит от Фоив пределах 0,1—1000 гц аппроксимируется степенной функцией

 $S = Af^{-\alpha}$,

(4)

где $\alpha \approx {}^{3}/_{2}$.

Спектр сигнала $\Delta u^2 = F(f)$ не выражается простой функцией. Амплитудное значение сигнала Δu допускает аппроксимацию (хотя часть точек в диапазоне 100—1000 гц явно не совпадает) гиперболическим тангенсом, см. фиг. 9, что было бы точным выражением Δu в случае экспоненциального нарастания и спадания фототока [1, 7]. Для среднего значения сигнала Δu введем коэффициент $\eta(f)$,

$$\overline{\Delta u} = \eta(f) \Delta u(f) = \eta(f) \Delta u_{\circ} th \frac{1}{4\tau f},$$
(5)
причем $\eta = 1$ при $f \ll \frac{1}{\tau},$
 $\eta = \frac{1}{2}^{*}$ при $f \gg \frac{1}{\tau},$ (6)

где Δu_{\circ} — амплитуда сигнала при $f \rightarrow 0$, τ — постоянная фотоотклика.

Тогда для g в диапазоне 0,1-1000 гц имеем

$$g = \frac{\overline{\Delta u}}{S^{1/2}} = \frac{\eta(f)\,\Delta u_0 \ th \overline{4\tau f}}{(Af - 3/2)^{1/2}} = B\eta(f) f^{3/4} th^{\frac{1}{4\tau f}}.$$
(7)

Для крайних случаев (7) упрощается:

$$g \approx B f^{3/4}$$
 при $10^{-1} \leqslant f \ll \frac{1}{\tau}$,
 $g \approx B \frac{1}{8\tau} f^{-1/4}$ при $\frac{1}{\tau} \ll f \leqslant 10^3$. (8)

Совокупность кривых $g = g(f)^{**}$, параметрически зависящих от Φ_0 , следовательно и от τ , см фиг. 1—4 и 5—8, указывает принадлежность С-092 к классу II в детекторов излучения [6].

Расчет пороговой чувствительности Q по формуле (3) предполагает линейную зависимость $\overline{\Delta u}$ от Φ_s , что для $\Phi_s \ll \Phi_0$ хорошо выполняется, см. семейство $\overline{\Delta u^2}$ на фиг. 2—4 'и 6—7. Частотная зависимость Q = Q (f) обратна g (f), что непосредственно следует из (3).

Зависимость Q от интенсивности подсветки Φ_0 для разных частот f приведена в табл. 1 и на фиг. 10 и 11. При $T = +22^{\circ}$ С

^{*} Вследствие треугольной формы сигнала при высоких частотах, см. [1, 8]. ** g рассчитывалось при Φ s = 3,1 · 10⁻⁸ et/cm^2 .

Фиг. 1. $T=22^{\circ}$ С, $\Phi_0=10^{-4}~st/cm^2$, $\Phi_s=3,1\cdot10^{-8}~st/cm^2$, напряжение на образце u=4~s

Фиг. 2. $T = 22^{\circ}$ С, $\Phi_0 = 4,5 \cdot 10^{-6}$ вт/см², $1 - \phi_s = 3,1 \cdot 10^{-8}$ вт/см², $2 - \phi_s = 6,1 \cdot 10^{-9}$ вт/см², $3 - \phi_s = 1,4 \cdot 10^{-9}$ вт/см², u = 10 в

8 Химия

Фиг. 3. $T = 22^{\circ}$ С, $\Phi_0 = 4.6 \cdot 10^{-7}$ вт/см², $1 - \Phi_s = 3.1 \cdot 10^{-8}$ вт/см², $2 - \Phi_s = 6.2 \cdot 10^{-9}$ вт/см², $3 - \Phi_s = 1.4 \cdot 10^{-9}$ вт/см², u = 10 в

DMT. 4. $T = 22^{\circ}$ C, $\Phi_0 = 9.5 \cdot 10^{-8} \text{ st/cm}^2$, $1 - \Phi_s = 3.1 \cdot 10^{-8} \text{ st/cm}^2$, $2 - \Phi = 6.1 \cdot 10^{-9} \text{ st/cm}^2$, $3 - \Phi_s = 1.4 \cdot 10^{-9} \text{ st/cm}^2$, u = 10 s

8*

ΦΗΓ. 5. $T = -170^{\circ}$ C, $Φ_0 = 10^{-4} \text{ et/cm^2}$, $1 - Φ_s = 3.5 \cdot 10^{-7} \text{ et/cm^2}$, $2 - Φ_s = 3.1 \cdot 10^{-8} \text{ et/cm^2}$, $u = 4 \text{ et/cm^2}$, $1 - Φ_s = 3.5 \cdot 10^{-7} \text{ et/cm^2}$, $u = 4 \text{ et/cm^2}$, u =

 Φ mp. 7. $T=-170^{\circ}\mathrm{C},\ \Phi_{0}=4.5\cdot10^{-7}\ \mathrm{st/cm^{2},}\ 1-\Phi_{s}=3.1\cdot10^{-8}\ \mathrm{st/cm^{2},}\ 2-\Phi_{s}=6.1\cdot10^{-9}\ \mathrm{st/cm^{2},}\ u=10\ \mathrm{s}$

Q монотонно уменьшается с уменьшением Φ_0 в пределах $10^{-4}-10^{-8} \ в t/c M^2$; при $T = -170^{\circ}$ С Q имеет минимум в области $10^{-7} \ в t/c M^2$. Характерно, что $Q_{-170^{\circ}} \ C > Q_{22^{\circ}}$ С. Это связано с сильным увеличением времени фотоотклика τ , следовательно уменьшением Δu с понижением температуры, см. фиг. 12. Небольшое уменьшение шума не скомпенсирует уменьшение сигнала в отношении сигнал/шум.

Рассматриваемая $\overline{\Delta u^2} \approx \overline{\Delta u^2}$ как шум детектора, вызванный белым шумом возбуждающего излучения, видим, что

$$\overline{\Delta u^2} \sim \frac{1}{1 + \omega^2 \tau^2},\tag{9}$$

ш — круговая частота.

Спектр типа (9) характерен для генерационно-рекомбинационного (r-p) шума [9—13]. Следовательно, флуктуации фотонов проявляются в исследуемых фотосопротивлениях в виде r-p шума. Сравнение Δu^2 (f) и S (f) показывает отсутствие между ними заметной корреляции, следовательно фото-

∆*и* — среднее значение сигнала (измеренная)

	-
	_
	_
	2.4
_	
	-
- 1/	_
- 14	_
	_
	· • ·

		1.10 ⁻⁸	2,2 . 10-10	1,9.10-10	4.10-10	5,6 · 10 ⁻¹⁰	1,4 · 10-9	4,4 · 10-9	1,8.10-
	170°C	$4,6 \cdot 10^{-7}$	$6,2 \cdot 10^{-10}$	$1,5 \cdot 10^{-10}$	1,9 . 10-10	$4, 4 \cdot 10^{-9}$	$6, 8 \cdot 10^{-9}$	2,5 · 10-9	8,8 · 10-9
		$4,5 \cdot 10^{-6}$	2,3 · 10 ⁻⁸	$12,5 \cdot 10^{-9}$	$1, 1 \cdot 10^{-9}$	$6,2 \cdot 10^{-10}$	$1, 4 \cdot 10^{-9}$	5 . 10-9	2,5 · 10-*
		10-4	$6,2 \cdot 10^{-8}$	1,1 · 10 ⁻⁸	$4, 4 \cdot 10^{-9}$	$1,5 \cdot 10^{-9}$	1,4 · 10 ⁻⁹	$4, 4 \cdot 10^{-9}$	$2,5 \cdot 10^{-8}$
	+22°C	9,5 · 10 ⁻⁸	3,4 · 10 ⁻¹¹	1,1 · 10 ⁻¹¹	6,8 · 10 ⁻¹¹	8,8 · 10 ⁻¹¹	$2,5 \cdot 10^{-10}$	$6,8 \cdot 10^{-10}$	2 · 10 ⁻⁹
		4,6 · 10 ⁻⁷	$1,7 \cdot 10^{-10}$	$4, 4 \cdot 10^{-11}$	$1,2 \cdot 10^{-10}$	$1, 4 \cdot 10^{-10}$	$3,1 \cdot 10^{-10}$	· 1,4 · 10 ⁻⁹	6,2 · 10 ⁻⁹
		4,5 · 10 ⁻⁶	1,9 · 10 ⁻⁹	5 · 10 ⁻¹⁰	3 · 10 ⁻¹⁰	$2,8 \cdot 10^{-10}$	$3, 4 \cdot 10^{-10}$	$1, 4 \cdot 10^{-9}$	1:10-8
		1 · 10 ⁻⁴	$4, 4 \cdot 10^{-8}$	1.10 ⁻⁸	3.10-9	$1, 4 \cdot 10^{-9}$	7,8.10 ⁻¹⁰	$1, 4 \cdot 10^{-9}$	7.10-9
and the second	T	$\Phi_{0} BT/CM^{2}$ f 2u	10-1	1	10	102	. 103	104	105

Фиг. 11

Фиг. 12. $\Phi_0 = 4,5 \cdot 10^{-6} \text{ вт/см}^2$, $\Phi_s = 7,7 \cdot 10^{-7} \text{ вт/см}^2$, f = 10 гц, u = 10 в

индуцированный e - p шум не является доминирующим в токовом шуме C-092. Как уже сообщалось [3], наблюденный шум со спектром $\sim f^{\alpha}$ следует отнести к категории модуляционного шума.

В заключение отметим, что формула (8) для пороговой чувствительности, выведенная в [2] для случая z - p шума, не отражает действительной зависимости Q = Q (Φ_0) для С-092, см. фиг. 10 и 11.

ЛИТЕРАТУРА

- 1. П. Л. Кукк, Ю. А. Варвас. Труды ТПИ, серия А, № 215, 237 (1964).
- 2. Л. П. Кукк, Ю. А. Варвас. Труды ТПИ, серия А, № 215, 245 (1964).
- 3. П. Л. Кукк, А. Ю. Сюгис, Ю. А. Варвас, Э. Т. Липпмаа. Труды ТПИ, серня А, 1965 (в печати). 4. Отчеты хоздоговоров ТПИ 331, 333, 406. 5. Ю. А. Варвас, П. Л. Кукк. См. настоящий сборник, стр. 101.

- 6. R. Clark-Jones. Adv. Electronics. New-York, Acad. Press, vol. 5 (1953).
- 7. С. М. Рывкин. Фотоэлектрические явления в полупроводниках. Физматгиз, 1963.
- 8. Ю. А. Варвас, П. Л. Кукк. Труды ТПИ, серия А, № 210, 257 (1964).
- 9. K. M. Van. Vliet, J. Blok. Physica 22, 525 (1956)
- 10. K. M. Van-Vliet, C. Ris, J. Blok, J. Steketee. Physica 22, 723 (1956).
- 11. K. M. Van-Vliet. Proc. IRE 46, 1004 (1958). 12. R. Clark-Jones. Proc. IRE 47, 1481 (1959).
- 13. А. Ван-Дер-Зил. Флуктуационные явления в полупроводниках. ИЛ, Москва, 1961.

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

СЕРИЯ

№ 230

1961

УДК 537.311.33 П. Л. Кукк

ИССЛЕДОВАНИЕ ШУМА В ПОЛИКРИСТАЛЛИЧЕСКОМ СУЛЬФИДЕ КАДМИЯ ЗОНДОВЫМ МЕТОДОМ

Исследования токового шума (без исключения влияния контактов) поликристаллического сульфида кадмия (CdS:Cu:Cl), в частности фотосопротивлений C-092 [1, 2] обнаружили спектр вида

$S \sim f^{-\alpha}$ (1)

где S — спектральная плотность э. д. с. эквивалентного генератора шума, f — частота, $\alpha \approx 1.5$.

В настоящей работе напряжение шума измерялось между зондовыми контактами (см. фиг. 1), не охваченными линиями тока, что совместно с последовательно включенным большим проволочным сопротивлением *R* исключает влияние контактов и позволяет выявить токовый шум собственно фоточувствительного материала [3—5].

Фиг. 1. Схема измерения. u_0 — напряжение источника питания; R проволочное сопротивление; R_{Φ} сопротивление образца; a, b — токовые контакты; c, d — зондовые (измерительные) контакты.

Фиг. 2. Освещенность $\Phi = 3800$ лк, R = 100 $k\Omega$, $R_{\Phi} \approx 10$ $k\Omega$, $u_0 = 26$ в

Фиг. 3. $\Phi = 3800 \ \text{лк}, R = 200 \ \text{k}\Omega, R \ \phi \approx 10 \ \text{k}\Omega, u_0 = 26 \ \text{s}$

Измерения такого рода (фиг. 2) показали наличие в сильнолегированном поликристаллическом сульфиде кадмия (CdS:Cu:Cl) модуляционного шума со спектром

> $S \sim \frac{1}{f}$. (2)

> > eaduste Akadeen 127

Измерения при очень сильном неравенстве $R \gg R_{\phi}$ обнаружили «полочку» в области f<1 гц (фиг. 3), однако точность в этих опытах была невысокой: собственный шум усилителя при 0,1 ги был сравним с измеряемым шумом, так как напряжение на образце составляло всего доли вольта.

ЛИТЕРАТУРА

1. П. Л. Кукк, А. Ю. Сюгис, Ю. А. Варвас, Э. Т. Липпмаа. 2. Труды ТПИ (в печати).

- п. Л. Кукк. См. настоящий сборник, стр. 109.
 3. Н. С. Мопtgomery. Bell Syst. Techn. J. 31, 950 (1952).
 4. J. J. Brophy. Phys. Rev. 106, 4675 (1957).
 5. Н. Б. Лукьянчикова, И. В. Маркевич, Г. А. Федорус, М. К. Шейнкман. УФЖ 10, 1, 27 (1965). Teaduslik Raamatukogu

СБОРНИК СТАТЕЙ ПО ХИМИИ И ХИМИЧЕСКОЙ ТЕХНОЛОГИИ ХІІІ

Таллинский политехнический институт

Редактор А. Аарна

Технический редактор Я. Мыттус

Корректор Л. Лоопер

Сдано в набор 6 Х 1965. Подписано к печати 4 П 1966. Бумага 60×90 /ив. Печатных листов 8,5. Учетно-издательских листов 7,0. Тираж 500. МВ-02166. Заказ 3287. Типография «Пунане Тяхт», Таллин, ул. Пикк, 54/58.

Цена 50 коп.

Страница, строка	Напечатано	Следует читать		
4, 3 снизу 21, 11 снизу	+ 21% углерода кероге- на кашпирского п	О ⁰ + Сl ^{0 1}) 29% углерода керо-		
120, 3 снизу	18% углерода <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	гена кашпирского и 25% углерода Δи		

Замеченные опечатки

Цена 50 коп.

+ fle