
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Silver Valdvee 179390IADB

ADDING ZOOMING PRESENTATION
CAPABILITY TO LIBREOFFICE IMPRESS

Bachelor's thesis

Supervisor: Edmund Laugasson

Master’s degree

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Silver Valdvee

SUURENDAVA ESITLUSE
FUNKTSIONAALSUSE LISAMINE

LIBREOFFICE IMPRESSILE

bakalaureusetöö

Juhendaja: Edmund Laugasson

magistrikraad

Tallinn 2021

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Silver Valdvee

17.05.2021

3

Abstract

This thesis produced a zooming and panning feature known as zooming presentations

for LibreOffice Impress. To a student of software development, the thesis briefly

describes methods for extending complicated and aged software. The requirements set

for the planned feature were zooming in and out in LibreOffice Impress slideshow mode

and then also transforming objects on the slideshow such that the viewport would

appear to move. Existing code was used wherever possible, which was also the main

difficulty of this work—finding ways to connect code across the codebase to create new

features. Tangled class hierarchies and high complexity of development were observed.

From setting up a development environment and weighing different options for

integrated development environments, this thesis found Visual Studio Code to be the

best for specifically LibreOffice development.

This thesis is written in English and is 23 pages long, including 4 chapters, 33 figures

and 0 tables.

4

Annotatsioon

Suurendava esitluse funktsionaalsuse lisamine LibreOffice

Impressile

Selle lõputöö tulemusena valmis LibreOffice Impressi tarkvarale lisa, mis lubab

kasutada suurendava esitluse võimalusi. Tarkvaraarenduse tudengile on lõputöö abiks,

sest kirjeldab lühidalt keerulise ja vana tarkvara arendamise tehnikaid. Tarkvarale

kehtestatud nõudeks oli esitluserežiimis pildi suurendamine ja vähendamine ning pildi

liigutamine. LibreOffice’is juba olemasolevat koodi kasutati igal võimalusel ning see oli

ka raskeim osa tööst — koodi ühendamine kogu koodibaasi ulatuses. Arendustegevuse

käigus taluti segast klassihierarhia ülesehitust ja üldist keerukust memotehnikaid

kasutades. Arenduskeskonna üles seadmisel pandi tähele, et konkreetselt LibreOffice

Impressi arenduseks on parim integreeritud programmeerimiskeskond Visual Studio

Code.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 23 leheküljel, 4 peatükki, 33

joonist, 0 tabelit.

5

List of abbreviations and terms

IA Department of Computer Systems

LO LibreOffice

SID Slot ID

GUI Graphical User Interface

URL https://et.wikipedia.org/wiki/Internetiaadress

6

Table of Contents

1 Introduction...11

1.1 General background..11

1.2 Problem formulation...11

1.3 Objectives and software requirements..12

1.4 Overview...12

2 Methodology..14

2.1 Overview of LibreOffice Impress codebase...14

2.2 Overview of tools used...15

2.3 Overview of the development process..16

2.4 Edits to existing code..21

2.4.1 svx/sdi/svx.sdi line 9126..21

2.4.2 sd/source/ui/view/drviewse.cxx line 728...21

2.4.3 sd/sdi/_drvwsh.sdi...22

2.4.4 include/sfx2/sfxsids.hrc...23

2.4.5 slideshow/source/engine/slideshowimpl.cxx...23

2.4.6 ZoomingAnimation.cxx...24

2.4.7 ZoomingAnimation.hxx..25

2.4.8 Service.hxx..26

2.4.9 NotificationCenter in Service.hxx...27

2.5 Takeaways..28

2.5.1 File slideshow/source/engine/slideshowimpl.cxx...28

2.5.2 cppcanvas/source/inc/servicefolder/Service.hxx...30

2.6 Fullfillment of software requirements..31

3 Findings and discussion...33

4 Summary..36

 References..37

 Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis..38

7

 Appendix 2 slideshow/source/engine/animationnodes/ZoomingAnimation.cxx...........39

 Appendix 3 – slideshow/source/inc/ZoomingAnimation.hxx..42

 Appendix 4 – Service.hxx..44

 Appendix 5 – SlideshowImpl.cxx constructor...46

This table of contents contains file paths that are necessary in full because some of the
files exist under identical names in different paths. There are no URL-s in headings.

8

List of Figures

Figure 1: IRC chat history me (silver_est) getting help with code..................................19

Figure 2. Creating patches with GIT...20

Figure 3. The SID definition with properties..21

Figure 4. The exec method here responds to the SID..22

Figure 5. The method name for this slot is defined...23

Figure 6. Slot assigned an ID in include/sfx2/sfxsids.hrc...23

Figure 7. Initial setup of a slideshow regarding zooming presentations.........................24

Figure 8. Next slide listeners are not fired unless all zooming transitions are done.......24

Figure 9. Calculating timeTaken is essential in the interpolation...................................24

Figure 10. Interpolation for translations..25

Figure 11. Declaration of ZoomingAnimation..25

Figure 12. Singleton class S provides communication and storage between modules....26

Figure 13. A singleton object is initialized lazily once the getInstance2 method is called,

and then the method returns the same object every time it is called...............................26

Figure 14. Definition of a macro that stores a visibility attribute....................................26

Figure 15. Events can hold any data. The templated notification system is very flexible.

...27

Figure 16. An empty struct for an event type..27

Figure 17. Templates used to create a hub of listeners where all kinds of events can be

fired and responded to...27

Figure 18. Lazy initialization of a static templated vector of callback functions............27

Figure 19. notificationCenter is a member of S...27

Figure 20. Visibility attribute setting syntax...28

Figure 21. A basic setup of a vector that already contains elements...............................28

Figure 22. Template function calls to clear listeners for two events...............................28

Figure 23. A listener is added, which makes reacting to events possible........................28

Figure 24. The method for accessing the center iterator...29

Figure 25. Accessing and incrementing the center points iterator..................................29

9

Figure 26. Constructor arguments are taken from make_shared.....................................29

Figure 27. A struct for passing constructor arguments..30

Figure 28. Defined as an extern method in the header file, the symbol for getInstance2()

is defined in a library...30

Figure 29. getListeners method...30

Figure 30. Reinserting an activity to the queue allows the activity to run again when its

turn comes..31

Figure 31. Giving the activity a chance to run again if it wants by requeueing it...........31

Figure 32. Menuitem for adding an item to the zoom transition list...............................32

Figure 33. License agreement that was sent to the LibreOffice community mailing list.

...32

10

1 Introduction

1.1 General background

Using presentation software allows illustrating text with media and is more effective

than simple text. LibreOffice Impress (later also LO Impress) is free and open-source

presentation software. It enables users to compose, draw, write, decorate and animate

their slides and present them while looking at notes. Impress has all the advantages of

an open-sourced program. The most known LibreOffice competitors are Microsoft

Powerpoint and Prezi. It is also worth noting that LibreOffice has a chain of ancestors,

the latest and most well known being Apache OpenOffice [1] .

LibreOffice Impress has a slight advantage over both Microsoft Powerpoint and Prezi

[6] because LO code is shared. Being customizable by anyone, Impress is unique and

has added potential to fit to users’ needs. Powerpoint is customizable only through

extensions [5] . This restricts the degree to which Powerpoint can be adjusted.

Zooming presentations are also available in a software called Sozi [14] . Sozi isn’t a

standalone application like LibreOffice Impress is. Sozi relies on the principle that a

software should do one thing and do it well. Inkscape can be used to create

presentations with Sozi. Sozi also has the advantage of being open-source.

1.2 Problem formulation

LibreOffice Impress does not yet have zooming presentations. A zooming presentation

scales a slide and its contents and moves pans it across the screen. When zooming is

performed on an object smaller than a pixel, it is invisible until the zoom increases its

size. Impress’s nonfree software contestants do have the feature set, and it is due time

for LibreOffice Impress to have the same features. To have the best publicity and use

for this feature, it makes much sense to include it in LibreOffice Impress.

11

1.3 Objectives and software requirements

This work proposed to implement zooming presentations in LibreOffice Impress. Only

zooming and panning of viewport were attempted. Recognizing that LibreOffice has a

colossal codebase and is itself hard to navigate, a complete experience of zooming

presentations was not planned. Because of the amount of time needed to test and debug

a complex application thoroughly, this would be unsafe to attempt in the relatively short

thesis timespan.

It is not possible for zooming presentations to reach a LibreOffice release without

having a corresponding standard released to support saving the order of zooms into an

odp file. At the same time, it is incredibly helpful and welcome for people to implement

new features and work on LibreOffice. Without working code for zooming

presentations, there would be no motivation for technical writers to add this

functionality into a standard.

Further works on this topic would have to develop the software such that:

• zooming transitions can be reordered and removed,

• zooming transitions can be registered comfortably using the already available

viewport in sd module,

• hiding of elements in transitions is possible, like in Prezi.

1.4 Overview

This thesis is constructed as follows. Chapter 2 reports the methodology. First, the

LibreOffice codebase is described in detail for the components correlated with the thesis

problem. Then an overview of all the tools utilized for development follows.

Additionally, the complex development process is explained. Edits done to the code are

then described. Finally, some clever C++ takeaways from reading and writing code are

listed and explained. The final product of this work is described. It is shown how a

smooth zooming transition is now possible between presentation objects. Chapter 3

12

delves into analysis and discussion on the topic of LibreOffice Impress development. In

Chapter 4, a summary is provided.

13

2 Methodology

2.1 Overview of LibreOffice Impress codebase

“LibreOffice is Free Software. LibreOffice is made available subject to the terms of the

Mozilla Public License v2.0 which is reproduced below. It is based on code from

Apache OpenOffice made available under the Apache License 2.0 but also includes

software which differs from version to version under a large variety of other Open

Source licenses.” See [3] .

The code of LibreOffice Impress is a module on top of LibreOffice Draw. The latter is a

drawing software component of the LibreOffice suite. LibreOffice Draw and Impress

both use the sd module for editor features. The slideshow module is unique to

LibreOffice Impress. There, transitions, animations, slide changes, sound playback, and

even physics for animations are implemented. Some of the code is quite aged, dating

back to a predecessor of LibreOffice Draw named StarDraw. That is from where the

module name sd originates.

An Activity is something that gets queued. ActivityQueue is what keeps a queue of

activities to be completed and runs at the request of a SlideshowImpl. Then it loops

Activities and queues an Activity regularly when requested by the running Activity. An

Activity consists of an Animation and struct of options related to it. Struct

CommonOptions holds options to establish the length of the Animation, potential

acceleration, deceleration and enables storage of some pointers to shape objects — the

latter was not employed. The queue system is clever. It allows for various Activities to

be taking turns to repeat.

ZoomAnimation was added to permit zooming animations. Before, animations were

only considered as a way to move an object. Additionally, scaling and transforming

objects of the slides was adopted from the existing code. ZoomAnimation is a derived

class of NumberAnimation, which is a derived class of Animation. While an abstract

14

https://www.apache.org/licenses/LICENSE-2.0
https://www.mozilla.org/MPL/
https://www.fsf.org/about/what-is-free-software

Animation class should only be concerned with having virtual functions for performing

the animation: start, perform and end. Base class Animation still contained specific

parameters in a method for animating special shapes, undesirable base-class design. It is

apparent that all animations should inherit from Animation. As an unexpected

discovery, a few subclasses, including the aforementioned ZoomAnimation, overlooked

the shape specifics in an interesting way: giving only types for the overridden method

and dropping parameter names.

osl::MutexGuard const guard(m_aMutex);

2.2 Overview of tools used

Different operating systems were tried. It was challenging to set up the build process on

Microsoft Windows 10. Ubuntu version 20.04 was chosen instead. On Ubuntu, libraries

used in the build process are obtained easily by issuing commands to the Apt package

manager. The same cannot be said about Windows 10, where build dependencies were

supposed to be acquired by a broken script written by a LibreOffice contributor. Ubuntu

was chosen for these advantages. Different hosts for running Ubuntu were tried. First,

deploying Ubuntu on a virtual machine on the Windows 10 host was tried. This was

then cancelled due to loss of performance. The build process is lengthy, and any

performance loss adds hours of waiting time. A complete build of LibreOffice takes

about 1 hour and 10 minutes on a Ryzen 7 4700U laptop processor with eight cores.

Being able to use one fewer core would add an hour to the compilation process.

Virtualized cores on a virtual machine are also less performant than real hardware

processor cores.

Many code editors and Integrated Development Environments (IDEs) were considered.

Jetbrains CLion [8] was a good candidate until the realization that the inheriting

Makefiles [7] of LibreOffice cannot easily be made to work with CLion. Apache

NetBeans [9] was extensible with support for C++, but it was disregarded again for the

difficulty of setup. Finally, Visual Studio Code was used as a light editor. The

configuration file for this editor was automatically generated by a script that comes with

the LibreOffice codebase. The configuration that was generated by Visual Studio Code

was later used with CLion to configure the latter. Then when configured, CLion offered

15

many advanced features and with quick response times. This made CLion the best

option. CLion also supported a feature for which an extension was downloaded for

Visual Studio Code: numbered bookmarks are a big timesaver when working with huge

codebases.

Ccache [10] was used in the compilation process and saved hundreds of hours of time.

Each fix would have left me waiting for the compiler if it wasn’t for the precompiled

headers of Ccache. Reading compiler and linker errors was the only way available to

see if the code was correct.

The complete build process of LibreOffice takes an hour, but after that, additional

changes take minutes or seconds to compile. A change in a file included in many places

would trigger compilations of many more files than a change in a rarely included or

self-contained file.

Debugging was essential in fixing runtime errors and segmentation faults. Visual Studio

Code integrated debugging tools [11] were used, but they were too wrongly configured.

With a correct configuration “jump over” operation of the debugger would not have

jumped back and forth while also moving forward. Seeing buggy situations occurring in

the integrated debugger makes using GDB more appealing. At the same time,

debugging actions in a graphical environment are easier to remember and do not require

consulting a manual even for once.

Before patches could be uploaded to https://gerrit.libreoffice.org/ an account had to be

made. A tool called logerrit was also used to simplify uploading patches [15] .

2.3 Overview of the development process

Studying C++ and learning to work with the GNU G++ compiler was among the first

things accomplished. An application can only be written in C++ with knowledge of

syntax and experience for solving both compilation and linker problems.

In the beginning, many unpleasant timesavers were developed to verify if zooming the

viewport in a slideshow was reasonably doable. Transitions from slide to slide were the

first place that already had code for transforming the slides. Scaling, also known as

16

https://gerrit.libreoffice.org/

zooming, was then added to slide push transitions where the current slide moves up,

pushed by the next slide from below.

During the later parts of the development process, a digital notebook was kept. Noting

the task at hand was crucial because all tasks consist of tens of subtasks. Investigating

any of them without a fitting procedure would surely result in losing track of the

remainder. Much of the existing code is also very deeply nested object-oriented code

with several hierarchies of objects interleaved. It was frequent to have factories for

factories. One instance of a misleading documentation comment was noticed — a

namespace was labelled a class.

Variables that were critical for the task were written down as a tuple of name and

location.

Notekeeping was not enough on its own. Browsing through code required time because

overlooking any parts of it would cause a misunderstanding of the system. Reading

everything in the domain of LibreOffice Impress was a necessity to manifest an

understanding that would save time later.

IRC is a messaging protocol that was used to get help with the process. It has a few

caveats:

 not being able to see messages from when the IRC client was disconnected from

the server

 on some IRC clients, an inconvenient login mechanism

 no support for collapsible text or formatted multiline text

17

The laptop running the IRC client was constantly powered on to mitigate these

deficiencies. HEX IRC client was used because it preserves chat records from when it

has been connected. A lot of questions were asked on LibreOffice-dev IRC channel, and

multiple people responded to most questions. Getting started with the development

process was more straightforward, thanks to the help received. Usually, help was

needed finding places in code where a specific functionality could be implemented.

Upon configuration, the free HEX IRC client asked for multiple alternative usernames

to use if one of them was unavailable. When it lost connection to the internet, the

regular name was still being regarded logged in, and HEX logged in with an alternative

name.

18

Figure 1: IRC chat history me (silver_est) getting help with code

GIT was used for backups. For every backup, modified files and untracked files that

needed to be committed and were added to the GIT index. Then a commit was created

specifying a generic description of changes done. GIT commits were usually formatted

using a ghost prefix to establish a format for the title of the commit message. The ghost

prefix is a sentence: "When the changes from this commit are applied, it will". Then it is

followed, for example, by "move slot id, add missing parameters".

The command "git format-patch origin" was applied to create a series of ".patch" files.

These patch files include changes relative to the previous patch file. The first patch file

is dependent on the commit that was pulled from the remote origin for work on the

zooming features. See image below

A separate remote repository for code was not established because of the excessive

storage requirements to hold the entire codebase. Instead, all the patch files were backed

up to Google Drive. It was imperative to name the folder these patches are stored in

after the starting git commit hash. Then if progress was lost, everything could be

19

Figure 2. Creating patches with GIT.

restored by downloading the codebase from LibreOffice, checking out to the starting

commit using the hash in the folder name, and applying patches.

Figuring out which files to edit was difficult because even with a potential keyword to

search for, the same keywords like “AffineTransform”, “Animation”, “slideshow”, and

even filenames that contain these are in multiple modules. Knowing how to edit these

files sometimes required connecting parts of code and copying code into another place.

2.4 Edits to existing code

This subsection presents the most important edits done in the code base of LO.

2.4.1 svx/sdi/svx.sdi line 9126

Slots are required for creating new commands, and commands can be executed from all

customizable button locations in LibreOffice Impress. Slots connect C++ code to XML.

Figure below, see Figure 3, shows a slot file to adjust some slot options.

SfxVoidItem AddToTransitionList SID_ADD_TRANSITION_TO_LIST
()
[
 AutoUpdate = FALSE,
 FastCall = FALSE,
 ReadOnlyDoc = TRUE,
 Toggle = FALSE,
 Container = FALSE,
 RecordAbsolute = FALSE,
 RecordPerSet;

 AccelConfig = TRUE,
 MenuConfig = TRUE,
 ToolBoxConfig = TRUE,
 GroupId = SfxGroupId::View;
]

Figure 3. The SID definition with properties.

2.4.2 sd/source/ui/view/drviewse.cxx line 728

The final destination of a slot is C++ code, see Figure 4. The C++ code first gets a

reference to the singleton and then pushes an SdrObject to its vector zoomings. Figure

20

11 shows the final destination of a command. In this code fragment, the slot ID is

checked to be SID_ADD_TRANSITION_TO_LIST. Then it is checked that an object is

selected. A reference is acquired to the singleton that I created, and the zoomings vector

on it gets a new SdrObject inserted. This command was attached to a method on an

existing class that already had slots attached to it. Doing so helps make sure that

everything works the first time but also may confuse readers of the code.

void DrawViewShell::AddToTransitionList(SfxRequest& rReq){
 sal_uInt16 nSId = rReq.GetSlot();
 if(!mpDrawView->AreObjectsMarked()){return;}
 switch(nSId)
 {
 case SID_ADD_TRANSITION_TO_LIST:
 {
 if (mpDrawView->GetMarkedObjectList().GetMarkCount() > 0)
{
 ::tools::silverdev::S& s;
 s = ::tools::silverdev::getInstance2();
 auto name = mpDrawView->
GetMarkedObjectList().GetMark(0)->GetMarkedSdrObj()->GetName();
 SAL_DEBUG(name << " was added to Transitions list.");
 SdrObject* sdrObj = mpDrawView->
GetMarkedObjectList().GetMark(0)->GetMarkedSdrObj();
 s.zoomings.push_back(sdrObj);
 rReq.Ignore();
 }
 }
 break;
 }
}

Figure 4. The exec method here responds to the SID.

There are many more commands in LibreOffice. These commands can be assigned to

different buttons in the application itself through GUI configuration. In this work, the

command SID_ADD_TRANSITION_TO_LIST was added to the context menu that is

displayed when a text box is selected. This simplifies the process of adding a new

zooming transition. With one right-click, the text box can be selected, and the context

menu also opens.

2.4.3 sd/sdi/_drvwsh.sdi

A connection between a method and SID (Slot ID) has to be established. See Figure 5.

21

SID_ADD_TRANSITION_TO_LIST
[
 ExecMethod = AddToTransitionList;
]

Figure 5. The method name for this slot is defined.

2.4.4 include/sfx2/sfxsids.hrc

An index is also assigned to a slot. After a special metaprogramming compilation step,

this ends up in a big array at SID_SD_START+147 array index. Integer constant

SID_SD_START and similarly named variables used in SID indexing context refer to

numbers. See Figure 6.

#define SID_ADD_TRANSITION_TO_LIST (SID_SD_START+147)

Figure 6. Slot assigned an ID in include/sfx2/sfxsids.hrc.

2.4.5 slideshow/source/engine/slideshowimpl.cxx

SlideShowImpl hosts a slideshow and fires NotificationCenter events from existing

code. Also initialises listeners to the events in its constructor. ZoomingAnimation

objects are created in one of its listeners. Saving the locations of objects at the start of

the slideshow is also an important step, see Figure 7.

22

using namespace ::tools::silverdev;
S& s = getInstance2();
s.centersOfObjects.clear();
SaveZoomSdrObjectCenters();
s.zoomIterator = s.zoomings.begin();
s.centerIterator = s.centersOfObjects.begin();
s.isIndexAtLast = false;
s.isIndexAtFirst = true;
s.notificationCenter.clearListeners<PreviousZoomEvent>();
s.notificationCenter.clearListeners<NextZoomEvent>();
s.notificationCenter.addListener<PreviousZoomEvent>(
 [this, &s](PreviousZoomEvent& event) {
 if(!s.isIndexAtFirst){
 auto center = nextCenter(s);
 queueZoomActivity(center);
 }
 });
s.notificationCenter.addListener<ViewUpdateEvent>([this]
(ViewUpdateEvent& event)

{ maEventMultiplexer.notifyViewsChanged(); });

s.notificationCenter.addListener<NextZoomEvent>(
 [this, &s](NextZoomEvent& event)
 {
 SAL_DEBUG("NEXT ZOOM REQUEST RECEIVED");
 if(!s.isIndexAtLast){
 basegfx::B2DPoint center = nextCenter(s);
 queueZoomActivity(center);
 }
 });

Figure 7. Initial setup of a slideshow regarding zooming presentations.

using namespace ::tools::silverdev;
S& s = getInstance2();
if(s.zoomings.empty() || s.isIndexAtLast){
 maListenerContainer.forEach<presentation::XSlideShowListener>(
 [&bReverse](const
uno::Reference<presentation::XSlideShowListener>& xListener)
 {
 return xListener->slideEnded(bReverse);
 }
);
}

Figure 8. Next slide listeners are not fired unless all zooming transitions are done.

In SlideShowImpl::notifySlideEnded an if statement checks if the next slide should be

triggered or not, see Figure 8.

2.4.6 ZoomingAnimation.cxx

bool ZoomingAnimation::operator()(double t)
{

23

 if (zoomTargetObject == nullptr)
 {
 return false;
 }
 double timeTaken = t - lastTimePoint;

Figure 9. Calculating timeTaken is essential in the interpolation.

In this work, t ranges from 0 to 1 through the animation. If the animation is 6 seconds

long then and has been running for 0 seconds, then t is 0. If the animation has been

running for 3 seconds then t is 0.5. At the end of the animation t is 1. Time t which has

passed since the last execution of the animation is here called timeTaken and is later

multiplied with the planned translation amounts on x and y axis (see Figure 10).

B2DPoint getTakenTranslation(double timeTaken, B2DPoint difference) {
 return B2DPoint(difference.getX() * timeTaken * 1000.0,
difference.getY() * timeTaken * 1000.0);
}

Figure 10. Interpolation for translations.

2.4.7 ZoomingAnimation.hxx

This is a class for animating. This contains lots of code borrowed from other files that

also change slides, make transitions. Also inherits from NumberAnimation. Animation

is run by ActivityQueue through an overloaded operator(). All definitions and a few

extra helper methods are in ZoomingAnimation.cxx.

24

class ZoomingAnimation : public NumberAnimation
{
public:
 ZoomingAnimation(ZoomingParameters zp);
 ~ZoomingAnimation();
 // Animation interface
 void prefetch();
 void start(const AnimatableShapeSharedPtr&, const
ShapeAttributeLayerSharedPtr&);
 void end();
 void end_();
 // NumberAnimation interface
 bool operator()(double nValue);
 double getUnderlyingValue() const;
 UnoViewContainer* mrViewContainer;
private:
 // difference sums are only used for debugging purposes
 double differenceSumX;
 double differenceSumY;
 bool isFirstTransformation;
 double differenceScreenSides;
 basegfx::B2DPoint targetPosition;
 basegfx::B2DVector currentScreenSize;
 double lastTimePoint;
 std::vector<basegfx::B2DPoint> screenSizesPerView;
 std::vector<basegfx::B2DPoint> startingDiffs;
 std::vector<basegfx::B2DPoint> differences;
 ScreenUpdater* maScreenUpdater;
 FrameSynchronization* maFrameSynchronization;
 EventMultiplexer* maEventMultiplexer;
 basegfx::B2DSize slideSizeAtAnimationStart;
 const SdrObject* zoomTargetObject;
 bool mbAnimationStarted;
 double mfDuration;
 double mfPreviousElapsedTime;
 ::std::shared_ptr<Slide> mpCurrentSlide;
};

Figure 11. Declaration of ZoomingAnimation.

2.4.8 Service.hxx

This has events and a singleton. It stores a vector of SdrObject pointers in zoomings. An

iterator is also stored for the same vector. Then the vector is iterated as nextSlide events

happen, and new Activities are created each time for ZoomAnimations to run off.

25

class S
{
 public:
 bool isIndexAtFirst;
 bool isIndexAtLast;
 std::vector<SdrObject*>::iterator zoomIterator;
 std::vector<basegfx::B2DPoint>::iterator centerIterator;
 bool hasZooms();
 std::vector<basegfx::B2DPoint> centersOfObjects;
 std::vector<SdrObject*> zoomings;
 NotificationCenter notificationCenter;
 S();
 S(S const&) = delete;
 void operator=(S const&) = delete;
};

Figure 12. Singleton class S provides communication and storage between modules.

A fine singleton pattern was adopted. This enabled all methods in connected modules to

communicate. Through that communication, an event system was established.

Only the same object is always returned when getInstance2 is called. This object then

contains an iterator for zoomings, the zoomings vector itself, a notification center and a

helper method for checking if vector zoomings is empty or not.

SAL_DLLPUBLIC_EXPORT S& getInstance2()
{
 static S instance;
 return instance;
}

Figure 13. A singleton object is initialized lazily once the getInstance2 method is called, and
then the method returns the same object every time it is called.

See Figure 13 for lazy initialization of a singleton. It should also be mentioned that

SAL_DLLPUBLIC_EXPORT is a macro. See Figure 14.

define SAL_DLLPUBLIC_EXPORT __attribute__ ((visibility("default")))

Figure 14. Definition of a macro that stores a visibility attribute.

An event can be any struct. See Figure 15:

struct PreviousZoomEvent {
 SdrObject* zooming;
};
struct NextZoomEvent {
 SdrObject* zooming;
};

Figure 15. Events can hold any data. The templated notification system is very flexible.

26

Events are not required to hold any data, but the type has to be declared and defined.

struct ViewUpdateEvent {};

Figure 16. An empty struct for an event type.

2.4.9 NotificationCenter in Service.hxx

class NotificationCenter {
 public:
 template<typename TEvent> void
addListener(std::function<void(TEvent&)> callback);
 template<typename TEvent> void clearListeners();
 template<typename TEvent> void fireEvent(TEvent& event);
 private:
 template<typename TEvent>
std::vector<std::function<void(TEvent&)>>& getListeners();
};

Figure 17. Templates used to create a hub of listeners where all kinds of events can be fired and
responded to.

See Figure 17 for template code adding listeners to any events and firing them. The idea

was found on StackOverflow in an answer by user aliased super [4] . This class uses

templates and therefore needs to be included as a header with Service.hxx. These

listeners are actually stored in a static vector, see the next figure, Figure 18.

template<typename TEvent>
std::vector<std::function<void(TEvent&)>>&
NotificationCenter::getListeners(){
 static std::vector<std::function<void(TEvent&)>> listeners;
 return listeners;
}

Figure 18. Lazy initialization of a static templated vector of callback functions.

Because the notification center is defined and initialized with singleton S, only one

instance of NotificationCenter exists at all times (see Figure 18).

class S {
 public:
 ...
 NotificationCenter notificationCenter;

Figure 19. notificationCenter is a member of S.

27

2.5 Takeaways

This subsection lists and explains important discoveries from development experience

gained from this project.

2.5.1 File slideshow/source/engine/slideshowimpl.cxx

__attribute__ ((visibility("default")))

Figure 20. Visibility attribute setting syntax.

See Figure 20, it allows linker to see the symbol that this prepends from another object

file.

s.zoomIterator = s.zoomings.begin();

Figure 21. A basic setup of a vector that already contains elements.

See Figure 21, zoomIterator needs to be initialized to the beginning of the zoomings

vector.

s.notificationCenter
.clearListeners<::tools::silverdev::PreviousZoomEvent>();
s.notificationCenter
.clearListeners<::tools::silverdev::NextZoomEvent>();

Figure 22. Template function calls to clear listeners for two events.

See Figure 22. Any previous event listeners are cleared. A crash occurred otherwise on

the next slideshow. As s is a reference to the singleton, these listeners do remain after a

slideshow is closed. They are available as long as the main application runs.

s.notificationCenter.addListener<::tools::silverdev::NextZoomEvent>(
[this, &s](::tools::silverdev::NextZoomEvent& event){

Figure 23. A listener is added, which makes reacting to events possible.

See Figure 23. A lambda is used to react to any NextZoomEvents. The lambda grabs

some of the context in which it was created: this and &s, both are in square brackets

before the lambda argument list.

Some check are then performed to make sure that zoomings is not empty

basegfx::B2DPoint SlideShowImpl::nextCenter(tools::silverdev::S& s) {
 if (!s.centersOfObjects.empty()){
 basegfx::B2DPoint center(*s.centerIterator);

28

 SAL_DEBUG("center is this: " << center);
 if(s.centerIterator + 1 != s.centersOfObjects.end()){
 s.centerIterator++;
 s.isIndexAtFirst = false;
 } else {
 s.isIndexAtLast = true;
 }
 return center;
 }
}

Figure 24. The method for accessing the center iterator.

basegfx::B2DPoint SlideShowImpl::previousCenter(tools::silverdev::S&
s) {
 if (!s.centersOfObjects.empty()){
 basegfx::B2DPoint rect(*s.centerIterator);
 if(s.centerIterator + 1 != s.centersOfObjects.end()){
 s.centerIterator++;
 s.isIndexAtFirst = false;
 } else {
 s.isIndexAtLast = true;
 }
 return rect;
 }
}

Figure 25. Accessing and incrementing the center points iterator.

before a pointer dereference occurs.

NumberAnimationSharedPtr
pAnimation(std::make_shared<ZoomingAnimation>(pObj, 1.0,
maViewContainer, mpCurrentSlide));

Figure 26. Constructor arguments are taken from make_shared.

here a pointer type is created for ZoomingAnimation, ZoomingAnimation receives

constructor parameters through the standard library make_shared function, Figure 26.

The constructor parameters were later moved into a struct of parameters, this saves

some screen space, see Figure 27.

29

struct ZoomingParameters {
 // This is saved from void
DrawViewShell::AddToTransitionList(SfxRequest& rReq){
 const basegfx::B2DPoint _targetPosition;
 // Duration of the zooming animation
 const double _fDuration;
 // A slide is a view, they are contained in this
 UnoViewContainer* _mrViewContainer;
 // A pointer to the current slide
 ::std::shared_ptr<Slide> _mpCurrentSlide;
 // An event needs to be fired when a view is updated to display
in on the screen
 EventMultiplexer* _maEventMultiplexer;
 // This is no longer used, wasn't necessary
 ScreenUpdater* _maScreenUpdater;
 // Frame synchronisation
 FrameSynchronization* _maFrameSynchronization;
 // Current screen size is saved to aim properly at screen objects
 basegfx::B2DVector _currentScreenSize;
};

Figure 27. A struct for passing constructor arguments.

2.5.2 cppcanvas/source/inc/servicefolder/Service.hxx

extern S& getInstance2();a

Figure 28. Defined as an extern method in the header file, the symbol for getInstance2() is
defined in a library.

indicates to the linker that this symbol is defined externally

template<typename TEvent>
std::vector<std::function<void(TEvent&)>>&
NotificationCenter::getListeners(){
 static std::vector<std::function<void(TEvent&)>> listeners;
 return listeners;
}

Figure 29. getListeners method.

This code snippet demonstrates a clever initialization of a static vector in a template

function. Also worth mentioning is the storage of function references in std::function,

which can be held in a vector. A vector of functions is useful for storing listeners for a

specific event and then accessing these callback methods to fire an event. See figures:

Figure 18, Figure 29.

LO Impress runs mainly on just one thread. This code file is from a class in

ActivityQueue in LO by LO contributor.

30

if(bReinsert)
 maCurrentActivitiesReinsert.push_back(pActivity);
else
 maDequeuedActivities.push_back(pActivity);

Figure 30. Reinserting an activity to the queue allows the activity to run again when its turn
comes.

while(!maCurrentActivitiesWaiting.empty())
{
 // process topmost activity
 ActivitySharedPtr
pActivity(maCurrentActivitiesWaiting.front());
 maCurrentActivitiesWaiting.pop_front();

 bool bReinsert(false);

 try
 {
 // fire up activity
 bReinsert = pActivity->perform();
 }

Figure 31. Giving the activity a chance to run again if it wants by requeueing it.

2.6 Fulfilment of software requirements

All software requirements were met. Zooming and panning simultaneously from one

text-box to another was implemented. This means that the target object, to which a

move is made, ends up in the center of the screen while the screen is zooming. This

movement is interpolated linearly.

Features that were implemented are not yet useful to users. To be useful and applicable

in real applications, more development needs to happen on further related requirements.

31

A letter was sent to the LibreOffice mailing list stating:

All of my past & future contributions to LibreOffice may
be licensed under the MPLv2/LGPLv3+ dual license.

Figure 33. License agreement that was sent to the LibreOffice community mailing list.

Code was uploaded to https://gerrit.libreoffice.org/c/core/+/115011 where the patch can

also be updated, reviewed.

32

Figure 32. Menuitem for adding an item to the zoom transition list.

https://gerrit.libreoffice.org/c/core/+/115011

3 Findings and discussion

Impress code is properly structured, and its Makefile system works splendidly. The

Makefiles are sectioned and provide easily understandable places to list files to be

compiled, header locations and other libraries that are needed to compile. File names

make sense but there are matching file names across directories and different modules,

this lead to a confusing developer experience. Some features were first developed in sd/

source/ui/slideshow/slideshowimpl.cxx but then to be used in a slideshow, ported to

slideshow/source/engine/slideshowimpl.cxx. Matching method names were also a worry

when automatic refactoring functions were used to rename a method to a more

appropriate name. The refactoring system looks through its index of the entire codebase

and finds methods with the same name both in comments and code itself. That is

worrisome because unintended changes could then possibly be made by the refactoring

software.

At the same time, some of the method names used were confusing for a “find in all

files” search. For example, "start" for a method name in various classes is sluggish

when "find in all files" search is considered. That leaves no alternative but to exclude

other methods with the same name manually. While proper IDE support could mitigate

this problem, these general method names become a problem that inhibits development

speed. Studying from this, writing short universal method names should be avoided in

the future. It can be said that typing a longer method name takes more time each time,

but having software complete long names makes it a benefit after all. Tabnine [13] is

software that uses AI to reduce the amount of typing dramatically. It predicts both long

and short texts and works even when no IDE support for the language is available.

Focus can be shifted from writing compact to writing long for smooth code navigation.

When the development process started, memory was a big problem, but that motivated

developing a stack-based method using a text editor always to know what is being done

and what is stopping it. It would be very wasteful not to keep track of subtasks and class

hierarchies in the process. Here I found that having a concrete experience with software

33

diagramming would have helped me. Not knowing any methods for representing class

hierarchies as a drawing, I would not even attempt it unless my stack-based text

processor method stops being productive.

The IDE was showing errors that did not make sense. It took tens of minutes to perform

reference searches, did not help with includes and had broken refactoring features.

Correctly setting up an IDE was not an easy task and thus was not accomplished. It

would have been very beneficial for the IDE to find references to symbols in code

correctly. At the same time, multiple extensions for Visual Studio Code were utilized.

Extension “Bookmarks” was a great timesaver. A mapping of CTRL + number was set

to go to the bookmark of that number. Then the actual bookmark was set using another

mapping of SHIFT + CTRL + number. This easily saved hours of navigating code.

Bookmarks were accessible in all files, and each number could be used many times —

pressing CTRL + number many times for one number would cycle through the

bookmark entries.

Hotkeys were used extensively in IDEs. Switching between the header and

corresponding cxx files was done using ALT+O. Key F12 was used to go to definition

or declaration, then to references. Rename refactoring was used to fix code that was less

readable. Extract to function refactoring was not used extensively due to it being slow,

taking 14 seconds.

Reliable methods were developed because of strong motivation for understanding a

complex codebase. The code was: something unable to be held in a human head,

required hundreds of text searches to navigate code, often a criss-cross of class

hierarchies navigating through factories. A good workflow on a huge project helps keep

programmers on track.

Developing the feature for Impress prompted finding places in code that could be

improved. Having a call stack of three functions, each with the same name in a different

file, makes for a confusing developer experience. Reading from LibreOffice developer

guides and guide videos, people needlessly reformatting old code is a common problem

they face. This makes it hard for patch reviewers to read the code because they need to

distinguish code changes from formatting changes. They want to spend as little time as

34

possible reviewing a patch. They are capable people themselves and could use that time

to fix more problems in code or develop new features.

Developing free and open source projects is a nice pastime, but it cannot proceed on a

large scale unless properly financed. Full-time developers for these projects are usually

specialists funded by the users of the software. Nevertheless, there can be other good

motivators. Even with no assumed income, earning a degree, bettering oneself and

becoming well known are all good motivators for developers in open source projects.

There are, however, very good examples of open source projects that are developed by

people for their own needs.

It will take a user from a different product to find this feature of zooming presentations

in LibreOffice Impress, and it might well be what keeps the user with this software. It is

common for users to come and chat with developers asking why LibreOffice does not

have all the features of its competitors and leave after asking developers if it could be

implemented today or tomorrow. Now, if they find this feature in the product, they

could start using it instead and stop waiting for it to be implemented.

35

4 Summary

This thesis produced a zooming and panning feature known as zooming presentations

for LibreOffice Impress. To a student of software development, the thesis briefly

describes methods for extending complicated and aged software. The requirements set

for the planned feature were zooming in and out in LibreOffice Impress slideshow mode

and then also transforming objects on the slideshow such that the viewport would

appear to move. Existing code was used wherever possible, which was also the main

difficulty of this work—finding ways to connect code across the codebase to create new

features. Tangled class hierarchies and high complexity of development were observed.

This thesis found Visual Studio Code to be the best for specifically LibreOffice

development, from setting up a development environment and weighing different

options for integrated development environments. From a statistical perspective, 257

lines of code were written, three new C++ classes implemented, 146 files of code were

read. LibreOffice source contains approximately 120 000 source files.

36

References

[1] LibreOffice home page, https://www.LibreOffice.org/, May 17th 2021

[2] Vajna, Miklos. LibreOffice: Code Structure, Collabora Productivity, 2017,
https://speakerd.s3.amazonaws.com/presentations/69a6d9f8e5a14a948b27796b4c73ae11/
beginners-structure-locon-rome-2k17.pdf, May 17th 2021

[3] LibreOffice webpage, About us, https://www.LibreOffice.org/about-us/licenses, May 17 th

2021

[4] pseudonym super, “AppEventManager”, https://stackoverflow.com/users/7703024/super,
https://stackoverflow.com/a/59707355, May 17th 2021

[5] Powerpoint addins,
https://docs.microsoft.com/en-us/office/dev/add-ins/powerpoint/powerpoint-add-
ins#powerpoint-add-in-scenarios, May 17th 2021

[6] Prezi web application, https://prezi.com/, May 17th 2021

[7] GNU make https://www.gnu.org/software/make/, May 17th 2021

[8] Jetbrains CLion, https://www.jetbrains.com/clion/, May 17th 2021

[9] Apache NetBeans, https://netbeans.apache.org/, May 17th 2021

[10] Ccache — a fast C/C++ compiler cache, https://ccache.dev/, May 17th 2021

[11] C/C++ for Visual Studio Code, https://code.visualstudio.com/docs/languages/cpp, May
17th 2021

[12] GDB: The GNU Project Debugger, https://www.gnu.org/software/gdb/, May 17th 2021

[13] Tabnine, https://www.tabnine.com/v, May 17th 2021

[14] Sozi, https://sozi.baierouge.fr/, May 17th 2021

[15] Gerrit usage documentation, https://wiki.documentfoundation.org/Development/gerrit,
May 17th 2021

37

https://prezi.com/
https://docs.microsoft.com/en-us/office/dev/add-ins/powerpoint/powerpoint-add-ins#powerpoint-add-in-scenarios
https://docs.microsoft.com/en-us/office/dev/add-ins/powerpoint/powerpoint-add-ins#powerpoint-add-in-scenarios
https://stackoverflow.com/a/59707355
https://stackoverflow.com/users/7703024/super
https://speakerd.s3.amazonaws.com/presentations/69a6d9f8e5a14a948b27796b4c73ae11/beginners-structure-locon-rome-2k17.pdf
https://speakerd.s3.amazonaws.com/presentations/69a6d9f8e5a14a948b27796b4c73ae11/beginners-structure-locon-rome-2k17.pdf

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Silver Valdvee

1 Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Adding zooming presentation capability to LibreOffice Impress”, supervised

by Edmund Laugasson

1.1 to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until the expiry of the term of copyright;

1.2 to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of

Technology until expiry of the term of copyright.

2 I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3 I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

29.04.2021

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's
application for restriction on access to the graduation thesis that has been signed by the school's dean,
except in case of the university's right to reproduce the thesis for preservation purposes only. If a
graduation thesis is based on the joint creative activity of two or more persons and the co-author(s)
has/have not granted, by the set deadline, the student defending his/her graduation thesis consent to
reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-
exclusive licence, the non-exclusive license shall not be valid for the period.

38

Appendix 2

slideshow/source/engine/animationnodes/ZoomingAnimation.

cxx

#include <tools/diagnose_ex.h>
#include <sal/log.hxx>

#include <basegfx/matrix/b2dhommatrix.hxx>

#include <cppcanvas/customsprite.hxx>

#include <transitionfactory.hxx>
#include <tools.hxx>
#include <memory>
#include <math.h>
#include <svx/svdobj.hxx>

#include <animatableshape.hxx>
#include <shapeattributelayer.hxx>
#include <ZoomingAnimation.hxx>
#include <basegfx/utils/canvastools.hxx>
#include <slide.hxx>
namespace slideshow::internal {
 ZoomingAnimation::~ZoomingAnimation()
 {
 end_();
 }

 // Animation interface

 void ZoomingAnimation::prefetch()
 {}

 void ZoomingAnimation::start(const AnimatableShapeSharedPtr&
/* rShape */,
 const ShapeAttributeLayerSharedPtr& /*
rAttrLayer */)
 {
 if(!mbAnimationStarted)
 {
 mbAnimationStarted = true;
 }
 }

 // NumberAnimation interface
 void ZoomingAnimation::end() { end_(); }
 void ZoomingAnimation::end_()

39

 {
 if(!mbAnimationStarted)
 return;
 mbAnimationStarted = false;
 }
 cppcanvas::CustomSpriteSharedPtr createSprite(UnoViewSharedPtr
const & pView, basegfx::B2DSize const & rSpriteSize, double nPrio) {
 // TODO(P2): change to bitmapsprite once that's working
 const cppcanvas::CustomSpriteSharedPtr pSprite(pView-
>createSprite(rSpriteSize,nPrio));
 // alpha default is 0.0, which seems to be
 // a bad idea when viewing content...
 pSprite->setAlpha(1.0);
 // if (mbSpritesVisible)
 pSprite->show();
 return pSprite;
 }
 ::basegfx::B2ISize getEnteringSlideSizePixel(const
UnoViewSharedPtr& pView, ::std::shared_ptr<Slide> mpCurrentSlide)
 {
 return getSlideSizePixel(basegfx::B2DSize(mpCurrentSlide-
>getSlideSize()), pView);
 }
 ::cppcanvas::CustomSpriteSharedPtr createSprite(ViewEntry&
rEntry, ::std::shared_ptr<Slide> mpCurrentSlide)
 {
 // create entering sprite:
 const basegfx::B2ISize
enteringSlideSizePixel(getSlideSizePixel(basegfx::B2DSize(mpCurrent
Slide->getSlideSize()), rEntry.mpView));
 return
createSprite(rEntry.mpView,basegfx::B2DSize(enteringSlideSizePixel)
,101);
 }

 bool ZoomingAnimation::operator()(double t)
 {
 SAL_DEBUG("Y");
 ViewsVec maViewData;
 for(const auto& pView : mrViewContainer) {
 maViewData.emplace_back(pView);
 }
 const std::size_t nEntries = maViewData.size();
 for(::std::size_t i=0; i<nEntries; ++i)
 {
 ViewEntry& rViewEntry(maViewData[i]);
 const ::cppcanvas::CanvasSharedPtr
rDestinationCanvas(rViewEntry.mpView->getCanvas());
 ::cppcanvas::CustomSpriteSharedPtr
rSprite(createSprite(rViewEntry, mpCurrentSlide));
 //::cppcanvas::CustomSpriteSharedPtr&
rOutSprite(rViewEntry.mpOutSprite);
 const double sizeConst = 10;
 ::basegfx::B2DHomMatrix
aViewTransform(rDestinationCanvas->getTransformation());
 aViewTransform.scale(10 + t * sizeConst, 10 + t *
sizeConst);
 const ::basegfx::B2DPoint aPageOrigin(aViewTransform *
::basegfx::B2DPoint());

40

 rSprite->movePixel(aPageOrigin + ((t - 1.0) *
::basegfx::B2DSize(getEnteringSlideSizePixel(rViewEntry.mpView,
mpCurrentSlide))));
 rSprite->transform(aViewTransform);
 }
 return true;
 }

 double ZoomingAnimation::getUnderlyingValue() const
 {
 return 0.0;
 }
 ZoomingAnimation::ZoomingAnimation(const SdrObject*
zoomTargetObject, const double fDuration, UnoViewContainer&
mrViewContainer, ::std::shared_ptr<Slide> mpCurrentSlide) :
 zoomTargetObject(zoomTargetObject),
 mbAnimationStarted(false),
 mfDuration(fDuration),
 mfPreviousElapsedTime(0.00f),
 mrViewContainer(mrViewContainer),
 mpCurrentSlide(mpCurrentSlide)
 {}
}

41

Appendix 3 – slideshow/source/inc/ZoomingAnimation.hxx

#include <vector>
#include <unoview.hxx>

namespace slideshow::internal {
 struct ViewEntry
 {
 explicit ViewEntry(const UnoViewSharedPtr& rView) : mpView(
rView){}
 /// The view this entry is for
 UnoViewSharedPtr mpView;
 /// outgoing slide sprite
 std::shared_ptr<cppcanvas::CustomSprite> mpOutSprite;
 /// incoming slide sprite
 std::shared_ptr<cppcanvas::CustomSprite> mpInSprite;
 /// outgoing slide bitmap
 mutable SlideBitmapSharedPtr
mpLeavingBitmap;
 /// incoming slide bitmap
 mutable SlideBitmapSharedPtr
mpEnteringBitmap;

 // for algo access
 const UnoViewSharedPtr& getView() const { return mpView; }
 };
 typedef ::std::vector<ViewEntry> ViewsVec;
 class ZoomingAnimation : public NumberAnimation
 {
 public:
 ZoomingAnimation(const SdrObject* zoomTargetObject, const
double fDuration, UnoViewContainer& mrViewContainer,
::std::shared_ptr<Slide> mpCurrentSlide);
 ~ZoomingAnimation();
 // Animation interface
 void prefetch();
 void start(const AnimatableShapeSharedPtr& /* rShape */,
const ShapeAttributeLayerSharedPtr& /* rAttrLayer */);
 void end();
 void end_();
 // NumberAnimation interface
 bool operator()(double nValue);
 double getUnderlyingValue() const;
 UnoViewContainer& mrViewContainer;
 private:
 const SdrObject* zoomTargetObject;
 bool mbAnimationStarted;
 double mfDuration;
 double mfPreviousElapsedTime;
 ::std::shared_ptr<Slide> mpCurrentSlide;
 };
}

42

43

Appendix 4 – Service.hxx

#pragma once
#include <svx/svdobj.hxx>
#include <vector>
#include <functional>
namespace tools::silverdev {
 struct PreviousZoomEvent {
 SdrObject* zooming;
 };
 struct NextZoomEvent {
 SdrObject* zooming;
 };
 // inspired by https://stackoverflow.com/a/59707355
 class NotificationCenter {
 public:
 template<typename TEvent> void
addListener(std::function<void(TEvent&)> callback);
 template<typename TEvent> void clearListeners();
 template<typename TEvent> void fireEvent(TEvent& event);
 private:
 template<typename TEvent>
std::vector<std::function<void(TEvent&)>>& getListeners();
 };
 class S
 {
 public:
 std::vector<SdrObject*>::iterator zoomIterator;
 bool hasZooms();
 SdrObject* takeNextZooming();
 std::vector<SdrObject*> zoomings;
 NotificationCenter notificationCenter;
 S();
 S(S const&) = delete;
 void operator=(S const&) = delete;
 };
 extern S& getInstance2();
 template<typename TEvent>
 void NotificationCenter::addListener(std::function<void(TEvent&)>
callback){
 getListeners<TEvent>().push_back(std::move(callback));
 }
 template<typename TEvent>
 void NotificationCenter::fireEvent(TEvent& event){
 for(auto& listener : getListeners<TEvent>()){
 listener(event);
 }
 }
 template<typename TEvent>
 std::vector<std::function<void(TEvent&)>>&
NotificationCenter::getListeners(){
 static std::vector<std::function<void(TEvent&)>> listeners;

44

 return listeners;
 }
 template<typename TEvent>
 void NotificationCenter::clearListeners(){
 getListeners<TEvent>().clear();
 }
}

45

Appendix 5 – SlideshowImpl.cxx constructor

SlideShowImpl::SlideShowImpl(
 uno::Reference<uno::XComponentContext> const& xContext)
 : SlideShowImplBase(m_aMutex),
 maViewContainer(),
 maListenerContainer(m_aMutex),
 maShapeEventListeners(),
 maShapeCursors(),
 maUserPaintColor(),
 maUserPaintStrokeWidth(4.0),
 mpPresTimer(std::make_shared<canvas::tools::ElapsedTime>()),
 maScreenUpdater(maViewContainer),
 maEventQueue(mpPresTimer),
 maEventMultiplexer(maEventQueue,
 maViewContainer),
 maActivitiesQueue(mpPresTimer),
 maUserEventQueue(maEventMultiplexer,
 maEventQueue,
 *this),
 mpDummyPtr(),
 mpBox2DDummyPtr(),
 mpListener(),
 mpRehearseTimingsActivity(),
 mpWaitSymbol(),
 mpPointerSymbol(),
 mpCurrentSlideTransitionSound(),
 mxComponentContext(xContext),
 mxOptionalTransitionFactory(),
 mpCurrentSlide(),
 mpPrefetchSlide(),
 mxPrefetchSlide(),
 mxDrawPagesSupplier(),
 mxSBD(),
 mxPrefetchAnimationNode(),
 mnCurrentCursor(awt::SystemPointer::ARROW),
 mnWaitSymbolRequestCount(0),
 mbAutomaticAdvancementMode(false),
 mbImageAnimationsAllowed(true),
 mbNoSlideTransitions(false),
 mbMouseVisible(true),
 mbForceManualAdvance(false),
 mbShowPaused(false),
 mbSlideShowIdle(true),
 mbDisableAnimationZOrder(false),
 maEffectRewinder(maEventMultiplexer, maEventQueue,
maUserEventQueue),
 maFrameSynchronization(1.0 /
FrameRate::PreferredFramesPerSecond)

{
 // keep care not constructing any UNO references to this inside

46

ctor,
 // shift that code to create()!

 uno::Reference<lang::XMultiComponentFactory> xFactory(
 mxComponentContext->getServiceManager());

 if(xFactory.is())
 {
 try
 {
 // #i82460# try to retrieve special transition factory
 mxOptionalTransitionFactory.set(
 xFactory->createInstanceWithContext(
 "com.sun.star.presentation.TransitionFactory",
 mxComponentContext),
 uno::UNO_QUERY);
 }
 catch (loader::CannotActivateFactoryException const&)
 {
 }
 }

 mpListener = std::make_shared<SeparateListenerImpl>(
 *this,
 maScreenUpdater,
 maEventQueue);
 maEventMultiplexer.addSlideAnimationsEndHandler(mpListener);
 maEventMultiplexer.addViewRepaintHandler(mpListener);
 maEventMultiplexer.addHyperlinkHandler(mpListener, 0.0);
 maEventMultiplexer.addAnimationStartHandler(mpListener);
 maEventMultiplexer.addAnimationEndHandler(mpListener);
 // This is the end of slideshowimpl constructor and here's my
part of it -- silver_est
 ::tools::silverdev::S& s = ::tools::silverdev::getInstance2();
 s.zoomIterator = s.zoomings.begin();

s.notificationCenter.clearListeners<::tools::silverdev::PreviousZoomE
vent>();

s.notificationCenter.clearListeners<::tools::silverdev::NextZoomEvent
>();

s.notificationCenter.addListener<::tools::silverdev::PreviousZoomEven
t>([this, &s](::tools::silverdev::PreviousZoomEvent& event){

 });

s.notificationCenter.addListener<::tools::silverdev::NextZoomEvent>([
this, &s](::tools::silverdev::NextZoomEvent& event){
 if(s.zoomings.size()==0){return;}
 const SdrObject* pObj (*s.zoomIterator);
 //s.zoomIterator++;
 if(s.zoomIterator == s.zoomings.end()){return;}
 EventSharedPtr ZoomEndEvent(makeEvent([this](){},
"ZoomEndEvent"));
 double nTransitionDuration(5.0);
 sal_Int32 nMinFrames(5);
 NumberAnimationSharedPtr
pAnimation(std::make_shared<ZoomingAnimation>(pObj, 1.0,

47

maViewContainer, mpCurrentSlide));
 auto d1 = mpCurrentSlide->getSlideSize();
 auto d = basegfx::B2DSize(d1);
 auto parameters =
ActivitiesFactory::CommonParameters(
 ZoomEndEvent,
 maEventQueue,
 maActivitiesQueue,
 nTransitionDuration,
 nMinFrames,
 false, // autoreverse
 std::optional<double>(1.0), // repeats
 0.0, // acceleration
 0.0, // deceleration
 ShapeSharedPtr(),
 d // slide bounds
);
 ActivitySharedPtr
pZoomActivity(ActivitiesFactory::createSimpleActivity(parameters,
pAnimation, true /* is direction forward? */));
 maActivitiesQueue.addActivity(pZoomActivity);
 });
}

48

	1 Introduction 11
	1.1 General background 11
	1.2 Problem formulation 11
	1.3 Objectives and software requirements 12
	1.4 Overview 12

	2 Methodology 14
	2.1 Overview of LibreOffice Impress codebase 14
	2.2 Overview of tools used 15
	2.3 Overview of the development process 16
	2.4 Edits to existing code 21
	2.5 Takeaways 28
	2.6 Fullfillment of software requirements 31

	3 Findings and discussion 33
	4 Summary 36
	References 37
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis 38
	Appendix 2 slideshow/source/engine/animationnodes/ZoomingAnimation.cxx 39
	Appendix 3 – slideshow/source/inc/ZoomingAnimation.hxx 42
	Appendix 4 – Service.hxx 44
	Appendix 5 – SlideshowImpl.cxx constructor 46
	1 Introduction
	1.1 General background
	1.2 Problem formulation
	1.3 Objectives and software requirements
	1.4 Overview

	2 Methodology
	2.1 Overview of LibreOffice Impress codebase
	2.2 Overview of tools used
	2.3 Overview of the development process
	2.4 Edits to existing code
	2.4.1 svx/sdi/svx.sdi line 9126
	2.4.2 sd/source/ui/view/drviewse.cxx line 728
	2.4.3 sd/sdi/_drvwsh.sdi
	2.4.4 include/sfx2/sfxsids.hrc
	2.4.5 slideshow/source/engine/slideshowimpl.cxx
	2.4.6 ZoomingAnimation.cxx
	2.4.7 ZoomingAnimation.hxx
	2.4.8 Service.hxx
	2.4.9 NotificationCenter in Service.hxx

	2.5 Takeaways
	2.5.1 File slideshow/source/engine/slideshowimpl.cxx
	2.5.2 cppcanvas/source/inc/servicefolder/Service.hxx

	2.6 Fulfilment of software requirements

	3 Findings and discussion
	4 Summary
	References
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis
	Appendix 2 slideshow/source/engine/animationnodes/ZoomingAnimation.cxx
	Appendix 3 – slideshow/source/inc/ZoomingAnimation.hxx
	Appendix 4 – Service.hxx
	Appendix 5 – SlideshowImpl.cxx constructor

