
Tallinn 2020

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Alexander Dan Håkan Fridlund 155223IAPB

SECURE LIGHTWEIGHT BROWSER-BASED

TEST SYSTEM

Bachelor’s thesis

Supervisor: Jaak Henno

 PhD.math

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Alexander Dan Håkan Fridlund 155223IAPB

TURVALINE KERGEKAALULINE

BRAUSERIPÕHINE TESTIDE TEGEMISE

SÜSTEEM

Bakalaureusetöö

Juhendaja: Jaak Henno

 PhD.math

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Alexander Dan Håkan Fridlund

02.08.2020

4

Abstract

The objective of this thesis is to create testing system, which helps teacher in quick

assessment of students. As an extension to increase user’s involvement is created

encryption-based chat system.

The web applications functionality is implemented using Hypertext Preprocessor (PHP)

and JavaScript (JS) scripts. Web page itself is written in HTML (HyperText Markup

Language) using CSS (Cascading Style Sheets). System is called lightweight because

1. teacher can upload, delete tests and get student’s results directly from browser

and does not need to handle server directly;

2. implementation does not use libraries for design or JavaScript and HTML

interaction, there is no ‘dead code’ (code from libraries which is not used) thus

system loads very quickly (Figure 16).

The result of this work is a working web application, where teacher can add/delete tests

and get student’s test results from browser. Students can do the tests and play a Rock-

Paper-Scissors game with opportunity of chatting with opponent.

This thesis is written in English and is 43 pages long, including 6 chapters, 46 figures and

1 table.

5

Annotatsioon

Brauseripõhine testsüsteem, mis aitab õpetajat õpilaste kiire

hindamisega

Selle töö eesmärgiks on luua testsüsteemi, mis aitab õpetajat õpilaste kiire hindamisega.

Süsteemi teeb õpilastele huvitavamaks võimalus mängida mänge ja kasutada

krüpteerimispõhist vestlussüsteemi.

Veebirakendus on kirjutatud kasutades Hypertext Preprocessor (PHP) and JavaScript

(JS). Veebileht ise on kirjutatud HTML (HyperText Markup Language) abil, kasutades

CSS (Cascading Style Sheets). Süsteemi nimetatakse kergekaaluliseks sellepärast, et

1. õppejõud saab üles laadida, eemaldada teste ja näha tudengite tulemusi otse

brauserist ja ta ei pea tegelema serveriga otse;

2. süsteemi realisatsioonis ei kasutata teeke (libraries) kujundamiseks või

JavaScripti ja HTML interaktsiooni jaoks, seega täielikult puudub ’surnud kood’

(teekide kood, mida tegelikult ei kasutata) seega süsteemi käivitamine on väga

kiire (Figure 16).

Töö tulemuseks on veebirakendus, kus õpetajad saavad lisada teste ja saada õpilaste

tulemusi. Õpilased saavad teha teste ja mängida Kivi-Paber-Käärid mängu ja võib

vestelda oponentidega.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 43 leheküljel, 6 peatükki, 46

joonist, 1 tabelit.

6

List of abbreviations and terms

AES-128 Encryption algorithm

AJAX Asynchronous Javascript and XML

Bootstrap Framework for building sites

CSS Cascading Style Sheets

Firebase Development platform https://firebase.google.com/

Hot Potatoes Free application for creating web exercises

https://hotpot.uvic.ca/

HTML HyperText Markup Language

JS JavaScript

jQuery JavaScript library

MySQL Relational database

PHP Hypertext Preprocessor

SJCL Stanford Javascript Crypto Library

http://bitwiseshiftleft.github.io/sjcl/

SQL injection Placement of malicious code in SQL statements, via web page

input

Unsplash Website with stock photographs https://unsplash.com/

https://firebase.google.com/
https://hotpot.uvic.ca/

7

Table of contents

1 Introduction ... 12

2 Why create a testing system?.. 13

2.1 Differences from other popular web testing systems .. 14

3 System ... 15

3.1 Logging without authentication ... 15

3.2 Registration ... 16

3.3 Logging with authentication .. 17

3.4 User activities .. 18

3.5 Role switching... 18

3.6 Logging out ... 19

3.7 Communication with MySQL database ... 20

3.8 Implementation ... 21

3.9 Compatibility with mobile devices .. 22

4 Tests .. 25

4.1 Test creation .. 25

4.1.1 Requirements for test .. 25

4.2 Adding a test ... 25

4.3 Saving test results .. 26

4.4 Getting test results ... 28

4.5 Test deletion .. 31

5 Game ... 32

5.1 Starting a game.. 32

5.2 Quitting a game ... 34

5.3 Chat .. 35

5.3.1 Encryption .. 36

5.3.2 Encryption keys .. 36

5.3.3 Message encryption with given key .. 37

5.3.4 Message decryption with given key .. 38

8

5.3.5 Opportunities for attacks ... 39

5.4 Images used in game ... 40

6 Summary ... 41

References .. 42

9

List of figures

Figure 1. Guest user screen ... 15

Figure 2. Guest user bar .. 15

Figure 3. Guest user game ... 16

Figure 4. Registration form ... 16

Figure 5. Error message, when creating account with already engaged username 17

Figure 6. Incorrectly entered data .. 17

Figure 7. Authenticated user screen ... 18

Figure 8. Authenticated user bar(teacher) .. 18

Figure 9. Authenticated user bar(student) .. 18

Figure 10. Adding new teacher.. 19

Figure 11. Alert message, when incorrect username is entered 19

Figure 12. Message of successful role switching ... 19

Figure 13. Request sending ... 20

Figure 14. Query to server ... 20

Figure 15. Response from server ... 21

Figure 16. System without Bootstrap and jQuery .. 21

Figure 17. System with Bootstrap and jQuery ... 22

Figure 18. Mobile version with no compatibility ... 23

Figure 19. Mobile version with compatibility .. 24

Figure 20. Test inline frame .. 25

Figure 21. Test upload .. 26

Figure 22. Select element for choosing test ... 26

Figure 23. Function for making test visible ... 26

Figure 24. Function for creating option values .. 26

Figure 25. Necessary scripts .. 27

Figure 26. Firebase configuration .. 27

Figure 27. function CheckQuestionsCompleted() modification.................................... 28

Figure 28. Select element for choosing test ... 29

Figure 29. Option values creation .. 29

file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270687
file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270688
file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270689
file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270690
file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270691
file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270692
file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270693
file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270694
file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270695
file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270696
file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270697
file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270698
file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270702
file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270703
file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270704
file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270705
file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270707
file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270708
file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270714

10

Figure 30. function answers() .. 29

Figure 31. Results of the test ... 30

Figure 32. Results download ... 30

Figure 33. function downloadResults() .. 30

Figure 34. Test deletion... 31

Figure 35. Game text field ... 32

Figure 36. Incorrectly entered opponent .. 32

Figure 37. Game menu .. 33

Figure 38. Game with both players entered ... 34

Figure 39. Game after opponent’s leaving ... 35

Figure 40. Chat form ... 35

Figure 41. Example of chat ... 36

Figure 42. Creation of key ... 37

Figure 43. Message encryption .. 37

Figure 44. Message decryption .. 38

Figure 45. function printMessages(obj) ... 39

Figure 46. Images in game .. 40

file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270717
file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270718
file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270720
file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270721
file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270722
file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270723
file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270724
file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270725
file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270726
file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270727
file:///C:/Users/Alex/Desktop/loputoo155223IAPB.docx%23_Toc47270732

11

List of tables

Table 1. Example of messages stored on server ... 38

12

1 Introduction

Assessment is an important part of learning process. Mostly teachers check student work

manually. Automation of this process can save time for teachers. Also, it would save time

for students, who are waiting for their results. System, which helps teacher with

assessment can make learning process more comfortable for those who study and those

who teach as well.

The objective of this thesis is to simplify student assessment for teacher. After teacher

created test, system should provide possibility to show this test in web browser and

receive results from it. To increase attractiveness of the system for students is

implemented possibility to play multiplayer game and use the chat system, which

provides opportunity of communication for users during the game. Communication

between users are encrypted using a symmetric encryption system and the encryption key

would be generated locally, using randomness generated by game players.

13

2 Why create a testing system?

Nowadays, when many governments have closed schools and universities, studying

process must go on [1]. There are a lot of applications and systems to create tests [2] [16].

Unfortunately, some of them are giving only free trial or not giving opportunity to embed

created test and result of it into your own website. If test is not embedded, teacher should

somehow provide it to students. If teacher don’t have own website, gathering this

information after school closes can be difficult. Also, it is comfortable for teacher if test

and test result are on same webpage. That is the reason why tests should be embedded to

webpage.

System can be called secure, because it uses cloud to store results [17].

Most online games include communication between players [3]. Messaging for players

should be encrypted [4]. Chat with symmetric encryption is a solution. Since encryption

keys for messaging could be created locally using the randomness created by players in

gameplay. Bring Your Own Key model is very suitable. This model allows users to

manage keys for encryption [5].

Goal of this thesis is to create a system, which provide:

• Uploading tests

• Participating in tests

• Saving the results of the test participants

• Ordering the results of the test participants in scoreboard (users, who receive

better grades are first in the result table)

• Playing rock-paper-scissors game with another player with possibility of secure

communication

14

2.1 Differences from other popular web testing systems

If many systems are already existing, why should new system be created? One popular

game-based learning platform is “Kahoot!” [18]. This platform allows creating quizzes

and sharing them. It seems that “Kahoot!” achieve needed goals: teacher have test which

is not needed to be checked manually. Unfortunately, it has a problem. After quiz is

created, game pin or link is generated for it. So, this pin must be somehow be distributed

to students. Also, question for quiz can have maximum 4 answers. Moreover, quiz and

results of this quiz cannot be embedded to another website. This platform is not

multipurpose. For example, it is impossible to implement chat system mentioned in 1.

“Strawpoll” is another system for creating quizzes [19]. It also provides creating quizzes

and sharing them with participants. Unfortunately, each poll has only 1 question, which

makes this system very uncomfortable for test creation. Like a “Kahoot!”, link to the quiz

must be distributed to students and chat system or game is impossible to implement.

Created system allows uploading test directly from browser. Test participants do not need

a pin or link to start a test, they would see all available tests. Results of the test can also

be seen in browser. System also provide Rock-Paper-Scissors game with encrypted chat

with opponent.

15

3 System

System provide registration, logging in with authentication and use without

authentication. System is written in HTML5, Hypertext Preprocessor (PHP) and

JavaScript (JS). Asynchronous JavaScript and XML(AJAX) is used for dynamic change

of content on the webpage without reloading the whole page.

3.1 Logging without authentication

If user do not want to log in with created account or user do not have account and do not

want to create it, user can enter system as “Guest”. “Guest” user can see welcoming

message (Figure 1).

Guest can also see bar with available functionality (Figure 2). Guest user can participate

only in one test and results of this test are not saved.

After pressing button “Game”, game would be started with computer, because guest user

cannot play game with other players (Figure 3).

Figure 2. Guest user bar

Figure 1. Guest

user screen

16

3.2 Registration

To receive full functionality, user need to register in system. As seen in Figure 4, to create

account user must choose username and create password.

Figure 4. Registration form

Figure 3. Guest user game

17

System uses MySQL database to store and retrieve user data. So, when user press

„Register” button new row in table is created, if username is unique. Otherwise, user can

see error message above the registration form (Figure 5).

Form with text field, which is sending to server might be dangerous to database because

SQL injection can be used. To prevent SQL injection in MySQL table function

mysql_real_escape_string() is used. This function helps avoiding special characters [6].

3.3 Logging with authentication

When registered user is logging in to system, request to server is sent. Comparison of

entered data and data stored on server is happening. If user is registered and password is

correct, log in procedure is finished. Otherwise, user can see an error message (Figure 6).

As was mentioned, this user send data to server via this form. Similarly to registration

form (Figure 4), SQL injection should be prevented here. In order to prevent it function

mysql_real_escape_string() is used [6].

After authentication user can see welcoming message, own role and list of users, who are

currently online (Figure 7).

Figure 6. Incorrectly entered data

Figure 5. Error message, when creating account with already engaged

username

18

Like guest user, authenticated user can see a menu bar with available functionality. In

contrast with guest user, authenticated user receives more functionality (Figure 8).

3.4 User activities

There are two types of registered users in system: Students and Teachers.

All available functionality for “Student” user can be seen in Figure 9. Students can

participate in tests (choose suitable test and press button “Start test” (Figure 22), which

makes frame with suitable test visible (Figure 20)), play a game with computer or other

player (5.1), see results of done tests (4.4).

All available functionality for “Teacher” user can be seen in Figure 8. Teachers can use

the same opportunities as students. Some functions are only available for teachers, such

as role switching (3.5), test adding (4.2), test deleting (4.5).

3.5 Role switching

After registration user role is “Student”. Role can be switched to “Teacher”. For

switching, “Add Teacher” button should be pressed (Figure 8). Students cannot switch

their roles to “Teacher”. They do not have “Add Teacher” button (Figure 9).

Figure 7. Authenticated

user screen

Figure 8. Authenticated user bar(teacher)

Figure 9. Authenticated user bar(student)

19

Only another teacher can perform this action. Teacher can enter username of a person

who needs a teacher role into a text field (Figure 10).

If entered username is wrong, alert message would be received. Message can be seen in

Figure 11.

Otherwise, alert message of successful switching will be shown (Figure 12).

3.6 Logging out

When authenticated user finished participating in test or playing a game, “Log out” button

from the bar (Figure 8) should be pressed. After button is pressed, session is destroyed

and authenticated user become guest user in system. Moreover, user “disappears” from

Available opponents list, so other users after refreshing page, can mention that user is not

currently online. Also, all messages, which were sent by user are deleted after logging

out.

Figure 12. Message of successful role

switching

Figure 10. Adding new teacher

Figure 11. Alert message, when incorrect

username is entered

20

3.7 Communication with MySQL database

As was stated in 3.2, system uses MySQL database. User send requests and receive

responses from database, most of them during the game. For example, switching role to

“Teacher”. Firstly, request with data is sent to PHP file (Figure 13).

var teacher = document.getElementById("adding").value.toString();

 var xhttp = new XMLHttpRequest();

 xhttp.onreadystatechange = function() {

 if (this.readyState == 4 && this.status == 200) {

 console.log(this.response);

 }

};

xhttp.responseType = 'json';

xhttp.open("POST", "add.php", true);

xhttp.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

xhttp.send("teacher=" + teacher);

Figure 13. Request sending

Secondly, query to server is made (Figure 14).

<?php

 include 'db.php';

 $teacher = mysqli_real_escape_string($connection, $_POST['teacher']);

$sql1 = "SELECT username FROM t155223_testing2 WHERE username = '$teacher'";

$server = $connection->query($sql1);

$teacherArray = Array();

$answer=mysqli_fetch_array($server);

if ($server = $connection->query($sql1)) {

 echo "";

 }

if ($server->num_rows < 1) {

} else {

 $sql = "UPDATE t155223_testing2 SET role = 'Teacher'

 WHERE username = '$teacher'";

 $server1 = $connection->query($sql);

 $teacherArray[] = $answer['username'];

}

 echo json_encode($teacherArray);

?>

Figure 14. Query to server

Finally, user is getting response (Figure 15).

21

xhttp.onload = function(data) {

 var obj = xhttp.response;

 if (obj.length == 0) {

 alert("No such username registered!");

 } else {

 alert(obj[0] + " is now a teacher!");

 }

 };

}

Figure 15. Response from server

3.8 Implementation

Libraries for design or JavaScript and HTML interaction were not used in implementation

of this system. As the system was named lightweight, that imply for its performance. For

example, Bootstrap 4 and jQuery use, makes system load slower in almost 2.5 times

(Figure 16 and Figure 17).

Figure 16. System without Bootstrap and jQuery

22

3.9 Compatibility with mobile devices

Desktop version of system is not suitable for smartphones. Small buttons, small text boxes

and overlapping images make webpage uncomfortable for use (Figure 18).

With CSS media is used to make webpage compatible for mobile devices without

changing desktop version design [14]. Size and location of some object were changed for

convenience. This can be seen in Figure 19.

Figure 17. System with Bootstrap and jQuery

23

Figure 18. Mobile version with no compatibility

24

Figure 19. Mobile version with compatibility

25

4 Tests

4.1 Test creation

Teacher can choose a way to create a test. It can be created manually with

HTML/JavaScript or some program can be used for creation of test [2]. For example, free

application Hot Potatoes can be used [7].

4.1.1 Requirements for test

Test, which is needed to be uploaded, should be suitable for system. It means that test file

should be an HTML page (htm or html format). Styles and scripts can be added to this

file under <style> and <script> tags or uploaded as separate files (in css and js formats).

Script should have function for calculating result of the test. Saving test results to

Firebase is described in 4.3. Hot Potatoes application is advised to use, because it allows

generating a test file in htm format. Source files can be modified, so it will not be needed

for teacher to modify each test file manually.

4.2 Adding a test

After test is created, it should be added to web page. As was stated earlier test should be

embedded to web page. Suitable decision is iframe [8]. Use of inline frame is shown in

Figure 20.

<div id = "testing">

<iframe id ="currentTest" onfocusout=this.src='about:blank' width="750"
height="550"></iframe>

</div>

Figure 20. Test inline frame

Teacher should choose suitable file and upload it to system. Button “Upload Files” should

be pressed (Figure 21).

26

Option values for select element, which make participating in test and getting the results

possible will be created automatically (Figure 22).

function testing() {

 var iframe = document.getElementById("testToStart").value;

 var frame = document.getElementById('currentTest');

 frame.src = iframe;

 document.getElementById("testButtons").style.visibility = "hidden";

 document.getElementById("testing").style.visibility = "visible";

 document.getElementById("newTest").style.visibility = "hidden";

 document.getElementById("deleteButtons").style.visibility = "hidden";

}

Figure 23. Function for making test visible

Figure 23 is showing a function, which makes test visible. Shown frame and function are

the same for all test, so only option values for select element, should be added. Option

value creation is shown in Figure 24. Argument jsonData is data from file tests.json,

which contains information about uploaded tests.

function setTest(jsonData) {

 for (i = 0; i < jsonData.length; i++) {

 var option = document.createElement("option");

 option.text = jsonData[i].test;

 document.getElementById("testToStart").add(option);

 }

}

Figure 24. Function for creating option values

4.3 Saving test results

In order to save results, test code should be modified. Firebase is used to store test results

[15]. Firstly, necessary scripts should be added (Figure 25).

Figure 21. Test upload

Figure 22. Select element for choosing test

27

<!-- Insert these scripts at the bottom of the HTML, but before you use any
Firebase services -->

 <!-- Firebase App (the core Firebase SDK) is always required and must be
listed first -->

 <script src="https://www.gstatic.com/firebasejs/7.11.0/firebase-
app.js"></script>

 <!-- If you enabled Analytics in your project, add the Firebase SDK for
Analytics -->

 <script src="https://www.gstatic.com/firebasejs/7.11.0/firebase-
analytics.js"></script>

 <!-- Add Firebase products that you want to use -->

 <script src="https://www.gstatic.com/firebasejs/7.11.0/firebase-
firestore.js"></script>

<script>

Figure 25. Necessary scripts

Secondly, Firebase configuration should be added (Figure 26).

var firebaseConfig = {

 apiKey: "AIzaSyCUNnlvU8pl8CJP1jsADQvt6TEjhDdop8g",

 authDomain: "testing-2ab9d.firebaseapp.com",

 databaseURL: "https://testing-2ab9d.firebaseio.com",

 projectId: "testing-2ab9d",

 storageBucket: "testing-2ab9d.appspot.com",

 messagingSenderId: "641209812428",

 appId: "1:641209812428:web:1b0cd65f5c36e17bb9c969",

 measurementId: "G-Q9CT68ZW0G"

 };

 // Initialize Firebase

 firebase.initializeApp(firebaseConfig);

 firebase.analytics();

Figure 26. Firebase configuration

These scripts and configuration can be added only once to Hot Potatoes source file

(jquiz7.ht). After this, web page with test will get necessary part of code automatically.

Finally, when test is done, data should be sent to server. In case of test, created with Hot

Potatoes, function CheckQuestionsCompleted() should be modified (Figure 27).

Modification is the same for every test. This modification can be also done only once in

source file (jquiz7.js).

28

 if (QsCompleted >= QArray.length){

 CalculateOverallScore();

 var xhttp = new XMLHttpRequest();

 xhttp.onreadystatechange = function() {

 if (this.readyState == 4 && this.status == 200) {

 //console.log(this.response);

 }

};

xhttp.responseType = 'json';

xhttp.open("POST", "testing.php", true);

xhttp.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

xhttp.send();

xhttp.onload = function(data) {

 var obj = xhttp.response;

 var db = firebase.firestore();

 var name =
location.pathname.substring(location.pathname.lastIndexOf("/") + 1);

 db.collection("tests").add({

 user: obj[0],

 name: name,

 score: Score

 })

 .then(function(docRef) {

 console.log("Document written with ID: ", docRef.id);

})

.catch(function(error) {

 console.error("Error adding document: ", error);

 });

};

 return ExerciseCompleted;

Figure 27. function CheckQuestionsCompleted() modification

4.4 Getting test results

After the end of testing, teacher must have possibility to get students result. Only users

with role „Teacher” can view the results of all participants. Other users can only see own

result.

Similarly to adding, retrieving results also require creating option values. Function

answers() should be called to show results. This function can be seen in Figure 30. Option

values creation is shown in Figure 29. Argument jsonData is data from file tests.json,

which contains information about uploaded tests. Function answers() shows teacher

result of the test in descending order. That means, that students with biggest amount of

points are above those, who have smaller score (Figure 31). To see result of the test, this

29

test should be chosen in select element and button “Get Results” should be pressed

(Figure 28).

function setResult(jsonData) {

 for (i = 0; i < jsonData.length; i++) {

 var option = document.createElement("option");

 option.text = jsonData[i].test;

 document.getElementById("resultOfTest").add(option);

 }

}

Figure 29. Option values creation

function answers() {

 var testName = document.getElementById("resultOfTest").value;

 role = document.getElementById("role").nextSibling.data;

 var username = "<?=$_SESSION['user']?>";

 var db = firebase.firestore();

 document.getElementById("answers").innerHTML = "";

 var test = db.collection("tests");

 test.orderBy("score", "desc").get().then(function(querySnapshot) {

 querySnapshot.forEach(function(doc) {

 // doc.data() is never undefined for query doc snapshots

 var data = doc.data();

 if (data.name == testName) {

 if (role == 'Teacher') {

 document.getElementById("answers").innerHTML += data.user + ": "
+ data.score + "
";

 //console.log(doc.id, " => ", doc.data());

 } else {

 if (data.user == username) {

 document.getElementById("answers").innerHTML += data.user + ":
" + data.score + "
";

 }

 }

 }

 });

});

 document.getElementById("answers").style.visibility = "visible";

 document.getElementById("answerButtons").style.visibility = "hidden";

}

Figure 30. function answers()

Figure 28. Select element for choosing test

30

Teacher can also download test results. Button “Download” should be pressed (Figure

32). Results can be downloaded in txt format. Function for creating and downloading file

is shown in Figure 33.

function downloadResult() {

 var downloading = document.createElement('a');

 downloading.download = "result.txt";

 downloading.href = "";

 var text = document.getElementById("answers").childNodes;

 var results = "";

 for(i = 0; i < text.length; i++) {

 if (i % 2 == 0) {

 console.log(text.item(i).data);

 results += text.item(i).data + "\n";

 }

 }

 results = results.replace(/\n/g, "\r\n");

 var data = new Blob([results], {type: 'text/plain'});

 var url = window.URL.createObjectURL(data);

 downloading.href = url;

 document.body.appendChild(downloading);

 downloading.click();

 document.body.removeChild(downloading);

}

Figure 33. function downloadResults()

Figure 31. Results of the

test

Figure 32. Results download

31

4.5 Test deletion

Test, which is not needed anymore can be deleted by user with role “Teacher”. Teacher

should choose test, which is needed to be deleted and press button “Delete test” (Figure

34).

Pressing this button will modify file tests.json, which contains information about

uploaded tests. Information about test, which was chosen in select element (Figure 34)

will be deleted. After this it would be impossible to participate in this test or get result

from it.

Figure 34. Test deletion

32

5 Game

As was stated earlier, game in this system is Rock-Paper-Scissors. Main differences

between guest player and authenticated player are availability of encrypted chat and

opportunity to play with another player (for authenticated player).

5.1 Starting a game

To start a game, authenticated user should press button “Game” (Figure 8). After this user

can enter suitable opponent for the game into the text field (Figure 35).

In contrast with registration form, this text field should not be protected from SQL

injection because this form is not sending data to server. It is working with data, which is

already loaded from server.

If entered opponent’s username is incorrect, play can see message (Figure 36).

Otherwise, user can see game menu (Figure 37).

Figure 35. Game text field

Figure 36. Incorrectly entered opponent

33

When second player enters a game, message “Wait for second player” disappearing and

it is possible to play (Figure 38).

Figure 37. Game menu

34

5.2 Quitting a game

If player during a game press “Log out” button or started a new game with another player,

his opponent must know that opponent is not playing anymore. If opponent is quitting,

player after making new move can see warning message over the game menu (Figure 39).

Figure 38. Game with both players entered

35

5.3 Chat

After game started, when first moves are done, possibility to communicate with opponent

is available. Form to send messages can be found over the game menu (Figure 40).

Already sent messages can be found under game menu (Figure 41).

Figure 39. Game after opponent’s leaving

Figure 40. Chat form

36

5.3.1 Encryption

As was mentioned before chat should be encrypted. Two main types of encryption are

symmetric and asymmetric. In case of this chat symmetric encryption is more suitable,

because encryption and decryption are happening with one key [9]. That means only one

key should be generated.

5.3.2 Encryption keys

Considering the fact, that encryption keys should be created locally, players moves can

be used for generating key. When two users are playing with each other, their moves are

converted to hexadecimal string with appropriate length. AES-128 algorithm is used for

encryption, so sufficient length of hexadecimal string used for key is 32 characters [10].

AES-128 is suitable because keys with bigger number of bits would slow down the

encryption/decryption process [11]. Considering the fact, that there are no successful

attacks on AES-128 at present, there is no practical use of algorithms with longer keys in

described game [20]. Creation of key is shown in Figure 42. Variable obj in function

convert(obj) is an array with all moves of the players.

Figure 41. Example of chat

37

function convert(obj) {

 var string = "";

 if (obj.length % 2 == 0 && obj.length > 0) {

 for(i = 0; i < obj.length; i++) {

 string += obj[i];

 }

 binary(string);

 }

}

function binary(string) {

 var converted = "";

 for (i = 0; i < string.length; i++) {

 converted += "0" + string[i].charCodeAt(0).toString(2);

 }

 hexConvert(converted);

}

var send = "";

function hexConvert(converted) {

 question = BigInt(converted);

 var hex = question.toString(16);

 if (hex.length < 32) {

 console.log("Make more moves!");

 } else {

 var key = "";

 var answer = hex.split("", 32);

 for (i = 0; i < answer.length; i++) {

 key += answer[i];

 }

 keys = key;

 document.getElementById("sending").style.visibility = "visible";

 document.getElementById("resulting").style.visibility = "visible";

 }

}

Figure 42. Creation of key

5.3.3 Message encryption with given key

Stanford Javascript Crypto Library is used for encrypting message [12]. Message

encryption is shown in Figure 43. Function encrypt(key, message) from library is used,

where message is text, which user want to send and key is encryption key generated

locally.

function encryptMessage(message, key) {

 send = sjcl.encrypt(key, message);

}

Figure 43. Message encryption

38

Encryption key is sensitive information, so it cannot be stored on server. So, even in case

of data leak strangers would not get access to messages. Message content would be

unreadable. Message format on server can be seen in Table 1.

id username game message

147 Bob with

Jimmy

{"iv":"8wMC9RDGGLglU0imriKXMA==","v":1,

"iter":10000,

"ks":128,"ts":64,"mode":"ccm","adata":"","cipher":"aes",

"salt":"r56TiAzsG28=","ct":"PDyEH3DMEvejDJs="}

148 Jimmy with

Bob

{"iv":"Mlc1TMaEOd7wPQWazEKI/Q==","v":1,

"iter":10000,

"ks":128,"ts":64,"mode":"ccm","adata":"","cipher":"aes",

"salt":"r56TiAzsG28=","ct":"9IC9pq9nufBwq3YkM54="}

Table 1. Example of messages stored on server

5.3.4 Message decryption with given key

Stanford Javascript Crypto Library is also used for decryption [12]. Message decryption

is shown in Figure 44. Function decrypt(key, message) from library is used, where

message is encrypted text and key is the same key, which was used for encrypting.

function decryptMessage(message, key) {

 var decrypted = sjcl.decrypt(key, message);

 texting = decrypted;

}

Figure 44. Message decryption

It is needed to generate key only once for each chat. If key would change with every

move, there would no possibility to read old messages with this key. During the game the

sequence of player’s moves is increasing. For successful communication key must be the

same for both who participate in dialog. When first message is sent, in function

printMessages(obj) key, which was used for encrypting this message is saved. Key will

be the same until new game is started. Function printMessages(obj) can be seen in Figure

45.

39

function printMessages(obj) {

 document.getElementById("resulting").innerHTML = "";

 if (stableKey === "") {

 for(i = 0; i < obj.length; i++) {

 if ((i + 1) % 2 == 0) {

 var messageFromServer = obj[i];

 decryptMessage(messageFromServer, keys);

 stableKey = keys;

 document.getElementById("resulting").innerHTML += author + ": " +
texting + "
";

 } else {

 author = obj[i];

 }

 }

} else {

 for(i = 0; i < obj.length; i++) {

 if ((i + 1) % 2 == 0) {

 var messageFromServer = obj[i];

 decryptMessage(messageFromServer, stableKey);

 document.getElementById("resulting").innerHTML += author + ": " +
texting + "
";

 } else {

 author = obj[i];

 }

}

}

}

Figure 45. function printMessages(obj)

5.3.5 Opportunities for attacks

Messages are stored on server. When user start a new game or log out, old messages are

deleted. Attack in real time can be done. If someone would gain access to server,

messages can be seen in table (Table 1). Messages are encrypted, so they cannot be read.

Without an encryption key it would take incredibly long to decipher message [20].

So, if it is too hard to brute force, someone would try to retrieve encryption key. If

sequence of player moves is gained, suitable key for algorithm can be created.

Unfortunately for this “bad guy” sequence of all players moves would not help him to

generate right key. Key for each dialogue is generated after first message is sent. So not

only sequence of moves is needed to replicate used key in dialogue, but also it is needed

to know exact moment when communication was started (sequence of players moves at

this exact moment).

40

Rock-Paper-Scissors is well-known game. There are only 3 combinations for each move.

Encryption key can be generated without knowing the right sequence of moves. It

depends on number of possible combinations. 32n is number of possible combinations,

there n is number of moves made by each player. If each player made 3 moves and after

that conversation was started, that means 729 different keys could be generated.

5.4 Images used in game

Some images are used in game. Images can be seen in Figure 46. These pictures are

downloaded from Unsplash. It is a site, that provides stock photographs, which are free

to use [13].

Figure 46. Images in game

41

6 Summary

The aim of this work was to create system, where teacher can get results of tests from

students without checking them manually. Also, multiplayer game with encrypted chat

was created.

Created system allows teacher to upload a test and to see student’s results from uploaded

tests. Uploading tests and receiving results are happening directly from browser, so it is

not needed to handle server directly. Result of the test is automatically calculated, so there

is need for teacher to check each work separately.

A lot of applications for creating test already exists [2]. For teacher it is better to have this

implemented system, because it has profits comparing to existing applications. There is

no trial version, so system can be used for years. Web tests are embedded to webpage, so

users do not need to download third-party software. No limits for test, subject, question

or result number.

System let users play Rock-Paper-Scissors game with another user and with possibility

of secure communication. Security of communication is achieved with use of

cryptography (AES-128 algorithm used for encryption and decryption; encryption keys

generated locally).

Implemented system can be developed further. Getting several tests results at same time

or getting specific student’s result could be done. System can be also used not only for

educational purposes. For example, some other game could be implemented in system.

42

References

[1] Valitsus kuulutas Eestis välja eriolukorra 1. maini [WWW]

https://www.valitsus.ee/et/uudised/valitsus-kuulutas-eestis-valja-eriolukorra-1-maini

(25.03.20)

[2] Top 10 Quiz Makers for Teachers and Educators [WWW]

https://www.digitalchalk.com/resources/blog/elearning-tools/top-10-quiz-makers-teachers-

educators (25.03.20)

[3] How Does Online Gaming Affect Social Interactions [WWW]

https://www.sciencedaily.com/releases/2007/09/070915110957.htm (26.03.20)

[4] Why encrypted messaging is more important than ever [WWW]

https://techwireasia.com/2017/11/encrypted-messaging-important-ever/ (26.03.20)

[5] What is Bring Your Own Key (BYOK) [WWW] https://www.thalesesecurity.com/faq/key-

secrets-management/what-bring-your-own-key-byok (26.03.20)

[6] mysql_real_escape_string [WWW] https://www.php.net/manual/en/function.mysql-real-

escape-string.php (27.03.20)

[7] Hot Potatoes Home Page [WWW] https://hotpot.uvic.ca/ (30.03.2020)

[8] HTML <iframe> Tag [WWW] https://www.w3schools.com/tags/tag_iframe.asp

(30.03.2020)

[9] Description of Symmetric and Asymmetric Encryption [WWW]

https://support.microsoft.com/en-us/help/246071/description-of-symmetric-and-

asymmetric-encryption (01.04.2020)

[10] How long (in letters) are encryption keys for AES? [WWW]

https://security.stackexchange.com/questions/45318/how-long-in-letters-are-encryption-

keys-for-aes/45334 (01.04.2020)

[11] The Doghouse: Crypteto [WWW]

https://www.schneier.com/blog/archives/2009/09/the_doghouse_cr.html (01.04.2020)

[12] Stanford Javascript Crypto Library [WWW] http://bitwiseshiftleft.github.io/sjcl/

(01.04.2020)

[13] License [WWW] https://unsplash.com/license (03.04.2020)

[14] CSS Media Queries [WWW] https://www.w3schools.com/css/css3_mediaqueries.asp

(13.04.20)

[15] Firebase [WWW] https://firebase.google.com/ (09.05.2020)

[16] D. Liu and C. Lin, „Sherlock: a Semi-Automatic Quiz Generation System using Linked

Data,“ in Proceedings of the ISWC 2014 Posters & Demonstrations Track a track within the

13th International Semantic Web Conference (ISWC 2014): CEUR Workshop Proceedings,

2014, pp. 9-12.

[17] 4 Reasons Why the Cloud Is More Secure Than Legacy Systems [WWW]

https://www.tripwire.com/state-of-security/security-data-protection/4-reasons-why-the-

cloud-is-more-secure-than-legacy-systems/ (17.05.20)

https://www.valitsus.ee/et/uudised/valitsus-kuulutas-eestis-valja-eriolukorra-1-maini
https://www.digitalchalk.com/resources/blog/elearning-tools/top-10-quiz-makers-teachers-educators
https://www.digitalchalk.com/resources/blog/elearning-tools/top-10-quiz-makers-teachers-educators
https://www.sciencedaily.com/releases/2007/09/070915110957.htm
https://techwireasia.com/2017/11/encrypted-messaging-important-ever/
https://www.thalesesecurity.com/faq/key-secrets-management/what-bring-your-own-key-byok
https://www.thalesesecurity.com/faq/key-secrets-management/what-bring-your-own-key-byok
https://www.php.net/manual/en/function.mysql-real-escape-string.php
https://www.php.net/manual/en/function.mysql-real-escape-string.php
https://hotpot.uvic.ca/
https://www.w3schools.com/tags/tag_iframe.asp
https://support.microsoft.com/en-us/help/246071/description-of-symmetric-and-asymmetric-encryption
https://support.microsoft.com/en-us/help/246071/description-of-symmetric-and-asymmetric-encryption
https://security.stackexchange.com/questions/45318/how-long-in-letters-are-encryption-keys-for-aes/45334
https://security.stackexchange.com/questions/45318/how-long-in-letters-are-encryption-keys-for-aes/45334
http://bitwiseshiftleft.github.io/sjcl/
https://unsplash.com/license
https://www.w3schools.com/css/css3_mediaqueries.asp
https://firebase.google.com/
https://www.tripwire.com/state-of-security/security-data-protection/4-reasons-why-the-cloud-is-more-secure-than-legacy-systems/
https://www.tripwire.com/state-of-security/security-data-protection/4-reasons-why-the-cloud-is-more-secure-than-legacy-systems/

43

[18] Kahoot! [WWW] https://kahoot.com (19.06.20)

[19] Strawpoll [WWW] https://strawpoll.com (19.06.20)

[20] AES Encryption isn’t Cracked [WWW]

https://web.archive.org/web/20150108165723/https://blog.agilebits.com/2011/08/18/aes-

encryption-isnt-cracked/ (25.06.20)

https://kahoot.com/
https://strawpoll.com/

