
Tallinn 2020

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Peeter Org 178231

SOFTWARE FOR TTÜ100 SATELLITE’S

ADCS SYSTEM

Master’s thesis

Supervisor: Eiko Priidel

 MSc

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Peeter Org 178231

TARKVARA TTÜ100 SATELLIIDI

ASENDIKONTROLLSÜSTEEMILE

magistritöö

Juhendaja: Eiko Priidel

 MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Peeter Org

18/05/2020

4

Abstract

TTÜ100 is a satellite project created with goal to perform Earth observation using visible

light and infrared cameras, test high data rate communications and serve as a technology

demonstrator of attitude determination and control, on-board computer and smart power

supply [1].

ADCS (Attitude Determination and Control System) is a subsystem of a spacecraft tasked

with determining and controlling the attitude (orientation) of the spacecraft. Knowing and

being able to control the attitude is useful and necessary for various purposes, covered

later in this paper.

The goal of this work is to design and develop software for the ADCS system of TTÜ100

satellite and later update, configure and maintain it.

The goal of this document is to give an overview of the software developed, without

disclosing too much about the inner workings to create security concerns.

This thesis is written in English and consists of 47 pages including 7 chapters and 8

figures.

5

Annotatsioon

Tarkvara TTÜ100 tudengisatelliidi asendikontrollsüsteemile

TTÜ100 on satellidiprojekt, mille eesmärk on vaadelda Maad nähtava valguse ja

infrapuna kaameratega, katsetada suure andmeedastuskiirusega sidet ja demonstreerida

asendi kontrollimise, pardaarvuti ja intelligentse akusüsteemi tehnoloogiaid [1].

Asendikontrollsüsteem on kosmoseaparaadi alamsüsteem, mille eesmärgiks on määrata

ja muuta aparaadi asendit kosmoses. Asendi teadmine ja selle muutmise võimekus on

oluline erinavate missiooni eesmärkide täitmiseks, millest räägitakse lähemalt hiljem

dokumendis.

Selle töö eesmärk on disainida ja luua tarkvara TTÜ100 satelliidi

asendikontrollsüsteemile ning seda hiljem seadistada, uuendada ja hooldada.

Selle dokumendi eesmärk on anda ülevaade arendatud tarkvarast ilma liigselt detailidesse

laskumata, et mitte põhjustada turvariske süsteemile.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 47 leheküljel, nende hulgas 7

peatükki, 8 joonist.

6

List of abbreviations and terms

ACDS Attitude Determination and Control System

BLDC Brushless DC motor

CPU Central Processing Unit

CPU Central Processing Unit

ECEF Earth-Centred, Earth-Fixed inertial reference frame

ECI Earth-cantered Inertial

EEPROM Electrically Erasable Programmable Read-Only Memory

EKF Extended Kalman Filter

EPS Electrical Power System

GPIO General-Purpose Input-Output

GRV Gaussian Random Value

I2C Inter-Integrated Circuit interface

IGRF International Geomagnetic Reference field

IR Infrared

kB Kilobyte

LQR Linear Quadratic Regulator

MCU Microcontroller

OBC On-Board Computer

PC Personal Computer

PID Proportional-Integral-Derivative controller

PWM Pulse Width Modulation

RAM Random Access memory

RTC Real-Time Clock

RTOS Real-Time Operating System

SPI Serial Peripheral Interface

TalTech Tallinn University of Technology

UKF Unscented Kalman Filter

7

Table of contents

1 Introduction ... 10

1.1 Attitude determination and control system ... 10

1.2 Requirements .. 11

1.3 Goals of the work ... 12

2 Hardware ... 13

2.1 Basic control model .. 13

3 Determination software ... 15

3.1 Theory ... 15

3.1.1 Representing satellite’s attitude ... 15

3.1.2 Wahba’s problem ... 17

3.2 Determination methods... 17

3.2.1 Spin-axis attitude determination methods ... 17

3.2.2 TRIAD method .. 18

3.2.3 Singular value decomposition (SVD) .. 19

3.2.4 Davenport’s q-method and derivatives .. 20

3.3 Filtering methods .. 22

3.4 Determination algorithm... 25

3.5 Reference models ... 28

4 Control software .. 30

4.1 Control loop options ... 30

4.1.1 State feedback loops .. 30

4.1.2 PID and variations ... 31

4.2 3-axis pointing .. 32

4.3 Y-Thomson spin ... 32

4.4 Detumbling ... 33

5 Software design ... 35

5.1 Abstract view .. 35

5.2 Running tasks ... 36

5.2.1 Environmental Modelling task .. 36

8

5.2.2 Data Acquisition task .. 37

5.2.3 Control task ... 37

5.2.4 Determination task ... 38

5.2.5 Bus task ... 38

5.2.6 Main loop task ... 39

5.3 Bootloader .. 39

6 Hardware drivers ... 41

6.1 Motors drivers... 41

6.2 Magnetorquer drivers ... 41

6.3 Simple sensors .. 42

6.4 Solar cameras .. 42

6.5 Additional hardware ... 44

7 Summary .. 45

References .. 46

9

List of figures

Figure 1. Basic control model... 14

Figure 2. ADCS board .. 14

Figure 3. Attitude determination flow .. 25

Figure 4. Attitude error measurement noise dependency ... 27

Figure 5. Attitude error measurement vector angle dependency 27

Figure 6. 3-axis pointing flow .. 32

Figure 7. Software abstract view .. 36

Figure 8. Flash usage .. 39

10

1 Introduction

TTU100 is a satellite project funded by Tallinn University of Technology with aims to

give students practical engineering experience. Primary mission of the satellite is Earth

observation using visible light and near-infrared cameras. For communication with the

ground station two radios are used, one in ultra-high frequency range for basic two-way

communication and other in X-band range for downloading larger data, like images

captured by cameras.

The satellite follows the 1U CubeSat standard, of which most notable is being 10 cm cube

in shape and weighing of up to 1.33 kg [1]. Another important property of satellite is that

it is uses deployable “wings”, which are essentially two extra solar panels (in addition to

those mounted on the sides) that would increase battery charging speed, if properly

pointed towards Sun.

1.1 Attitude determination and control system

Attitude determination and control system (ADCS) is a spacecraft’s subsystem tasked

with determining and controlling the attitude (orientation) of the craft in space. TTU100

satellite requires an ADCS for various mission requirements, mostly for pointing the

cameras and X-band radio towards target positions.

ADCS systems can use various methods for determining attitude, being most commonly

vector observations of certain objects, typically Earth’s magnetic field and Sun’s

direction.

For attitude control, satellites can use either passive methods, such as gravity booms or

permanent magnets, or active methods such as magnetic coils, reaction wheels, thrusters

or solar sails.

11

1.2 Requirements

Requirements of TTÜ100 satellite’s ADCS are driven by the X-Band radio and on-board

camera.

Primary requirements are [2]:

1. The system must be able to detumble the satellite from spin rates of ±50°/s down to

±0.15° degrees/s (two spins per orbit) within 7 days.

2. The system must have pointing accuracy of 3 degrees

3. The system must implement remotely configurable parameters for attitude control

loop a well as readable status for all sensors and control loop states

4. The system must support remote programming

4.1. Incomplete programming sequence must not cause the system to fail receiving

new programming attempt

4.2. Software part responsible for checking health of the main software image must

not be overwritten.

Primary operating modes of the system [2]:

• Detumbling

• Y-Thomson spin

• Tracking geographical point on Earth (for image capture)

• Sun pointing (for maximal power harvesting)

Detumbling is a process of slowing down high rotation speeds after launch, so that normal

determination and control algorithms can be switched over to.

Y-Thomson spin is a state where spin axis of the satellite is aligned with axis of the orbit

and spinning frequency is aligned with frequency of the orbit, keeping one point of the

satellite conveniently always pointed towards Earth [3].

12

1.3 Goals of the work

As cited from table 19-1 of this preprint of a book section published by NASA [4], design

process of an ADCS system should be following:

Step Inputs Outputs

1a) Define control

modes

1b) Define and derive

system-level

requirements by control

mode

Mission requirements, mission

profile, type of insertion for

launch vehicle

List of different control modes for

during mission. Requirements and

constraints

2) Quantify disturbance

environment

Spacecraft geometry, orbit,

solar/magnetic models, mission

profile

Values for torques from external and

internal sources

3) Select type of

spacecraft control by

attitude control mode

Payload, thermal & power needs

Orbit, pointing direction

Disturbance environment

Accuracy requirements

Method for stabilizing & control: three-

axis, spinning, gravity gradient, etc.

4) Select and size ADCS

hardware

Spacecraft geometry and mass

properties, required accuracy,

orbit geometry, mission lifetime,

space environment, pointing

direction, slew rates.

Sensor suite: Earth, Sun Inertial, or

other sensing devices.

Control actuators: reaction wheels,

thrusters, magnetic torquers, etc.

Data processing avionics, if any, or

processing requirements for others.

5) Define determination

and control algorithms

Performance considerations,

(stabilization method(s), attitude

knowledge & control accuracy,

slew rates) balanced against

system-level limitations (power

and thermal needs, lifetime,

jitter, sensitivity, spacecraft

processor capability)

Algorithms and parameters for each

determination and control mode, logic

for changing from one mode to

another.

6) Iterate and Document All of the above Refined mission and subsystem

requirements.

More detailed ADCS design.

Subsystem and component

specifications.

Steps 1-4 of the system’s design are largely covered, this work focuses on step 5, which

is defining the determination and control algorithms and developing the software. The

outputs of this work should therefore be algorithms and parameters for each determination

and control mode and logic for changing from one mode to another. The development

process is iterative, software is developed and evaluated as a design decision is made and

more detailed decisions are made based on existing software.

13

2 Hardware

For computation and control tasks the system uses STM32F303VE, which is a 32-bit Arm

Cortex-M4 based MCU clocked at 72 MHz, having 512 kB of flash storage and 80 kB of

RAM. The MCU has a float-point unit, direct memory access capability and a wide

variety of peripherals to work with [5] [6].

2.1 Basic control model

The system has following means available for determining attitude [2]:

• Sun sensors to measure direction of the Sun

• Magnetometers to measure direction and strength of Earth’s magnetic field

• Gyroscope to measure rotation speed of satellite’s body

• IR sensors to measure direction of Earth

and following means to control attitude [2]:

• Magnetic coils (magnetorquers) to create a magnetic field, which will interact

with Earth’s magnetic field and create a small external force on satellite’s body.

• Reaction wheels to that can be spun to create internal force on satellite’s body.

Those are meant make quick, sharp changes to satellite’s attitude.

The system has three of both magnetic coils and wheels, each for one axis.

For communication with external world, the system is connected other subsystems

via bus (commonly called “satbus”) interface following RS-485 standard. This

enables the system to communicate with either the ground station or other subsystems,

which are: on-board computer (OBC), communications subsystem (COM) and

electrical power system (EPS).

14

Basic control model is shown in Figure 1.

Figure 1. Basic control model

ADCS board is shown in Figure 2 with reaction wheels and connectors for coils and

external sensors visible. The MCU and most on-board sensors are located on the other

side of the board.

Figure 2. ADCS board

15

3 Determination software

Determination software is the most complicated part of the system and uses up the largest

portion of available computation and storage resources. This section covers selecting

software methods for determining the attitude and evaluating performance of the

developed software.

3.1 Theory

Several theoretical aspects of attitude determination are explained here.

3.1.1 Representing satellite’s attitude

Many means exist for representing the orientation of a rigid body in an external reference

frame. One of the simplest and most humanly intuitive is the Euler angles system. Euler

angles are represented as three elemental rotations (usually written as α, β and γ) along

three axes, which is sufficient for reaching any target reference frame. To perform

rotations in Euler angles, rotation matrices are needed. These are:

𝑅𝑥(𝛼) = [
1 0 0
0 𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼
0 𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼

]

𝑅𝑦(𝛽) = [
𝑐𝑜𝑠𝛽 0 𝑠𝑖𝑛𝛽

0 1 0
−𝑠𝑖𝑛𝛽 0 𝑐𝑜𝑠𝛽

]

𝑅𝑧(γ) = [
𝑐𝑜𝑠γ −𝑠𝑖𝑛γ 0
𝑠𝑖𝑛γ 𝑐𝑜𝑠γ 0

0 0 1
]

Multiplying a 3D vector by 𝑅𝑥(𝛼) would rotate the vector by α degrees in x-axis and so

forth. To derive a matrix for general rotations, matrices for all the three axes need to be

multiplied together. A rotation matrix representing attitude is commonly called attitude

matrix.

16

Using Euler angles has drawbacks: rotation matrices are somewhat memory inefficient,

involve expensive trigonometric functions and the angle system has an inherent flaw

widely known as “gimbal lock”, where one degree of freedom gets lost when two rotation

axes happen to be aligned.

Both the inefficiency and “gimbal lock” problems are successfully addressed by

quaternions, which represent rotation as follows:

𝑞 = [𝑎𝑇𝑠𝑖𝑛
𝜑

2
, 𝑐𝑜𝑠

𝜑

2
]

𝑇

Where φ is angle of rotation and {a} is the axis of rotation (3d vector representing Euler

axis).

Quaternions can be multiplied using following rule:

𝑎 ∙ 𝑏 = [

𝑎4 𝑎3 −𝑎2 𝑎1

−𝑎3 𝑎4 𝑎1 𝑎2

𝑎2 −𝑎1 𝑎4 𝑎3

−𝑎1 −𝑎2 −𝑎3 𝑎4

] [

𝑏1

𝑏2

𝑏3

𝑏4

]

These multiplications represent sequential rotations.

An equally sized rotation in opposite direction is simply:

𝑞−1 = [𝑞1 𝑞2 𝑞3 −𝑞4]

To rotate a unit vector using quaternion, following rule is applied:

𝑝 = 𝑞−1 ∙ 𝑣 ∙ 𝑞

Where v is a quaternion with rotation angle 180°, meaning only the Euler axis is

represented.

Another important property is that the sign of a quaternion can be changed without

changing the meaning:

𝑞 = [𝑞1 𝑞2 𝑞3 𝑞4] = [−𝑞1 − 𝑞2 −𝑞3 −𝑞4] = −𝑞

17

There is a general consensus among the ADCS team members that using Euler angles

should be avoided, and quaternions used instead for attitude representation. Author agrees

with this.

3.1.2 Wahba’s problem

Grace Wahba posed a problem which seeks to find attitude matrix A which minimizes

following equation:

𝐿(𝐴) =
1

2
∑ 𝑎𝑖|𝑏𝑖 − 𝐴𝑟𝑖|

2

𝑖

where {b} is a set of vectors in satellite’s body reference frame (SBRF) and {r} is a set

of vectors in external reference frames, usually in Earth-Centered, Earth-Fixed (ECEF),

{a} is a set of non-negative weights and {i} is the number of vectors in both sets. A is the

attitude matrix to be found. If input vectors are in ECEF frame, result would be attitude

matrix of craft in ECEF frame. The smaller value L(A), the more accurate the determined

attitude is [7] [8].

Most of deterministic attitude determination algorithms are based on finding optimal

solution to Wahba’s problem.

3.2 Determination methods

Attitude determination methods fall into two larger categories: spin-axis methods and

three-axis methods. The spin-axis methods determine attitude in form of axis of spin and

angle of rotation, while three-axis methods determine attitude in the three degrees of

freedom spacecraft has in space.

The list of methods described below is incomplete – many more methods exist and some

of the methods described below have their own variations. This list is composed of

methods either known to be popular in real use or referenced commonly in studies.

3.2.1 Spin-axis attitude determination methods

These methods are intended for use in spacecraft which are spin-stabilized [9] and have

very few and rudimentary sensors available to work with.

18

Only one sensor is needed for these methods to work, which could be for example: Z-axis

magnetometer (Z being spin axis of the craft), Single-Axis sun sensor, Earth Horizon

scanner [10]

These methods used to be common in 1970s but receive much less attention nowadays

[10]. Being completely outdated, they only deserve a mention in this work and will not

be considered for further study or use in this satellite. All of the other methods covered

here will fall into category of three-axis attitude determination methods.

Advantages spin-axis methods:

• Requires minimal amount of sensors

• Minimal computing power needed

Disadvantages:

• Requires spacecraft to be spin-stabilized

3.2.2 TRIAD method

TRIAD (Triaxial Attitude Determination) method is the simplest of the three-axis

methods, it takes two 3D unit vector measurements produced by on-board sensors and

two unit-vector measurements from known associated reference frames. These can, for

example, be the Sun and Earth’s magnetic field. The reference vectors can be transformed

to the corresponding observed vectors using the (unknown) attitude matrix. [9]

The method is based on principle that the desired attitude matrix A can be found from an

orthogonal right-handed triad of vectors {b1 b2 b3} in body frame and {r1 r2 r3} in

reference frame like so [11]:

𝐴 = [𝑏1 ⋮ 𝑏2 ⋮ 𝑏3][𝑟1 ⋮ 𝑟2 ⋮ 𝑟3] = 𝑟1𝑏1
𝑇 + 𝑟2𝑏2

𝑇 + 𝑟3𝑏3
𝑇

Two vectors are provided from measurements and models, the third vector can easily be

calculated from cross product of the two (normalized) vectors:

𝑣3 = 𝑛𝑜𝑟𝑚(𝑣1 × 𝑣2)

19

All three vectors must be orthogonal, which in most real situations is not the case.

Therefore, one of the two initial vector pairs needs to be “reconstructed” from v3 and the

other vector pair. This results in two equations for finding the attitude matrix, depending

which of the two vector pairs is to be used as the “primary”:

𝐴1 = 𝑏1𝑟1
𝑇 + 𝑏3𝑟3

𝑇 + (𝑏1 × 𝑏3)(𝑟1 × 𝑟3)𝑇

𝐴2 = 𝑏2𝑟2
𝑇 + 𝑏3𝑟3

𝑇 + (𝑏1 × 𝑏3)(𝑟1 × 𝑟3)𝑇

Advantages of TRIAD:

• Simple, fast

Disadvantages:

• Only two measurement vectors can be used

• Part of the second measurement is simply ignored [9]

• Measurement (and model) errors need to be ignored

Using only TRIAD would result in poor accuracy and lack of flexibility (only two

vectors), in addition to result format not being quaternions.

3.2.3 Singular value decomposition (SVD)

This method involves solving the Wahba’s problem using singular value decomposition

on matrix B [12]:

𝐵 = ∑ 𝑎𝑖𝑏𝑖𝑟𝑖

𝑛

𝑖=1

(1)

which is given by:

𝐵 = 𝑈𝑆𝑉𝑇

where b an r are body and reference frame matrices, a is the set of non-negative weights.

U and V are orthogonal matrices and

𝑆 = 𝑑𝑖𝑎𝑔(𝑠1, 𝑠2, 𝑠3) with 𝑠1 ≥ 𝑠2 ≥ 𝑠3 ≥ 0

20

s1..3 are the singular values of B.

This method is very robust but requires a lot of computations compared to other methods.

[12]. Also, output is in undesirable form of attitude matrix.

3.2.4 Davenport’s q-method and derivatives

Paul Davenport successfully devised a matrix K, which conveniently converts Wahba’s

problem to quaternions: [13]:

𝐾𝑞
∗

= 𝜆𝑚𝑎𝑥𝑞
∗

where λmax is the maximal possible characteristic (eigen) value for matrix K and �̅� is the

unknown attitude quaternion.

𝐾 = [
𝐵 + 𝐵𝑇 − 𝐼 ∗ 𝑡𝑟[𝐵] 𝑧

𝑧𝑇 𝑡𝑟[𝐵]
]

where 3x3 matrix B is described equation 1.

𝑧 = {𝑏23 − 𝑏32, 𝑏31 − 𝑏13, 𝑏12 − 𝑏21}𝑇

bxy being members of matrix B.

This equation reduces the problem to finding the largest characteristic value of K, after

which deriving the optimal quaternion is a simple process. This method remains the best

methods for solving Wahba’s problem and very robust algorithms exist for eigen

decomposition of matrix K [14]. The original q-method has been superseded by these

much faster algorithms listed below.

QUEST (Quaternion Estimator) finds 𝜆𝑚𝑎𝑥 by applying Newton-Raphson method to the

characteristic polynomial of matrix K, taking λ0 as starting value. λ0 equals the sum of

all weights used to calculate matrix B [15] Newton-Raphson method would usually be

very inefficient way to calculate 𝜆𝑚𝑎𝑥 , but because is usually λ0 very close to 𝜆𝑚𝑎𝑥, the

method is able to perform reasonably fast. This is by far the most popular way for satellite

attitude determination in spacecraft. [9]

21

ESOQ (Estimator of the Optimal Quaternion) and ESOQ2 methods are both devised by

Daniele Mortari [16] [17]. These methods calculate 𝜆𝑚𝑎𝑥 identically using the

characteristic polynomial of matrix K:

𝜆4 + 𝑏𝜆2 + 𝑐𝜆 + 𝑑 = 0

𝑏 = −2(𝑡𝑟[𝐵])2 + 𝑡𝑟[𝑎𝑑𝑗(𝐵 + 𝐵𝑇)] − 𝑧𝑡𝑧

𝑐 = −𝑡𝑟(𝑎𝑑𝑗(𝐾))

𝑑 = 𝑑𝑒𝑡(𝐾)

with auxiliary equation and solution:

𝑢3 − 𝑏𝑢2 + 4𝑑𝑢 − 𝑐2 = 0

𝑢 = 2√𝑝 𝑐𝑜𝑠 [
1

3
𝑐𝑜𝑠−1 (

𝑝

𝑝3 2⁄
)] +

𝑏

3

where 𝑝 = (𝑏/3)2 + 4𝑑/3 and 𝑞 = (𝑏/3)3 − 4𝑑𝑏/3 + 𝑐2/2

And the solution, 𝜆𝑚𝑎𝑥:

𝜆𝑚𝑎𝑥 = (√𝑢 − 𝑏 + √−𝑢 − 𝑏 − 2√𝑢2 − 4𝑑) 2⁄

Both ESOQ and ESOQ2 evaluate the associated optimal quaternion by computing the

maximum modulus vector cross product among four cross product vectors defined in

four-dimensional space. To do this, ESOQ implies the computation of seven determinants

of 3x3 matrices, while ESOQ2 reduces the quaternion to principal axis and angle,

reducing the computation to five determinants of 2x2 matrices [17].

Advantages q-methods:

• Any number of measurement vectors

• Measurement noise is considered (using weights)

• Results in quaternions, which is desirable

22

Disadvantages:

• More complex than TRIAD

3.3 Filtering methods

The methods listed above are “single frame” methods, which calculate one, deterministic

estimation based on one set or frame of measurements, and do not use information about

the spacecraft dynamics [11]. To achieve a more reliable reading which also contains

angular velocities and maybe angular accelerations, a filtering algorithm needs to be

added.

Kalman filter has been the “workhorse” of aerospace for decades and the obvious choice

for this task. The filtering method consists of two stages: prediction and update;

summarized as follows: [18]

Prediction

�̂�𝑘
− = 𝐹�̂�𝑘−𝑖

+ + 𝐵𝑢𝑘−1

𝑃𝑘
− = 𝐹𝑃𝑘−1

+ 𝐹𝑇 + 𝑄

Update

�̃�𝑘 = 𝑧𝑘 − 𝐻�̂�𝑘
−

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝑅 + 𝐻𝑃𝑘

−𝐻𝑇)−1

�̂�𝑘
+ = �̂�𝑘

− + 𝐾𝑘�̃�

𝑃𝑘
+ = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘

−

where x is n-length state vector, P is error covariance matrix, z is measurement, u is

control input, F is state transition matrix, B is control input matrix, H is measurement

input matrix, K is Kalman gain, P is covariance, Q is measurement error, y is

measurement residual. Anything marked with a “hat sign” ‘^’ is an estimate of the real

system. Superscripts ‘-’ and ‘+’ denote predicted and updated estimates.

Here are the variations of Kalman filters, used commonly in spacecraft [9]:

23

Linear Kalman filters (LKF) (what is described above) were used for attitude

determination in 80s due to limitations on on-board processors. Extended Kalman and

Unscented Kalman filters have become more common nowadays, and hardly a satellite

exists without one or more on board [9]. Due to non-linear nature of satellite’s attitude,

using LKF should be avoided to achieve best results.

Extended Kalman filters (EKF) use non-linear transformation f() and h() for state

transition instead of state transition matrices F and H.

State prediction and measurement error calculation in EKF goes as follows:

�̂�𝑘
− = 𝑓(�̂�𝑘−1, 𝑢𝑘)

�̃�𝑘 = 𝑧𝑘 − ℎ(�̂�𝑘−1)

Other states are identical to the linear Kalman filter, with state transition matrices F and

H are Jacobian matrices defined as follows:

𝐹𝑘 = ∇𝑓𝑘|𝑥𝑘−1

𝐻𝑘 = ∇ℎ|𝑥𝑘

Advantages on EKF

• Works very well in case of well-defined state transition models

Disadvantages:

• Computationally heavy

• Difficult to implement due to need to derive the Jacobian matrices

• Limited use cases: transitions need to be differentiable functions

• Known to not perform very well on a wide variety of situations

• Known to be outperformed by UKF in almost every aspect

• Able to obtain only first-order polynomial accuracy at best [19]

24

Unscented Kalman filter (UKF)was proposed by Jeffrey Uhlmann in 1997 [20]. Most

inaccuracy problems of EKF are caused by the fact that the gaussian random value (GRV)

is propagated through “first-order” linearization of the nonlinear system. The UKF

addresses this issue by specifying the GRV through a set of carefully selected points

rather than mean and covariance matrix. These points are selected as follows:

𝑥0 = �̅�

𝑥𝑖 = �̅� + (√(𝐿 + 𝜆)𝑃𝑥)𝑖; 𝑖 = 1, … , 𝐿

𝑥𝑖 = �̅� − (√(𝐿 + 𝜆)𝑃𝑥)
𝑖

; 𝑖 = 𝐿 + 1, … ,2𝐿

𝑊0
(𝑚)

= 𝜆/(𝐿 + 𝜆)

𝑊0
(𝑐)

=
𝜆

𝐿 + 𝜆
+ (1 − 𝛼2 + 𝛽)

𝑊𝑖
(𝑚)

= 𝑊𝑖
(𝑐)

=
1

{2(𝐿 + 𝜆)}
 𝑖 = 1, … ,2𝐿

where �̅� is mean and Px
 covariance of L-dimensional random variable x.

𝜆 = 𝛼2(𝐿 + 𝑘) − 𝐿 is a scaling parameter.

α determines the spread of sigma points, β is used to incorporate prior knowledge of the

distribution of x. (√(𝐿 + 𝜆)𝑃𝑥)
𝑖
is the ith row of matrix square root.

These sigma points are propagated through the non-linear transform and covariance of

the result is approximated from the resulting sigma points [21]. This is called the

“unscented transform”, and it performs both more accurately and efficiently than the

method EKF uses for predicting covariance of the result.

Advantages:

• Able to obtain second-order accuracy

• Rapid implementation, no need to derive Jacobian matrices

25

• The non-linear function can be approached as ”black box”, meaning any kind

of non-linear transition is applicable to UKF

• Both more accurate and efficient than EKF

3.4 Determination algorithm

Since attitude should be represented in quaternion, the q-methods are the most desirable.

Since these methods are mathematically equivalent, the decision is reduced to which one

is most efficient, which is ESOQ2. [17]

For filtering, LKF should not be used because attitude has non-linear properties. The

decision remains between EKF and UKF, out of which UKF is known to perform better

in every aspect. The final design choice is to use ESOQ2 in combination with Unscented

Kalman filter for attitude determination. Determination flow shown in Figure 3Figure 3.

Figure 3. Attitude determination flow

Development of the algorithms was supervised by prof. Alar Leibak of the university.

In most cases where EKF or UKF are used for attitude determination, the measurement

and reference vectors are passed directly into the filter and the filter itself performs

attitude estimation. Most of them fall into categories of multiplicative or additive

Extended Kalman Filters. [14]. In configuration used here, the filter is only tasked with

removing noise from estimation of ESOQ2 and estimating the satellite’s other attitude-

related states such as angular velocities and accelerations. Author sees several advantages

in using this configuration instead. Those include:

26

• ESOQ2 and other optimal quaternion methods provide an additional output

value (loss function) which can indicate the reference vectors estimation is

erroneous or there are biases in measurement. (that is, if λmax is significantly

different from λ0).

• Each measurement vector can be assigned their own weights according to their

assumed reliabilities and the weights can be changed “on the fly”, or even

estimated dynamically.

• The measurement vectors and the number of vectors used can be changed

without the filter even “knowing” about it (for example Sun vector

measurement can be swapped with Earth’s direction from IR sensors as the

craft enters eclipse).

• This configuration has no “first estimation” problem with the filter – the filter

can be initialized with the first result from ESOQ2 which should be accurate

enough.

• Modular structure means easier parametrization and separate components can

be reused in other missions. For example, the filter could be used for a mission

that utilizes a star tracker that already outputs the measurement in quaternion

form.

As mentioned, the UKF will estimate only attitude-related states. Estimation of non-

attitude states will be done elsewhere, if needed. For example, sensor biases will be

estimated within separate Kalman filters tasked with filtering measurements. Satellite

body’s moments of inertia will not be estimated at all, as the control algorithm does not

use this information as input.

Numerical simulations of the ESOQ2 method show that correlation between

measurement noise and estimation error is linear. In test result shown in Figure 4, two

vector pairs were used and the angle between the reference vectors was 60 degrees. The

figure shows only unfiltered, raw data.

27

Figure 4. Attitude error measurement noise dependency

When two of the vector pairs used for attitude calculation become parallel or antiparallel,

calculating attitude in the three degrees of freedom would become mathematically

impossible. Therefore, it is expected that there will be increase in estimation error as

measurement vectors come close to this state. Result of numerical simulation with

different angles between measurement vectors is shown in Figure 5. In this simulation,

noise standard deviation of 3 degrees was used.

Figure 5. Attitude error measurement vector angle dependency

This simulation would represent final accuracy of the ADCS estimation (with static

attitude) at 3-degree standard deviation measurement noise if the reference models were

100% accurate (which is a very unlikely ideal case scenario). The 3-degree standard

deviation of input error was chosen intuitively as the “worst case” in a real situation. As

0 1 2 3 4 5 6 7

0

2

4

6

8

Measurement noise (Standard deviation, degrees)

Er
ro

r
(a

ve
ra

ge
, d

e
gr

e
e

s)
q-method attitude determination accuracy

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100Es
ti

m
at

io
n

 e
rr

o
r

(a
ve

ra
ge

, d
eg

re
es

)

Angle between input vectors (degrees)

q-method accuracy dependance on angles between
reference vectors

Raw Filtered

28

seen from the graph, even with average error of 60 degrees, a Kalman filter is able to

reduce the error down to around 3 degrees. The sensors will have their own Kalman filters

to reduce noise before passing data to determination algorithm, meaning with similar

filtering performance assumed, at 3 degrees of standard deviation measurement error, the

raw measurement error would average around 60 degrees. Noise statistics of the real

sensors have not been gathered, but graphical visualization of sensor data has shown the

error to be clearly smaller than that.

Those simulations were run with static attitude. Additional work is required to incorporate

state estimation into the filtering in order to run simulations with a spinning satellite.

Those added complexities will inevitably decrease the final estimation accuracy, but even

if final estimation error would increase by 3 times, the performance of the algorithm

would still be adequate, provided the angle between the measurement vectors remained

larger than 4 degrees (and smaller than 176).

Based on results from numerical simulations, it is quite safe to assume that required

accuracy can be reached with the current configuration, given the accuracy of the models

and sensors meets expectations. Finding this out requires actual telemetry returned from

the satellite in space.

3.5 Reference models

To provide the reference vectors for the ESOQ2 algorithm, several on-board models are

needed. Most of the models require satellite’s position relative to Earth as input. To

propagate satellite’s position, several algorithms are available, most common of them is

SGP4 [22]. This model (like most others available) requires knowing the time (provided

by on-board RTC) and orbit model, which is provided by NORAD in the form of two-

line element set and uploaded to the satellite, to be stored the system’s EEPROM. This

will need to be updated once every couple of days. SGP4 model was evaluated as efficient

and accurate enough by bachelor student Mohammad Tavassolian. Author has run his

own tests after integrating the algorithm in into the ADCS software and can verify that

the algorithm is accurate enough and efficient enough to fulfil mission requirements.

To provide reference vector of magnetic field, IGRF (International Geomagnetic

Reference Field) model is needed. This was developed by bachelor student Shu Taya and

29

prof. Alar Leibak. The model uses Maxwell’s equation and Legendre functions as

mathematical basis. Coefficients provided by International Association of Geomagnetism

and Aeronomy are needed by this model and updated as new ones are published, which

happens roughly every five years [23].

Reference vector for Sun can easily be calculated from time provided by real-time clock

(RTC). This model was developed by Hendrig Sellik as part of his bachelor’s work [24].

Earth’s direction vector can be derived from satellite’s position in orbit.

30

4 Control software

Control software is tasked with implementing the operating modes defined in

requirements. At least three different control modes are needed.

4.1 Control loop options

Since attitude of the craft is known, it is obvious that attitude control should be done in

closed loop. A few options to achieve closed loop control listed below.

4.1.1 State feedback loops

State feedback loops use the following system model

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

Where x(t) is a vector of system states and u(t) is controller input vector. Idea is to select

matrix K:

𝑢 = −𝐾𝑥

which fulfils the control requirements in a certain way. Many different control loops can

be created using this model, example system state being fed back, system output integral

being fed back, or system state or system error being fed back. There are several ways to

choose the control matrix k.

In pole placement feedback, matrix K is calculated so that closed-loop poles of the

system (eigenvalues of state transition matrix A) are placed in selected locations. [25].

Selecting the poles to achieve best results, however, can be a counter intuitive process.

Linear Quadratic Regulator (LQR) calculates matrix K using specially selected weights

Q and R, so that matrix K would minimize the equation [26]:

𝐽 =
1

2
∫ (𝑥𝑡𝑄𝑥 + 𝑢𝑡𝑅𝑢)𝑑𝑡

∞

0

31

Q is a set of weights that penalises state performance of the system over time (this could

be attitude error for example) and R is a set of weights which penalises control input (this

could be motor velocities or coil torque). Higher weights for Q would mean the system is

more eager to use control inputs to minimize the time to reach target (in our case, attitude).

Higher weights for R mean the system would try to optimize usage of control inputs (in

our case, coil and motor currents) to conserve power.

4.1.2 PID and variations

PID which stands for proportional-integral-derivative controller, is the single most used

dynamic control technique, being used in 85% of all dynamic controllers. [27]

As input, PID takes target and actual system state and calculates the error (which would

be zero if target is reached), or simply takes the error as input.

The output of PID controller is sum of three terms: proportional, integral and derivative,

hence the name PID. Proportional term is weighted size of the error, derivative term is

weighted change in error and integral term is weighted sum of the error over time. Some

of the terms can be left out if not needed, which would make it a variation of PID, for

example PI if derivative term is left out [27].

The controller can be combined with open-loop components called “feed-forward” terms,

which are functions of the target state instead of state error. These are useful when the

target state needs output value to be held.

As seen, PID is an extremely simple control technique requiring little knowledge of

systems or control theory to implement. Tuning the controller (choosing the constants for

the terms) is also simple and intuitive, and the controller is known to reach the target even

when imperfectly tuned (unless it is tuned to be completely unstable).

Despite knowing that LQR can give the best possible result (if state models are perfectly

accurate), the simplicity of both implementing and configuring PID is impossible

overlook. PID parameters would also be easier to “tweak” for more optimized control

while the craft is in space. Also, at this rather late stage of software development, when

delivery of working software is required soon, no usable models of spacecraft dynamics

have been created. Creating those models would steal away time from developing other

32

important features that need to be added to the system. For those reasons, PID will be the

choice for all control-loops used in the system.

4.2 3-axis pointing

For pointing tasks, only the motors will be used, because magnetorquers would perform

hopelessly slow compared to motors to make an impact and interfere with magnetic field,

making attitude determination difficult. Two separate PID controllers will be needed, one

for calculating target velocity of the satellite, taking target and current attitude as input,

and other for calculating target velocities for the motors, based on target angular velocity

of the spacecraft. In most cases the target attitude also changes in time (because the

satellite is moving in orbit relative to point of interest), meaning speed of the target

attitude change also needs to be calculated and accounted for. This will simply be added

to the final target velocity. The pointing control loop shown in Figure 6.

Figure 6. 3-axis pointing flow

For tasks where target attitude will not be changing significantly (like Sun pointing),

separate control algorithm will not be implemented. Author does not see the benefit in

that since the one shown in Figure 6 will perform in those cases as well, and the overhead

of calculating angular velocity based on attitude change is minimal. All pointing tasks

will use the same control loop.

4.3 Y-Thomson spin

Y-Thomson spin is a convenient state when images need to be captured of Earth, but

rather inconvenient when attempting to point solar panels towards Sun for charging

batteries. For the latter, it would be much better to have the satellite attitude in a complete

33

standstill relative to ECEF. This means that depending on situation, these modes should

be switchable. Motors cannot exert external force on satellite’s body, meaning constant

spin rates would need to be maintained if using motors for switching between those states.

This is unwanted because motors should be used sparingly, to reduce wear and minimize

power consumption. Therefore, only magnetorquers must be used for switching between

Y-Thomson spin and standstill.

A spin rate controller will be implemented for this purpose, which will take magnetic

field, target and actual spin rates as inputs generate for magnetorquers accordingly. Only

one PID will be needed for this, which is likely of P variation (without derivative and

integral terms), because with only magnetorquers used, the change created in attitude

states would take significant amount of time (measured in hours rather than minutes or

seconds), meaning it is unlikely that derivative and integral terms would make anything

useful out of it.

This loop cannot be run continuously, because magnetic fields created by coils interfere

with magnetometer reading, meaning torque needs to be paused for taking new

measurements of magnetic field and estimating new attitude.

External disturbances on satellite’s body will also be countered by occasionally running

this control loop.

4.4 Detumbling

After launch, the satellite may be in a fast spin, which makes communication with ground

station and attitude determination-control either difficult or impossible. To establish

proper communication and start using conventional determination and control algorithms,

spin rates need to be significantly reduced. Since motors cannot change the total velocity

moments of the satellite’s body, detumbling needs to be done using only magnetorquers.

To achieve this, the B-Dot control law [28] is used, which tries to minimise change in

magnetic field. A modified/simplified B-Dot controller is implemented as follows:

𝐵 = 𝑚𝑘 × 𝑚𝑘−1

𝜐 = 𝑛𝑜𝑟𝑚(𝐵 × 𝑚𝑘)

34

𝑔 = 1 − 𝑒−𝑁∗|𝐵|

𝑇 = 𝜐 ∗ 𝑇𝑚𝑎𝑥 ∗ 𝑔

T is the output of coils (amount of current passing through) which is a 3D vector as there

are three coils. B is change in magnetic field, mk and mk-1 are current and previous

normalized magnetic field measurements, υ is the unit vector magnetic field axis to be

created by coils, Tmax is the scalar value representing maximal output of coils and g is the

B-Dot gain. N ≥ 1 is gain constant. The larger is N, the more torque is applied relative to

rotation speed.

This loop is run at around 4 Hz, with most of the time spent applying torque. Should the

frequency be adjusted, gain constant N should be adjusted accordingly. A tiny delay is

needed between releasing the torque and taking a new measurement, to let current in coils

and magnetic field around spacecraft to cool off. For power safety, this loop will always

be run for a specified amount of iterations and never in an endless loop.

35

5 Software design

All software for the MCU is written in C99, compiled with GNU Arm Embedded

Toolchain using custom makefiles and linker scripts. Service tool for updating software,

data exchange, diagnostics and other utilities is written in Python.

To help in handling concurrency, timings and provide some other utilities, a real-time

operating system (RTOS) called FreeRTOS is used in the main binary. It is included in

the project as source code and together with rest of the code. Firmware update portion

runs independently without an operating system.

5.1 Abstract view

The code is strictly divided into three major components, with files in separate directories:

HW (hardware), SYS (system) and LOGIC.

LOGIC portion contains the navigation software and other utilities which have only

numerical inputs and outputs. This part of the code has no external dependencies ,

meaning this can be compiled with only the files within the directory and can therefore

be included into any other project with minimal effort, and is written along with unit tests

and simulations for running on a PC.

HW contains hardware drivers for the system. Dependency on RTOS unwanted, but in

many cases unavoidable because some processes have delays and CPU time should be

yielded to let other processes use it. Without dependency on RTOS, any smaller firmware

binary could be compiled without any operating system included, which could be useful

for several utilities.

SYS is the intermediate layer between hardware and logic. Assignments of this part

include moving around data within the system, defining and handling communication

with other systems, defining priorities of processes, managing system states and

configurations, monitoring system health and everything else not directly related

36

hardware control or navigation. This component has dependencies on every other

component of the system, as this is what that binds the system together.

The components and their dependencies are shown in Figure 7.

Figure 7. Software abstract view

5.2 Running tasks

A FreeRTOS task is a concept similar to threads in most other operating systems. A task

runs in its own stack of specified size, keeps its own program counter and other CPU-

related context has an assigned priority.

The ADCS system is divided into six tasks: Environmental Modelling, Data Acquisition,

Control, Attitude Determination, Main Loop and Bus Task.

5.2.1 Environmental Modelling task

This task contains the models to provide reference vectors for ESOQ2. These models are

SGP4 model, Sun vector model and IGRF model. The task is woken up by an RTC alarm

that indicates that model data has been outdated.

Models would normally be updated every second (because RTC precision is one second),

but to reduce context switches within the system, this task is woken up once every 5

37

seconds, then it calculates the new model data five seconds ahead and stores the results

in an array. Other tasks can then access the data in the array instantly, reading from array

index based on the time since last update.

5.2.2 Data Acquisition task

This task will read each sensor specified as ‘active’, filter the result and copy the data to

specified memory location for other tasks to access instantly when needed. Measurement

data logging capability is also contained within this task.

This task can be instructed to either go inactive, update measurement data in normal

frequency or update measurement data in rapid frequency. This task would measure

rapidly during pauses in coil torque when switching between standstill and Y-Thomson

spin. During detumbling, this task would be inactive.

5.2.3 Control task

This task contains the control software and executes other commands which take too long

for the bus task to carry out or commands which need to be executed at a specific time.

The commands are kept in a queue and executed in order. Some of those include:

• Detumbling for a given amount of iterations

• Pointing towards desired coordinates for a specified time

• Carrying out software updates and resets

• Waiting for a specified RTC (Real-Time Clock) alarm

This task’s ability to wait for a specified time in RTC and hold a sequence of commands

in a queue gives the system some useful mission-planning capabilities. Example use cases

include:

• The system will wait for a time specified the satellite reaches poles, where

magnetic field is strongest, then start the detumbling algorithm for best results

relative to power usage.

• The system will wait for a specified time until a location of interest is reached,

then turn the cameras towards that location for image to be captured.

38

• The system will wait until eclipse (being in Earth’s shadow) passes, then turn solar

panels towards Sun.

• The system waits for a specified time of interest and then tells data acquisition

task to start logging sensor data, for various scientific or diagnostic purposes.

• Perform several mission objectives (for example the ones listed above) and then

perform software update, loading new firmware from external EEPROM into

flash.

there are many more possibilities so this capability means that ADCS can act as a

secondary OBC if needed.

The RTC allows alarms to be set up to 1 month ahead (though this long will probably

never be necessary), with a one second accuracy [5].

To clear any unwanted instructions that are being executed or waiting in the queue, the

task needs to be deleted along with the queue and restarted.

5.2.4 Determination task

This task will contain the determination, and will run in fast loop, continuously

calculating and updating the attitude estimation for other tasks and subsystems to use.

During detumbling process, this task would be inactive. When currents are passing

through coils, the attitude would be updated with only gyro data.

5.2.5 Bus task

This task is responsible for monitoring the bus and transmitting/receiving messages.

Parsing of each command sent to the system also happens in this task, making this the

biggest task in the system in terms of code size. Most of the commands are also executed

within this task, but only utility commands which can be carried out in an instant.

Commands that take time to be executed, such as attitude control commands, cannot be

executed in this task because rest of the communication would be halted. These

commands are passed over to the control task.

39

The bus protocol itself was developed by Madis Kaal and the exact same code runs on

every other subsystem, except for EPS, which contains only code written by

Veljo Sinivee.

5.2.6 Main loop task

This task will initialize resources, create other tasks in a specified sequence, and after that

it will simply keep looping, pinging each task after a specified delay and update the

external watchdog. If any of the tasks stops responding to pings, the main loop would halt

and the external watchdog will starve, generating a power reset to the system. The only

task not monitored is the control task, doing which would be unreasonably difficult with

the wide array of different actions with different durations and timings it is performing.

5.3 Bootloader

Software update is the single most mission critical capability of the system. Provided

radio communication can be established with the satellite, everything other than update

capability in the ADCS software may fail and the mission could be continued. If software

update fails and the system gets “bricked”, the primary mission objectives cannot be

pursued.

Update is performed using a bootloader, which stored in beginning of the internal flash

memory. Bootloader will start on power-up, read the reset code from external EEPROM,

and based on the reset code will either wait for instructions from the bus or attempt to

start the main firmware after checking health of the image. XTEA hash algorithm is used

for firmware verification purpose. The hash table along with other information about

firmware is located at the end of flash. Flash memory usage is shown in Figure 8.

Figure 8. Flash usage

Bootloader “mode” is also the “safe mode” of the system because nothing is being done

except monitoring the bus while the system is in bootloader. This means that any

preventable harm will be prevented as long system stays in the bootloader.

40

The bootloader also has mechanism to prevent a situation where firmware hash is valid,

but for some reason does not work properly (either falls into one of fault interrupt handlers

or does not update the external watchdog). Normally in this situation the system would

keep resetting and trying to start endlessly. This could be caused by hardware degradation

caused by radiation. The bootloader keeps a counter on external EEPROM, which is read

and incremented every time bootloader is started. If the counter reaches 10, bootloader

will refuse to call firmware again and wait for instructions from bus. Once the software

has started, the main loop task will reset the counter after three iterations. Because the

main loop task pings each other task within an iteration each task will have responded to

pings at least three times and the software can be considered stable. This mechanism also

helps recover from a faulty firmware which cannot communicate on the bus for some

reason, but continues to update the external watchdog so that automatic power reset would

not happen and there would be no way to instruct the system to fall back into bootloader.

To recover from this, the EPS can be instructed to perform power rest to ADCS system

10 times in a row with a small delay. In this case, the reset counter would reach 10 and

system would stay in bootloader and communication (if hardware enables it) could be

established.

Throughout most of software development, new versions have been uploaded to the

system using the bootloader rather than hardware debugging tools. At the time of writing

this thesis, the software development of this system has been in “active phase” for roughly

1,5 years, during which firmware update has been performed for several thousand times,

without a single “soft brick” happening. Up in space, firmware update will be performed

for maybe 10-15 times (if the system satellite survives long enough to see this happen),

meaning the likelihood of an undiscovered software bug surfacing during firmware

update in space is extremely low. Based on this, the software update capability is

considered 100% stable.

41

6 Hardware drivers

Hardware drivers are developed using firmware library provided by ST, with some

exceptions where MCU registers being accessed directly, when performance is critical or

use case is not covered firmware library.

6.1 Motors drivers

The three reactions wheels are driven by BLDC motors each having their own internal

Hall effect sensor. The drivers are developed “by the book” as instructed in section

20.3.24 in ST’s reference manual [15]. To capture inputs from the Hall sensors, timers in

the STM32 have special mode where Hall sensor inputs are XOR-ed together to detect

change in any of the three inputs. This XOR-ed signal is internally connected to another

timer responsible for creating the PWM for motor drivers. This timer configuration

referred to as master-slave mode in ST manual. Change in signal generates commutation

interrupt for the timer PWM, which triggers loading of PWM output values from a

preloaded register to output register. For the next commutation event, new values are

written in the preloaded registers within the timer’s commutation interrupt handler. Using

preloaded values and hardware switching means no delay between Hall sensor update

loading new values, meaning maximal efficiency.

The drivers will take target velocity as input and a PID controller will calculate PWM

output value based on target and actual motor velocity. The velocity is measured using

the capturing timer and PWN values are updated within the same timer’s interrupt

handler.

6.2 Magnetorquer drivers

Coil drivers are driven by hardware timers that generate PWM. Direction selected using

an H-bridge driven by a GPIO. Pins are connected to MCU so that each coil has their own

timer associated with them. This design decision was short-sighted, because it would have

42

been possible to control all of the coils with just one timer. This would have left the two

other timers free to do other useful things.

6.3 Simple sensors

Most of the sensors for measurement are communicated with using simple MCU

peripherals such as I2C and SPI.

The system has 6 magnetometers available for use, two outside the board on deployable

wings and four on the system’s board. The large number of sensors is due need to test

performance of several different magnetometers in space. Need to add additional

magnetometers became evident when data visualization showed that magnetometers from

different manufacturers can perform very differently. Possible effects on magnetic field

measurements has also been an important factor to consider in design of satellite’s

mechanical parts and other subsystems. Any effect motors (mounted directly on the

system’s board) can have on magnetic field measurement is also unknown. Therefore,

telemetry returned from the magnetometers will be an important scientific outcome of the

mission and can form a basis for design of a possible next mission. The magnetometers

mounted on deployable wings of the craft will provide a useful comparison to those

mounted on the system’s board, because distortions to the magnetic field will be

significantly smaller outside on the wings.

There are 8 ambient solar sensors and 8 IR sensors, one set for each side and two more

for the deployable wings. These sensors are communicated with using I2C peripheral and

a I2C multiplexer to handle problems with address conflicts.

6.4 Solar cameras

Ambient solar sensors have an inherent problem – accuracy becomes low when falling

light is close to 90°, because small changes around this angle would not result in different

amounts of light captured, causing almost no change in reading. To make up for this, six

18x18 pixel black-white cameras are installed to determine Sun’s direction more

accurately in those areas. These cameras were originally intended for use as mouse

sensors, but also have a mode to capture raw pixel data which is being used. To read the

data, a serial interface is implemented by bit banging GPIOs. Clock signal is shared

43

between all the cameras and for data each has separate GPIOs assigned to them. This

means that read operations will not be performed separately for individual cameras, all of

the images from six cameras will be read at once. The read time unfortunately is slow,

taking around 200-300ms which may slow down the determination loop, but in turn this

would give the most reliable measurement vector available hardware can provide.

44

6.5 Additional hardware

There are several other hardware features included in the system.

HW watchdog is included for additional reliability. This is a device which has a single

GPIO as input and the value needs to be toggled updated every 1.6 seconds. If this does

not happen, the watchdog will switch off the system’s power supply for a brief moment.

This is being updated in the main loop task if all other tasks respond to pings.

LF receiver – a low frequency wake-up receiver is connected to the MCU. This has two

inputs, one connected to an unused magnetic coil and the other connected to one of the

solar panels. The unused magnetic coil can be used for a low frequency radio receiver

and the solar panel can be used for testing visual communication with the satellite. If

enough light shines on the solar panel, a voltage change will happen. This way a high-

power laser can be used to send messages to the satellite in space. The unused magnetic

coil is also connected directly to an analog pin of the MCU, to listen to the input directly.

A high-power LED is also connected to the system, this can be used to test visual

communication with ground station.

The last two hardware features are not related to main goal of the system and serve a

scientific purpose. These were added because there were a few more free pins on the

MCU.

45

7 Summary

At the time of writing this thesis, ACDS software is in following state: firmware update

is working, tested and stable, hardware driver development is complete, system

architecture is largely in place, reference models for the attitude determination are

integrated and most of the determination algorithm is complete and soon will be ready to

be integrated.

What still needs to be done: the UKF of determination algorithm needs more work

(adding proper state prediction), one-dimensional Kalman filters currently used for sensor

filtering should be replaced with proper filters, preferably UKF with dual estimation and

bias estimation capability. Control software design is in place but the software itself is

largely missing. Accuracy of the reference models needs more verification.

The satellite itself has been handed over to launch provider and will launch in a couple of

months probably. Software currently on board the satellite to be launched is rudimentary

– it has the bootloader for updating the software, the B-Dot algorithm to detumble the

satellite, and ability to return telemetry of all on-board sensors. Calibrating and tuning of

the sensors will likely take a couple of more months of gathering telemetry after launch

and hopefully by then a feature complete binary will be ready for uploading to begin

fulfilling mission objectives.

46

References

[1] The CubeSat Program, Cal Poly, CubeSat Design Specification Rev.13, 2014.

[2] TUT MEKTORY SPACE CENTRE, “System Requirements Specification TMSS-

SYS-RS-01,” Tallinn University of Technology, Tallinn, December 2016.

[3] B. W. Young, “Design and Specification of an Attitude Control System for the

DANDE Mission,” Massachusetts Institute of Technology, 2006.

[4] S. R. Starin and J. Eterno, “19.1 Attitude Determination and Control Systems

(Preprint),” Microcosm Astronautics Books , 2011.

[5] ST Microelectronics, “RM0316 Reference Manual,” [Online]. Available:

https://www.st.com/resource/en/reference_manual/DM00043574.pdf.

[6] STMicroelectronics, STM32F303xD STM32F303xE, 2016.

[7] G. Wahba, “A Least Squares Estimate of Satellite Attitude,” SIAM Review, vol. 8,

no. 3, 1966.

[8] D. Motrari and M. F. Landis, “How to Estimate Attitude from Vector

Observations,” Astrodynamics Specialist Conference, Girdwood,Alaska, 1999.

[9] J. C. V. d. Ha, “Progress in Satellite Attitude Determination and Control,”

Transactions of the Japan Society for Aeronautical and Space Sciences, Space

Technology Japan, 2009.

[10] S. Tanygin and M. D. Shuster, “Spin-Axis Attitude Estimation,” The Journal of

the Astronautical Sciences, vol. 55, 2007.

[11] F. L. Markley and D. Mortari, “QUATERNION ATTITUDE ESTIMATION

USING VECTOR OBSERVATIONS,” Journal of the Astronautical Sciences,

2000.

[12] L. Markley, “Attitude Determination Using Vector Observations and the Singular

Value Decomposition,” Journal of the Astronautical Sciences, vol. 38, no. 3,

1987.

[13] Computer sciences corporation, “ANALYSIS OF LEAST-SQUARES

ATTITUDE DETERMINATION ROUTINE DOAOP,” 1977.

[14] L. F. Markley and J. L. Crassidis, Fundamentals of Spacecraft Attitude

Determination and Control, New York: Springer Science+Business Media, 2014.

[15] M. D. Shuster, “The Quest for Better Attitudes,” The Journal of the Astronautical

Sciences, vol. 54, no. 3&4, 2006.

[16] D. Mortari, “ESOQ: A closed-form solution to the Wahba problem,” Mortari,

Daniele, 1997.

[17] D. Mortari, “ESOQ-2 Single-Point Algorithm for Fast Optimal Spacecraft

Attitude Determination,” 1997.

[18] Y. Kim and H. Bang, “Introduction to Kalman Filter and Its Applications,” in

Kalman FIlter, InTechOpen, 2018.

47

[19] M. C. VanDyke, J. Schwartz and C. Hall, “UNSCENTED KALMAN

FILTERING FOR SPACECRAFTATTITUDE STATE AND PARAMETER

ESTIMATION,” Advances in the Astronautical Sciences, 2004.

[20] J. K. Uhlmann and S. J. Julier, “A New Extension of the Kalman Filter to

NonlinearSystems,” in Proceedings of the SPIE AeroSense International

Symposium on Aerospace/Defense Sensing,Simulation and Controls, Orlando,

Florida, 1997.

[21] E. A. Wan and R. van der Merwe, “The Unscented Kalman Filter for Nonlinear

Estimation,” Oregon Graduate Institute of Science & Technology, Oregon, 2000.

[22] F. R. Hoots, R. L. Roehrich and T. S. Kelso, “Models for Propagation of NORAD

Element Sets,” spacetrack, 1988.

[23] GEOPHYSICS AND GEOCHEMISTRY – Volume II p. 188, Oxford, UK:

EOLSS Publications, 2009.

[24] H. Sellik, KUUPSATELLIIDI ASENDIMÄÄRAMINE PÄIKESE-JA

MAGNETVEKTORIGA KASUTADES SVD MEETODIT, Tallinn: TalTech, 2018.

[25] E. D. Sontag, Mathematical Control Theory: Deterministic Finite-Dimensional

Systems, 2nd edition, New York: Springer-Verlag New York, 1998.

[26] P. Tisa and P. Vergez, “Performance Analysis of Control Algorithms for

FalconSat-3,” in 16th AAS/AIAA Space Flight Mechanics Conference, Tampa,

Florida, 2006.

[27] R. A. Paz, “The Design of the PID Controller,” New Mexico State University,

2001.

[28] C. A. Stickler and K. T. Alfriend, “Elementary Magnetic Attitude Control

System,” Journal of Spacecraft and Rockets, vol. 13, no. 5, pp. 282-287, 1976.

[29] R. Zanetti, T. Ainscough, J. Christian and P. D. Spanos, “Q-Method Extended

Kalman Filter,” Journal in Guidance Control and Dynamics, vol. 38, no. 4, 2015.

[30] C. Bridges, Detailed Notes for TUT Mektory Nano-Satellite mission, Tallinn,

2015.

